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1 Introduction

From haggling in an open-street market to negotiating a corporate takeover deal, alternating-offer bar-

gaining between a buyer and seller is one of the oldest and most common forms of transaction. When both

parties have incomplete information, it is known that equilibrium outcomes are difficult to characterize.1

Myerson and Satterthwaite (1983) demonstrated that full efficiency is not possible, and theoretical effi-

ciency bounds are derived in Myerson and Satterthwaite (1983) and Williams (1987), but it is unknown

how well real-world bargaining performs relative to these bounds. Williams (1987) emphasized that “little

is known about whether or not these limits can be achieved with ‘realistic’ bargaining procedures.” This

paper is the first attempt to bring data to this question in order to quantify the efficiency of real-world

bargaining with two-sided incomplete information. I develop a framework to estimate distributions of

private valuations on both sides of the market at wholesale used-auto auctions. I then map these prim-

itives into results from the theoretical mechanism design literature in order to measure the efficiency of

bargaining relative to the first-best frontier and the information-constrained, second-best efficient frontier.

The data analyzed in this paper consist of several hundred thousand sequences of back-and-forth

bargaining offers between buyers and sellers at wholesale used-auto auctions, a large market where new

and used-car dealers buy vehicles from other dealers as well as from rental companies and banks. This

industry passes 15 million cars annually through its lanes, selling about 60% of the vehicles, worth a

total of $80 billion. Throughout much of the industry, auction houses employ the following mechanism:

a secret reserve price set by the seller followed by an ascending price auction, which, when the secret

reserve price is not met, is followed by post-auction, alternating-offer bargaining mediated by the auction

house. This setting is ideal for studying bargaining under two-sided uncertainty because all players are

experienced professionals and are likely to understand well the game being played. Also, because the

bargaining takes place after an ascending auction and after the seller’s choice of a secret reserve price,

the efficiency of bargaining can be studied while imposing only minimal assumptions on the structure or

equilibrium of the bargaining game.

After a brief introduction to the industry, Section 2 discusses the data in detail. The data comes

from several different auction houses from 2007 to 2010, containing detailed information on each car as

well as the actions taken by sellers and buyers in each stage of the game. The data is broken down into

two main samples: cars sold by used and new-car dealers (which I refer to as the dealers sample), and

cars sold by large institutions, such as rental companies, banks, and fleet companies (which I refer to as

the fleet/lease sample). Fleet/lease sellers tend to set reserve prices which are not as high above auction

prices as are the reserve prices set by dealers, and hence fleet/lease cars are more likely to sell.

I lay out a simple model in Section 3 which describes the three stages of the game at wholesale auto

1Fudenberg and Tirole (1991) stated, “The theory of bargaining under incomplete information is currently more a

series of examples than a coherent set of results. This is unfortunate because bargaining derives much of its interest from

incomplete information.” Fudenberg, Levine, and Tirole (1985) similarly commented “We fear that in this case [of two-sided

incomplete information], few generalizations will be possible, and that even for convenient specifications of the functional

form of the distribution of valuations, the problem of characterizing the equilibria will be quite difficult.”
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auctions. The post-auction bargaining is modeled as a general alternating-offer bargaining game. The

auction stage is modeled as an ascending auction with private values among bidders, where bidders’

values (as well as the seller’s value) are correlated through auction-level heterogeneity unobserved by the

econometrician. The seller’s secret reserve price is chosen optimally before the auction. I prove three

preliminary results which motivate an estimation strategy: first, truth-telling is a dominant strategy for

bidders in the auction; second, the seller’s secret reserve price strategy is monotone; and third, auction-

level heterogeneity affects the outcomes of the game in a tractable manner. These three properties allow

for nonparametric identification of the distributions of buyer and seller types and the region of the type

space in which trade occurs.

Sections 4 and 5 constitute the heart of the paper. Section 4 presents the approach for estimating the

distributions of buyer and seller valuations. After controlling for observable covariates and auction house

fees, I account for unobserved heterogeneity at the auction level, relying on a deconvolution argument due

to Kotlarski (1967) for identification. I then estimate the distribution of buyer valuations using an order

statistic inversion. The approach for estimating the distribution of seller types is new. It exploits bounds

defined by revealed preferences arguments taken from the seller’s response to the auction price. The

approach is similar in spirit to Haile and Tamer (2003), using bounds implied by very basic assumptions

about players’ rationality to learn about model primitives without imposing a complete model of the

game or solving for an equilibrium.

Section 5 presents the methods for estimating the efficient frontier and other counterfactual mecha-

nisms from mechanism design theory. Throughout the paper, the terms “efficient” or “second-best” refer

to ex-ante incentive efficiency, taking informational asymmetries into account. To refer to full efficiency,

I use the terms “ex-post efficient” or “first-best.”2 I also use the terms “surplus” and “gains from trade”

interchangeably. The efficient frontier (or Pareto frontier) delineates the best possible outcomes, in terms

of buyer and seller surplus, that could be achieved by any bilateral bargaining game in the presence of

two-sided incomplete information. Myerson and Satterthwaite (1983) and Williams (1987) demonstrated

how this frontier depends on the distributions of buyer and seller valuations. Therefore, the estimated

distributions from Section 4 are crucial in solving for these mechanisms. To solve for the Pareto frontier,

I adopt an approach described in Williams (1987). I also demonstrate that the direct-revelation mech-

anism corresponding to the dynamic bargaining mechanism currently used at auto auctions is identified

from information on whether trade occurred and from secret reserve and auction prices, relying on the

property that the seller’s secret reserve price will be strictly monotonic.

I then combine the estimated distributions of buyer and seller valuations and the allocation functions

defining the current mechanism and counterfactual mechanisms, putting theoretical bargaining and real-

world bargaining on the same footing in order to quantify bargaining efficiency. First, I examine the

efficiency loss due to incomplete information. Ideally, a buyer and seller should trade whenever the buyer

values a good more than the seller (first-best, ex-post efficient trade). However, incomplete information

2For a more detailed taxonomy of ex-ante, interim, and ex-post efficiency under incomplete information, see Holmström

and Myerson (1983).
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on both sides gives rise to a bilateral monopoly, where each party has some market power. Myerson

and Satterthwaite (1983) demonstrated that a deadweight loss occurs as each party trades off the dual

incentives of increasing the probability of trade and extracting additional rent from the other party, akin

to the deadweight loss in a standard one-sided monopoly pricing model. As a result, some trades fail to

occur even when the buyer values the good more than the seller.3 This deadweight loss is given by the

gap between the the second-best mechanism derived in Myerson and Satterthwaite (1983) and first-best

trade. I discover that incomplete information need not be a huge problem in this market: The second-best

mechanism achieves about 99% of first-best surplus and over 90% of the first-best probability of trade.

Second, I examine the efficiency of post-auction bargaining relative to the information-constrained

efficient frontier. Unlike the mechanisms discussed in Myerson and Satterthwaite (1983) and Williams

(1987), alternating-offer bargaining with two-sided uncertainty has no clear equilibrium predictions due

to signaling by both parties. As a result, it is unknown where alternating-offer bargaining lies within

the efficient frontier. Any gap between the efficient frontier and real-world bargaining represents a

deadweight loss which could theoretically be eliminated by committing to a static efficient mechanism

along the frontier. Therefore, I refer to this as the deadweight loss due to mechanism choice/limited

commitment.4 Findings indicate that the post-auction bargaining achieves 80–84% of the efficient level

of surplus in the dealers sample and 87–91% in fleet/lease sample. The deadweight loss due to limited

commitment is therefore roughly 9–20% in this market.

In addition to Myerson and Satterthwaite (1983) and Williams (1987), theoretical papers examining

the efficient frontier from a mechanism design standpoint include Ausubel and Deneckere (1993), Ausubel,

Cramton, and Deneckere (2002), Satterthwaite and Williams (1989), and Chatterjee and Samuelson

(1983). Ausubel and Deneckere (1993) and Ausubel, Cramton, and Deneckere (2002) demonstrated

theoretically that when buyer and seller distributions have monotone hazard rates and when high weights

are placed on the seller or buyer payoff, some equilibria of a dynamic, alternating-offer bargaining game

can reach the efficient frontier. Satterthwaite and Williams (1989) studied the k double auction game and

found that generically only the k = 0 or k = 1 double auctions reach the efficient frontier.5 Chatterjee

and Samuelson (1983) demonstrated that in the symmetric uniform case the k = 1/2 double auction

also reaches the efficient frontier. To my knowledge, the current paper is the first to bring data to the

framework of Myerson and Satterthwaite (1983) or Williams (1987).

A large theoretical literature on incomplete-information strategic bargaining has yielded valuable

insights through focusing on special cases rather than the full, two-sided incomplete information setting.6

3Formally, Myerson and Satterthwaite (1983) demonstrated that when the supports of buyer and seller types overlap,

there does not exist an incentive-compatible, individually rational mechanism which is ex-post efficient and which also

satisfies a balanced budget.
4Cramton (1992) and Elyakime, Laffont, Loisel, and Vuong (1997) also referred to this as an issue of commitment.
5A k double auction consists of both the buyer and seller simultaneously reporting sealed bids to an intermediary and,

if the buyer’s bid exceeds the seller’s, trading at a price which is a convex combination of the two bids, with weight k.
6The incomplete-information bargaining literature focuses on settings of one-sided uncertainty (Gul, Sonnenschein, and

Wilson 1986; Gul and Sonnenschein 1988; Fudenberg and Tirole 1983; Sobel and Takahashi 1983; Fudenberg, Levine, and

Tirole 1985; Ausubel and Deneckere 1989; Rubinstein 1985a,b; Bikhchandani 1992; Grossman and Perry 1986; Admati and
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The set of empirical papers which structurally estimated models of incomplete information bargaining

is quite small, including Sieg (2000), Ambrus, Chaney, and Salitsky (2011), and Silveira (2012), who

focused on settings of one-sided incomplete-information bargaining, and Keniston (2011), who estimated

a model of two-sided uncertainty and compared alternating-offer bargaining to a fixed-price mechanism.7

One advantage of the current paper over previous structural papers is that, because the bargaining occurs

after an auction and after the seller reports a secret reserve price, the model’s primitives, namely the

distributions of buyer and seller valuations, can be identified from these pre-bargaining actions without

relying on much structure or on a complete model of the bargaining game. This is particularly useful

given that, unlike auction settings or complete-information bargaining games, there is no canonical model

of alternating-offer bargaining under incomplete information with a continuum of types.8

2 The Wholesale Auto Auction Industry

The wholesale used-auto auction industry provides liquidity to the supply side of the US used-car market.

Each year approximately 40 million used cars are sold in the United States, 15 million of which pass

through a wholesale auction house. About 60% of these cars sell, with an average price between $8,000

and $9,000, totaling to over $80 billion in revenue (NAAA 2009). The industry consists of approximately

320 auction houses scattered across the country. The industry leaders, Manheim and Adesa, maintain

about a 50% and 25% market share, respectively, and the remaining auction houses are referred to as

independents. Each auction house serves as a platform in a two-sided market, competing to attract both

sellers and buyers. Throughout the industry, the majority of auction house revenue comes from fees

paid by the buyer and seller when trade occurs. Buyers attending wholesale auto auctions are new and

Perry 1987; Cramton 1991), settings of one-sided offers (Cho 1990; Feinberg and Skrzypacz 2005; Cramton 1984; Ausubel

and Deneckere 1993), settings with two-types rather than a continuum of types (Chatterjee and Samuelson 1988; Compte

and Jehiel 2002), or settings with uncertainty not being about valuations (Abreu and Gul 2000; Watson 1998). Two papers

which modeled bargaining as an alternating-offer game and a continuum of types with two-sided incomplete information,

where the incomplete information is about players’ valuations, are Perry (1986), which predicted immediate agreement or

disagreement, and Cramton (1992), which modeled the bargaining game as beginning with a war of attrition and consisting

of players signaling their valuations through the length of delay between offers, as in Admati and Perry (1987). Neither

of these models fits the type of bargaining observed at wholesale auto auctions. See Binmore, Osborne, and Rubinstein

(1992), Ausubel, Cramton, and Deneckere (2002), Roth (1995), and Kennan and Wilson (1993) for additional surveys of

the theoretical and experimental bargaining literature.
7A separate strand of literature, such as Tang and Merlo (2010), Watanabe (2009), Crawford and Yurukoglu (2012),

Grennan (2013), and others, estimated structural models which included elements of bargaining under complete information

rather than incomplete information.
8Several papers analyzed models of auctions followed by complete-information bargaining (Huh and Park 2010; Elyakime,

Laffont, Loisel, and Vuong 1997), one-shot bargaining (Bulow and Klemperer 1996; Eklof and Lunander 2003; Menezes and

Ryan 2005), or one-sided incomplete information (Wang 2000). Genesove (1991) also discussed post-auction bargaining

at wholesale auto auctions. He tested several parametric assumptions for the distributions of buyer and seller valuations,

finding that these assumptions performed poorly in explaining when bargaining occurred and when it was successful.
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used car dealers.9 Sellers may be used or new car dealers (whom I will refer to as “dealers”) selling off

extra inventory, or they may be large institutions, such as banks, manufacturers, or rental companies

(whom I will refer to as “fleet/lease”) selling repossessed, off-lease, lease-buy-back, or old fleet vehicles.

Throughout, I will refer to the seller as “she” and the buyer as “he”.

Sellers bring their cars to the auction house and establish a secret reserve price.10 In the days preceding

the auctioning of the car, potential buyers may view car details and pictures online, including a condition

report for cars sold by fleet/lease sellers, or may visit the auction house to inspect and test drive cars.11

The auction sale takes place in a large, warehouse-like room with 8–16 lanes running through it. In each

lane there is a separate auctioneer, and lanes run simultaneously. A car is driven to the front of the lane

and the auctioneer calls out bids, raising the price until only one bidder remains. The characteristics of

the car as well as the current bid are listed on a large monitor near the auctioneer. The entire bidding

process usually takes 30–90 seconds.

If the auction price exceeds the secret reserve price, the car is awarded to the high bidder. If the

auction price is below the secret reserve, the high bidder is given the option to enter into bargaining

with the seller. If the high bidder opts to bargain, the auction house will contact the seller by phone,

at which point the seller can accept the auction price, end the negotiations, or propose a counteroffer.12

If the seller counters, the auction house calls the buyer. Bargaining continues until one party accepts

or terminates negotiations. The typical time between calls is 2–3 hours.13 Auction house employees

contacting each party take care not to reveal the other party’s identity in order to prevent the buyer and

seller from agreeing on a trade outside of the auction house, avoiding auction house fees.14

9Note that the term “new” means the dealer is authorized to sell new cars from a manufacturer, but can also sell used

cars. On the other hand, “used” car dealers can only sell used cars. Genesove (1993) discussed the differences of cars sold

by new vs. used-car dealers and found weak evidence of adverse selection among cars sold by used-car dealers. Note also

that the general public is not allowed at these auctions; Hammond and Morrill (2014) presented a model explaining this

feature of auto auctions.
10Most sellers report this secret reserve price to the auction house. Some sellers choose not to report their reserve as they

plan to either be present during the auction or to await a phone call from the auction house informing them of the auction

price prior to deciding whether to accept.
11According to conversations with participants and personal observations, few buyers appear to visit the auction house

prior to the day of sale.
12If the seller a present during the auctioning of the car, the seller may choose to accept or reject the auction price

immediately. If the seller is not present but the auctioneer observes that the auction price and the reserve price are far

enough apart that phone bargaining is very unlikely to succeed, the auctioneer may choose to immediately reject the auction

price on behalf of the seller.
13During the time a car is in the bargaining process, or if that bargaining has ended in no trade, interested buyers other

than the high bidder may also contact the auction house and place offers on the car. If the bargaining between the original

high bidder and seller ends in disagreement, bargaining commences with the next interested buyer as long as his offer is

higher than previous offers the seller has rejected. This occurs for about three percent of the cars in the full dataset. This

separate form of dynamics is not accounted for in the model below the observations where this occurs are not included in

the analysis.
14The identity of a fleet/lease seller is revealed, and these sellers tend to try to build a positive reputation of not setting

excessively high reserve prices. Conversations with industry participants reveal that at some auction houses outside of the

data sample studied in this paper, the identity of small sellers is also revealed.
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A seller accepting the auction price (or bargaining offers) below the reserve price may seem puzzling

given that the seller could have accomplished an equivalent outcome by reporting a lower secret reserve

price. Industry participants explain this phenomenon as having several potential causes: sellers system-

ically set high reserve prices due to overly optimistic beliefs about auction prices (Treece 2013) or in

attempt to influence auctioneers to achieve higher prices (Lacetera, Larsen, Pope, and Sydnor 2014), or

sellers are learning something about demand after observing the auction.15

If the auction and/or bargaining does not result in trade the first time the vehicle is up for sale (or

first “run”), the vehicle can either be taken back to the seller’s business location or, more often, remain

at the auction house until the next available sales opportunity, usually several weeks later.16 The seller

can change her reserve price before the next run of the vehicle. If trade takes place but the buyer feels he

has been given a lemon, he may, under certain conditions, request arbitration, in which the auction house

intervenes to either undo the sale or negotiate a lower sale price. This occurs less than three percent of

the time in practice.

The dataset used in this paper is new to the literature. The data come from six auction houses,

each maintaining a large market share in the region in which it operates. Between January 2007 and

March 2010 these auction houses passed over 600,000 vehicles through their lanes. The data from these

auction houses includes detailed information on each car, including make, model, year, trim, and odometer

reading; condition report (prepared by the auction house for fleet/lease vehicles); a blue book estimate

provided by the auction house; the number of pictures displayed in the online pre-sale profile of the car;

disclosure codes for different types of damage reported by the seller; and the identity of the seller.

An observation in the dataset represents a run of the vehicle, that is, a distinct attempt to sell the

vehicle through the auction or, if the reserve price is not met, through post-auction bargaining. The

total number of runs recorded in the data is approximately 1,000,000, so on average a vehicle passes

through the lanes 1.67 times. I treat each run as an independent observation and do not model dynamics

between runs. For a given run, the data records the date, time, auction house location, and auction

lane, as well as the seller’s secret reserve price, the auction price, and, when bargaining occurs over the

phone, the full sequence of buyer and seller actions (accept, quit, or counter), and the amounts of any

offers/counteroffers.

I drop observations with no recorded auction house blue book estimate; cars less than one year or

greater than 16 years old; cars with less than 100 miles or greater than 300,000 miles on the odometer;

observations in which the auction sale timestamp is missing; and observations for which the following

variables lie outside their respective 0.01 and 0.99 quantiles: auction price, reserve price, blue book price,

or the gap between the reserve and auction price. I drop observations for which fewer than ten vehicles

were observed at a given make-model-year-trim-age combination or days in which fewer than 100 cars

15For the estimation approach I adopt, knowing the precise data-generating process for reserve prices is unnecessary; it

is only necessary that secret reserve prices be strictly increasing in the seller’s underlying true valuation, a result generated

by the model in Section 3.
16Genesove (1995) presented a search model to study the seller’s decision to reject the auction price and take the car back

to her own car lot.
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Table 1: Descriptive statistics

mean s.d. mean s.d.

Trade 0.710 0.454 0.760 0.427

Reserve price $7,379 $5,196 $10,307 $5,764

Auction price $6,256 $4,923 $9,826 $5,846

Blue book $6,811 $4,853 $10,964 $6,140

Age (years) 6.781 3.380 3.150 2.558

Mileage 97,941 46,518 57,176 40,318

Sample size 135,942 136,453

Dealers sample Fleet/lease sample

Notes: Trade is an indicator for whether trade occurred between the buyer and seller. Blue book is an estimate

of the market value of the car, provided by the auction house.

were offered for sale at a given auction house. I drop observations where the auction price or reserve price

is missing or is equal to zero and incomplete bargaining sequences.17 In the end, I am left with 135,942

runs of cars offered for sale by used-car dealers (which I will refer to as the dealers sample), and 136,453

offered for sale by fleet/lease sellers (which I will refer to as the fleet/lease sample).

Summary statistics are displayed in Table 1. The probability of trade is 0.71 in the dealers sample

and slightly higher in the fleet/lease sample. In the dealers sample, the average auction price is over

$1,000 below the average reserve price and about $600 below the average blue book price. Dealer cars are

on average seven years old and have nearly 100,000 miles on the odometer. Fleet/lease cars tend to be

newer (three years old and 57,000 miles) and higher priced and have a smaller gap between the reserve

and auction prices. Also, unlike dealer cars, in fleet/lease cars the reserve price does not exceed the blue

book price on average. All of these descriptive statistics are consistent with conversations with industry

participants: Dealer cars tend to be older cars with more aggressive reserve prices and be less likely to

sell.

Table 2 displays the characteristics of observations in the dealers sample separated by the period of

17Some observations record a secret reserve price or an auction price but not both. These observations, or observations

with incorrectly recorded bargaining sequences (such as a seller acceptance followed by a buyer counteroffer) are not suitable

for my final analysis but are still useful in controlling for observable heterogeneity as explained in Section 4.2. Missing secret

reserve prices typically occur when the seller chooses not to report a reserve price, either planning to be present at the

auction sale to accept or reject the auction price in person or planning to have the auction house call her on the phone

rather than determining a reserve price ex-ante. Missing auction prices can occur due to the descending/ascending practice

of auctioneers: auctioneers do not start the bidding at zero; they start the bidding high and then lower the price until a

bidder indicates a willingness to pay, at which point the ascending auction begins. If bidders are slow to participate, the

auctioneer will cease to lower bids and postpone the sale of the vehicle until a later date, leaving no auction price recorded.

See Lacetera, Larsen, Pope, and Sydnor (2014).
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Table 2: Outcome of Game by Period: Dealers Sample

Ending 

period

Player's 

turn # Obs % of Sample % Trade

Reserve 

price

Auction 

price

Reserve 

price

Auction 

price

Final 

price

1 (Auction) 104,470 76.849% 80.67% $7,459 $6,447 $6,949 $6,048 $6,048

($5,243) ($4,976) ($4,933) ($4,702) ($4,702)

2 S 10,993 8.087% 61.91% $6,609 $5,271 $6,342 $5,282 $5,282

($4,953) ($4,645) ($4,861) ($4,624) ($4,624)

3 B 14,899 10.960% 13.71% $7,191 $5,572 $7,760 $6,535 $6,948

($4,978) ($4,618) ($5,278) ($5,029) ($5,113)

4 S 3,269 2.405% 70.66% $7,708 $6,299 $7,542 $6,230 $6,485

($5,151) ($4,846) ($5,019) ($4,730) ($4,807)

5 B 1,879 1.382% 44.01% $8,175 $6,626 $8,523 $7,005 $7,650

($5,198) ($4,876) ($5,434) ($5,099) ($5,257)

6 S 242 0.178% 82.23% $8,305 $6,786 $8,356 $6,867 $7,351

($5,382) ($5,083) ($5,473) ($5,183) ($5,286)

7 B 157 0.115% 59.87% $8,306 $6,705 $8,486 $6,929 $7,665

($5,197) ($4,976) ($5,256) ($5,065) ($5,198)

8 S 24 0.018% 75.00% $8,863 $7,454 $8,792 $7,506 $8,042

($5,125) ($5,071) ($5,725) ($5,674) ($5,748)

9 B 6 0.004% 66.67% $7,583 $6,225 $6,675 $5,188 $5,838

($4,362) ($4,517) ($2,871) ($2,964) ($2,800)

10 S 3 0.002% 100.00% $8,333 $6,100 $8,333 $6,100 $7,233

($5,620) ($4,453) ($5,620) ($4,453) ($5,701)

Conditional on trade occurring Full dealers sample

Notes: Dealers sample. For each period (period 1 = auction and immediately following, period 2 = seller’s first

turn in post-auction bargaining, period 3 = buyer’s first turn, etc.), table reports the number of observations

ending in that period, percent of total sample ending in that period, and percent of time which trade occurred.

Table also reports reserve price and auction price for observations ending in a given period and, for those

observations ending in trade, the reserve price, auction price, and final price conditional on trade.

the game in which the observation ends. Table 3 displays similar results for the fleet/lease sample. For

each period of the game, the columns in these tables display the number of observations ending in that

period, the percent of the total sample which this number represents, the percent of cases which ended

in trade, as well as the unconditional reserve price and auction price (whether or not trade occurred)

and the reserve price, auction price, and final price estimated only using cases which did end in trade.
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Table 3: Outcome of Game by Period: Fleet/lease Sample

Ending 

period

Player's 

turn # Obs % of Sample % Trade

Reserve 

price

Auction 

price

Reserve 

price

Auction 

price

Final 

price

1 (Auction) 112,410 82.380% 80.73% $10,818 $10,559 $10,716 $10,655 $10,655

($5,883) ($5,886) ($5,993) ($5,990) ($5,990)

2 S 11,012 8.070% 90.98% $7,412 $6,163 $7,385 $6,231 $6,231

($4,593) ($4,388) ($4,588) ($4,391) ($4,391)

3 B 10,792 7.909% 13.88% $8,246 $6,464 $8,459 $7,260 $7,712

($4,211) ($3,961) ($4,257) ($4,132) ($4,199)

4 S 1,013 0.742% 83.51% $8,619 $7,053 $8,608 $7,080 $7,404

($4,476) ($4,236) ($4,473) ($4,242) ($4,316)

5 B 1,116 0.818% 46.68% $8,932 $7,341 $9,099 $7,650 $8,287

($4,574) ($4,321) ($4,613) ($4,368) ($4,483)

6 S 47 0.034% 87.23% $9,083 $7,246 $8,780 $6,967 $7,587

($4,451) ($4,423) ($3,986) ($3,881) ($4,092)

7 B 56 0.041% 57.14% $10,876 $8,915 $10,802 $8,680 $9,697

($6,129) ($5,628) ($6,893) ($6,223) ($6,613)

8 S 4 0.003% 50.00% $11,250 $9,650 $6,250 $4,800 $5,475

($7,263) ($6,730) ($1,768) ($1,131) ($1,591)

9 B 3 0.002% 33.33% $11,633 $10,150 $11,400 $10,600 $10,900

($5,754) ($5,489) -- -- --

Full fleet/lease sample Conditional on trade occurring 

Notes: Fleet/lease sample. For each period (period 1 = auction and immediately following, period 2 = seller’s

first turn in post-auction bargaining, period 3 = buyer’s first turn, etc.), table reports the number of

observations ending in that period, percent of total sample ending in that period, and percent of time which

trade occurred. Table also reports reserve price and auction price for observations ending in a given period and,

for those observations ending in trade, the reserve price, auction price, and final price conditional on trade.

Period 1 is the auction. Observations ending in period 1 represent cases which ended with the auction

or immediately thereafter, and hence cases for which no bargaining actions are recorded.18

18When the reserve is not met, the game may still end immediately (and very frequently does–61.26% of the time in the

dealers sample and 45.65% of the time in the fleet/lease sample (not shown in Tables 2–3)—when one of the following is

true: 1) the seller is present at the auction house and can immediately accept or reject the auction price; 2) the auctioneer

rejects the auction price on behalf of the seller, knowing that alternating-offer bargaining is unlikely to occur; or 3) the

high bidder walks away from bargaining before the seller is contacted. The third case is observable in the data, and occurs

1.32% of the time in the dealers sample and 0.59% of the time in the fleet/lease sample (not shown in Tables 2–3). The

first two cases are indistinguishable in the data, and therefore I assume that any time the auctioneer chooses to reject the
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The remaining periods are labeled with even numbers for seller turns and odd numbers for buyer

turns. Period 2 is the seller’s first turn in the post-auction bargaining game, and observations ending in

this period represent cases in which the seller accepted the auction price or quit. Period 3 is the buyer’s

first turn in bargaining, and is reached only if the seller chose to counter in period 2. Play continues back

and forth between the buyer and seller until one party accepts or quits.

Table 2 demonstrates that in 77% of the dealers sample the game ends at the auction, and in these

cases the final price when trade happens (which occurs 81% of the time) is naturally the auction price.

Consider now the fifth period of the game. Only 1.4% of the full sample reaches the this period, but

this still consists of nearly 2,000 observations. In the fifth period, when trade does occur, it occurs at

an average final price ($7,650) which is over $600 above the average auction price ($7,005), but still does

not reach as high as the average reserve price ($8,523). Overall, Table 2 suggests that observations which

ended in later periods had somewhat higher reserve prices than those ending in earlier periods, consistent

with Coasian dynamics (see Fudenberg and Tirole 1991). Only 3 buyer-seller pairs endured ten periods of

the game, all of them coming to agreement in the end, at an average price over $1,000 above the average

auction price.

Table 3 displays similar patterns for the fleet/lease sample. 82% of the sample ended the game at the

auction. Less than one percent ended in the fifth period, but this still consists of over 1,000 observations.

Buyer-seller pairs who traded in this round did so at an average of about $600 above the auction price.

Other than observations ending in the first period, observations with phone bargaining ending in later

periods had higher average reserve prices than those ending in earlier periods, again consistent with

Coasian dynamics. Three pairs remained for nine periods of the game, with only one of the three ending

in trade.

3 Model of Post-Auction Bargaining with Secret Reserve Price

This section presents a model of the auction-followed-by-bargaining mechanism used at wholesale auto

auctions. I first discuss the timing of the mechanism and set up some general assumptions. I discuss each

stage of the game, starting from the end with the post-auction bargaining stage. I then present a model

of the ascending auction stage, demonstrating that truth-telling is a weakly dominant strategy, and the

stage in which the seller chooses a secret reserve price, demonstrating that the seller’s strategy is strictly

increasing.

The timing of the game at wholesale auto auctions is as follows:

1. Seller sets a secret reserve price.

2. N bidders bid in an ascending auction.

3. If the auction price exceeds the secret reserve price, the high bidder wins the item.

auction price on behalf of the seller this choice coincides with what the seller would have done given the chance.

11



4. If the auction price does not exceed the secret reserve price, the high bidder is given the opportunity

to walk away, or to enter into bargaining with the seller.19

5. If the high bidder chooses to enter bargaining, the auction price becomes the first bargaining offer,

and the high bidder and seller enter an alternating-offer bargaining game, mediated by the auction

house.

Throughout I maintain the following assumptions:

Assumptions.

(A1) The ascending auction follows a button auction model with N ≥ 2 risk-neutral bidders participating.

For i = 1, ..., N , each buyer i has a private valuation B̃i = W + Bi, with W ∼ FW , Bi ∼ FB, and

with Bi independent of W .

(A2) The risk-neutral seller has a private valuation S̃ = W + S, where S ∼ FS, with S independent of

W and Bi for all i.

(A3) In bargaining players face a per-offer disutility, (cB , cS) > 0, as well as discount factor, δ ∈ [0, 1),

where 1− δ represents the probability that bargaining will break down exogenously.

I further assume FB , FS , and FW have corresponding atomless densities fB , fS , and fW , with supports

[B,B], [S, S], and (−∞,∞). Let realizations of these random variables be denoted b, s, and w.

The random variableW is observed by all buyers and the seller. In the estimation framework in Section

4, I allow W to be unobservable to the econometrician but observed by all players, thus allowing for all

players’ values to be correlated.20 Conditional on W , buyers and sellers have independent private values

(IPV). A motivation for this framework is that buyers—as well as dealer-type sellers—have valuations

arising primarily from their local demand and inventory needs.21 Also, seller valuations can depend on

the value at which the car was assessed as a trade-in, or, for a bank or leasing company, valuations can

arise from the size of the defaulted loan.22 The button auction model is a natural choice given that

19At wholesale auto auctions, some large sellers are given the option to elect to eliminate step 4 above, implying that

when the auction price does not meet the secret reserve price, the high bidder is not allowed to immediately walk away

from bargaining but must wait until the seller responds to the auction price. This situation is referred to as a “binding-if

auction.” It can be shown that in a binding-if auction, the seller’s secret reserve price strategy is only guaranteed to be

weakly increasing, rather than strictly as in the non-binding-if case. It can also be shown that bidders will not necessarily

drop out of bidding at their valuations but may instead drop out at a price slightly below their valuation to account for

the possibility of paying bargaining costs. In the data, there is no way to know if a sale took place in a binding-if setting.

I treat all auctions as non-binding-if auctions.
20I also introduce characteristics observable to both the econometrician and all players and I control for these observables.
21Conversations with buyers, sellers, and auction house employees support this assumption: buyers claim to decide upon

their willingness to pay before bidding begins, often having a specific retail customer lined up for a particular car. See Lang

(2011). Studying Korean auto auctions, Kim and Lee (2014) tested and failed to reject the IPV assumption, while Roberts

(2013) found evidence of unobserved auction-level heterogeneity (analogous to W ).
22These explanations for seller values are due to conversations with industry professionals. Note also that adverse

selection from the seller possessing more knowledge about car quality than the buyer is likely small because of auction

house information revelation requirements and because sellers are not previous owners/drivers of the vehicles.
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jump bidding is rare—as it is the auctioneer who calls out bids—and bid increments are small.23 The

assumption of symmetry is not strong in this setting given that buyer identities are unknown to the

seller in bargaining and given the assumption of a private values button auction, implying that bidders’

auction strategies will not depend on the identities of other participants.24 The parameter δ captures the

feature that bargaining may end through an auction house employee failing to follow up on a bargaining

sequence, occurring in 1–2% of bargaining interactions.25

In what follows, I demonstrate three properties which prove useful for estimation: 1) a buyer’s auction

strategy is to drop out at his value, as in a standard ascending auction, 2) the seller’s secret reserve price

strategy, ρ(S), is strictly increasing in her type S, and 3) auction-level heterogeneity shifts the outcomes

of the game in a tractable manner. I begin by modeling the game conditional on a realization of W and

thus omit W for notational simplicity and return to it in Section 3.4. I ignore auction house fees in this

theoretical analysis but account for their existence in the empirical analysis in Section 4.1.26

3.1 Bargaining Stage

This section describes a simple model of the dynamic, post-auction bargaining game. The game begins

with an offer by the buyer in period t = 1. At wholesale auto auctions, this offer is the price at the auction.

The seller then chooses between accepting (A), quitting (Q)—meaning terminating the negotiations—

or making a counteroffer (C). Accepting ends the game, with trade taking place at the accepted price.

Quitting also ends the game, with no trade taking place. After a counteroffer by the seller, play returns

to the buyer, who then chooses between accepting, quitting, and countering. Thus, at t even it is the

seller’s turn, and at t odd it is the buyer’s turn. Below, I refer to period “t” as being the seller’s turn and

period “t + 1” as being the buyer’s turn. Where useful for clarification, I also include the superscripts

“S” or “B” in notation to denote an action taken by the seller or buyer respectively.

Let Ht ≡ {Pτ}t−1
τ=1 represent the set of offers made from period 1 up through period t − 1. The

player whose turn it is at time t has not yet made an offer and so this offer does not enter into Ht. Let

DS
t ∈ {A,Q,C} represent the seller’s decision in period t, and let DB

t+1 ∈ {A,Q,C} represent the buyer’s

decision in period t+ 1.

The seller’s payoff at time t is given by the following. Conditional on the history of offers Ht, which

includes the buyer’s most recent offer PBt−1, a seller of type S = s, chooses to accept (A), quit (Q), or

23Bid increments lie between $25 and $100.
24See Coey, Larsen, and Sweeney (2014) for a formal treatment of the implications of asymmetries in ascending auctions.
25This number is based on the percent of bargaining sequence records in which trade failed and the sequence of offers was

incomplete, ending with an counteroffer. A key reason for modeling discounting (either time discounting or, in this case, a

probability of exogenous breakdown) lies in the results of Perry (1986), who showed in a game with two-sided uncertainty

that if 1) there is no discounting and 2) bargaining costs take the form of an additive cost common to all buyers and an

additive cost common to all sellers then the unique equilibrium is for bargaining to end immediately. Cramton (1991)

discusses how allowing for discounting overcomes this feature.
26A full theoretical analysis of auction house fees, including the optimal fee schedule, would require knowledge of the

competitive structure between auction houses. Appendix B.7.3 discusses the fees which would be optimal for a monopolist

auction house.
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counter (C), yielding the following payoffs:

A : pBt−1

Q : s

C : V St (s|Ht)

= max
p

{
pδ Pr

(
DB
t+1 = A|Ht+1

)
+ s

(
δ Pr

(
DB
t+1 = Q|Ht+1

)
+ 1− δ

)
+ δ Pr

(
DB
t+1 = C|Ht+1

)(
δEPBt+1

[
max

{
PBt+1, s, V

S
t+2 (s|Ht+2)

} ∣∣∣∣∣Ht+1

]
+ s(1− δ)

)}
− cS

where p is the counteroffer chosen by the seller, which will be included in Hτ for τ > t.27 The per-

period bargaining disutility (cS > 0) is assumed to be common across sellers, and the probability of not

terminating exogenously (δ < 1) is assumed to be common across sellers as well as buyers. The seller’s

counteroffer payoff takes into account that the buyer may either accept, quit, or return a counteroffer.

In the latter case, the seller receives her expected payoff from being faced with the decision in period

t+ 2 to accept, quit, or counter. Exogenous breakdown may occur in any period, in which case the seller

receives s as a payoff.28

Similarly, the buyer’s payoff at time t + 1 is given by the following. Conditional on the history of

offers Ht+1, which includes the seller’s most recent offer PSt , a buyer of type B = b chooses to accept

(A), quit (Q), or counter (C), yielding the following payoffs:

A : b− pSt
Q : 0

C : V Bt+1 (b|Ht+1)

= δ

(
max
p

{
(b− p) Pr

(
DS
t+2 = A|Ht+2

)
+ δ Pr

(
DS
t+2 = C|Ht+2

)
EPSt+2

[
max

{
b− PSt+2, 0, V

B
t+3 (b|Ht+3)

} ∣∣∣∣∣Ht+2

]})
− cB

where p is the counteroffer chosen by the buyer, which will be included in Hτ for τ > t + 1. cB > 0

represents the buyer’s per-period bargaining disutility, assumed to be common across buyers. The buyer’s

outside option is normalized to zero.

27Ht+1 includes all offers in Ht as well as the seller’s choice of counteroffer in this period, and Ht+2 includes the seller’s

choice in this period, as well as the buyer’s choice in the next period, PBt+1.
28In reality, the outside option of both the buyer and seller is a complicated object that cannot be estimated in the scope

of this data, as a buyer who exits bargaining has the choice to obtain vehicles from a variety of sources, such as other sales

at the same auction house, competing auction houses, online markets, or trade-ins, and a seller who exits bargaining may

choose to leave the car at the auction house, return the car to her car lot, or sell it through another source.
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3.2 Ascending Auction Stage

This section discusses bidders’ strategies in the ascending auction stage of the mechanism. Bidder i’s

strategy is the price, βi, at which he stops bidding as a function of his type, Bi = bi, which represents

his valuation for the car. Let R = ρ(S) be a random variable representing the secret reserve price of a

seller of type S who uses reserve price strategy ρ(·). Let

β = max
k 6=i

βk(Bk)

Bidder i will be the highest bidder if and only if βi > β. The expected payoff of bidder i from following

bidding strategy βi(bi) is given by

M(bi, β) =


(bi − β) Pr (β > R)

+πB(β, bi) Pr
(
β < R, πB(β, bi) > 0

)
, if βi > β.

0 otherwise.

(1)

Buyer i would decide to enter bargaining if πB(β, bi) > 0, where πB(β, bi) represents the buyer’s

expected payoff from entering bargaining, equivalent to the counteroffer payoff in the previous section

but with the auction price as the buyer’s counteroffer, rather than the maximizing counteroffer. In this

setup, the following property holds:

Proposition 1. If in the bargaining game the seller never accepts offers below the auction price, truth-

telling is weakly dominant for bidders in the auction stage. That is, βi(bi) = bi.

All proofs are found in Appendix A.

This result implies that the winning bid will be the second order statistic from the distribution of

buyer valuations, as in standard ascending or second price auctions.29 Intuitively, the assumption that

the seller never accepts bargaining offers below the auction price ensures that buyers will not be tempted

to bid beyond their valuations in the ascending auction stage in hopes of bargaining to a lower price in the

post-auction bargaining stage. This is supported by the data: the bargained price is not lower than the

auction price (see Tables 2–3). Moreover, bidders are not tempted to drop out before the bidding reaches

their valuations because if the high bidder learns that the auction price did not meet the secret reserve,

he can always opt out of bargaining, and I assume this opting out is costless. And because the auction

price is the second-highest valuation of the bidders, the seller cannot infer anything about the valuation

of the winner other than learning the point at which the buyer distribution is truncated, eliminating any

incentive of buyers to shade bids downward to avoid revealing information to the seller. The argument

for identifying the distribution of buyer valuations, discussed in Section 4.4, relies on Proposition 1.

29Huh and Park (2010) found the same result in a theoretical model of second price auctions with complete informa-

tion (rather than incomplete information) post-auction bargaining: bidders’ strategies were unaffected by the presence of

bargaining.
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3.3 Secret Reserve Price Stage

In this section, I discuss the seller’s choice of a secret reserve price, chosen before the beginning of the

auction to maximize the seller’s expected revenue. Applying Proposition 1, the auction price will be B(2),

the second order statistic of buyer valuations. In choosing her secret reserve price, ρ(S), a seller of type

S = s wishes to maximize her ex-ante payoff, given by

EB(2),B

[
B(2) ∗ 1

{
B(2) > ρ(s)

}
+ s ∗ 1

{
B(2) < ρ(s), πB(B(2), B) ≤ 0

}
(2)

+ πS
(
B(2), s

)
∗ 1
{
B(2) < ρ(s), πB(B(2), B) > 0

}]
(3)

This term consists of three pieces: 1) the auction price, which the seller receives if it exceeds the re-

serve; 2) the seller’s outside option, her type s, which the seller receives if the auction price is below

the reserve and the buyer opts out of bargaining; and 3) the seller’s bargaining payoff, πS
(
B(2), s

)
=

max
{
B(2), s, V S2

(
s|B(2)

)}
, which the seller receives when the price is below the reserve and bargaining

occurs. I apply a monotone comparative statics result from Edlin and Shannon (1998), a special case of

Topkis’s Theorem, to obtain the following:

Proposition 2. The seller’s optimal secret reserve price, ρ∗(s), is strictly increasing in s.

The intuition behind Proposition 2 is that the secret reserve price is never revealed and hence the

seller can use a separating strategy without perfectly signaling her type. To prove this result, I first

show that bargaining payoffs are weakly increasing in players’ types. The strict monotonicity then relies

on bargaining being costly to buyers (Assumption A3), such that some buyers will choose to opt out

of bargaining when informed that the auction price does not meet the secret reserve. Without costly

bargaining, Topkis’s Theorem can be used to show that ρ∗(s) will be weakly increasing.

The approach presented in Section 4.5 for identifying the distribution of seller valuations does not

formally rely on Proposition 2. However, I do rely on this result for identification of the underlying

allocation function (the region of the buyer and seller type space where trade occurs) in the dynamic

bargaining game, as discussed in Section 5.2.

3.4 Auction-level Heterogeneity

Sections 3.1–3.3 derived results conditional on a given realization of auction-level heterogeneity. The

independence of W , S, and B in the model described above yields the following result:

Proposition 3. Suppose, when W = 0, the secret reserve is r and, for each period t at which the game

arrives, the offer is given by Pt = pt and the decision to accept, quit, or counter is given by Dt = dt.

Then when W = w the secret reserve will be r + w, the period t offer will be pt + w, and the period t

decision will be dt.
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Proposition 3 is similar to results used elsewhere in the empirical auctions literature (Haile, Hong,

and Shum 2003) but is a generalization specific to this setting of a secret reserve price auction followed

by bargaining. The result makes it feasible to apply empirical approaches accounting for auction-level

heterogeneity, both observed and unobserved, as described in Sections 4.2–4.3. Proposition 3 is also

crucial in identifying the region of the buyer and seller type space in which trade occurs, as described in

Section 5.2.

4 Estimating Distributions of Buyer and Seller Valuations

In this section, I exploit the model properties derived above in order to estimate the distribution of buyer

and seller valuations. The estimation consists of several steps:

1. Accounting for auction house fees

2. Controlling for observed heterogeneity (auction-level characteristics observable to the econometri-

cian)

3. Controlling for unobserved heterogeneity (auction-level heterogeneity observed by the players but

not by the econometrician)

4. Estimating the distribution of buyer valuations through an order statistic inversion

5. Estimating bounds on the distribution of seller valuations using revealed preferences arguments

Let j = 1...J represent observations in the data, where each observation contains a complete set of

actions for one instance of the game, i.e. a reserve price, auction price, and any bargaining actions.

Let Rraw and B(2),raw be random variables representing the reserve price and auction price prior to

any adjustments for auction house fees or heterogeneity, with realizations for observation j (which I also

refer to below as “car j”) given by rrawj and b
(2),raw
j . Throughout the estimation I treat the dealers and

fleet/lease samples separately because the two groups differ in the types of cars they sell and in other

behaviors and outcomes, as shown below.

4.1 Auction House Fees

If trade occurs, the buyer and seller pay auction house fees which are approximately linear in the trans-

action price, p.30 Let the fee schedules be given by

hS(p) = αS0 + αS1 p

hB(p) = αB0 + αB1 p

30Knowledge that fees are approximately linear comes from data on realized fees when trade takes place and from auction

house documents.
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Using estimates of these functions, the auction price for car j can be adjusted upward to account for the

fact that, if the auction price were the transaction price, a buyer would be required to pay the auction

price as well as the fee. The reserve price can similarly be adjusted downward. Let these adjusted prices

be given by

Rh ≡ rraw − hS(Rraw)

B(2),h ≡ B(2),raw + hB(B(2),raw)

with realizations for car j denoted rhj and b
(2),h
j .

Fees are observed in the data whenever a transaction occurs. Therefore, slope and intercept terms

in the fee functions can be estimated with a linear regression using the sample of data in which trade

occurs. In practice, the intercept terms, αS0 and αB0 , tend to vary by auction house location and year.

Therefore, I perform the above steps by estimating separate intercept terms for each auction-location-

by-year combination.

4.2 Observed Heterogeneity

To account for auction-level characteristics which are observed to the econometrician as well as the

players, I apply Proposition 3. As above, let W be a random variable representing unobserved auction-

level heterogeneity. Let X be a random variable representing auction-level heterogeneity observed by the

econometrician, with X independent of W , S, and B. Let realizations of X and W be given by xj and

wj for observation j. I specify the total auction-level heterogeneity for observation j to be x′jγ + wj .

Proposition 3 implies that auction prices and reserve prices can be “homogenized” (Haile, Hong, and Shum

2003) by estimating the following joint regression of reserve prices and auction prices on observables:

[
rhj

b
(2),h
j

]
=

[
x′jγ + γr

x′jγ

]
+

[
r̃j − γr
b̃
(2)
j

]
,

where r̃j = rj + wj , b̃
(2)
j = b

(2)
j + wj , and the parameter γr captures the difference in means between

reserve prices and auction prices.

In the vector xj I include fifth-order polynomial terms (all degrees of the polynomial from one through

five) in the auction houses’ blue-book estimate, the odometer reading, and the run number of the vehicle.31

xj also contains the number of previous attempts to sell the car; the number of pictures displayed online;

a dummy for whether or not the odometer reading is considered accurate, and the interaction of this

dummy with the odometer reading; the interaction of the odometer reading with a car-make dummies;

dummies for each make-model-year-trim-age combination (where age refers to the age of the vehicle in

years); dummies for condition report grade (ranging from 1-5, observed only for fleet/lease vehicles);

31The run number represents the order in which cars are auctioned. I include fifth-order polynomials for both the

run number within an auction-house-by-day combination, and the run number within an auction-house-by-day-by-lane

combination.
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dummies for auction house location interacted with date of sale and auction house location interacted

with hour of sale; dummies for 32 different vehicle damage categories recorded by the auction house;

dummies for each seller who appears in at least 500 observations; and dummies for discrete odometer

bins.32 Finally, xj also includes six measures of the thickness of the market during a given auction sale.33

The R2 from this first-stage regression is 0.96 in the fleet/lease sample and 0.95 in the dealers sample,

implying that most of the variation in auction prices and reserve prices is explained by observables.34

An estimate of r̃j is then given by subtracting x′j γ̂ from rhj , and similarly for b̃
(2)
j . Variation in

these two quantities is then attributed to unobserved auction-level heterogeneity and to players’ private

valuations, as detailed below.

4.3 Unobserved Heterogeneity

To account for heterogeneity wj in the value of car j which is observed by the players but not by the

econometrician, I apply a result due to Kotlarski (1967), which implies that observation of r̃j = rj + wj

and b̃
(2)
j = b

(2)
j +wj , along with an assumption that E[b(2)] = 0, is sufficient to identify the densities fW ,

fR, and fB(2) . This identification result has been applied in estimation elsewhere in the auctions literature

by directly computing characteristic functions and applying Fourier inversions to perform a deconvolution

(e.g. Li, Perrigne, and Vuong 2000; Krasnokutskaya 2011). I adopt a simpler likelihood approach proposed

in Freyberger and Larsen (2014), approximating each density with a series of normalized orthogonal

Hermite polynomials. The likelihood function be given by

L =
∏
j

[∫
fB(2)(b̃

(2)
j − w)fR(r̃j − w)fW (w)dw

]
(4)

For each random variable Y , the density is approximated by

fY (y) ≈ 1

σ

(
K∑
k=0

θYk Hk

(
y − µY
σY

))2

1√
2π
e
− 1

2

(
y−µY
σY

)2

where K is a smoothing parameter; θY , µY , and σY are parameters to be estimated; and Hk are Hermite

polynomials, defined recursively by H1(y) = 1, H2(y) = y, and Hk(y) = 1√
k

[yHk−1(y)−
√
k − 1Hk−2(y)]

for k > 2.

I maximize the likelihood in (4) subject to the constraints
∑K
i=1(θYi )2 = 1 for each random variable Y ,

which ensures each approximated function is indeed a density function, and also subject to the constraint

32Odometer bins are as follows: four equally sized bins for mileage in [0, 20000); eight equally sized bins for mileage in

[20000, 80000); four equally sized for mileage in [100000, 200000); one bin for mileage in [200000, 250000); and one bin for

mileage greater than 250000.
33I compute these market thickness measures as follows: for a given car on a given sale date at a given auction house,

I compute the number of remaining vehicles still in queue to be sold at the same auction house on the same day which

lie in the same category as the car in consideration. The six categories I consider are make, make-by-model, make-by-age,

make-by-model-by-age, age, or seller identity.
34In order to improve estimates of γ, these regressions include observations for which the reserve price is recorded but the

auction price is missing and vice versa, as well as observations with incorrectly recorded bargaining sequences, as explained

in Section 2.
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E[b(2)] = 0. For the smoothing parameter I choose K = 5.35 The location and scale parameters

{µY , σY }Y=W,R,B(2) are not required for identification but improve the performance of the estimator and

are standard in estimation with Hermite polynomials. I estimate these parameters in an initial step,

maximizing (4) with the vectors θY set to zero for each Y , that is, each density fY is approximated by

a N(µY , σY ). I then plug in the estimated values of {µ̂Y , σ̂Y }Y=W,R,B(2) into (4) and maximize over

{θY }Y=W,R,B(2) . I perform the integration in (4) by Gauss-Hermite quadrature (See Appendix B.1).

4.4 Distribution of Buyer Valuations

Identification of the underlying distribution of buyer valuations, FB , follows from Proposition 1, which

implies that the auction price will be the second order statistic of buyer valuations. Given knowledge

of the distribution of the second order statistic of buyer valuations, FB(2) (which is identified by the

argument in the previous section), and assuming a known distribution for N , the number of bidders, it

is known that

FB(2)(b(2)) =
∑
n

Pr(N = n)
[
nFB(b(2))n−1 − (n− 1)FB(b(2))n

]
(5)

See, for example, Athey and Haile (2007). I assume N follows a Poisson distribution with mean λ,

truncated below at N = 2, yielding

FB(2)(b(2)) =
e−λ

1− e−λ(1 + λ)

(
eλFB(b(2))(1 + λ(1− FB(b(2))))− 1− λ

)
(6)

See Lemma 5 of Matsuki (2013).36 Given λ, and given an estimate of FB(2) from Section 4.3, the function

FB(b(2)) can be solved for at any point b(2) using standard nonlinear equation approaches.37 I adopt a

bisection method. Based on personal observation of many used-car auctions, I choose λ = 7 for dealer

sales and λ = 10 for fleet/lease sales.38 Appendix B.6 demonstrates that results are not sensitive to this

choice.

35The above framework can be treated as a semi-nonparametric maximum likelihood setting, letting the smoothing

parameter K grow appropriately with the sample size and choosing K in practice through cross-validation. I instead fix

K = 5, treating this as a flexible parametric approximation, as suggested in Kim and Lee (2014), which simplifies inference.

I find that choosing K larger than 5 does not affect estimates noticeably.
36In (6), I modify Lemma 5 of Matsuki (2013) slightly to apply to the case where N is always at least 2.
37Differentiating (5) yields the density:

fB(b(2)) =
fB(2) (b(2))(1− e−λ(1 + λ))

λ2eλ(FB(b(2))−1)(1− FB(b(2)))

An estimate of fB(2) comes from the maximum likelihood approach of Section 4.3.
38Many more bidders are physically present at auction houses during auction sales; these numbers correspond approx-

imately to the mean number of bidders showing active interest in the auction. Similar numbers are found in Genesove

(1991).
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4.5 Distribution of Seller Valuations

To identify the distribution of seller valuations, I invoke an argument similar to the Haile and Tamer

(2003) bounds in English auction settings. The argument differs from Haile and Tamer (2003), however,

in that observation-level bounds are not available. Instead, I obtain bounds on the distribution of seller

values relying on probability statements formed from many observations of sellers’ initial responses to

the auction price.

As in Section 3, let DS
2 ∈ {A,Q,D} represent the seller’s choice to accept, quit, or counter in period

2 of the bargaining game. In cases where, in practice, the auction price exceeds the reserve price, or in

cases where the auction price falls below the reserve price but there is immediate trade, I consider DS
2 to

have a value of accept (A); and in cases where there is immediate disagreement, I consider DS
2 to have a

value of quit (Q). Therefore, a realization of DS
2 = dS2 is available for each observation in the data. As

above, let S̃ ≡ S +W .

Observe that

Pr(DS
2 = A|Braw,(2) = braw,(2)) ≤ Pr(S̃ +X ′γ ≤ braw,(2) − hS(braw,(2)))

Pr(DS
2 = Q|Braw,(2) = braw,(2)) ≤ Pr(S̃ +X ′γ ≥ braw,(2) − hS(braw,(2)))

Both observations follow from revealed preference arguments. Intuitively, if a seller accepts an auction

price of braw,(2), it must be the case that the seller’s total value for the car, S̃ + X ′γ, is less than

braw,(2) − hS(braw,(2)) (the auction price less the auction house fee at that price). Similarly, if the seller

quits when the auction price is braw,(2), it must be the case that the seller values keeping the car herself

more than braw,(2)−hS(braw,(2)).39 Let V = Braw,(2)−X ′γ−hS(Braw,(2)) with realizations v, and define

L̃(v) ≡ Pr(DS
2 = A|V = v)

Ũ(v) ≡ Pr(DS
2 6= Q|V = v)

Combining the two revealed preferences arguments yields

L̃(v) ≤ FS̃(v) ≤ Ũ(v) (7)

Integrating over W then provides upper and lower bounds on FS , which I denote FUS and FLS . I

perform several steps to improve the estimates of the bounds on FS̃ prior to integrating over W . I first

estimate L̃(·) and Ũ(·) using a Nadayara-Watson kernel regression.40 I then incorporate information on

39The analogous two statements in the Haile and Tamer (2003) English auction setting, for buyer valuations, are that a

buyer never bids more than the buyer’s value and never lets a competitor win at a price the buyer would have been willing

to pay.
40The Nadayara-Watson estimator for L̃(·) is given by

̂̃L(u) =

∑
j Kh(u− vj)1{dS2,j = A}∑

j Kh(u− vj)

where 1{dS2,j = A} is an indicator for whether the seller of car j chose to accept the auction price. Kh is a Gaussian kernel

with bandwidth h set to the asymptotically optimal bandwidth for kernel density estimation of V. I replace γ and hS in

the definition of V with the estimates from Sections 4.1 and 4.2. I follow the same procedure for Ũ(·)
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r̃ to improve estimates of the upper and lower bounds on FS̃ and to ensure that these bounds correspond

to distribution functions. Specifically, note that

R̃ > S̃ ⇒ FR̃(v) ≤ L̃(v) ≤ Ũ(v) (8)

That is, the CDF of R̃ should lie above both L̃ and Ũ . Therefore, I enforce that both the upper and lower

bounds on FS̃ lie above FR̃. I also impose that the estimates of the lower and upper bounds on FS̃ be

weakly increasing, following the rearrangement approach of Chernozhukov, Fernandez-Val, and Galichon

(2009).41 Let L̃∗ and Ũ∗ represent the bounds on FS̃ after enforcing (8) and after enforcing monotonicity.

Finally, these estimates are not necessarily surjective/onto; that is, there may not exist values of V at

which sellers accept or quit with probability approaching 0 or 1. I fill in these missing parts of the upper

and lower bounds by assuming a constant gap between quantiles of FR̃ and those of the upper or lower

bounds on FS̃ .42

After estimating FUS and FLS , the final upper and lower bounds on FS , I obtain draws from these

CDFs by inverting them at random uniform draws. I estimate the corresponding densities using kernel

density estimation of these draws.43

4.6 Distribution Estimates

This section presents the results of the estimation procedure described in Sections 4.1–4.5. After control-

ling for auction house fees and observable auction-level heterogeneity as described in Sections 4.1–4.2, I

perform the likelihood approach described in Section 4.3 to account for unobserved auction-level hetero-

geneity. Figure 1 displays the densities of reserve prices and auction prices before removing unobserved

heterogeneity (fR+W and fB(2)+W ) and after removing unobserved heterogeneity (fR and fB(2)), as well

as the estimated density of observed heterogeneity (fW ). In each panel of Figure 1, and in the tables

and figures which follow, monetary values are denoted in units of $1,000 and should be interpreted as

41In this setting, rearrangement is performed by simply sorting the vector of lower bounds (estimated on a uniformly

spaced grid) and reassigning them to the original grid points, and similarly for the upper bounds. Chernozhukov, Fernandez-

Val, and Galichon (2009) demonstrated that, when estimating a monotone function, a rearranged estimate is always an

improvement, in terms of estimation error, over an original, non-monotonic estimate. In practice, the approach is sensitive

to extreme outliers, and so for this estimation I do not include the top and bottom 0.1% of observations of V, where the

kernel regression estimates are noisy. In practice, the rearrangement has only little impact on the estimates, smoothing out

small non-monotonic portions of the bounds.
42Specifically, to fill in values of L̃∗(·) and Ũ∗(·) so that these functions are onto, I do the following. Let {vm}m=1,...,M

represent the grid of points on which L̃∗(·) is evaluated, which can lie beyond the range of V in the data, in which case

L̃∗(v) returns the empty set. Let vL = arg minm:L̃∗(vm)6=∅ L̃
∗(vm) and vL = arg maxm:L̃∗(vm)6=∅ L̃

∗(vm). Then

FL
S̃

(v) ≡


FR̃(v + vL − v1) if v < vL

L̃∗(v) if v ∈ [vL, vL]

FR̃(v + vL − vM ) if v > vL

Finally, to remove unobserved heterogeneity, FLS is given by FLS (v) ≡
∫
FL
S̃

(v − w)fW (w)dw. I follow the same steps for

Ũ∗(·).
43As above, I use a Gaussian kernel with the asymptotically optimal bandwidth.
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follows: for a car with vector of observables x, the overall reserve price—less the auction house fee—will

have density fR+W , shifted by the quantity x′γ. Similarly, for a car with observables x and unobserved

heterogeneity w, the overall density will be fR, shifted by the quantity x′γ +w. A similar interpretation

follows for auction prices.

Figure 1 shows that the density after removing unobserved heterogeneity, fR (in red), is tighter than

fR+W (in blue) in both the dealers sample (a) and the fleet/lease sample (b), although more so for

panel (a), suggesting that unobserved heterogeneity plays a bigger role in explaining price variation in

reserve prices in dealer cars than in fleet/lease cars. Panel (a) suggests that, after accounting for fees

and observed and unobserved heterogeneity, the residual of sellers’ reserve prices varies principally over a

range of about $4,000, ranging from about $0 to $4,000. In this paper, this residual variation is attributed

to variation in the seller’s private valuation for the car, s.

Panels (c) and (d) demonstrate that the results are similar when comparing the density of the auction

price with unobserved heterogeneity, fB(2)+W , to the density without unobserved heterogeneity, fB(2) ,

in the dealers (c) and fleet/lease samples (d). In each panel the density fB(2) is centered about zero

because the estimation procedure of 4.3 constrains E[B(2)] = 0 as a normalization required to apply the

identification argument due to Kotlarski (1967).

Figure 2 displays the estimated density of unobserved heterogeneity, fW , in the dealers (a) and

fleet/lease samples (b). The majority of the mass of unobserved heterogeneity lies between [-$2,500,

$2,500].

As a measure of the goodness of fit of this deconvolution procedure, I compare the correlation of the

reserve price and auction price (after adjusting for auction house fees) in the raw data to the correlation

between simulated draws for R̃ and B̃(2), generated by 10,000 draws from the estimated distributions for

FR, FB(2) , and FW . The correlations agree quite closely: In the dealers sample, the raw vs. simulated

correlation is 0.6146 vs. 0.6149, and in the fleet/lease sample the two quantities are 0.3817 vs. 0.3705.

As a further check of fit, note that the model assumes that auction-level heterogeneity—both observed

and unobserved—is additively separable. Therefore, the difference between the reserve and auction price

in the raw data, after removing auction house fees but with heterogeneity included (Rh−B(2),h), should

be equal in distribution to the simulated difference between the reserve price and auction price after

removing heterogeneity (R − B(2)). Figure 3 displays the raw and simulated densities of this difference,

which agree well in both samples.

Before discussing the estimated densities of buyer valuations (from the order statistic approach de-

scribed in Section 4.4, which will be shown below), Figure 4 displays the results from bounding the

distribution of seller valuations as described in Section 4.5. Panels (a) and (b) display, for each value of

the auction price, the probability a seller accepts (Pr(dS2 = A), the lower bound, in red) and the probabil-

ity the seller does not walk away/quit (1−Pr(dS2 = Q), the upper bound, in green) in the dealers (a) and

fleet/lease samples (b). Hollow circles in these panels represent the raw estimated probabilities, and the

solid lines represent estimates after monotonizing through the rearrangement approach of Chernozhukov,

Fernandez-Val, and Galichon (2009).
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Figure 1: Densities of auction price and reserve price with and without unobserved heterogeneity

(a) Dealers, reserve price
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(b) Fleet/lease, reserve price
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(c) Dealers, auction price
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(d) Fleet/lease, auction price
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Notes: Displays densities prior to removing unobserved heterogeneity (in blue), and after removing unobserved

heterogeneity (in red) for reserve price (panels (a) and (b)) and auction price (panels (c) and (d)). Left panels

use dealers sample and right panels use fleet/lease sample. Dashed lines mark pointwise 95% confidence bands

from 200 bootstrap replications of full estimation procedure. Units = $1, 000.
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Figure 2: Density of unobserved heterogeneity

(a) Dealers
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Notes: Displays density of unobserved heterogeneity in dealers sample and fleet/lease sample. Dashed lines mark

pointwise 95% confidence bands from 200 bootstrap replications of full estimation procedure. Units = $1, 000.

Figure 3: Density of reserve minus auction price, raw and simulated

(a) Dealers

−4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Reserve price minus auction price

D
en

si
ty

 

 

Rh − B(2),h

R − B(2)

(b) Fleet/lease
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Notes: Displays density of reserve price minus auction price (after adjusting for auction fees) in the raw data (in

red) compared to the density of the reserve price minus auction price with simulated draws from the estimated

distributions (in green). Units = $1, 000.
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Figure 4: Bounds on distribution of S̃

(a) Dealers, preliminary bounds
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(b) Fleet/lease, preliminary bounds
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(c) Dealers, final bounds
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(d) Fleet/lease, final bounds
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Notes: Bounds on distribution of S̃, with upper bound (green), lower bound (red), and CDF of reserve price

with unobserved heterogeneity (FR+W ). Panels (a) and (b) display preliminary bounds, prior to additional

estimation steps, with hollow circles representing original probability estimates and solid lines representing

monotonized (rearranged) estimates. Panels (c) and (d) display final bounds on S̃ after enforcing bounds to lie

above FR+W and cover full range in [0, 1]. In panels (c) and (d), dashed lines mark pointwise 95% confidence

bands from 200 bootstrap replications of full estimation procedure. Units = $1, 000.
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The solid blue line in each panel of Figure 4 represents the empirical CDF of the seller’s reserve

price (including observed heterogeneity), which should stochastically dominate the distribution of seller

valuations with unobserved heterogeneity included, FS̃ . To enforce this, I replace any values of the upper

or lower bounds on FS̃ with FR̃ ≡ FR+W . The results are displayed in panels (c) and (d). The estimates

in panels (c) and (d) also include the additional steps I take to obtain estimated upper and lower bounds

which are surjective (covering the range of probabilities in [0, 1]) by imposing a fixed distance between

quantiles of FS̃ and FR̃ in the range not covered by the raw probabilities, as described in Section 4.5.

Figure 4 suggests that, for dealer cars, panels (a) and (c), when the auction price—less the auction

house fee—is about $2,500 lower than expected (based on observable heterogeneity), sellers choose to

accept this auction price with probability about 0.5 and choose to not walk away/quit with probability

about 0.75. Therefore, the probability that S̃ is less than -$2,500 lies in [0.5, 0.75]. The bounds are similar

for fleet/lease cars, panels (b) and (d), although these bounds appear to be somewhat tighter and the

upper and lower bounds individually appear to be less disperse.

Figure 5 displays the estimated densities corresponding to the upper and lower bounds of seller

valuations after integrating out the unobserved heterogeneity (W ). Panels (a) and (b) display the density

corresponding to the upper bound in the dealers and fleet/lease samples, and panels (c) and (d) display

similar results for the lower bound. As with the densities for reserve prices and auction prices in Figure

1, the density of seller valuations is tighter after removing unobserved heterogeneity.

The estimates of the density of buyer valuations, fB , from the order statistic inversion described in

Section 4.4 are shown in Figure 6 in green. The density of the auction price, fB(2) , in Figure 6 (in

blue) is equivalent to the density shown in panels (c) and (d) of Figure 1, after removing unobserved

heterogeneity. As should be the case, fB(2) first-order stochastically dominates fB . Figure 6 also displays

(in red) the density corresponding to the upper or lower bound of seller valuations from Figure 5.

Figure 6 demonstrates that there is significant overlap, both in terms of support and mass, between

the density of buyer valuations and seller valuations. This feature of overlapping supports is referred to in

the theoretical bargaining literature as the “no gap” case (i.e., there is no gap between the upper bound

of the support of seller valuations and the lower bound of the support of buyer valuations, and hence

there is uncertainty as to whether gains from trade actually exist), and is the case motivating Myerson

and Satterthwaite (1983).44 Comparing panel (a) to panel (b) shows that fleet/lease sellers tend to have

more mass in the lower half of the support of seller types than do dealers, suggesting that trade may be

more likely to occur in the fleet/lease sample, as is shown to be the case in Table 1.

5 The Pareto Frontier and Real-World Bargaining

This section describes how the Pareto frontier and other counterfactual mechanisms can be solved for once

the distributions of seller and buyer valuations are known. I also describe identification and estimation

of the direct mechanism corresponding to the real-world, dynamic bargaining mechanism used at auto

44See Fudenberg and Tirole (1991).
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Figure 5: Density of seller valuations with and without unobserved heterogeneity

(a) Dealers, seller upper bound
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(b) Fleet/lease, seller upper bound
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(c) Dealers, seller lower bound
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(d) Fleet/lease, seller lower bound
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Notes: Densities of seller valuations prior to removing unobserved heterogeneity (in blue), and after removing

unobserved heterogeneity (in red). Panels (a) and (b) display seller distribution upper bound. Panels (c) and

(d) display lower bound. Units = $1, 000.

28



Figure 6: Densities of seller valuations, buyer valuations, and auction price

(a) Dealers, seller upper bound
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(b) Fleet/lease, seller upper bound
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(c) Dealers, seller lower bound
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(d) Fleet/lease, seller lower bound
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Notes: Densities of seller valuations (in red), buyer valuations (in green), and auction price (in blue). Panels (a)

and (b) display seller distribution upper bound. Panels (c) and (d) display lower bound. Dashed lines mark

pointwise 95% confidence bands from 200 bootstrap replications of full estimation procedure. Units = $1, 000.
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auctions.45 I then bring together the estimates from Section 4 to analyze the efficiency of bargaining.

The counterfactuals hold fixed the distribution of buyer and seller types. In reality, changing the

mechanism could change the distribution of types participating.46 Also, in counterfactuals I only change

bargaining—I do not change the auction. Each counterfactual mechanism is a mechanism for bilateral

trade between the seller and high bidder after a no-reserve ascending auction has occurred.47 The

auction selects the highest-value bidder, and the lower bound for the buyer’s support in the post-auction

bargaining game becomes b(2), the auction price.48 Finally, the counterfactual comparisons all consider

surplus after removing auction-level heterogeneity, both observed and unobserved.

5.1 Solving for the Pareto Frontier

In this section I discuss how I solve for the Pareto frontier and other direct, efficient mechanisms condi-

tional on a realization of B(2) = b(2). By the Revelation Principle (Myerson 1979), any static, incentive-

compatible, individually rational, bilateral trade mechanism can be written as a direct-revelation mecha-

nism where players truthfully report their valuations to a broker and then trade occurs with probability

x(s, b), with the buyer paying p(s, b) to the seller.49 Williams (1987) demonstrated that a bilateral bar-

gaining mechanism can alternatively be summarized by the two objects (x, q), rather than (x, p), where q

is the expected utility for the type S. The ex-ante expected utility of the buyer and seller in a mechanism

(x, q) is given by

US(x, q) ≡ q +

∫ B

b(2)

∫ S

S

x(s, b)FS(s)
fB(b)

1− FB(b(2))
dsdb (9)

UB(x, q) ≡ G(x)− q +

∫ B

b(2)

∫ S

S

x(s, b)
(1− FB(b))

1− FB(b(2))
fS(s)dsdb (10)

45A “direct-revelation” or “direct” mechanism in a bilateral trade setting is one in which players truthfully report their

valuations to a broker and then trade and transfers occur following allocation and payment rules which depend on the

distributions of types and the players’ reports.
46For example, the buyer and seller types choosing to attend the auction house could change if the mechanism were

more or less favorable for certain types. Also, the distribution of seller types could change, because embedded in the seller

valuations is the option to attempt to sell the car at the auction house at a later date, and the payoff from doing so would

change with the mechanism.
47Note that I do not work with a direct mechanism in which N buyers and one seller simultaneously report types to a

mechanism designer, primarily because this mechanism would be starkly different from mechanisms applied in practice and

because I wish to focus on the efficiency of bilateral trade in particular. I also do not consider a secret reserve price in these

counterfactual mechanisms.
48Setting the lower bound of the buyer’s support to be exactly the auction price is an approximation; the actual lower

bound of the support of buyer types, from the seller’s point of view, may be slightly higher than this in post-auction

bargaining given that the buyer’s choice to not opt out of bargaining contains some information about the buyer’s type.

See the proof of Proposition 2 in Appendix A. This approximation error will be small as long as bargaining costs are small.
49Note that the notation here is the reverse of Myerson and Satterthwaite (1983) and Williams (1987), in which p

represented the probability of trade and x represented the transfer. Also note that the transfer function, p, is not essential

for the results here. I report it in Appendix B.2.
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where

G(x) ≡
∫ B

b(2)

∫ S

S

(φB(b)− φS(s))x(s, b)fS(s)
fB(b)

1− FB(b(2))
dsdb (11)

and

φS(s) ≡ φS(s, 1) φB(b) ≡ φB(b, 1)

φS(s, α1) ≡ s+ α1
FS(s)

fS(s)
and φB(b, α2) ≡ b− α2

1− FB(b)

fB(b)

Williams (1987) demonstrated further that the Pareto frontier, that is, the maximized value of

ηUS + (1− η)UB (12)

for η ∈ [0, 1], can be traced out by the class of mechanisms with trading rules, x(s, b), defined by

xα1(η),α2(η)(s, b) = 1 {φB(b, α2(η)) ≥ φS(s, α1(η))}

The parameters (α1(η), α2(η)) can be solved for at each η using an approach developed in Williams (1987)

and described in Appendix B.2. Intuitively, the approach maximizes (12) subject to G(xα1(η),α2(η)) ≥ 0,

where G(x) is defined in (11). This constraint implies that the worst types—the lowest buyer type and

highest seller type—must receive a non-negative surplus in order to be willing to participate in the mech-

anism. A sufficient condition for success of this solution method is that φS(s) and φB(b)—traditionally

referred to as players’ “virtual valuations”—be weakly increasing. I do not impose monotonicity of virtual

valuations in my main analysis, but present results doing so in Appendix B.4.50

Several mechanisms of interest fit into this framework, such as the following

1. First-best trade (infeasible mechanism where trade occurs whenever buyer values the car more than

seller): α1 = α2 = 0.

2. Second-best trade (the mechanism maximizing the gains from trade): η = 1/2, α1 = α2 = α∗,

where α∗ solves G(xα
∗,α∗

) = 0.

3. Seller-optimal: η = 1, α1 = 0, α2 = 1.

4. Buyer-optimal: η = 0, α1 = 1, α2 = 0.

5. Pareto frontier: mechanisms maximizing (12) subject to G(xα1(η),α2(η)) ≥ 0 for η ∈ [0, 1].

Note that an auction followed by the seller-optimal mechanism is equivalent to a public reserve auction.51

An additional mechanism with α1 = α2 = 1 is discussed in Myerson and Satterthwaite (1983) and would

50An alternative approach to handle non-monotonic virtual valuations would be through “ironing” (Myerson 1981), but

this would involve a significantly larger computational burden than the current approach.
51See Menezes and Ryan (2005).
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maximize the gains to a broker (auction house) with market power. This mechanism is discussed in

Appendix B.7.3.

I derive an additional direct-revelation mechanism which maximizes the probability of trade rather

than the gains from trade. This result is a corollary to Theorem 2 of Myerson and Satterthwaite (1983)

and the proof follows the same line of reasoning as in Myerson and Satterthwaite (1983).52 The proof of

existence relies on strict monotonicity of φS(s) and φB(b).

Corollary 1. Suppose φS(s) and φB(b) are both strictly increasing. Then the direct mechanism max-

imizing the probability of trade has allocation rule xκ(s, b) = 1 {φS(s)− (2κ)/(1− κ) ≤ φB(b)}, where

κ ∈ [0, 1) is the solution to G(xκ(s, b)) = 0.

Once the first-stage auction is taken into account, the ex-ante probability of trade in any of these

mechanisms is given by

Pr(trade) =

∫ B

B

∫ B

b(2)

∫ S

S

x(s, b; b(2))fS(s)
fB(b)

1− FB(b(2))
fB(2)(b(2))dsdbdb(2) (13)

and the expected gain from trade is given by∫ B

B

∫ B

b(2)

∫ S

S

(b− s)x(s, b; b(2))fS(s)
fB(b)

1− FB(b(2))
fB(2)(b(2))dsdbdb(2) (14)

To perform this integration, I use Gauss-Chebyshev quadrature, as described in Appendix B.1, with 200

nodes in the s and b dimensions, and 25 nodes in the b(2) dimension.53 I set the bounds of the support for

buyer and seller valuations to the minimum and maximum of 10,000 draws from the estimated densities

FS and FB . The results are not sensitive to this procedure.

5.2 Estimating the Dynamic Mechanism

This section describes how I solve for surplus in the currently used dynamic mechanism by backing out a

direct-revelation mechanism corresponding to the mechanism used at auto auctions. As with the above

mechanisms, this direct mechanism can be characterized by functions x and p determining whether or

not trade will occur and at what price. x and p will in general depend on the realization of the auction

price, b(2), as this is the lower bound of the support of buyer types when bargaining takes place.

Let the allocation function for the dynamic mechanism be written

xD(s, b; b(2)) ≡ 1
{
b ≥ g

(
ρ(s), b(2)

)}
(15)

where g(·) is an unknown function.54 Here I rely on Proposition 2, which demonstrates that ρ is strictly

increasing in s and hence the allocation function can be considered to be a function of s or of r = ρ(s).

52Note that the expected transfer functions for the mechanism in Corollary 1 are given by (19) and (20) in Appendix B.2
53Increasing the number of nodes in any dimension did not change the results. A greater degree of accuracy in the b and

s dimensions than in the b(2) dimension is useful, as each mechanism is solved conditional on b(2).
54Although the counterfactual mechanisms discussed in Section 5.1 all had binary allocation functions, this is not nec-

essarily the case for the dynamic mechanism, but without assuming an indicator function the allocation function in the

real-world mechanism would not be identified.
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The secret reserve price being strictly increasing also implies ρ(s) can be written

ρ(s) = F−1
R (FS(s))

which can be computed given estimates of FS and FR.

As xD is written in (15), g(·) is not identified given the available data: I observe whether or not trade

occurred, but I do not observe realizations of b—or even of r or b(2) because of unobserved heterogeneity.

However, for each observation in the data, I do have an estimate of r̃ = r+w and b̃(2) = b(2) +w, which

implies an estimate of ψ ≡ r̃− b̃(2) = r− b(2). To exploit this result, note that Proposition 3 implies that

the allocation function can be simplified to

xD(r, b; b(2)) = 1
{
b− b(2) ≥ g

(
r − b(2), b(2) − b(2)

)}
(16)

= 1
{
b− b(2) ≥ g0

(
r − b(2)

)}
(17)

where g0(ψ) = g(ψ, 0). I refer to g0 as the trade boundary function. Recall that Proposition 3 demon-

strates that the probability of trade in a setting where realizations of the reserve price, auction price, and

bargaining buyer’s type were given by (r, b(2), b) would be the same as in a setting where each of these

objects were reduced by a common amount (here, by b(2)). The probability of trade at any value of ψ, a

realization of the random variable Ψ = R−B(2), can then be written

Pr(trade|Ψ = ψ) =

∫ B

B

1− FB
(
g0(ψ) + b(2)

)
1− FB

(
b(2)
) fR

(
ψ + b(2)

)
fB(2)

(
b(2)
)∫ B

B
fR(ψ + v)fB(2)(v)dv

db(2) (18)

I use (18) to solve for g0(·) on a grid of ψ using a bisection method. To estimate Pr(trade|Ψ = ψ), I

use a Nadayara-Watson kernel regression.55 To estimate the right hand side of (18), I use Gauss-Hermite

quadrature, plugging in each of the estimated densities. The expected gains from trade under the current

mechanism can then be evaluated as in (14), replacing x with the estimate of xD. Note that this estimate

ignores any loss in surplus due to bargaining costs. Appendix B.3 discusses bounds on this loss.

5.3 Putting It All Together: How Efficient Is Bargaining?

This section brings together the density estimates from Section 4 and the mechanisms from Section 5.1–

5.2 to present a quantitative comparison of real-world, dynamic bargaining to the efficient frontier. The

counterfactual mechanisms I consider include the first-best mechanism, the trade-maximizing mechanism,

and the mechanisms defining the second-best Pareto frontier, ranging from the buyer-optimal to the seller-

optimal mechanisms and including the mechanism maximizing the total expected gains from trade (which

I refer to in the results as “the second-best mechanism”).

To begin, Figure 7 displays the trade boundary function for the dynamic mechanism, identified by

the probability that trade occurs at given value of the gap between the seller’s secret reserve price and

55I use a Gaussian kernel with bandwidth set to the asymptotically optimal bandwidth for kernel density estimation of

Ψ.
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Figure 7: Estimated trade boundary function (g0)

(a) Dealers
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Notes: Estimate of g0(R−B(2)), defining region where trade occurs. Horizontal axis is gap between reserve

price and auction price. Vertical axis is gap between type of buyer who enters bargaining and auction price.

Dashed lines mark pointwise 95% confidence bands from 200 bootstrap replications of full estimation procedure.

Units = $1, 000.

the auction price, as described in Section 5.2. This boundary function, g0(R − B(2)), has the following

interpretation: In the dealers sample, panel (a), when the secret reserve price exceeds the auction price

by $2,000, the car will sell as long as the valuation of the highest-value buyer exceeds the auction price

by about $500. The g0 function in the fleet/lease sample, panel (b), is slightly steeper; when the reserve

price exceeds the auction price by $2,000, the buyer and seller will agree when the buyer values the car

at about $1,000 above the reserve price. This reflects the fact that, in fleet/lease cars, secret reserve

prices are lower relative to buyer values, and is consistent with personal conversations with industry

participants, who explain that fleet/lease cars are more likely to be “priced to sell.” Note that 7 does not

display separate results for the seller distribution upper and lower bounds because the approach described

in Section 5.2 does not rely knowledge of FS (or bounds of FS), and instead relies directly on information

contained in reserve prices.

The performance of the currently used dynamic mechanism relative to the Pareto frontier is displayed

in Figure 8. Each panel of Figure 8 also displays the location of the second-best and trade-maximizing

mechanisms with respect to the frontier, and for each mechanism pointwise 95% confidence intervals are

displayed. In each panel, the second-best and trade-maximizing mechanisms are nearly indistinguishable

from one another on the frontier, and both lie very close to the seller-optimal point of the frontier (the

far-right point). Figure 8 suggests that the frontier is approximately linear as it approaches the seller

optimal mechanism on the far right point of the frontier. However, magnifying the plot reveals that

the frontier is actually quite concave in this region as η, the Pareto weight, moves from 0.5 to 1. In
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both the dealers and fleet/lease samples, and under both the upper bound and lower bound of the seller

valuation distribution, the auction followed by alternating-offer bargaining results in a surplus level which

lies relatively close to the Pareto frontier, suggesting that the mechanism may be efficient.

Any gap between the frontier and the dynamic mechanism would represent a deadweight loss—

neither bargaining party captures this lost surplus. I refer to this gap as the deadweight loss due to

limited commitment or mechanism choice, as this gap could theoretically be eliminated by committing

to a static, direct-revelation mechanism which lies on the Pareto frontier. Figure 8 suggests that this

deadweight loss may not be large, but is still positive, and some points along the frontier would make

both parties better off.56

An additional source of deadweight loss is incomplete information. Myerson and Satterthwaite (1983)

demonstrated that this deadweight loss is inevitable in bilateral bargaining with two-sided uncertainty.

Intuitively, both parties trade off the conflicting incentives of increasing the probability of trade and

increasing the rent extracted from the other party, leading buyers to shade their offering price downward

and sellers to shade their asking price upward, leading some trades to fail to be consummated even when

the buyer values the good more than the seller. This deadweight loss is depicted graphically in Figure

9 as the gap between the Pareto frontier and the first-best (infeasible) surplus line. In both the dealers

sample and the fleet/lease sample, the gap is small. In fact, much of the estimated Pareto frontier lies

within the pointwise 95% confidence band of the first-best line, indicating that incomplete information

per se is likely not the primary reason for inefficiency in this market.

Table 4 contains more detailed information on these mechanisms, displaying the total expected gains

from trade, the gains to each player, and the probability of sale. Gains are reported in units of $1,000.

The table displays outcomes for the first-best, second-best, buyer-optimal, seller-optimal, and trade-

maximizing mechanisms. The current dynamic mechanism is displayed in the final column.57 Boot-

strapped standard errors are reported in parentheses.58 The percentages in square brackets in the

second-best column represent the second-best outcomes as a percentage of the first-best. In the dy-

namic mechanism column, percentages in square brackets represent the dynamic mechanism outcomes

as a percentage of the second-best. Panel A uses the upper bound on the seller distribution and panel B

the lower bound.

I focus first on the estimation using the upper bound of seller valuations, panel A, of Table 4. The

final column shows that the expected gain from trade in the current mechanism is $4,276, with $548

going to the buyer, $3,509 going to the seller, and the remainder going to the auction house through

fees. For buyers, $548 can be interpreted as an expected retail markup above the auction price (net of

56Bazerman, Gibbons, Thompson, and Valley (1998) argued that real-world bargaining can potentially yield more efficient

outcomes than the theoretical bounds of Myerson and Satterthwaite (1983) and Williams (1987) would predict possible.

Bazerman, Gibbons, Thompson, and Valley (1998) reviewed evidence from the behavioral and experimental literature

suggesting that more efficient outcomes can occur due to non-traditional utility functions (where one player’s utility nests

the other’s), limits on players’ abilities to mimic other types, and other features of bounded rationality.
57Because buyer and seller gains take into account fees paid to the auction house, the total expected gains from trade for

the dynamic mechanism in the first row is given by the sum of buyer and seller gains and fees paid to the auction house.
58These standard errors come from 200 nonparametric bootstrap replications of the full estimation procedure.
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Figure 8: Expected gains from trade in dynamic mechanism and on Pareto frontier

(a) Dealers, seller upper bound
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(b) Fleet/lease, seller upper bound
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(c) Dealers, seller lower bound
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(d) Fleet/lease, seller lower bound
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Notes: Expected gains from trade, in buyer and seller payoff space, for Pareto frontier (in blue), current

dynamic mechanism (in red), second-best mechanism (in green), and trade-maximizing mechanism (in cyan).

Dashed lines surrounding the frontier, and solid lines about other mechanisms, mark pointwise 95% confidence

bands from 200 bootstrap replications of full estimation procedure. Units = $1, 000.
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Figure 9: Expected gains from trade in dynamic mechanism, on Pareto frontier, and on first-best efficient

frontier.

(a) Dealers, seller upper bound
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(b) Fleet/lease, seller upper bound
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(c) Dealers, seller lower bound
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(d) Fleet/lease, seller lower bound
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Notes: Expected gains from trade, in buyer and seller payoff space, for Pareto frontier (in blue), current

dynamic mechanism (in red), and first-best efficient frontier (in magenta). Dashed lines surrounding the

frontiers, and solid lines about dynamic mechanism, mark pointwise 95% confidence bands from 200 bootstrap

replications of full estimation procedure. Units = $1, 000.
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Table 4: Dealers sample: Expected gains from trade and prob of trade in counterfactual and current

mechanisms

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Dynamic 

mechanism

Expected gains 5.342 5.324 4.661 5.319 5.094 4.276

from trade (0.179) (0.182) (0.181) (0.182) (0.181) (0.164)

(units=$1,000) [99.7%] [80.3%]

Buyer gains 0.541 3.631 0.533 0.564 0.548

(units=$1,000) (0.014) (0.155) (0.014) (0.015) (0.012)

[101.3%]

Seller gains 4.783 1.030 4.786 4.520 3.509

(units=$1,000) (0.171) (0.033) (0.171) (0.169) (0.156)

[73.4%]

Probability of 0.849 0.831 0.644 0.829 0.868 0.705

trade (0.016) (0.020) (0.019) (0.020) (0.021) (0.015)

[98.0%] [84.8%]

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Dynamic 

mechanism

Expected gains 3.374 3.345 2.483 3.338 3.350 2.811

from trade (0.103) (0.108) (0.097) (0.108) (0.109) (0.097)

(units=$1,000) [99.2%] [84.0%]

Buyer gains 0.439 1.780 0.426 0.437 0.543

(units=$1,000) (0.013) (0.085) (0.013) (0.013) (0.009)

[123.9%]

Seller gains 2.907 0.702 2.912 2.905 2.049

(units=$1,000) (0.099) (0.024) (0.099) (0.099) (0.093)

[70.5%]

Probability of 0.747 0.693 0.369 0.692 0.694 0.700

trade (0.010) (0.018) (0.013) (0.018) (0.018) (0.009)

[92.8%] [100.9%]

A. Efficiency of bargaining using seller distribution upper  bound, dealers sample

B. Efficiency of bargaining using seller distribution lower  bound, dealers sample

Notes: Dealers sample. First-best, second-best, buyer-optimal, seller-optimal, and trade-maximizing mechanisms

compared to current dynamic mechanism. Gains are in $1,000 units. Standard errors are reported in

parentheses and come from 200 bootstrap replications of the full estimation procedure. Square brackets in

second-best column represent second-best outcomes as percentage of first-best. In dynamic mechanism column,

square brackets represent dynamic mechanism outcomes as a percentage of second-best. Panel A displays

estimates under seller distribution upper bound and Panel B under lower bound.
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any other costs of remarketing the vehicle, which would be passed onto the final consumer in the retail

price), as a buyer’s valuation should be the amount he expects to make on the car. For a seller, $3,509 is

the expected gain from selling the car at the auction today as opposed to selling it through her next-best

option. This next-best option includes the possibility of taking the car back to the seller’s own lot or

leaving it at the auction house to run again in several weeks. Therefore, the relatively high expected

gains from trade for the seller suggest that, in a complete-information world, sellers would be willing to

sell cars for much less. The characteristic of the data leading to this result is the fact that even when

the auction price falls far below expectation (based on auction-level characteristics) sellers still accept (or

not walk away from) the auction price with high probability, as discussed in Section 4.6.

The estimated probability of trade in the dynamic mechanism is 0.705. This measure comes from

integrating the dynamic allocation function xD(ρ(S), B;B(2)) over all three of its arguments, as described

in Section 5.2. Comparing the estimated probability of trade to the raw probability of trade from Table

1 (0.710) serves as one indication of good model fit.

Comparing each of the columns in panel A to each other yields several useful insights. The first-best

surplus in panel A is $5,342, and the second-best surplus captures 99.7% of this surplus (as seen by the

percentage in square brackets in the second-best column), as was suggested by Figure 9. Therefore, the

deadweight loss due to incomplete information is small. The second-best probability of trade (0.831) is

also similarly close to the first-best (0.849), capturing 98% of the first-best volume.59

The deadweight loss due to limited commitment can be evaluated by comparing the expected gains

from trade in final column of Table 4 to the second-best column. In the used-car dealers sample, the dy-

namic mechanism achieves 80.3% of the second-best surplus (as seen in square brackets). The probability

of trade in the dynamic mechanism achieves 84.8% of the second-best level. The gains to the buyer in

the dynamic mechanism are 101.3% of the buyer gains under the second-best mechanism, while the seller

gains are only 73.4% of the second-best level. However, the buyer-optimal mechanism would yield much

higher gains for the buyer (increasing from $548 to $3,631) and the seller-optimal mechanism would yield

improvements to the seller (increasing from $3,509 to $4,786).

For the most part, the quantities in panel A are maximized by the appropriate mechanism, which

serves as another check of the model. Specifically, the expected gains from trade are maximized by the

first-best, followed by the second-best. The buyer gains are maximized by the buyer-optimal mechanism

and seller gains by the seller-optimal mechanism. One exception to this good fit is the trade-maximizing

mechanism, which attains a level of probability of trade (0.868) which exceeds the first-best (0.849). This

feature is due to the fact that the virtual valuations (φB and φS from Section 5.1) are not necessarily

increasing. I address this in Appendix B.4 by imposing monotonicity of virtual valuations and find that

this corrects the ranking of first-best vs. the trade-maximizing mechanism; however, this correction also

leads to a poorer fit in the probability of trade estimate for the dynamic mechanism.

Panel B of Table 4, which uses the lower bound of seller valuations, demonstrates similar results

59Recall that the first-best would have trade occur whenever the buyer’s value is higher than the seller’s. Therefore, the

first-best probability of trade will not be one, but will depend on the distributions of buyer and seller valuations.
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to panel A, with several interesting differences. First, under the lower bound of seller valuations, the

probability of trade in the dynamic mechanism exceeds slightly the probability of trade in the trade-

maximizing mechanism. Second, the trade-maximizing mechanism no longer appears to outperform the

first-best. Finally, while the second-best captures 99.2% of the first-best surplus, it captures only 92.8%

of the first-best trade volume, highlighting the fact that trades which are captured by the first-best

mechanism but missed by the second-best (due to the incomplete information explored in Myerson and

Satterthwaite 1983) tend to be relatively low-surplus trades, i.e. cases where the buyer only values the

car slightly more than the seller.

The qualitative findings from the dealers sample are similar in the fleet/lease sample (Table 5). The

second-best mechanism achieves 99.5% or 98.8% of the first-best gains from trade, depending on whether

the upper (panel A) or lower (panel B) bound of seller valuations is used. The second-best probability

of trade attains 96.4% or 90.8% of the first-best volume. Comparing Table 5 to Table 4 suggests that

the dynamic bargaining mechanism may be slightly more efficient in the fleet/lease sellers sample than

in the dealers sample—consistent with conventional wisdom in the industry—capturing 90.9% (panel A)

or 86.5% (panel B) of second-best surplus in the fleet/lease sample. The levels of gains as well as the

probability of trade are also higher in the fleet/lease sample than in the dealers sample. Under the upper

bound of seller valuations, panel A shows that the expected gains from trade in the dynamic mechanism

are $5,201, with buyers capturing $912, sellers capturing $4,060, and the remainder going toward auction

house fees.

The expected gains from trade in Figures 8-9 and Tables 4–5 do not take into account any surplus

lost due to bargaining costs, and thus can be thought of as an upper bound on surplus under dynamic

bargaining. Appendix B.3 provides an approach for estimating a lower bound on surplus which takes

into account bargaining costs. I find that the surplus lost due to costs in dynamic bargaining is small,

less than $25 for buyers and less than $50-100 for sellers.

Further checks of model robustness as well as analyses of additional mechanisms are contained in the

appendices. Appendix B.5 presents results analogous to those in Tables 4–5 under alternative sample

restrictions. Appendix B.6 displays welfare results under alternative assumptions on the mean number

of bidders, λ, and demonstrates that alternative assumptions for λ do not alter the paper’s conclusions.

Appendix B.7.1 analyzes the efficiency of a seller bargaining with a random bidder rather than the high

bidder. This mechanism changes not only what dynamic bargaining can achieve, but also shifts the Pareto

and first-best frontiers as well. I find that bargaining with a random bidder is less efficient than bargaining

with the high bidder, but still achieves 70–88.5% of the second-best gains from trade. Appendix B.7.2

contains results from an auction in which all players commit not to bargain, and in which the seller is only

allowed to accept or reject the auction price. I find this mechanism is quite efficient. Finally, Appendix

B.7.3 analyzes the mechanism which would maximize revenue for a monopolist auction house.
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Table 5: Fleet/lease sample: Expected gains from trade and prob of trade in counterfactual and current

mechanisms

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Dynamic 

mechanism

Expected gains 6.045 6.015 5.417 6.004 5.823 5.201

from trade (0.117) (0.117) (0.121) (0.118) (0.116) (0.097)

(units=$1,000) [99.5%] [86.5%]

Buyer gains 0.858 4.378 0.841 0.905 0.912

(units=$1,000) (0.006) (0.109) (0.006) (0.007) (0.005)

[106.3%]

Seller gains 5.157 1.040 5.163 4.904 4.060

(units=$1,000) (0.115) (0.019) (0.114) (0.113) (0.096)

[78.7%]

Probability of 0.898 0.866 0.711 0.859 0.915 0.757

trade (0.003) (0.004) (0.009) (0.005) (0.006) (0.002)

[96.4%] [87.4%]

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Dynamic 

mechanism

Expected gains 4.445 4.392 3.421 4.382 4.268 3.993

from trade (0.081) (0.082) (0.080) (0.082) (0.082) (0.071)

(units=$1,000) [98.8%] [90.9%]

Buyer gains 0.759 2.662 0.745 0.774 0.908

(units=$1,000) (0.006) (0.071) (0.006) (0.007) (0.005)

[119.6%]

Seller gains 3.633 0.759 3.637 3.481 2.856

(units=$1,000) (0.079) (0.015) (0.079) (0.080) (0.070)

[78.6%]

Probability of 0.858 0.778 0.466 0.771 0.794 0.755

trade (0.003) (0.005) (0.009) (0.005) (0.005) (0.002)

[90.8%] [97.0%]

A. Efficiency of bargaining using seller distribution upper  bound, fleet/lease sample

B. Efficiency of bargaining using seller distribution lower  bound, fleet/lease sample 

Notes: Fleet/lease sample. First-best, second-best, buyer-optimal, seller-optimal, and trade-maximizing

mechanisms compared to current dynamic mechanism. Gains are in $1,000 units. Standard errors are reported

in parentheses and come from 200 bootstrap replications of the full estimation procedure. Square brackets in

second-best column represent second-best outcomes as percentage of first-best. In dynamic mechanism column,

square brackets represent dynamic mechanism outcomes as a percentage of second-best. Panel A displays

estimates under seller distribution upper bound and Panel B under lower bound.
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6 Conclusion

This paper examined the efficiency of bargaining from a real-world setting with two-sided incomplete in-

formation. I developed a model and strategy for nonparametrically identifying and estimating the distri-

butions of valuations on both sides of the market without relying on a particular structure or equilibrium

solution for the bargaining game. I then mapped these distributions into the static, direct-revelation

mechanism framework which traces out the efficient frontier derived in Myerson and Satterthwaite (1983)

and Williams (1987). I found that the deadweight loss due to incomplete information—the gap between

the first-best trade line and the second-best frontier—is small in the wholesale used-car market. I also

found that the deadweight loss due to mechanism choice/limited commitment is roughly 9–20% of the

second-best surplus. This result is consistent with the hypothesis of Wilson (1986) and Ausubel and

Deneckere (1993) who suggested that it may be that “[dynamic bargaining mechanisms] survive because

they employ trading rules that are efficient for a wide class of environments.”

The findings of this paper shed some light on the question of why bargaining may be used after an

auction, as opposed to sales mechanisms which are more standard in the theoretical literature, such as an

auction with no reserve price or an auction with a public reserve price. In this industry, it is the auction

house, rather than the seller, who chooses the mechanism. An auction house is a platform in a two-

sided market, required to attract both buyers and sellers, each with private information about his or her

valuation for the good. A no-reserve auction could drive some high-value sellers out of the market. And

while a public reserve auction is optimal for the seller, alternative mechanisms, including post-auction

bargaining, may be preferred for the buyer or for the auction house, and may allow the market to achieve

a more efficient allocation. Alternating-offer bargaining in particular is a natural mechanism which is

easy for players to understand and for the auction house to implement, and which does not require the

same level of commitment as static bargaining mechanisms, which, while more efficient, require players

to sometimes walk away from negotiations even when it is discovered ex-post that gains from trade exist.

The nature of the wholesale used-car industry as a network of competing platforms also likely affects

auction houses’ choice of mechanism—both the choice of whether or not to allow post-auction bargaining

as well as the choice of fee structure. Studying the role of two-sided uncertainty and competition among

auction houses in determining auction houses’ choice of mechanism would be a valuable avenue for future

research.
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A Proofs

Proof of Proposition 1

Proof. Note that πB(β, bi) is given by

πB(β, bi) = δ

(
(bi − β) Pr

(
DS

2 = A|β
)

+ δ Pr
(
DS

2 = C|β
)
EPS2

[
max

{
bi − PS2 , 0, V B3

(
bi|{β, PS2 }

)} ∣∣∣∣∣β
])
− cB

This expression is the payoff to the buyer from stating the auction auction price as a counteroffer, which

is how the post-auction bargaining game begins.

Because the high bidder, after learning that the auction price did not meet the secret reserve price,

has the option to immediately walk away without entering bargaining, the payoff M(β, bi) cannot be
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negative. To see that truth-telling is a dominant strategy, suppose first that bidder i drops out at some

βi < bi.

1. If bi ≤ β, then βi < bi ≤ β, so bidder i is not the high bidder, and would not have been even if he

had bid βi = bi.

2. If bi > β, then the following is true:

(a) If β < βi < bi, then bidder i is the high bidder and gets an expected payoff of M(β, bi).

(b) If βi < β < bi, then bidder i loses, but i would have been the high bidder if he had bid bi, and

would have again received M(β, bi).

Thus, dropping out at a price less than bi will never raise bidder i’s payoff, and in some cases may decrease

it.

Now, suppose that bidder i drops out at some βi > bi

1. If β ≤ bi, then β ≤ bi < βi, then bidder i is the high bidder and gets payoff M(β, bi), but would

have received this same payoff dropping out at bi. Also, as noted above, because it is the auctioneer,

rather than the bidders, who calls out bids, a player cannot actually outbid himself in an attempt

to win the object while avoiding costly bargaining.

2. If β > bi, then the following is true:

(a) If bi < βi < β, then bidder i loses, and would not have been the high bidder even if he had

bid βi = bi.

(b) If bi < β < βi, then bidder i is the high bidder, but would not choose to enter bargaining

because the condition that the seller never accepts offers below the auction price rules out the

possibility that bidder i could receive a positive payoff by bargaining.

Proof of Proposition 2

Proof. In order to prove this result, the following lemma is useful

Lemma 1. For any finite T and history Ht, V
S
t (s|Ht) is weakly increasing in s and V Bt+1 (b|Ht+1) is

weakly increasing in b for all t ≤ T .

Proof of Lemma 1

The proof proceeds by induction on the number of periods remaining. Suppose there are T total periods

in the game and there is currently one period remaining: it is the seller’s turn and after her turn the

buyer will only be allowed to accept or quit. Let HT−1 represent the history at the beginning of period

T − 1 and HT the history in the final period. The seller’s payoff from countering at a price of p is then

UST (s, p|HT−1) ≡
(
pδ Pr(DB

T = A|HT ) + s
(
δ(1− Pr(DB

T = A|HT )) + 1− δ
))
− cS
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Let p∗(s|HT−1) = arg maxp U
S
T (s, p|HT−1). That is, V ST−1(s|HT−1) = UST−1(s, p∗(s|HT−1)|HT−1).

Now let VT−1(s, s′|HT−1) represent the payoff to the seller of type s who mimics type s′ < s. Clearly

VT−1(s, s|HT−1) ≥ VT−1(s, s′|HT−1) because VT−1(s, s|HT−1) is the maximized counteroffer payoff given

the seller’s true value, s. It remains to be shown that VT−1(s, s′|HT−1) ≥ VT−1(s′, s′|HT−1). Below, let

HT represent the history in period T when the seller of type s has mimicked type s′ in period T − 1.

That is, HT = {HT−1, p
∗(s′|HT−1)}. Observe that

VT−1(s, s′|HT−1) =
(
p∗(s′|HT−1)δ Pr(DB

T = A|HT ) + s(δ(1− Pr(DB
T = A|HT )) + 1− δ)

)
− cS ,

and

VT−1(s′, s′|HT−1) =
(
p∗(s′|HT−1)δ Pr(DB

T = A|HT ) + s′(δ(1− Pr(DB
T = A|HT )) + 1− δ)

)
− cS

Thus,

VT−1(s, s′|HT−1)− VT−1(s′, s′|HT−1) = (s− s′)(δ(1− Pr(DB
T = A|HT )) + 1− δ)

≥ 0

Therefore, VT−1(s, s|HT−1) ≥ VT−1(s′, s′|HT−1), and the seller’s counteroffer payoff is weakly increasing

in her type when there is one period remaining.

To complete the proof by induction,, let V ST−(t−1)(s|HT−(t−1)) denote the seller’s counteroffer payoff

with t− 1 periods remaining, and suppose V ST−(t−1)(s|HT−(t−1)) is weakly increasing s. Note that when

there are t periods remaining, VT−t(s, s|HT−t) ≥ VT−1(s, s′|HT−t) by the same argument as above. It

remains to be shown that VT−t(s, s
′|HT−t) ≥ VT−t(s′, s′|HT−t). Let

HT−(t−1) = {HT−t, p
∗(s′|HT−t)}

HT−(t−2) = {HT−t, p
∗(s′|HT−t), P

B
T−(t−1)}

Note that

VT−t(s, s
′|HT−t)− VT−1(s′, s′|HT−t)

= (s− s′)
(
δ Pr

(
DB
T−(t−1) = Q|HT−(t−1)

)
+ 1− δ

)
+ δ Pr

(
DB
T−(t−1) = C|HT−(t−1)

)
×
(
δEPB

T−(t−1)

[
max

{
PBT−(t−1), s, V

S
T−(t−1)

(
s, s′|HT−(t−2)

)}
− max

{
PBT−(t−1), s

′, V ST−(t−1)

(
s′, s′|HT−(t−2)

)} ∣∣∣∣∣HT−(t−1)

]
+ (s− s′)(1 + δ)

)
≥ 0

Therefore, VT−t(s, s|HT−t) ≥ VT−t(s
′, s′|HT−t), completing the proof. The proof that the buyer coun-

teroffer payoff, V Bt+1 (b|HT+1), is increasing follows by the same steps.

49



(Continuation of Proof of Proposition 2)

Let χ(b) be defined by 0 = πB(χ, b), where πB is defined in the proof of Proposition 1. Intuitively,

χ is the auction price which would make a high bidder of type b indifferent between bargaining and not

bargaining. Note that, for b′ > b, πB(χ(b), b′) > 0, because V B3 (·) is increasing in b by Lemma 1. Thus,

χ(b′) > χ(b), and hence χ−1, the inverse, exists and is also strictly increasing. To make notation clear,

if y = χ(b), then this inverse function gives b = χ−1(y), which defines the lowest buyer type who would

enter bargaining when the auction price is y. Also, note that χ(b) < b because πB(b, b) < 0 due to cB > 0.

The seller’s payoff can then be re-written as∫ B

ρ

b(2)fB(2)(b(2))db(2) +

∫ ρ

B

[∫ χ−1(b(2))

b(2)
sfB(b)db+

∫ B

χ−1(b(2))

πS
(
b(2), s

)
fB(b)db

]
fB(2)(b(2))

1− FB(b(2))
db(2)

=

∫ B

ρ

b(2)fB(2)(b(2))db(2) +

∫ ρ

B

[
s
(
FB(χ−1(b(2)))− FB(b(2))

)
+ πS

(
b(2), s

)(
1− FB(χ−1(b(2)))

)] fB(2)(b(2))

1− FB(b(2))
db(2)

Differentiating the above expression using Leibniz Rule yields the following first-order condition for

ρ:

∂

∂ρ
= −ρ+ s

FB(χ−1(ρ))− FB(ρ)

1− FB(ρ)
+ πS (ρ, s)

1− FB(χ−1(ρ))

1− FB(ρ)

Lemma 1 implies that πS
(
b(2), s

)
is weakly increasing in s, and thus ∂

∂ρ will be strictly increasing in

s because FB(χ−1(ρ)) > Fb(ρ) given that χ−1(·) is strictly increasing and fB(·) is atomless. Given that
∂
∂ρ is strictly increasing in s, the Edlin and Shannon (1998) Theorem implies that, as long as the optimal

ρ∗(s) lies on the interior of the support of ρ, ρ∗(s) will be strictly increasing in s. The support of ρ is

the real line, thus completing the proof. Note that without costly bargaining a weak monotonicity result

can be obtained following Topkis Theorem.

Proof of Proposition 3

Proof. Given the structure of additive separability in the willingness to pay/sell, the goal is to show

that the auction price, players’ bargaining counteroffers, and the seller’s secret reserve price will also be

additively separable in the auction-level heterogeneity. Suppose the auction-level heterogeneity is given

by a fixed scalar, W = w. The buyer’s type is given by B̃ ≡ B +W ∼ FB̃ , with density fB̃ . The seller’s

type is given by S̃ ≡ S +W .

That the auction price will be additively separable in W is obvious, given that the bidding function is

the identity function by Proposition 1. To demonstrate that bargaining offers are also additively separable,

the proof proceeds by induction on the number of periods remaining. Suppose there is currently one period

remaining in the bargaining game: it is the seller’s turn and after her turn the buyer will only be allowed

to accept or quit.

In the final period, a buyer with type B̃ = b̃ will accept a price, p̃, if and only if p̃ ≤ b̃. In period

T − 1, the seller of type S̃ = s̃ chooses p̃∗ to solve

p̃∗ = arg max
p̃
{δp̃(1− FB̃(p̃)) + s̃ (δFB̃(p̃) + 1− δ)− cS}
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= w + arg max
p
{δp(1− FB(p)) + s (δFB(p) + 1− δ)− cS + w(1− FB(p)) + w (δFB(p) + 1− δ)}

= w + arg max
p
{[δp(1− FB(p)) + s (δFB(p) + 1− δ)− cS ] + w}

Therefore, the penultimate bargaining offer in the heterogeneous setting will be w above the bargaining

offer from the homogeneous good setting, and similarly for the seller’s maximized payoff.

To complete the proof by induction, suppose that offers and payoffs in periods T−(t−1) and T−(t−2)

are w higher than their homogeneous good counterparts. It remains to be shown that the same holds

true for the offers and payoffs in period T − t. Let all (̃·) expressions represent the heterogeneous model

expressions. The seller’s payoffs from accepting, quitting, or countering in period T − t can be written

as follows:

A : p̃BT−(t+1) = w + pBT−(t+1)

Q : s̃ = w + s

C : Ṽ ST−t

(
s̃|H̃T−t

)
= max

p̃
p̃δ Pr

(
DB
T−(t−1) = A|H̃T−(t−1)

)
+ s̃

(
δ Pr

(
DB
T−(t−1) = Q|H̃T−(t−1)

)
+ 1− δ

)
+ δ Pr

(
DB
T−(t−1) = C|H̃T−(t−1)

)
×

(
δEP̃B

T−(t−1)

[
max

{
P̃BT−(t−1), s̃, Ṽ

S
T−(t−2)

(
s̃|H̃T−(t−2)

)} ∣∣∣∣∣H̃T−(t−1)

]
+ s̃(1− δ)

)
− cS

= w + max
p

pδ Pr
(
DB
T−(t−1) = A|HT−(t−1)

)
+ s

(
δ Pr

(
DB
T−(t−1) = Q|HT−(t−1)

)
+ 1− δ

)
+ δ Pr

(
DB
T−(t−1) = C|HT−(t−1)

)
×

(
δEPB

T−(t−1)

[
max

{
PBT−(t−1), s, V

S
T−(t−2)

(
s|HT−(t−2)

)} ∣∣∣∣∣HT−(t−1)

]
+ s(1− δ)

)
− cS

The last line follows by removing w from each expression and from the following claim: the probability

of the buyer accepting, quitting, or countering in period T − (t−1) will be the same in the heterogeneous

good model as in the homogeneous good model. To prove this claim, note that the buyer’s payoffs for

each action are given by:

A : b̃− p̃ST−t = b− pST−t
Q : 0

C : Ṽ BT−(t−1)

(
b̃|H̃T−(t−1)

)
= δ

(
max
p̃

(b̃− p̃) Pr
(
DS
T−(t−2) = A|H̃T−(t−2)

)
+ δ Pr

(
DS
T−(t−2) = C|H̃T−(t−2)

)
EP̃S

T−(t−2)

[
max

{
b̃− P̃ST−(t−2), 0, Ṽ

B
T−(t−3)

(
b̃|H̃T−(t−3)

)} ∣∣∣∣∣H̃T−(t−2)

])
− cB

= V BT−(t−1)

(
b|HT−(t−1)

)
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Finally, consider the seller’s secret reserve price in the setting with auction-level heterogeneity w. Let

χ̃ satisfy 0 = πB(χ̃, b̃). Note that πB(χ̃, b̃) = πB(χ, b) by the above arguments for the buyer’s bargaining

payoff. The first order condition for the seller’s secret reserve, r̃ = ρ(s̃), from the proof of Proposition 2,

will be given by

∂

∂r̃
= −r̃ + s̃

FB̃(χ̃−1(r̃))− FB̃(r̃)

1− FB̃(r̃)
+ πS (r̃, r̃)

1− FB̃(χ̃−1(r̃))

1− FB̃(r̃)

= −r̃ + w + s
FB(χ−1(r̃ − w))− FB(r̃ − w)

1− FB(r̃ − w)
+ πS (r̃ − w, s) 1− FB(χ−1(r̃ − w))

1− FB(r̃ − w)

Therefore, the optimal secret reserve price in the heterogeneous setting will be w above the optimal

reserve in the homogeneous setting, completing the proof.

Proof of Corollary 1

Proof. This proof follows similar steps to those in the proof of Theorem 2 of Myerson and Satterthwaite

(1983) and relies on results from Theorem 1 of Williams (1987). The problem is to find an allocation rule

x : [b(2), B]× [S, S]→ [0, 1] to maximize∫ B

b(2)

∫ S

S

x(s, b)fS(s)fB(b)dsdb

subject to the players’ participation constraint, which is

0 ≤
∫ B

b(2)

∫ S

S

(φB(b, 1)− φS(s, 1))x(s, b)fS(s)fB(b)dsdb

See Myerson and Satterthwaite (1983) for more details. Letting λ denote the Lagrange multiplier, the

unconstrained problem is to maximize∫ B

b(2)

∫ S

S

(1 + λ (φB(b, 1)− φS(s, 1)))x(s, b)fS(s)fB(b)dsdb

For any λ ≥ 0, the Lagrangian is maximized when x(s, b) = 1 if and only (1 + λ (φB(b, 1)− φS(s, 1))) ≥ 0.

To achieve this result, let

1

λ
=

2κ

1− κ

κ ∈ [0, 1) may then be solved for to equate the participation constraint to zero. That is, let

G̃(κ) =

∫ B

b(2)

∫ S

S

(φB(b, 1)− φS(s, 1))xκ(s, b)fS(s)fB(b)dsdb

where

xκ(s, b) = 1

{
φS(s, 1)− 2κ

1− κ
≤ φB(b, 1)

}
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Observe that xκ(s, b) is decreasing in κ. Therefore, for some α < κ, G̃(α) will differ from G̃(κ) only

because 0 = xα(s, b) < xκ(s, b) = 1 for some (s, b) where φB(b, 1) < φS(s, 1)− 2α
1−α , implying that at that

same (s, b), it must be the case that φB(b, 1) < φS(s, 1). Thus, as κ increases, xκ(s, b) yields trade at

regions of the type space at which (φB(b, 1)− φS(s, 1)) is negative. Therefore, G̃(κ) is decreasing in κ.

To prove the G̃(κ) is continuous, note that if φS(s, 1) and φB(b, 1) are both strictly increasing, then

given any b and κ, the equation φB(b, 1) = φS(s, 1)− 2α
1−α has at most one solution in s, so G̃(κ) can be

written as

G̃(κ) =

∫ B

b(2)

∫ g̃(b,κ)

S

(φB(b, 1)− φS(s, 1)) fS(s)fB(b)dsdb

where h̃(b, κ) is continuous in b and κ, so G̃(κ) is continuous. Note also that G̃(0) >= 0, and

limκ→1 G̃(κ) = −∞. Therefore, there exists a unique κ ∈ [0, 1) such that G̃(κ) = 0. By Theorem 1

of Williams (1987), the transfer function of this mechanism will by given by (19) and (20).

B Computational Details, Robustness Checks, and Additional

Mechanisms

B.1 Gaussian Quadrature

The counterfactual analysis in this paper requires the evaluation of a significant number of integrals, such

as (13). In order to achieve accuracy and limit the computational burden, I employ Gauss-Chebyshev

integration, as advocated by Judd (1998), with a large number of nodes. Specifically, let zk, k = 1, ...,K

be the Chebyshev nodes, given by zk = cos(π(2k − 1)/(2K)). Let g(v) be the function to be integrated.

Then ∫ v

v

g(v)dv ≈ π(v − v)

2K

K∑
k=1

g(xk)wk

where xk = (1/2)(zk + 1)(v − v) + v and wk = (1− z2
k)1/2. For integration in multiple dimensions, I use

a tensor product: ∫ u

u

∫ v

v

g(v, u)dvdu ≈ π2(v − v)(u− u)

(2K)2

K∑
j=1

K∑
k=1

g(xk, xj)wkwj

See Kythe and Schäferkotter (2005) or Judd (1998) for additional details. In the estimation of integrals

in this paper, I use 200 nodes when integrating in the dimension of the seller’s or high bidder’s type.

Accuracy in these two dimensions is essential, as this is the level at which I solve for counterfactual

mechanisms (conditional on the auction price). The integration over the auction price, on the other

hand, is not involved in solving for mechanisms, so I use 25 nodes in this dimensions. Increasing the

number of nodes beyond 25 does not change results.
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In evaluating the Hermite-based likelihood function in Section 4.3, I employ Gauss-Hermite quadrature

(recommended by Judd (1998) for integration over the real line), given by∫ ∞
−∞

g(v)dv ≈
K∑
k=1

g(xk)ex
2
kwk

where in this case xk and wk are the Gauss-Hermite quadrature nodes and weights described in Kythe

and Schäferkotter (2005) or Judd (1998). I choose 10 as the number of nodes and do not find that the

results change noticeably as this number increases.

B.2 Solving for the Pareto Frontier and the Transfer Function

The Pareto frontier can be solved for using Theorem 3 of Williams (1987), which states the following.

Recall that each mechanism is summarized by two objects, (x, q), defined in Section 5.

Theorem (from Williams 1987).

Suppose φs(s) and φb(b) are weakly increasing. Then

1. For 0 ≤ η < 1/2, if G(xᾱ1,0) ≥ 0 for ᾱ1 = 1 − η/(1 − η), then (xᾱ1,0, 0) is the unique solution

maximizing (12) for this η; if G(xᾱ1,0) < 0, then there exists a unique (α∗1, α
∗
2) that satisfies the

equations G(xα1,α2) = 0 and (α2 − 1) = (α1 − 1)(1 − η)/η, and (xα
∗
1 ,α

∗
2 , 0) is the unique solution

maximizing (12) for this η.

2. For 1/2 < η ≤ 1, if G(x0,ᾱ2) ≥ 0 for ᾱ2 = 1+(η−1)/η), then (x0,ᾱ2 , G(x0,ᾱ2)) is the unique solution

maximizing (12) for this η; if G(x0,ᾱ2) < 0, then there exists a unique (α∗1, α
∗
2) that satisfies the

equations G(xα1,α2) = 0 and (α2 − 1) = (α1 − 1)(1 − η)/η, and (xα
∗
1 ,α

∗
2 , 0) is the unique solution

maximizing (12) for this η.

For these direct mechanisms defining the Pareto frontier, Theorem 1 of Williams (1987) implies that,

given (x, q), the expected transfer for a seller of type s or for a buyer of type b are given by

pS(s) ≡ q + s

∫ B

b(2)
x(s, b)

fB(b)

1− FB(b(2))
db+

∫ S

s

∫ B

b(2)
x(u, b)

fB(b)

1− FB(b(2))
fS(u)dbdu (19)

pB(b) ≡ G(x)− q + b

∫ S

S

x(s, b)fS(s)ds+

∫ b

b(2)

∫ S

S

x(s, u)
fB(u)

1− FB(b(2))
fS(s)dsdu (20)

B.3 Bounding Bargaining Costs

This section describes a simple approach to account for bargaining costs incurred during the alternating-

offer bargaining game. The parameter δ, the probability that the game does not end exogenously, can be

estimated in the data as the empirical probability that a bargaining sequence is not incomplete (where

incomplete means the sequence is recorded as having ended with a counteroffer which was not responded

to). In practice this probability can vary from period to period. Table 6, panel A, displays these empirical
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probabilities for periods one through six. In estimation below I use both an upper bound on δ, δ ≡ 1,

and a lower bound, δ, given by the smallest of the period-level δ estimates from Table 6.

Bounds on the parameters cB and cS are given by cases in which a player chooses to make a coun-

teroffers. A necessary condition for a party to choose to counter is that the payoff from the player’s

opponent accepting with probability one must exceed the player’s payoff from accepting the current offer

on the table. That is,

δpS2 − cS ≥ pB1
δ(b− pB3 )− cB ≥ b− pS2

Noting that δ < 1 yields

pS2 − pB1 ≥ cS (21)

pS2 − pB3 ≥ cB (22)

Thus, an upper bound on cS is given by the minimum gap between period 2 and period 1 offers and an

upper bound on cB is given by the minimum gap between period 2 and period 3 offers (in cases where

such offers took place). Rather than use the minimum over all observations, I follow Chernozhukov, Lee,

and Rosen (2013) to obtain a bias-corrected, one-sided 95% confidence bound for cS and cB and treat

these as upper bounds, which I denote cS and cB .60 Panel B of Table 6 displays the estimates.

These estimated bargaining costs can then be used to obtain a lower bound on buyer and seller surplus

in the dynamic bargaining mechanism as follows. Let A be the event that agreement occurs and T be

the period in which the bargaining game ends. Let PB,h and PS,h be random variables representing the

final, net payment made by the buyer and received by the seller, respectively, after accounting for auction

house fees. Upper bounds on the expected gains from trade for the buyer and seller are given by the

following, which ignore bargaining costs,

U
D

B ≡ E[B − PB,h|A] Pr(A)

U
D

S ≡ E[PS,h − S|A] Pr(A)

These objects are the expected gains from trade shown in Tables 4–5. Incorporating bargaining costs,

the expected gains from trade for the buyer and seller in the dynamic bargaining mechanism would be

given by

UDB ≡

[
T∑
t=1

δt−1E[B − PB,h|A, T = t] Pr(A|T = t) Pr(T = t)

]
−

cB T∑
t=2

b t2 c−1∑
i=0

δ2i

Pr(T = t)


60Chernozhukov, Lee, and Rosen (2013) explained that bounds such as those in those in (21) and (22) will be biased

downward given that they are derived from taking a minimum. The authors suggested a bias-corrected 1 − α confidence

bound (which the authors refer to as being half-median unbiased) given, in this case, by taking the 1 − α quantile of

bootstrapped estimates of the minimum. I perform this using 200 bootstrap replications.
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UDS ≡

[
T∑
t=1

δt−1E[PS,h − S|A, T = t] Pr(A|T = t) Pr(T = t)

]
−

cS T∑
t=3

b t−1
2 c−1∑
i=0

δ2i+1

Pr(T = t)


where b·c represents the floor function.

While the approach proposed in Section 5.2 demonstrates that U
D

B and U
D

S are identified in the data,

it does not provide identification of UDB and UDS . In particular, the sample of observations which continue

to later bargaining periods is selected and hence the approach proposed in Section 5.2 does not allows

for identification of E[B − S|A, T ] for each realization of T . I circumvent this issue by assuming that

observations ending in the first period of bargaining are likely to be situations with higher gains from

trade, as in Cramton (1992) and as is common in bargaining settings with Coasian dynamics. Specifically,

I assume that

T∑
t=2

δt−1
(
E[B − PB,h|A] Pr(A)− E[B − PB,h|A, T = t] Pr(A|T = t)

)
Pr(T = t)

≥
(
E[B − PB,h|A, T = 1] Pr(A|T = 1)− E[B − PB,h|A] Pr(A)

)
Pr(T = 1) (23)

I make an assumption analogous to (23) for seller surplus (replacing B−PB,h with PS,h−S). Together,

these assumptions imply

UDB ≥ U
D
B ≡

T∑
t=1

δt−1E[B − PB,h|A] Pr(A) Pr(T = t)−

cB T∑
t=2

b t2 c−1∑
i=0

δ
2i

Pr(T = t)

 (24)

UDS ≥ U
D
S ≡

T∑
t=1

δt−1E[PS,h − S|A] Pr(A) Pr(T = t)−

cS T∑
t=3

b t−1
2 c−1∑
i=0

δ
2i+1

Pr(T = t)

 (25)

I estimate UDB and UDS plugging in the estimate of δ and the estimated upper bounds cB and cS from

above, and setting δ = 1. The resulting lower bounds on buyer and seller surplus are reported in panel

C of Table 6.

B.4 Imposing Monotonicity of Virtual Valuations and Solving for Implied

Density/Distribution

I impose that φS(s) and φB(b) be weakly increasing following the rearrangement approach of Cher-

nozhukov, Fernandez-Val, and Galichon (2009). In practice, this operation can be performed as follows.

Let a grid of values on [S, S] be given by zS = [zS1 , ..., z
S
K ] and on [B,B be given by zB = [zB1 , ..., z

B
K ]′. Let

φ̂S(zS) and φ̂B(zB) be the estimates of φS and φB obtained by plugging in the estimated distributions

and densities from Sections 4.4-4.5 evaluated at the elements of zB and zS . Rearrangement is performed

by simply sorting the vector φ̂S(zS) and reassigning the sorted values to the original zS vector, and

similarly for φ̂B(zB). Let φ̂∗S(zS) and φ̂∗B(zB) denote the rearranged estimates.

The implied densities and distributions corresponding to the rearranged estimates can then solved for
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Table 6: Estimates of bargaining costs and lost surplus

Period δ δ
t=1 0.990 0.992

(0.000) (0.000)

t=2 0.964 0.965

(0.001) (0.001)

t=3 0.992 0.975

(0.001) (0.001)

t=4 0.984 0.957

(0.002) (0.004)

t=5 0.998 0.989

(0.001) (0.003)

t=6 0.984 0.966

(0.006) (0.016)

Buyer 0.025 0.050

(0.010)       (0.000)

Seller 0.104 0.109

(0.002) (0.036)

w/ costs no costs w/ costs no costs w/ costs no costs w/ costs no costs

Buyer 0.533 0.548 0.528 0.543 0.890 0.912 0.887 0.908

gains (0.045) (0.012) (0.044) (0.009) (0.069) (0.005) (0.069) (0.005)

Seller 3.437 3.509 1.999 2.049 3.997 4.060 2.808 2.856

gains (0.309) (0.156) (0.186) (0.093) (0.303) (0.096) (0.215) (0.070)

Dealers sample

A. Probability of no exogenous breakdown ( δ)

B. Per-period bargaining disutility (units=$1,000)

C. Gains with and without accounting for bargaining costs (units=$1,000)

Fleet/lease sample

Seller upper bound Seller lower boundSeller upper bound Seller lower bound

Notes: Results for dealers sample on the left and fleet/lease sample on the right. Panel A displays, for

bargaining periods 1 through 6, the probability that bargaining does not end exogenously. Panel B displays

estimated upper bounds on per-period additive costs for buyers and sellers. Panel C displays buyer and seller

gains from trade in the dynamic mechanism when costs are not accounted for (from Tables 4–5) and when costs

are accounted for. Gains are in $1,000 units. Standard errors are reported in parentheses and come from 200

bootstrap replications of the full estimation procedure.
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by noting that d lnFS(s)/ds = fS(s)/FS(s), which implies∫ s

S

1

φS(u)− u
du = lnFS(s)− lnFS(S) ⇒ FS(s) = e

(∫ s
S

1
φS(u)−udu+lnFS(S)

)

and similarly for FB . Thus,

F̂ ∗S(zSk ) = e

(∫ zSk
S

1
φ̂∗
S

(u)−u
du+ln F̂S(zS1 )

)
and f̂∗S(zSk ) =

F̂ ∗S(zSk )

φ̂∗S(zSk )− zSk

F̂ ∗B(zBk ) = 1− e

(∫ zBk
B

1
φ̂∗
B

(u)−u
du+ln(1−F̂B(zS1 ))

)
and f̂∗B(zBk ) =

1− F̂ ∗B(zBk )

zBk − φ̂∗B(zBk )

Figure 10 displays the resulting densities from this rearrangement. The first row, panels (a) and

(b), displays the density of seller valuations using the seller distribution upper bound in the dealers and

fleet/lease samples. Panels (c) and (d) use the seller distribution lower bound. Panels (e) and (f) display

the density of buyer valuations. Several densities, including those in panels (a), (e), and (f) are mostly

unaffected by the monotonization of virtual valuations. In the remaining panels, the monotonization

shifts the mass in particular regions of the seller support.

Table 7 compares the original welfare estimates to those implied under the monotonized virtual

valuations. In panel A1, the original estimates suggest that the trade-maximizing mechanism has a

higher probability of trade (0.868) than the first-best (0.849). After monotonization, the two mechanism

are ranked correctly, with the trade-maximizing mechanism achieving trade with probability 0.897 and

the first-best with probability 0.937. However, the monotonized density does not fit the data as well,

as can be seen by the predicted probability of trade in the dynamic mechanism, 0.845, which lies much

farther from the observed probability of trade in the dealers sample, 0.710 (see Table 1). The results are

similar in the fleet/lease sample, where the rearranging corrects the ranking of the trade-maximizing vs.

first-best mechanisms, and the loss in model fit is not as drastic in this sample. This is consistent with

the evidence in Figure 10, where the densities in the fleet/lease sample, panels (b) and (d), while affected

by rearrangement, are not as affected as that in panel (c).

B.5 Model Fit and Robustness Under Alternative Sample Restrictions

As a check of model fit and robustness, Table 8 displays, for alternative sample restrictions in the dealers

sample, the expected gains from trade and probability of trade for several mechanisms. Table 9 displays

results under the same sample restrictions in the fleet/lease sample. In each table, panel A displays results

for the seller distribution upper bound and panel B for the seller distribution lower bound. The first row

in each panel displays the full sample results (equivalent to results in Tables 4 and 5). The second row

results use only the first time a car is run in order to eliminate any correlation among buyer and seller

values for a given car which is run multiple times (the full sample estimation treats these multiple runs

as independent). The results are quite similar in each panel to the full sample, although the probability

of trade is somewhat higher under each mechanism.
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Figure 10: Densities of seller and buyer valuations, imposing monotonic virtual valuations

(a) Dealers, seller valuations upper bound
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(b) Fleet/lease, seller valuations upper bound
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(c) Dealers, seller valuations lower bound
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(d) Fleet/lease, seller valuations lower bound
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(e) Dealers, buyer valuations
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(f) Fleet/lease, buyer valuations
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Notes: Displays original densities of buyer and seller valuations (in blue) and densities after enforcing

monotonicity of virtual valuations through rearrangement (in red). Dashed lines mark pointwise 95% confidence

bands from 200 bootstrap replications of full estimation procedure. Units = $1, 000.
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Table 7: Monotonizing virtual valuations through rearrangement

First-

best

Second-

best

Dynamic 

mech

First-

best

Trade-

maximizing

Dynamic 

mech

Original 5.342 5.324 4.276 0.849 0.868 0.705

estimates (0.179) (0.182) (0.164) (0.016) (0.021) (0.015)

[99.7%] [80.3%] [102.3%] [81.2%]

Monotonized 7.573 7.380 6.971 0.937 0.897 0.845

estimates (0.902) (0.856) (1.024) (0.024) (0.028) (0.045)

[97.5%] [94.5%] [95.7%] [94.2%]

Original 3.374 3.345 2.811 0.747 0.694 0.700

estimates (0.103) (0.108) (0.097) (0.010) (0.018) (0.009)

[99.2%] [84.0%] [92.9%] [100.8%]

Monotonized 3.632 3.573 3.127 0.772 0.693 0.748

estimates (0.444) (0.431) (0.465) (0.023) (0.029) (0.026)

[98.4%] [87.5%] [89.8%] [108.0%]

First-

best

Second-

best

Dynamic 

mech

First-

best

Trade-

maximizing

Dynamic 

mech

Original 6.045 6.015 5.201 0.898 0.915 0.757

estimates (0.117) (0.117) (0.097) (0.003) (0.006) (0.002)

[99.5%] [86.5%] [101.9%] [82.7%]

Monotonized 6.355 6.329 5.448 0.940 0.916 0.769

estimates (0.132) (0.133) (0.108) (0.005) (0.006) (0.003)

[99.6%] [86.1%] [97.5%] [83.9%]

Original 4.445 4.392 3.993 0.858 0.794 0.755

estimates (0.081) (0.082) (0.071) (0.003) (0.005) (0.002)

[98.8%] [90.9%] [92.6%] [95.1%]

Monotonized 4.650 4.601 4.172 0.865 0.798 0.763

estimates (0.105) (0.106) (0.092) (0.004) (0.007) (0.004)

[98.9%] [90.7%] [92.3%] [95.6%]

Expected gains (units=$1,000) Probability of trade

B1. Using seller distribution upper bound

B2. Using seller distribution lower bound

B. Monotonizing virtual valuations,  fleet/lease sample 

A. Monotonizing virtual valuations,  dealers sample 

Expected gains (units=$1,000) Probability of trade

A1. Using seller distribution upper bound

A2. Using seller distribution lower bound

Notes: Original estimates vs. monotonized (rearranged) estimates of expected gains from trade for first-best,

second-best, and dynamic mechanisms, and of probability of trade for first-best, trade-maximizing, and dynamic

mechanisms. Panel A displays dealers sample and panel B displays fleet/lease sample. The top half of each

panel displays estimates under seller distribution upper bound and the lower half of each panel uses the seller

distribution lower bound. Gains are in $1,000 units. Standard errors are reported in parentheses and come from

200 bootstrap replications of the full estimation procedure. Square brackets in second-best column represent

second-best outcomes as percentage of first-best. In dynamic mechanism column, square brackets represent

dynamic mechanism outcomes as a percentage of second-best expected gains from trade and as a percentage of

the trade-maximizing probability of trade.
60



The third row of each panel uses only the first car offered for sale by a given seller on a given day,

addressing the concern that if a seller runs multiple cars on a given day, her bargaining strategy on one car

may be affected by the outcomes of her previous sales that day. The sample size is reduced substantially

under this restriction, leaving 29,465 runs in the dealers sample and 10,934 in the fleet/lease sample.

The estimates using the upper bound of seller valuations suggest that dynamic bargaining is less efficient

than implied by the full sample, capturing 76.4% of the second-best surplus in the dealers sample and

only 70.0% in the fleet/lease sample. However, using the lower bound of seller surplus, the percentages

in rows one and three are more similar.

The fourth row of each panel limits the sample to cars with a blue book value lying below the median.

In each panel, row four demonstrates a lower level of expected gains from trade among these lower-priced

cars. The efficiency of bargaining appears similar to the full sample. The final row limits the sample

to new cars (those with age below the median age). This sample results in higher expected gains from

trade but similar efficiency implications to the full sample in most cases. One exception is in panel A of

Table 8, which demonstrates that using the upper bound of the seller distribution implies that dynamic

bargaining only captures 76% of the second-best surplus.

The second column of Tables 8 and 9 displays the raw probability of trade within the sample. Com-

paring this column to the final column once again provides a measure of model fit, as the final column

comes from integrating the estimated allocation function over buyer values, seller values, and auction

prices. In both tables the columns agree quite closely.

B.6 Robustness to Assumption on Mean Number of Bidders

Tables 10–11 display the welfare estimates using the full sample under alternative choices of λ, the mean

number of bidders at the auction. The main results of the paper, and all results other than Tables 10–11,

use λ = 7 for the dealers sample and λ = 10 for the fleet/lease sample. As shown in Tables 10–11, the

welfare estimates are not sensitive to this choice.

B.7 Alternative Mechanisms

B.7.1 Bargaining with Random Bidder

Table 12 displays the welfare estimates in a setting where bargaining takes place between the seller and a

random bidder rather than the high-value bidder. Note that this setting will shift not only the outcomes

achieved in dynamic bargaining, but also the first-best and second-best frontiers.

This setting is simple to simulate for the static mechanisms simply by dropping the integration over

the auction price in equations (13) and (14) and setting the lower bound of the support of the buyer type

in the bargaining game to the lower bound of buyer valuations, B. That is, bargaining with a random

bidder is equivalent to an auction followed by bargaining where the auction price was the lowest possible

price and hence yielded no truncation of the buyer support.
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Table 8: Dealers sample: Efficiency estimates under alternative sample restrictions

Sample

Sample 

size

Sample prob 

of trade First-best

Second-

best

Dynamic 

mechanism First-best

Trade-

maximizing

Dynamic 

mechanism

1) Full sample 135,942 0.710 5.342 5.324 4.276 0.849 0.868 0.705

(0.179) (0.182) (0.164) (0.016) (0.021) (0.015)

[99.7%] [80.3%] [102.3%] [81.2%]

2) First time 86,666 0.775 5.341 5.327 4.561 0.886 0.908 0.774

car is run (0.159) (0.160) (0.144) (0.012) (0.015) (0.011)

[99.7%] [85.6%] [102.4%] [85.3%]

3) Seller's first 29,465 0.625 4.733 4.703 3.594 0.839 0.824 0.597

car in day (0.406) (0.426) (0.380) (0.051) (0.067) (0.049)

[99.4%] [76.4%] [98.2%] [72.4%]

4) Below 72,063 0.758 3.544 3.528 2.954 0.899 0.884 0.750

median blue (0.430) (0.440) (0.411) (0.074) (0.084) (0.072)

book value [99.6%] [83.8%] [98.3%] [84.8%]

5) Below 66,186 0.654 5.714 5.695 4.340 0.824 0.904 0.651

median age (0.451) (0.458) (0.413) (0.046) (0.057) (0.040)

[99.7%] [76.2%] [109.7%] [72.0%]

1) Full sample 135,942 0.710 3.374 3.345 2.811 0.747 0.694 0.700

(0.103) (0.108) (0.097) (0.010) (0.018) (0.009)

[99.2%] [84.0%] [92.9%] [100.8%]

2) First time 86,666 0.775 3.666 3.643 3.224 0.809 0.769 0.771

car is run (0.100) (0.102) (0.093) (0.007) (0.011) (0.006)

[99.4%] [88.5%] [95.1%] [100.3%]

3) Seller's first 29,465 0.625 2.458 2.408 2.087 0.695 0.601 0.606

car in day (0.173) (0.202) (0.163) (0.023) (0.054) (0.022)

[98.0%] [86.7%] [86.4%] [100.8%]

4) Below 72,063 0.758 2.554 2.528 2.186 0.819 0.760 0.753

median blue (0.281) (0.307) (0.273) (0.052) (0.084) (0.051)

book value [99.0%] [86.5%] [92.9%] [99.0%]

5) Below 66,186 0.654 3.446 3.411 2.789 0.734 0.669 0.644

median age (0.239) (0.261) (0.232) (0.031) (0.048) (0.023)

[99.0%] [81.8%] [91.2%] [96.3%]

A. Efficiency of bargaining using seller distribution upper  bound, dealers sample
Expected gains (units=$1,000) Probability of trade

B. Efficiency of bargaining using seller distribution lower  bound, dealers sample 

Notes: Dealers sample. Estimates under various sample restrictions of expected gains from trade for first-best,

second-best, and dynamic mechanisms, and of probability of trade for first-best, trade-maximizing, and dynamic

mechanisms. Gains are in $1,000 units. Standard errors are reported in parentheses and come from 200

bootstrap replications of the full estimation procedure. Second column displays raw probability of trade within

the sample. Square brackets in second-best column represent second-best outcomes as percentage of first-best.

In dynamic mechanism column, square brackets represent dynamic mechanism outcomes as a percentage of

second-best expected gains from trade and as a percentage of the trade-maximizing probability of trade. Panel

A displays estimates under seller distribution upper bound and panel B uses the seller distribution lower bound.
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Table 9: Fleet/lease sample: Efficiency estimates under alternative sample restrictions

Sample

Sample 

size

Sample prob 

of trade First-best

Second-

best

Dynamic 

mechanism First-best

Trade-

maximizing

Dynamic 

mechanism

1) Full sample 136,453 0.760 6.045 6.015 5.201 0.898 0.915 0.757

(0.117) (0.117) (0.097) (0.003) (0.006) (0.002)

[99.5%] [86.5%] [101.9%] [82.7%]

2) First time 97,935 0.843 6.067 6.040 5.565 0.943 0.927 0.843

car is run (0.137) (0.138) (0.122) (0.002) (0.005) (0.002)

[99.5%] [92.1%] [98.3%] [91.0%]

3) Seller's first 10,934 0.615 4.066 4.002 2.799 0.759 0.717 0.465

car in day (0.020) (0.020) (0.015) (0.003) (0.003) (0.002)

[98.4%] [70.0%] [94.5%] [64.9%]

4) Below 65,083 0.753 4.479 4.444 3.899 0.882 0.861 0.731

median blue (0.263) (0.272) (0.255) (0.034) (0.042) (0.033)

book value [99.2%] [87.7%] [97.6%] [85.0%]

5) Below 88,986 0.734 5.567 5.538 4.682 0.873 0.919 0.726

median age (0.302) (0.307) (0.240) (0.013) (0.027) (0.003)

[99.5%] [84.6%] [105.3%] [78.9%]

1) Full sample 136,453 0.760 4.445 4.392 3.993 0.858 0.794 0.755

(0.081) (0.082) (0.071) (0.003) (0.005) (0.002)

[98.8%] [90.9%] [92.6%] [95.1%]

2) First time 97,935 0.843 4.977 4.934 4.656 0.919 0.867 0.842

car is run (0.110) (0.111) (0.100) (0.002) (0.004) (0.002)

[99.1%] [94.4%] [94.4%] [97.1%]

3) Seller's first 10,934 0.615 2.210 2.069 1.896 0.700 0.528 0.561

car in day (0.017) (0.018) (0.016) (0.003) (0.005) (0.002)

[93.6%] [91.6%] [75.4%] [106.2%]

4) Below 65,083 0.753 3.144 3.075 2.889 0.841 0.740 0.741

median blue (0.143) (0.159) (0.139) (0.020) (0.037) (0.019)

book value [97.8%] [93.9%] [88.0%] [100.2%]

5) Below 88,986 0.734 4.191 4.138 3.684 0.837 0.767 0.724

median age (0.201) (0.205) (0.167) (0.010) (0.018) (0.003)

[98.7%] [89.1%] [91.6%] [94.4%]

A. Efficiency of bargaining using seller distribution upper  bound, fleet/lease sample
Expected gains (units=$1,000) Probability of trade

B. Efficiency of bargaining using seller distribution lower  bound, fleet/lease sample

Notes: Fleet/lease sample. Estimates under various sample restrictions of expected gains from trade for

first-best, second-best, and dynamic mechanisms, and of probability of trade for first-best, trade-maximizing,

and dynamic mechanisms. Gains are in $1,000 units. Standard errors are reported in parentheses and come

from 200 bootstrap replications of the full estimation procedure. Second column displays raw probability of

trade within the sample. Square brackets in second-best column represent second-best outcomes as percentage

of first-best. In dynamic mechanism column, square brackets represent dynamic mechanism outcomes as a

percentage of second-best expected gains from trade and as a percentage of the trade-maximizing probability of

trade. Panel A displays estimates under seller distribution upper bound and panel B uses the seller distribution

lower bound.
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Table 10: Dealers sample: Estimates under various assumptions for mean number of bidders

Mean # of 

bidders (λ) First-best

Second-

best

Dynamic 

mechanism First-best

Trade-

maximizing

Dynamic 

mechanism

λ = 3 5.392 5.372 4.379 0.851 0.869 0.704
(0.180) (0.183) (0.167) (0.016) (0.021) (0.016)

[99.6%] [81.5%] [102.1%] [81.0%]

λ = 7 5.342 5.324 4.276 0.849 0.868 0.705
(0.179) (0.182) (0.164) (0.016) (0.021) (0.015)

[99.7%] [80.3%] [102.3%] [81.2%]

λ = 10 5.337 5.320 4.264 0.849 0.868 0.705
(0.179) (0.182) (0.164) (0.016) (0.021) (0.015)

[99.7%] [80.2%] [102.3%] [81.2%]

λ = 20 5.336 5.320 4.259 0.849 0.868 0.705
(0.179) (0.182) (0.164) (0.016) (0.021) (0.015)

[99.7%] [80.1%] [102.3%] [81.2%]

Mean # of 

bidders (λ) First-best

Second-

best

Dynamic 

mechanism First-best

Trade-

maximizing

Dynamic 

mechanism

λ = 3 3.417 3.384 2.908 0.752 0.696 0.698
(0.104) (0.109) (0.098) (0.010) (0.018) (0.009)

[99.0%] [85.9%] [92.5%] [100.3%]

λ = 7 3.374 3.345 2.811 0.747 0.694 0.700
(0.103) (0.108) (0.097) (0.010) (0.018) (0.009)

[99.2%] [84.0%] [92.9%] [100.8%]

λ = 10 3.370 3.342 2.799 0.747 0.694 0.700
(0.103) (0.108) (0.097) (0.010) (0.018) (0.009)

[99.2%] [83.7%] [93.0%] [100.9%]

λ = 20 3.370 3.342 2.798 0.747 0.694 0.700

(0.103) (0.108) (0.097) (0.010) (0.018) (0.009)

[99.2%] [83.7%] [93.0%] [100.9%]

Expected gains (units=$1,000) Probability of trade
A. Efficiency of bargaining using seller distribution upper  bound, dealers sample

B. Efficiency of bargaining using seller distribution lower  bound, dealers sample
Expected gains (units=$1,000) Probability of trade

Notes: Dealers sample. Estimates under various assumptions for the mean number of bidders used in the order

statistic inversion estimation step. Table displays expected gains from trade for first-best, second-best, and

dynamic mechanisms; and probability of trade for first-best, trade-maximizing, and dynamic mechanisms. Gains

are in $1,000 units. Standard errors are reported in parentheses and come from 200 bootstrap replications of the

full estimation procedure. Square brackets in second-best column represent second-best outcomes as percentage

of first-best. In dynamic mechanism column, square brackets represent dynamic mechanism outcomes as a

percentage of second-best expected gains from trade and as a percentage of the trade-maximizing probability of

trade. Panel A displays estimates under seller distribution upper bound and panel B uses the seller distribution

lower bound.
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Table 11: Fleet/lease sample: Estimates under various assumptions for mean number of bidders

Mean # of 

bidders (λ) First-best

Second-

best

Dynamic 

mechanism First-best

Trade-

maximizing

Dynamic 

mechanism

λ = 3 6.127 6.093 5.327 0.901 0.915 0.758
(0.117) (0.117) (0.098) (0.003) (0.006) (0.003)

[99.4%] [87.4%] [101.6%] [82.8%]

λ = 7 6.051 6.020 5.211 0.898 0.915 0.756
(0.117) (0.117) (0.097) (0.003) (0.006) (0.002)

[99.5%] [86.6%] [101.9%] [82.7%]

λ = 10 6.045 6.015 5.201 0.898 0.915 0.757
(0.117) (0.117) (0.097) (0.003) (0.006) (0.002)

[99.5%] [86.5%] [101.9%] [82.7%]

λ = 20 6.044 6.014 5.204 0.898 0.915 0.757
(0.117) (0.117) (0.097) (0.003) (0.006) (0.002)

[99.5%] [86.5%] [101.9%] [82.8%]

Mean # of 

bidders (λ) First-best

Second-

best

Dynamic 

mechanism First-best

Trade-

maximizing

Dynamic 

mechanism

λ = 3 4.522 4.460 4.099 0.866 0.796 0.753
(0.082) (0.082) (0.072) (0.003) (0.005) (0.003)

[98.6%] [91.9%] [91.9%] [94.7%]

λ = 7 4.451 4.397 3.998 0.858 0.794 0.754
(0.081) (0.082) (0.071) (0.003) (0.005) (0.002)

[98.8%] [90.9%] [92.5%] [95.0%]

λ = 10 4.445 4.392 3.993 0.858 0.794 0.755
(0.081) (0.082) (0.071) (0.003) (0.005) (0.002)

[98.8%] [90.9%] [92.6%] [95.1%]

λ = 20 4.445 4.392 3.990 0.858 0.794 0.755
(0.081) (0.082) (0.071) (0.003) (0.005) (0.002)

[98.8%] [90.9%] [92.6%] [95.1%]

A. Efficiency of bargaining using seller distribution upper  bound, fleet/lease sample
Expected gains (units=$1,000) Probability of trade

B. Efficiency of bargaining using seller distribution lower  bound, fleet/lease sample
Expected gains (units=$1,000) Probability of trade

Notes: Fleet/lease sample. Estimates under various assumptions for the mean number of bidders used in the

order statistic inversion estimation step. Table displays expected gains from trade for first-best, second-best,

and dynamic mechanisms; and probability of trade for first-best, trade-maximizing, and dynamic mechanisms.

Gains are in $1,000 units. Standard errors are reported in parentheses and come from 200 bootstrap replications

of the full estimation procedure. Square brackets in second-best column represent second-best outcomes as

percentage of first-best. In dynamic mechanism column, square brackets represent dynamic mechanism

outcomes as a percentage of second-best expected gains from trade and as a percentage of the trade-maximizing

probability of trade. Panel A displays estimates under seller distribution upper bound and panel B uses the

seller distribution lower bound.
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For the dynamic mechanism, bargaining with a random bidder is more difficult to simulate accurately

without estimating a model yielding predictions of equilibrium bargaining behavior, which, as highlighted

above, is infeasible. However, following the argument in Section 5.2, the allocation function in the dynamic

bargaining is identified for any value of Ψ = R − B(2). Therefore, I evaluate the expected gains from

trade by integrating over buyer types and seller types, setting the auction price to B.

Table 12 presents the results. Panel A1 displays the results for the dealers sample using the seller

distribution upper bound, and shows that second-best bargaining with a random bidder captures 96.8%

of the first-best surplus. This suggests that, even in the absence of an auction which selects the high-value

bidder, the deadweight loss due to incomplete information may not be large. The deadweight loss due to

limited commitment does not appear to increase in panel A1 relative to the main results in Table 4, as the

dynamic mechanism captures 86.4% of the second-best surplus. In panel A2, using the seller distribution

lower bound, the dynamic mechanism only achieves 70.5% of the second-best level. The results for the

expected gains from trade in the fleet/lease sample (panel B) are similar.

The results in Table 12 provide some evidence that the model fit is worse when the auction is ignored,

as the probability of trade in the dynamic mechanism greatly exceeds the first-best level, suggesting some

trades are occurring even the seller values the good more than the buyer. This implies that the fit of the

allocation function, g0, is worse when conditioning on the auction price being fixed at the lower bound

of the buyer support, B, than when integrating over all values of the auction price. Also note that in the

random bidder setting, the expected transfer between the buyer and seller is not identified, whereas in the

currently used auction-followed-by-bargaining mechanism, the expected transfer is directly observable in

the data. For these reasons, I do not focus on the random-bidder-bargaining setting in the main body of

the paper.

B.7.2 Auction Followed by Accept/Reject Only

Table 13 displays the comparison of the main results from Tables 4–5 to the results from a setting where

all players can commit not to bargain ex-post and where the seller chooses only to accept or reject the

auction price. As seen by the percentages in square brackets in the “Accept/reject only” column, this

alternative mechanism would capture all or nearly all of the second-best surplus and probability of trade,

suggesting that such commitment could eliminate the need for bargaining. Conversations with industry

professionals reveal that, while this alternative mechanism is used at some auto auction houses, others

have historically found such commitment difficult to maintain, as both the high-value bidder and the seller

have incentives ex-post to negotiate when the seller rejects the second-order statistic of buyer valuations.

B.7.3 Broker-Optimal Mechanism

Myerson and Satterthwaite (1983) demonstrated that the mechanism which would maximize revenue for

a broker with market power is given by allocation function x1,1, with transfers given by pB(s, b), the

amount paid by the buyer to the auction house, and pS(s, b), the amount which the auction house then

passes on to the seller. These transfer functions can be defined in many ways. One such way is given by

66



Table 12: Efficiency of bargaining with random bidder

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Dynamic 

mechanism

Expected gains 4.116 3.985 3.585 3.687 3.794 3.444

from trade (0.159) (0.166) (0.158) (0.165) (0.149) (0.161)

(units=$1,000) [96.8%] [86.4%]

Probability of 0.805 0.727 0.616 0.651 0.742 0.912

trade (0.016) (0.020) (0.019) (0.019) (0.021) (0.032)

[90.2%] [125.5%]

Expected gains 2.383 2.200 1.811 2.046 2.210 1.551

from trade (0.092) (0.100) (0.085) (0.098) (0.100) (0.093)

[92.3%] [70.5%]

Probability of 0.623 0.463 0.332 0.439 0.466 0.911

trade (0.010) (0.016) (0.012) (0.015) (0.016) 0.029

[74.4%] [196.7%]

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Dynamic 

mechanism

Expected gains 3.752 3.592 3.337 2.969 3.573 3.179

from trade (0.110) (0.115) (0.107) (0.111) (0.108) (0.111)

[95.7%] [88.5%]

Probability of 0.818 0.735 0.654 0.518 0.744 0.944

trade (0.006) (0.011) (0.011) (0.013) (0.011) (0.028)

[89.9%] [128.4%]

Expected gains 2.490 2.255 2.026 1.939 2.244 1.633

from trade (0.072) (0.074) (0.066) (0.067) (0.073) (0.086)

[90.6%] [72.4%]

Probability of 0.646 0.476 0.409 0.379 0.484 0.944

trade (0.007) (0.011) (0.009) (0.008) (0.011) (0.028)

[73.7%] [198.2%]

B2. Using seller distribution lower  bound 

A. Efficiency of bargaining with random bidder, dealers sample 

B. Efficiency of bargaining with random bidder, fleet/lease sample 

A2. Using seller distribution lower  bound 

A1. Using seller distribution upper  bound

B1. Using seller distribution upper  bound 

Notes: Estimates in setting where seller bargains with random bidder. Table displays expected gains from trade

and probability of trade for first-best, second-best, buyer-optimal, seller-optimal, trade-maximizing, and

dynamic mechanisms. Panel A displays dealers sample and panel B displays fleet/lease sample. The top half of

each panel displays estimates under seller distribution upper bound and the lower half of each panel uses the

seller distribution lower bound. Gains are in $1,000 units. Standard errors are reported in parentheses and come

from 200 bootstrap replications of the full estimation procedure. Square brackets in second-best column

represent second-best outcomes as percentage of first-best. In dynamic mechanism column, square brackets

represent dynamic mechanism outcomes as a percentage of second-best expected gains from trade and as a

percentage of the trade-maximizing probability of trade.
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Table 13: Efficiency of auction followed by accept/reject only

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Accept/reject 

only

Dynamic 

mechanism

Expected gains 5.342 5.324 4.661 5.319 5.094 5.328 4.276

from trade (0.179) (0.182) (0.181) (0.182) (0.181) (0.179) (0.164)

[99.7%] [100.1%] [80.3%]

Probability of 0.849 0.831 0.644 0.829 0.868 0.830 0.705

trade (0.016) (0.020) (0.019) (0.020) (0.021) (0.016) (0.015)

[98.0%] [99.9%] [84.8%]

Expected gains 3.374 3.345 2.483 3.338 3.350 3.337 2.811

from trade (0.103) (0.108) (0.097) (0.108) (0.109) (0.103) (0.097)

[99.2%] [99.8%] [84.0%]

Probability of 0.747 0.693 0.369 0.692 0.694 0.694 0.700

trade (0.010) (0.018) (0.013) (0.018) (0.018) (0.010) (0.009)

[92.8%] [100.1%] [100.9%]

First-best

Second-

best

Buyer-

optimal

Seller-

optimal

Trade-

maximizing

Accept/reject 

only

Dynamic 

mechanism

Expected gains 6.045 6.015 5.417 6.004 5.823 6.004 5.201

from trade (0.117) (0.117) (0.121) (0.118) (0.116) (0.118) (0.097)

[99.5%] [99.8%] [86.5%]

Probability of 0.898 0.866 0.711 0.859 0.915 0.857 0.757

trade (0.003) (0.004) (0.009) (0.005) (0.006) (0.005) (0.002)

[96.4%] [99.0%] [87.4%]

Expected gains 4.445 4.392 3.421 4.382 4.268 4.365 3.993

from trade (0.081) (0.082) (0.080) (0.082) (0.082) (0.082) (0.071)

[98.8%] [99.4%] [90.9%]

Probability of 0.858 0.778 0.466 0.771 0.794 0.777 0.755

trade (0.003) (0.005) (0.009) (0.005) (0.005) (0.005) (0.002)

[90.8%] [99.8%] [97.0%]

B2. Using seller distribution lower bound 

A1. Using seller distribution upper  bound

A. Efficiency of auction + accept/reject, dealers sample 

B1. Using seller distribution upper  bound

B. Efficiency of auction + accept/reject, fleet/lease sample 

A2. Using seller distribution lower bound 

Notes: Estimates in setting with no bargaining, where seller can only accept or reject auction price. Table

displays expected gains from trade and probability of trade for auction followed by first-best, second-best,

buyer-optimal, seller-optimal, trade-maximizing, and dynamic mechanisms (from Tables 4–5), as well as the case

with only accept/reject. Panel A displays dealers sample and panel B displays fleet/lease sample. The top half

of each panel displays estimates under seller distribution upper bound and the lower half of each panel uses the

seller distribution lower bound. Gains are in $1,000 units. Standard errors are reported in parentheses and come

from 200 bootstrap replications of the full estimation procedure. Square brackets in second-best column

represent second-best outcomes as percentage of first-best. In dynamic mechanism column, square brackets

represent dynamic mechanism outcomes as a percentage of second-best. In accept/reject only column, square

brackets represent outcomes as a percentage of second-best.
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Myerson and Satterthwaite (1983) as

pB(s, b) = x1,1(s, b) ∗min{u|u ≥ B,φB(u) ≥ s}

pS(s, b) = x1,1(s, b) ∗max{v|v ≤ S, φS(v) ≤ b}

Revenue is given by the difference between the amount paid by the buyer and the amount received

by the seller, or equivalently when virtual valuations are increasing, by G(x1,1) (where G(·) is defined

in (11)). This expression is the participation constraint which must be satisfied in any individually

rational, incentive-compatible mechanism. In the mechanisms which maximize the gains from trade or

the probability of trade, this expression is equal to zero. In the mechanism maximizing the auction house

revenue, however, the auction house wishes to leave some slack in the participation constraint in order

to extract surplus from participants.

Table 14: Performance of broker-optimal mechanism

Broker-

optimal

Dynamic 

mech

Broker-

optimal

Dynamic 

mech

Broker-

optimal

Dynamic 

mech

Broker-

optimal

Dynamic 

mech

Auction house revenue 3.712 0.219 1.824 0.219 3.729 0.230 2.241 0.230

(0.745) (0.000) (0.195) (0.000) (0.103) (0.000) (0.065) (0.000)

Expected gains 4.601 4.276 2.407 2.811 5.353 5.201 3.351 3.993

from trade (0.182) (0.164) (0.098) (0.097) (0.124) (0.097) (0.082) (0.071)

Buyer gains -0.033 0.548 -0.022 0.543 0.690 0.912 0.445 0.908

(0.201) (0.012) (0.108) (0.009) (0.010) (0.005) (0.009) (0.005)

Seller gains 0.922 3.509 0.605 2.049 0.934 4.060 0.665 2.856

(0.663) (0.156) (0.148) (0.093) (0.019) (0.096) (0.014) (0.070)

Probability of 0.631 0.705 0.352 0.700 0.697 0.757 0.451 0.755

trade (0.019) (0.015) (0.013) (0.009) (0.009) (0.002) (0.009) (0.002)

Seller upper bound Seller lower bound

Dealers sample Fleet/lease sample

Seller upper bound Seller upper bound

Notes: Estimates of auction house revenue, expected gains from trade, and probability of trade in

broker-optimal vs. dynamic mechanisms. Estimates from dealers sample shown on the left and from fleet/lease

sample on the right.

The performance of this mechanism relative to the dynamic mechanism is shown in Table 14. The

expected revenue for the auction house in the dynamic mechanism is estimated using data on fees when

trade occurs. Table 14 demonstrates that, in the dealers sample, the broker-optimal mechanism would

result in auction house revenues of $3,712 under the seller distribution upper bound, and $1,824 under the

seller distribution lower bound. Under the current dynamic mechanism, these revenues are much lower,

at $219. The comparison is similar in the fleet/lease sample. Both buyer gains and seller gains would be
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much lower in the broker-optimal mechanism, as the majority of surplus would be taken by the auction

house. The probability of trade would also decrease, from about 0.70 to 0.352–0.631 in the dealers sample,

and from about 0.76 to 0.451–0.697 in the fleet/lease sample. Comparing the total expected gains from

trade in the broker-optimal mechanism to the second-best from Tables 4–5 highlights that this mechanism

introduces an additional deadweight loss due to the broker’s rent-extraction behavior.

It is difficult to interpret these results given that a shift to this mechanism would likely drive buyers

and sellers away from the auction house and toward competing sourcing venues, and this competition is

not expressed in the model. Therefore, while auction house revenue is clearly of primary interest to the

auction house, competition among auction houses may impede an individual auction house from achieving

the payoff of the broker-optimal mechanism. Townsend (1983) demonstrated, in a general equilibrium

framework, that competition among auction houses, or even the threat of competition, leads to the

Walrasian equilibrium as the number of buyers and sellers grows large. Thus, auction houses may appear

to behave as though they were maximizing surplus rather than achieving the optimal revenue for a solo

auction house. However, Economides and Siow (1988) showed, in a competition-on-a-line framework,

that liquidity provides positive externalities for buyers and sellers which are not fully internalized by

the auction house, and this may prevent efficient entry of auction houses and hence prevent the market

from achieving the surplus-maximizing allocation. It is theoretically ambiguous how close auction houses

would come to achieving the revenue-maximizing outcomes in a setting with two-sided uncertainty. For

these reasons, and due to the fact that I have no data on competing auction houses, I do not focus on

this mechanism in the main body of results.
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