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Xiao Yu Wang�
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Abstract

Heterogeneously risk-averse individuals who lack access to formal insurance build and use

relationships with each other to manage risk. I show that the composition of equilibrium re-

lationships under pairwise matching and when group size is endogenous is determined by a

mean-variance trade-o¤ across di¤erentially risky productive opportunities, though output dis-

tributions may have in�nitely-many nonzero cumulants. This has important policy implications.

For example, a policy which ignores the equilibrium response of informal institutions may exac-

erbate inequality and hurt most those it intended to help: a reduction in aggregate risk may lead

to an increase in risk borne by the most risk-averse individuals, as the least risk-averse abandon

their roles as informal insurers. The theory also sheds light on the channels through which

endogenous insurance relationships in�uence informal �rm structure and entrepreneurship.

1 Introduction

This paper develops a theory of the equilibrium formation and structure of the relationships

which poor, risk-averse people build with each other, when they lack access to formal risk manage-

ment tools. The risk-sharing literature has focused largely on analyzing the insurance agreement

reached by a �xed, isolated group of individuals, or by individuals who match with a �xed prob-

ability, and has focused less on what groups might actually exist and coexist in the �rst place.

Endogenizing the structure of informal insurance improves policy analysis by enabling a more thor-

ough understanding of how people re-optimize in response to policies, and yields insights into the

connections between informal insurance and income inequality, entrepreneurship, and the structure

of informal �rms.
�Department of Economics, Duke University, 213 Social Sciences, Box 90097, Durham NC 27708. Email:
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I develop a model inspired by a lively informal insurance literature.1 Risk imposes a serious

burden on the poor, and the desire to manage risk evidently in�uences many dimensions of the lives

of poor individuals. For example, Rosenzweig and Stark (1989) show that daughters of more risk-

averse farmers are married to more distant villages, to minimize the correlation between farming

incomes. Stiglitz (1974) shows that sharecropping arises when landowners layer insurance provi-

sion on top of incentives for tenant farmers, and Ackerberg and Botticini (2002) �nd evidence that

heterogeneously risk-averse tenant farmers and landlords in medieval Tuscany strategically formed

sharecropping relationships based on di¤ering risk attitudes. Thus, the poor use complex relation-

ships with each other in a variety of creative ways when they lack access to formal insurance and

credit institutions.

The model has the following key elements. Risk-averse individuals with exponential utility work

together to be productive. For example, in an agricultural village, some individuals own land but

would prefer not to farm it themselves, while other, landless individuals have both the willingness

and the skill to farm. Alternatively, an investor and an entrepreneur, or two entrepreneurs with

di¤erent sets of skills and resources, must work together to launch a business. Matching is assumed

to be pairwise in the benchmark model, but this is later relaxed to allow group size itself to be

endogenous.

There are two key types of heterogeneity: heterogeneity of preferences, and heterogeneity of

technology. Individuals vary in their degree of constant absolute risk aversion, and a matched group

chooses a joint income distribution from a set of di¤erentially risky options, or "projects". (This is

substantively equivalent to the case where individuals each choose an income distribution and share

the pooled realizations.2) Projects with higher expected return come at the cost of higher variance

of return, and members of a group share the realized return of their chosen project according to a

rule determined ex ante. For example, investors seeking to form joint ventures are presented with

business proposals of di¤ering riskiness, and a landowner and her tenant farmer face a spectrum

of portfolios of crops, land plots, inputs, and farming methods, which each yield di¤erent pro�t

distributions. I allow for a large class of symmetric and skewed return distributions. Importantly,

distributions may have in�nitely many higher order cumulants (as opposed to just two nonzero

cumulants, as in the case of the normal distribution).3

The results reveal that accounting for the endogeneity of informal institutions can be essential

for policymaking. I show that a policy which reduces aggregate risk is a strict Pareto improvement

1For background and institutional details, see, for example, Alderman and Paxson (1992), Dercon (2004),
Fafchamps (2008, and Morduch (1995). Empirical risk-sharing papers include Dercon and Krishnan (2000), Fafchamps
and Lund (2003), Mazzocco and Saini (2012), and Townsend (1994). Theoretical papers on informal insurance in-
clude Bloch et. al. (2008), Genicot and Ray (2003), and Ligon et. al. (2002). Theoretical and empirical papers
on risk-sharing networks include Ambrus et al. (2013), Bramoulle and Kranton (2007), and Fafchamps and Gubert
(2007).

2A simpli�ed intuition for the equivalence is that even if individuals choose their own income distributions, the
matching is driven by individuals�anticipation of what their joint income distribution would be with di¤erent partners.
Thus, matched individuals are e¤ectively jointly choosing a distribution of pooled income. Please see Appendix 1 for
more details.

3Recall that the cumulant-generating function is the log of the moment-generating function.
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if informal insurance is assumed to stay �xed. However, accounting for the endogenous network

response may change this analysis entirely. Those the policy is particularly intended to help, the

most risk-averse, are in fact particularly harmed: the change in the risk environment incentivizes

the less risk-averse agents to abandon their roles as informal insurers of the more risk-averse, in

favor of partnerships with other less risk-averse agents. This forces the most risk-averse agents to

match with each other instead, leaving them strictly worse o¤ through two channels. First, they�ve

lost insurance through weakened consumption-smoothing�each member wants her consumption to

depend as little as possible on her income realization, but neither partner is willing to absorb the

volatility to provide this. This is compounded for these more risk-averse agents by an additional

channel: the loss of consumption-smoothing means that the group must rely on income-smoothing

to manage risk. But this means selecting projects with particularly low expected return, so that

the more risk-averse agents are unable to take advantage of a policy which reduces the variance of

the higher expected return, entrepreneurial projects.

Notably, this is the case despite the ability of individuals to commit ex ante to a return-

contingent sharing rule. This is an interesting addition to several papers which study the symbiosis

of formal and informal insurance. Attanasio and Rios-Rull (2000) model informal insurance as

being fundamentally about limited commitment, where members of an exogenously-given group

punish those who renege by consigning them to autarky. They �nd that aggregate risk reduction

resulting from the strengthening of formal insurance may decrease welfare by making autarky more

appealing, thereby lessening the punishment for reneging. My results illustrate that accounting for

the re-optimization of relationships may be just as important for understanding informal insurance

as accounting for a weaker contracting environment.4 Mobarak and Rosenzweig (2012) study a

di¤erent interaction between formal and informal insurance. They �nd that formal insurance,

which comes with basis risk, acts as a complement to informal insurance when informal methods

manage idiosyncratic risk well, and acts as a substitute when they don�t. However, the strength

of informal insurance is �xed exogenously. By endogenizing informal insurance, this paper raises a

variety of interesting ways to build on these �ndings�for example, this paper ties an understanding

of when informal insurance is relatively strong or weak to data-based conditions, suggesting an

approach for policymakers to know when to expect formal insurance to act as a complement or a

substitute.

The approach to deriving these results is summarized as follows. First, I �nd a transferable

utility representation of the model. Since agents are heterogeneous in risk attitudes, a single unit

of output generates a di¤erent level of utility for one agent than it does for another�thus, utility is

non-transferable. However, I show that expected utility (which can be represented by the certainty-

equivalent) is transferable, and seek conditions under which the total certainty-equivalent of a

matched group exhibits supermodularity and submodularity in risk attitudes. This approach is

inspired by Schulhofer-Wohl (2006) and Legros and Newman (2007), who both observe that models

4Although the intent of the model is to focus on the endogeneity of informal insurance and shut down commitment
problems, I discuss the e¤ect of introducing limited commitment in Appendix 12.
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with non-transferable utility may admit a transferable utility representation.5 Schulhofer-Wohl

identi�es conditions on preferences under which expected utility is transferable in a more basic

risk-sharing problem, where agents face an exogenous risk and can commit ex ante to a return-

contingent sharing rule, but are not able to choose what risk they face.

The key observation is that the total certainty-equivalent of a matched group is the product

of the cumulant-generating function of the return distribution of the group�s chosen project, and

the group�s representative risk tolerance. I show that, although the return distributions may have

in�nitely many nonzero cumulants, unique assortative matching in risk attitude is determined by

the �rst two cumulants alone (the mean and the variance), and does not depend on any aspect of

the distribution of risk attitudes in the population. Speci�cally, if the coe¢ cient of variation of

return (the ratio of the standard deviation to the mean) across all possible projects is decreasing

in the mean (that is, projects with higher expected return have a smaller coe¢ cient of variation),

then unique positive assortative matching results in the pairwise equilibrium, while if the coe¢ cient

of variation is increasing in the mean, unique negative assortative matching results in the pairwise

equilibrium. Note that the preference structure is not driving this result�for example, the entire

sequence of cumulants matters when the set of return distributions does not satisfy the properties

described in the model.6

But when is the coe¢ cient of variation decreasing or increasing in expected return? Think of

the function describing the variance of project return when the mean return is  as the "cost" of

obtaining an expected return . Then the coe¢ cient of variation is decreasing (increasing) in mean

return if and only if the marginal cost function is concave (convex) in the mean . Intuitively,

equilibrium matching is driven by the trade-o¤ between preference for a similar partner when

choosing risk ex ante, and preference for a dissimilar partner when sharing risk ex post, and the

curvature of the marginal cost function captures this trade-o¤. I show that when the ability to share

risk ex post is shut down, e.g. because the government passes a wage law which e¤ectively �xes

sharing rules, positive assortative matching is always the unique equilibrium. This is supported

by the experimental �nding of Attanasio et al. (2012), who �nd that individuals match positive

assortatively in risk type when they know each other�s types, and when they are able to choose

what risky gamble to face, but must equally share returns. By contrast, when the ability to choose

risk ex ante is shut down, negative assortative matching is always the unique equilibrium. This

coincides with the theoretical �nding of Legros and Newman (2007), Schulhofer-Wohl (2006), and

Chiappori and Reny (2006), and is supported by the empirical �nding discussed earlier of Ackerberg

and Botticini (2002) that landowners and farmers matched negative assortatively.

Finally, I allow group size itself to be endogenous. Using coalitional stability as the equilib-

rium criterion, I show that, under the condition yielding unique positive assortative matching in

the pairwise case, whole-group matching (maximal connectedness) is the unique equilibrium, while

5Legros and Newman (2007) develop a more general method to characterize conditions for assortative matching
in settings where utility is not transferable.

6See Appendix 9 for more detail.
Note that the reciprocal of the coe¢ cient of variation is known as the Sharpe ratio (Sharpe (1966).
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under the condition yielding unique negative assortative matching in the pairwise case, negative

assortative, pairwise matching (minimal connectedness) continues to be the unique equilibrium.

Thus, extremal network shapes are tied to extremal within-group composition, which yields in-

triguing predictions for the structure of informal �rms. The result provides an interesting contrast

to Genicot and Ray (2003), who �nd that, under limited commitment, whole-group matching can

never be sustained. In their model, because individuals cannot choose what risk they face and

cannot commit to a sharing rule, the marginal bene�t of an additional member is eventually neg-

ative: an individual�s expected income is independent of group size, but she becomes increasingly

likely to bear a partner�s downside risk as the group grows. In my model, it is possible for the

marginal bene�t of an additional member to be positive even for arbitrarily large groups, since the

trade-o¤ is slightly di¤erent: adding a member allows the group to take on additional risk because

of the increased ability to share risk ex post, which the group can leverage into taking up a higher

mean, higher variance project. However, now the realized surplus must be divided across more

people. I show that the curvature of the marginal variance cost function again determines which

force outweighs.

In the next section, I set up the benchmark model with pairwise matching and provide the

main matching results. I then study a hypothetical policy, show how it maps into the theoretical

framework, and demonstrate that the evaluation of the welfare impact changes dramatically after

accounting for the response of the network. Following this, I extend the model and allow group

size itself to be endogenous. Then, I discuss falsi�ability of the theory, and show support for the

theory in the existing empirical literature. Finally, I conclude. Technical details are relegated to

the Appendix (A).

2 The Model

In the benchmark model, matching is restricted to be pairwise. In Section 5, I relax the

constraint of partnerships and analyze this model when group size itself is endogenous.

2.1 Setup

The population of agents: the economy is populated by two groups of agents, 1 and 2,

where j1j = j2j = ,  2 f2 3 4 g.7 (The case j1j 6= j2j does not substantively change
the results: the most risk-averse individuals of the larger group simply remain unmatched. See

Appendix 3 for details.) Agents di¤er in their Arrow-Pratt degree of absolute risk aversion ,

where an agent  of type  receives utility () = ¬¬ from consuming  units of output. Let

  0: each individual is risk-averse to some extent. De�ne agent �s degree of risk tolerance:

 � 1

.

7Matching is assumed to be across two groups rather than within a single group because assortative matching
patterns are well-de�ned under the former, not because it is necessary for the results. To see this, suppose that
matching is within a group of four people, f1 2 3 4g, ordered from least to most risk-averse. Then there are two
possible positive assortative matchings: f(1 2) (3 4)g, and f(1 3) (2 4)g.
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No assumptions are imposed on the distributions of risk preferences within each group, or across

groups.

The risky environment: a spectrum of risky projects is available, with return distributions

parameterized by  2 � � R+
0 . A project  returns , a random variable described by:

 = +  ()
1
2

where  is a random variable with a well-de�ned cdf  : R ! [0 1], and ( ) = 0  ( ) = 1.

Note that this allows for a large class of possible distributions for project returns, which may be

symmetric or skewed, including the Normal, Laplace, Logistic, Student, and generalized extreme

value (e.g. Gumbel) distributions.8 (Appendix 10 re-expresses this portfolio choice problem as a

decision between investing in a risky and a risk-free asset, for readers who �nd that formulation more

intuitive. Section 4 provides a concrete example of how farmers choosing between crop portfolios

with varying pro�t distributions can be represented in this way.)

Hence:

() = 

 () =  ()

The function  : � ! R+
0 describes the variance of a project with expected return . Assume

that � = R+
0 , so that there exists a portfolio which is not strictly dominated achieving expected

return  for each  � 0.
Let  (�) be thrice-di¤erentiable, and:

1.  (0) = 0,  ()  0 for   0.

2.  0(0) = 0,  0()  0 for   0.

3.  00()  0.

The �rst property ensures that variance is nonnegative, and that an action which returns 0 with

certainty exists (e.g. "do nothing")9. The second property ensures that projects with higher mean

return also have higher variance of return (Appendix 10 discusses the portfolio choice problem in

detail and describes conditions under which this arises). Finally, the third property ensures an

interior solution for project choice for any agent .

A subset of the risky projects available might therefore be represented like this:

8A family of distributions with this property is sometimes called a location-scale family.
9 Imagine instead that the variance of a project with mean  were given by  () + , where  (0) = 0,   0.

Then the level  a¤ects what an individual�s project choice is, but does not a¤ect the marginal variance cost across
projects, which is what�s crucial for matching. Thus, I simply assume  = 0, which has the e¤ect of a normalization.

6



­15 ­10 ­5 0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Fig. 1: Choosing Among Projects Which Vary in Risk Structure: Gumbel, V(p)=p4

Realized Return
P

ro
ba

bi
lit

y 
D

en
si

ty

Production: Assume that any project  requires the partnership of two agents, one from

1 and one from 2. For example, a landowner and a tenant farmer must work together to

choose inputs and grow crops, two adults marry to form a productive household, an investor funds

an entrepreneur with a business proposal, two entrepreneurs with di¤erent skill sets and time

constraints work together to form a successful joint venture, and so on. A matched pair (1 2)

jointly selects a project. (See Appendix 1 for a proof that this is equivalent to one where each

partner individually chooses a project and both share the pooled returns.)

All matched pairs face the same spectrum of projects, each agent can be involved in at most

one project, and there are no "project externalities". That is, one pair�s project choice does not

a¤ect availability or returns of any other pair�s project.

To focus on the impact on equilibrium matching of the trade-o¤ in ex ante and ex post risk

management across partnerships of di¤erent risk compositions, there is no moral hazard in this

model, although it is straightforward to allow for observable, contractible actions. Please refer to

Wang (2013b) for an explicit treatment of moral hazard and informal insurance in an endogenous

matching problem.

Information and commitment: all agents know each other�s risk types and the risk envi-
ronment.

A given matched pair (1 2) undertaking project 12 observes the realized output 12 of their

partnership, and is able to commit ex ante to a feasible return-contingent sharing rule  : R ! R
(there is no limited liability). Denote 2�s share of realized output by (12). Feasibility implies

that the income 1 receives must be less than or equal to 12 ¬ (12). Since all agents have

monotonically increasing utility, 1�s share will be equal to 12 ¬ (12).

The equilibrium: An equilibrium is10:

1. The matching pattern: a match function � : R+ ! R+, mapping each agent in group 1 to

a single agent in group 2. Thus, 1�s partner is denoted by �(1), and �(�) assigns distinct
members of group 1 to distinct partners in group 2.11

10Existence is assured by Kaneko (1982).
11 In practice, characteristics other than risk aversion, such as kinship and friendship ties, surely factor into matching
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Moreover, the matching pattern described by �(�) must be stable. It must be that no agent
is able to propose a feasible project and sharing rule to an agent not matched to her under �,

such that both agents are happier when matched with each other in this proposed arrangement

than they are with the partners assigned by � ("no blocks").12

2. The risky projects: a project choice for each matched pair, such that no pair can achieve

weakly better outcomes for both partners (and a strictly better outcome for at least one

partner) by choosing a di¤erent project. In other words, the project chosen by a matched

pair must be optimal for that pair.

3. Individual payo¤s and sharing rules: a sharing rule for each matched pair, describing the

amount each partner receives given each possible return realization, where the sum of shares

cannot exceed the total return (feasibility). The sharing rule must be such that no pair can

achieve weakly better outcomes for both partners (and a strictly better outcome for at least

one partner) by choosing a di¤erent sharing rule. In other words, the sharing rule chosen by

a matched pair must be optimal for that pair.

Individual payo¤s will not be unique in the equilibrium of this model. Instead, the stability

conditions will determine a set of equilibrium surplus divisions. For a matched pair (�()),

let  denote the expected utility of �() in equilibrium, and �(�() ) denote �s max-

imal expected utility given that �()�s expected utility is . Then a vector of individual

payo¤s described by (1   ) can be supported in equilibrium if and only if for each :

�(�() ) � �(�() ) 8 6= 

That is, given the divison of surplus described by (1   ), no two individuals who are

unmatched are able to match with each other instead, and split the surplus they generate in

such a way that they are both weakly better o¤, and at least one of them is strictly better

o¤.

Matching patterns: Let  = f1  2    g,  2 f1 2g, ordered from least to most risk-

averse. Under "positive assortative matching" (PAM), the  least risk-averse person in 1 is

matched with the  least risk-averse person in 2: �(1) = 2,  2 f1  g. For example, (11 12)
are matched under PAM.

On the other hand, under "negative assortative matching" (NAM), the  least risk-averse

person in 1 is matched with the  most risk-averse person in 2: �(1) = ¬+12 ,  2 f1  g.
For example, (11 


2 ) are matched under NAM.

decisions. However, the model is still key for understanding the equilibrium match. For example, friends and family
are more likely to know each other�s risk types, and are more likely to trust each other, and to monitor and discipline
each other. Hence, an individual might �rst identify a pool of feasible risk-sharing partners, where this pool would
be shaped by kinship and friendship ties, due to good information and commitment properties. Individuals would
then choose their risk-sharing partners from these pools based on risk attitude.
12 Individual rationality holds, as individuals cannot produce on their own.
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The unique equilibrium matching pattern is PAM (NAM) i¤ the only � which is stable under

optimal within-pair sharing rules and projects is the match function which assigns agents to each

other positive (negative) assortatively in risk attitudes.

The next section discusses the results for this model, with technical details relegated to the

Appendix.

3 Results

The �rst step is to identify a transferable utility representation for this model. (Schulhofer-Wohl

(2006) identi�es conditions on preferences under which expected utility is transferable in a more

basic risk-sharing problem, where agents face an exogenous risk and can commit ex ante to a return-

contingent sharing rule. That is, they are not able to choose what risk they face.) The heterogeneity

of risk-aversion makes this a model of matching under nontransferable utility: one unit of output

yields utility 1(1) = ¬¬1 for an agent with risk aversion 1, but utility 2(1) = ¬¬2 6= 1(1)

for an agent with risk aversion 2. Thus, an individual evaluates potential partners based not only

on how much output they can produce together, as in the standard case, but also on how happy

the partner is with a given level of output�a partner who produces a lot but then demands a large

transfer might be less desirable than a partner who produces less but is satis�ed with little.

Lemma 1 Expected utility is transferable in this model. Denote a matched pair by (1 2) and
their chosen project by �(1 2). Let (1 2 �(1 2)) describe the certainty-equivalent of a

matched pair in equilibrium; it is twice continuously di¤erentiable in each argument. Then:

(1 2 
�(1 2))

12
 0,  

(1 2 
�(1 2))

12
 0,  

The equilibrium matching maximizes the sum of certainty-equivalents, and is Pareto e¢ cient.

A quick sketch of the proof of Lemma 1 provides a useful understanding of the matching problem,

but all technical details for the proof of the lemma are relegated to Appendix 2.

First, we characterize the optimal project and sharing rule chosen by a matched pair (1 2).

Suppose 1 and 2 have already selected a project . Let  2 R parameterize the division of surplus
between the two partners. Then the program below characterizes the equilibrium sharing rule,

given . (Symmetry implies that the program could also have been set up �xing 1�s expected

utility.)

max
()

Z 1

¬1
¬¬1[¬()](j) 

Z 1

¬1
¬¬2()(j) � ¬¬

9



Solving this program shows that the optimal sharing rule is linear, where the more risk-averse

partner�s transfer is less dependent on realized output . That is, if 1  2 (so 2 is more risk-

averse), then 2 receives a share 1
1+2

 1
2 of realized output, plus a constant. The division of

surplus  a¤ects only the constant part of the total transfer.

Since 2�s expected utility is �xed at , it�s clear that, for each , both members "agree" on

project choice�they want to maximize surplus, given the division.13 The optimal project can thus

be characterized by maximizing 1�s objective function under �(; ). Crucially, this shows that

there exists a unique optimal project for the pair, which depends only on their risk tolerances and

not on the division .

We can now express the certainty-equivalent for each member of the pair, given :

1() = ¬
�
1

1
+
1

2

�
log

Z 1

¬1

¬ 12
1+2

(j�(1 2)) ¬
1

2


2() =
1

2


This makes it clear that 2 gains one unit of certainty-equivalent at the expense of exactly one

unit of certainty-equivalent for 1. Since the certainty-equivalent is just a monotonic transformation

of expected utility, this shows the transferability of expected utility. Hence, conditions under which

 : 1 � 2 ! R exhibits increasing and decreasing di¤erences in risk types are necessary and
su¢ cient for unique PAM and NAM, respectively. Proposition 1 provides these conditions.

Proposition 1 Recall that  () describes the variance cost of a project with mean return . Then

() �  0() describes the marginal variance cost of a project with mean return .

(a) A su¢ cient condition for PAM to be the unique equilibrium match is  00()  0 for   0

(concavity).

(b) A su¢ cient condition for NAM to be the unique equilibrium match is  00()  0 for   0

(convexity).

(c) A su¢ cient condition for any match to be sustainable as an equilibrium is  00() = 0 for

  0 (linearity).

Note that while the curvature of marginal variance cost is su¢ cient for assortative matching

in a known population of individuals, it is both necessary and su¢ cient to guarantee assortative

matching for any possible population 1 � 2 � R+ � R+ (for the matching conditions to be

independent of what risk types are in the population).

Note that Proposition 1 tells us that equilibrium matching depends only on the relationship

between the mean and the variance of the risky project returns, even though the return distributions

may have in�nitely many nonzero higher order cumulants (Appendix 9 shows why this is not a direct

consequence of CARA preferences).

13Wilson (1968) showed that, as a consequence of CARA utility, any pair acts as a syndicate and "agrees" on
project choice.
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The following corollary provides intuition for this result by relating the curvature of the marginal

variance function to properties of the risk environment.

Corollary 1 Let  () =  ()
1
2

 represent the coe¢ cient of variation of a project . Then:

(a)  0()  0 8  0 i¤  00()  0 8  0 ()
(b)  0()  0 8  0 i¤  00()  0 8  0 ()

Recall that the coe¢ cient of variation is unitless (dimensionless), and thus a convenient tool for

comparing portfolios.

As the proof of Proposition 1 involves a novel approach to portfolio problems with higher order

cumulants, I sketch it here. Details for the proofs of the proposition and the corollary can be found

in Appendix 4.

De�ne the representative risk tolerance of a matched pair (1 2):

 � 1 +2

� 1

1
+
1

2

Then observe that the sum of certainty-equivalents of the pair, (1 2), depends only on

each individual�s risk tolerance through the representative risk tolerance of the pair:

(1 2) = ((1 2))

= ¬ log
Z 1

¬1
¬

1

(j�())

Moreover, (1 2) exhibits supermodularity (submodularity) in 1 2 precisely when ()

exhibits convexity (concavity) in .

The key is to observe that () is the product of ¬ and the cumulant-generating function

() of the distribution of project returns . The cumulant-generating function (cgf) is the log

of the moment-generating function (mgf), and the �rst two cumulants of any distribution are the

mean and the variance. Since  =  +  ()
1
2 , the sequence of cumulants for each  can be

expressed as a function of the sequence of cumulants for  .

Using the series expansion of the cgf, where () denotes the  cumulant of  , we see that:

() = ¬
1X

=2

(¬1)

!¬1 ()

2 ()

A pair with representative risk tolerance  chooses  to maximize (). Thus, the optimal

project balances the marginal bene�t of increased mean with the marginal cost of higher "general-

ized variance" (the aggregated higher-order cumulants which form a polynomial in  ()), where a

given level of "generalized variance" is less costly for more risk-tolerant pairs. Hence, the curvature

of the marginal variance cost () is at the heart of the curvature of () and of assortative

matching.
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Corollary 1 sheds light on how the curvature of () shapes the set of portfolios available to a

population, providing further intuition for the connection between() and equilibrium matching.

A less risk-averse person enjoys the premium a more risk-averse partner is willing to pay her to

smooth his consumption, but acting as the informal insurer and bearing her partner�s risk forces

the pair to choose a safer project with lower expected return. If she instead matches with a less

risk-averse partner, she forgoes the premium from providing insurance, but she and her partner

are able to undertake a riskier project with higher expected return. Whether a less risk-averse

individual prefers to be an informal insurer or an entrepreneur, and thus whether negative or

positive assortative matching results, depends on whether partnerships generate the most value

through insurance or production. When the ratio of standard deviation to expected return is

higher for projects with higher expected return, the less risk-averse will prefer to be informal

insurers; when the ratio is lower, the less risk-averse will prefer to be entrepreneurs and choose high

risk, high return projects.

Thus, the key trade-o¤ is between sharing a given risk, and choosing what risk to share. Propo-

sitions 2 and 3 make this clear by shutting down each channel in turn and characterizing the

equilibrium match. I show that, when individuals face a �xed risk and partner choice a¤ects only

how that risk is shared, negative assortative matching is the unique equilibrium, and the less risk-

averse act as informal insurers. When individuals face a �xed sharing rule and partner choice

a¤ects only what risk is faced, positive assortative matching is the unique equilibrium, and the less

risk-averse are entrepreneurs.

Proposition 2 Suppose that all agents in 1 draw income iid from a distribution  , and all

agents in 2 draw income iid from a distribution  , so that all possible pairs face the same joint

income distribution. Once matched, agents can commit ex ante to a return-contingent sharing rule.

Then the unique equilibrium matching is NAM.

See Appendix 5 for the proof.

This coincides with the theoretical �nding of Legros and Newman (2007), Schulhofer-Wohl

(2006), and Chiappori et al. (2006), and with the empirical �nding of Ackerberg and Botticini

(2002), who �nd that heterogenously risk-averse landlords and tenant farmers who chose sharing

rules but who couldn�t choose which crop portfolios to grow matched negative assortatively in

medieval Tuscany.

Proposition 3 Suppose that the slope of the sharing rule () = +  is �xed. For example, a

wage law requires a 50-50 split of output. However, a matched pair is able to choose a risky project

, where  =  +  ()
1
2 as in the benchmark model. Then the unique equilibrium matching is

PAM.

See Appendix 6 for the proof.

When the dependence of each agent�s consumption on realized return is �xed exogenously, less

and more risk-averse agents can no longer capitalize on gains from trade: more risk-averse agents
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are unable to o¤er the less risk-averse higher premiums to bear their risk. Hence, partnerships

are motivated by production (project choice), and positive assortative matching is the unique

equilibrium. This aligns with the experimental �nding of Attanasio et al. (2012), who �nd that

agents match positive assortatively in risk preference when they can choose the riskiness of the

gamble they face, but the sharing rule is �xed at equal division.

Finally, Proposition 4 tells us that positive (negative) assortative matching corresponds to a con-

vex (concave) relationship between the mean joint incomes of matched pairs and the representative

risk tolerances of those matched pairs.

Proposition 4 Let �(�()) denote the mean return of the project chosen by a matched pair
(�()). Then:

(a) If  00()  0 for   0, then �(�()) is convex in representative risk tolerance

(�()).

(b) If  00()  0 for   0, then �(�()) is concave in representative risk tolerance

(�()).

See Appendix 7 for the proof.

This result suggests a falsi�ability test for the theory which requires observing only the actual

matching and mean incomes (e.g. average household income). Importantly, the test would not

require any data on higher-order moments of income distributions (such as the variance), or any

counterfactual matching data (such as how agents would have behaved had they been matched

with other partners). Falsi�ability is discussed in detail in Section 6.

4 Policy

Using the paper�s theoretical framework and main results, this section demonstrates concretely

how the evaluation of a policy�s welfare impact may change substantially depending on whether the

endogenous response of informal institutions is accounted for. An important and salient example

of such a policy is crop price stabilization, which directly a¤ects the risk environment farmers face.

Many of the world�s poor depend on agriculture for a livelihood, and a common governmental

measure to reduce the risk burden for poor farmers is to stabilize crop prices by imposing price

�oors and ceilings. Notable examples include the stabilization of maize, sorghum, and rice prices

in Venezuela, the Andean Price Band system between Colombia, Ecuador, and Venezuela, and

bananas and grains in Ethiopia (Knudsen and Nash (1990), Minot (2010)).

In this section, I study a hypothetical policy which places price bands on crops (maintaining

the mean pro�tability of each crop but reducing each variance), and show that the policy is a strict

Pareto improvement when informal relationships are static, but that in fact the most risk-averse

agents are made worse o¤, potentially signi�cantly, once the re-formation of informal relationships

is accounted for. Price stabilization has a clear and direct impact on the spectrum of risky portfolio

choices, which makes it an appealing policy to study as an example. This exercise is not meant to
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be a thorough analysis of crop price stabilization, which can take many di¤erent forms, but rather

is meant to provide a clear illustration of the channels by which using the theory to account for

endogeneity of an informal institution can alter policy evaluation.

Suppose a benevolent government contemplates solutions for its many poor farmers, who face an

unforgiving risk environment, and who lack access to formal insurance.14 Because a slight increase

in mean pro�tability of crop portfolio comes at the cost of extremely high variance, farmers grow

crops that are safer but not very pro�table�they forgo innovations for less pro�table, traditional

seeds and methods. To encourage the take up of seeds and methods with higher expected return,

the government places price bands of the form [  ] on each crop�s price. If the world price of

a crop happens to fall within this band, that is the price the farmer faces. However, if the world

price falls below the price �oor, the farmer is guaranteed to receive , and if the world price is

above the price ceiling, the farmer faces  . The marginal impact of stabilization is largest for

crops with the most volatile prices: the variance of every crop falls, but the variance of the riskiest

crops falls by the largest amount. Thus, the policy may lead to a change in the curvature of the

marginal variance cost () across di¤erent crop portfolios.

To see this more concretely, let  represent the yield of crop , and  the net price of crop

. Assume that an individual farmer�s production does not a¤ect the world price, so that  is

independent of . Then, for a given production level  (letting �() denote the pro�t of crop ):

(�()) = ( ())

= ( ())

 (�()) =  ( ())

= 2
 ( ())

Now, suppose  � [() ()], where 0 � () � () for each crop . Then:

(�()) = 
() + ()

2

 (�()) =
2


12
(()¬ ())2

Under what conditions do crops with higher mean have higher variance? Suppose that crops

are ordered from lowest to highest expected return: that is, if   0, then (�())  (�(0)).

Then:

(�())


 0, 0() + 0()  0

 (�())


 0, 0()  0()

14 I abstract from possible governmental and other frictions in policy implementation, in order to study how ac-
counting for the equilibrium response of informal institutions might substantially alter policy analysis even in a
"politically ideal" world.
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For example, this is satis�ed for () () where 0()  0() � 0.
By Corollary 1, we know that a change in the curvature of the marginal variance cost across

the di¤erent crops is equivalent to a change in the monotonicity of the coe¢ cient of variation

across crops. For example, if pre-policy, the coe¢ cient of variation is lower for projects with

lower expected return, and post-policy, the coe¢ cient of variation is lower for projects with higher

expected return, then the unique matching pre-policy is negative-assortative, while post-policy, it

is positive-assortative.

So, when is the coe¢ cient of variation lower for projects with lower expected return, and when

is it lower for projects with higher expected return? Assuming 0()  0() � 0 (so that crop 0 has
higher mean and variance than  if 0  ):

 () =
 (�())

1
2

(�())

=
(()¬ ())p
3(() + ())

 ()


 0, 0()()  ()0()

 ()


 0, 0()()  ()0()

Natural choices for () () which satisfy these conditions exist. Suppose that pre-policy, the

price of each crop  is distributed:

 
 � [1 � ()] � () � 1 � 0()  0

The government imposes a price �oor and a price ceiling, to reduce price volatility, so that

post-policy:

 
 � [

� () + 1

2
¬ 

� () + 1

2
+ ]  2 [0

� ()¬ 1
4

)

Note that this policy maintains the expected pro�tability of each crop (() =
� ()+1

2 in

both cases), but reduces each variance ( 
� ()¬1

4 ). Further, note that pre-policy, the coe¢ cient of

variation is smaller for crops with lower expected return, but post-policy, the coe¢ cient of variation

is smaller for crops with higher expected return.15

Thus, by Corollary 1, the unique matching pattern pre-policy is negative-assortative, and post-

policy, it is positive-assortative: informal insurance relationships endogenously re-form in response

to the policy.

Note that we can express the spectrum of risky crop portfolios in the "language" of the theo-

15 It is straightforward to check that the conditions hold:

0  � 0(), 0()()  ()
0
()

� 0()

2

�
� () + 1

2
+ 

�


� 0()

2

�
� () + 1

2
¬ 

�
, 0()()  ()

0
()
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retical framework:  = () +  ()
1
20, where  represents the pro�t of crop , and 0 is the

uniform random variable with (0) = 0,  (0) = 1.16 Then, pre-policy, the spectrum of risky

projects can be described by:

 = 

� () + 1

2
+

( � ()¬ 1)p
12

0

And post-policy, the spectrum of risky projects can be described by:

 = 

� () + 1

2
+

p
3
0

Now that we�ve seen how crop portfolio choice maps into the theoretical framework, and how

crop price stabilization may generate an important change in the set of risky portfolios, let us

compare the welfare impacts of the risk-reduction policy in a more general environment, ignoring

and then accounting for the endogeneity of informal insurance institutions.

Assume that the returns of di¤erent crop portfolios are distributed normally.17 In particular,

suppose that pre-policy, the pro�ts of a crop with mean  are described by � � ( 1),

1  2. Thus, the marginal variance cost function is () = 1
1¬1, which is convex in .

The government then implements a stabilization policy to di¤erentially reduce the risk of higher

mean portfolios. Post-policy, pro�ts are described by � � ( 2), where 2 2 (1 2), so
that () is now concave in .18 According to Proposition 1, the unique equilibrium match is

negative assortative pre-policy, and positive assortative post-policy ( = 2 is the "tipping point",

at which every matching pattern is stable).

Importantly, the risk-reduction policy a¤ects level as well as curvature of risk. Reducing the

variance of every portfolio to 0 would clearly make everyone happier: the positive impact of the

change in levels outweighs any impact the change in curvature might have. However, policy is

generally only able to achieve small reductions in risk levels before returns are a¤ected. Moreover,

we know from Proposition 1 that the composition of partnerships is driven by curvature, not levels.

Thus, setting 1 = 2+ and 2 = 2¬ ,  small, maximizes the change in curvature resulting from
the policy relative to the change in levels, and enables us to isolate the impact stemming from the

endogenous response of the informal insurance network. For this example, let  = 01.

16That is, 0 � 

¬
p
12
2

p
12
2


.

17This simpli�es the form of the joint certainty-equivalent of a matched pair, since the normal distribution is the
only absolutely continuous distribution such that the only nonzero cumulants are the mean and the variance.
18Note that modeling  () as a power function has one small drawback. It�s a natural choice, since we want

to analyze a policy that reduces the variance of every project, and particularly reduces the variance of the riskiest
projects, which is captured by "decreasing ". However, when  falls,  for  2 (0 1) actually increases. Hence,
assume that 1 and 2 are such that no possible pair ever wishes to undertake a project  2 (0 1) pre-policy:

1

max(1)
+

1

max(2)
� 1

2

This is for convenience, and does not substantively in�uence the intuition or the policy analysis, since the matching
results are free of any assumption on the distribution of risk types. If the above condition did not hold, the policy
would be a bad idea without considering informal institutions, since individuals choosing   1 would be worse o¤.
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Suppose 1 = f06 07 08 09g, and 2 = f1 11 2 21g. For example, 1 may be the
less risk-averse landowners in a region, and 2, the more risk-averse tenant farmers. (However,

the matching results and intuition about the policy do not depend on which risk types are chosen).

Then the e¤ect of the policy without accounting for the response of informal institutions is described

by the lemma below.

Lemma 2 A policy which reduces the variance of every available project is a strict Pareto improve-
ment if the composition of partnerships does not change.

The proof is intuitive: each matched partnership can stay on the same project post-policy, or

can choose a di¤erent project. If a partnership retains its original project, it is strictly better

o¤, since the project has the same mean as it did before the policy, but a lower variance. If a

partnership switches to a di¤erent project, then by revealed preference, they must be even better

o¤ facing the new project than facing the old project with decreased variance. But this means that

each partnership is strictly better o¤.

Now, suppose individuals re-form partnerships in response to the policy. How does this a¤ect

the evaluation of the policy impacts?

First, consider the e¤ect on individual payo¤s. Note that, while Proposition 1 provides con-

ditions under which the equilibrium matching and joint payo¤s are unique, individual payo¤s are

never unique. Instead, the stability conditions (that is, the requirement that no two unmatched

agents prefer to defy the match and partner with each other instead) determine the sets of individ-

ual payo¤s which support the equilibrium matching. Thus, once the payo¤ of one agent is �xed,

the equilibrium payo¤s of the (2 ¬ 1) other agents in the population are determined.
To be perfectly clear about individual payo¤s in this setting, let 

 and 
 denote the

certainty-equivalent generated by a partnership between the  agent in 1 and the  agent in 2

in the pre- and post-policy cases, respectively (note that agents are ordered from least to most risk-

averse. The certainty-equivalent generated by a matched partnership ( ) di¤ers pre-policy and

post-policy because the policy alters the spectrum of portfolio choices by altering the mean-variance

tradeo¤ across risky projects). Then the pre-policy individual payo¤s of the eight individuals in

this example (who are matched negative-assortatively, by Proposition 1) can be described by:

8
>>>><

>>>>:

11 = 
14 ¬ 4

12 = 
23 ¬ (


13 ¬ 

14 )¬ 4

13= 
32 ¬ (


22 ¬ 

23 )¬ (

13 ¬ 

14 )¬ 4

14 = 
41 ¬ (


31 ¬ 

32 )¬ (

22 ¬ 

23 )¬ (

13 ¬ 

14 )¬ 48
>>>><

>>>>:

21 = (

31 ¬ 

32 ) + (

22 ¬ 

23 ) + (

13 ¬ 

14 ) + 4

22 = (

22 ¬ 

23 ) + (

13 ¬ 

14 ) + 4

23 = (

13 ¬ 

14 ) + 4

24 = 4
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Recall that   0 if  is less risk-averse than 0 (  0). The structure of the individual

payo¤s is nicely intuitive: for example, consider the agents in 2. The payo¤ of the most risk-

averse agent (2 4) is �xed at 4. Then the next most risk-averse agent, (2 3), receives the most

risk-averse agent�s payo¤, plus an extra wedge to make (1 1), the least risk-averse person in 1

(who is partnered with the most risk-averse person in 2, in the equilibrium negative-assortative

match), indi¤erent between partnering with (2 4) and (2 3): the most (1 1) could gain from

switching to (2 3) is 13 ¬ 14. Similarly, (2 2) receives (2 3)�s payo¤, with an extra

wedge to prevent deviation, and so on.

Post-policy, the equilibrium match is positive-assortative, and individual payo¤s are described

by:

8
>>>><

>>>>:

11 = 
11 ¬ (


21 ¬ 

22 )¬ (

32 ¬ 

33 )¬ (

43 ¬ 

44 )¬ 4

12 = 
22 ¬ (


32 ¬ 

33 )¬ (

43 ¬ 

44 )¬ 4

13= 
33 ¬ (


43 ¬ 

44 )¬ 4

14 = 
44 ¬ 48

>>>><

>>>>:

21 = (

21 ¬ 

22 ) + (

32 ¬ 

33 ) + (

43 ¬ 

44 ) + 4

22 = (

32 ¬ 

33 ) + (

43 ¬ 

44 ) + 4

23 = (

43 ¬ 

44 ) + 4

24 = 4

When equilibrium individual payo¤s are nonunique, the convention is to focus on speci�c cases.

Below, I consider two standard cases: the "best case scenario for the most risk-averse agent" (Case

1), and the "worst case scenario for the most risk-averse agent" (Case 2). All other cases are

intermediate. The "best case scenario for the most risk-averse agent" is the vector of payo¤s in

which the most-risk averse agent (agent 4 in 2) receives a payo¤ that is larger than the payo¤ she

receives in any of the other possible vectors of equilibrium individual payo¤s. More speci�cally, in

Case 1, the "best case scenario for the most risk-averse agent":

4 = 
14

4 = 
44

Figures 2a and 2b plot the payo¤s of each individual in 1 and 2 against each individual�s

coe¢ cient of absolute risk aversion. The red line with circular markers depicts pre-policy payo¤s,

while the blue line with square markers depicts post-policy payo¤s. Recall that the less risk-averse

agents are in 1, and the more risk-averse agents are in 2.
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What happens in Case 2, the "worst case scenario for the most risk-averse agent"? The "worst

case scenario for the most risk-averse agent" is the vector of payo¤s in which the most-risk averse

agent (agent 4 in 2) receives a payo¤ that is smaller than the payo¤ she receives in any of the other

possible vectors of equilibrium individual payo¤s. More speci�cally, in the "worst case scenario for

the most risk-averse agent":

4 = ¬(
31 ¬ 

32 )¬ (

22 ¬ 

23 )¬ (

13 ¬ 

14 )

4 = ¬(
21 ¬ 

22 )¬ (

32 ¬ 

33 )¬ (

43 ¬ 

44 )

Figures 3a and 3b plot the payo¤s of each individual in 1 and 2 against each individual�s

coe¢ cient of absolute risk aversion. The red line with circular markers depicts pre-policy payo¤s,

while the blue line with square markers depicts post-policy payo¤s.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Fig. 3a: Individual Payoffs Pre­ and Post­Policy for the Least Risk­Averse Agents, Case 2

Risk aversion

In
di

vi
du

al
 p

ay
of

f

pre
post

1 1.2 1.4 1.6 1.8 2 2.2 2.4
­0.35

­0.3

­0.25

­0.2

­0.15

­0.1

­0.05

0
Fig. 3b: Individual Payoffs Pre­ and Post­Policy for the Most Risk­Averse Agents, Case 2

Risk aversion

In
di

vi
du

al
 p

ay
of

f

pre
post

19



Clearly, this risk-reduction policy is not a Pareto improvement.19 We see that the more risk-

averse agents are worse o¤ after implementation of the policy, purely as a result of the endogenous

network response: the policy causes the least risk-averse agents to abandon their roles as informal

insurers of the most risk-averse agents, in favor of entrepreneurial partnerships with fellow less

risk-averse agents. The poorest, most risk-averse agents are harmed via two channels: �rst, they�ve

lost their informal insurers, and this weakens their capacity to smooth consumption, which reduces

their welfare. To make matters worse, because the most risk-averse agents, who are now paired

with each other, have very little capacity to smooth a given risk (as neither is willing to bear

the volatility to smooth her partner�s consumption), they must instead manage risk by choosing

projects with low variance, which traps them into growing crop portfolios with low mean returns.

On the other hand, the least risk-averse agents, who are now paired with each other, no longer

play the role of informal insurer, and this enables them to take advantage of the decreased aggregate

risk and undertake the higher mean, entrepreneurial projects (e.g. adopt a new technology). They

are better o¤ post-policy. Thus, we see that the emergence of enterpreneurship corresponds to

gains for the less risk-averse and losses for the more risk-averse.

How do the risky projects (in this case, crop portfolios) chosen in the economy di¤er pre- and

post-policy? The change is depicted in Figure 4:
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There is much more variation in the projects which are undertaken post-policy: the least risk-

averse pairs choose riskier, more entrepreneurial projects post-policy, while the most risk-averse

pairs choose safer projects.

These insights provide an interesting complement to existing literature. Attanasio and Rios-Rull

(2000) model the introduction of formal insurance as a policy which reduces the aggregate riskiness

of the environment. They also �nd that such a policy may hurt the welfare of the most risk-averse

agents. However, their model, which builds o¤ Ligon, Thomas, Worrall (2001), considers a �xed

19See Appendix 11 for a discussion of the general conditions under which a policy that triggers a change in
partnership composition improves the welfare of the less risk-averse at the expense of the more risk-averse.
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group of risk-sharing members whose informal insurance arrangement is constrained by limited

commitment. Two agents sustain informal risk-sharing by threatening credibly to cut o¤ all future

ties if someone reneges, that is, does not honor the risk-sharing agreement (e.g. a member keeps her

own income realization instead of transferring some of it to an unlucky partner). Thus, anything

that lowers the cost of autarky (the state of being alone and unable to share risk with somebody

else) will decrease the level of informal insurance that can be sustained, because the punishment

has become less costly. Since the introduction of formal insurance reduces aggregate risk, such a

policy reduces the cost of autarky, and as a consequence informal insurance is weakened.

However, if commitment were perfect in Attanasio and Rios-Rull (2000), the introduction of

formal insurance would strictly improve welfare, because lowering the cost of autarky matters only

through the punishment of cutting o¤ future ties, which would no longer be relevant. One contri-

bution of this example, then, is to show that, even when commitment is perfect, introducing formal

insurance might still reduce the welfare of the most risk-averse agents, because the composition of

the informal risk-sharing network changes in response. Reducing the riskiness of the environment

does increase the value of autarky, but it also increases the value of being in a relationship, and

increases it heterogeneously across partnerships of di¤erent risk compositions.

This example also contrasts with Chiappori et al. (2011), who estimate that the least risk-

averse individuals are the ones left worse o¤ after the introduction of formal insurance, since they

have been displaced as informal insurers. However, this illuminates the need for a model of the

equilibrium network of relationships�I show that the least risk-averse agents do leave their roles as

informal insurers, but only because they prefer to undertake entrepreneurial pursuits instead. It

would be interesting to see how their estimation of the welfare impacts changes when they account

for this endogenous response.

5 Endogenous Group Size

The focus thus far has been on conditions under which assortative matching emerges as the

unique equilibrium when groups are constrained to be of size two. However, we know that a

matched pair behaves like a single agent with representative risk tolerance . In fact, the proof of

Lemma 1 shows that this is a property of a matched group of any size (echoing Wilson (1968)).

This suggests de�ning the representative risk tolerance of a group of  matched people:

 =
X

=1

1



In order to think about equilibrium matching when group size itself is endogenous, we need to

make a few adjustments to the benchmark model. Instead of matching across two distinct groups,

individuals all belong to one group, , and match within this group (this simply allows for group

size to be an odd number). As before, production requires at least two collaborators (discussed in

Appendix 1), and a matched group of agents jointly chooses a risky project  � 0 from a spectrum
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of risky projects, where a project �s returns are described by  =  +  ()
1
2 ,  a random

variable with well-de�ned cdf and ( ) = 0,  ( ) = 1.20 Individuals in an  -person group

commit to a feasible return-contingent sharing rule 2() 3()   (), which describes the

share of realized output each member receives, for each possible level of output.

De�ne an equilibrium matching to be one that is stable to all coalitional deviations. That is,

a group is stable if no strict subset of the group is able to break away and choose a project and

sharing rule such that every member of the deviating coalition is weakly better o¤, and at least

one member is strictly better o¤.

Proposition 5 relates familiar conditions on the risk environment to the size and composition of

matched groups in equilibrium in this more general model.

Proposition 5 Let () �  0() describe the marginal variance cost of each project . Then:

(a) If  00()  0, the unique equilibrium is maximal-connectedness: the whole group, , is

matched.

(b) If  00()  0, the unique equilibrium is minimal-connectedness. Individuals match in nega-

tive assortative pairs: the  least risk-averse person in  is matched with the  most risk-averse.

(If jj is odd, then the most risk-averse individual in the population remains unmatched.)

See Appendix 8 for the details of the proof.

Proposition 5 shows that when the marginal variance cost is concave in expected return, the

unique equilibrium matching coincides with the matching when group size is restricted to two.

That is, pairwise matching is actually the optimal matching structure in this case, and the network

is minimally-connected. On the other hand, when the marginal variance cost is convex in expected

return, all individuals match in one big group, and the network is maximally-connected. Thus, the

curvature of the marginal variance cost is tied both to extremal match compositions, as well as to

extremal structures of the network of matches.

This result reveals an interesting relationship between the strength of formal insurance institu-

tions and the structure of �rms in developing economies. Because poor entrepreneurs lack access to

formal insurance, their need to share risk informally in�uences the nature of the �rms they build.

When achieving a higher expected return comes at an increasingly steep escalation in risk cost, in

the sense that the coe¢ cient of variation (ratio of the standard deviation of returns to the mean) is

larger for projects with higher expected return, a less risk-averse individual provides more value by

informally insuring a more risk-averse individual. However, this informal insurance provision, which

causes the less risk-averse person to bear most of the risk, comes at the cost of investing in higher

mean, higher variance projects. Thus, the economy is characterized by a minimally-connected net-

20The key assumption is that the spectrum of projects available to a group does not depend on its size. Of course,
this is more realistic in some settings than others. This can be interpreted several ways. For example, in the context of
agriculture, the robustness of di¤erent seeds to rainfall and planting time di¤erentiates the riskiness of di¤erent crops,
and does not depend on the number of people in a group. Alternatively, there may be constraints to diveresi�cation,
which is particularly plausible in a developing environment. Thus, adding more people to a group may not a¤ect the
spectrum of portfolios available to the group.
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work of many small, heterogeneously-composed �rms, each choosing safe, non-innovative projects

with low mean and low variance of return.

On the other hand, when the coe¢ cient of variation is smaller for projects with higher expected

return, the less risk-averse individuals can bear some risk and still be able to choose entrepreneurial

projects, since the increase in risk is outweighed by the increase in expected return. In particular,

accepting a less risk-averse partner enables the take up of a project with much higher mean return,

and this bene�t outweighs the cost of having to share good outcomes. Moreover, the less risk-averse

are also happy to insure the more risk-averse, since projects with higher mean return no longer come

at such a steep escalation in risk cost. Thus, the economy is characterized by a maximally-connected

network: one large �rm choosing a risky, entrepreneurial project.

This result contrasts interestingly with Genicot and Ray (2003), who �nd that, under limited

commitment, whole-group matching can never be sustained as a coalitionally-stable equilibrium in

a model where individuals are homogeneously risk-averse and draw their income realization inde-

pendently from the same exogenously-speci�ed income distribution. In their framework, because

individuals cannot choose what risk to face, the marginal bene�t of an additional member is in-

evitably eventually negative: an individual�s expected income is independent of group size, but

she becomes increasingly likely to bear a partner�s downside risk as the group grows, and limited

commitment implies that individuals cannot be compelled to bail partners out after some point.

Thus, a subgroup will always pro�tably deviate if the whole group tries to match, when the number

of people in the population is large.

6 Falsi�ability and Empirical Support for the Theory

While the previous sections are devoted to exploring interesting implications of the theory, this

section provides a variety of empirical approaches for testing the theory.

One such approach is to check directly the conditions of Proposition 1 or Corollary 1. That is,

the interested researcher could elicit the risk attitudes of individuals in a population (e.g. using

Binswanger (1980) gambles, or a host of other techniques in the literature), as well as record network

connections between individuals. The remaining component is the mean and variance of return for

each of the risky projects individuals are able to undertake. For example, Appendix 13 contains

tables showing the mean and variance of yield of a variety of crops available to farmers in di¤erent

regions�this data has been collected extensively for agriculture. Alternatively, the coe¢ cient of

variation of each project could be calculated. This approach also suits a lab experiment, since

the researcher is able to design the set of projects o¤ered to di¤erent pools of subjects (and thus

determine the coe¤cients of variation at the outset). Hence, a variety of di¤erent methods enable the

researcher to construct  () (the variance of return associated with a mean return ), or  () (the

coe¢ cient of variation associated with mean return ), and verify or falsify the theoretical prediction

regarding the relationship of the curvature of the marginal variance cost, the monotonicity of the

coe¢ cient of variation in expected return, and equilibrium matching patterns.
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However, the researcher may not always be able to reliably construct  () or  (). Proposi-

tion 4 suggests another approach. Instead of constructing  (), it is only necessary to collect the

mean incomes of matched groups, in addition to the data on which individuals are matched and

their risk attitudes. Then, the theory predicts that positive assortative matching corresponds with

convexity of mean incomes in the representative risk tolerances of matched groups, while nega-

tive assortative matching corresponds with concavity. Importantly, this approach does not require

knowing anything about the set of risky production opportunities available in the economy, does not

require knowing any counterfactuals, such as what projects individuals would have chosen had they

matched with di¤erent partners, and does not require knowing any moments of the distributions

of returns beyond the mean. (Note that another interesting application of Proposition 4 is that it

enables policymakers to identify when an economy is near a "tipping point" of the kind discussed

in the policy section�when mean incomes are close to being linear in risk tolerances, we can infer

that even a small change in the risk environment could "tip" the matching from one extreme to

the other, and could lead to the sorts of adverse welfare consequences illustrated by the crop price

stabilization example.)

To �x ideas, consider the following example. Suppose 1 = f1  2  3 g and 2 = f1  2  3 g,
where 1  2  3 .

Then, suppose the underlying (unobservable) marginal variance cost function is concave:  00() 

0. Suppose we observe agents matching positive assortatively in risk attitude, as Proposition 1 pre-

dicts. Suppose we also observe the mean incomes of each pair, (1  

1 ) (


2  


2 ) and (3  


3 ),

as well as the risk types of each agent. Note that we aren�t able to force the agents to match in di¤er-

ent ways, so we cannot observe what they would have chosen with di¤erent partners. Furthermore,

we do not observe higher-order moments of the income distributions, including the variance.

Hence, we follow the approach suggested by Proposition 4, and use the observed matchings

(1  

1 ), (


2  


2 ) and (


3  


3 ) to calculate the representative risk tolerance  =

1

+ 1


of each

matched pair. Then, to check for concavity or convexity of mean incomes in representative risk

tolerances, regress  � (  

 ) on a constant, as well as  and 2

 (to use a crude second-order

polynomial approximation):

 = �1 + �2 + �3
2
 + 

If �̂3  0, this suggests that  is convex in , and this is evidence supportive of the theory,

since we have established the following: (a) individuals are matched positive assortatively in risk

preferences, and (b) the mean incomes of the matched pairs are convex in the representative risk

tolerances of those pairs. On the other hand, �̂3  0 would be evidence against the theory, since

individuals are matched positive assortatively, but the mean incomes of the matched pairs are

concave in the representative risk tolerances. (Of course, more sophisticated techniques may be

used to test for concavity or convexity.)

I apply a combination of these approaches to the dataset from Attanasio et al. (2012) to seek

preliminary support or falsi�cation of the theory in the existing literature. Attanasio et al. (2012)
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run a unique experiment with 70 Colombian communities, where they invite individuals to match

in risk-sharing groups in a lab setting. Individuals are able to choose what gamble they face from a

set of gambles o¤ered by the experimenters, where higher mean gambles come at the cost of higher

variance. However, the sharing rule for each risk-sharing group is �xed at equal division. Thus,

a group is able to choose what risk to face, but cannot control how to share a given risk. Risk

attitudes are elicited by privately asking each subject to select a gamble before the risk-sharing

round is played. In addition, data on pre-existing kinship and friendship networks are gathered.

Kinship and friendship ties matter for two important reasons: �rst, individuals are likely to know

the risk attitudes of family and friends, and unlikely to know the risk attitudes of strangers. Second,

individuals are likely to trust and therefore commit to family and friends over strangers. Indeed,

Attanasio et al. �nd experimentally that family and friends strongly prefer to match with each

other rather than with strangers, and that they match positive assortatively in risk attitude.

To provide some theoretical backbone for this �nding, Attanasio et al. study a simpli�ed model

of their experimental setting. They assume that individuals have CARA utility and either low or

high risk aversion (type is binary). Group size is restricted to pairs. Individuals choose which

risky project to undertake from a continuous spectrum of projects, but the sharing rule is �xed at

equal division. They show that under the assumptions of this model, individuals match positive

assortatively, that is, high types match with other high types while low types match with other low

types.

Because Attanasio et al. �x the sharing rule at equal division, the data cannot be used for a full

test of the model and theoretical predictions of this paper, which studies risk-sharing groups when

individuals choose how to share a given risk as well as what risk to face. However, an interesting

partial test is still possible: Propositions 2 and 3 are exactly focused on the "corners" of the model,

and describe equilibrium matching when the project choice and sharing rule choice channels are

each shut down in turn. Additionally, we can test Proposition 4, which describes the relationship

between the curvature of mean incomes in the representative risk tolerances of matched groups,

and the curvature of marginal variance cost.

Like the model in Attanasio et al., Proposition 3 predicts unique positive assortative matching

when the sharing rule channel is shut down. However, Proposition 3 is proved under more general

conditions, including arbitrarily many risk types rather than binary type, and this generality is

useful for interpreting the experimental results. In particular, Attanasio et al. assume that the

sharing rule is exactly equal division, that is, () = 1
2, and provide a variety of reasons why

they don�t think side transfers were a concern in practice. Proposition 3 shows that, even with

side transfers , as long as the sharing rule is of the form () =
1
2 + , the unique equilibrium

matching should still be positive assortative, as it is in the experimental �ndings.

While it is encouraging that the matching pattern predicted by Proposition 3 bears out in the

experiment, the predictions of Proposition 4 provide a more rigorous test of the theory. For this,

we need to characterize  () or  (), based on the set of gambles designed by the experimenters.

The discrete nature of the gambles suggests drawing upon Corollary 1 and checking for one of
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the following relationships in the data: either the coe¢ cient of variation is increasing in expected

return and mean incomes are concave in risk tolerance, or the coe¢ cient of variation is decreasing

in expected return and mean incomes are convex in risk tolerance.

The set of gambles in Attanasio et al. is described in the table below (payo¤s are in Colombian

pesos)21. Each gamble had an equally-likely bad and good payo¤, where riskier gambles had worse

bad payo¤s but better good payo¤s.

Gamble Mean Standard Deviation Coe¤. of Variation

1 3000 0 0

2 4200 1500 036

3 4800 2400 05

4 5400 3600 067

5 6000 5000 083

It�s clear that the coe¢ cient of variation is larger for gambles with higher expected return.

Hence, �nding that mean incomes are concave in risk tolerance would be evidence for the theory,

while �nding that mean incomes are convex in risk tolerance would be evidence against the theory.

I regress the mean returns of the chosen gambles on risk tolerance and squared risk tolerance.

A positive coe¢ cient �3 indicates convexity, while a negative �3 indicates concavity:

 = �1 + �2

�
1



�
+ �3

�
1



�2

+ 

The OLS estimates are reported in Table 1:

21The standard deviations reported in the table in Attanasio et al. (2012) are the experimental, not analytical,
standard deviations. The discrepancy results from altruism on the part of the experimenters, who were sometimes
found to give the subject the high payo¤ even when the subject lost the gamble. Here, I consider the analytical
variance, since Attanasio et al. state that subjects were unaware of the bias in probabilities. Hence, subjects should
have chosen gambles based on the analytical variance.
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In line with the theoretical prediction, we see that mean project returns are concave in risk

tolerance. Moreover, individuals with a higher risk tolerance (less risk-averse individuals) choose

riskier (higher mean, higher variance) gambles. Hence, the experimental results lend preliminary

support to the theory.

7 Conclusion

This paper enriches our understanding of informal insurance by developing and studying a

theory of endogenous relationship formation between heterogeneously risk-averse people who lack

access to formal insurance and credit markets and choose both what risk to face as well as how to

share a given risk. The strength of informal insurance is thus how well-insured a population of risk-

averse individuals is when they must rely only on interactions with fellow risk-averse individuals to

manage risk, rather than how well-insured individuals are when the formal contracting environment

is weak. Importantly, this approach reveals that what we can learn from endogenizing informal

insurance isn�t limited to insurance: the need to manage risk informally in an economy in�uences

the strength of entrepreneurship, the correspondence of entrepreneurship with income inequality,

and the optimal structure of informal �rms.

Existing literature has focused largely on analyzing the insurance agreement reached by a �xed

group of individuals, isolated outside of the equilibrium network, or by individuals who match with

a �xed probability, at some cost of understanding what groups would actually exist and coexist in

the �rst place. By contrast, this paper studies how the network shape that emerges in equilibrium

is determined by the possibilities of other shapes the network could have assumed, and identi�es

important connections between the equilibrium network and the risk environment. In particular,

while income distributions may have in�nitely many nonzero higher-order cumulants, equilibrium

matching is found to be determined by only the �rst two: a mean-variance trade-o¤ across portfolio

choices, which can be captured by the coe¢ cient of variation.

This paper highlights the especial importance of accounting for, rather than abstracting away

from, heterogeneity in developing economies. The absence of formal institutions causes individ-

uals to address these unmet needs with interpersonal relationships. Thus, we see that a natural

constraint on informal insurance, apart from any aspect of the formal contracting environment, is

simply that all individuals are risk-averse. However, some individuals are more risk-averse than

others, and this enables informal insurance and determines its strength. Yet, just like the formal

economy, the informal economy too is endogenous: individuals switch between and assume di¤erent

informal roles in the economy as circumstances change.

Accounting for this endogeneity may substantially alter our design and evaluation of a variety

of policies. While crop price stabilization was explicitly discussed in the paper, the framework is

also useful for thinking about land reform. For example, Banerjee (2000) points out that the e¤ects

of land redistribution cannot be estimated without �rst understanding the reasons behind the

distribution of landholdings in the status quo. If the allocation served a risk-sharing purpose (for

27



example, large landowners provided informal insurance to the landless), then land redistribution

could actually decrease welfare.

The model also provides an interesting lens through which to view regulation of wages. We

know that employment contracts (such as the sharecrop contract) often balance multiple needs,

such as insurance and incentive provision. The results of this paper show that legislation which

places restrictions on the set of permissible rental contracts diminishes the power of individuals to

share a given risk, which may cause the less risk-averse to cease acting as informal insurers.

Finally, while informal insurance served as the matching motivation in this paper, the ideas

of the model are more general and can be applied to other important questions. For example,

understanding the equilibrium matching between individuals with di¤erent risk attitudes and the

risky health behaviors they choose may help us design more e¤ective approaches to encouraging

vaccination, boosting health investments and sanitation practices, and preventing and treating HIV.

Many challenges remain. This model can be enriched in a variety of ways�by generalizing

preferences, by introducing limited commitment, by adding dynamic re-matching and dynamic

investment. I leave these tasks for future research. Developing economies are distinguished by

uniquely complex environments and uniquely lofty stakes. That is why they are formidable, and

that is why they are important.
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9 Appendix

9.1 A.1: Equivalence of matching when choosing joint income distribution and
when choosing individual income distribution and sharing the pooled re-
turns

This discussion clari�es the relationship between a model where matched individuals jointly

choose which income distribution to face, and then share the realized return, versus a model where

individuals choose their own income distribution, then match and share the pooled realized returns.

Suppose that, as in the benchmark model, a spectrum of projects  � 0 is available, where
 =  +  ()

1
2 , ( ) = 0,  ( ) = 1, and  ()  0,  0()  0, and  00()  0. Each

individual chooses a personal income distribution from the spectrum , and pools realized returns

with her partner. An individual can always choose autarky if she prefers this to matching with any

possible partner. A matched pair commits ex ante to a sharing rule contingent on pooled income,

(1 + 2). (For ease of notation, let  �  .)

Assume that incomes are correlated. Recall that  (1 + 2) =  (1) +  (2) +

2(1 2), where (1 2) = 12 ¬ 12 = 12 ¬ 12.

Since 1 = 1 +  (1)
1
2 and 2 = 2 +  (2)

1
2 :

(12) = (12 + 1 (2)
1
2 + 2 (1)

1
2 +  (1)

1
2 (2)

1
2 2)

= 12 + 
h
 (1)

1
2 (2)

1
2 2

i

And:

( 2) =  ( )¬ ( )2

= 1

So:

(12) = 12 +  (1)
1
2 (2)

1
2

(1 2) = 12 +  (1)
1
2 (2)

1
2 ¬ 12

 (1 + 2) =  (1) +  (2) + 2 (1)
1
2 (2)

1
2

Thus, members of a matched pair can choose individual income distributions 1 and 2 in a

number of ways to achieve mean pooled income  = 1 + 2 for any   0. The optimal strategy

for the partners in this model, given that they want expected joint income to be , is to choose 1
and 2 to minimize the variance of joint income, given 1 + 2 =  (Appendix 4 shows why this is

the case).
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Solving:

min
12

 (1) +  (2) + 2 (1)
1
2 (2)

1
2 

1 + 2 = 

it is straightforward to see that �1 = �2 =

2 , so that  (j

�
1 

�
2) = 2

¬
2

�
+ 4

¬
2

� 1
2 .

Hence, matched pairs choose from a frontier of joint income distributions described by:  =

+ [2
¬
2

�
+ 4

¬
2

� 1
2 ]

1
2 , where ( ) = 0,  ( ) = 1.

Thus, although individuals ostensibly choose own income in this model, they are actually choos-

ing a distribution of pooled income as a matched pair, and each prefers her equilibrium outcome as

a matched pair to her equilibrium outcome in autarky. Hence, this is substantively equivalent to

the benchmark model, where matched pairs choose their joint income distribution, and each person

is assumed to prefer being matched to being unmatched. I work with the joint choice model in this

paper because it illustrates the dependence of the equilibrium matching on the trade-o¤ between

production and insurance more cleanly.

9.2 A.2: Proof of Lemma 1 (NTU problem has TU representation)

Lemma 1: Expected utility is transferable in this model. Denote a matched pair by (1 2) and
their chosen project by �(1 2). Let (1 2 �(1 2)) describe the certainty-equivalent of a

matched pair in equilibrium; it is twice continuously di¤erentiable in each argument. Then:

(1 2 
�(1 2))

12
 0,  

(1 2 
�(1 2))

12
 0,  

The equilibrium matching maximizes the sum of certainty-equivalents, and is Pareto e¢ cient.

Proof : The following program characterizes the optimal contract and project choice for a

matched pair (1 2):

max
()

Z 1

¬1
¬¬1[¬()](j) 

Z 1

¬1
¬¬2()(j) � ¬¬

An increase in 2�s expected utility strictly corresponds to a decrease in 1�s expected utility,

since more output for 2 means less output for 1, so the constraint binds.

Solving shows that 2�s share of realized output  is:

�(j) =
1

1 + 2
 +

1

2
log

Z 1

¬1

¬ 12
1+2

(j) +
1

2

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Plug this expression into 1�s objective function. Then the optimal project solves

max
2�
¬

1
2

�Z 1

¬1

¬ 12
1+2

(j)
�1+ 1

2

where ¬
1
2
 is just a scaling factor.

So, we can write the indirect utility of an agent 1 who ensures his partner, 2, a level of expected

utility ¬¬:

�(1 2 ) = ¬
1
2

�Z 1

¬1

¬ 12
1+2

(j)
�1+ 1

2

Partner 2 receives expected utility:

2() = ¬¬

= ¬¬2

2

The certainty-equivalent  for an individual  facing risky income stream  is:

¬¬ = [¬¬ ])

 = ¬ 1

log[¬ ]

Clearly, the certainty-equivalent is a monotonic transformation of expected utility. Hence,

showing that the slope of the Pareto frontier of certainty-equivalents is ¬1 shows expected utility
is transferable.

The certainty-equivalent of each member is:

1() = ¬
�
1

1
+
1

2

�
log

�Z 1

¬1

¬ 12
1+2

(j�(1 2))
�
¬ 

2

2() =


2

There is clearly a one-to-one trade-o¤ between the certainty-equivalent of 1 and the certainty-

equivalent of 2. In other words, the slope of the Pareto frontier of expected utility (modulo a

monotonic transformation) is ¬1. Hence, expected utility is transferable.
The proof that the equilibrium matching maximizes the sum of certainty-equivalents and the

sum of expected project returns, and is Pareto e¢ cient, is straightforward. First, if a matching

where each pair is engaged in their optimal project and sharing rule does not maximize the sum of

certainty-equivalents, there would be at least one pro�table blocking. Second, the sum of certainty-

equivalents is a social welfare function, so as the matching maximizes this, it must be Pareto

e¢ cient. (Another way to see this is by recalling the no-blocking condition of the equilibrium.)
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9.3 A.3: Di¤erently-sized groups

We know (see Appendix 2) that the sum of certainty-equivalents for a given pair (1 2) with

representative risk tolerance  = 1
1
+ 1

2
in the benchmark case is given by:

() = ¬ log�()

= � ¬
1X

=2

(¬1)

!¬1 (
�)


2 ()

Then:




=

1X

=2

(¬1)

!

(¬ 1)


 (�)

2 ()



2
= ¬ 1

22

But we know that the risk premium for any risk-averse individual facing any risky project  is

positive:

 () =
1X

=2

(¬1)

!¬1 ()

2 ()  0 ,

1


 () =

1



1X

=2

(¬1)

!¬1 ()

2 ()  0

Hence:




=

1X

=2

(¬1)

!

(¬ 1)


 (�)

2 ()


1



1X

=2

(¬1)

!¬1 ()

2 ()

 0

But:



2
=







2
 0

Hence, (1 2) is decreasing in the risk aversion of any partner, since (� �) is symmetric
in each of its arguments.

Thus, if j1j  j2j, for example, it is the most risk-averse excess agents of 2 who will
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remain unmatched in equilibrium. Why? The following example best illustrates the intuition: let

1 = f1  2 g and 2 = f1  2  3 g, where agents are ordered from least to most risk-averse.

Suppose that it is not the most risk-averse agent who remains unmatched in equilibrium�suppose

2 is unmatched (which is the least favored option for all agents), while (

1  


1 ) and (


2  


3 ) are

matched, and individual payo¤s for the matched pairs are (11¬ 1 1) and (23¬ 3 3). But

then 2 can o¤er to match with 2 and receive individual payo¤ 3, which she prefers to being

unmatched, and this leaves 2 with 22 ¬ 3  23 ¬ 3, since (1 2) is decreasing in risk

aversion as proved above. Thus, 2 and 

2 will deviate and match with each other instead, meaning

that f(1  1 ) (2  3 )g is not stable. The general point is that, because less risk-averse partners
can always generate more surplus together, they can always �nd a division of the surplus which

beats the best o¤er the most risk-averse agent can make. (Remember, the equilibrium matching

pattern itself is determined by whether it�s the less risk-averse agent or the more risk-averse agent

who experiences a larger di¤erence between matching with a less risk-averse versus a more risk-

averse partner.)

Thus, in this simple example, it is 3 who will be unmatched in equilibrium. Then the main

matching results apply to the remaining agents, 1 = f1  2 g and 2 = f1  2 g.

9.4 A.4: Proof of Proposition 1 (main matching result) and Corollary 1 (coef-
�cient of variation result)

Proposition 1: Recall that  () describes the variance cost of a project with mean return .

Then () �  0() describes the marginal variance cost of a project with mean return .

(a) A su¢ cient condition for PAM to be the unique equilibrium match is  00()  0 for

  0 (concavity).

(b) A su¢ cient condition for NAM to be the unique equilibrium match is  00()  0 for

  0 (convexity).

(c) A su¢ cient condition for any match to be sustainable as an equilibrium is  00() = 0

for   0 (linearity).

Proof : Suppose a matched pair (1 2) has to choose from a family of income distributions

de�ned by  =  +  ()
1
2 , where  is a random variable with well-de�ned cumulants: 1() =

( ) = 0, 2() =  ( ) = 1, in�nite support. (The cumulant-generating function of a random

variable is the log of the moment-generating function; the  order cumulant is the  derivative

of the cumulant-generating function evaluated at 0.)

Recall that the representative risk tolerance of a matched group is the sum of the risk tolerances

of the members. So, the representative risk tolerance of (1 2) is  = 1
1
+ 1

2
.

We know from Appendix 2 that the expected utility of a group with representative risk aversion

 (reciprocal of representative risk tolerance ) which has chosen a project  with risky stream of

returns  is:
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

�
¬¬[+ ()

1
2  ]

�
= ¬¬

Z
¬ ()

1
2 ()

= ¬
Z


¬ 1



+ ()

1
2 


()

Divide by (¬1), transform by log, and multiply by (¬) for the certainty-equivalent. Since we
want to maximize expected utility, this implies we want to choose  to maximize the certainty-

equivalent:

(;) = ¬ log
�
¬

1

[+ ()

1
2  ]

�
= ¬

�
¬ 1

+ log

�
¬

1

 ()

1
2 

��
= ¬ 

" 1X

=2

(¬1)

!
 ()


2 ()

#

= ¬ 1

2
 ()¬

1X

=3

(¬1)

!¬1 ()

2 ()

Then:




=
1

22
 (�) +

X

=3

(¬1)

!

(¬ 1)


 (�)

2 ()

And:

2

2
= ¬ 1

3
 (�) +

1

22
 0(�)

�


¬

X

=3

(¬1)

!

(¬ 1)
+1

 (�)

2 ()

+
X

=3

(¬1)

!

(¬ 1)




2
 (�)


2
¬1 0(�)

�


()

=

�
¬ 2


 (�)

 0(�)
+

�



�"
X

=3

(¬1)

(¬ 2)!
1

2
 (�)


2
¬1 0(�)() +

1

22
 0(�)

#

where we know this second bracketed term is positive because it is bounded below by 1
  0.

We establish this bound by recalling the �rst-order condition of the optimization problem:

 = 0 : ¬
1


+
1

22
 (�) +

X

=3

(¬1)

(¬ 1)!
1

2
 (�)


2
¬1 0(�)() = 0

This implies:
1

22
 (�) +

X

=3

(¬1)

(¬ 1)!
1

2
 (�)


2
¬1 0(�)() =

1


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And the �rst term of the second bracketed expression:

X

=3

(¬1)

(¬ 2)!
1

2
 (�)


2
¬1 0(�)() 

X

=3

(¬1)

(¬ 1)!
1

2
 (�)


2
¬1 0(�)()

Now, we seek conditions such that:

2

2
 0

Using the expression for 2
2 , and the fact that the second bracketed expression is a positive

constant, we know that:

2

2
  0,

�


 

2



 (�)

 0(�)

Now, �nd �

 by implicitly di¤erentiating  = 0:

 = 0 :
1

22
 (�) +

X

=3

(¬1)

(¬ 1)!
1

2
 (�)


2
¬1 0(�)() =

1



�


: ¬ 1

3
 0(�) +

1

22
 00(�)

�


¬

X

=3

(¬1)

(¬ 1)!


+1

1

2
 (�)


2
¬1 0(�)()

+
X

=3

(¬1)

(¬ 1)!
1



1

2

�
2
¬ 1
�
 (�)


2
¬2 0(�)2

�


+

X

=3

(¬1)

(¬ 1)!
1



1

2
 (�)


2
¬1

00
(�)()

�


= ¬ 1

2

Hence:

¬ 0(�) + 

2
 00(�)

�


+2

X

=3

(¬1)

(¬ 1)!
1





2
 (�)


2
¬2 0(�)2()

�


2

�


¬  (�)

 0(�)

�
+3

X

=3

(¬1)

(¬ 1)!
1



1

2
 (�)


2
¬2 0(�)()

�



�
 (�) 00(�)

 0(�)
¬  0(�)

�
= ¬

This expression can be rearranged using the �rst-order condition:

¬
0(�)


+

�



��
 ¬  0(�)

2

� �
 00(�)

 0(�)
¬  0(�)

 (�)

�
+
1

2
 00(�)

�
+
2

2

�



X

=3

(¬1)

(¬ 1)!
1





2
 (�)


2
¬2 0(�)2()¬ 

X

=3

(¬1)

(¬ 1)!
1





2
 (�)


2
¬1 0(�)() = ¬1
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So we see that:

�


=

 0(�)
 ¬ 1 +

P
=3

(¬1)
(¬1)!

1



2 (

�)

2
¬1 0(�)()

 00(�)
 (�) ¬  0(�)

 (�) +
 0(�)2

2 (�) +
2

2

P
=3

(¬1)
(¬1)!

1



2 (

�)

2
¬2 0(�)2()

Hence:

�


 

2



 (�)

 0(�)
,

 0(�)2   2 (�) 00(�)

Call the left-hand side of this inequality  , and the right-hand side, . Observe that

at  = 0 (zero risk tolerance),  =  = 0, since  = 0 is the safest project available, so

�(0) = 0, and it is assumed that  (0) =  0(0) = 0.

So, compare 
 and 

 : both  and  are 0 at  = 0. As  increases, if 

either increases faster in  or decreases slower than  at every point  in comparison to ,

that is, 
  

 for all   0, then 2
2  0 since    in the above inequality.

And, vice versa, if 
  

 .

Thus:

 0(�)2   2 (�) 00(�),

0   2 (�) 000(�)
�


,

0    000(�)

where the last equivalency holds because 2 (�)
�

  0.

Hence, Proposition 1 is proven:

 000()  0 8 � 0, 2

2
 0 8 � 0)  

 000()  0 8 � 0, 2

2
 0 8 � 0)  

Note that if our focus were not on identifying conditions for assortative matching that are

independent of risk type distributions, we could easily write a necessary and su¢ cient condition

for PAM and NAM. Instead of seeking conditions for global convexity and concavity of () in

, the condition simply has to hold for each set of representative risk tolerances for every possible

matching in the given population of risk types.
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A quick �nal note: we need (;) to be concave in  for a well-de�ned maximum:

2

2
= ¬ 1

2
 00()¬

1X

=3

(¬1)

!¬1


2

h�
2
¬ 1
�
 ()


2
¬2 0()2 +  ()


2
¬1 00()

i
()

= ¬1
2

"
1


 00() +

1X

=3

(¬1)¬1

(¬ 1)!¬1

h
2
 ()


2
¬2 0()2 +  ()


2
¬2 ¬

 () 00()¬  0()2
�i#

 0

Corollary 1: Let  () =  ()
1
2

 denote the ratio of a project�s mean return to its standard

deviation for   0. Then:

(a)  0()  0 8  0 i¤  00()  0 8  0 ()
(b)  0()  0 8  0 i¤  00()  0 8  0 ()

Proof : Recall that the Sharpe ratio is the reciprocal of the coe¢ cient of variation: () �
1

 () . Thus, proving that the Sharpe ratio monotonically increases (decreases) in mean return i¤

the marginal variance cost is concave (convex) in mean return proves the corollary.

() =


 ()
1
2

0() =
 ()

1
2 ¬ 12 ()

¬ 1
2 0()

 ()

Then:

0()   0,  ()
1
2  

1

2
 ()¬

1
2 0() [since  ()  0 8]

,  () 
1

2
 0()

Then note that ( = 0) =  (0) = 0 = 1
2 � 0 � 

0(0) = ( = 0). So, look at derivatives

of LHS and RHS, since the domain is  � 0.

 0()   00()

But we don�t know under what conditions this inequality holds. So we again note that ( =

0) =  0(0) = 0 = 0 �  00(0) = ( = 0), and di¤erentiate LHS, RHS again:

 00()    00() +  000(),

0    000()
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Since the domain is  � 0, this means that:

 000()  0, 0()  0 8 � 0

, !

,  0()  0

, 2�

2
 0

and:

 000()  0, 0()  0 8 � 0

, !

,  0()  0

, 2�

2
 0

9.5 A.5: Proof of Proposition 2 (NAM when income-smoothing is shut down)

Proposition 2: Suppose that all agents in 1 draw income iid from a distribution  , and all

agents in 2 draw income iid from a distribution  , so that all possible pairs face the same joint

income distribution. Once matched, agents can commit ex ante to a return-contingent sharing rule.

Then the unique equilibrium matching is NAM.

Proof : Suppose that all pairs must undertake the same project, . For instance, the government
mandates that all farmers must grow rice. This e¤ectively shuts down the income-smoothing

channel.

Di¤erentiate (1 2) with respect to 1 and 2 when there is no project choice, so that all

pairs (1 2) face the same risky income stream (j). The cross-partial 2(12)
12

is:

¬ 12
(1 + 2)3

R

¬ 12
1+2

(j)
R
2

¬ 12
1+2

(j) ¬
hR


¬ 12
1+2

(j)
i2

hR

¬ 12
1+2

(j)
i2

But we know that:

Z

¬ 12
1+2

(j)
Z

2
¬ 12
1+2

(j) 
�Z


¬ 12
1+2

(j)
�2

since we know variance is always positive. Therefore:

Z
(j)

Z
2(j) 

�Z
(j)

�2
and () = 

¬ 12
1+2

 is a convex function.
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Hence:

2(1 2)

12
 0

and negative assortative matching therefore results as the unique equilibrium.

Chiappori and Reny (2006) and Schulhofer-Wohl (2006) also �nd that the unique matching

pattern is negative-assortative when heterogenously risk-averse agents who are matched can commit

ex ante to a return-contingent sharing rule of a given risk, but cannot choose what risk to face.

9.6 A.6: Proof of Proposition 3 (PAM when consumption-smoothing is shut
down)

Proposition 3: Suppose that the slope of the sharing rule () =  +  is �xed. For

example, a wage law requires a 50-50 split of output. However, a matched pair is able to choose a

risky project , where  = +  ()
1
2 as in the benchmark model. Then the unique equilibrium

matching is PAM.

Proof : We know from the main matching result that the optimal sharing rule is linear. Suppose
the slope of the sharing rule () =  +  is �xed at  for all possible pairs of risk types. (For

example, the government mandates an equal split of the output, but is unable to prevent partners

from making �xed transfers to one another.) Recall from the set up that  =  +  ()
1
2 ,

( ) = 0,  ( ) = 1.

Fixing  removes consumption-smoothing as an e¤ective risk management tool (since trans-

fers can no longer be conditioned on the realized return), leaving only income-smoothing (project

choice). What happens to equilibrium risk-sharing relationships?

A matched pair (1 2) chooses the relationship-speci�c transfer  and project :

max


Z
¬¬1[¬+(1¬)](j) s.t.

Z
¬¬2[+](j) � ¬¬

Using the structure on :

max


Z
¬¬1[¬+(1¬)(+ ()

1
2 )]() s.t.

Z
¬¬2[+(+ ()

1
2 )]() � ¬¬

The transfer  is chosen to satisfy the constraint (which clearly binds in equilibrium), since the

division of output is �xed at  by the government. Basically, the transfer  that 1 must make to

a partner 2 to ensure her each level of expected utility  measures the value of that relationship.
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Therefore:
Z

¬2[+(+ ()
1
2 )]() = ¬ ,

¬2
Z

¬2(+ ()
1
2 )() = ¬ ,

¬ 1
2

�
¬ + 2¬ log

Z
¬2 ()

1
2 ()

�
= 

Then the equilibrium project selected is:

�(1 2) = argmax
~2�

Z
¬

¬1
�
1
2

�
¬+2~¬log


¬ 2 (~)

1
2 ()

�
+(1¬)(~+ (~)

1
2 

�
()

= argmax
~2�
¬

1
2
¬1~+ 1

2
log

¬ 2 (~)

1
2 ()

Z
¬1(1¬) (~)

1
2 ()

Transform the objective function by dividing by ¬1 and taking logs:

max
~2�

1
2
 ¬ 1~+

1
2
log

Z
¬2 (~)

1
2 () + log

Z
¬1(1¬) (~)

1
2 ()

Then the �rst-order condition characterizing equilibrium project choice is:

¬1¬
12 (

�)
1
2 0(�)

R
¬2 (~)

1
2 ()

R
¬2 (~)

1
2 ()

¬
(1¬ )12 (

�)
1
2 0(�)

R
¬1(1¬) (~)

1
2 ()

R
¬1(1¬) (~)

1
2 ()

= 0

Then the certainty-equivalent of 1 is:

¬¬1 = ¬
1
2
¬1�+ 1

2
log

¬ 2 (�)

1
2 ()

Z
¬1(1¬) (�)

1
2 () ,

1 = ¬ 1
2
 + � ¬ 1

2
log

Z
¬2 (�)

1
2 () ¬ 1

1
log

Z
¬1(1¬) (�)

1
2 ()

Then the sum of certainty-equivalents for (1 2) is:

(1 2) = � ¬ 1
2
log

Z
¬2 (�)

1
2 () ¬ 1

1
log

Z
¬1(1¬) (�)

1
2 ()
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Using the �rst-order condition:



1
=

�

1
¬ 1

2

¬212 (
�)

1
2 0(�)

�

1

R
¬2 (�)

1
2 ()

R
¬2 (�)

1
2 ()

+
1

21
log

Z
¬1(1¬) (�)

1
2 ()

¬ 1
1

h
¬(1¬ ) (�)

1
2 ¬ 1(1¬ )12 (

�)
1
2 0(�)

�

1

i R
¬1(1¬) (�)

1
2 ()

R
¬1(1¬) (�)

1
2 ()

=
1

21
log

Z
¬1(1¬) (�)

1
2 () +

(1¬ ) (�)
1
2

1

R
¬1(1¬) (�)

1
2 ()

R
¬1(1¬) (�)

1
2 ()

And:



21
= ¬ (1¬ )

1

1

2
 (�)¬

1
2 0(�)

�

2

R
¬1(1¬) (�)

1
2 ()

R
¬1(1¬) (�)

1
2 ()

+
(1¬ )

1

1

2
 (�)¬

1
2 0(�)

�

2

R
¬1(1¬) (�)

1
2 ()

R
¬1(1¬) (�)

1
2 ()

¬1
2
(1¬ )2 0(�)

�

2

R
¬1(1¬) (�)

1
2 ()

R
2¬1(1¬) (�)

1
2 () ¬

�R
¬1(1¬) (�)

1
2 ()

�2
hR

¬1(1¬) (�)
1
2 ()

i2

= ¬1
2
(1¬ )2 0(�)

�

2

R
¬1(1¬) (�)

1
2 ()

R
2¬1(1¬) (�)

1
2 () ¬

�R
¬1(1¬) (�)

1
2 ()

�2
hR

¬1(1¬) (�)
1
2 ()

i2

 0

since �

2
 0 and the fraction term is positive. Since the variance of  is positive:

Z
()

Z
2() 

�Z
()

�2

and () = ¬1(1¬) (�)
1
2  is a convex function.

Hence, positive assortative matching arises as the unique equilibrium.

So, if the government regulates wages by �xing the slope of the sharing rule at some  2 [0 1],
where pairs can still make within-pair state-independent transfers, the unique equilibrium matching

pattern is always positive assortative, verifying our intuition that, because consumption-smoothing

is held �xed, the "similarity of decisionmaking framework" dominates and people match with

people who are like them because they will agree about project choice. This can be thought of as

the counterpoint to shutting down the income-smoothing channel.

What are some implications of this understanding? The government may be motivated by

equality concerns to specify an equal division of output in every relationship, but this may actually
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generate even more inequality by weakening the informal risk-management toolkit available to

individuals, which then triggers endogenous change in risk-sharing networks. Speci�cally, if agents

had been matched negative assortatively in the status quo (because the "cost function" of project

mean is quite convex, say), then this imposition of wage equality leads to positive assortative

matching, which may actually exacerbate inequality: there is a bigger spread in projects, with less

risk-averse agents on projects with much higher expected returns while more risk-averse agents are

on projects with much smaller expected returns, and less risk-averse agents abandon their roles as

informal insurers, and more risk-averse agents wind up bearing more risk.

9.7 A.7: Proof of Proposition 4 (mean incomes and risk tolerance)

Proposition 4: Let �(�()) denote the mean return of the project chosen by a matched
pair (�()). Then:

(a) If  00()  0 for   0, then �(�()) is convex in representative risk tolerance

(�()).

(b) If  00()  0 for   0, then �(�()) is concave in representative risk tolerance

(�()).

Proof : We want to show that the condition for global convexity and concavity of the certainty-
equivalent of a group with representative risk tolerance  in  is equivalent to global convexity

and concavity of the mean returns of projects chosen by matched pairs in equilibrium in the

representative risk tolerances of those matched pairs.

We know from Appendix 4 that:

2

2
  0 8  0,

�


 

2



 (�)

 0(�)
8  0

At  = 0,  =  = 0. So, �nd conditions under which 
  

 , and vice versa.

Then:




¬ 


  0,



2
 0(�)

2�

2
+

�



�


2
 00(�)

�


¬ 1
2
 0(�)

�
  0

The second term is positive or negative depending on whether the bracketed term is positive or

negative:

�



�


2
 00(�)

�


¬ 1
2
 0(�)

�
  0,

�


 

1



 0(�)

 00(�)
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Using the expression for �

 we characterized by implicitly di¤erentiating the �rst-order opti-

mality condition in Appendix 4, we see that this inequality is equivalent to:

22

"
1

2

X

=3

(¬1)

(¬ 1)!
1





2
 (�)


2
¬1 0(�)() +

1

22
 0(�)¬ 1



# �
 00(�)¬ 1

2

 0(�)2

 (�)

�
 0

But we know that the �rst bracketed term is positive, since:

1

2

X

=3

(¬1)

(¬ 1)!
1





2
 (�)


2
¬1 0(�)() 

1

2

X

=3

(¬1)

(¬ 1)!
1


 (�)


2
¬1 0(�)()

=
1

22
 0(�)¬ 1



where the equality holds from  = 0.

Hence:

�




1



 0(�)

 00(�)
,

 00(�)¬ 1
2

 0(�)2

 (�)
 0,

2 (�) 00(�)   0(�)2

But we know from Appendix 4 that:

2 (�) 00(�)   0(�)2 ,

 000(�)  0,
2

2
 0,



2
 0(�)

2�

2
+

�



�


2
 00(�)

�


¬ 1
2
 0(�)

�
 0

Hence:

 000(�)   0 8  0,
�



�


2
 00(�)

�


¬ 1
2
 0(�)

�
  0 

2

2
 0 8  0,



2
 0(�)

2�

2
  0 8  0,

2�

2
  0 8  0

Thus, while  000() (or any higher-order characteristics of the distributions of income streams)

might be di¢ cult to measure or estimate in practice, this result suggests a more empirically feasible

approach: the mean incomes of matched groups in equilibrium are convex or concave in their
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representative risk tolerance if and only if  000() is negative or positive.

9.8 A.8: Proof of Proposition 5 (endogenous group size)

Proposition 5: Let () �  0() describe the marginal variance cost of each project . Then:

(a) If  00()  0, the unique equilibrium is maximal-connectedness: the whole group, ,

is matched.

(b) If  00()  0, the unique equilibrium is minimal-connectedness. Individuals match

in negative assortative pairs: the  least risk-averse person in  is matched with the  most

risk-averse. (If jj is odd, then the most risk-averse individual in the population remains

unmatched.)

Proof : We know from the proof of Proposition 1 that:

 00()  0, 2

2
 0

 00()  0, 2

2
 0

Recall the following property of a function  : R+
0 ! R:

(0) � 0  (�) ) 8  2 R+
0  (+ )  () + ()

(0) � 0  (�) ) 8  2 R+
0  (+ )  () + ()

That is, given (0) � 0, a concave function is subadditive, and given (0) � 0, a convex function
is superadditive.

Recall that (�) is a function of the risk tolerance  of a matched group. Since (0) = 0,

we know that:

 00()  0 8 � 0, (1 +2)  (1) + (2) 81 2 2 R+
0

 00()  0 8 � 0, (1 +2)  (1) + (2) 81 2 2 R+
0

But representative risk tolerance is additive: the representative risk tolerance of a matched

group is the sum of the individual risk tolerances. This implies that, when  00()  0 and (�) is
concave in risk tolerance , the matching that maximizes the total sum of certainty-equivalents is

unique and is the minimal matching�that is, individuals match in partnerships (since production

requires at least two collaborators), and we know from Proposition 1 that these partnerships will

be negative assortative (and, from Appendix 3, that if there is an odd number of people in the

population, the most risk-averse individual will remain unmatched). And, when  00()  0 and

(�) is convex in risk tolerance , the matching that maximizes the total sum of certainty-

equivalents is unique and is the maximal matching�that is, all individuals match in one big group.

48



9.9 A.9: CARA Preferences and the Two Moment Result

The fact that equilibrium assortative matching is determined by the �rst two moments is not a

consequence of CARA preferences; rather, it is a consequence of the location-scale property of the

return distributions (see Meyer (1987) for a detailed discussion of the location-scale family). CARA

preferences are associated with reduction to two moments because they are commonly paired with

the assumption of a normal distribution: that is, if () = ¬¬, and  � (�; �2), then it is

well-known that ¬¬ is a lognormal distribution with mean ¬¬(�¬

2
�2), which clearly depends

only on the mean and variance.

However, when CARA preferences are paired with a di¤erent distribution, this is no longer

necessarily the case, which it should be if the preference structure is indeed driving the result. For

example, consider a family of distributions  with () =  and  () =  () which does not

have the location-scale property. Then, the joint certainty-equivalent for a matched pair (1 2) is

(see Appendix 2 for the detailed derivation):

(;) = ¬ log
h
¬

1

[]

i

= ¬ 1

2
 ()¬

1X

=3

(¬1)

!¬1()

instead of the following, as it would be for a location-scale family of distributions:

(;) = ¬ 1

2
 ()¬

1X

=3

(¬1)

!¬1 ()

2 ()

The critical di¤erence is that, with a location-scale family, each distribution  can be written

as a linear function of the sequence of cumulants of the "root" random variable,  . In particular,

the coe¢ cients can be expressed as a function of the variance and the risk tolerance.

This is not the case outside of the location-scale family, where each project �s returns fol-

low a distribution described by a distinct sequence of cumulants f1() 2()  () g, and
there is no structure on the particular relationship between the cumulants of  and 0 . Hence,

conditions for convexity and concavity of (�();) in  will depend on the entire sequence

f1() 2()  () g for all available projects , and we do not obtain the two-moment result.

9.10 A.10: The Portfolio Choice Problem

The model in this paper is framed to best capture the trade o¤ between sharing a given risk

versus what risk to share in the �rst place, and it is therefore logical to parameterize the spectrum

of risky projects with , where  = + ()
1
2 , ( ) = 0  ( ) = 1,  0()  0,  00()  0. The

use of  and  () makes the mean-variance trade o¤ across projects clear.

However, one may wonder how this formulation maps into other commonly-studied portfolio

choice problems, such as the classic problem of an individual who must decide how much of her
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wealth to invest in a risky versus a risk-free asset. It turns out that there is an interesting link

between completeness of markets/diversi�cation frictions and  00(),  000(). More speci�cally,

when the market is complete and there are no frictions to diversi�cation,  () is quadratic and all

matchings are stable (basically, CAPM). When frictions to diversi�cation are moderate (e.g. there

are moderate intermediary costs for investment), it is the case that  000()  0 and PAM is the

unique matching pattern. Finally, when frictions to diversi�cation are substantial, it is the case

that  000()  0 and NAM is the unique matching pattern.

Suppose an individual has wealth 1 (normalized). The risky asset has returns represented by

 � , where () = �,  () = �
2
, and the risk-free rate of return is  � 0.

Then, given that the individual invests  2 [0 1] dollars in the risky asset (which can be thought
of as the fraction invested in the risky asset) and 1¬  in the risk-free asset, let the total return be

described by:
~() = (1¬ ) + ()

where 0 � () �  at each , and 0()  0. That is, it may be costly to invest: if the individual

spends  dollars investing in the risky asset, ¬ () dollars go to an intermediary, and () dollars

are actually invested in the risky asset. Alternatively, instead of being a literal intermediary cost,

this cost may also be interpreted as behavioral�putting aside  dollars to invest may result in only

() dollars actually being invested (e.g. for commitment reasons). If these costs are not present,

then () = . (Of course, it may also be costly to put aside 0 ¬  dollars into the risk-free asset,

and this is straightforward to add to the model. However, the goal here is to show the simplest

mapping of the paper�s project spectrum (  ()) where  000() may be 0, positive, or negative,

into this "risky versus risk-free asset" investment decision. For clarity, and since there are only two

assets, it makes sense to "embed" the intermediary costs in one of the assets.)

Observe that the family of distributions of total return, f ~() :  2 [0 1]g, is a location-scale
family. And:

( ~()) = (1¬ ) + ()�

 ( ~()) = ()2�2

Then we can re-write:

~() = [(1¬ ) + ()�] + ()�0

where 0 =
¬�
�

, so (0) = 0,  (0) = 1.

The question is, how does this map into  () =  +  ()
1
2 , ( ) = 0,  ( ) = 1, where

( ()) =  and  ( ()) =  ()?

 ()
1
2 � ()�

 � (1¬ ) + ()�
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Rearranging yields:

¬  =
 ()

1
2�

�
¬ ¬1

 
 ()

1
2

�

!


Assume the following holds, so that there exists some positive investment amount in the risky

asset which beats investing only in the risk-free asset:

¬   0, � 

¬1
�

 ()
1
2

�

�
 ()

1
2

�



, ()�     

For example, if () = , so that investing  dollars in the risky asset costs exactly  dollars,

then this condition is simply �   (and investing any positive amount in the risky asset beats

investing only in the risk-free asset).

First, characterize  0():

1 =
�
�

1

2
 ()¬

1
2 0()¬ ¬10

 
 ()

1
2

�

!
1

�

1

2
 ()¬

1
2 0() ,

 0() =
2�2()

� ¬ ¬10 (()) 

Then  0()  0 i¤:

�  ¬10 (()) 

Note that if () = , this just boils down to: �   .

Second, characterize  00():

0 = ¬�
�

1

4
 ()¬

3
2 0()2 +

�
�

1

2
 ()¬

1
2 00()¬ ¬100

 
 ()

1
2

�

!
1

4�2
 ()¬1 0()2

+¬10

 
 ()

1
2

�

!
1

4�
 ()¬

3
2 0()2 ¬ ¬10

 
 ()

1
2

�

!
1

�

1

2
 ()¬

1
2 00()

 00() =

�
�

1
4 ()

¬ 3
2 0()2 + ¬100

�
 ()

1
2

�

�
1

4�2
 ()¬1 0()2 ¬ ¬10

�
 ()

1
2

�

�
1

4�
 ()¬

3
2 0()2�

�
2�

 ()¬
1
2 ¬ ¬10

�
 ()

1
2

�

�
1

2�
 ()¬

1
2 

�
=

2�2
(� ¬ ¬10 (())  )

2

�
1 +

¬100 (()) ()

(� ¬ ¬10 (())  )


�

Then, a su¢ cient condition for  00()  0 is ¬100 � 0 (00 � 0). Clearly,  00()  0 if () = .
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Finally, characterize  000() :

0 =  000()

"
�
2�

 ()¬
1
2 ¬ ¬10

 
 ()

1
2

�

!
1

2�
 ()¬

1
2 

#
+

 00()

"
¬ �
4�

 ()¬
3
2 0()¬ ¬100

 
 ()

1
2

�

!
1

4�2
 ()¬1 0()

#
+
�
�

3

8
 ()¬

5
2 0()3

¬�
�

1

2
 ()¬

3
2 0() 00()¬ ¬1000

 
 ()

1
2

�

!
1

8�3
 ()¬

3
2 0()3

+¬100

 
 ()

1
2

�

!
1

4�2
 ()¬2 0()3 ¬ ¬100

 
 ()

1
2

�

!
1

2�2
 ()¬1 0() 00()

+¬100

 
 ()

1
2

�

!
1

8�2
 ()¬2 0()3 ¬ ¬10

 
 ()

1
2

�

!
3

8�
 ()¬

5
2 0()3

+¬10

 
 ()

1
2

�

!
1

2�
 ()¬

3
2 0() 00()

Simplify:

0 =  000()
1

 0()
¬ 3

00()2

 0()2
+

 00()

 ()
+
�
4�

 0() 00()

 ()
3
2

¬ ¬1000

 
 ()

1
2

�

!
1

8�3
 ()¬

3
2 0()3

 000() =

"
 00()

"
3 00()

 0()2
¬ 1

 ()
¬ �
4�

 0()

 ()
3
2

#
+ ¬1000

 
 ()

1
2

�

!
1

8�3
 ()¬

3
2 0()3

#
 0()

Use the known expressions for  0() and  00():

 000()

 0()
=

2�2
(� ¬ ¬10 (())  )

2

�
1 +

¬100 (()) ()

(� ¬ ¬10 (())  )


� �
1

2()2�2
+
3¬100 (()) () ¬ (� ¬  )

2�2()
2 (� ¬ ¬10 (())  )

�
+

+
¬1000 (())

(� ¬ ¬10 (())  )
3 

Thus, we see that:

1. When () =  (the "standard case"), it�s clear that  0()  0,  00()  0, and  000() = 0, as

long as �   (which must hold in order for any positive investment in the risky asset to be

preferred to investing solely in the risk-free asset). Hence, this �ts neatly into the framework

of the paper, and by the main result, all matching patterns are stable in this case (since

 000() = 0).

2. When 0 � () � , () 6= , 0()  0 (so that there are positive intermediary costs

associated with investment), then as long as investing some positive amount in the risky asset

beats investing solely in the risky asset (�  ¬10 (())  ), it is the case that  0()  0.
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Moreover, if 00()  0, so that the amount actually invested in the risky asset is increasing

with the amount spent on investing, but at a decreasing rate, then  00()  0 holds. Finally:

(a) As 000() becomes more negative (¬1000  0),  000() becomes positive: the more severe

the intermediary costs (() is "very concave"), the larger the increase in variance as-

sociated with an increase in mean return. This is the case where  is the unique

matching pattern ( 000()  0).

(b) As 000() becomes more positive (¬1000  0),  000() becomes negative: the less severe the

intermediary costs (() is "not so concave"), the increase in variance associated with

an increase in mean return increases less sharply. This is the case where  is the

unique matching pattern ( 000()  0).

This somewhat stylized mapping suggests an interesting link between di¤erent curvatures of

 () and market completeness: when the market is complete and there are no constraints on

diversi�cation (the case () = ), it is the case that  000() = 0 and all matchings are stable. When

the market is "somewhat incomplete"/there are weak constraints on diversi�cation, that is, ()  

and 00()  0, but 000()  0, so that intermediary costs do not increase too sharply as investment

increases, it is the case that  000()  0 and  is the unique matching pattern. Finally, when

the market is "very incomplete"/there are strong constraints on diversi�cation, that is, ()  

and 00()  0, but 000()  0, so that intermediary costs increase sharply as investment increases,

then it is the case that  000()  0 and  is the unique matching pattern.

9.11 A.11: Individual Payo¤s

Under what more general conditions are the more risk-averse agents worse o¤ after a policy like

the one studied in Section 4?

Since this is meant to give an idea of the conditions, rather than to be an exhaustive proof, I focus

on the "best case scenario for the most-risk averse agent" case. That is, I ask under which conditions

the most risk-averse agent�s highest possible equilibrium payo¤ pre-policy is higher than the most

risk-averse agent�s highest possible equilibrium payo¤ post-policy. Recall that this implies that the

most risk-averse agent receives 4 = 
14 pre-policy, when the unique matching is negative-

assortative, and 4 = 
44 post-policy, when the unique matching is positive-assortative (see

Section 4).

Then, the question is, when do the following hold?

21  21 ,
(

31 ¬ 
32) + (


22 ¬ 

23) + (

13 ¬ 

14) + 
14 

(
21 ¬ 

22 ) + (

32 ¬ 

33 ) + (

43 ¬ 

44 ) + 
44
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22  22 ,

(
22 ¬ 

23) + (

13 ¬ 

14) + 
14  (

32 ¬ 
33 ) + (


43 ¬ 

44 ) + 
44

23  23 ,

(
13 ¬ 

14) + 
14  (

43 ¬ 
44 ) + 

44

24  24 ,


14  

44

Reducing these conditions shows that the more risk-averse agents are made worse o¤ by a policy

which moves the spectrum of portfolio choices from  00() =  to  00() = ¬�that is, a policy
which moves the spectrum of portfolio choices from negative-assortative matching just above the

"indi¤erence point" (where all matches are stable), to positive-assortative matching just below.

This is exactly the kind of policy studied in Section 4: a policy which results more in a change in

the risk trade-o¤ across di¤erent portfolios than in risk levels.

Why is this the case? Again, focus on the case of normally-distributed returns  � (  )

from Section 4 to simplify the form of the joint certainty-equivalents. Then, the "indi¤erence point"

is at  = 2: if  � ( 2), all matchings are stable, and:

( )¬ ( 0) = (0 )¬ (0 0) 8  0 0

Thus, for  2 [2¬  2 + ]:

( )¬ ( 0) � (0 )¬ (0 0) 8  0 0

and the four conditions above e¤ectively reduce to:


14  

44

which holds, since  �  , and the joint certainty-equivalent is decreasing in risk aversion.

9.12 A.12: Limited commitment

While I leave a rigorous treatment of limited commitment in this setting to future work, I

discuss some preliminary analysis here.

The basic elements of the two-period model with limited commitment are:
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1. At the beginning of each period, each member of a matched group (or as an individual, if in

autarky) chooses a risky project.

(a) Assume that eternal autarky is the punishment for reneging, and that incomes are in-

dependent across time and people, since we know that when incomes are independent,

autarky is never optimal. Thus, imposing autarky is in fact a punishment.

2. Basic timing of the game:

(a) A matched pair agrees to a return-contingent sharing rule for their pooled incomes at

the beginning of pd. 1.

(b) Each individual in a matched pair observes both income realizations, and so knows what

the transfer speci�ed by the rule is. Each can choose to uphold that transfer, or to renege

(do something other than what the rule speci�es). If at least one member reneges, then

both members are consigned to autarky in pd. 2. (Assume no re-matching.)

(c) If both uphold the transfer, then the pair stays matched in pd. 2. Assume that in pd.

2, pairs that successfully cooperated in pd. 1 can implement the e¢ cient outcome in pd.

2 (for example, because they�ve successfully won each other�s trust).

Then, what do we know about the equilibrium?

In pd. 2, for non-reneging pairs, we know that NAM conditions imply that the less risk-averse

di¤erentially prefer to bid more for the more risk-averse, while PAM conditions imply that the less

risk-averse di¤erentially prefer to bid more for the less risk-averse.

So, under NAM conditions, a less risk-averse person �nds autarky in pd. 2 more costly with a

more risk-averse partner than with a less risk-averse partner. Under PAM, a less risk-averse person

�nds autarky in pd. 2 more costly with a less risk-averse partner than a more risk-averse partner.

So far, imperfect commitment hasn�t changed when PAM is optimal versus when NAM is

optimal.

Now, think about the e¤ect on pd. 1 choices. Because of limited commitment, in pd. 1, a

matched pair can�t always implement the e¢ cient risk-sharing rule. The equilibrium sharing rule

in pd. 1 for a matched pair ( ) is instead:

1. If the income realizations are such that the e¢ cient risk-sharing rule happens to be such that

both partners �nd (keep my own income realization)¬( 
+

())  (


+
_)¬

(), then the transfer is the e¢ cient one.

2. If the realizations are outside of this interval (which will loosely be the case when one partner

has a particularly good realization and the other has a particularly bad one), then the better

o¤ partner should make a transfer to her partner that makes her indi¤erent between paying

that transfer and keeping everything and facing autarky in pd. 2. (Note that if reneging is

better than cooperating, the optimal reneging is to keep your own realization.)
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Note that this rule is much less smooth than the e¢ cient risk-sharing rule, which is a linear

split of pooled output. Thus, introducing limited commitment means that the equilibrium split

of pooled income is linear for some joint realizations (that is, realizations which are similar), and

near-autarky for others (very dissimilar realizations).

More risk-averse people �nd autarky worse, and also dislike the volatility of the sharing rule in

pd. 1 under limited commitment. So even though under NAM conditions, a more risk-averse person

prefers a less risk-averse partner in pd. 2, the volatility of their corresponding pd. 1 sharing rule

(and the fact that the less risk-averse person �nds autarky a lesser threat than the more risk-averse

person), means that more risk-averse people prefer to match with other more risk-averse people

more strongly than they do in the absence of limited commitment. On the other hand, the less

risk-averse especially value a more risk-averse partner, because a more risk-averse partner is willing

to receive a small transfer and is also the best partner in pd. 2 (NAM conditions). However, limited

commitment constrains the credible "bid" a less risk-averse partner can make in pd. 1. That is,

a less risk-averse person would like to promise a more risk-averse person more than the transfer

that makes her indi¤erent between honoring the transfer and keeping her own income and facing

autarky in pd. 2, but she can�t do this credibly. Thus, under limited commitment, we would expect

positive-assortative matching to be more likely than when commitment is perfect.

9.13 A.13: Background and Empirical Context

The purpose of this section is to provide further empirical context for the model. First, I will

discuss the substantial role played by informal insurance motivations in building relationships in

risky environments with missing formal insurance and credit markets. Additionally, I will show

that risk attitudes are a signi�cant determinant of risk-sharing partner choice.

Next, I will provide evidence that there is a great deal of heterogeneity in risk aversion across

individuals in a wide range of settings.

Finally, I will provide evidence of heterogeneity in the riskiness of activities available to individu-

als, as well as heterogeneity in the relative riskiness of these activities across di¤erent environments.

To �x ideas, it may be helpful to envision an agricultural setting, which captures nicely the key

elements of the model. Much of the literature discussed in this section is drawn from an agricultural

context, where landowners and farmers are heterogeneous in the extent of their risk aversion, and

landowners must decide which farmers to work with. Di¤erent crops have di¤erent yield and pro�t

distributions: some crops are very robust to drought but correspondingly tend to produce low

yields on average ("safe" crops), while other crops have the potential for very high yields, but are

extremely sensitive to rainfall and other inputs, and blight easily ("risky" crops). In addition to

crop portfolio and plot locations, fertilizer and other inputs, irrigation, planting times, and general

farming methods and technologies must also be chosen.

Furthermore, the yield and pro�t distribution of each crop varies across agroclimactic region.

Di¤erent parts of the world experience di¤erent levels of rainfall, soil quality, irrigation, elevation,

heat, and other such ecological characteristics, and this in�uences the stochastic yield and pro�t of

56



each crop. It is no surprise, then, that equilibrium cropping methods, crop mixes, and contracting

institutions vary so widely across region. A goal of this paper is to advance the understanding of

these di¤erences.

9.13.1 Risk Attitude and Informal Insurance Relationships

An abundance of work discusses the considerable role of informal insurance concerns in network

formation. People rely on each other to smooth consumption risk and income risk in a wide variety

of ways (Alderman and Paxson (1992), Morduch (1995)). A very prevalent consumption-smoothing

technique between people is transfers and remittances, and much work has been done to study the

nature of the transfers that can be sustained given a risk-sharing group, the shapes of equilibrium

networks holding �xed some transfer rule, and who is empirically observed to make transfers with

whom (Townsend (1994), Fafchamps and Lund (2003), Genicot and Ray (2003), Bramoulle and

Kranton (2007), and Ambrus et al. (2013), to name a few). A general message these papers convey

is that the need to manage risk in the absence of formal insurance institutions has huge e¤ects on

interpersonal relationships among the poor.

In fact, risk management can a¤ect relationship formation in very speci�c ways. Rosenzweig

and Stark (1989) show that daughters are often strategically married to villages located in en-

vironmentally dissimilar regions with minimally correlated farming incomes, for the purposes of

consumption-smoothing; households exposed to more income risk are more likely to invest in longer-

distance marriage arrangements. Ligon et al. (2002), Fafchamps (1999), and many others analyze

a pure risk-sharing relationship between two heterogeneously risk-averse households who perfectly

observe each other�s income. Ackerberg and Botticini (2002) study agricultural contracting in me-

dieval Tuscany, and �nd evidence that heterogeneously risk-averse tenant farmers and landlords

strategically formed sharecropping relationships based on di¤ering risk attitudes, motivated by

risk management concerns. Hence, informal insurance motivations play a substantial role in the

formation of relationships.

But how much do individuals care about the risk attitudes of potential partners when forming

risk-sharing groups? Naturally, there are many other reasons people might match with each other,

but the point of the model is to focus on one important determinant of risk-sharing relationship

formation, and to study how equilibrium matching patterns shift along that dimension. Further-

more, there is a great deal of evidence that the risk attitudes of partners are indeed a primary

determinant of risk-sharing partner choice. Ackerberg and Botticini (2002) provide empirical ev-

idence supporting the presence of endogeneity of matching along risk attitude of landowners and

sharecroppers in medieval Tuscany. In their data, they �nd that share contracts were associated

with the safer crop of cereal, while �xed rent (residual claimancy) contracts were associated with

the riskier crop of vines. They argue that this is the outcome of endogenous matching�risk-neutral

tenants may have been assigned to the riskier crops, resulting in �xed rent contracts for vines,

while risk-averse tenants may have been assigned to the safer crops, resulting in share contracts on

cereals.
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Additional evidence for the importance of risk attitudes as a determinant of risk-sharing re-

lationships is found in Gine et al. (2010) and Attanasio et al. (2012). Gine et al. (2010) run

an experiment on small-scale entrepreneurs in urban Peru and allow joint liability groups to form

endogenously in a micro�nance setting. They �nd strong evidence of assortative matching along

risk attitude. Attanasio et al. (2012) run a unique experiment with 70 Colombian communities.

They gather data about risk attitudes and pre-existing kinship/friendship networks, and then allow

individuals to form risk-sharing groups of any size. Attanasio et al. �nd that, when members know

each other�s risk types, and trust each other (family and friends are in the same group), condition-

ing on all other potential reasons for matching which they are able to account for (gender, age,

geography), there is strong evidence of positive assortative matching along risk aversion.

To further emphasize the signi�cant role of risk attitude in determining risk-sharing relationship

formation, I use the dataset from Attanasio et al. (2010) to calculate the proportion of formed

links that involved at least one family or one friendship tie, for each municipality. The mean of

these proportions is 0005, or 05%. Since it�s possible that there were very few family and friend

ties reported in the entire dataset to begin with, I also calculate the proportion of all possible links

that could have involved at least one family or friendship tie, for each municipality. The mean of

this number is 005. Hence, this back-of-the-envelope calculation suggests that, in this setting, only

about 10% of all possible risk-sharing relationships which could have involved a family or friendship

tie, actually did involve such a tie. Hence, while one might expect kinship and friendship to be

major in�uences in partner choice, there is strong evidence that risk attitude is the more prominent

consideration when the partner is being chosen speci�cally for the purposes of informal insurance.

In particular, the family and friendship tie is likely to in�uence the pool of potential partners

(because individuals are less likely to know the risk attitudes of strangers, or to trust them), but

the choice of partner from this pool for the purposes of insurance is primarily determined by risk

attitudes.

9.13.2 Heterogeneity in Risk Aversion

The second key piece of the model is heterogeneity in risk attitudes across individuals. There is

plenty of evidence that people are risk-averse and that they are heterogeneous in their risk-aversion.

Experiments which elicit risk attitudes by asking subjects to choose from a set of gambles di¤ering

in riskiness �nd much variation in gamble choice. For example, Harrison et al. (2010) asked 531

experimental subjects drawn from India, Ethiopia, and Uganda to choose a gamble from a set of

gambles varying in riskiness (a riskier gamble has higher mean but correspondingly higher variance),

in a similar spirit as the seminal study by Binswanger (1980), and estimated the density of CRRA

risk attitudes:
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It�s clear that there is a substantial amount of variation, and almost every point in the [0 1]

range is represented.

In another experiment involving over 2,000 people living in 70 Colombian communities, where

66% live in rural areas, Attanasio et al. (2012) observes the following distribution (gamble 1 is the

safest gamble, while gamble 6 is the riskiest):

Chiappori et al. (2010) use two distinct methods to measure heterogeneity in risk preferences

in Thai villages, where these villages are spread across several regions in Thailand. The �rst

method is based o¤ the co-movement of individual consumption with aggregate consumption, and

the second is based o¤ of optimal portfolio choice theory. Using both methods, they �nd substantial

heterogeneity in risk attitudes in each village. Moreover, this heterogeneity varies across villages

and regions. The following table reports the means of risk tolerance for each of 16 villages, and the

test statistic for heterogeneity:
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Again, it is clear that there is widespread variation in the degree of risk aversion across house-

holds.

9.13.3 Heterogeneity in Risky Activities and Settings

Finally, agents in a given setting have a wide variety of investment options and household

decisions to make, which vary in riskiness. For example, a farmer must choose a spatial distribution

of his plots, what lumpy purchases to make (e.g. bullocks), and when and how to plant his crop.

A microentrepreneur must decide what kind of business he wants to start. Parents must decide

how to invest household resources, and whom their children will marry. Individuals face a diversity

of choices, and how much diversity, as well as the relative riskiness of one decision compared to

another, varies across settings.

For example, Rosenzweig and Binswanger (1993) consider the equilibrium crop portfolio choices

of heterogeneously risk-averse farmers living in six ICRISAT villages located across three distinct

agroclimactic regions in India. The �rst region is characterized by low levels of erratically distrib-

uted rainfall and soils with limited water storage capacity (this is the riskiest environment), the

second region by similarly erratic rainfall and irrigation but better soil storage capacity, and the

third region by low levels of more reliable rainfall with reasonable soil storage capacity (this is the

safest environment). The principal crops grown are sorghum, pigeon peas, pearl millet, chickpeas,

and groundnuts, and their yield distributions vary across environment. They show that di¤erences
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in risk aversion do translate into di¤erences in choice of risky investments. Individuals are in�u-

enced by risk-reduction when choosing income streams, particularly in response to limitations on

ex post consumption-smoothing, and the degree to which they are in�uenced depends on their risk

aversion.

Dercon (1996) also studies the variation in riskiness of agricultural investment decisions by

heterogeneously risk-averse rural households. His data is drawn from Tanzania, a country with very

underdeveloped credit markets (in 1989, only 5% of commercial bank lending went to the private

sector, and less than 10% of this lending went to individual farmers). The UN Food and Agriculture

Organization provides an interesting look at the vast heterogeneity in crop yield distributions and

equilibrium crop mix across regions in Tanzania in 1998. The following table shows the area,

yield, and production of each of �ve crops across ten agroclimactically heterogeneous regions in

Tanzania22:

Unfortunately, this table excludes estimates of the variance of yield of each of these crops across

regions. Dercon (1996) provides a discussion of this in his paper. He describes a multiplicity of soils

and irrigation systems in Tanzania, which support di¤erent crops. Paddy, a crop which can yield a

high return, is restricted only to speci�c soils and areas close to a river, and is the least drought and

locust resistant. Despite the potential for high returns, only 11% of the total cultivation sample

grew paddy. On the other hand, sorghum yields only a low-moderate return, but all soils can

sustain it, and it is more resistant to drought and pests. Even though it had a lower mean return,

it was grown by all but two households in the sample.

Uganda and Ethiopia are similar to Tanzania in the set of crops grown, though the actual

crop mix grown di¤ers due to di¤erences in environmental conditions. An IFPRI report from 2011

estimating crop yields in Uganda provides a useful illustration of how the variance of crop yields

di¤ers across crops, and the typical relationship of the variance with the mean:

22Of course, in addition to levels and �uctuations of crop yields, farmers care about the levels and �uctuations of
crop prices, as they care ultimately about the distribution of pro�ts.
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There is a clear positive relationship between mean yield and variance of yield. Groundnuts

have low mean yields and correspondingly low �uctuation of yields, making it a "safer" crop, while

banana has much higher mean yields but correspondingly higher �uctuation of yields, making it a

"riskier" crop.

Abebe et al. (2010) provide a similar graphic for Ethiopia:

(Enset is a type of banana.)

Again, we get a general sense that higher mean yield crops have a higher variance of yield, while

lower mean yield crops have a smaller variance of yield. Comparing across Uganda and Ethiopia,
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we see that maize is a safer crop relative to sweet potato in Uganda, but the opposite is true in

Ethiopia. Thus, the same set of crops have very di¤erent yield distributions in di¤erent settings,

and furthermore, each crop�s relative riskiness with the other crops also varies across setting.

63


