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Abstract

Heterogeneously risk-averse individuals who lack access to formal insurance build and use

relationships with each other to manage risk. I show that equilibrium relationships under

pairwise matching and endogenous group size are determined by the mean-variance trade-o¤

across di¤erentially risky productive opportunities, though output distributions have in�nitely-

many nonzero moments. I show that the need to manage risk informally in�uences �rm structure

and entrepreneurship, and policymakers must account for this. A risk-reduction policy which

ignores the equilibrium response of informal institutions may cause the least risk-averse to

abandon their roles as informal insurers, exacerbating inequality and hurting the most risk-

averse.

1 Introduction

The goal of this paper is to develop a theory of the equilibrium formation and structure of

the relationships which poor, risk-averse people build with each other, when they lack access to

formal risk management tools. This theory enables us to think rigorously about the emergence and

evolution of informal insurance institutions. Existing risk-sharing literature has focused largely

on analyzing the insurance agreement reached by a �xed, isolated group of individuals, or by

individuals who match with a �xed probability, which precludes an understanding of what groups

might actually coexist in the �rst place. How does the network shape that emerges depend on

the alternative shapes the network could have assumed? Endogenizing the structure of informal

insurance not only yields insights into the correspondence of di¤erent economic environments with

di¤erent relationship compositions and network shapes, but also sheds light on the connections

�Duke University, 213 Social Sciences, Box 90097, Durham NC 27708. Email: xy.wang@duke.edu. I am indebted to
Abhijit Banerjee, Esther Du�o, and Rob Townsend for their insights, guidance, and support. I thank Attila Ambrus,
Dan Bennett, Gabriel Carroll, Arun Chandrasekhar, Sebastian Di Tella, Erica Field, Ben Golub, Rachel Kranton,
Andy Newman, Chris Walters, Juan Pablo Xandri, and participants of a variety of conferences and seminars for helpful
comments. Any errors are my own. Support from the National Science Foundation is gratefully acknowledged.
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between informal insurance and income inequality, entrepreneurship, and the structure of informal

�rms.

I develop a model inspired by a lively informal insurance literature.1 Risk imposes a serious

burden on the poor, and the desire to manage risk evidently in�uences many dimensions of the lives

of poor individuals. For example, Rosenzweig and Stark (1989) show that daughters of more risk-

averse farmers are married to more distant villages, to minimize the correlation between farming

incomes. Stiglitz (1974) suggests that sharecropping arises because landowners layer insurance

provision on top of incentives for tenant farmers, and Ackerberg and Botticini (2002) �nd evidence

that heterogeneously risk-averse tenant farmers and landlords in medieval Tuscany strategically

formed sharecropping relationships based on di¤ering risk attitudes. Thus, the poor use complex

relationships with each other in a variety of creative ways when they lack access to formal insurance

and credit institutions.

The model has the following key elements. Risk-averse individuals with exponential utility work

together to be productive.2 For example, in an agricultural village, some individuals own land but

would prefer not to farm it themselves, while other, landless individuals have both the willingness

and the skill to farm. Alternatively, an investor and an entrepreneur, or two entrepreneurs with

di¤erent sets of skills and resources, must work together to launch a business. Matching is assumed

to be pairwise in the benchmark model, but this is later relaxed to allow group size itself to be

endogenous.

There are two key types of heterogeneity: heterogeneity of preferences, and heterogeneity of

technology. Individuals vary in their degree of constant absolute risk aversion, and a matched group

chooses a joint income distribution by choosing from a set of di¤erentially risky portfolio options, or

"projects". Projects with higher expected return come at the cost of higher variance of return, and

members of a group share the realized return of their chosen project according to a rule determined

ex ante. For example, investors seeking to form joint ventures are presented with business proposals

of di¤ering riskiness, and a landowner and her tenant farmer face a spectrum of portfolios of crops,

land plots, inputs, and farming methods, which each yield di¤erent pro�t distributions. I allow for

a large class of symmetric and skewed return distributions. Importantly, distributions may have

in�nitely many higher order moments (as opposed to just two nonzero moments, as in the case of

the normal distribution).

The results reveal that accounting for the endogeneity of informal institutions is essential for

policymaking. I show that a policy which reduces aggregate risk is a strict Pareto improvement

if informal insurance is assumed to stay �xed. However, accounting for the endogenous network

1For background and institutional details, see Alderman and Paxson (1992), Morduch (1995), Dercon (2004),
Fafchamps (2008). Empirical risk-sharing papers include Townsend (1994), Dercon and Krishnan (2000), Fafchamps
and Lund (2003), and Mazzocco and Saini (2012). Theoretical papers on informal insurance include Ligon et. al.
(2002), Genicot and Ray (2003), and Bloch et. al. (2008). Theoretical and empirical papers on risk-sharing networks
include Bramoulle and Kranton (2007), Fafchamps and Gubert (2007), and Ambrus et al. (2013).

2 I show that this model is substantively equivalent to one in which individuals can produce on their own: each
chooses her own income distribution, and a matched group shares the pooled realizations. A simpli�ed intuition for
the equivalence is that even if individuals can produce on their own, groups are e¤ectively choosing their joint income
distribution when they match. Please refer to Online Appendix OA.1 for the details.
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response changes this analysis entirely. Those the policy is particularly intended to help, the most

risk-averse, are in fact particularly harmed: the change in the risk environment incentivizes the

less risk-averse agents to abandon their roles as informal insurers of the more risk-averse, in favor

of entrepreneurial pursuits with other less risk-averse agents. This forces the most risk-averse

agents to match with each other instead, leaving them strictly worse o¤ through two channels.

First, they�ve lost insurance through weakened consumption-smoothing�each member wants her

consumption to depend as little as possible on income realization, and nobody is willing to absorb

the volatility to provide this. In other words, the gains from trade between less and more risk-

averse agents are lost. This is compounded for the more risk-averse by an additional channel: the

loss of consumption-smoothing means that the group must rely on income-smoothing to manage

risk. But this means selecting projects with particularly low expected return, so that the more

risk-averse agents are unable to take advantage of the policy�s reduced variance of the higher mean,

entrepreneurial projects.

Notably, this is the case despite the ability of individuals to commit ex ante to a return-

contingent sharing rule. This presents an interesting contrast to Attanasio and Rios-Rull (2000),

who model informal insurance as being fundamentally about limited commitment, where members

in a given group punish those who renege on the sharing rule by consigning them to autarky.

They �nd that aggregate risk reduction resulting from the strengthening of formal insurance may

decrease welfare by making autarky more appealing, thereby lessening the punishment for reneg-

ing. My results show that studying informal institutions by focusing on the evolving relationships

which comprise them yields insights which may be too hastily attributed to a weaker contracting

environment.3

The results also relate the equilibrium structure and composition of relationships to the set of

portfolios in the economy, and to income inequality. To show this formally, I derive a transferable

utility representation of the model. Since agents are heterogeneous in risk attitudes, a single unit of

output generates a di¤erent level of utility for one agent than it does for another. However, I show

that expected utility is transferable, and seek conditions under which the total certainty-equivalent

of a matched group exhibits supermodularity and submodularity in risk attitudes. This approach is

inspired by Legros and Newman (2007) and Schulhofer-Wohl (2006), who both observe that models

with non-transferable utility may admit a transferable utility representation.4 They show this for

a simpler risk-sharing problem where agents face an exogenous risk and can commit ex ante to a

return-contingent sharing rule, but are not able to choose what risk they face.

The key observation is that the total certainty-equivalent of a matched group is the product

of the cumulant-generating function of the return distribution of the group�s chosen project, and

the group�s representative risk tolerance. I show that, although the return distributions may have

in�nitely many nonzero moments, unique assortative matching in risk attitude is determined by the

3Although the intent of the model is to focus on the endogeneity of informal insurance and shut down commitment
problems, I discuss the e¤ect of introducing limited commitment in Online Appendix OA.2.

4Legros and Newman (2007) develop a more general method to approach matching problems when utility is not
transferable.

3



�rst two moments alone, and does not depend on any aspect of the distribution of risk attitudes

in the population. Speci�cally, if the ratio of the mean return to the standard deviation across

all possible projects is increasing in the mean (that is, higher mean projects have a higher ratio),

then unique positive assortative matching results in the pairwise equilibrium, while if the ratio is

decreasing in the mean, unique negative assortative matching results in the pairwise equilibrium.

This ratio is known as the Sharpe ratio (Sharpe (1966)); its reciprocal is known as the coe¢cient

of variation.

But when is the Sharpe ratio increasing or decreasing in the mean return? Think of the function

describing the variance of project return when the mean return is p as the "cost" of obtaining an

expected return p. Then the Sharpe ratio is increasing (decreasing) in mean return if and only if

the marginal cost function is concave (convex) in the mean p. Intuitively, equilibrium matching is

driven by the trade-o¤ between preference for a similar partner when choosing risk ex ante, and

preference for a dissimilar partner when sharing risk ex post, and the curvature of the marginal cost

function captures this trade-o¤. I show that when the ability to share risk ex post is shut down, e.g.

because the government passes a wage law which �xes sharing rules, positive assortative matching

is always the unique equilibrium. This is supported by the experimental �nding of Attanasio et al.

(2012), who �nd that individuals match positive assortatively in risk type when they know each

other�s types, and when they are able to choose what risky gamble to face, but must equally share

returns. By contrast, when the ability to choose risk ex ante is shut down, negative assortative

matching is always the unique equilibrium. This coincides with the theoretical �nding of Legros

and Newman (2007), Schulhofer-Wohl (2006), and Chiappori and Reny (2006), and is supported

by the empirical �nding of Ackerberg and Botticini (2002) discussed earlier that landowners and

farmers match negative assortatively.

I then show that for a given population of individuals, income inequality is maximized when

individuals match positive assortatively, and minimized when individuals match negative assorta-

tively. In fact, the distribution of wealth when individuals are matched positive assortatively is

a mean-preserving spread of the negative assortative case. Thus, the model predicts that entre-

preneurship in developing countries goes hand-in-hand with high income inequality, and that this

equilibrium arises in a risk environment where the marginal variance cost of projects is concave in

mean return, that is, the Sharpe ratio is increasing in mean return across the spectrum of available

portfolios.

Finally, I allow group size itself to be endogenous. Using coalitional stability as the equilib-

rium criterion, I show that, under the condition yielding unique positive assortative matching in

the pairwise case, whole-group matching (maximal connectedness) is the unique equilibrium, while

under the condition yielding unique negative assortative matching in the pairwise case, negative

assortative, pairwise matching (minimal connectedness) continues to be the unique equilibrium.

Thus, extremal network shapes are tied to extremal within-group composition, which yields in-

triguing predictions for the structure of informal �rms. The result provides an interesting contrast

to Genicot and Ray (2003), who �nd that, under limited commitment, whole-group matching can
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never be sustained. In their model, because individuals cannot choose what risk they face and

cannot commit to a sharing rule, the marginal bene�t of an additional member is eventually neg-

ative: an individual�s expected income is independent of group size, but she becomes increasingly

likely to bear a partner�s downside risk as the group grows. In my model, it is possible for the

marginal bene�t of an additional member to be positive even for arbitrarily large groups, since the

trade-o¤ is slightly di¤erent: adding a member allows the group to take on additional risk because

of the increased ability to share risk ex post, which the group can leverage into taking up a higher

mean, higher variance project. However, now the realized surplus must be divided across more

people. I show that the curvature of the marginal variance cost function again determines which

force outweighs.

In the next section, I set up the benchmark model with pairwise matching and describe the

main matching results. I then analyze a hypothetical policy and show how calculation of the welfare

impact changes drastically after accounting for the response of the network. Following this, I extend

the model and allow group size itself is endogenous. Then, I discuss falsi�ability of the theory, and

show support for the theory in the existing empirical literature. Finally, I conclude. Technical

details are relegated to Appendix A and the Online Appendix (OA).

2 The Model

In the benchmark model, matching is restricted to be pairwise. In Section 5, I relax the

constraint of partnerships and analyze this model when the sizes of the groups are also endogenous.

2.1 Setup

The population of agents: the economy is populated by two groups of agents, G1 and G2,

where jG1j = jG2j = Z, Z 2 f2; 3; 4; :::g.5 (The case jG1j 6= jG2j does not substantively change the

results: the most risk-averse excess individuals simply remain unmatched. See Online Appendix

OA.3 for details.) Agents di¤er in their Arrow-Pratt degree of absolute risk aversion r, where an

agent i of type ri derives utility ui(x) = �e�rix from consuming x units of output. Let ri > 0:

each individual is risk-averse to some extent. De�ne agent ri�s degree of risk tolerance: Ri �
1
ri
.6

No assumptions are imposed on the distributions of risk preferences within each group, or across

groups.

The risky environment: a spectrum of risky projects is available, with return distributions

5Matching is assumed to be across two groups rather than within a single group because assortative matching
patterns are well-de�ned under the former, not because it is necessary for the results. To see this, suppose that
matching is within a group of four people, fr1; r2; r3; r4g, ordered from least to most risk-averse. Then there are two
possible positive assortative matchings: f(r1; r2); (r3; r4)g, and f(r1; r3); (r2; r4)g.

6The model can account for kinship and friendship ties. For example, individuals linked by these ties are more
likely to know each other�s risk types, and are more likely to trust each other, or to monitor and discipline each other.
Hence, an individual might �rst identify a pool of feasible risk-sharing partners, where this pool would be shaped
by kinship and friendship ties, due to good information and commitment properties. Individuals would then choose
their risk-sharing partners from these pools based on risk attitude.
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parameterized by p 2 � � R+0 . A project p returns output Yp, a random variable described by:

Yp = p+ V (p)
1

2Y

where Y is a random variable with a well-de�ned cdf FY : R ! [0; 1], and E(Y ) = 0; V (Y ) = 1.

Note that this allows for a large class of possible distributions for project returns, which may be

symmetric or skewed, including the Normal, Laplace, Logistic, Student, and generalized extreme

value (e.g. Gumbel) distributions.7

Hence:

E(Yp) = p

V (Yp) = V (p)

The function V : �! R
+
0 maps p 2 � to a nonnegative real number, and describes the variance

of output of a project with expected output p. Assume that � = R
+
0 , so that there exists an

undominated portfolio achieving any p � 0.

Let V (�) be thrice-di¤erentiable, and:

1. V (0) = 0, V (p) > 0 for p > 0.

2. V 0(0) = 0, V 0(p) > 0 for p > 0.

3. V 00(p) > 0.

The �rst property ensures that variance is nonnegative, and that an action which returns 0 with

certainty exists (e.g. "do nothing")8. The second property, that projects with higher mean return

also have higher variance of return, is without loss of generality. To see this, observe that, if given the

choice between two projects with the same mean but di¤ering variances, any agent with concave

utility will always choose the project with lower variance. Tracing out the set of undominated

projects shows that V 0(p) > 0. Finally, the third property ensures an interior solution for project

choice for any agent r.

A subset of the risky projects available might therefore look something like this:

7These distributions are also known as location-scale families.
8 Imagine instead that the variance of a project with mean p were given by V (p) + c, where V (0) = 0. Then both

the level c and the curvature V 0(p) a¤ect an individual�s project choice. However, the marginal variance di¤erence
between two projects p1 and p2 is V (p1)� c� V (p2) + c = V (p1)� V (p2). Thus, I simply assume c = 0, which has
the e¤ect of a normalization.
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Production: Assume that any project p requires the partnership of two agents, one from

G1 and one from G2. For example, a landowner and a tenant farmer must work together to

choose inputs and grow crops, two adults marry to form a productive household, an investor funds

an entrepreneur with a business proposal, two entrepreneurs with di¤erent skill sets and time

constraints work together to form a successful joint venture, and so on. A matched pair (r1; r2)

jointly selects a project. (See Appendix 1 for a proof that this framework is equivalent to one where

each partner individually chooses a project and both share the pooled returns.)

All matched pairs face the same spectrum of projects, each agent can be involved in at most

one project, and there are no "project externalities". That is, one pair�s project choice does not

a¤ect availability or returns of any other pair�s project.

To focus on the impact on equilibrium matching of the trade-o¤ in ex ante and ex post risk

management across partnerships of di¤erent risk compositions, there is no moral hazard in this

model, although it is straightforward to allow for observable, contractible actions. Please refer to

Wang (2013b) for an explicit treatment of moral hazard and informal insurance in an endogenous

matching problem.

Information and commitment: all agents know each other�s risk types and the risk envi-

ronment.

A given matched pair (r1; r2) undertaking project p12 observes the realized output yp12 of their

partnership, and is able to commit ex ante to a feasible return-contingent sharing rule s : R ! R

(there is no limited liability). Denote r2�s share of realized output by s(yp12). Feasibility implies

that the income r1 receives must be less than or equal to yp12 � s(yp12). Since all agents have

monotonically increasing utility, r1�s share will be equal to yp12 � s(yp12).

7



The equilibrium: An equilibrium is9:

1. A match function � : R+ ! R
+, mapping each agent in group 1 to a single agent in group

2. Thus, r1�s partner is denoted by �(r1), and �(�) assigns distinct members of group 1 to

distinct partners in group 2.

Moreover, the matching pattern described by �(�) must be stable. It must be that no agent

is able to propose a feasible project and sharing rule to an agent not matched to her under �,

such that both agents are happier when matched with each other in this proposed arrangement

than they are with the partners assigned by � (no blocks).10

2. A set of sharing rules and project choices, one sharing rule and project for each matched pair,

such that no pair can choose a di¤erent sharing rule and/or a di¤erent project which leaves

both partners weakly better o¤, and at least one partner strictly better o¤. In other words,

the sharing rule and project chosen by a matched pair must be optimal for that pair.

Matching patterns: Let Gj = fr1j ; r
2
j ; :::; r

Z
j g, j 2 f1; 2g, ordered from least to most risk-

averse. Under "positive assortative matching" (PAM), the ith least risk-averse person in G1 is

matched with the ith least risk-averse person in G2: �(ri1) = ri2, i 2 f1; :::; Zg. So, (r
1
1; r

1
2) is a

matched pair.

On the other hand, under "negative assortative matching" (NAM), the ith least risk-averse

person in G1 is matched with the ith most risk-averse person in G2: �(ri1) = r
Z�i+1
2 , i 2 f1; :::; Zg.

So, (r11; r
Z
2 ) is a matched pair.

To say that the unique equilibrium matching pattern is PAM, for example, is to signify that the

only � which is stable under optimal within-pair sharing rules and projects is the match function

which assigns agents to each other positive assortatively in risk attitudes.

The next section discusses the results for this model, with technical details relegated to the

Appendix.

3 Results

The �rst step is to identify a transferable utility representation for this model. The heterogeneity

of risk-aversion makes this a model of matching under nontransferable utility: one unit of output

yields utility u1(1) = �e
�r1 for an agent with risk aversion r1, but utility u2(1) = �e

�r2 6= u1(1)

for an agent with risk aversion r2. Thus, an individual evaluates potential partners based not only

on how much output they can produce together, as in the standard case, but also on how happy

the partner is with a given level of output�a partner who produces a lot but then demands a large

transfer might be less desirable than a partner who produces less but is satis�ed with little.

9Existence is assured by Kaneko (1982).
10 Individual rationality holds, as individuals cannot produce on their own.
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Proposition 1 Expected utility is transferable in this model. Denote a matched pair by (r1; r2)

and their chosen project by p�(r1; r2). Let CE(r1; r2; p
�(r1; r2)) describe the certainty-equivalent of

a matched pair in equilibrium; it is twice continuously di¤erentiable in each argument. Then:

@CE(r1; r2; p
�(r1; r2))

@r1r2
> 0, unique PAM

@CE(r1; r2; p
�(r1; r2))

@r1r2
< 0, unique NAM

Corollary 1 The equilibrium matching maximizes the sum of certainty-equivalents, and is Pareto

e¢cient.

A sketch of the proof of Proposition 1 provides a useful understanding of the matching problem,

but all technical details for the proofs of the proposition and corollary are relegated to Appendix

A.1.

First, we characterize the optimal project and sharing rule chosen by a matched pair (r1; r2).

Suppose r1 and r2 have already selected a project p. Let v 2 R parameterize the division of surplus

between the two partners. Then the program below characterizes the equilibrium sharing rule,

given v. (Symmetry implies that the program could also have been set up �xing r1�s expected

utility.)

max
s(yp)

Z

1

�1

�e�r1[yp�s(yp)]f(ypjp)dyp s:t:

Z

1

�1

�e�r2s(yp)f(ypjp)dyp = �e
�v

Solving this program shows that the optimal sharing rule is linear, where the more risk-averse

partner�s transfer is less dependent on realized output yp. That is, if r1 < r2 (so r2 is more risk-

averse), then r2 receives a share
r1

r1+r2
< 1

2 of realized output, plus a constant. The division of

surplus v a¤ects only the constant part of the total transfer.

Since r2�s expected utility is �xed at v, it�s clear that, for each v, both members "agree" on

project choice�they want to maximize surplus, given the division.11 The optimal project can thus

be characterized by maximizing r1�s objective function under s
�(yp; v). Crucially, this shows that

there exists a unique optimal project for the pair, which depends only their risk tolerances and not

on the division v.

We can now express the certainty-equivalent for each member of the pair, given v:

CEr1(v) = �

�

1

r1
+
1

r2

�

log

Z

1

�1

e
�

r1r2
r1+r2

ypf(ypjp
�(r1; r2))dyp �

1

r2
v

CEr2(v) =
1

r2
v

11Wilson (1968) showed that, as a consequence of CARA utility, any pair acts as a syndicate and "agrees" on
project choice.
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This makes it clear that r2 gains one unit of certainty-equivalent at the expense of exactly one

unit of certainty-equivalent for r1. Since the certainty-equivalent is just a monotonic transformation

of expected utility, this shows the transferability of expected utility. Hence, conditions under which

CE : G1 � G2 ! R exhibits increasing and decreasing di¤erences in risk types are necessary and

su¢cient for unique PAM and NAM, respectively. Proposition 2 gives these conditions.

Proposition 2 Recall that V (p) describes the variance cost of a project with mean return p. Then

M(p) � V 0(p) describes the marginal variance cost of a project with mean return p.

(a) A su¢cient condition for PAM to be the unique equilibrium match is M 00(p) < 0 for p > 0

(concavity).

(b) A su¢cient condition for NAM to be the unique equilibrium match is M 00(p) > 0 for p > 0

(convexity).

(c) A su¢cient condition for any match to be sustainable as an equilibrium is M 00(p) = 0 for

p > 0 (linearity).

Note that while the curvature of marginal variance cost is su¢cient for assortative matching

in a known population of individuals, it is both necessary and su¢cient to guarantee assortative

matching for any possible population G1�G2 � R+ � R+.

In addition to being independent of any assumption about the risk types in the economy, note

that Proposition 2 tells us that equilibrium matching depends only on the relationship between the

mean and the variance of the risky project returns, even though the return distributions may have

in�nitely many nonzero higher order moments.

The following corollary provides intuition for this result by relating the curvature of the marginal

variance function to properties of the risk environment.

Corollary 2 Let SR(p) = p

V (p)
1
2

denote the ratio of a project�s mean return to its standard devia-

tion for p > 0. Then:

(a) SR0(p) > 0 8p > 0 i¤ M 00(p) < 0 8p > 0 (PAM)

(b) SR0(p) < 0 8p > 0 i¤ M 00(p) > 0 8p > 0 (NAM)

Recall that SR(p) is the Sharpe ratio of a project p (Sharpe 1966), while its reciprocal is the

coe¢cient of variation. The Sharpe ratio is unitless (dimensionless), and thus a convenient tool for

comparing portfolios.

As the proof of Proposition 2 involves a novel approach to portfolio problems with higher order

moments, I sketch it here. Details for the proposition and the corollary can be found in Appendix

A.2.

De�ne the representative risk tolerance of a matched pair (r1; r2):

R = R1 +R2

=
1

r1
+
1

r2

10



Then observe that the sum of certainty-equivalents of the pair, CE(r1; r2), depends only on

each individual�s risk tolerance through the representative risk tolerance of the pair:

CE(r1; r2) = �R log

Z

1

�1

e�
1

R
ypf(ypjp

�(R))dyp

Moreover, CE(r1; r2) exhibits supermodularity (submodularity) in r1; r2 precisely when CE(R)

exhibits convexity (concavity) in R.

The key is to observe that CE(R) is the product of �R and the cumulant-generating function

KYp(t) of the distribution of project returns Yp. The cumulant-generating function (cgf) is the log

of the moment-generating function (mgf), and the �rst two cumulants of any distribution are the

mean and the variance.

Using the series expansion of the cgf, where kn(y) is the n
th cumulant of Y , we see that:

CE(p;R) = p�

1
X

n=2

(�1)n

n!Rn�1
V (p)

n
2 kn(y)

A pair with representative risk tolerance R chooses p to maximize CE(p;R). Thus, the optimal

project balances the marginal bene�t of increased mean with the marginal cost of higher "general-

ized variance" (the aggregated higher-order cumulants which form a polynomial in V (p)), where a

given level of "generalized variance" is less costly for more risk-tolerant pairs. Hence, the curvature

of the marginal variance cost M(p) is at the heart of the curvature of CE(R) and of assortative

matching.

Corollary 2 describes how the curvature of M(p) shapes the set of portfolios available to a

population, providing further intuition for the connection betweenM(p) and equilibrium matching.

A less risk-averse person enjoys the premium a more risk-averse partner is willing to pay her to

smooth his consumption, but acting as the informal insurer and bearing her partner�s risk forces

the pair to choose a safer project with lower expected return. If she instead matches with a less

risk-averse partner, she forgoes the premium from providing insurance, but she and her partner

are able to undertake a riskier project with higher expected return. Whether a less risk-averse

individual prefers to be an informal insurer or an entrepreneur, and thus whether negative or

positive assortative matching results, depends on whether partnerships generate the most value

through insurance or production. When the ratio of expected return to standard deviation is lower

for riskier projects, the less risk-averse will prefer to be informal insurers; when the ratio is higher

for riskier projects, the less risk-averse will prefer to be entrepreneurs.

Thus, the key trade-o¤ is between sharing a given risk, and choosing what risk to share. Proposi-

tions 3 and 4 demonstrate this rigorously by shutting down each channel in turn and characterizing

the equilibrium match. I show that, when individuals face a �xed risk and partner choice a¤ects

only how that risk is shared, negative assortative matching is the unique equilibrium, and the less

risk-averse act as informal insurers. When individuals face a �xed sharing rule and partner choice

a¤ects only what risk is faced, positive assortative matching is the unique equilibrium, and the less
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risk-averse are entrepreneurs.

Proposition 3 Suppose that all agents in G1 draw income iid from a distribution M , and all

agents in G2 draw income iid from a distribution W , so that all possible pairs face the same joint

income distribution. Once matched, agents can commit ex ante to a return-contingent sharing rule.

Then the unique equilibrium matching is NAM.

See Online Appendix OA.4 for the proof.

This coincides with the theoretical �nding of Legros and Newman (2007), Schulhofer-Wohl

(2006), and Chiappori et al. (2006), and with the empirical �nding of Ackerberg and Botticini

(2002), who �nd that heterogenously risk-averse landlords and tenant farmers who chose sharing

rules but who couldn�t choose which crop portfolios to grow matched negative assortatively in

medieval Tuscany.

Proposition 4 Suppose that the slope of the sharing rule s(Rp) = a+ bRp is �xed. For example, a

wage law requires a 50-50 split of output. However, a matched pair is able to choose a risky project

p, where Yp = p + V (p)
1

2Y as in the benchmark model. Then the unique equilibrium matching is

PAM.

See Online Appendix OA.5 for the proof.

When the dependence of each agent�s consumption on realized return is �xed exogenously,

individuals can no longer trade comparative advantage: more risk-averse agents are unable to

o¤er the less risk-averse higher premiums to bear their risk. Hence, partnerships are motivated

by production, and positive assortative matching is the unique equilibrium. This aligns with the

experimental �nding of Attanasio et al. (2012), who �nd that agents match positive assortatively

in risk preference when they can choose the riskiness of the gamble they face, but the sharing rule

is �xed at equal division.

Finally, the last two results demonstrate that an understanding of the formation of informal

relationships yields insights into the broader economy.

Proposition 5 Let p�(ri; �(ri)) denote the mean return of the project chosen by a matched pair

(ri; �(ri)). Then:

(a) If M 00(p) < 0 for p > 0, then p�(ri; �(ri)) is convex in representative risk tolerance

R(ri; �(ri)).

(b) If M 00(p) > 0 for p > 0, then p�(ri; �(ri)) is concave in representative risk tolerance

R(ri; �(ri)).

Corollary 3 For a given population of individuals G1; G2 and a given risk environment described

by V (p), income inequality, measured by the dispersion of and gap between lowest and highest

expected incomes, is maximized when individuals are matched positive assortatively, and minimized

when individuals are matched negative assortatively.
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See Appendix A.3 for the proofs.

In words, Proposition 5 tells us that positive (negative) assortative matching corresponds to

the convexity (concavity) of the mean joint incomes of matched pairs in the representative risk

tolerances of those matched pairs. Crucially, this result suggests a falsi�ability test for the theory

which requires observing only the actual matching and mean incomes, and not any data on higher-

order moments (such as variance of income), or any counterfactual matching data (such as how

agents would have behaved had they been matched with other partners). Falsi�ability is discussed

in detail in Section 6.

Further, Corollary 3 demonstrates that environments which foster informal entrepreneurship

(PAM) also generate higher income inequality, while environments in which informal insurance is

strong (NAM) have less income inequality. In particular, the poorest (those below the median) are

poorer and the richest (those above the median) are richer under PAM than NAM.

4 Policy

The world�s very poor largely depend on agriculture for subsistence. An extensive body of

literature documents the economic importance of agricultural sector growth in developing countries

(e.g. Cervantes-Godoy and Dewbre (2010)). Stabilization of crop prices is frequently proposed as

a tool for alleviating the substantial risk burden shouldered by poor, risk-averse farmers (Dawe

(2001)). Notable examples include maize, sorghum, and rice in Venezuela, the Andean Price Band

system between Colombia, Ecuador, and Venezuela, bananas and grains in Ethiopia, and many

others (Knudsen and Nash (1990), Minot (2010)).

The theory presented in this paper provides a useful framework for evaluating such stabilization

policies. I abstract from possible governmental and other frictions in policy implementation, in order

to study how accounting for the equilibrium response of informal institutions might substantially

alter policy analysis even in an otherwise ideal world.

Suppose a benevolent government contemplates solutions for its many poor farmers, who face

an unforgiving risk environment, and lack access to formal insurance. Because a slight increase

in pro�tability of crop portfolio comes at the cost of extremely high variance of pro�t, farmers

are trapped into growing crops that are safer but not very pro�table�they forgo innovations for

less pro�table, traditional methods. To encourage the farming of crops with higher expected prof-

itability, the government places price bands of the form [pL; pH ] on each crop�s price. If the world

price of a crop happens to fall within this band, that is the price the farmer faces. However, if

the world price falls below the price �oor, the farmer is guaranteed to receive pL, and if the world

price is above the price ceiling, the farmer faces pH . The marginal impact of stabilization is largest

for crops with the most volatile prices: the variance of every crop falls, but the variance of the

riskiest crops falls by the largest amount. Thus, the policy leads to a change in the curvature of

the marginal variance cost M(p) across di¤erent crop portfolios.

A numerical example illustrates the e¤ect of the policy concretely. Suppose there are �ve
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di¤erent crops, denoted by i 2 f0; 1; 2; 3; 4g, where Qi represents the yield, and Pi the price, of

crop i. Crop 0 represents not growing at all. Since the purpose of this short exercise is simply

to demonstrate how price bands may change the curvature of M(p), we normalize yield risk and

assume that E(Qi) = 1; V (Qi) = 0. Assume that an individual farmer does not a¤ect the world

price, so that Pi is independent of Qi.

Then the mean pro�tability and variance of pro�tability for each crop is:

E(PiQi) = E(Pi)

V ar(PiQi) = V (Pi)[E(Qi)]
2 + V (Qi)[E(Pi)]

2 + V (Pi)V (Qi)

= V (Pi)

In other words, the mean and variance of pro�tability for crop i is simply the mean and variance

of the price of crop i.

Suppose Pi takes on value p
L
i with probability �i 2 [0; 1], and p

H
i > p

L
i with probability (1��i).

The table below describes, for each crop i, the bad price outcome (pLi ), the good outcome (p
H
i ), and

the probability of the bad outcome (�i), which together determine the mean and variance of crop

i�s price (�pi ; �
2
pi
), and the Sharpe ratio SRi =

�pi
�pi
. Note that a crop with higher mean price also

has higher variance of price, and that the Sharpe ratio is smaller for crops with higher expected

return.
Crop pL pH � �p �2p

�pi
�pi

Crop 0 0 0 � 0 0 n=a

Crop 1 0 2:5 3
5 1 1:5 0:82

Crop 2 0 6 2
3 2 8 0:71

Crop 3 0 12 3
4 3 27 0:58

Crop 4 0 20 4
5 4 64 0:5

Now, suppose price bands are placed on each crop to reduce risk for farmers and encourage them

to choose riskier but more pro�table portfolios: the expected price of each crop is maintained, but

the government guarantees a higher lower bound and a lower upper bound for each price. This

causes the Sharpe ratio to be bigger for crops with higher expected return. The table below

describes each crop post-policy:

Crop pL pH � �p �2p
�pi
�pi

Crop 0 0 0 � 0 0 n=a

Crop 1 0:02 2:47 3
5 1 1:44 0:83

Crop 2 0:35 5:3 2
3 2 5:45 0:86

Crop 3 1 9 3
4 3 12 0:87

Crop 4 1:75 13 4
5 4 20:25 0:89

Note that the mean price for each crop remains unchanged, but the variance has fallen, and
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has fallen more for the most volatile crops. The Sharpe ratio is now larger for crops with higher

expected return.

Figures 2a and 2b below show the change in curvature of variance cost and marginal variance

cost across the spectrum of crops pre- and post-policy:
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Fig. 2a: Change in curvature of variance cost post-policy
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Fig. 2b: Change in curvature of marginal variance cost post-policy
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Now that we�ve seen how stabilization of crop prices translates into a change in the curvature of

M(p), let us compare the welfare impacts of the risk-reduction policy in a more general environment,

ignoring and then accounting for the endogeneity of informal insurance institutions.

For simplicity, assume that the returns of di¤erent crop portfolios are distributed normally.

In particular, suppose that pre-policy, the pro�ts of a crop with mean p are described by �prep �

N(p; pN1), N1 > 2. Thus, the marginal variance cost function is Mpre(p) = N1p
N1�1, which is

convex in p. The government then implements a stabilization policy to di¤erentially reduce the risk

of higher mean portfolios. Post-policy, pro�ts are described by �postp � N(p; pN2), where N2 2 (1; 2),

so thatMpost(p) is now concave in p.
12 According to Proposition 2, the unique equilibrium match is

negative assortative pre-policy, and positive assortative post-policy (N = 2 is the "tipping point",

at which every matching pattern is stable).

Importantly, the risk-reduction policy a¤ects level as well as curvature of risk. Note that

reducing the variance of every portfolio to 0 would clearly make everyone happier: the positive

impact of the change in levels outweighs any impact the change in curvature might have. However,

12Note that modeling V (p) as a power function has one small drawback. It�s a natural choice, since we want
to analyze a policy that reduces the variance of every project, and particularly reduces the variance of the riskiest
projects, which is captured well by "decreasing N". However, when N falls, pN for p 2 (0; 1) actually increases.
Hence, I simply assume that the population of risk types in G1 and G2 is such that no possible pair ever wishes to
undertake a project p 2 (0; 1) pre-policy:

1

max(r1)
+

1

max(r2)
�
N1

2

This is simply for convenience, and does not substantively in�uence the intuition or the policy analysis, since the
matching results are free of any assumption on the distribution of risk types. If the above condition did not hold,
the policy would be a bad idea without considering informal institutions, since individuals choosing p < 1 would be
worse o¤.
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policy is generally only able to achieve small reductions in risk levels before returns are a¤ected.

Moreover, we know from Proposition 2 that the composition of partnerships is driven by curvature,

not levels. Thus, setting N1 = 2 + " and N2 = 2 � ", " small, maximizes the ratio of the change

in curvature to the change in levels, and enables us to isolate the impact stemming from the

endogenous response of the informal insurance network. For this example, let " = 0:05.

Suppose G1 = f0:5; 0:8; 0:9; 1g, and G2 = f1; 2; 3; 4g, so that the agents in the second group

are more risk-averse than the �rst (typically believed to be the case with landowners and tenant

farmers, but the matching results and intuition about the policy do not depend on which risk

types are chosen). Then the e¤ect of the policy without accounting for the response of informal

institutions is described by the lemma below.

Lemma 1 A policy which reduces the variance of every available project is a strict Pareto improve-

ment if the composition of partnerships does not change.

The proof is intuitive: each matched partnership can stay on the same project post-policy, or

can choose a di¤erent project. If a partnership retains its original project, it is strictly better

o¤, since the project has the same mean as it did before the policy, but a lower variance. If a

partnership switches to a di¤erent project, then by revealed preference, they must be even better

o¤ facing the new project than facing the old project with decreased variance. But this means that

each partnership is strictly better o¤.

Now, let�s account for the endogenous re-formation of partnerships triggered by the policy.

What happens to the expected utility generated by the collaboration of each matched pair? The

red line with circular markers and blue line with square markers in Figure 3 depict the expected

utility pre- and post-policy, respectively, generated by matched partnerships, where "1" on the

x-axis represents the least risk-averse pair, and "4" on the x-axis represents the most risk-averse

pair. Clearly, the least risk-averse bene�t at the cost of the more risk-averse:
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The change in crop portfolios chosen in equilibrium is depicted in Figure 4:
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Clearly, this risk-reduction policy is not a Pareto improvement. We see that the more risk-

averse agents are worse o¤ after implementation of the policy, purely as a result of the endogenous

network response: the policy causes the least risk-averse agents to abandon their roles as informal

insurers of the most risk-averse agents, in favor of entrepreneurial partnerships with fellow less

risk-averse agents. The poorest, most risk-averse agents are harmed via two channels: �rst, they�ve

lost their informal insurers, and this weakens their capacity to smooth consumption, which reduces

their welfare. To make matters worse, because the most risk-averse agents, who are now paired

with each other, have very little capacity to smooth a given risk (as neither is willing to bear

the volatility to smooth her partner�s consumption), they must instead manage risk by choosing

projects with low variance, which traps them into growing crop portfolios with low mean returns.

On the other hand, the least risk-averse agents, who are now paired with each other, no longer

play the role of informal insurer, and this enables them to take advantage of the decreased aggregate

risk and undertake the higher mean, entrepreneurial projects (e.g. adopt a new technology). They

are better o¤ post-policy. Thus, we see that the emergence of enterpreneurship corresponds to

higher income inequality.

These insights provide an interesting complement to existing literature. Attanasio and Rios-Rull

(2000) model the introduction of formal insurance as a policy which reduces the aggregate riskiness

of the environment. They also �nd that such a policy may hurt the welfare of the most risk-averse

agents. However, their model, which builds o¤ Ligon, Thomas, Worrall (2001), considers a �xed

group of risk-sharing members whose informal insurance arrangement is constrained by limited

commitment. Two agents sustain informal risk-sharing by threatening credibly to cut o¤ all future

ties if someone reneges, that is, does not honor the risk-sharing agreement (e.g. a member keeps her

own income realization instead of transferring some of it to an unlucky partner). Thus, anything

that lowers the cost of autarky (the state of being alone and unable to share risk with somebody

else) will decrease the level of informal insurance that can be sustained, because the punishment

has become less costly. Since the introduction of formal insurance reduces aggregate riskiness, such

a policy reduces the cost of autarky, and as a consequence informal insurance is weakened.
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However, if commitment were perfect in Attanasio and Rios-Rull (2000), the introduction of

formal insurance would strictly improve welfare, because lowering the cost of autarky matters only

through the punishment of cutting o¤ future ties, which would no longer be relevant. One contri-

bution of this example, then, is to show that, even when commitment is perfect, introducing formal

insurance might still reduce the welfare of the most risk-averse agents, because the composition of

the informal risk-sharing network changes in response. Reducing the riskiness of the environment

does increase the value of autarky, but it also increases the value of being in a relationship, and

increases it heterogeneously across partnerships of di¤erent risk compositions.

This example also contrasts with Chiappori et al. (2011), who estimate that the least risk-averse

individuals are the ones left worse o¤ after the introduction of formal insurance, since they have

been displaced as informal insurers. However, this exactly illuminates the need for a model of the

equilibrium network of relationships�I show that the least risk-averse agents do leave their roles as

informal insurers, but only because they prefer to undertake entrepreneurial pursuits instead. It

would be interesting to see how their estimation changes after accounting for the endogeneity of

matching.

5 Endogenous Group Size

The focus thus far has been on conditions under which assortative matching emerges as the

unique equilibrium when groups are constrained to be of size two. However, we know that a

matched pair behaves like a single agent with representative risk tolerance R. In fact, the proof of

Proposition 2 echoes Wilson (1968) and shows that this is a property of a matched group of any

size. This suggests de�ning the representative risk tolerance of a group of N matched people:

R =

N
X

i=1

1

ri

In order to think about equilibrium matching when group size itself is endogenous, we need to

make a few adjustments to the benchmark model. Instead of matching across two distinct groups,

individuals all belong to one group, G, and match within this group (this simply allows for group

size to be an odd number). As before, production requires at least two collaborators (discussed in

Appendix 1), and a matched group of agents jointly chooses a risky project p � 0 from a spectrum

of risky projects, where a project p�s returns are described by Yp = p + V (p)
1

2Y , Y a random

variable with well-de�ned cdf and E(Y ) = 0, V (Y ) = 1. Individuals in an N -person group commit

to a feasible return-contingent sharing rule s2(yp); s3(yp); :::; sN (yp), which describes the share of

realized output each member receives, for each possible level of output.

De�ne an equilibrium matching to be one that is stable to all coalitional deviations. That is,

a group is stable if no strict subset of the group is able to break away and choose a project and

sharing rule such that every member of the deviating coalition is weakly better o¤, and at least

one member is strictly better o¤.
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Proposition 6 relates familiar conditions on the risk environment to the size and composition of

matched groups in equilibrium in this more general model.

Proposition 6 Let M(p) � V 0(p) describe the marginal variance cost of each project p. Then:

(a) If M 00(p) < 0, the unique equilibrium is maximal-connectedness: the whole group, G, is

matched.

(b) If M 00(p) > 0, the unique equilibrium is minimal-connectedness. Individuals match in nega-

tive assortative pairs: the ith least risk-averse person in G is matched with the ith most risk-averse.

(If jGj is odd, then the most risk-averse individual in the population remains unmatched.)

See Appendix A.4 for the details of the proof.

Proposition 6 shows that when the marginal variance cost is concave in expected return, the

unique equilibrium matching coincides with the matching when group size is restricted to two.

That is, pairwise matching is actually the optimal matching structure in this case, and the network

is minimally-connected. On the other hand, when the marginal variance cost is convex in expected

return, all individuals match in one big group, and the network is maximally-connected. Thus, the

curvature of the marginal variance cost is tied both to extremal match compositions, as well as to

extremal structures of the network of matches.

This result reveals an interesting relationship between the strength of formal insurance institu-

tions and the structure of �rms in developing economies. Because poor entrepreneurs lack access to

formal insurance, their need to share risk informally in�uences the nature of the �rms they build.

When achieving a higher expected return comes at an increasingly steep escalation in risk cost, in

the sense that the Sharpe ratio (mean to standard deviation of returns) is smaller for projects with

higher expected return, a less risk-averse individual provides more value by informally insuring

a more risk-averse individual. However, this informal insurance provision, which causes the less

risk-averse person to bear most of the risk, comes at the cost of investing in higher mean, higher

variance projects. Thus, the economy is characterized by a minimally-connected network of many

small, heterogeneously-composed �rms, each choosing safe, non-innovative projects with low mean

and low variance of return.

On the other hand, when the Sharpe ratio is larger for projects with higher expected return, the

less risk-averse individuals can bear some risk and still be able to choose entrepreneurial projects,

since the increase in risk is outweighed by the increase in expected return. In particular, accepting

a less risk-averse partner enables the take up of a project with much higher mean return, and this

bene�t outweighs the cost of having to share good outcomes. Moreover, the less risk-averse are also

happy to insure the more risk-averse, since projects with higher mean return no longer come at

such a steep escalation in risk cost. Thus, the economy is characterized by a maximally-connected

network: one large �rm choosing a risky, entrepreneurial project.

This result contrasts interestingly with Genicot and Ray (2003), who �nd that, under limited

commitment, whole-group matching can never be sustained as a coalitionally-stable equilibrium in

a model where individuals are homogeneously risk-averse and draw their income realization inde-

pendently from the same exogenously-speci�ed income distribution. In their framework, because
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individuals cannot choose what risk to face, the marginal bene�t of an additional member is in-

evitably eventually negative: an individual�s expected income is independent of group size, but

she becomes increasingly likely to bear a partner�s downside risk as the group grows, and limited

commitment implies that individuals cannot be compelled to bail partners out after some point.

Thus, a subgroup will always pro�tably deviate if the whole group tries to match, when the number

of people in the population is large.

6 Falsi�ability and Empirical Support for the Theory

While the previous sections are devoted to exploring interesting implications of the theory, this

section provides a variety of empirical approaches for investigating the plausibility of the theory.

One such approach is to check directly the conditions of Proposition 2 or Corollary 2. That is,

the interested researcher could elicit the risk attitudes of individuals in a population (e.g. using

Binswanger (1980) gambles, or a host of other techniques in the literature), as well as record network

connections between individuals. The remaining component is the mean and variance of return for

each of the risky projects individuals are able to undertake. For example, Online Appendix OA.6

contains tables showing the mean and variance of yield of a variety of crops available to farmers in

di¤erent regions�this data has been collected extensively for agriculture. Alternatively, the Sharpe

ratios of portfolios in the set of investor options are often calculated in �nance. This approach also

suits a lab experiment, since the researcher is able to design the set of projects o¤ered to di¤erent

pools of subjects. Hence, a variety of di¤erent methods enable the research to construct V (p) (the

variance of return associated with a mean return p), or SR(p) (the Sharpe ratio associated with

mean return p), and verify or falsify the theoretical prediction regarding the relationship of the

curvature of the marginal variance cost, the monotonicity of the Sharpe ratio in expected return,

and equilibrium matching patterns.

However, the researcher may not always be able to reliably construct V (p) or SR(p). Proposition

5 suggests another approach. Instead of constructing V (p), it is only necessary to collect the mean

incomes of matched groups, in addition to the data on which individuals are matched and their

risk attitudes. Then, the theory predicts that positive assortative matching corresponds with

convexity of mean incomes in the representative risk tolerances of matched groups, while negative

assortative matching corresponds with concavity. Importantly, this approach does not require

knowing anything about the set of risky production opportunities available in the economy, does not

require knowing any counterfactuals, such as what projects individuals would have chosen had they

matched with di¤erent partners, and does not require knowing any moments of the distributions

of returns beyond the mean. (Note that another interesting application of Proposition 5 is that it

enables policymakers to identify when an economy is near a "tipping point" of the kind discussed

in the policy section�when mean incomes are close to being linear in risk tolerances, we can infer

that even a small change in the risk environment could "tip" the matching from one extreme to

the other, and could lead to the sorts of adverse welfare consequences illustrated by the crop price
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stabilization example.)

To �x ideas, consider the following example. Suppose G1 = frA1 ; r
A
2 ; r

A
3 g and G2 = fr

B
1 ; r

B
2 ; r

B
3 g,

where rA;B1 < rA;B2 < rA;B3 .

Then, suppose the underlying (unobservable) marginal variance cost function is concave: M 00(p) <

0. Suppose we observe agents matching positive assortatively in risk attitude, as Proposition 2 pre-

dicts. Suppose we also observe the mean incomes of each pair, p(rA1 ; r
B
1 ); p(r

A
2 ; r

B
2 ); and p(r

A
3 ; r

B
3 ),

as well as the risk types of each agent. Note that we aren�t able to force the agents to match in di¤er-

ent ways, so we cannot observe what they would have chosen with di¤erent partners. Furthermore,

we do not observe higher-order moments of the income distributions, including the variance.

Hence, we follow the approach suggested by Proposition 5, and use the observed matchings

(rA1 ; r
B
1 ), (r

A
2 ; r

B
2 ); and (r

A
3 ; r

B
3 ) to calculate the representative risk tolerance Ri =

1
rAi
+ 1

rBi
of each

matched pair. Then, to check for concavity or convexity of mean incomes in representative risk

tolerances, regress pi � p(r
A
i ; r

B
i ) on a constant, as well as Ri and R

2
i (to use a crude second-order

polynomial approximation):

pi = �1 + �2Ri + �3R
2
i + "i

If �̂3 > 0, this suggests that pi is convex in Ri, and this is evidence supportive of the theory,

since we have established the following: (a) individuals are matched positive assortatively in risk

preferences, and (b) the mean incomes of the matched pairs are convex in the representative risk

tolerances of those pairs. On the other hand, �̂3 < 0 would be evidence against the theory, since

individuals are matched positive assortatively, but the mean incomes of the matched pairs are

concave in the representative risk tolerances. (Of course, more sophisticated techniques may be

used to test for concavity or convexity.)

I apply a combination of these approaches to the dataset from Attanasio et al. (2012) to seek

preliminary support or falsi�cation of the theory in the existing literature. Attanasio et al. (2012)

run a unique experiment with 70 Colombian communities, where they invite individuals to match

in risk-sharing groups in a lab setting. Individuals are able to choose what gamble they face from a

set of gambles o¤ered by the experimenters, where higher mean gambles come at the cost of higher

variance. However, the sharing rule for each risk-sharing group is �xed at equal division. Thus,

a group is able to choose what risk to face, but cannot control how to share a given risk. Risk

attitudes are elicited by privately asking each subject to select a gamble before the risk-sharing

round is played. In addition, data on pre-existing kinship and friendship networks are gathered.

Kinship and friendship ties matter for two important reasons: �rst, individuals are likely to know

the risk attitudes of family and friends, and unlikely to know the risk attitudes of strangers. Second,

individuals are likely to trust and therefore commit to family and friends over strangers. Indeed,

Attanasio et al. �nd experimentally that family and friends strongly prefer to match with each

other rather than with strangers, and that they match positive assortatively in risk attitude.

To provide some theoretical backbone for this �nding, Attanasio et al. study a simpli�ed model

of their experimental setting. They assume that individuals have CARA utility and either low or
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high risk aversion (type is binary). Group size is restricted to pairs. Individuals choose which

risky project to undertake from a continuous spectrum of projects, but the sharing rule is �xed at

equal division. They show that under the assumptions of this model, individuals match positive

assortatively, that is, high types match with other high types while low types match with other low

types.

Because Attanasio et al. �x the sharing rule at equal division, the data cannot be used for a full

test of the model and theoretical predictions of this paper, which studies risk-sharing groups when

individuals choose how to share a given risk as well as what risk to face. However, an interesting

partial test is still possible: Propositions 3 and 4 are exactly focused on the "corners" of the model,

and describe equilibrium matching when the project choice and sharing rule choice channels are

each shut down in turn. Additionally, we can test Proposition 5, which describes the relationship

between the curvature of mean incomes in the representative risk tolerances of matched groups,

and the curvature of marginal variance cost.

Like the model in Attanasio et al., Proposition 4 predicts unique positive assortative matching

when the sharing rule channel is shut down. However, Proposition 4 is proved under more general

conditions, including arbitrarily many risk types rather than binary type, and this generality is

useful for interpreting the experimental results. In particular, Attanasio et al. assume that the

sharing rule is exactly equal division, that is, s(Yp) =
1
2Yp, and provide a variety of reasons why

they don�t think side transfers were a concern in practice. Proposition 4 shows that, even with

side transfers c, as long as the sharing rule is of the form s(Yp) =
1
2Yp + c, the unique equilibrium

matching should still be positive assortative, as it is in the experimental �ndings.

While it is encouraging that the matching pattern predicted by Proposition 4 bears out in the

experiment, the predictions of Proposition 5 provide a more rigorous test of the theory. For this,

we need to characterize V (p) or SR(p), based on the set of gambles designed by the experimenters.

The discrete nature of the gambles suggests drawing upon Corollary 2 and checking for one of the

following relationships in the data: either the Sharpe ratio is decreasing in expected return and

mean incomes are concave in risk tolerance, or the Sharpe ratio is increasing in expected return

and mean incomes are convex in risk tolerance.

The set of gambles in Attanasio et al. is described in the table below (payo¤s are in Colombian

pesos)13. Each gamble had an equally-likely bad and good payo¤, where riskier gambles had worse

13The standard deviations reported in the table in Attanasio et al. (2012) are the experimental, not analytical,
standard deviations. The discrepancy results from altruism on the part of the experimenters, who were sometimes
found to give the subject the high payo¤ even when the subject lost the gamble. Here, I consider the analytical
variance, since Attanasio et al. state that subjects were unaware of the bias in probabilities. Hence, subjects should
have chosen gambles based on the analytical variance.
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bad payo¤s but better good payo¤s.

Gamble Mean Standard Deviation Sharpe ratio

1 3000 0 1

2 4200 1500 2:8

3 4800 2400 2

4 5400 3600 1:5

5 6000 5000 1:2

It�s clear that the Sharpe ratio is smaller for gambles with higher expected return. Hence,

�nding that mean incomes are concave in risk tolerance would be evidence for the theory, while

�nding that mean incomes are convex in risk tolerance would be evidence against the theory.

I regress the mean returns of the chosen gambles on risk tolerance and squared risk tolerance.

A positive coe¢cient �3 indicates convexity, while a negative �3 indicates concavity
14:

pi = �1 + �2

�

1

ri

�

+ �3

�

1

ri

�2

+ "i

The OLS estimates are reported in Table 1:

In line with the theoretical prediction, we see that mean project returns are concave in risk

tolerance. Moreover, individuals with a higher risk tolerance (less risk-averse individuals) choose

riskier (higher mean, higher variance) gambles. Hence, the experimental results lend preliminary

support to the theory.

14There are more precise ways to examine data for convexity or concavity (e.g. local linear regression or nonpara-
metric methods). The purpose here is not to develop the optimal econometric technique for convexity-testing, but
rather to describe an approach to the problem and demonstrate its implementability by executing the approach in a
simple, intuitive way.
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7 Conclusion

This paper enriches our understanding of informal insurance by developing and studying a

theory of endogenous relationship formation between heterogeneously risk-averse people who lack

access to formal insurance and credit markets and choose both what risk to face as well as how to

share a given risk. The strength of informal insurance is thus how well-insured a population of risk-

averse individuals is when they must rely only on interactions with fellow risk-averse individuals to

manage risk, rather than how well-insured individuals are when the formal contracting environment

is weak. Importantly, this approach reveals that what we can learn from endogenizing informal

insurance isn�t limited to insurance: the need to manage risk informally in an economy in�uences

the strength of entrepreneurship, the correspondence of entrepreneurship with income inequality,

and the optimal structure of informal �rms.

Existing literature has focused largely on analyzing the insurance agreement reached by a �xed

group of individuals, isolated outside of the equilibrium network, or by individuals who match with

a �xed probability, which precludes an understanding of what groups would actually coexist in the

�rst place. By contrast, this paper studies how the network shape that emerges in equilibrium

is determined by the possibilities of other shapes the network could have assumed, and identi�es

important connections between the equilibrium network and the risk environment. In particular,

while in theory income distributions may have in�nitely many nonzero higher-order moments,

equilibrium matching is found to be determined by only the �rst two: the mean-variance trade-o¤

across portfolio choices.

This paper highlights the especial importance of accounting for, rather than abstracting away

from, heterogeneity in developing economies. The absence of formal institutions causes individuals

to address those needs with their interpersonal relationships. Thus, we see that a natural constraint

on informal insurance, apart from any aspect of the formal contracting environment, is simply that

all individuals are risk-averse. However, some individuals are more risk-averse than others, and

this enables informal insurance and determines its strength. Yet, just like the formal economy,

the informal economy too is endogenous: individuals switch between and assume di¤erent informal

roles in the economy as circumstances change.

Accounting for this endogeneity may substantially alter our design and evaluation of a variety

of policies. While crop price stabilization was explicitly discussed in the paper, the framework is

also useful for thinking about land reform. For example, Banerjee (2000) points out that the e¤ects

of land redistribution cannot be estimated without �rst understanding the reasons behind the

distribution of landholdings in the status quo. If the allocation served a risk-sharing purpose (for

example, large landowners provided informal insurance to the landless), then land redistribution

could actually decrease welfare.

The model also provides an interesting lens through which to view regulation of wages. We

know that employment contracts (such as the sharecrop contract) often balance multiple needs,

such as insurance and incentive provision. The results of this paper show that legislation which

places restrictions on the set of permissible rental contracts diminishes the power of individuals to
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share a given risk, which may cause the less risk-averse to cease acting as informal insurers.

Finally, while informal insurance served as the matching motivation in this paper, the ideas

of the model are more general and can be applied to other important questions. For example,

understanding the equilibrium matching between individuals with di¤erent risk attitudes and the

risky health behaviors they choose may help us design more e¤ective approaches to encouraging

vaccination, boosting health investments and sanitation practices, and preventing and treating HIV.

Many challenges remain. This model can be enriched in a variety of ways�by generalizing

preferences, by introducing limited commitment, by adding dynamic re-matching and dynamic

investment. I leave these tasks for future research. Developing economies are distinguished by

uniquely complex environments and uniquely lofty stakes. That is why they are formidable, and

that is why they are important.
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9 Appendix A

This section contains proofs and discussions referred to in the text of the paper by the convention

"A:1", "A:2", and so on. For appendices referred to in the text by "OA:1", "OA:2", and so on,

please see the Online Appendix.

9.1 A.1: Proof of Proposition 1 (NTU problem has TU representation)

Proposition 1: Expected utility is transferable in this model. Denote a matched pair by (r1; r2)

and their chosen project by p�(r1; r2). Let CE(r1; r2; p
�(r1; r2)) describe the certainty-equivalent of

a matched pair in equilibrium; it is twice continuously di¤erentiable in each argument. Then:

@CE(r1; r2; p
�(r1; r2))

@r1r2
> 0, unique PAM

@CE(r1; r2; p
�(r1; r2))

@r1r2
< 0, unique NAM

Proof : The following program characterizes the optimal contract and project choice for a

matched pair (r1; r2):

max
s(yp)

Z

1

�1

�e�r1[yp�s(yp)]f(ypjp)dyp s:t:

Z

1

�1

�e�r2s(yp)f(ypjp)dyp � �e
�v

An increase in r2�s expected utility strictly corresponds to a decrease in r1�s expected utility,

since more output for r2 means less output for r1, so the constraint binds.

Solving shows that r2�s share of realized output yp is:

s�(ypjp) =
r1

r1 + r2
yp +

1

r2
log

Z

1

�1

e
�

r1r2
r1+r2

ypf(ypjp)dyp +
1

r2
v

Plug this expression into r1�s objective function. Then the optimal project solves

max
p2�

�e
r1
r2
v

�
Z

1

�1

e
�

r1r2
r1+r2

ypf(ypjp)dyp

�1+
r1
r2

where �e
r1
r2
v
is just a scaling factor.

So, we can write the indirect utility of an agent r1 who ensures his partner, r2, a level of expected

utility �e�v:

�(r1; r2; v) = �e
r1
r2
v

�
Z

1

�1

e
�

r1r2
r1+r2

ypf(ypjp)dyp

�1+
r1
r2

Partner r2 receives expected utility:
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EUr2(v) = �e�v

= �e
�r2

v
r2

The certainty-equivalent CEi for an individual ri facing risky income stream Yi is:

�e�riCEi = E[�e�riYi ])

CEi = �
1

ri
logE[e�riYi ]

Clearly, the certainty-equivalent is a monotonic transformation of expected utility. Hence,

showing that the slope of the Pareto frontier of certainty-equivalents is �1 shows expected utility

is transferable.

The certainty-equivalent of each member is:

CEr1(v) = �

�

1

r1
+
1

r2

�

log

�
Z

1

�1

e
�

r1r2
r1+r2

Ypf(ypjp
�(r1; r2))dyp

�

�
v

r2

CEr2(v) =
v

r2

There is clearly a one-to-one trade-o¤ between the certainty-equivalent of r1 and the certainty-

equivalent of r2. In other words, the slope of the Pareto frontier of expected utility (modulo a

monotonic transformation) is �1. Hence, expected utility is transferable.

The proof that the equilibrium matching maximizes the sum of certainty-equivalents and the

sum of expected project returns, and is Pareto e¢cient, is straightforward. First, if a matching

where each pair is engaged in their optimal project and sharing rule does not maximize the sum of

certainty-equivalents, there would be at least one pro�table blocking. Second, the sum of certainty-

equivalents is a social welfare function, so as the matching maximizes this, it must be Pareto

e¢cient. (Another way to see this is by recalling the no-blocking condition of the equilibrium.)

9.2 A.2: Proof of Proposition 2 (main matching result) and Corollary 2 (Sharpe

ratio result)

Proposition 2: Recall that V (p) describes the variance cost of a project with mean return p.

Then M(p) � V 0(p) describes the marginal variance cost of a project with mean return p.

(a) A su¢cient condition for PAM to be the unique equilibrium match is M 00(p) < 0 for

p > 0 (concavity).

(b) A su¢cient condition for NAM to be the unique equilibrium match is M 00(p) > 0 for

p > 0 (convexity).

(c) A su¢cient condition for any match to be sustainable as an equilibrium is M 00(p) = 0

for p > 0 (linearity).
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Proof : Suppose a matched pair (r1; r2) has to choose from a family of income distributions

de�ned by Yp = p + V (p)
1

2Y , where Y is a random variable with well-de�ned cumulants: k1(y) =

E(Y ) = 0, k2(y) = V (Y ) = 1, in�nite support. (The cumulant-generating function of a random

variable is the log of the moment-generating function; the nth order cumulant is the nth derivative

of the cumulant-generating function evaluated at 0.)

Recall that the representative risk tolerance of a matched group is the sum of the risk tolerances

of the members. So, the representative risk tolerance of (r1; r2) is R =
1
r1
+ 1

r2
.

We know from Appendix 2 that the expected utility of a group with representative risk aversion

r (reciprocal of representative risk tolerance R) which has chosen a project p with risky stream of

returns Yp is:

E

�

�e�r[p+V (p)
1
2 Y ]

�

= �e�rp
Z

e�rV (p)
1
2 yf(y)dy

= �

Z

e
�
1

R

h

p+V (p)
1
2 y
i

f(y)dy

Divide by (�1), transform by log, and multiply by (�R) for the certainty-equivalent. Since we

want to maximize expected utility, this implies we want to choose p to maximize the certainty-

equivalent:

CE(p;R) = �R logE

�

e�
1

R
[p+V (p)

1
2 Y ]

�

= �R

�

�
1

R
p+ logE

�

e�
1

R
V (p)

1
2 Y

��

= p�R

"

1
X

n=2

(�1)n

n!Rn
V (p)

n
2 kn(y)

#

= p�
1

2R
V (p)�

1
X

n=3

(�1)n

n!Rn�1
V (p)

n
2 kn(y)

Then:

@CE

@R
=

1

2R2
V (p�) +

X

n=3

(�1)n

n!

(n� 1)

Rn
V (p�)

n
2 kn(y)

And:
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@2CE

@R2
= �

1

R3
V (p�) +

1

2R2
V 0(p�)

@p�

@R
�
X

n=3

(�1)n

n!

n(n� 1)

Rn+1
V (p�)

n
2 kn(y)

+
X

n=3

(�1)n

n!

(n� 1)

Rn
n

2
V (p�)

n
2
�1V 0(p�)

@p�

@R
kn(y)

=

�

�
2

R

V (p�)

V 0(p�)
+
@p�

@R

�

"

X

n=3

(�1)n

(n� 2)!

1

2Rn
V (p�)

n
2
�1V 0(p�)kn(y) +

1

2R2
V 0(p�)

#

where we know this second bracketed term is positive because it is bounded below by 1
R
> 0.

We establish this bound by recalling the �rst-order condition of the optimization problem:

FOCp = 0 : �
1

R
+

1

2R2
V (p�) +

X

n=3

(�1)n

(n� 1)!

1

2Rn
V (p�)

n
2
�1V 0(p�)kn(y) = 0

This implies:
1

2R2
V (p�) +

X

n=3

(�1)n

(n� 1)!

1

2Rn
V (p�)

n
2
�1V 0(p�)kn(y) =

1

R

And the �rst term of the second bracketed expression:

X

n=3

(�1)n

(n� 2)!

1

2Rn
V (p�)

n
2
�1V 0(p�)kn(y) >

X

n=3

(�1)n

(n� 1)!

1

2Rn
V (p�)

n
2
�1V 0(p�)kn(y)

Now, we seek conditions such that:

@2CE

@R2
>;< 0

Using the expression for d
2CE
dR2

, and the fact that the second bracketed expression is a positive

constant, we know that:

@2CE

@R2
> ;< 0,

@p�

@R
> ;<

2

R

V (p�)

V 0(p�)

Now, �nd @p�

@R
by implicitly di¤erentiating FOCp = 0:

FOCp = 0 :
1

2R2
V (p�) +

X

n=3

(�1)n

(n� 1)!

1

2Rn
V (p�)

n
2
�1V 0(p�)kn(y) =

1

R
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@p�

@R
: �
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@R
�
X

n=3

(�1)n

(n� 1)!

n

Rn+1
1

2
V (p�)

n
2
�1V 0(p�)kn(y)

+
X

n=3

(�1)n

(n� 1)!

1

Rn
1

2

�n

2
� 1

�

V (p�)
n
2
�2V 0(p�)2kn

@p�

@R
+
X

n=3

(�1)n

(n� 1)!

1

Rn
1

2
V (p�)

n
2
�1V

00

(p�)kn(y)
@p�

@R
= �

1

R2

Hence:

�V 0(p�) +
R

2
V 00(p�)

@p�

@R
+R2

X

n=3

(�1)n

(n� 1)!

1

Rn
n

2
V (p�)

n
2
�2V 0(p�)2kn(y)

�

R

2

@p�

@R
�
V (p�)

V 0(p�)

�

+R3
X

n=3

(�1)n

(n� 1)!

1

Rn
1

2
V (p�)

n
2
�2V 0(p�)kn(y)

@p�

@R

�

V (p�)V 00(p�)

V 0(p�)
� V 0(p�)

�

= �R

This expression can be rearranged using the �rst-order condition:

�
V 0(p�)

R
+
@p�

@R

��

R�
V 0(p�)

2

� �

V 00(p�)

V 0(p�)
�
V 0(p�)

V (p�)

�

+
1

2
V 00(p�)

�

+
R2

2

@p�

@R

X

n=3

(�1)n

(n� 1)!

1

Rn
n

2
V (p�)

n
2
�2V 0(p�)2kn(y)�R

X

n=3

(�1)n

(n� 1)!

1

Rn
n

2
V (p�)

n
2
�1V 0(p�)kn(y) = �1

So we see that:

@p�

@R
=

V 0(p�)
R

� 1 +R
P

n=3
(�1)n

(n�1)!
1
Rn

n
2V (p

�)
n
2
�1V 0(p�)kn(y)

RV 00(p�)
V (p�) �R

V 0(p�)
V (p�) +

V 0(p�)2

2V (p�) +
R2

2

P

n=3
(�1)n

(n�1)!
1
Rn

n
2V (p

�)
n
2
�2V 0(p�)2kn(y)

Hence:

@p�

@R
> ;<

2

R

V (p�)

V 0(p�)
,

V 0(p�)2 > ;< 2V (p�)V 00(p�)

Call the left-hand side of this inequality LHS , and the right-hand side, RHS. Observe that

at R = 0 (zero risk tolerance), LHS = RHS = 0, since p = 0 is the safest project available, so

p�(0) = 0, and it is assumed that V (0) = V 0(0) = 0.

So, compare @LHS
@R

and @RHS
@R

: both LHS and RHS are 0 at R = 0. As R increases, if LHS

either increases faster in R or decreases slower than R at every point R in comparison to RHS,

that is, @LHS
@R

> @RHS
@R

for all R > 0, then @2CE
@R2

> 0 since LHS > RHS in the above inequality.

And, vice versa, if @LHS
@R

< @RHS
@R

.

Thus:

V 0(p�)2 > ;< 2V (p�)V 00(p�),

0 > ;< 2V (p�)V 000(p�)
@p�

@R
,

0 > ;< V 000(p�)
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where the last equivalency holds because 2V (p�)@p
�

@R
> 0.

Hence, Proposition 5 is proven:

V 000(p) < 0 8p � 0,
@2CE

@R2
> 0 8R � 0) unique PAM

V 000(p) > 0 8p � 0,
@2CE

@R2
< 0 8R � 0) unique NAM

Note that if our focus were not on identifying conditions for assortative matching that are

independent of risk type distributions, we could easily write a necessary and su¢cient condition

for PAM and NAM. Instead of seeking conditions for global convexity and concavity of CE(R) in

R, the condition simply has to hold for each set of representative risk tolerances for every possible

matching in the given population of risk types.

A quick �nal note: we need CE(p;R) to be concave in p for a well-de�ned maximum:

@2CE

@p2
= �

1

2R
V 00(p)�

1
X

n=3

(�1)n

n!Rn�1
n

2

h�n

2
� 1
�

V (p)
n
2
�2V 0(p)2 + V (p)

n
2
�1V 00(p)

i

kn(y)

= �
1

2

"

1

R
V 00(p) +

1
X

n=3

(�1)n�1

(n� 1)!Rn�1

hn

2
V (p)

n
2
�2V 0(p)2 + V (p)

n
2
�2
�

V (p)V 00(p)� V 0(p)2
�

i

#

< 0

Corollary 2: Let SR(p) = p

V (p)
1
2

denote the ratio of a project�s mean return to its standard

deviation for p > 0. Then:

(a) SR0(p) > 0 8p > 0 i¤ M 00(p) < 0 8p > 0 (PAM)

(b) SR0(p) < 0 8p > 0 i¤ M 00(p) > 0 8p > 0 (NAM)

Proof : We want to show that the Sharpe ratio monotonically increases (decreases) in mean

return i¤ the marginal variance cost is concave (convex) in mean return.

SR(p) =
p

V (p)
1

2

SR0(p) =
V (p)

1

2 � p12V (p)
�
1

2V 0(p)

V (p)

Then:

SR0(p) > ;< 0, V (p)
1

2 >;< p
1

2
V (p)�

1

2V 0(p) [since V (p) > 0 8p]

, V (p) >;<
1

2
pV 0(p)

Then note that LHS(p = 0) = V (0) = 0 = 1
2 � 0 � V

0(0) = RHS(p = 0). So, look at derivatives

of LHS and RHS, since the domain is p � 0.

V 0(p) >;< pV 00(p)
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But we don�t know under what conditions this inequality holds. So we again note that LHS(p =

0) = V 0(0) = 0 = 0 � V 00(0) = RHS(p = 0), and di¤erentiate LHS, RHS again:

V 00(p) > ;< V 00(p) + pV 000(p),

0 > ;< pV 000(p)

Since the domain is p � 0, this means that:

V 000(p) > 0, SR0(p) < 0 8p � 0

, !NAM

, CV 0(p) > 0

,
@2p�

@R2
< 0

and:

V 000(p) < 0, SR0(p) > 0 8p � 0

, !PAM

, CV 0(p) < 0

,
@2p�

@R2
> 0

9.3 A.3: Proof of Proposition 5 (curvature of mean incomes) and Corollary 3

(income inequality)

Proposition 5: Let p�(ri; �(ri)) denote the mean return of the project chosen by a matched

pair (ri; �(ri)). Then:

(a) If M 00(p) < 0 for p > 0, then p�(ri; �(ri)) is convex in representative risk tolerance

R(ri; �(ri)).

(b) If M 00(p) > 0 for p > 0, then p�(ri; �(ri)) is concave in representative risk tolerance

R(ri; �(ri)).

Proof : We want to show that the condition for global convexity and concavity of the certainty-

equivalent of a group with representative risk tolerance R in R is equivalent to global convexity

and concavity of the mean returns of projects chosen by matched pairs in equilibrium in the

representative risk tolerances of those matched pairs.

We know from Appendix 3a that:

@2CE

@R2
> ;< 0 8R > 0,

@p�

@R
> ;<

2

R

V (p�)

V 0(p�)
8R > 0
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At R = 0, LHS = RHS = 0. So, �nd conditions under which @LHS
@R

> @RHS
@R

, and vice versa.

Then:

@LHS

@R
�
@RHS

@R
> ;< 0,

R

2
V 0(p�)

@2p�

@R2
+
@p�

@R

�

R

2
V 00(p�)

@p�

@R
�
1

2
V 0(p�)

�

> ;< 0

The second term is positive or negative depending on whether the bracketed term is positive or

negative:

@p�

@R

�

R

2
V 00(p�)

@p�

@R
�
1

2
V 0(p�)

�

> ;< 0,

@p�

@R
> ;<

1

R

V 0(p�)

V 00(p�)

Using the expression for @p
�

@R
we characterized by implicitly di¤erentiating the �rst-order opti-

mality condition in Appendix 3a, we see that this inequality is equivalent to:

2R2

"

1

2

X

n=3

(�1)n

(n� 1)!

1

Rn
n

2
V (p�)

n
2
�1V 0(p�)kn(y) +

1

2R2
V 0(p�)�

1

R

#

�

V 00(p�)�
1

2

V 0(p�)2

V (p�)

�

>;< 0

But we know that the �rst bracketed term is positive, since:

1

2

X

n=3

(�1)n

(n� 1)!

1

Rn
n

2
V (p�)

n
2
�1V 0(p�)kn(y) >

1

2

X

n=3

(�1)n

(n� 1)!

1

Rn
V (p�)

n
2
�1V 0(p�)kn(y)

=
1

2R2
V 0(p�)�

1

R

where the equality holds from FOCp = 0.

Hence:

@p�

@R
>;<

1

R

V 0(p�)

V 00(p�)
,

V 00(p�)�
1

2

V 0(p�)2

V (p�)
>;< 0,

2V (p�)V 00(p�) >;< V 0(p�)2
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But we know from Appendix 3a that:

2V (p�)V 00(p�) >;< V 0(p�)2 ,

V 000(p�) >;< 0,

@2CE

@R2
<;> 0,

R

2
V 0(p�)

@2p�

@R2
+
@p�

@R

�

R

2
V 00(p�)

@p�

@R
�
1

2
V 0(p�)

�

>;< 0

Hence:

V 000(p�) > ;< 0 8p > 0,

@p�

@R

�

R

2
V 00(p�)

@p�

@R
�
1

2
V 0(p�)

�

> ;< 0 and
@2CE

@R2
<;> 0 8R > 0,

R

2
V 0(p�)

@2p�

@R2
< ;> 0 8R > 0,

@2p�

@R2
< ;> 0 8R > 0

Thus, while V 000(p) (or any higher-order characteristics of the distributions of income streams)

might be di¢cult to measure or estimate in practice, this result suggests a more empirically feasible

approach: the mean incomes of matched groups in equilibrium are convex or concave in their

representative risk tolerance if and only if V 000(p) is negative or positive.

Corollary 3: For a given population of individuals G1; G2 and a given risk environment

described by V (p), income inequality, measured by the dispersion of and gap between lowest and

highest expected incomes, is maximized when individuals are matched positive assortatively, and

minimized when individuals are matched negative assortatively.

Proof : We want to show that, �xing a population of individuals and a risk environment, income

inequality (variance of individual incomes) is maximized under positive assortative matching, and

minimized under negative assortative matching.

First observe that, given a population, PAM maximizes the variance of the representative risk

tolerances of matched pairs, while NAM minimizes the variance.

Let the population of individuals be represented by: G1 = fx1; :::; xNg, G2 = fy1; :::; yNg,

ordered from smallest to largest (least to most risk-averse).

Then the set of representative risk tolerances under PAM is f 1
x1
+ 1
y1
; 1
x2
+ 1
y2
; :::; 1

xN
+ 1
yN
g, and

under NAM is f 1
x1
+ 1

yN
; 1
x2
+ 1

yN�1
; :::; 1

xN
+ 1

y1
g.

The variance of the representative risk tolerances of PAM and NAM pairs is:

V arPAM =
1

x1y1
+

1

x2y2
+ :::+

1

xNyN
+
X 1

x2i
+
X 1

y2i

V arNAM =
1

x1yN
+

1

x2yN�1
+ :::+

1

xNy1
+
X 1

x2i
+
X 1

y2i
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where
P 1

x2i
+
P 1

y2i
appears in the variance of any matching.

So, focus on the previous terms in V arPAM . Switch an arbitary pair�WLOG (x1; y2) and

(x2; y1) instead of (x1; y1); (x2; y2). But, since x1 < x2 and y1 < y2:

1

x1y1
+

1

x2y2
>

1

x1y2
+

1

x2y1

So, any change in PAM leads to a decrease in variance. Similarly, switching an arbitrary pair

in NAM shows that any change in NAM leads to an increase in variance.

In fact, the representative risk tolerances under PAM are a mean-preserving spread of those

under NAM. For example, suppose N = 3 (odd).

Then, let p�(Rij) denote the expected income for a matched pair with representative risk toler-

ance Rij . Since we know p
�(R) increases in R (from Appendix 3a), and the variance of the set of

representative risk tolerances is maximized under PAM and minimized under NAM, it must be that

the variance of the set of expected joint incomes is maximized under PAM and minimized under

NAM. Moreover, expected mean incomes are more dispersed under PAM than under NAM�the

poorest are poorer and the richest are richer under PAM.

9.4 A.4: Proof of Proposition 6 (endogenous group size)

Proposition 6: Let M(p) � V 0(p) describe the marginal variance cost of each project p. Then:

(a) If M 00(p) < 0, the unique equilibrium is maximal-connectedness: the whole group, G,

is matched.

(b) If M 00(p) > 0, the unique equilibrium is minimal-connectedness. Individuals match

in negative assortative pairs: the ith least risk-averse person in G is matched with the ith most

risk-averse. (If jGj is odd, then the most risk-averse individual in the population remains

unmatched.)

Proof : We know from the proof of Proposition 2 that:

M 00(p) > 0,
@2CE

@R2
< 0

M 00(p) < 0,
@2CE

@R2
> 0

Recall the following property of a function f : R+0 ! R:

f(0) � 0 and f(�) concave) 8x; y 2 R+0 ; f(x+ y) < f(x) + f(y)

f(0) � 0 and f(�) convex) 8x; y 2 R+0 ; f(x+ y) > f(x) + f(y)

That is, given f(0) � 0, a concave function is subadditive, and given f(0) � 0, a convex function

is superadditive.

Recall that CE(�) is a function of the risk tolerance R of a matched group. Since CE(0) = 0,

we know that:
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M 00(p) > 0 8p � 0, CE(R1 +R2) < CE(R1) + CE(R2) 8R1; R2 2 R
+
0

M 00(p) < 0 8p � 0, CE(R1 +R2) > CE(R1) + CE(R2) 8R1; R2 2 R
+
0

But representative risk tolerance is additive: the representative risk tolerance of a matched

group is the sum of the individual risk tolerances. This implies that, when M 00(p) > 0 and CE(�) is

concave in risk tolerance R, the matching that maximizes the total sum of certainty-equivalents is

unique and is the minimal matching�that is, individuals match in partnerships (since production

requires at least two collaborators), and we know from Proposition 2 that these partnerships will be

negative assortative. And, when M 00(p) < 0 and CE(�) is convex in risk tolerance R, the matching

that maximizes the total sum of certainty-equivalents is unique and is the maximal matching�that

is, all individuals match in one big group.
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Online Appendix (for online publication): Endogenous Informal

Insurance Relationships

July 31, 2014

This section contains proofs and discussions referred to in the text of the paper by the convention

"OA:1", "OA:2", and so on. For appendices referred to in the text by "A:1", "A:2", and so on,

please see Appendix A (the section directly following References).

1 OA.1: Equivalence with a model of individual project choice

This discussion clari�es the relationship between a model where matched individuals jointly choose

which income distribution to face, and then share the realized return, versus a model where indi-

viduals choose their own income distribution, then match and share the pooled realized returns.

Suppose that, as in the benchmark model, a spectrum of projects p � 0 is available, where

Yp = p + V (p)
1
2Y , E(Y ) = 0, V (Y ) = 1, and V (p) > 0, V 0(p) > 0, and V 00(p) > 0. Each

individual chooses a personal income distribution from the spectrum Yp, and pools realized returns

with her partner. An individual can always choose autarky if she prefers this to matching with any

possible partner. A matched pair commits ex ante to a sharing rule contingent on pooled income,

s(Yp1 + Yp2). (For ease of notation, let Yk � Ypk .)

Assume that incomes are correlated. Recall that V ar(Y1 + Y2) = V ar(Y1) + V ar(Y2) +

2Cov(Y1; Y2), where Cov(Y1; Y2) = EY1Y2 � EY1EY2 = EY1Y2 � p1p2.

Since Y1 = p1 + V (p1)
1
2Y and Y2 = p2 + V (p2)

1
2Y :

E(Y1Y2) = E(p1p2 + p1V (p2)
1
2Y + p2V (p1)

1
2Y + V (p1)

1
2V (p2)

1
2Y 2)

= p1p2 + E
h

V (p1)
1
2V (p2)

1
2Y 2

i

And:

E(Y 2) = V (Y )� (EY )2

= 1
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So:

E(Y1Y2) = p1p2 + V (p1)
1
2V (p2)

1
2

Cov(Y1; Y2) = p1p2 + V (p1)
1
2V (p2)

1
2 � p1p2

V ar(Y1 + Y2) = V (p1) + V (p2) + 2V (p1)
1
2V (p2)

1
2

Thus, members of a matched pair can choose individual income distributions p1 and p2 in a

number of ways to achieve mean pooled income p = p1+p2 for any p > 0. The optimal strategy for

the partners, given that they want expected joint income to be p, is to choose p1 and p2 to minimze

the variance of joint income, given p1 + p2 = p.

Solving:

min
p1;p2

V (p1) + V (p2) + 2V (p1)
1
2V (p2)

1
2 s:t:

p1 + p2 = p

it is straightforward to see that p�1 = p
�

2 =
p
2 , so that V (pjp

�

1; p
�

2) = 2V
�

p
2

�

+ 4V
�

p
2

�
1
2 .

Hence, matched pairs choose from a frontier of joint income distributions described by: Yp =

p+ [2V
�

p
2

�

+ 4V
�

p
2

�
1
2 ]

1
2Y , where E(Y ) = 0, V (Y ) = 1.

But this is substantively equivalent to the benchmark model�although individuals ostensibly

choose own income in this model, they are actually choosing a distribution of pooled income as a

matched pair. In this paper, I work with the benchmark model because it illustrates the dependence

of the equilibrium matching on the trade-o¤ between production and insurance more cleanly.

2 OA.2: Limited commitment

While I leave a rigorous treatment of limited commitment in this setting to future work, I discuss

some preliminary analysis here.

The basic elements of the model with limited commitment are:

1. (a) 2 periods. At the beginning of each period, each member of a matched group (or as an

individual, if in autarky) chooses a risky project.

(b) Assume that eternal autarky is the punishment for reneging, and that incomes are in-

dependent across time and people, since we know that when incomes are independent,

autarky is never optimal. Thus, imposing autarky is a legitimate punishment.

(c) Basic timing of the game:

i. A matched pair agrees to a return-contingent sharing rule for their pooled incomes

at the beginning of pd. 1.

ii. Each individual in a matched pair observes boht income realizations, and so knows

what the transfer speci�ed by the rule is. Each can choose to uphold that transfer,
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or to renege (do something other than what the rule speci�es). If at least one

member reneges, then both members are consigned to autarky in pd. 2. (Assume

no re-matching.)

iii. If both uphold the transfer, then the pair stays matched in pd. 2. Assume that

in pd. 2, pairs that successfully cooperated in pd. 1 can implement the e¢cient

outcome in pd. 2 (for example, because they�ve successfully won each other�s trust).

Then, what do we know about the equilibrium?

In pd. 2, for non-reneging pairs, we know that NAM conditions imply that the less risk-averse

di¤erentially prefer to bid more for the more risk-averse, while PAM conditions imply that the less

risk-averse di¤erentially prefer to bid more for the less risk-averse.

So, under NAM conditions, a less risk-averse person �nds autarky in pd. 2 more costly with a

more risk-averse partner than with a less risk-averse partner. Under PAM, a less risk-averse person

�nds autarky in pd. 2 more costly with a less risk-averse partner than a more risk-averse partner.

So far, imperfect commitment hasn�t changed when PAM is optimal vs. NAM is optimal.

Now, think about the e¤ect on pd. 1 choices. Because of limited commitment, in pd. 1, a

matched pair can�t always implement the e¢cient risk-sharing rule. The equilibrium sharing rule

in pd. 1 for a matched pair (ri; rj) is instead:

1. If the income realizations are such that the e¢cient risk-sharing rule happens to be such that

both partners �nd U(keep my own income realization)�U(
rj

ri+rj
Yp(i;j)) < U(

rj
ri+rj

Yp_optimal)�

U(aut), then the transfer is the e¢cient one.

2. If the realizations are outside of this interval (which will loosely be the case when one partner

has a good realization and the other has a bad one), then the better o¤ partner should make

a transfer to her partner that makes her indi¤erent between paying that transfer and keeping

everything and facing autarky in pd. 2. (Note that if reneging is better than cooperating,

the optimal reneging is to keep your own realization.)

Note that this rule is much less smooth than the e¢cient risk-sharing rule, which is a linear

split of pooled output. Now we have a linear split of pooled income for some joint realizations, and

near-autarky for others.

More risk-averse people �nd autarky worse, as well as the volatility of the sharing rule in pd.

1 under limited commitment. So even though under NAM conditions, a more risk-averse person

prefers a less risk-averse partner in pd. 2, the volatility of their corresponding pd. 1 sharing rule

(and the fact that the less risk-averse person �nds autarky a less scary threat than the more risk-

averse person), means that more risk-averse people prefer to match with other more risk-averse

people more strongly than they do without limited commitment. On the other hand, the less

risk-averse really value a more risk-averse partner, because a more risk-averse partner is willing to

receive a small transfer and is also the best partner in pd. 2 (NAM conditions). However, limited

commitment constrains the credible "bid" a less risk-averse partner can make in pd. 1. That is,
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a less risk-averse person would like to promise a more risk-averse person more than the transfer

that makes her indi¤erent between honoring the transfer and keeping her own income and facing

autarky in pd. 2, but she can�t do this credibly.

3 OA.3: Di¤erently-sized groups

We know by now (see, e.g., A.1) that the sum of certainty-equivalents for a given pair (r1; r2) with

representative risk tolerance R = 1
r1
+ 1

r2
in the benchmark case is given by:

CE(R) = �R logKYp�(R)

= p� �

1
X

n=2

(�1)n

n!Rn�1
V (p�)

n
2 kn(y)

Then:

@CE

@R
=

1
X

n=2

(�1)n

n!

(n� 1)

Rn
V (p�)

n
2 kn(y)

@R

@r2
= �

1

r22

But we know that the risk premium for any risk-averse individual facing any risky project p is

positive:

RP (p) =

1
X

n=2

(�1)n

n!Rn�1
V (p)

n
2 kn(y) > 0 ,

1

R
RP (p) =

1

R

1
X

n=2

(�1)n

n!Rn�1
V (p)

n
2 kn(y) > 0

Hence:

@CE

@R
=

1
X

n=2

(�1)n

n!

(n� 1)

Rn
V (p�)

n
2 kn(y)

>
1

R

1
X

n=2

(�1)n

n!Rn�1
V (p)

n
2 kn(y)

> 0

But:

@CE

@r2
=

@CE

@R

@R

@r2
< 0
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Hence, CE(r1; r2) is decreasing in the risk aversion of any partner, since CE(�; �) is symmetric

in each of its arguments.

Thus, if jG1j < jG2j, for example, it is the most risk-averse excess agents of G2 who will remain

unmatched in equilibrium. For example, if G1 = frA1 ; r
A
2 g and G2 = frB1 ; r

B
2 ; r

B
3 g, where agents

are ordered from least to most risk-averse, r3 will be unmatched in equilibrium. Then the main

matching results apply to the remaining agents, G1 = frA1 ; r
A
2 g and G2 = fr

B
1 ; r

B
2 g.

4 OA.4: Proof of Proposition 3 (NAM when income-smoothing is

shut down)

Proposition 3: Suppose that all agents in G1 draw income iid from a distribution M , and all

agents in G2 draw income iid from a distribution W , so that all possible pairs face the same joint

income distribution. Once matched, agents can commit ex ante to a return-contingent sharing rule.

Then the unique equilibrium matching is NAM.

Proof : Suppose that all pairs must undertake the same project, p. For instance, the government

mandates that all farmers must grow rice. This e¤ectively shuts down the income-smoothing

channel.

Di¤erentiate CE(r1; r2) with respect to r1 and r2 when there is no project choice, so that all

pairs (r1; r2) face the same risky income stream f(Ypjp). The cross-partial
d2CE(r1;r2)
dr1dr2

is:

�
r1r2

(r1 + r2)3

R

e
�

r1r2
r1+r2

yp
f(ypjp)dyp

R

y2pe
�

r1r2
r1+r2

yp
f(ypjp)dyp �

h

R

ype
�

r1r2
r1+r2

yp
f(ypjp)dyp

i2

h

R

e
�

r1r2
r1+r2

yp
f(ypjp)dyp

i2

But we know that:

Z

e
�

r1r2
r1+r2

yp
f(ypjp)dyp

Z

y2pe
�

r1r2
r1+r2

yp
f(ypjp)dyp >

�
Z

ype
�

r1r2
r1+r2

yp
f(ypjp)dyp

�2

since we know variance is always positive. Therefore:

Z

f(ypjp)dyp

Z

y2pf(ypjp)dyp >

�
Z

ypf(ypjp)dyp

�2

and g(Yp) = e
�

r1r2
r1+r2

Yp is a convex function.

Hence:

@2CE(r1; r2)

@r1@r2
< 0

and negative assortative matching therefore results as the unique equilibrium.

This corresponds with the result from Chiappori and Reny (2006) and Schulhofer-Wohl (2006).
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5 OA.5: Proof of Proposition 4 (PAMwhen consumption-smoothing

is shut down)

Proposition 4: Suppose that the slope of the sharing rule s(Rp) = a+bRp is �xed. For example, a

wage law requires a 50-50 split of output. However, a matched pair is able to choose a risky project

p, where Yp = p + V (p)
1
2Y as in the benchmark model. Then the unique equilibrium matching is

PAM.

Proof : We know from the main matching result that the optimal sharing rule is linear. Suppose

the slope of the sharing rule s(Yp) = a + bYp is �xed at b for all possible pairs of risk types. (For

example, the government mandates an equal split of the output, but is unable to prevent partners

from making �xed transfers to one another.) Recall from the set up that Yp = p + V (p)
1
2Y ,

E(Y ) = 0, V (Y ) = 1.

Fixing b removes consumption-smoothing as an e¤ective risk management tool (since trans-

fers can no longer be conditioned on the realized return), leaving only income-smoothing (project

choice). What happens to equilibrium risk-sharing relationships?

A matched pair (r1; r2) chooses the relationship-speci�c transfer a and project p:

max
a;p

Z

�e�r1[�a+(1�b)yp]f(ypjp)dyp s.t.

Z

�e�r2[a+byp]f(ypjp)dyp � �e
�v

Using the structure on Yp:

max
a;p

Z

�e�r1[�a+(1�b)(p+V (p)
1
2 y)]f(y)dy s.t.

Z

�e�r2[a+b(p+V (p)
1
2 y)]f(y)dy � �e�v

The transfer a is chosen to satisfy the constraint (which clearly binds in equilibrium), since the

division of output is �xed at b by the government. Basically, the transfer a that r1 must make to

a partner r2 to ensure her each level of expected utility v measures the value of that relationship.

Therefore:

Z

e�r2[a+b(p+V (p)
1
2 y)]f(y)dy = e�v ,

e�r2a
Z

e�r2b(p+V (p)
1
2 y)f(y)dy = e�v ,

�
1

r2

�

�v + r2bp� log

Z

e�r2bV (p)
1
2 yf(y)dy

�

= a
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Then the equilibrium project selected is:

p�(r1; r2) = argmax
~p2�

Z

�e
�r1

�

1
r2

�

�v+r2b~p�log
R

e�r2bV (~p)
1
2 yf(y)dy

�

+(1�b)(~p+V (~p)
1
2 y

�

f(y)dy

= argmax
~p2�

�e
r1
r2
v�r1~p+

r1
r2
log

R

e�r2bV (~p)
1
2 yf(y)dy

Z

e�r1(1�b)V (~p)
1
2 yf(y)dy

Transform the objective function by dividing by �1 and taking logs:

max
~p2�

r1

r2
v � r1~p+

r1

r2
log

Z

e�r2bV (~p)
1
2 yf(y)dy + log

Z

e�r1(1�b)V (~p)
1
2 yf(y)dy

Then the �rst-order condition characterizing equilibrium project choice is:

�1�
b12V (p

�)
1
2V 0(p�)

R

ye�r2bV (~p)
1
2 yf(y)dy

R

e�r2bV (~p)
1
2 yf(y)dy

�
(1� b)12V (p

�)
1
2V 0(p�)

R

ye�r1(1�b)V (~p)
1
2 yf(y)dy

R

e�r1(1�b)V (~p)
1
2 yf(y)dy

= 0

Then the certainty-equivalent of r1 is:

�e�r1CE = �e
r1
r2
v�r1p

�+
r1
r2
log

R

e�r2bV (p
�)
1
2 yf(y)dy

Z

e�r1(1�b)V (p
�)
1
2 yf(y)dy ,

CEr1 = �
1

r2
v + p� �

1

r2
log

Z

e�r2bV (p
�)
1
2 yf(y)dy �

1

r1
log

Z

e�r1(1�b)V (p
�)
1
2 yf(y)dy

Then the sum of certainty-equivalents for (r1; r2) is:

CE(r1; r2) = p
� �

1

r2
log

Z

e�r2bV (p
�)
1
2 yf(y)dy �

1

r1
log

Z

e�r1(1�b)V (p
�)
1
2 yf(y)dy

Using the �rst-order condition:

@CE

@r1
=

@p�

@r1
�
1

r2

�r2b
1
2V (p

�)
1
2V 0(p�)@p

�

@r1

R

ye�r2bV (p
�)
1
2 yf(y)dy

R

e�r2bV (p
�)
1
2 yf(y)dy

+
1

r21
log

Z

e�r1(1�b)V (p
�)
1
2 yf(y)dy

�
1

r1

h

�(1� b)V (p�)
1
2 � r1(1� b)

1
2V (p

�)
1
2V 0(p�)@p

�

@r1

i

R

ye�r1(1�b)V (p
�)
1
2 yf(y)dy

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

=
1

r21
log

Z

e�r1(1�b)V (p
�)
1
2 yf(y)dy +

(1� b)V (p�)
1
2

r1

R

ye�r1(1�b)V (p
�)
1
2 yf(y)dy

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

7



And:

@CE

@r2@r1
= �

(1� b)

r1

1

2
V (p�)�

1
2V 0(p�)

@p�

@r2

R

ye�r1(1�b)V (p
�)
1
2 yf(y)dy

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

+
(1� b)

r1

1

2
V (p�)�

1
2V 0(p�)

@p�

@r2

R

ye�r1(1�b)V (p
�)
1
2 yf(y)dy

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

�
1

2
(1� b)2V 0(p�)

@p�

@r2

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

R

y2e�r1(1�b)V (p
�)
1
2 yf(y)dy �

�

R

ye�r1(1�b)V (p
�)
1
2 yf(y)dy

�2

h

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

i2

= �
1

2
(1� b)2V 0(p�)

@p�

@r2

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

R

y2e�r1(1�b)V (p
�)
1
2 yf(y)dy �

�

R

ye�r1(1�b)V (p
�)
1
2 yf(y)dy

�2

h

R

e�r1(1�b)V (p
�)
1
2 yf(y)dy

i2

> 0

since @p�

@r2
< 0 and the fraction term is positive. Since the variance of Y is positive:

Z

f(y)dy

Z

y2f(y)dy >

�
Z

yf(y)dy

�2

and g(y) = e�r1(1�b)V (p
�)
1
2 y is a convex function.

Hence, positive assortative matching arises as the unique equilibrium.

So, if the government regulates wages by �xing the slope of the sharing rule at some b 2 [0; 1],

where pairs can still make within-pair state-independent transfers, the unique equilibrium matching

pattern is always positive assortative, verifying our intuition that, because consumption-smoothing

is held �xed, the "similarity of decisionmaking framework" dominates and people match with

people who are like them because they will agree about project choice. This can be thought of

as the counterpoint to holding income-smoothing �xed (Appendix 4), as in Chiappori and Reny

(2006) and Schulhofer-Wohl (2006).

What are some implications of this understanding? The government may be motivated by

equality concerns to specify an equal division of output in every relationship, but this may actually

generate even more inequality by weakening the informal risk-management toolkit available to

individuals, which then triggers endogenous change in risk-sharing networks. Speci�cally, if agents

had been matched negative assortatively in the status quo (because the "cost function" of project

mean is quite convex, say), then this imposition of wage equality leads to positive assortative

matching, which may actually exacerbate inequality: there is a bigger spread in projects, with less

risk-averse agents on projects with much higher expected returns while more risk-averse agents are

on projects with much smaller expected returns, and less risk-averse agents abandon their roles as

informal insurers, and more risk-averse agents wind up bearing more risk.
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6 OA.6: Background and Empirical Context

The purpose of this section is to provide further empirical context for the model. First, I will

discuss the substantial role played by informal insurance motivations in building relationships in

risky environments with missing formal insurance and credit markets. Additionally, I will show

that risk attitudes are a signi�cant determinant of risk-sharing partner choice.

Next, I will provide evidence that there is a great deal of heterogeneity in risk aversion across

individuals in a wide range of settings.

Finally, I will provide evidence of heterogeneity in the riskiness of activities available to individu-

als, as well as heterogeneity in the relative riskiness of these activities across di¤erent environments.

To �x ideas, it may be helpful to envision an agricultural setting, which captures nicely the key

elements of the model. Much of the literature discussed in this section is drawn from an agricultural

context, where landowners and farmers are heterogeneous in the extent of their risk aversion, and

landowners must decide which farmers to work with. Di¤erent crops have di¤erent yield and pro�t

distributions: some crops are very robust to drought but correspondingly tend to produce low

yields on average ("safe" crops), while other crops have the potential for very high yields, but are

extremely sensitive to rainfall and other inputs, and blight easily ("risky" crops). In addition to

crop portfolio and plot locations, fertilizer and other inputs, irrigation, planting times, and general

farming methods and technologies must also be chosen.

Furthermore, the yield and pro�t distribution of each crop varies across agroclimactic region.

Di¤erent parts of the world experience di¤erent levels of rainfall, soil quality, irrigation, elevation,

heat, and other such ecological characteristics, and this in�uences the stochastic yield and pro�t of

each crop. It is no surprise, then, that equilibrium cropping methods, crop mixes, and contracting

institutions vary so widely across region. A goal of this paper is to advance the understanding of

these di¤erences.

6.1 Risk Attitude and Informal Insurance Relationships

An abundance of work discusses the considerable role of informal insurance concerns in network

formation. People rely on each other to smooth consumption risk and income risk in a wide variety

of ways (Alderman and Paxson (1992), Morduch (1995)). A very prevalent consumption-smoothing

technique between people is transfers and remittances, and much work has been done to study the

nature of the transfers that can be sustained given a risk-sharing group, the shapes of equilibrium

networks holding �xed some transfer rule, and who is empirically observed to make transfers with

whom (Townsend (1994), Fafchamps and Lund (2003), Genicot and Ray (2003), Bramoulle and

Kranton (2007), and Ambrus et al. (2013), to name a few). A general message these papers convey

is that the need to manage risk in the absence of formal insurance institutions has huge e¤ects on

interpersonal relationships among the poor.

In fact, risk management can a¤ect relationship formation in very speci�c ways. Rosenzweig

and Stark (1989) show that daughters are often strategically married to villages located in en-
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vironmentally dissimilar regions with minimally correlated farming incomes, for the purposes of

consumption-smoothing; households exposed to more income risk are more likely to invest in longer-

distance marriage arrangements. Ligon et al. [cite], Fafchamps [1999], and Kocherlakota [1996],

among many others, analyze a pure risk-sharing relationship between two heterogeneously risk-

averse households who perfectly observe each other�s income. Ackerberg and Botticini [cite] study

agricultural contracting in medieval Tuscany, and �nd evidence that heterogeneously risk-averse

tenant farmers and landlords strategically formed sharecropping relationships based on di¤ering

risk attitudes, motivated by risk management concerns. Hence, informal insurance motivations

play a substantial role in the formation of relationships.

But how much do individuals care about the risk attitudes of potential partners when forming

risk-sharing groups? Naturally, there are many other reasons people might match with each other,

but the point of the model is to focus on one important determinant of risk-sharing relationship

formation, and to study how equilibrium matching patterns shift along that dimension. Further-

more, there is a great deal of evidence that the risk attitudes of partners are indeed a primary

determinant of risk-sharing partner choice. Ackerberg and Botticini (2002) provide empirical ev-

idence supporting the presence of endogeneity of matching along risk attitude of landowners and

sharecroppers in medieval Tuscany. In their data, they �nd that share contracts were associated

with the safer crop of cereal, while �xed rent (residual claimancy) contracts were associated with

the riskier crop of vines. They argue that this is the outcome of endogenous matching�risk-neutral

tenants may have been assigned to the riskier crops, resulting in �xed rent contracts for vines,

while risk-averse tenants may have been assigned to the safer crops, resulting in share contracts on

cereals.

Additional evidence for the importance of risk attitudes as a determinant of risk-sharing re-

lationships is found in Gine et al. (2010) and Attanasio et al. (2012). Gine et al. (2010) run

an experiment on small-scale entrepreneurs in urban Peru and allow joint liability groups to form

endogenously in a micro�nance setting. They �nd strong evidence of assortative matching along

risk attitude. Attanasio et al. (2012) run a unique experiment with 70 Colombian communities.

They gather data about risk attitudes and pre-existing kinship/friendship networks, and then allow

individuals to form risk-sharing groups of any size. Attanasio et al. �nd that, when members know

each other�s risk types, and trust each other (family and friends are in the same group), condition-

ing on all other potential reasons for matching which they are able to account for (gender, age,

geography), there is strong evidence of positive assortative matching along risk aversion.

To further emphasize the signi�cant role of risk attitude in determining risk-sharing relationship

formation, I use the dataset from Attanasio et al. (2010) to calculate the proportion of formed

links that involved at least one family or one friendship tie, for each municipality. The mean of

these proportions is 0:005, or 0:5%. Since it�s possible that there were very few family and friend

ties reported in the entire dataset to begin with, I also calculate the proportion of all possible links

that could have involved at least one family or friendship tie, for each municipality. The mean of

this number is 0:05. Hence, this back-of-the-envelope calculation suggests that, in this setting, only
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about 10% of all possible risk-sharing relationships which could have involved a family or friendship

tie, actually did involve such a tie. Hence, while one might expect kinship and friendship to be

major in�uences in partner choice, there is strong evidence that risk attitude is the more prominent

consideration when the partner is being chosen speci�cally for the purposes of informal insurance.

In particular, the family and friendship tie is likely to in�uence the pool of potential partners

(because individuals are less likely to know the risk attitudes of strangers, or to trust them), but

the choice of partner from this pool for the purposes of insurance is primarily determined by risk

attitudes.

6.2 Heterogeneity in Risk Aversion

The second key piece of the model is heterogeneity in risk attitudes across individuals. There is

plenty of evidence that people are risk-averse and that they are heterogeneous in their risk-aversion.

Experiments which elicit risk attitudes by asking subjects to choose from a set of gambles di¤ering

in riskiness �nd much variation in gamble choice. For example, Harrison et al. (2010) asked 531

experimental subjects drawn from India, Ethiopia, and Uganda to choose a gamble from a set of

gambles varying in riskiness (a riskier gamble has higher mean but correspondingly higher variance),

in a similar spirit as the seminal study by Binswanger (1980), and estimated the density of CRRA

risk attitudes:

It�s clear that there is a substantial amount of variation, and almost every point in the [0; 1]

range is represented.

In another experiment involving over 2,000 people living in 70 Colombian communities, where

66% live in rural areas, Attanasio et al. (2012) observes the following distribution (gamble 1 is the

safest gamble, while gamble 6 is the riskiest):
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Chiappori et al. (2010) use two distinct methods to measure heterogeneity in risk preferences

in Thai villages, where these villages are spread across several regions in Thailand. The �rst

method is based o¤ the co-movement of individual consumption with aggregate consumption, and

the second is based o¤ of optimal portfolio choice theory. Using both methods, they �nd substantial

heterogeneity in risk attitudes in each village. Moreover, this heterogeneity varies across villages

and regions. The following table reports the means of risk tolerance for each of 16 villages, and the

test statistic for heterogeneity:
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Again, it is clear that there is widespread variation in the degree of risk aversion across house-

holds.

6.3 Heterogeneity in Risky Activities and Settings

Finally, agents in a given setting have a wide variety of investment options and household decisions

to make, which vary in riskiness. For example, a farmer must choose a spatial distribution of his

plots, what lumpy purchases to make (e.g. bullocks), and when and how to plant his crop. A

microentrepreneur must decide what kind of business he wants to start. Parents must decide how

to invest household resources, and whom their children will marry. Individuals face a diversity

of choices, and how much diversity, as well as the relative riskiness of one decision compared to

another, varies across settings.

For example, Rosenzweig and Binswanger (1993) consider the equilibrium crop portfolio choices

of heterogeneously risk-averse farmers living in six ICRISAT villages located across three distinct

agroclimactic regions in India. The �rst region is characterized by low levels of erratically distrib-

uted rainfall and soils with limited water storage capacity (this is the riskiest environment), the

second region by similarly erratic rainfall and irrigation but better soil storage capacity, and the

third region by low levels of more reliable rainfall with reasonable soil storage capacity (this is the

safest environment). The principal crops grown are sorghum, pigeon peas, pearl millet, chickpeas,

and groundnuts, and their yield distributions vary across environment. They show that di¤erences

in risk aversion do translate into di¤erences in choice of risky investments. Individuals are in�u-

enced by risk-reduction when choosing income streams, particularly in response to limitations on

ex post consumption-smoothing, and the degree to which they are in�uenced depends on their risk

aversion.

Dercon (1996) also studies the variation in riskiness of agricultural investment decisions by

heterogeneously risk-averse rural households. His data is drawn from Tanzania, a country with very

underdeveloped credit markets (in 1989, only 5% of commercial bank lending went to the private

sector, and less than 10% of this lending went to individual farmers). The UN Food and Agriculture

Organization provides an interesting look at the vast heterogeneity in crop yield distributions and

equilibrium crop mix across regions in Tanzania in 1998. The following table shows the area, yield,

and production of each of �ve crops across ten agroclimactically heterogeneous regions in Tanzania1:

1Of course, in addition to levels and �uctuations of crop yields, farmers care about the levels and �uctuations of
crop prices, as they care ultimately about the distribution of pro�ts.
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Unfortunately, this table excludes estimates of the variance of yield of each of these crops across

regions. Dercon (1996) provides a discussion of this in his paper. He describes a multiplicity of soils

and irrigation systems in Tanzania, which support di¤erent crops. Paddy, a crop which can yield a

high return, is restricted only to speci�c soils and areas close to a river, and is the least drought and

locust resistant. Despite the potential for high returns, only 11% of the total cultivation sample

grew paddy. On the other hand, sorghum yields only a low-moderate return, but all soils can

sustain it, and it is more resistant to drought and pests. Even though it had a lower mean return,

it was grown by all but two households in the sample.

Uganda and Ethiopia are similar to Tanzania in the set of crops grown, though the actual

crop mix grown di¤ers due to di¤erences in environmental conditions. An IFPRI report from 2011

estimating crop yields in Uganda provides a useful illustration of how the variance of crop yields

di¤ers across crops, and the typical relationship of the variance with the mean:
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There is a clear positive relationship between mean yield and variance of yield. Groundnuts

have low mean yields and correspondingly low �uctuation of yields, making it a "safer" crop, while

banana has much higher mean yields but correspondingly higher �uctuation of yields, making it a

"riskier" crop.

Abebe et al. (2010) provide a similar graphic for Ethiopia:

(Enset is a type of banana.)

Again, we get a general sense that higher mean yield crops have a higher variance of yield, while

lower mean yield crops have a smaller variance of yield. Comparing across Uganda and Ethiopia,
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we see that maize is a safer crop relative to sweet potato in Uganda, but the opposite is true in

Ethiopia. Thus, the same set of crops have very di¤erent yield distributions in di¤erent settings,

and furthermore, each crop�s relative riskiness with the other crops also varies across setting.
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