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1 Introduction

Financial institutions in the United States keep reserve balances at the Federal Reserve Banks

to meet requirements, earn interest, or clear financial transactions. The market for federal funds

is an interbank over-the-counter market for unsecured, mostly overnight loans of dollar reserves

held at Federal Reserve Banks. This market allows institutions with excess reserve balances

to lend reserves to institutions with reserve deficiencies. A particular average measure of the

market interest rate on these loans is commonly referred to as the fed funds rate.

The fed funds market is primarily a mechanism that reallocates reserves among banks. As

such, it is a crucial market from the standpoint of the economics of payments and the branch of

banking theory that studies the role of interbank markets in helping banks manage reserves and

offset liquidity or payment shocks. The fed funds market is the setting where the interest rate on

the shortest maturity, most liquid instrument in the term structure is determined. This makes it

an important market from the standpoint of finance. The fed funds rate affects commercial bank

decisions concerning loans to businesses and individuals, and has important implications for the

loan and investment policies of financial institutions more generally. This makes the fed funds

market critical to macroeconomists. The fed funds market is the epicenter of monetary policy

implementation: The Federal Open Market Committee (FOMC) communicates monetary policy

by choosing the fed funds rate it wishes to prevail in this market and implements monetary

policy by instructing the trading desk at the Federal Reserve Bank of New York to “create

conditions in reserve markets” that will encourage fed funds to trade at the target level. As

such, the fed funds market is of first-order importance for economists interested in monetary

theory and policy. For these reasons, we believe it is crucial to pry into the micro mechanics

of trade in the market for federal funds in order to understand the mechanism by which this

market reallocates liquidity among banks and the determination of the market price for this

liquidity provision—the fed funds rate. To this end, we develop a dynamic equilibrium model

of trade in the fed funds market that explicitly accounts for the two distinctive features of

the over-the-counter structure of the actual fed funds market: search for counterparties and

bilateral negotiations. In the theory, banks randomly contact other banks over time, and once

they meet, they bargain over the loan size and interest rate.

Section 2 offers a brief institutional description of the market for federal funds. Section 3

presents the theoretical model and relates the main ingredients to the institutional features of
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the fed funds market. Section 4 defines and characterizes equilibrium. In Section 5 we use the

theory to identify the determinants of empirical measures of trade volume, trading delays, and

the fed funds rate. We show that the equilibrium exhibits endogenous intermediation: although

all banks have the same trading technology, some borrow reserves from counterparties who are

willing to lend at relatively low rates and later lend those reserves to counterparties who are

willing to borrow at higher rates. We also propose theory-based measures of the importance of

bank-provided intermediation in the process of reallocation of reserves. In Section 6 we calibrate

and simulate a large-scale version of the model to assess the ability of the theory to capture

the salient empirical features of the market for federal funds in the United States, such as the

intraday evolution of the distribution of reserve balances and the dispersion in loan sizes and

fed funds rates. Finally, we use the large-scale calibrated model as a laboratory to study a key

issue in modern central banking, namely, the effectiveness of policies that use the interest rate

on banks’ reserves as a tool to manage the fed funds rate. Appendix A contains all proofs.1

Previous research on the fed funds market includes the theoretical work of Poole (1968),

Ho and Saunders (1985), and Coleman, Gilles, and Labadie (1996), and the empirical work of

Hamilton (1996) and Hamilton and Jordà (2002). The over-the-counter nature of the fed funds

market was highlighted by Ashcraft and Duffie (2007) in their empirical investigation and used

by Bech and Klee (2011), Ennis and Weinberg (2009), and Furfine (2003) to try to explain

certain aspects of interbank markets such as apparent limits to arbitrage, stigma, and banks’

decisions to borrow from standing facilities. Relative to the existing literature on the fed funds

market, our contribution is to model the intraday allocation of reserves and pricing of overnight

loans using a dynamic equilibrium search-theoretic framework that captures the salient features

of the decentralized interbank market in which these loans are traded. Our work is related to

an emerging literature that studies search and bargaining frictions in financial markets. To

date, this literature consists of two subfields: one that deals with macro issues and another that

focuses on micro considerations in the market microstructure tradition.

On the macro side, for instance, Lagos (2010a, 2010b, 2011) uses versions of the Lagos and

Wright (2005) search-based model of exchange to study the effect of liquidity and monetary

policy on asset prices. On the micro side, Duffie, Gârleanu, and Pedersen (2005) and Lagos and

1There are also three online appendices: Appendix B studies the problem of a social planner who can reallocate
reserves subject to the same bilateral trading technology available to private agents and shows that the equilibrium
implements the efficient reallocation of reserves. Appendix C describes the data and estimation procedures used
in the quantitative implementation of the theory. Appendix D contains supplementary policy experiments.
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Rocheteau (2009) employ search-theoretic techniques to model the trading frictions character-

istic of real-world over-the-counter markets.2 Relative to this particular micro branch of the

literature, our contribution is twofold. First, our model of the fed funds market provides a the-

oretical framework to interpret and rationalize the findings of existing empirical investigations

of this market, such as Furfine (1999), Ashcraft and Duffie (2007), Bech and Atalay (2008), and

Afonso, Kovner, and Schoar (2011). Our second contribution is methodological: we offer the

first analytically tractable formulation of a search-based model of an over-the-counter market

in which all trade is bilateral and agents can hold essentially unrestricted asset positions.3

2 Institutional features of the market for federal funds

The market for federal funds is a market for unsecured loans of reserve balances at the Federal

Reserve Banks that allows participants with excess reserve balances to lend (or sell funds) to

those with reserve balance shortages. These unsecured loans, commonly referred to as federal

funds (or fed funds) are delivered on the same day, and their duration is typically overnight.

The interest rate on these loans is known as the fed funds rate. Most fed funds transactions

are settled through Fedwire Funds Services (Fedwire), a large-value real-time gross settlement

system operated by the Federal Reserve Banks. Fedwire operates 21.5 hours each business day,

from 9:00 pm eastern standard time (EST) on the preceding calendar day to 6:30 pm EST.

Participants include commercial banks, thrift institutions, agencies and branches of foreign

banks in the United States, government securities dealers, government agencies such as federal

or state governments, and GSEs (e.g., Freddie Mac, Fannie Mae, and Federal Home Loan

Banks). The market for fed funds is an over-the-counter market: in order to trade, a financial

institution must first find a willing counterparty and then bilaterally negotiate the size and rate

of the loan.

2There is by now a growing search-theoretic literature on financial markets that includes Afonso (2011),
Duffie, Gârleanu, and Pedersen (2007), Gârleanu (2009), Lagos and Rocheteau (2007), Lagos, Rocheteau, and
Weill (2011), Miao (2006), Rust and Hall (2003), Spulber (1996), Vayanos and Wang (2007), Vayanos and Weill
(2008), and Weill (2007, 2008), to name a few. See Ashcraft and Duffie (2007) for more on the over-the-counter
nature of the fed funds market.

3In contrast, the tractability of the model of Lagos and Rocheteau (2009) (the only other tractable formulation
of a search-based over-the-counter market with unrestricted asset holdings) relies on the assumption that all trade
among investors is intermediated by dealers who have continuous access to a competitive interdealer market.
While there are several examples of such pure dealer markets, the market for federal funds is not one of them.
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3 The model

There is a large population of agents that we refer to as banks, each represented by a point in

the interval [0, 1]. Banks hold integer amounts of an asset that we interpret as reserve balances

and can negotiate these balances during a trading session set in continuous time that starts at

time 0 and ends at time T . Let τ denote the time remaining until the end of the trading session,

so τ = T − t if the current time is t ∈ [0, T ]. The reserve balance that a bank holds (e.g., at

its Federal Reserve account) at time T − τ is denoted by k (τ) ∈ K, with K = {0, 1, ...,K},
where K ∈ Z and 1 ≤ K. The measure of banks with balance k at time T − τ is denoted

nk (τ). A bank starts the trading session with some balance k (T ) ∈ K. The initial distribution

of balances, {nk (T )}k∈K, is given. Let uk ∈ R denote the flow payoff to a bank from holding k

balances during the trading session, and let Uk ∈ R be the payoff from holding k balances at

the end of the trading session. All banks discount payoffs at rate r.

Banks can trade balances with each other in an over-the-counter market where trading

opportunities are bilateral and random and represented by a Poisson process with arrival rate

α. We model these bilateral transactions as loans of reserve balances. Once two banks have

made contact, they bargain over the size of the loan and the quantity of reserve balances to be

repaid by the borrower. After the terms of the transaction have been agreed upon, the banks

part ways. We assume that (signed) loan sizes are elements of the set K̄ = K ∪ {−K, ...,−1}
and that every loan gets repaid at time T + ∆ in the following trading day, where ∆ ∈ R+. Let

x ∈ R denote the net credit position (of reserves due at T + ∆) that has resulted from some

history of trades. We assume that the payoff to a bank with a net credit position x that makes

a new loan at time T − τ with repayment R at time T + ∆ is equal to the post-transaction

discounted net credit position, e−r(τ+∆) (x+R).

Discussion. We use a search-based model to capture the over-the-counter nature of the fed

funds market. In practice there are two ways of trading federal funds. Two participants can

contact each other directly and negotiate the terms of a loan, or they can be matched by a fed

funds broker. Since nonbrokered transactions represent the bulk of the volume, we abstract

from brokers in our baseline model. Notice that search entails two layers of uncertainty in

this environment. First, the time it takes a bank to contact a counterparty is an exponen-

tially distributed random variable with mean 1/α. Second, conditional on having contacted

a counterparty at time T − τ , the reserve balance k of the counterparty is a random variable
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with probability distribution {nk (τ)}k∈K. So even if a bank were able to contact counterpar-

ties fairly quickly, the fact that search is random with respect to the counterparties’ reserve

holdings implies that the bank will typically have to engage in several trades with different

counterparties in order to achieve a desired holding of reserve balances.

Fed funds activity is concentrated in the last two hours of the operating day. Until late

afternoon, transfers of reserves across banks are mostly due to their primary business activities.

For example, a profit center at Bank A may draw down reserve balances in order to pay for an

asset purchase from Bank B, or a client at Bank C may issue a payment to a client at Bank D,

resulting in a transfer of reserves from Bank C to Bank D. By around 4:00 pm, the fed funds

trading desk at each bank has a good estimate of the send and receive transactions pending until

the end of the day and begins actively trading fed funds to push the bank’s reserve balance

in the desired direction. From this point on, the dynamics of the reserve balance is mostly

controlled by the fed funds traders, who expect other profit centers at the bank to avoid large

unscheduled transactions near the end of the day.4 Thus, in the theory, we think of t = 0 as

standing in for 4:00 pm and use the initial condition {nk (T )}k∈K to represent the distribution

of actual reserve balances given to the banks’ fed funds trading desks at this time.

The motives for trading fed funds may vary across participants and their specific circum-

stances on any given day, but there are two main reasons in general. First, some institutions

such as commercial banks use the fed funds market to offset the effects on their reserve bal-

ances of transactions (initiated either by their clients or by profit centers within the banks

themselves) that would otherwise leave them with a reserve position that does not meet Fed-

eral Reserve regulations. Also, some participants regard fed funds as an investment vehicle—an

interest-yielding asset that can be used to “deposit” balances overnight. In our model, all

payoff-relevant policy and regulatory considerations are captured by the intraday and end-of-

day payoffs, {uk, Uk}k∈K.5

4Ashcraft and Duffie (2007) and Duffie (2012) document this kind of institutional knowledge obtained from
fed funds traders. In line with these observations, Bartolini et al. (2005) attribute the late afternoon rise in fed
funds trading activity to the clustering of institutional deadlines, e.g., the settlement of securities transactions
ends at 3:00 pm, causing some institutions to defer much of their money market trading until after that time, once
their security-related balance sheet position becomes certain. Uncertainty about client transactions and other
payment flows diminishes in the hour or two before Fedwire closes, which also contributes to the concentration
of fed funds trading activity late in the day.

5For example, if the Federal Reserve pays no interest on intraday holdings of reserves and interest rate if on
all reserves held at the end of the trading session, then uk = 0 and Uk = (1 + if ) k for all k ∈ K. As another
example, see (15) in Section 6.3. In Section 6.1 we will adopt a general specification that captures the essential
institutional arrangements currently in place in the United States.
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4 Equilibrium

Let the function Vk (τ) : K× [0, T ]→ R denote the maximum attainable payoff that a bank can

obtain from k ∈ K units of reserve balances when the time until the end of the trading session

is τ ∈ [0, T ]. Whenever two banks meet during the trading session, they bargain over the size of

the loan and the size of the repayment. Consider a bank with k balances that contacts a bank

with k′ balances. For any pair of pre-trade reserve balances of the two banks, k, k′ ∈ K, the set

Π (k, k′) = {(q, q′) ∈ K×K : q + q′ = k + k′} contains all feasible pairs of post-trade balances

that could result from the bilateral negotiation. This set embeds the restriction that an increase

in one bank’s balance must correspond to an equal decrease in the other bank’s balance and

that no bank can transfer more balances than it currently holds. For every pair of banks that

hold pre-trade balances (k, k′) ∈ K×K, the set Π (k, k′) induces the set of all feasible (signed)

loan sizes, Γ (k, k′) =
{
b ∈ K̄ : (k − b, k′ + b) ∈ Π (k, k′)

}
. Notice that Π (k, k′) = Π (k′, k) and

Γ (k, k′) = −Γ (k′, k) for all k, k′ ∈ K. The pair (bkk′ (τ) , Rk′k (τ)) denotes the bilateral terms

of trade between a bank with balance k and a bank with balance k′ when the remaining time

until the end of the trading session is τ . That is, bkk′ (τ) is the amount of reserves that the

bank with balance k lends to the bank with balance k′, and Rk′k (τ) is the amount of balances

that the latter commits to repay the former at time T + ∆. We take these terms of trade to be

the outcome corresponding to the symmetric Nash solution to the bilateral bargaining problem.

Then for any k, k′ ∈ K and any τ ∈ [0, T ], (bkk′ (τ) , Rk′k (τ)) is the solution to

max
b∈Γ(k,k′),R∈R

[
Vk−b (τ) + e−r(τ+∆)R− Vk (τ)

] [
Vk′+b (τ)− e−r(τ+∆)R− Vk′ (τ)

]
.

Thus for any k ∈ K and any τ ∈ [0, T ],

Vk (τ) = E

{∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk (1)

+ I{τα≤τ}e
−rτα

∑
k′∈K

nk′ (τ − τα)
[
Vk−bkk′ (τ−τα) (τ − τα) + e−r(τ+∆−τα)Rk′k (τ − τα)

]}

where

bkk′ (τ) ∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] (2)

e−r(τ+∆)Rk′k (τ) =
1

2

[
Vk′+bkk′ (τ) (τ)− Vk′ (τ)

]
+

1

2

[
Vk (τ)− Vk−bkk′ (τ) (τ)

]
. (3)

7



The expectation operator, E, in (1) is with respect to the exponentially distributed random

time until the next trading opportunity, τα, and I{τα≤τ} is an indicator function that equals 1 if

τα ≤ τ and 0 otherwise. The first term contains the flow payoff to the bank from holding balance

k until the next trade opportunity or the end of the session, whichever arrives first. The second

term says that in the event that the bank gets no trade opportunity before time T , it ends the

day with k balances and gets the end-of-day payoff Uk. The third term contains the expected

discounted payoff in the event that the bank gets a trade opportunity with another bank before

time T , i.e., at time T − (τ − τα). In this event the counterparty is a random draw from the

distribution of balances at time T − (τ − τα), namely, {nk′ (τ − τα)}k′∈K, and the expression

inside the square bracket is the post-trade continuation payoff of the bank we are considering.6

Hereafter, we use V ≡ [V (τ)]τ∈[0,T ], with V (τ) ≡ {Vk (τ)}k∈K, to denote the value function.

According to the bargaining solution (2) and (3), the loan size maximizes the joint gain from

trade, and the repayment implements a division of this gain between the borrower and the

lender that gives each a fraction equal to their bargaining power (i.e., one half). For example,

if a bank with i ∈ K balances and a bank with j ∈ K balances meet at time T − τ , they will

negotiate a loan of size bij (τ) = i− k = s− j, where (k, s) ∈ arg max(k′,s′)∈Π(i,j) S
k′s′
ij (τ) with

Sk
′s′
ij (τ) ≡ Vk′ (τ) +Vs′ (τ)−Vi (τ)−Vj (τ). The implied joint gain from trade corresponding to

this transaction is Sksij (τ), and the individual gain from trade, e.g., of the bank with pre-trade

balance equal to i, is Vk (τ) + e−r(τ+∆)Rji (τ)− Vi (τ) = 1
2S

ks
ij (τ).

Consider a bank with i balances that contacts a bank with j balances when the time

until the end of the trading session is τ . Let φksij (τ) be the probability that the former and

the latter hold k and s balances after the meeting, respectively, i.e., φksij (τ) ∈ [0, 1], with∑
k∈K

∑
s∈K

φksij (τ) = 1. Feasibility requires that φksij (τ) = 0 if (k, s) /∈ Π (i, j). Given any feasible

path for the distribution of trading probabilities, φ (τ) = {φksij (τ)}i,j,k,s∈K, the distribution of

6Notice that aside from the k units of reserves it is holding at time T − τ , a bank may also have a net credit
position x ∈ R resulting from trades that occurred earlier in the trading session (to be settled after the end of
the trading session, at time T + ∆). Thus the total payoff of a bank will typically depend on its total asset
position, s = (k, x) ∈ K× R. In Appendix A (Section A.1) we present the bargaining problem and the Bellman
equation that must be satisfied by Jk (x, τ) : K× R× [0, T ]→ R, i.e., the value function of a bank that at time
T − τ holds k ∈ K units of reserve balances and whose net credit position is x ∈ R, and the bilateral terms
of trade (bss′ (τ) , Rs′s (τ)) that result in a meeting at time T − τ between a bank with total asset position
s = (k, x) ∈ K × R and a bank with total asset position s′ = (k′, x′) ∈ K × R. We also show (Lemma 2) that
Jk (x, τ) = Vk (τ) + e−r(τ+∆)x, which means that the Nash bargaining outcome is independent of the net credit
positions of the banks, x and x′. This allows us to simplify the exposition by working with Vk (τ).
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balances at time T − τ , i.e., n (τ) = {nk (τ)}k∈K, evolves according to

ṅk (τ) = f [n (τ) ,φ (τ)] for all k ∈ K, (4)

where

f [n (τ) ,φ (τ)] ≡ αnk (τ)
∑
i∈K

∑
j∈K

∑
s∈K

ni (τ)φsjki (τ)

− α
∑
i∈K

∑
j∈K

∑
s∈K

ni (τ)nj (τ)φksij (τ) . (5)

The first term on the right side of (5) contains the total flow of banks that leave state k between

time t = T − τ and time t′ = T − (τ − ε) for a small ε > 0. The second term contains the total

flow of banks into state k over the same interval of time.

The following proposition provides a sharper representation of the value function and the

distribution of trading probabilities characterized in (1), (2), and (3).

Proposition 1 The value function V satisfies (1), with (2) and (3), if and only if it satisfies

rVi (τ) + V̇i (τ) = ui +
α

2

∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)φksij (τ) [Vk (τ) + Vs (τ)− Vi (τ)− Vj (τ)] (6)

for all (i, τ) ∈ K× [0, T ], with

Vi (0) = Ui for all i ∈ K, (7)

and

φksij (τ)

{
≥ 0 if (k, s) ∈ Ωij [V (τ)]
= 0 if (k, s) /∈ Ωij [V (τ)] ,

(8)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], with
∑
k∈K

∑
s∈K

φksij (τ) = 1, where

Ωij [V (τ)] ≡ arg max
(k′,s′)∈Π(i,j)

[Vk′ (τ) + Vs′ (τ)− Vi (τ)− Vj (τ)] . (9)

The set Ωij [V (τ)] defined in (9) contains all the feasible pairs of post-trade balances that

maximize the joint gain from trade between a bank with i balances and a bank with j bal-

ances that is implied by the value function V (τ) at time T − τ . For any pair of banks with

balances i and j, φksij (τ) defined in (8) is a probability distribution over the feasible pairs of

post-trade balances that maximize the bilateral gain from trade. Thus together, (8) and (9)
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describe the pairs of post-trade balances (or equivalently, loan sizes) that may result from the

bilateral bargaining. The Bellman equation described by (6) and (7) has a natural interpre-

tation. The flow value of a bank that holds balance i at time T − τ , i.e., rVi (τ), consists of

the flow return from holding balance i, i.e., ui, minus the flow capital loss associated with the

reduction in the remaining time until the end of the trading session, i.e., V̇i (τ), plus the rate at

which the bank meets counterparties, α, times the expected gain from trade to the bank, i.e.,∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)φksij (τ) 1
2S

ks
ij (τ).

Definition 1 An equilibrium is a path for the distribution of reserve balances, n (τ), a value

function, V , and a path for the distribution of trading probabilities, φ (τ), such that: (a)

given the value function and the distribution of trading probabilities, the distribution of bal-

ances evolves according to (4); and (b) given the path for the distribution of balances, the value

function satisfies (6) and (7), and the distribution of trading probabilities satisfies (8).

In quantitative implementations of the theory, one can try to compute equilibrium algo-

rithmically, as follows. Guess a path of trading probabilities and use it to solve the system of

differential equations (4) with initial condition {nk (T )}k∈K to obtain a path for the distribu-

tion of reserve balances. Then substitute the trading probabilities and distribution of reserves

implied by the guess, and solve the system of differential equations (6) and (7) for the implied

value function. Then use this value function and (8) to obtain a new guess for the path of

trading probabilities and continue iterating until the value function has converged. Instead of

following this route, here we make a curvature assumption on the vectors {uk}k∈K and {Uk}k∈K
that will allow us to provide an analytical characterization of equilibrium.

Assumption A. For any i, j ∈ K, the payoff functions satisfy

ud i+j2 e + ub i+j2 c ≥ ui + uj (DMC)

Ud i+j2 e + Ub i+j2 c ≥ Ui + Uj , “ > ” unless i =
⌈
i+j
2

⌉
and j =

⌊
i+j
2

⌋
, (DMSC)

where bxc ≡ max {k ∈ Z : k ≤ x} and dxe ≡ min {k ∈ Z : x ≤ k} for any x ∈ R.

Conditions (DMC) and (DMSC) require that {uk}k∈K and {Uk}k∈K satisfy the discrete mid-

point concavity property and the discrete midpoint strict concavity property, respectively. These

conditions are the natural discrete approximations to the notions of midpoint concavity and mid-
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point strict concavity of ordinary functions defined on convex sets.7 Assumption A is reasonable

in the context of the fed funds market because central banks typically do not offer payment

schemes that are convex in reserve balances. The following result provides a full characterization

of equilibrium under this assumption.

Proposition 2 Let the payoff functions satisfy Assumption A. Then:

(i) An equilibrium exists, and the equilibrium paths for the maximum attainable payoffs, V (τ),

and the distribution of reserve balances, n (τ), are uniquely determined.

(ii) The equilibrium path for the distribution of trading probabilities, φ (τ) = {φksij (τ)}i,j,k,s∈K,

is given by

φksij (τ)

{
≥ 0 if (k, s) ∈ Ω∗ij
= 0 if (k, s) /∈ Ω∗ij

(10)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], with
∑

(k,s)∈Ω∗ij

φksij (τ) = 1, and

Ω∗ij =


{(

i+j
2 , i+j2

)}
if i+ j is even{(⌊

i+j
2

⌋
,
⌈
i+j
2

⌉)
,
(⌈

i+j
2

⌉
,
⌊
i+j
2

⌋)}
if i+ j is odd.

(11)

The equilibrium distribution of trading probabilities (10) can be described intuitively as follows.

If at any point during the trading session, a bank with balance i contacts a bank with balance

j, then the post-trade balance is
⌊
i+j
2

⌋
for one of the banks and

⌈
i+j
2

⌉
for the other. This

property, and the uniqueness of the equilibrium paths for the distribution of reserve balances

and maximum payoffs, hold under Assumption A. With the path for φ (τ) given by (10) in

closed form, the equilibrium value function, V , is the unique bounded real-valued function that

satisfies (6) and (7), and the path for the distribution of balances, n (τ), is given by (4) with

initial condition {nk (T )}k∈K.

5 Positive implications

The fed funds market is a mechanism that reallocates reserves among banks. Its performance

is typically assessed with empirical measures of the volume of this reallocation and the corre-

sponding interest rates. In this section we derive the theoretical counterparts to these empirical

7Let X be a convex subset of Rn, then a function g : X → R is midpoint concave if 2g
(
x+y

2

)
≥ g (x) + g (y)

for all x, y ∈ X. Clearly, if g is concave, it is midpoint concave. The converse is true provided g is continuous.
See Murota (2003) for more on the midpoint concavity property and the role that it plays in the modern theory
of discrete convex analysis.
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measures and show that the theory is qualitatively consistent with the elementary features of

the actual fed funds market. We also identify the determinants of the fed funds rate, trade

volume, and trading delays, show that the equilibrium exhibits endogenous intermediation,

and propose theory-based measures of the importance of these bank-provided intermediation

services in the process of reallocation of reserves.

5.1 Trade volume and trading delays

The total volume of fed funds traded during the session is ῡ =
∫ T

0 ῡ (τ) dτ , where

ῡ (τ) = α
∑
i∈K

∑
j∈K

∑
k∈K

∑
s∈K

ni (τ)nj (τ)φksij (τ) |k − i| .

Notice that the arrival rate of specific trading opportunities is endogenous, as it depends on the

equilibrium distribution of balances. For example, αnj (τ)φksij (τ) is the rate at which agents

with balance i trade a loan of size to k − i with agents with balance j at time T − τ . Thus

even though the contact rate, α, is exogenous, the trading delays involved in attaining a certain

target balance of reserves are determined endogenously, e.g., by agents’ trading strategies and

the distribution of reserves.

5.2 Fed funds rate

Consider a transaction at time T−τ between a bank with i balances and a bank with j balances

such that the former exits the trade with k balances and the latter with s = i+ j − k. In this

case the bank with j balances gives the bank with i balances a loan of size bji (τ) = k−i = j−s,
and the latter repays Rksij (τ) at time T + ∆. Define the (gross) interest rate on this loan as

1 + ρksij (τ) =
Rksij (τ)

j − s
. (12)

Thus in the theory as in the actual fed funds market, there is no such thing as the fed funds rate;

rather there is a time-varying distribution of rates. In this context, it is natural to construct a

daily average,

ρ̄ =
1

T

∫ T

0

∑
i∈K

∑
j∈K

∑
k∈K

∑
s∈K

ωksij (τ) ρksij (τ) dτ,

where ωksij (τ) is a weighting function with ωksij (τ) ≥ 0 and
∑

i,j,k,s∈K
ωksij (τ) = 1. For example,

if ωksij (τ) = υksij (τ) /ῡ (τ), then ρ̄ is a value-weighted daily average fed funds rate akin to the

effective federal funds rate published daily by the Federal Reserve.
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5.3 Intermediation and speculative trades

Consider a bank B that starts the day with a zero balance of reserves and has two trade

opportunities during the whole trading session: the first with bank A that holds 20 units

of reserves and the second with bank C that holds 0. Then according to Proposition 2, B

holds 10 units after trading with A and 5 units after trading with C. Notice that B buys

10 units from A early in the trading session and resells 5 of these 10 units to C later in the

day, i.e., B acted as an intermediary between A and C. The equilibrium exhibits endogenous

intermediation in the sense that banks act as dealers, buying and selling funds on their own

account and channeling them from banks with larger balances to banks with smaller balances.

From an applied standpoint, this kind of intermediation is an important feature of the fed

funds market.8 From a theoretical standpoint, it is interesting that intermediation emerges

as an equilibrium phenomenon even though all banks are fundamentally identical (i.e., they

have the same contact rate, the same payoffs, and the bargaining power). Intermediation is

a natural consequence of two elementary forces: random sequencing of meetings among banks

with different holdings and the tendency of banks to want to equate their marginal utilities

from reserve holdings formalized in Proposition 2.9

We propose a theory-based empirical measure of the importance of intermediation in the

process of reallocation of reserves among banks. Consider a bank that starts the day with

balance k0 and then gets N ∈ {0, 1, 2, . . .} trading opportunities during the whole trading

session. Let kn denote the bank’s post-trade balance after the nth trade, for n = 1, ..., N . Define

the bank’s accumulated volume of purchases Op =
∑N

n=1 max {kn − kn−1, 0}, the accumulated

volume of sales, Os = −
∑N

n=1 min {kn − kn−1, 0}, and the (signed) net trade, Op−Os = kN−k0.

Then min{Op, Os} measures the volume of funds intermediated by the bank. Alternatively,

Op+Os is the gross volume of funds traded by the bank, and |Op−Os| is the size of the bank’s

net daily trade, so X = Op+Os−|Op −Os| is a bank-level measure of excess funds reallocation,

8This result is consistent with a striking aspect of the fed funds market that was pointed out by Ashcraft and
Duffie (2007): “A significant number of loans in our data are made by lenders in the lower deciles by relative
balances. Many of these lenders are presumably themselves in relative need of funds but agree to lend at a
sufficiently high rate, planning to borrow later in the day at a lower rate. In any OTC market, the borrower
does not generally know the most attractive rates available from other counterparties, or which counterparties
are offering them, and may have an incentive to accept the rate offered by such a lender.”

9In contrast, existing models of financial OTC markets, e.g., Duffie et al. (2005) and Lagos and Rocheteau
(2009), feature intermediation by assuming that there are two types of agents: “investors” who get utility from
holding the asset and “dealers” who have a superior (faster) trading technology and intermediate trade between
investors with different asset valuations.
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i.e., the volume of funds traded over and above what is required to accommodate the daily net

trade.10 The statistic X is an index of simultaneous buying and selling at the individual bank

level that suggests X/(Op +Os) as a natural measure of the proportion of the total volume of

funds traded by a bank that the bank intermediated during the trading session.

6 Quantitative analysis

In this section we calibrate and simulate the model and show that it captures the salient features

of the fed funds market in the United States. We then use the model as a laboratory to study

a key issue in contemporary central banking, namely, the effectiveness of policies that use the

interest rate on banks’ reserves as a tool to manage the overnight interbank rate.

6.1 Calibration

The motives for trading fed funds and the payoffs from holding reserve balances are different

for different types of market participants. Since commercial banks normally account for the

bulk of the trade volume in the fed funds market, we focus on their trading motives and

payoffs. The Federal Reserve imposes a minimum level of reserves on commercial banks and

other depository institutions.11 End-of-day balances within a maintenance period may vary

but generally remain positive as overnight overdrafts are considered unauthorized extensions

of credit and penalized. On October 9, 2008, the Federal Reserve began remunerating banks’

positive end-of-day balances. In the theory, all of these policy considerations are represented

by {Uk}k∈K. The Fed has traditionally not paid interest on intraday reserve balances, but it

charges interest on uncollateralized daylight overdrafts. In the theory, the flow payoff to a bank

from holding intraday balances is captured by {uk}k∈K.

For the quantitative work, we adopt the following formulation of banks’ end-of-day payoffs:

Uk = e−r∆f (k − k̄0 + Fk), (13)

where

Fk = max
kw∈K

{
F̄ (kw)− iwf

[
kw −

(
k − k̄0

)]}
s.t. k − k̄0 ≤ kw

10Our measure of excess funds reallocation is reminiscent of the notion of excess job reallocation used in
empirical studies of job creation and destruction (e.g., Davis, Haltiwanger, and Schuh, 1996).

11The reserve balance requirement applies to the average level of a bank’s end-of-day balances during a two-
week maintenance period. For an explanation of how these required operating balances are calculated, see
Bennett and Hilton (1997) and Federal Reserve (2009, 2010b).
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with

F̄ (kw) =


irf k̄ + ief

(
kw − k̄

)
if k̄ ≤ kw

irfk
w − icf (k̄ − kw) if 0 ≤ kw < k̄

−icf k̄ + iofk
w if kw < 0.

This formulation captures the essential institutional arrangements currently in place in the

United States. The parameter ∆f ∈ R+ represents the length of the period between the end of

the trading session and the beginning of the following trading session, when the bank’s reserves

held overnight at the Federal Reserve become available (in practice, this period consists of

the 2.5 hours between 6:30 pm and 9:00 pm). The parameter k̄0 ∈ {0, . . . ,K − 1} indexes

translations of the set K, which afford us a more flexible interpretation of the elements of K.

Intuitively, k̄0 can be thought of as the overdraft threshold, which allows us to interpret a bank

with k < k̄0 as having an overdraft in its Fed account.12 Thus according to (13), the end-of-day

payoff of a bank that holds net-of-overdraft-threshold balance k − k̄0 at the end of the trading

session is the discounted value of this balance net of interest payments from or to the Fed,

denoted Fk. Specifically, Fk contemplates that in practice, at the end of the trading day banks

have the option to borrow from the Federal Reserve discount window an amount of reserves

kw − (k − k̄0) ≥ 0. The parameter k̄ ∈
{

1, ...,K − k̄0

}
represents the reserve requirement

imposed on each bank. The cost of overnight borrowing from the discount window is denoted

iwf . The overnight interest rates that a bank earns on required and excess reserves are denoted

irf and ief , respectively, with ief < iwf . The deficiency per-dollar cost of failing to meet the reserve

requirement is denoted icf , and iof is the overnight overdraft penalty rate. The flow payoff to a

bank from holding intraday balances is given by

uk =

{
id+(k − k̄0)1−ε if 0 ≤ k − k̄0

−id−(k̄0 − k)1+ε if k − k̄0 < 0.
(14)

The interest rate that a bank earns from the Fed on positive intraday balances is id+, and id− is

the interest rate it pays the Fed on daylight overdraft. The curvature parameter ε ∈ [0, 1) will

be set to a negligible positive value.13

12For example, in a parametrization with k̄0 = 0, K can be interpreted as the set of reserve balances that can
be held by an individual bank. More generally, we can instead regard k ∈ K as an abstract index and interpret
k′ ≡ k− k̄0 as a bank’s actual reserve balance. Under this interpretation, reserve balances (i.e., k′) held by banks
are in the set K′ ≡ {k′ : k′ = k − k̄0 for some k ∈ K}. Then since K′ =

{
−k̄0, ...,K − k̄0

}
, this formulation

allows the payoff functions to accommodate the possibility of negative reserve balances. In line with this more
general interpretation, k̄ represents the reserve requirement imposed on reserve balances, k′ ≡ k − k̄0. (The
reserve requirement stated in terms of the index k would be k̄ + k̄0.)

13Together with id− large enough relative to id+, this will ensure that {uk}k∈K satisfies the discrete midpoint

15



We measure time in days. The model is meant to capture trade dynamics in the last 2.5

hours of the daily trading session, so we set T = 2.5/24. The parametrization of the initial

distribution of reserve balances, {nk (T )}k∈K, is guided by identifying nk (T ) in the theory with

the empirical proportion of commercial banks whose balances at 4:00 pm are k/k̄ times their

average daily reserve requirement over a typical two-week holding period in 2007. Specifically,

{nk (T )}k∈K was estimated from data using the following procedure. First, we identified 134

commercial banks that traded fed funds at the end of the second quarter of 2007 (according to

their FR Y9-C regulatory filings), for which we have been able to obtain information on their

required operating balance, and that are not subject to special analysis (according to item 9425

Bank Type Analysis Code of their regulatory fillings).14 Second, we obtained the empirical

cross-sectional distribution of closing balances of these 134 banks for each day of a two-week

maintenance period in the same quarter. Third, for every day in the sample, we constructed

a measure of each bank’s imputed reserve balance at 4:00 pm, as follows. Given each bank’s

closing balance on a given day, we subtracted the bank’s net payments activity from 4:00 pm

until Fedwire Funds Service closing time (typically 6:30 pm) as well as the discount window

activity for that day. Fourth, for each bank we calculated the average (over days in the two-week

maintenance period) imputed reserve balance at 4:00 pm and normalized it by dividing it by

the bank’s daily average required operating balance over the same maintenance period.15 The

distribution of average imputed normalized reserve balances across this sample of 134 banks

had a mean equal to 3.24. For our baseline experiments we translated this distribution so

that the mean would match the empirical mean of the ratio of seasonally adjusted reserves to

required reserves of all depository institutions during the second quarter of 2007, i.e., 1.04 as

reported in the H.3 Federal Reserve Statistical Release. Let hi denote this average imputed

normalized translated reserve balance for bank i. Finally, we let K = {0, . . . , 250}, k̄0 = 100,

and set nk (T ) = 1
134

∑
i I{hi∈[k−k̄0,k−k̄0+1)} for k = 0, ..., 249, and n250 (T ) = 1 −

∑249
k=0 nk (T ).

We normalize k̄ = 1, so k can be interpreted as a multiple of the reserve requirement.

Since the results are insensitive to small values of r, we set r = 0. Most transactions are

strict concavity property. In Appendix A (Section A.3, Corollary 2) we show that if instead of Assumption A
we assume that u satisfies discrete midpoint strict concavity and U satisfies discrete midpoint concavity, then the
existence and uniqueness results in Proposition 2 still hold.

14Banks that require special analysis include but are not limited to bankers banks, entities primarily conducting
credit card activities, and standalone internet banks.

15The information on reserve balances is from Daylight Overdraft Reporting and Pricing System (DORPS)
and two other internal Federal Reserve data sets: Discount window primary credit lending program and Required
operating balances.
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settled through Fedwire, and Fedwire does not operate for 2.5 hours between 6:30 pm and 9:00

pm, so the settlement lags ∆ and ∆f are set to ∆ = ∆f = 2.5/24, which means that banks

regard all loans (to other banks or to the Fed) as being repaid at the beginning of the following

working day. The values of the policy rates id−, id+, irf , ief , iwf , icf , and iof are chosen to mimic

policies in the United States during the second quarter of 2007. The interest rate charged

on daylight overdrafts, id−, is set to 0.0036/360.16 The interest rate paid on positive intraday

balances, id+, is set to 10−7/360 (one-thousandth of a basis point, annualized).17 The Federal

Reserve did not pay interest on reserves prior to October 2008, so irf = ief = 0. The total

per-dollar cost of borrowing from the discount window is iwf = iw +Pw, where iw is the window

discount rate and Pw represents the pecuniary value of the additional costs associated with

discount window borrowing (such as administrative costs and stigma). The deficiency charge

for failing to meet the reserve requirement is icf = ic + P c, where ic is the overnight interest

rate charged on the shortfall and P c represents the pecuniary value of additional penalties that

the bank may suffer for failing to meet reserve requirements. The overnight overdraft penalty

rate is iof = io + P o, where io is the interest rate on the overdraft and P o represents additional

penalties resulting from the use of unauthorized overnight credit. The interest rate on discount

window loans under the Primary Credit Facility was 6.25 percent per annum in the second

quarter of 2007, so we set iw = 0.0625/360. The penalty rate charged for reserve deficiencies

is 100 basis points above the Primary Credit Facility discount window lending rate on the first

day of the calendar month in which the deficiency occurred, so we set ic = 0.0725/360. The

interest penalty on overnight overdrafts is 400 basis points above the effective fed funds rate.

The average daily effective fed funds rate during the second quarter of 2007 was 5.25 percent

per annum, so we set io = 0.0925/360. In the baseline we set P c = P o = Pw.18 We calibrate

Pw and α, so that the equilibrium of the model is consistent with the following two targets:

16In practice, when an institution has insufficient funds in its Federal Reserve account to cover its settlement
obligations during the operating day, it can incur a daylight overdraft up to an individual maximum amount
known as net debit cap. (This cap is equal to zero for some institutions.) On March 24, 2011, the Federal Reserve
Board implemented major revisions to the Payment System Risk policy, which include a zero fee for collateralized
daylight overdrafts and an increased fee for uncollateralized daylight overdrafts to 50 basis points (annual rate)
from the prior level of 36 basis points that we use in our baseline (see Federal Reserve, 2010a).

17The interest that a bank receives for holding positive intraday reserves has actually been zero in the United
States. We set id+ to a small positive number and ε = 10−6, a negligible positive number, only to ensure
that {uk}k∈K satisfies the discrete midpoint strict concavity property, which significantly simplifies our solution

algorithm. A negligible id+ has only a negligible effect on the equilibrium rates.
18Corollary 3 (in Appendix A, Section A.4) reports a simple closed-form expression for Uk for parametrizations

such as this one, which satisfy ief < iwf ≤ iof and iwf < icf + irf . None of the quantitative results are sensitive to
the specific values of P c or P o provided these inequalities are satisfied.
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(a) the fed funds rate during the second quarter of 2007, which was 0.0525 per annum, and (b)

the standard deviation of the empirical end-of-day distribution of average normalized reserve

balances (for the two-week holding period used to estimate the initial distribution), which was

0.92. This calibration strategy implies Pw = 0.0525/360 and α = 120.19

6.2 Simulation

With the parameter values reported in Section 6.1, we simulated the equilibrium paths of one

million banks. The simulated quantities and prices are presented in Figure 1. The left and

middle columns report several dimensions of trade volume. The top left panel uses box plots

every 15 minutes to describe the evolution of the distribution of loan sizes during the day. The

bottom left panel shows the daily distribution of loan sizes. The theory predicts that loan sizes

decline throughout the trading session and a high concentration of smaller loans. In the middle

column, the top panel shows the distribution of the number of counterparties per bank and the

bottom panel shows the distribution of the proportion of intermediated funds—the measure

of intermediation introduced in Section 5.3. The equilibrium exhibits a substantial amount of

endogenous intermediation. The right column describes the behavior of the (distribution of)

fed funds rate(s). The top right panel plots in chronological time, t = T − τ , at each minute

t during the trading session, the value-weighted average of the cross-sectional distribution of

rates,
∑

i,j,k,s∈K
ωksij (τ) ρksij (τ). The bottom right panel exhibits a box plot every 15 minutes of

the spread between the theoretical rates on loans traded at minute t = T − τ , i.e., ρksij (τ), and

the value-weighted average of the cross-sectional distribution of rates on all transactions traded

in that minute. The value-weighted fed funds rate remains relatively stable during the trading

session, while the dispersion of spreads increases over time.

Figure 2 describes the evolution of the distribution of reserves. The left panel describes

the intraday evolution of the distribution of reserves by depicting box plots at 15-minute in-

tervals throughout the trading session of the distribution of normalized reserves generated by

the calibrated model and the distribution of average imputed normalized translated reserves

from the data. In order to assess the model fit, notice that during the last 2.5 hours of the

19With these values the equilibrium value-weighted daily average fed funds rate implied by the model (ρ̄ as
defined in Section 5.2) is 0.052 per annum, and the standard deviation of the end-of-day distribution of balances
implied by the model is 0.85. The value α = 120 implies that banks have an average of about 12.5 meetings
during the trading session, i.e., a trading opportunity every 12 minutes, on average. The implied equilibrium
mean and median numbers of trading partners per bank during the session are 7.3 and 7, respectively. The
implied equilibrium proportion of intermediated funds in the theory (i.e., as defined in Section 5.3) is 0.67.
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typical trading day, the theoretical distribution of banks’ reserves follows a clear pattern of

convergence that replicates quite well the pattern of convergnece of the empirical distribution.

The right panel of Figure 2 shows that the standard deviation of the cross-sectional distribu-

tion of reserves, both in the model and in the data, falls over time—another indication that

the market is continuously reallocating reserves from banks with larger balances to banks with

smaller balances. The initial distribution and standard deviation of the end-of-day distribution

from the model match the data by construction (the initial distribution is estimated from data,

and α is calibrated so that the standard deviation of the end-of-day distribution in the model

matches its empirical counterpart). Figure 2 shows the degree to which the model is able to

track the whole intraday path of the empirical distribution of reserves, i.e., the degree to which

the theory can successfully capture the dynamics of the reallocation of reserves during the last

stretch of a typical trading day. The rate of convergence of reserve balances in the model is

uniform throughout the trading session, while in the data it appears to be faster in the last

hour of the trading session (it speeds up some time between 5:15 pm and 5:30 pm). A richer

model in which the contact rate is allowed to be time dependent (either exogenously or if banks

could choose search intensity) may have a better chance at capturing the acceleration in the

convergence of reserve balances that we see in the data.

6.3 Policy evaluation

During the five years prior to the onset of the 2008-2009 financial crisis, total reserve balances

held by depository institutions in the United States fluctuated between $38 billion and $56

billion, and required reserves stood between 80 percent and 99 percent of total reserves. Total

reserves increased dramatically from about $41.5 billion in the months prior to September 2008

to more than $900 billion in January 2009. Most of the increase was accounted for by a sharp

rise in excess reserves, which represented more than 93 percent of total reserves in January 2009

(up from less than 3 percent in the months prior to September 2008). This context of large

excess reserves still persists today, six years later. On the policy front, the Emergency Economic

Stabilization Act of 2008 authorized the Federal Reserve to pay interest on reserve balances

held by or on behalf of depository institutions beginning October 1, 2008. With this authority,

the Federal Reserve Board approved a rule to amend its Regulation D, and the Federal Reserve

Banks began paying interest on reserves on October 9, 2008.

The unprecedented scale of excess reserves and the new policy instruments at the disposal
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of the Federal Reserve raise important questions regarding the Fed’s ability to adjust its policy

stance. For example, how large an open market operation would be necessary to increase the

fed funds rate by 25 basis points in a context with excess reserves standing above $1 trillion?

Is it possible to uncouple the quantity of reserves from the implementation of the interest rate

target? And if so, what is the elasticity of the fed funds rate to changes in the interest on

reserves? These issues have been receiving much attention in policy circles.20 We perceive a

growing need for quantitative models that can be used to explore the effectiveness of the interest

rate on reserves as a tool to manage the fed funds rate. In this section we take steps toward

meeting this demand.

As in Section 6.1, we think of nk (T ) as the model counterpart of the empirical proportion

of commercial banks whose balances at the beginning of the trading session are k/k̄ times larger

than their average daily reserve requirement over a two-week holding period. In order to conduct

policy and counterfactual experiments, it is useful to work with a parametric distribution of

balances, so instead of working with the empirical frequency of balances as in Section 6.1, here

we estimate the initial distribution with 2011 data by maximum likelihood using a Gaussian

mixture model with 2 components.21 Let Φ denote the cumulative distribution function of

the Gaussian mixture with parameters µ1 = 3.65 and µ2 = 46.32 (the means), σ1 = 4.78 and

σ2 = 44.93 (the standard deviations), and p1 = 1− p2 = 0.67 (the probability of drawing from

the first component), which we use to represent the distribution of average imputed normalized

translated reserve balances at 4:00 pm during the first quarter of 2011. Notice that µ̄ ≡
p1µ1 + p2µ2 = 17.7, which is the empirical mean of the ratio of seasonally adjusted reserves to

required reserves of all depository institutions during the first quarter of 2011 reported in the

H.3 Federal Reserve Statistical Release.22 In order to feed this distribution into the model, we

20See Ennis and Wolman (2010), Goodfriend (2002), and Keister et al. (2008) for policy discussions. Keister
et al. (2008) conclude, “While the floor system has received a fair amount of attention in policy circles recently,
there are important open questions about how well such a system will work in practice. Going forward, it will
be useful to develop theoretical models of the monetary policy implementation process that can address these
questions.” Ennis and Wolman (2010) stress, “In contrast to the predictions of simple theories, the interest on
reserves (IOR) rate has not acted as a floor on the federal funds rate. It is now well-understood why certain
institutional features of the fed funds market and the IOR program should prevent the IOR rate from acting as
a floor, but the precise determination of the fed funds rate in this environment remains poorly understood.”

21See Appendix C (Section C.2) for a detailed description of our estimation procedure.
22As was the case in Section 6.1 for 2007, our sample of banks for 2011 has an average ratio of reserve balances

to required operating balances that is somewhat higher than the ratio for all banks, so we translate the estimated
distribution so that its mean matches the empirical mean of the ratio of seasonally adjusted reserves to required
reserves of all depository institutions during the first quarter of 2011 as reported in the H.3 Federal Reserve
Statistical Release.
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let k̄ = 1 (so k can be interpreted as a multiple of the reserve requirement), K = {0, . . . , 250},
k̄0 = 100, and nk (T ) = Φ(k − k̄0 + 1) − Φ(k − k̄0) for k = 1, ..., 249, n0 (T ) = Φ (−100), and

n250 (T ) = 1− Φ (150). By construction, Q ≡
∑250

k=0(k − k̄0)nk (T ) ≈ µ̄ = 17.7.

For the policy experiments that follow, we recalibrate the model so that the equilibrium is

in line with market conditions on a typical day in 2011.23 The values of the policy rates id−,

iwf , icf , iof , irf , and ief are all chosen to mimic the policies in place in the United States during

the first quarter of 2011. Specifically, id− = 0.0036/360, iwf = 0.0075/360, icf = iwf + 0.01/360,

and irf = ief ≡ if = 0.0025/360. The effective fed funds rate was about 15 basis points, and

the overnight overdraft rate, iof , was set at 400 basis points above the effective fed funds rate

during 2011, so iof = 0.0415/360.

We set P c = P o = Pw = 0 and α = 1 so the equilibrium is consistent with: (a) an upper

band of the fed funds rate target of about 0.0025 per annum and (b) the standard deviation of

the empirical end-of-day distribution of average normalized reserve balances (for the two-week

holding period used to estimate the initial distribution), which was 35.3.24 All other parameter

values, i.e., r, T , ∆, ∆f , and id+, are set as in the calibration of Section 6.1.

The policy experiments consist of varying either if or iwf for different values of Q. In the

theory, Q ≡
∑250

k=0(k − k̄0)nk (T ) is the quantity of reserves held by the banking system as

a whole, while k̄ is the reserve requirement of the consolidated banking system. Hence Q/k̄

indicates whether total reserve balances are scarce or abundant relative to the total amount of

required reserves on a given day, and we can represent different market conditions by varying

Q.25 For example, a situation with Q/k̄ small may result from an open market sale at the onset

of the trading session. We conduct three types of policy experiments, and for each we consider

seven scenarios depending on the value of Q/k̄, namely, 0.1, 0.5, 1, 5, 10, 15, and 30.

The first experiment consists of increasing the interest paid on reserves, if , by 25 basis

23Section D.1 in Appendix D reports the results of similar counterfactual policy experiments for 2007.
24With this parametrization, the equilibrium of the model delivers a value-weighted daily average fed funds

rate of 0.0031 per annum and a standard deviation of the end-of-day distribution of balances equal to 32. While
Pw = 0 allows the model to replicate the much lower fed funds rate prevailing in 2011 relative to 2007, a lower
value of Pw for 2011 than for 2007 is also in line with recent efforts by the Federal Reserve to make the discount
window more accessible and less stigmatic. The small value of α allows the model to capture a context in which
there is little trade between banks, as has been the case since excess reserves sharply increased in 2009.

25Since for a large enough grid, K, our procedure ensures Q ≈ µ̄, we vary Q by varying µ̄. The desired value
of Q for each experiment is achieved by using a Gaussian mixture with parameters (µ1(Q), µ2(Q), σ1, σ1, p1),
where µi(Q) ≡ Qµi/µ̄, and cumulative distribution function denoted by Φ(·;Q), and then setting the initial
distribution of balances to nk (T ) = Φ(k− k̄0 + 1;Q)−Φ(k− k̄0;Q) for k = 1, ..., 249, n0 (T ) = Φ(−100;Q), and
n250 (T ) = 1− Φ(150;Q).
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points from 0 to 75 basis points while leaving the discount window rate, iwf , fixed at its baseline

value (75 basis points). The second experiment consists of increasing iwf by 25 basis points

from 25 to 150 basis points while leaving if at its baseline value (25 basis points). The implied

values of the equilibrium (value-weighted) daily average fed funds rate, ρ̄, for the first and

second experiments are summarized in Table 1 and Table 2, respectively. In both tables, the

first scenario, Q/k̄ = 0.1, represents a day in which reserves are very scarce in the sense that the

consolidated banking system holds balances that are only one-tenth of the required reserves. In

the seventh scenario, Q/k̄ = 30, the quantity of reserves in the system is very large relative to

the quantity of required reserves, similar to what is the case on a typical day nowadays. In this

case, the equilibrium fed funds rate essentially varies one-for-one with the interest on reserves,

if , and is insensitive to the discount window rate, iwf . The fed funds rate is sensitive to both

policy rates when market conditions are less extreme (in terms of the size of the total reserves

relative to required reserves). For example, if the market is “balanced,” e.g., if Q/k̄ = 1, then

an increase of 25 basis points in either policy rate increases the equilibrium fed funds rate

roughly by a half of 25 basis points. As we explain below, the “half” results from the fact

that the bargaining power of all banks is equal to one-half in our baseline calibration. Other

intermediate market conditions give different intermediate results; for example, if Q/k̄ = 10,

then an increase of 25 basis points in the interest rate paid on reserves increases the fed funds

rate by about 20 basis points, while an increase of 25 basis points in the discount window rate

would increase the fed funds rate by about 5 basis points. The responsiveness of the equilibrium

fed funds rate with respect to if increases with Q/k̄, while the opposite is true for iwf .

For a given policy, the equilibrium fed funds rate is decreasing in the overall quantity of

funds in the system, Q/k̄, as can be seen by following any of the rows in Table 1 or Table 2 from

left to right. Notice that the equilibrium fed funds rate typically lies in an interval [if+ε, iwf +ε].

Such an interval is often referred to as a channel or corridor by central bankers.26 In Table

1 the corridor gets narrower as if increases, and in the limit when if → iwf = 0.0075 (the

26The value of ε is slightly above half a basis point in our calculations. (It is not exactly zero, because in
the baseline calibration, banks have a small yet positive, concave intraday payoff from holding reserves.) Many
central banks, e.g., the European Central Bank and the central banks of Australia, Canada, and England, use
a channel or corridor system to implement monetary policy. The system consists of a lending facility that
resembles the discount window in the United States, from which banks are allowed to borrow freely (typically
against acceptable collateral) at an interest rate equal to the target rate plus a fixed number of basis points.
There is also a deposit facility that allows banks to earn overnight interest on reserves at a rate equal to the
target rate minus a fixed number of basis points. Hence interest rates at the two standing facilities form a channel
or corridor around the target rate.
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last row), the interval collapses to a point: the equilibrium rate can only equal 0.0075 + ε and

therefore becomes insensitive to Q/k̄. Similarly, the equilibrium rate tends to remain equal to

0.0025 + ε for any value of Q/k̄ as iwf → if = 0.0025 (first row of Table 2).

For the third experiment we set iwf = if + w, where w denotes a number of basis points

per annum, and increase if by 25 basis points from 0 to 100 basis points. The implied values

of ρ̄ for w = 0.0025/360 are reported in Table 3. The equilibrium fed funds rate is always

inside a corridor [if + ε, if + w + ε] (the value of ε is slightly above half a basis point). These

experiments amount to shifting the whole corridor, keeping its width, w, constant. As before,

the exact position of the equilibrium fed funds rate within this corridor depends on the amount

of reserves relative to required reserves, Q/k̄. For example, from the last column of Table 3,

it is clear that if reserves are very abundant, the equilibrium fed funds rate coincides with the

lower limit of the corridor, if +ε. As the market becomes more balanced, i.e., as Q/k̄ gets closer

to 1, the equilibrium fed funds rate approaches the middle of the corridor. Finally, notice that

shifting the whole corridor up by x basis points (keeping the corridor width, w, fixed) increases

the equilibrium fed funds rate by x basis points.

Figure 3 illustrates the equilibrium value-weighted daily average fed funds rate, ρ̄, as a func-

tion of the ratio of overall reserves to required reserves, Q/k̄. This figure was generated using

the parametrization corresponding to the third row of Table 2 (i.e., the baseline calibration

with the policy rates in place in the first quarter of 2011, if = 0.0025/360 and iwf = 0.0075). If

one thinks of open-market operations as interventions that change the marketwide availability

of reserves relative to the reserve requirement, the curve displayed in Figure 3 shows the effect

that—all else equal—open market sales or purchases of various sizes would have on the equi-

librium fed funds rate when carried out against the background of different interest-on-reserves

or Discount-Window rates.27

Discussion Tables 1 and 2 show that if excess reserves are abundant, then if is a powerful

tool for managing ρ̄ but iwf is relatively ineffective, while the opposite is true if total reserves are

small relative to the aggregate reserve requirement. The experiments also show that if either if

or iw is increased by x basis points in a balanced market, then ρ̄ will increase by about one-half

of x. Table 3 shows that ρ̄ will be very close to if (the floor of the corridor) if excess reserves

are abundant, that it lies almost exactly in the middle of the corridor if the market is balanced,

27Each panel in Figure 4 (in the online appendix) shows how ρ̄ changes with Q/k̄ for a different policy stance
defined by a pair of policy rates if and iwf .
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and that it tends to get closer to iw (the corridor ceiling) as reserves become scarce. This table

also shows that if both if and iw are increased by x basis points, then ρ̄ will increase by exactly

x basis points.

In order to explain these findings and to show explicitly what are the key determinants of

the equilibrium distribution of fed funds rates negotiated between banks throughout the day,

consider the special case of the theory with K = {0, 1, 2}. This case is simple because there can

only be mutually beneficial trade between a bank with i = 2 and a bank with j = 0 balances, so

the loan size must equal 1 in every trade. Hence, from (12), there is a single bilateral interest

rate, 1 + ρ (τ) = R (τ), at each point in time. In this context it is natural to refer to a bank

with i = 2 and a bank with j = 0 as the lender and borrower, respectively, and to let θ ∈ [0, 1]

be the bargaining power of the borrower. If we let the end-of-day parameters satisfy k̄0 = 0,

k̄ = 1, ∆f = ∆ and ief < iwf < irf + icf (a condition on policy rates that is satisfied in our baseline

calibration), (13) reduces to

Uk =


−e−r∆(iwf − irf ) if k = 0

e−r∆(1 + irf ) if k = 1

e−r∆(2 + irf + ief ) if k = 2.

(15)

We can interpret a bank with k = 1 as being “on target” (holding the level of required reserves),

a bank with k = 2 as being “above target” (holding excess reserves), and a bank with k = 0 as

being “below target” (unable to meet the reserve requirement). In this setting the quantity of

reserves in the market, Q, equals n1 (T ) + 2n2 (T ), so Q ≤ 1 if and only if n2 (T ) ≤ n0 (T ), i.e.,

since the total amount of required reserves is k̄ = 1, the consolidated banking system is short

of reserves if n2 (T ) ≤ n0 (T ) and holds excess reserves otherwise. If we set uk = 0 (which is

essentially true in our calibration) the equilibrium interest rate can be solved for explicitly:

ρ (τ) = Θ (τ) ief + [1−Θ (τ)] iwf , (16)

where

Θ (τ) ≡ θ[n2(T )−e−α[n2(T )−n0(T )](T−τ)n0(T )]e−αθ[n2(T )−n0(T )]τ+[1−e−αθ[n2(T )−n0(T )]τ ]n2(T )

n2(T )−e−α[n2(T )−n0(T )]Tn0(T )
.

Notice that Θ (τ) ∈ [0, 1], with Θ (0) = θ, and ∂Θ (τ) /∂θ > 0 for all τ . It is possible to show

that if n2 (T ) < n0 (T ), then 0 ≤ Θ (τ) ≤ θ with Θ′ (τ) < 0, and conversely, if n0 (T ) < n2 (T ),

then θ ≤ Θ (τ) ≤ 1 with Θ′ (τ) > 0. Thus Θ (τ) can be thought of as a borrower’s effective

bargaining power at time T−τ , determined by the borrower’s fundamental bargaining power, θ,
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as well as his ability to realize gains from trade in the time remaining until the end of the trading

session, which depends on the evolution of the endogenous distribution of balances across banks.

For example, if n0 (T ) < n2 (T ), it is relatively difficult for banks with excess balances to find

potential borrowers, and Θ (τ) is larger than θ throughout the trading session. In this case the

lenders’ effective bargaining power, 1 − Θ (τ), increases toward their fundamental bargaining

power, 1− θ, as the trading session progresses, reflecting the fact that although borrowers face

a favorable distribution of potential trading partners throughout the session, their chances to

execute the desired trade diminish as the end of the session draws closer. In the special case

where the market is “balanced,” i.e., if n0 (T ) = n2 (T ), we have Θ (τ) = θ for all τ .

According to (16), the fed funds rate is a time-varying weighted average of the lender’s

end-of-day return on the second unit of balances, ief , and the borrower’s end-of-day reservation

value for the first unit of balances, iwf . The weight on the former at time T − τ is Θ (τ), i.e.,

the borrower’s effective bargaining power at time T − τ . Notice that a 1 percent increase in the

overnight interest rate that the central bank pays on excess reserves, ief , causes a Θ (τ) percent

increase in the fed funds rate at time T − τ . A 1 percent increase in the overnight cost of a

deficient balance, iwf , causes a 1 − Θ (τ) percent increase in the fed funds rate at time T − τ .

It is possible to show that if n2 (T ) is very large relative to n0 (T ) (i.e., if Q/k̄ is very large),

then Θ (τ) is very close to 1 for most of the trading session, which explains why ρ̄ is very close

to the floor of the corridor in the last column of Table 3 as well as why it moves basis point for

basis point with the floor of the corridor in the last column of Table 1. And clearly, if Q/k̄ = 1

and θ = 1/2, then ρ (τ) = ρ̄ = (1/2) (ief + iwf ), consistent with the experiments reported in

the middle columns of Tables 1, 2 and 3). Since policy discussion is often organized around

the competitive static model of Poole (1968), it is interesting to point out that the curves in

Figure 3 and in Figure 4 (in the online appendix) are reminiscent of those that would be traced

out by the equilibrium points resulting from progressively shifting the standard vertical supply

of reserves in the popular “Poole model” (see, e.g., Ennis and Keister, 2008 or Keister et al.,

2008).

7 Conclusion

The model we have developed is strikingly simple: banks randomly contact other banks over

time and bargain the terms of the loans. Given the wide range of theoretical and quantitative

results that the model delivers, we regard its simplicity as a virtue. We recognize, however, that
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there are several aspects of the real-world market for federal funds that our theory abstracts

from, and we think that this opens up several interesting avenues for future work.

Available estimates suggest that the bulk of fed funds trade is direct trade between banks.

But there is a segment of the market intermediated by specialized brokers that are not them-

selves commercial banks, so it would be interesting to incorporate them into the model.

The model is well suited to describe the last 2.5 hours of the typical trading session, when

unexpected payment shocks are rare. In order to model trade dynamics throughout the whole

day, the theory could be extended to allow for random payment shocks that induce exogenous

reallocations of reserves among banks. Also, we have focused on trade dynamics within a typical

day, but the theory could be extended to encompass a sequence of trading sessions like the one

we have modeled.

The baseline model has banks that only differ in their initial holdings of reserves. Our

perusal of available data suggests that it would be a fruitful task to extend the quantitative

work to allow for heterogeneity among banks in terms of their relative bargaining strengths,

the rates at which they can contact potential trading partners, and the payoffs from holding

reserve balances.

We have assumed random search, which may be a reasonable assumption for settings in

which banks are completely uninformed about potential counterparties’ balances before a con-

tact takes place. However, in reality some banks may have some information about which

counterparties are more likely to be long or short on any given day, so for some questions it

may be useful to extend the model to incorporate some degree of directedness in search.

We have abstracted from default risk. This may be an interesting feature to add, e.g.,

to study interbank markets during times of financial stress. Other natural extensions involve

incorporating private information, e.g., regarding the reserve balances held by each bank or

about the likelihood that a counterparty may fail to repay at the stipulated time.
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A Proofs

A.1 Value function

Let the function Jk (x, τ) : K×R× [0, T ]→ R denote the maximum attainable payoff to a bank

that holds k ∈ K units of reserve balances and whose net credit position is x ∈ R when the

time until the end of the trading session is τ ∈ [0, T ]. Let s = (k, x) ∈ K×R denote the bank’s

individual state. Then,

Jk (x, τ) = E

{∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτ (Uk + e−r∆x
)

(17)

+ I{τα≤τ}e
−rτα

∫
Jk−bss′ (τ−τα) (x+Rs′s (τ − τα) , τ − τα)µ

(
ds′, τ − τα

)}
,

where E is an expectation operator over the exponentially distributed random time until the

next trading opportunity, τα, and I{τα≤τ} is an indicator function that equals 1 if τα ≤ τ and 0

otherwise. For each time τ ∈ [0, T ] until the end of the trading session, µ (·, τ) is a probability

measure (on the Borel σ-field of the subsets of K×R) that describes the heterogeneity of poten-

tial trading partners over individual states, s′ = (k′, x′). The pair (bss′ (τ − τα) , Rs′s (τ − τα))

denotes the bilateral terms of trade between a bank with state s and a (randomly drawn) bank

with state s′, when the remaining time is τ−τα. That is, bss′ (τ − τα) is the amount of balances

that the bank with state s lends to the bank with state s′, and Rs′s (τ − τα) is the amount of

balances that the latter commits to repay at time T + ∆.

For all τ ∈ [0, T ] and any (s, s′) with s, s′ ∈ K × R, we take (bss′ (τ) , Rs′s (τ)) to be the

outcome corresponding to the symmetric Nash solution to a bargaining problem.28 Thus the

bargaining outcome, (bss′ (τ) , Rs′s (τ)), is the pair (b, R) that solves

max
b∈Γ(k,k′),R∈R

[Jk−b (x+R, τ)− Jk (x, τ)]
1
2
[
Jk′+b

(
x′ −R, τ

)
− Jk′

(
x′, τ

)] 1
2 .

Below, in Lemma 2, we show that

Jk (x, τ) = Vk (τ) + e−r(τ+∆)x (18)

28This axiomatic Nash solution can also be obtained from a strategic bargaining game in which, upon contact,
Nature selects one of the banks with probability one-half to make a take-it-or-leave-it offer, which the other bank
must either accept or reject on the spot. It is easy to verify that the expected equilibrium outcome of this game
coincides with the solution to the Nash bargaining problem, subject to the obvious reinterpretation of Rs′s (τ)
as an expected repayment, which is inconsequential. See Appendix C in Lagos and Rocheteau (2009).
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satisfies (17), if and only if Vk (τ) : K× [0, T ]→ R satisfies (1) for all (k, τ) ∈ K× [0, T ], with (2)

and (3). Note that in (2) and (3) we use (bkk′ (τ) , Rk′k (τ)) (rather than (bss′ (τ) , Rs′s (τ))) to

denote the bargaining outcome between a bank with individual state s ∈ K×R and a bank with

individual state s′ ∈ K × R, in order to stress that this outcome is independent of the banks’

net credit positions, x and x′. Before proving Lemma 2, we establish the following preliminary

result.

Lemma 1 For any (k, k′) ∈ K×K and any τ ∈ [0, T ], consider the following problem:

max
b∈Γ(k,k′),R∈R

[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′
, (19)

where θkk′ = 1− θk′k ∈ [0, 1], and Vk (τ) : K× [0, T ]→ R is bounded. The correspondence

H∗
(
k, k′, τ ;V

)
= arg max

b∈Γ(k,k′),R∈R

{[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′
[
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′
}

is nonempty. Moreover, (bkk′ (τ) , Rk′k (τ)) ∈ H∗ (k, k′, τ ;V ) if and only if

bkk′ (τ) ∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] , and (20)

e−r(τ+∆)Rk′k (τ) = θkk′
[
Vk′+bkk′ (τ) (τ)− Vk′ (τ)

]
+ (1− θkk′)

[
Vk (τ)− Vk−bkk′ (τ) (τ)

]
. (21)

Proof of Lemma 1. Define

R = er(τ+∆) max
b∈Γ(k,k′)

{θkk′ [Vk′+b (τ)− Vk′ (τ)] + (1− θkk′) [Vk (τ)− Vk−b (τ)]} (22)

R = er(τ+∆) min
b∈Γ(k,k′)

{θkk′ [Vk′+b (τ)− Vk′ (τ)] + (1− θkk′) [Vk (τ)− Vk−b (τ)]} , (23)

and consider

max
(b,R)∈Γ̃(k,k′)

[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′
, (24)

where Γ̃ (k, k′) =
{

(b, R) ∈ Γ (k, k′)×
[
R,R

]}
. Since Vk (τ) is bounded, −∞ < R ≤ R <∞, so

(24) has at least one solution. Let (b∗, R∗) denote a solution to (24). If we ignore the constraints

R ≤ R ≤ R, then (b∗, R∗) must satisfy the following first-order condition:

e−r(τ+∆)R∗ = θkk′ [Vk′+b∗ (τ)− Vk′ (τ)] + (1− θkk′) [Vk (τ)− Vk−b∗ (τ)] . (25)
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But then (22) and (23) imply R ≤ R∗ ≤ R, and therefore (b∗, R∗) solves (24) if and only if it

solves (19). Suppose that (b∗, R∗) is a solution to (24) such that

b∗ /∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] . (26)

Condition (25) implies

Vk−b∗ (τ)− Vk (τ) + e−r(τ+∆)R∗ = θkk′ [Vk′+b∗ (τ) + Vk−b∗ (τ)− Vk′ (τ)− Vk (τ)]

Vk′+b∗ (τ)− Vk′ (τ)− e−r(τ+∆)R∗ = (1− θkk′) [Vk′+b∗ (τ) + Vk−b∗ (τ)− Vk′ (τ)− Vk (τ)] ,

so the value of (24) achieved by (b∗, R∗) is

θ
θkk′
kk′ (1− θkk′)1−θkk′ [Vk′+b∗ (τ) + Vk−b∗ (τ)− Vk′ (τ)− Vk (τ)] ≡ ξ∗.

But (26) implies that there exists b′ ∈ Γ (k, k′) such that

ξ∗ < θ
θkk′
kk′ (1− θkk′)1−θkk′ [Vk′+b′ (τ) + Vk−b′ (τ)− Vk′ (τ)− Vk (τ)] .

Then since

R′ = er(τ+∆) {θkk′ [Vk′+b′ (τ)− Vk′ (τ)] + (1− θkk′) [Vk (τ)− Vk−b′ (τ)]} ∈
[
R,R

]
,

it follows that (b′, R′) achieves a higher value than (b∗, R∗), so (b∗, R∗) is not a solution to (24),

a contradiction. Hence, a solution (b∗, R∗) to (24), or equivalently to (19), must satisfy (25)

and

b∗ ∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] . (27)

To conclude, we show that any (b∗, R∗) that satisfies (25) and (27) is a solution to (19). To see

this, notice that for all (b, R) ∈ Γ (k, k′)× R,[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′

≤ max
R∈R

[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′

= θ
θkk′
kk′ (1− θkk′)1−θkk′ [Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)]

≤ θθkk′kk′ (1− θkk′)1−θkk′ max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] = ξ∗.

Lemma 2 The function Jk (x, τ) given in (18) satisfies (17) if and only if Vk (τ) satisfies (1),

with (2) and (3).
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Proof of Lemma 2. Let B denote the space of bounded real-valued functions defined on

K× [0, T ]. Let B′ denote the space of functions obtained by adding e−r(τ+∆)x for some x ∈ R,

to each element of B. That is,

B′ =
{
g : S→ R | g (k, x, τ) = w (k, τ) + e−r(τ+∆)x for some w ∈ B

}
,

where S = K × R × [0, T ]. Let s = (k, x) and s′ = (k′, x′) denote two elements of K × R. For

any g ∈ B′ and any (s, s′, τ) ∈ K× R× S, let

H̃
(
s, s′, τ ; g

)
= arg max

b∈Γ(k,k′),R∈R

{
[g (k − b, x+R, τ)− g (k, x, τ)]θkk′[

g(k′ + b, x′ −R, τ)− g(k′, x′, τ)
]1−θkk′} ,

where θkk′ = 1 − θk′k ∈ [0, 1] for any k, k′ ∈ K. Since g ∈ B′, H̃ (s, s′, τ ; g) = H∗ (k, k′, τ ;w),

where

H∗
(
k, k′, τ ;w

)
= arg max

b∈Γ(k,k′),R∈R

{[
w (k − b, τ)− w (k, τ) + e−r(τ+∆)R

]θkk′
[
w(k′ + b, τ)− w(k′, τ)− e−r(τ+∆)R

]1−θkk′
}

for some w ∈ B, as defined in Lemma 1. By Lemma 1, H∗ (k, k′, τ ;w) is nonempty, and

(b(k, k′, τ), R(k′, k, τ)) ∈ H∗ (k, k′, τ ;w) if and only if

b(k, k′, τ) ∈ arg max
b∈Γ(k,k′)

[
w(k′ + b, τ) + w (k − b, τ)− w(k′, τ)− w (k, τ)

]
(28)

and

e−r(τ+∆)R(k′, k, τ) = θkk′
{
w
[
k′ + b(k, k′, τ), τ

]
− w(k′, τ)

}
+ (1− θkk′)

{
w(k, τ)− w

[
k − b(k, k′, τ), τ

]}
. (29)

The right side of (17) defines a mapping T on B′. That is, for any g ∈ B′ and all (k, x, τ) ∈ S,

(T g) (k, x, τ) = E
[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτ (Uk + e−r∆x
)

+ I{τα≤τ}e
−rτα

∫
g
[
k − b(k, k′, τ − τα), x+R(k′, k, τ − τα), τ − τα

]
µ
(
ds′, τ − τα

)]
where b(k, k′, τ) satisfies (28) and R(k′, k, τ) satisfies (29) (for the special case θkk′ = 1/2 for

all k, k′ ∈ K), for w ∈ B defined by w (k, τ) = g (k, x, τ)− e−r(τ+∆)x for all (k, τ) ∈ K× [0, T ].

Substitute g (k, x, τ) = w (k, τ) + e−r(τ+∆)x on the right side of (T g) (k, x, τ) to obtain

(T g) (k, x, τ) = (Mw) (k, τ) + e−r(τ+∆)x, (30)

30



where M is a mapping on B defined by

(Mw) (k, τ) = E
[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk

+ I{τα≤τ}e
−rτα

∫
w
[
k − b(k, k′, τ − τα), τ − τα

]
µ
(
ds′, τ − τα

)
+ I{τα≤τ}e

−rτα
∫
e−r(τ+∆−τα)R(k′, k, τ − τα)µ

(
ds′, τ − τα

)]
, (31)

for all (k, τ) ∈ K× [0, T ]. Since the right side of (31) is independent of the net credit position

x, after recognizing that µ ({(k′, x) ∈ K× R : k′ = k} , τ) = nk (τ), (31) can be written as

(Mw) (k, τ) = E

[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk

]

+ E
[
I{τα≤τ}e

−rτα
∑
k′∈K

nk′ (τ − τα)w
[
k − b(k, k′, τ − τα), τ − τα

]
+ I{τα≤τ}e

−rτα
∑
k′∈K

nk′ (τ − τα) e−r(τ+∆−τα)R(k′, k, τ − τα)

]
, (32)

for all (k, τ) ∈ K×[0, T ]. From (32), it is clear thatM is the mapping defined by the right side of

(1). Since w ∈ B, and (b(k, k′, τ), R(k′, k, τ)) satisfy (28) and (29), it follows thatM : B → B,

and together with (30), this implies T : B′ → B′. Notice that g∗ = w∗ + e−r(τ+∆)x ∈ B′ is a

fixed point of T if and only if w∗ ∈ B is a fixed point of M. In the statement of the lemma

and in the body of the paper, the fixed points g∗ (k, x, τ) and w∗ (k, τ) are denoted Jk (x, τ)

and Vk (τ), respectively.

A.2 Proposition 1

Proof of Proposition 1. Start with the mapping (32), and notice that after writing out the

expectation explicitly and performing a change of variable, it becomes

(Mw) (k, τ) = vk (τ)+α

∫ τ

0

∑
k′∈K

nk′ (z)
{
w
[
k − b(k, k′, z), z

]
+ e−r(z+∆)R(k′, k, z)

}
e−(r+α)(τ−z)dz,

for all (k, τ) ∈ K× [0, T ], where

vk (τ) ≡ E

[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk

]
,

which can be integrated to obtain

vk (τ) =
[
1− e−(r+α)τ

] uk
r + α

+ e−(r+α)τUk. (33)
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Since b(k, k′, τ) and R(k′, k, τ) satisfy (28) and (29), the previous expression for the mapping

M can be written as

(Mw) (k, τ) = vk (τ) + α

∫ τ

0
w (k, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

[∑
k′∈K

nk′ (z) θkk′{w
[
k′ + b(k, k′, z), z

]
+ w

[
k − b(k, k′, z), z

]
− w(k′, z)− w(k, z)}

]
e−(r+α)(τ−z)dz.

In turn, since

w
[
k′ + b(k, k′, z), z

]
+ w

[
k − b(k, k′, z), z

]
− w(k′, z)− w(k, z)

= max
b∈Γ(k,k′)

[
w(k′ + b, z) + w(k − b, z)− w(k′, z)− w(k, z)

]
= max

(i,j)∈Π(k,k′)

[
w(j, z) + w(i, z)− w(k′, z)− w(k, z)

]
,

we have

(Mw) (k, τ) = vk (τ) + α

∫ τ

0
w (k, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
k′∈K

nk′ (z) θkk′ max
(i,j)∈Π(k,k′)

[
w(i, z) + w(j, z)− w(k, z)− w(k′, z)

]
e−(r+α)(τ−z)dz,

for all (k, τ) ∈ K× [0, T ]. With relabeling, this mapping can be rewritten as

(Mw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz (34)

+ α

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z) θijφ
ks
ij (z) [w(k, z) + w(s, z)− w(i, z)− w(j, z)] e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K× [0, T ], with

φksij (z)

{
≥ 0 if (k, s) ∈ Ωij [w (·, z)]
= 0 if (k, s) /∈ Ωij [w (·, z)] ,

for all i, j, k, s ∈ K and all z ∈ [0, T ], where
∑
k∈K

∑
s∈K

φksij (z) = 1, and

Ωij [w (·, z)] ≡ arg max
(k′,s′)∈Π(i,j)

[
w(k′, z) + w(s′, z)− w (i, z)− w (j, z)

]
.

From (34) (with θkk′ = 1/2), it is clear that V =MV can be written as

Vi (τ) = vi (τ) + α

∫ τ

0
Vi (z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z)φksij (z) [Vk(z) + Vs(z)− Vi(z)− Vj(z)] e−(r+α)(τ−z)dz, (35)
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for all (i, τ) ∈ K × [0, T ]. Notice that (35) implies (7). Differentiate both sides of (35) with

respect to τ , and rearrange terms to obtain

V̇i (τ)+rVi (τ) = v̇i (τ)+(r + α) vi (τ)+
α

2

∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)φksij (τ) [Vk(τ) + Vs(τ)− Vi(τ)− Vj(τ)] ,

which together with the fact that v̇i (τ) = ui − (r + α) vi (τ) implies (6).

A.3 Proposition 2

Lemma 3, Corollary 1, Lemma 4, and Lemma 5 are used in the proof of Proposition 2.

Lemma 3 Let g be a real-valued function on K. Then g satisfies

g
(⌈

i+j
2

⌉)
+ g

(⌊
i+j
2

⌋)
≥ g (k) + g (s) (36)

for any i, j ∈ K and all (k, s) ∈ Π (i, j) if and only if it satisfies the discrete midpoint concavity

property,

g
(⌈

i+j
2

⌉)
+ g

(⌊
i+j
2

⌋)
≥ g (i) + g (j) (37)

for all i, j ∈ K.

Proof of Lemma 3. Suppose that g satisfies (36). Since the condition holds for all (k, s) ∈
Π (i, j), and we know that (i, j) ∈ Π (i, j), it holds for the special case (k, s) = (i, j), so g

satisfies (37). To show the converse, notice that since (37) holds for all i, j ∈ K, it also holds

for all i, j ∈ K such that (i, j) ∈ Π (k, s) for any k, s ∈ K. But for any such (i, j), we know that

i+ j = k + s, so (37) implies

g
(⌈

k+s
2

⌉)
+ g

(⌊
k+s

2

⌋)
≥ g (i) + g (j)

for any k, s ∈ K and all (i, j) ∈ Π (k, s), which is the same as (36) up to a relabeling.

Corollary 1 The payoff functions {uk}k∈K and {Uk}k∈K satisfy (DMC) and (DMSC) for all

i, j ∈ K if and only if they satisfy

ud i+j2 e + ub i+j2 c ≥ uk + us

Ud i+j2 e + Ub i+j2 c ≥ Uk + Us, “ > ” unless k ∈
{⌊

i+j
2

⌋
,
⌈
i+j
2

⌉}
for any i, j ∈ K and all (k, s) ∈ Π (i, j).
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Lemma 4 For any given path n (τ), there exists a unique w∗ ∈ B that satisfies w∗ = Mw∗,

and a unique g∗ ∈ B′ that satisfies g∗ = T g∗, defined by g∗ (k, x, τ) = w∗ (k, τ) + e−r(τ+∆)x for

all (k, x, τ) ∈ S.

Proof of Lemma 4. Write the mapping M defined in the proof of Proposition 1 (with

θkk′ = 1/2), as

(Mw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[w(k, z) + w(s, z)− w(i, z)− w(j, z)] e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K× [0, T ]. For any w,w′ ∈ B, define the metric D : B ×B → R, by

D
(
w,w′

)
= sup

(i,τ)∈K×[0,T ]

[
e−βτ

∣∣w (i, τ)− w′ (i, τ)
∣∣] ,

where β ∈ R satisfies

max {0, 2α− r} < β <∞. (38)

For the case with β = 0, D reduces to the standard sup metric, d∞. The metric space (B, d∞)

is complete, and since (B, D) and (B, d∞) are strongly equivalent, it follows that (B, D) is

also a complete metric space (see Ok, 2007, pp. 136 and 167). For any w,w′ ∈ B, and any

(i, τ) ∈ K× [0, T ],

e−βτ |(Mw) (i, τ)− (Mw′) (i, τ)| =

= e−βτ
∣∣∣∣α ∫ τ

0
w (i, z) e−(r+α)(τ−z)dz − α

∫ τ

0
w′ (i, z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[w (k, z) + w (s, z)− w (i, z)− w (j, z)] e−(r+α)(τ−z)dz

− α

2

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[
w′ (k, z) + w′ (s, z)− w′ (i, z)− w′ (j, z)

]
e−(r+α)(τ−z)dz

∣∣∣∣
≤ αe−βτ

∫ τ

0

∣∣∣∣w (i, z)− w′ (i, z)
∣∣∣∣e−(r+α)(τ−z)dz

+
α

2
e−βτ

∫ τ

0

∑
j∈K

nj (z)

∣∣∣∣ max
(k,s)∈Π(i,j)

[w (k, z) + w (s, z)− w (i, z)− w (j, z)]

− max
(k,s)∈Π(i,j)

[
w′ (k, z) + w′ (s, z)− w′ (i, z)− w′ (j, z)

]∣∣∣∣e−(r+α)(τ−z)dz.
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Use (k∗ij (z) , s∗ij (z)) to denote a solution to the maximization on the right side of Mw, that is,(
k∗ij (z) , s∗ij (z)

)
∈ max

(k,s)∈Π(i,j)
[w(k, z) + w(s, z)− w(i, z)− w(j, z)] .

A solution exists because w ∈ B, and Π (i, j) is a finite set for all (i, j) ∈ K×K. Then

e−βτ |(Mw) (i, τ)− (Mw′) (i, τ)| ≤

≤ α
∫ τ

0
e−βz

∣∣∣∣w (i, z)− w′ (i, z)
∣∣∣∣e−(r+α+β)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

nj (z)

{
e−βz

∣∣∣∣w (k∗ij (z) , z
)
− w′

(
k∗ij (z) , z

)∣∣∣∣+ e−βz
∣∣∣∣w (s∗ij (z) , z

)
− w′

(
s∗ij (z) , z

)∣∣∣∣
+e−βz

∣∣∣∣w′ (i, z)− w (i, z)

∣∣∣∣+ e−βz
∣∣∣∣w′ (j, z)− w (j, z)

∣∣∣∣} e−(r+α+β)(τ−z)dz

≤ 3α

r + α+ β

[
1− e−(r+α+β)τ

]
D
(
w,w′

)
≤ 3α

r + α+ β
D
(
w,w′

)
.

Since this last inequality holds for all (i, τ) ∈ K× [0, T ], and w and w′ are arbitrary,

D
(
Mw,Mw′

)
≤ 3α

r + α+ β
D
(
w,w′

)
, for all w,w′ ∈ B. (39)

Notice that (38) implies 3α
r+α+β ∈ (0, 1), soM is a contraction mapping on the complete metric

space (B, D). By the Contraction Mapping Theorem (Theorem 3.2 in Stokey and Lucas,

1989), for any given path n (τ), there exists a unique w∗ ∈ B that satisfies w∗ = Mw∗, and

therefore, by (30), there exists a unique g∗ ∈ B′ that satisfies g∗ = T g∗, and it is defined by

g∗ (k, x, τ) = w∗ (k, τ) + e−r(τ+∆)x for all (k, x, τ) ∈ S.

Lemma 5 Let i, j, q ∈ K, and (k, s) ∈ Π (i, j).

(i) If either i+ j or s+ q is even, then(⌈
k+q

2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌈
i+j
2

⌉
, q
)

and
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌊
i+j
2

⌋
, q
)
.

(ii) If i+ j and s+ q are odd, then(⌊
k+q

2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌈
i+j
2

⌉
, q
)

and
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌊
i+j
2

⌋
, q
)
.
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Proof of Lemma 5. Notice that for any i, j, q ∈ K,

Π (i, j) = {(i+ j − y, y) ∈ K×K : y ∈ {0, 1, . . . , i+ j}} ,

so

Π
(⌈

i+j
2

⌉
, q
)

=
{(⌈

i+j
2

⌉
+ q − y, y

)
∈ K×K : y ∈

{
0, 1, . . . ,

⌈
i+j
2

⌉
+ q
}}

(40)

Π
(⌊

i+j
2

⌋
, q
)

=
{(⌊

i+j
2

⌋
+ q − y, y

)
∈ K×K : y ∈

{
0, 1, . . . ,

⌊
i+j
2

⌋
+ q
}}

. (41)

For any i, j, q ∈ K, define

Π̃ (i, j, q) =
{(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ K×K : (k, s) ∈ Π (i, j)

}
Π̂ (i, j, q) =

{(⌊
k+q

2

⌋
,
⌈ s+q

2

⌉)
∈ K×K : (k, s) ∈ Π (i, j)

}
,

and recall that (k, s) ∈ Π (i, j) implies k + s = i+ j.

(i) Assume that either i+ j or s+ q is even. We first show that given any i, j, q ∈ K, (k, s) ∈
Π (i, j) implies

(⌈
k+q

2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌈
i+j
2

⌉
, q
)

. Notice that if either i+ j or s+ q is even, then⌈
k + q

2

⌉
+

⌊
s+ q

2

⌋
=

⌈
i+ j

2

⌉
+ q. (42)

With (42),

Π̃ (i, j, q) =
{(⌈

k+q
2

⌉
,
⌈
i+j
2

⌉
+ q −

⌈
k+q

2

⌉)
∈ K×K : (k, i+ j − k) ∈ Π (i, j)

}
=
{(
y,
⌈
i+j
2

⌉
+ q − y

)
∈ K×K : y ∈

{⌈ q
2

⌉
,
⌈
q+1

2

⌉
, . . . ,

⌈
q+i+j

2

⌉}}
≡ Π̃e

(⌈
i+j
2

⌉
, q
)
. (43)

By construction, given any i, j, q ∈ K,
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π̃e

(⌈
i+j
2

⌉
, q
)

for all (k, s) ∈ Π (i, j).

Since 0 ≤
⌈ q

2

⌉
, and

⌈
q+i+j

2

⌉
≤
⌈
i+j
2

⌉
+ q, it follows from (40) and (43) that Π̃e

(⌈
i+j
2

⌉
, q
)
⊆

Π
(⌈

i+j
2

⌉
, q
)

for all i, j, q ∈ K, which implies
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌈
i+j
2

⌉
, q
)

for all (k, s) ∈
Π (i, j), and any i, j, q ∈ K.

Next, we show that given any i, j, q ∈ K, (k, s) ∈ Π (i, j) implies
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈

Π
(⌊

i+j
2

⌋
, q
)

. Notice that if either i+ j or s+ q is even, then⌊
k + q

2

⌋
+

⌈
s+ q

2

⌉
=

⌊
i+ j

2

⌋
+ q. (44)

36



With (44),

Π̂ (i, j, q) =
{(⌊

k+q
2

⌋
,
⌊
i+j
2

⌋
+ q −

⌊
k+q

2

⌋)
∈ K×K : (k, i+ j − k) ∈ Π (i, j)

}
=
{(
y,
⌊
i+j
2

⌋
+ q − y

)
∈ K×K : y ∈

{⌊ q
2

⌋
,
⌊
q+1

2

⌋
, . . . ,

⌊
q+i+j

2

⌋}}
≡ Π̂e

(⌊
i+j
2

⌋
, q
)
. (45)

By construction, given any i, j, q ∈ K,
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π̂e

(⌊
i+j
2

⌋
, q
)

for all (k, s) ∈ Π (i, j).

Since 0 ≤
⌊ q

2

⌋
, and

⌊
q+i+j

2

⌋
≤
⌊
i+j
2

⌋
+ q, it follows from (41) and (45) that Π̂e

(⌊
i+j
2

⌋
, q
)
⊆

Π
(⌊

i+j
2

⌋
, q
)

for all i, j, q ∈ K, which implies
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌊
i+j
2

⌋
, q
)

for all (k, s) ∈
Π (i, j), and any i, j, q ∈ K.

(ii) Suppose that i+j and s+q are odd. We first show that given any i, j, q ∈ K, (k, s) ∈ Π (i, j)

implies
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌈
i+j
2

⌉
, q
)

. Notice that if i+ j and s+ q are odd, then⌊
k + q

2

⌋
+

⌈
s+ q

2

⌉
=

⌈
i+ j

2

⌉
+ q. (46)

With (46),

Π̂ (i, j, q) =
{(⌈

i+j
2

⌉
+ q −

⌈ s+q
2

⌉
,
⌈ s+q

2

⌉)
∈ K×K : (k, s) ∈ Π (i, j)

}
=
{(⌈

i+j
2

⌉
+ q − y, y

)
∈ K×K : y ∈

{⌈ q
2

⌉
,
⌈
q+1

2

⌉
, . . . ,

⌈
q+i+j

2

⌉}}
≡ Π̂o

(⌈
i+j
2

⌉
, q
)
. (47)

By construction, given any i, j, q ∈ K,
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π̂o

(⌈
i+j
2

⌉
, q
)

for all (k, s) ∈ Π (i, j).

Since 0 ≤
⌈ q

2

⌉
, and

⌈
q+i+j

2

⌉
≤
⌈
i+j
2

⌉
+ q, it follows from (40) and (47) that Π̂o

(⌈
i+j
2

⌉
, q
)
⊆

Π
(⌈

i+j
2

⌉
, q
)

for all i, j, q ∈ K, which implies
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌈
i+j
2

⌉
, q
)

for all (k, s) ∈
Π (i, j), and any i, j, q ∈ K.

Finally, we show that given any i, j, q ∈ K, (k, s) ∈ Π (i, j) implies
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈

Π
(⌊

i+j
2

⌋
, q
)

. Notice that if i+ j and s+ q are odd, then⌈
k + q

2

⌉
+

⌊
s+ q

2

⌋
=

⌊
i+ j

2

⌋
+ q. (48)
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With (48),

Π̃ (i, j, q) =
{(⌊

i+j
2

⌋
+ q −

⌊ s+q
2

⌋
,
⌊ s+q

2

⌋)
∈ K×K : (k, s) ∈ Π (i, j)

}
=
{(⌊

i+j
2

⌋
+ q − y, y

)
∈ K×K : y ∈

{⌊ q
2

⌋
,
⌊
q+1

2

⌋
, . . . ,

⌊
q+i+j

2

⌋}}
≡ Π̃o

(⌊
i+j
2

⌋
, q
)
. (49)

By construction, given any i, j, q ∈ K,
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π̃o

(⌊
i+j
2

⌋
, q
)

for all (k, s) ∈ Π (i, j).

Since 0 ≤
⌊ q

2

⌋
, and

⌊
q+i+j

2

⌋
≤
⌊
i+j
2

⌋
+ q, it follows from (41) and (49) that Π̃o

(⌊
i+j
2

⌋
, q
)
⊆(⌊

i+j
2

⌋
, q
)

for all i, j, q ∈ K, which implies
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌊
i+j
2

⌋
, q
)

for all (k, s) ∈
Π (i, j), and any i, j, q ∈ K.

Proof of Proposition 2. Consider the metric space (B, D) used in the proof of Lemma 4. A

function w ∈ B satisfies the bilateral-trade asset-holding Equalization Property (EP) if for all

(i, j, τ) ∈ K×K× [0, T ],

max
(k,s)∈Π(i,j)

[w (k, τ) + w (s, τ)− w (i, τ)− w (j, τ)]

= w
(⌈

i+j
2

⌉
, τ
)

+ w
(⌊

i+j
2

⌋
, τ
)
− w (i, τ)− w (j, τ) . (EP)

A function w ∈ B satisfies the bilateral-trade asset-holding Strict Equalization Property (SEP)

if for all (i, j, τ) ∈ K×K× [0, T ],

arg max
(k,s)∈Π(i,j)

[w (k, τ) + w (s, τ)− w (i, τ)− w (j, τ)] = Ω∗ij , (SEP)

where Ω∗ij is defined in (11). Let

B′′ = {w ∈ B : w satisfies (EP)}

B′′′ = {w ∈ B : w satisfies (SEP)} .

Clearly, B′′′ ⊆ B′′ ⊆ B.

We first establish that B′′ is a closed subset of B. Let {wn}∞n=0 be a sequence of functions

in B′′, with limn→∞wn = w̄. If w̄ /∈ B′′, then there exists some (k, s) ∈ Π (i, j) and ς ∈ R such

that

0 < ς = w̄ (k, τ) + w̄ (s, τ)−
[
w̄
(⌈

i+j
2

⌉
, τ
)

+ w̄
(⌊

i+j
2

⌋
, τ
)]
,
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for some (i, j, τ) ∈ K×K× [0, T ]. This implies

wn (k, τ) + wn (s, τ) = wn

(⌈
i+j
2

⌉
, τ
)

+ wn

(⌊
i+j
2

⌋
, τ
)

+ ς

− {w̄ (k, τ) + w̄ (s, τ)− [wn (k, τ) + wn (s, τ)]}

+ w̄
(⌈

i+j
2

⌉
, τ
)

+ w̄
(⌊

i+j
2

⌋
, τ
)
−
[
wn

(⌈
i+j
2

⌉
, τ
)

+ wn

(⌊
i+j
2

⌋
, τ
)]
.

For this particular (i, j, τ) ∈ K×K× [0, T ], for all n large enough we can ensure that

|w̄ (k, τ) + w̄ (s, τ)− [wn (k, τ) + wn (s, τ)]| < ς

4

and ∣∣∣w̄ (⌈ i+j2

⌉
, τ
)

+ w̄
(⌊

i+j
2

⌋
, τ
)
−
[
wn

(⌈
i+j
2

⌉
, τ
)

+ wn

(⌊
i+j
2

⌋
, τ
)]∣∣∣ < ς

4
,

but then

0 < ς/2 < wn (k, τ) + wn (s, τ)−
[
wn

(⌈
i+j
2

⌉
, τ
)

+ wn

(⌊
i+j
2

⌋
, τ
)]
,

which contradicts the fact that wn ∈ B′′. Thus, we conclude that w̄ ∈ B′′, so B′′ is closed.

The second step is to show that the mapping M defined in (31) preserves property (EP),

i.e., that M (B′′) ⊆ B′′. That is, we wish to show that for any w ∈ B′′, w′ = Mw ∈ B′′, or

equivalently, that

w
(⌈

i+j
2

⌉
, τ
)

+ w
(⌊

i+j
2

⌋
, τ
)
≥ w (k, τ) + w (s, τ) for all (k, s) ∈ Π (i, j) ,

for any (i, j, τ) ∈ K×K× [0, T ], implies that

w′
(⌈

i+j
2

⌉
, τ
)

+ w′
(⌊

i+j
2

⌋
, τ
)
− w′ (k, τ)− w′ (s, τ) ≥ 0 for all (k, s) ∈ Π (i, j) , (50)

for any (i, j, τ) ∈ K×K× [0, T ]. Since w ∈ B′′, using (34) (with θkk′ = 1/2 for all k, k′ ∈ K),

(Mw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈

i+q
2

⌉
, z
)

+ w
(⌊

i+q
2

⌋
, z
)
− w (i, z)− w (q, z)

]
e−(r+α)(τ−z)dz,

39



for all (i, τ) ∈ K× [0, T ]. For any (i, j, τ) ∈ K×K× [0, T ] and (k, s) ∈ Π (i, j), let G (i, j, k, s, τ)

denote the left side of inequality (50). Then,

G (i, j, k, s, τ) = vd i+j2 e (τ) + vb i+j2 c (τ)− vk (τ)− vs (τ)

+ α

∫ τ

0

[
w
(⌈

i+j
2

⌉
, z
)

+ w
(⌊

i+j
2

⌋
, z
)
− w (k, z)− w (s, z)

]
e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)

[
w


⌈
i+j
2

⌉
+q

2

 , z
+ w

⌈
i+j
2

⌉
+q

2

 , z


− w
(⌈

i+j
2

⌉
, z
)
− w (q, z)

]
e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)

[
w


⌊
i+j
2

⌋
+q

2

 , z
+ w

⌊
i+j
2

⌋
+q

2

 , z


− w
(⌊

i+j
2

⌋
, z
)
− w (q, z)

]
e−(r+α)(τ−z)dz

− α

2

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈

k+q
2

⌉
, z
)

+ w
(⌊

k+q
2

⌋
, z
)
− w (k, z)− w (q, z)

]
e−(r+α)(τ−z)dz

− α

2

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈ s+q

2

⌉
, z
)

+ w
(⌊ s+q

2

⌋
, z
)
− w (s, z)− w (q, z)

]
e−(r+α)(τ−z)dz.

With (33) and after deleting redundant terms, this expression can be rearranged to yield

G (i, j, k, s, τ) =
1− e−(r+α)τ

r + α

(
ud i+j2 e + ub i+j2 c − uk − us

)
+ e−(r+α)τ

[
Ud i+j2 e + Ub i+j2 c − Uk − Us

]
+
α

2

∫ τ

0

[
w
(⌈

i+j
2

⌉
, z
)

+ w
(⌊

i+j
2

⌋
, z
)
− w (k, z)− w (s, z)

]
e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)

w


⌈
i+j
2

⌉
+q

2

 , z
+ w

⌈
i+j
2

⌉
+q

2

 , z


− w
(⌈

k+q
2

⌉
, z
)
− w

(⌊ s+q
2

⌋
, z
)

− w
(⌊

k+q
2

⌋
, z
)
− w

(⌈ s+q
2

⌉
, z
)

+w


⌊
i+j
2

⌋
+q

2

 , z
+ w

⌊
i+j
2

⌋
+q

2

 , z
 e−(r+α)(τ−z)dz.

What needs to be shown is that w ∈ B′′ implies that for any (i, j, τ) ∈ K × K × [0, T ],

G (i, j, k, s, τ) ≥ 0 for all (k, s) ∈ Π (i, j). The fact that w ∈ B′′ immediately implies that
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the first integral in the last expression is nonnegative. By Lemma 5, w ∈ B′′ also implies that

the second integral in the last expression is nonnegative. Together with Assumption A and

Corollary 1, these observations imply

0 <
1− e−(r+α)τ

r + α

(
ud i+j2 e + ub i+j2 c − uk − us

)
+ e−(r+α)τ

[
Ud i+j2 e + Ub i+j2 c − Uk − Us

]
(51)

≤ G (i, j, k, s, τ) ,

so we conclude that M (B′′) ⊆ B′′′ ⊆ B′′.
The third step is to show that (10) is the equilibrium distribution of trading probabilities.

From Lemma 4, we know thatM is a contraction mapping on the complete metric space (B, D),

so it has a unique fixed point w∗ (k, τ) ≡ Vk (τ) ∈ B. In addition, we have now established

that B′′ is a closed subset of B, and that M (B′′) ⊆ B′′′ ⊆ B′′. Therefore, by Corollary 1

in Stokey and Lucas (1989, p. 52), we conclude that Vk (τ) ∈ B′′′. This implies that the set

Ωij [V (τ)] defined in (9) reduces to Ω∗ij for all (i, j, τ) ∈ K×K× [0, T ], and consequently, that

(8) reduces to (10) for all (i, j, τ) ∈ K×K× [0, T ]. This establishes part (ii) in the statement

of the proposition.

We can now show that the paths n (τ) and V (τ) are uniquely determined. Since (by

Lemma 4) the fixed point Vk (τ) ∈ B′′′ is unique given any path for the distribution of reserve

balances, n (τ), all that has to be shown is that given the initial condition {nk (T )}k∈K, and

given that the path φ (τ) satisfies (10), the system of first-order ordinary differential equations,

ṅ (τ) = f [n (τ) ,φ (τ)], has a unique solution. But since f is continuously differentiable,

this follows from Propositions 6.3 and 7.6 in Amann (1990). This establishes part (i) in the

statement of the proposition.

Corollary 2 Assume that {Uk}k∈K satisfies the discrete midpoint concavity property and {uk}k∈K
satisfies the discrete midpoint strict concavity property. An equilibrium exists, and the equilib-

rium paths for the distribution of reserve balances, n (τ), and maximum attainable payoffs,

V (τ), are uniquely determined and identical to those in Proposition 2. The equilibrium distri-

bution of trading probabilities is

φksij (τ) =

{
φ̃ksij (τ) if (k, s) ∈ Ω∗ij (τ)

0 if (k, s) /∈ Ω∗ij (τ)
(52)

for all i, j, k, s ∈ K and τ ∈ [0, T ], with φ̃ksij (τ) ≥ 0 and
∑

(k,s)∈Ω∗ij(τ)

φ̃ksij (τ) = 1, and where
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Ω∗ij (τ) = Ω∗ij, with Ω∗ij given by (11) for all τ ∈ (0, T ], and Ω∗ij (0) = Ω∗ij ∪ Ω0
ij, where

Ω0
ij =

{
(k, s) ∈ Π (i, j) : Uk + Us = Ud i+j2 e + Ub i+j2 c

}
.

Proof of Corollary 2. The proof proceeds exactly as the proof of Proposition 2 up to (51).

Notice that under Assumption A, (51) holds for all τ ∈ [0, T ]. Instead, under the assumption

that {Uk}k∈K satisfies discrete midpoint concavity and {uk}k∈K satisfies discrete midpoint strict

concavity, the inequality in (51) holds as a strict inequality for all τ ∈ (0, T ], but only as a weak

inequality for τ = 0. As before, the unique fixed point Vk (τ) ∈ B′′, but now Vk (τ) /∈ B′′′, since

Vk (τ) satisfies (SEP) for all (i, j, τ) ∈ K×K× (0, T ], rather than for all (i, j, τ) ∈ K×K× [0, T ].

However, it is clear from (51) that in this case MVk (τ) = Vk (τ) ∈ B′′′0 , where B′′′0 is the

subset of elements of B that satisfy (SEP) for all (i, j, τ) ∈ K × K × (0, T ]. This implies that

the set Ωij [V (τ)] defined in (9) now reduces to the set Ω∗ij (τ) defined in the statement of the

corollary for all τ ∈ [0, T ], and consequently, that (8) reduces to (52) for all τ ∈ [0, T ]. Notice

that despite the potential multiplicity of optimal post-trade portfolios in bilateral meetings at

τ = 0 (which is the only difference between this case and the one treated in Proposition 2), as

can be seen from (34) and (52), the mapping M is unaffected by this multiplicity, and hence

so is its fixed point. Therefore, (by Lemma 2) the fixed point Vk (τ) ∈ B′′′0 is unique given any

path for n (τ). Finally, if we cast (4) in integral equation form,

nk (τ) = nk (T )− α
∫ T

τ

∑
i∈K

∑
j∈K

∑
s∈K

ni (z)
[
nk (z)φsjki (z)− nj (z)φksij (z)

]
dz (53)

for all k ∈ K, then it becomes clear that for all k ∈ K and all τ ∈ [0, T ], nk (τ) is independent

of φksij (0) (changing the integral at a single point leaves the right side of (53) unaffected).

Therefore, by the same arguments used in the final step of the proof of Proposition 2, there

exists a unique n (τ) that solves the system (53), and it is the same solution that obtains under

Assumption A.

A.4 End-of-day payoffs

The specification of end-of-day payoffs, (13), contemplates the fact that at the end of the trading

day banks have the option to borrow from the Federal Reserve discount window. The following

lemma characterizes the solution to this end-of-day problem.
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Lemma 6 Assume ief < iwf ≤ iof . Consider a bank with end-of-day balance k that has the

option to borrow from the discount window right after the end of the trading session, and let

kw denote the bank’s balance after having borrowed from the window.

(i) If k̄ ≤ k − k̄0, then kw = k − k̄0 and the bank’s maximum terminal payoff is given by (13)

with Fk = irf k̄ + ief
(
k − k̄0 − k̄

)
.

(ii) If 0 ≤ k − k̄0 < k̄, then

kw


= k̄ if iwf < icf + irf
∈
[
k − k̄0, k̄

]
∩K if iwf = icf + irf

= k − k̄0 if icf + irf < iwf ,

(54)

and the bank’s maximum terminal payoff is given by (13) with

Fk =

{
irf k̄ − iwf [k̄ − (k − k̄0)] if iwf ≤ irf + icf
irf
(
k − k̄0

)
− icf [k̄ − (k − k̄0)] if irf + icf < iwf .

(55)

(iii) If k − k̄0 < 0, then

kw


= k̄ if iwf < icf + irf
∈
[
0, k̄
]
∩K if iwf = icf + irf

= 0 if icf + irf < iwf

(56)

and the bank’s maximum terminal payoff is given by (13) with

Fk =

{
irf k̄ − iwf [k̄ − (k − k̄0)] if iwf < icf + irf
iwf (k − k̄0)− icf k̄ if icf + iof ≤ iwf .

(57)

Proof of Lemma 6. Notice that Fk can be written more compactly as

Fk = max
k−k̄0≤kw

{
irf max

[
0,min

(
kw, k̄

)]
+ ief max

(
kw − k̄, 0

)
(58)

− icf max
[
min(k̄ − kw, k̄), 0

]
− iof max (−kw, 0) −iwf

[
kw − (k − k̄0)

]}
.

A bank that ends the trading session with balance k chooses kw by solving (58).

(i) Given k̄ ≤ k − k̄0, (58) reduces to

Fk = max
k−k̄0≤kw

{
(irf − ief )k̄ + iwf (k − k̄0) + (ief − iwf )kw

}
.

The assumption ief < iwf implies the solution is kw = k−k̄0, and substituting it into the objective

function yields Fk = irf k̄ + ief
(
k − k̄0 − k̄

)
.
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(ii) Given 0 ≤ k − k̄0 < k̄ and part (i), (58) reduces to

Fk = max
k−k̄0≤kw≤k̄

{
iwf (k − k̄0)− icf k̄ + (icf + irf − iwf )kw

}
,

which implies that the solution is given by (54), and substituting this solution into the objective

function yields (55).

(iii) Given k − k̄0 < 0 and part (i), (58) becomes

Fk = iwf (k − k̄0) + max
k−k̄0≤kw≤k̄

{
irf max (0, kw)− icf max

[
min(k̄ − kw, k̄), 0

]
− iof max (−kw, 0)− iwf kw

}
= iwf (k − k̄0)− icf k̄ + max

{
max

k−k̄0≤kw≤0
(iof − iwf )kw, max

0≤kw≤k̄
(icf + irf − iwf )kw

}
= iwf (k − k̄0)− icf k̄ + max

0≤kw≤k̄
(icf + irf − iwf )kw,

where the last equality follows from iwf ≤ iof . Thus the solution is given by (56), and this yields

the value given in (57).

Corollary 3 Assume ief < iwf ≤ iof and iwf < icf + irf . Then

Uk =

{
e−r∆f [k − k̄0 + irf k̄ + ief

(
k − k̄0 − k̄

)
] if k̄ ≤ k − k̄0

e−r∆f {k − k̄0 + irf k̄ − iwf [k̄ − (k − k̄0)]} if k − k̄0 < k̄.

B Efficiency

In this section we use our theory to characterize the optimal process of reallocation of reserve

balances in the fed funds market. The spirit of the exercise is to take as given the market

structure, including the contact rate α and the regulatory variables {uk, Uk}k∈K, and to ask

whether decentralized trade in the over-the-counter market structure reallocates reserve bal-

ances efficiently, given these institutions. To this end, we study the problem of a social planner

who solves

max
[χ(t)]Tt=0

[∫ T

0

∑
k∈K

mk (t)uke
−rtdt+ e−rT

∑
k∈K

mk (T )Uk

]
s.t. ṁk (t) = −f [m (t) ,χ (t)] , (59)

χksij (t) ∈ [0, 1] , with χksij (t) = 0 if (k, s) /∈ Π (i, j) ,

χksij (t) = χskji (t) , and
∑
k∈K

∑
s∈K

χksij (t) = 1,
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for all t ∈ [0, T ], and all i, j, k, s ∈ K. We have formulated the planner’s problem in chronological

time, so mk (t) denotes the measure of banks with balance k at time t. Since τ ≡ T − t, we

have mk (t) = mk (T − τ) ≡ nk (τ), and therefore ṁk (t) = −ṅk (τ). Hence the flow constraint

is the real-time law of motion for the distribution of balances implied by the bilateral stochastic

trading process. The control variable, χ (t) = {χksij (t)}i,j,k,s∈K, represents the planner’s choice

of reallocation of balances between any pair of banks that have contacted each other at time

t. The first, second, and fourth constraints on χ (t) ensure that {χksij (t)}k,s∈K is a probability

distribution for each i, j ∈ K, and that the planner only chooses among feasible reallocations of

balances between a pair of banks. We look for a solution that does not depend on the identities

or “names” of banks, so the third constraint on χ (t) recognizes the fact that χksij (t) and χskji (t)

represent the same decision for the planner. That is, χksij (t) and χskji (t) both represent the

probability that a pair of banks with balances i and j who contact each other at time t exit the

meeting with balances k and s, respectively.

Proposition 3 A solution to the planner’s problem is a path for the distribution of balances,

n (τ), a path for the vector of co-states associated with the law of motion for the distribution of

balances, λ (τ) = {λk (τ)}k∈K, and a path for the distribution of trading probabilities, ψ (τ) =

{ψksij (τ)}i,j,k,s∈K. The necessary conditions for optimality are

rλi (τ) + λ̇i (τ) = ui + α
∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)ψksij (τ) [λk (τ) + λs (τ)− λi (τ)− λj (τ)] (60)

for all (i, τ) ∈ K× [0, T ], with

λi (0) = Ui for all i ∈ K, (61)

with the path for n (τ) given by ṅ (τ) = f [n (τ) ,ψ (τ)], and with

ψksij (τ) =

{
ψ̃ksij (τ) if (k, s) ∈ Ωij [λ (τ)]

0 if (k, s) /∈ Ωij [λ (τ)] ,
(62)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], where ψ̃ksij (τ) ≥ 0 and
∑
k∈K

∑
s∈K

ψ̃ksij (τ) = 1.

Proof of Proposition 3. The planner’s current-value Hamiltonian can be written as

L =
∑
k∈K

mk (t)uk + α
∑
i∈K

∑
j∈K

∑
k∈K

∑
s∈K

mi (t)mj (t)χksij (t) [µk (t)− µi (t)] ,
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where µ (t) = {µk (t)}k∈K is the vector of co-states associated with the law of motion for the

distribution of banks across reserve balances. In an optimum, the co-states and the controls

must satisfy ∂L
∂mi(t)

= rµi (t)− µ̇i (t), and

χksij (t)



= 1 if ∂L
∂χksij (t)

∣∣∣∣
χskji (t)=χksij (t)

> 0

∈ [0, 1] if ∂L
∂χksij (t)

∣∣∣∣
χskji (t)=χksij (t)

= 0

0 if ∂L
∂χksij (t)

∣∣∣∣
χskji (t)=χksij (t)

< 0.

Notice that

∂L

∂χksij (t)

∣∣∣∣∣
χskji (t)=χksij (t)

= αmi (t)mj (t) [µk (t) + µs (t)− µi (t)− µj (t)] ,

and that given χskji (t) = χksij (t),

∂L

∂mi
= ui + α

∑
j∈K

∑
k∈K

∑
s∈K

mj (t)χksij (t) [µk (t) + µs (t)− µi (t)− µj (t)] .

Thus the necessary conditions for optimality are

χksij (t) =

{
χ̃ksij (t) if (k, s) ∈ Ωij [µ (t)]

0 if (k, s) /∈ Ωij [µ (t)] ,
(63)

for all i, j, k, s ∈ K and all t ∈ [0, T ], where χ̃ksij (t) ≥ 0 and
∑
k∈K

∑
s∈K

χ̃ksij (t) = 1, the Euler

equations,

rµi (t)− µ̇i (t) = ui + α
∑
j∈K

∑
k∈K

∑
s∈K

mj (t)χksij (t) [µk (t) + µs (t)− µi (t)− µj (t)] (64)

for all i ∈ K, with the path for m (t) given by (59), and

µi (T ) = Ui for all i ∈ K. (65)

In summary, the necessary conditions are (59), (63), (64), and (65). Next, we use the fact

that τ ≡ T − t to define mk (t) = mk (T − τ) ≡ nk (τ), χksij (t) = χksij (T − τ) ≡ ψksij (τ),

and µi (t) = µi (T − τ) ≡ λi (τ). With these new variables, (64) leads to (60), (59) leads to

ṅ (τ) = f [n (τ) ,ψ (τ)], (65) leads to (61), and (63) leads to (62).

The following result provides a full characterization of the solution to the planner’s problem

under Assumption A.
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Proposition 4 Let the payoff functions satisfy Assumption A. Then:

(i) The optimal path for the distribution of trading probabilities, ψ (τ) = {ψksij (τ)}i,j,k,s∈K, is

given by

ψksij (τ) =

{
ψ̃ksij (τ) if (k, s) ∈ Ω∗ij
0 if (k, s) /∈ Ω∗ij

(66)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], where ψ̃ksij (τ) ≥ 0 and
∑

(k,s)∈Ω∗ij

ψ̃ksij (τ) = 1.

(ii) Along the optimal path, the shadow value of a bank with i reserve balances is given by

(60) and (61), with the path for ψ (t) given by (66), and the path for n (τ) given by

ṅ (τ) = f [n (τ) ,ψ (τ)].

Notice the similarity between the equilibrium conditions and the planner’s optimality con-

ditions. First, from (8) and (62), we see that the equilibrium loan sizes are privately efficient.

That is, given the value function V , the equilibrium distribution of trading probabilities is the

one that would be chosen by the planner. Second, the path for the equilibrium values, V (τ),

satisfies (6) and (7), while the path for the planner’s shadow prices satisfies (60) and (61).

These pairs of conditions would be identical were it not for the fact that the planner imputes

to each agent gains from trade with frequency 2α, rather α, which is the frequency with which

the agent generates gains from trade for himself in the equilibrium. This reflects a composition

externality typical of random matching environments. The planner’s calculation of the value

of a marginal agent in state i includes not only the expected gains from trade to this agent,

but also the expected gains from trade that having this marginal agent in state i generates for

all other agents by increasing their contact rates with agents in state i. In the equilibrium, the

individual agent in state i internalizes the former, but not the latter.29

Under Assumption A, however, condition (10) is identical to (66), so the equilibrium paths

for the distribution of balances and trading probabilities coincide with the optimal paths. This

observation is summarized in the following proposition.

Proposition 5 Let the payoff functions satisfy Assumption A. Then, the equilibrium supports

an efficient allocation of reserve balances.

29In a labor market context, a similar composition externality arises in the competitive matching equilibrium
of Kiyotaki and Lagos (2007).
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Proof of Proposition 4. The function λ ≡ [λ (τ)]τ∈[0,T ] satisfies (60) and (61) if and only if

it satisfies

λi (τ) = vi (τ) + α

∫ τ

0
λi (z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z)ψksij (z) [λk (z) + λs (z)− λi (z)− λj (z)] e−(r+α)(τ−z)dz.

The right side of this functional equation defines a mapping P : B → B; that is, for any w ∈ B,

(Pw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z)ψksij (z) [w (k, z) + w (s, z)− w (i, z)− w (j, z)] e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K × [0, T ]. Hence a function λ satisfies (60) and (61) if and only if it satisfies

λ = Pλ. Rewrite the mapping P as

(Pw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz (67)

+ α

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[w (k, z) + w (s, z)− w (i, z)− w (j, z)] e−(r+α)(τ−z)dz,

and for any w,w′ ∈ B, define the metric D∗ : B ×B → R by

D∗
(
w,w′

)
= sup

(i,τ)∈K×[0,T ]

[
e−κτ

∣∣w (i, τ)− w′ (i, τ)
∣∣] ,

where κ ∈ R satisfies

max {0, 5α− r} < κ <∞. (68)

The metric space (B, D∗) is complete (by the same argument used to argue that (B, D) is

complete, in the proof of Lemma 4). For any w,w′ ∈ B, and any (i, τ) ∈ K× [0, T ], the same

steps that led to (39) now lead to

D∗
(
Pw,Pw′

)
≤ 5α

r + α+ κ
D∗
(
w,w′

)
, for all w,w′ ∈ B.

Notice that (68) implies 5α
r+α+κ ∈ (0, 1), so P is a contraction mapping on the complete metric

space (B, D∗). By the Contraction Mapping Theorem (Theorem 3.2 in Stokey and Lucas,

1989), for any given path n (τ), there exists a unique λ ∈ B that satisfies λ = Pλ.

Consider the sets B′′ and B′′′ defined in the proof of Proposition 2. By following the same

steps as in the first part of that proof, it can be shown that B′′ is closed under D∗. Next we
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show that the mapping P defined in (67) preserves property (EP), i.e., that P (B′′) ⊆ B′′.

That is, we wish to show that for any w ∈ B′′, w′ = Pw ∈ B′′, or equivalently, that

w
(⌈

i+j
2

⌉
, τ
)

+ w
(⌊

i+j
2

⌋
, τ
)
≥ w (k, τ) + w (s, τ) for all (k, s) ∈ Π (i, j) ,

for any (i, j, τ) ∈ K×K× [0, T ], implies that

w′
(⌈

i+j
2

⌉
, τ
)

+ w′
(⌊

i+j
2

⌋
, τ
)
− w′ (k, τ)− w′ (s, τ) ≥ 0 for all (k, s) ∈ Π (i, j) , (69)

for any (i, j, τ) ∈ K×K× [0, T ]. Since w ∈ B′′,

(Pw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈

i+q
2

⌉
, z
)

+ w
(⌊

i+q
2

⌋
, z
)
− w (i, z)− w (q, z)

]
e−(r+α)(τ−z)dz,

for any (i, τ) ∈ K×[0, T ]. For any (i, j, τ) ∈ K×K×[0, T ] and (k, s) ∈ Π (i, j), let G′ (i, j, k, s, τ)

denote the left side of inequality (69). Then,

G′ (i, j, k, s, τ) =
1− e−(r+α)τ

r + α

(
ud i+j2 e + ub i+j2 c − uk − us

)
+ e−(r+α)τ

[
Ud i+j2 e + Ub i+j2 c − Uk − Us

]
+ α

∫ τ

0

∑
q∈K

nq (z)

w


⌈
i+j
2

⌉
+q

2

 , z
+ w

⌈
i+j
2

⌉
+q

2

 , z


− w
(⌈

k+q
2

⌉
, z
)
− w

(⌊ s+q
2

⌋
, z
)

− w
(⌊

k+q
2

⌋
, z
)
− w

(⌈ s+q
2

⌉
, z
)

+w


⌊
i+j
2

⌋
+q

2

 , z
+ w

⌊
i+j
2

⌋
+q

2

 , z
 e−(r+α)(τ−z)dz.

What needs to be shown is that w ∈ B′′ implies that for any (i, j, τ) ∈ K × K × [0, T ],

G′ (i, j, k, s, τ) ≥ 0 for all (k, s) ∈ Π (i, j). By Lemma 5, w ∈ B′′ implies that the integral

in the last expression is nonnegative. Together with Assumption A and Corollary 1, this im-

plies

0 <
1− e−(r+α)τ

r + α

(
ud i+j2 e + ub i+j2 c − uk − us

)
+ e−(r+α)τ

[
Ud i+j2 e + Ub i+j2 c − Uk − Us

]
≤ G′ (i, j, k, s, τ) ,
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so M (B′′) ⊆ B′′′ ⊆ B′′.
At this point, we have shown that P is a contraction mapping on the complete metric space

(B, D∗), so it has a unique fixed point λ ∈ B. We have also established that B′′ is a closed

subset of B and that M (B′′) ⊆ B′′′ ⊆ B′′. Therefore, by Corollary 1 in Stokey and Lucas

(1989, p. 52), λ = Pλ ∈ B′′′, that is, the unique fixed point λ satisfies (SEP). This implies

that the set Ωij [λ (τ)] in (62) reduces to Ω∗ij (as defined in (11)) for all (i, j, τ) ∈ K×K× [0, T ],

and consequently, that (62) reduces to (66). This establishes part (i) in the statement of the

proposition.

Given the initial condition {nk (T )}k∈K, and given that the path ψ (τ) satisfies (66), the

system of first-order ordinary differential equations, ṅ (τ) = f [n (τ) ,ψ (τ)] is identical to the

one in part (iii) of Proposition 2 and therefore also has a unique solution. Given the resulting

path n (τ), according to Proposition 3, the path for the vector of co-states must satisfy the

necessary condition λ = Pλ, or equivalently, (60) and (61), which establishes part (ii) in the

statement of the proposition.

C Data

C.1 Treatment of outliers

From the histogram of the variable of interest (i.e., the 4:00 pm imputed balances over required

operating balances, averaged over the two-week maintenance period), we looked for observations

that deviate markedly from the other members of the sample. There are no such observations in

the 2007 sample. In the 2011 sample the three largest observations deviate markedly from the

rest of the sample. We also implemented a modified version of Grubbs’ test that assumes the

data can be fitted by a mixture of Gaussians and detects outliers with respect to the Gaussian

distribution with the largest variance. This procedure identifies no outliers in 2007 and the

same three outliers in 2011.

C.2 Estimation of initial distribution of balances

In Section 6.1 we described the procedure to estimate the initial distribution of balances that

we used in the 2007 calibration to run the baseline simulations presented in Section 6.2. This

procedure is straightforward: it essentially consists of using the data to construct the histogram

that we employ as the initial condition for the distribution of reserve balances in the model. In
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order to conduct policy experiments such as those in Section 6.3 or counterfactual experiments

such as those in Appendix D, however, it is convenient to work with a parametric initial

distribution of balances rather than an empirical histogram, as this allows one to easily change

the mean or the standard deviation of the initial distribution of balances. For this reason, the

initial distributions used for the exercises in Section 6.3 and Appendix D were estimated using

the following procedure.

C.2.1 Estimation procedure for 2011 policy experiments

As mentioned in the body of the paper, we think of nk (T ) as the model counterpart of the

empirical proportion of commercial banks whose balances at the beginning of the trading session

are k/k̄ times larger than their average daily reserve requirement over a two-week holding period.

In order to conduct the policy experiments reported in Section 6.3, we estimate {nk (T )}k∈K
from data using the following procedure.

First, we identified 135 commercial banks that traded fed funds during the first quarter of

2011 (according to their FR Y9-C regulatory filings), for which we have been able to obtain

information on their required operating balance, and that are not subject to special analysis

(according to item 9425 Bank Type Analysis Code of their regulatory fillings). Second, we

obtained the empirical cross-sectional distribution of closing balances of these 135 banks for

each day of a two-week maintenance period in the same quarter. Third, for every day in

the sample, we constructed a measure of each bank’s imputed reserve balance at 4:00 pm,

as follows. Given each bank’s closing balance on a given day, we subtracted the bank’s net

payments activity from 4:00 pm until Fedwire Funds Service closing time (typically 6:30 pm)

as well as the discount window activity for that day. Fourth, for each bank we calculated the

average (over days in the two-week maintenance period) imputed reserve balance at 4:00 pm

and normalized it by dividing it by the bank’s daily average required operating balance over

the same maintenance period. At this stage we detected three outliers (as described in Section

C.1) and removed them from the sample to obtain the final sample of 132 banks. We then

used this sample to compute maximum likelihood estimates of the parameters of a Gaussian

mixture model with two components. The estimated parameters are µ̂1 = 4.51 and µ̂2 = 57.19

(the means), σ1 = 4.78 and σ2 = 44.93 (the standard deviations), and p1 = 1− p2 = 0.67 (the

probability of drawing from the first component).30 We discuss the goodness of fit in Section

30The corresponding standard errors (bootstrap, based on 10,000 iterations) for µ̂1, µ̂2, σ1, σ2, and p1 are 0.92,
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C.2.3 below.

Notice that the mean of the estimated distribution of average normalized imputed reserve

balances for the 132 banks in the sample is p1µ̂1+p2µ̂2 = 21.8. In order for the calibrated model

to capture typical overall market conditions during the first quarter of 2011, we translate the

estimated Gaussian mixture by choosing its mean to match the empirical mean of the ratio of

total seasonally adjusted reserves of depository institutions to total required reserves reported

in the H.3 Federal Reserve Statistical Release during the first quarter of 2011, which equals

17.68. This is done by considering a Gaussian mixture with the same p1, p2, σ1, and σ2 that

were estimated from the sample of 132 banks, but replacing the estimated means, µ̂1 and µ̂2,

with µi = 0.81µ̂i, for i = 1, 2, i.e., µ1 = 3.65 and µ2 = 46.32.31 This leads to the Gaussian

mixture, Φ, with parameters µ1 = 3.65, µ2 = 46.32, σ1 = 4.78, σ2 = 44.93, and p1 = 0.67 used

in Section 6.3.

C.2.2 Estimation procedure for 2007 counterfactuals

In order to conduct the counterfactual policy experiments for 2007 reported in Appendix D

(Section D.1), we estimate {nk (T )}k∈K from data using the same procedure used for the policy

experiments reported in Section 6.3. Below we describe the full procedure for completeness.

First, we identified 134 commercial banks that traded fed funds at the end of the second

quarter of 2007 (according to their FR Y9-C regulatory filings), for which we have been able

to obtain information on their required operating balance, and that are not subject to special

analysis (according to item 9425 Bank Type Analysis Code of their regulatory fillings). Second,

we obtained the empirical cross-sectional distribution of closing balances of these 134 banks

for each day of a two-week maintenance period in the same quarter. Third, for every day

in the sample, we constructed a measure of each bank’s imputed reserve balance at 4:00 pm,

as follows. Given each bank’s closing balance on a given day, we subtracted the bank’s net

payments activity from 4:00 pm until Fedwire Funds Service closing time (typically 6:30 pm)

as well as the discount window activity for that day. Fourth, for each bank we calculated the

average (over days in the two-week maintenance period) imputed reserve balance at 4:00 pm and

normalized it by dividing it by the bank’s daily average required operating balance over the same

9.43, 0.95, 4.46, and 0.055, respectively.
31The standard deviation of the Gaussian mixture is a function of the means of the two components, so changes

in µ1 affect the variance of the mixture. As a robustness check, we have also conducted experiments changing
σ1 along with µ1 so as to keep the variance constant and found no significant difference in our results.
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maintenance period. We then used this sample to compute maximum likelihood estimates of

the parameters of a Gaussian mixture model with two components. The estimated parameters

are µ̂1 = 0.50 and µ̂2 = 10.59 (the means), σ1 = 2.9 and σ2 = 31.1 (the standard deviations),

and p1 = 1 − p2 = 0.73 (the probability of drawing from the first component).32 We discuss

the goodness of fit in Section C.2.3 below. The mean of the estimated distribution of average

normalized imputed reserve balances for the 134 banks in the sample is p1µ̂1 + p2µ̂2 = 3.22. In

order for the calibrated model to capture typical overall market conditions during the second

quarter of 2007, we translate the estimated Gaussian mixture by choosing its mean to match

the empirical mean of the ratio of total seasonally adjusted reserves of depository institutions

to total required reserves reported in the H.3 Federal Reserve Statistical Release during the

second quarter of 2007, which equals 1.04. This is done by considering a Gaussian mixture with

the same p1, p2, σ1, and σ2 that were estimated from the sample of 134 banks, but replacing the

estimated means, µ̂1 and µ̂2, with µi = 0.32µ̂i, for i = 1, 2. This leads to the Gaussian mixture,

Φ, with parameters (µ1, µ2, σ1, σ2, p1). In order to feed this distribution into the model we let

k̄ = 1 (so k can be interpreted as a multiple of the reserve requirement), K = {0, . . . , 250},
k̄0 = 100, and nk (T ) = Φ(k − k̄0 + 1) − Φ(k − k̄0) for k = 1, ..., 249, n0 (T ) = Φ (−100), and

n250 (T ) = 1− Φ (150). By construction, Q ≡
∑250

k=0(k − k̄0)nk (T ) ≈ 1.04.

C.2.3 Goodness of fit

As described above, for our policy experiments and counterfactual exercises, we use a Gaussian

mixture with parameters estimated by maximum likelihood. In this section we describe the

process that led us to choose a Gaussian mixture. We estimated four parametric distributions

as well as a mixture of two Gaussians to our initial distribution of balances and used several

methods to assess goodness of fit.

The 2007 initial distribution of balances The Kolmogorov-Smirnov goodness-of-fit test

does not reject the null hypothesis that the 2007 sample has been drawn from the Gaussian

mixture with two components at the 90 percent confidence level. We have also fit a Gaussian,

a Logistic, and a Generalized Extreme Value distribution, but the null hypothesis is rejected

by the Kolmogorov-Smirnov goodness-of-fit test at the 1 percent significance level. At the 90

32The corresponding standard errors (boostrap, based on 10,000 iterations) for µ̂1, µ̂2, σ1, σ2, and p1 are: 0.37,
7.91, 0.84, 8.90, and 0.07 respectively.
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percent confidence level, the test does not reject the null hypothesis that the data have been

drawn from a t-Location Scale distribution.

The Chi-square goodness-of-fit test does not reject the null hypothesis that the 2007 sample

has been drawn from a Gaussian mixture with two components at the 99 percent confidence

level. However, it rejects, at the 1 percent significance level, the null hypothesis that the data

have been drawn from a Gaussian, a Logistic, or a Generalized Extreme Value distribution. At

the 99 percent confidence level, the test does not reject the null hypothesis that the data have

been drawn from a t-Location Scale distribution.

We also contructed quantile-quantile plots of the sample quantiles of our distribution of

initial balances versus theoretical quantiles from a Gaussian, a Logistic, a Generalized Extreme

Value, a t-Location Scale distribution, and Gaussian mixture with two components. Visually,

the Q-Q plot of the Gaussian mixture with two components closely follows a linear trend line,

suggesting that the mixture of two Gaussians is a reasonably good fit to the data.

The 2011 initial distribution of balances The Kolmogorov-Smirnov goodness-of-fit test

does not reject the null hypothesis that the 2011 sample has been drawn from the Gaussian mix-

ture with two components at the 90 percent confidence level. We have fit a Gaussian, a Logistic,

and a t-Location Scale distribution, but the null hypothesis is rejected by the Kolmogorov-

Smirnov goodness-of-fit test at the 99 percent confidence level. The test does not reject the

null hypothesis that the data have been drawn from a Generalized Extreme Value distribution

at the significance level 0.1.

The Chi-square goodness-of-fit test rejects the null hypothesis that the data have been

drawn from the Gaussian mixture with two components, a Gaussian, a Logistic, a Generalized

Extreme Value, or a t-Location Scale distribution at the 99 percent confidence level.

The Q-Q plot of the Gaussian mixture with two components is relatively close to linear,

suggesting that the mixture of two Gaussians is a relatively good fit to the data.

D Quantitative exercises

D.1 Policy counterfactual for 2007

In this section we use the model calibrated to mimic the salient features of a typical day in

2007 to conduct the types of policy experiments conducted in Section 6.3. Table 4 reports the

equilibrium values of ρ̄ that result from varying if from 0 to 6 percent in 1 percent increments
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(as before, each column corresponds to a different value of Q/k̄). All other parameter values

are as in Section 6.1. Table 5 reports the equilibrium values of ρ̄ that result from varying iwf

from 575 basis points to 700 basis points in 25 basis point increments, while keeping all other

parameter values as in Section 6.1.

D.2 Sensitivity analysis

In this section we carry out additional quantitative experiments to assess the sensitivity of the

model predictions to changes in the contact rate, α, and the standard deviation of the initial

distribution of reserve balances. These exercises show how the results of our policy experiments

vary with the values of the key calibrated parameters (notice that Tables 1-5 already show how

the equilibrium fed funds rate varies with the mean of the initial distribution of balances).

D.2.1 Changes in the contact rate

The top row of Figure 5 corresponds to the 2007 calibration with the initial distribution of

reserves estimated by a Gaussian mixture as described in Section C.2.2. The top left panel plots

the equilibrium value weighted fed funds rate, ρ̄, as a function of the aggregate normalized level

of reserves, Q/k̄, corresponding to five values of α. Notice that for any given level of Q/k̄, the

equilibrium rate ρ̄ increases with α if Q/k̄ < 1 and decreases with α if Q/k̄ > 1. The interest

rate is independent of α in the “balanced market” with Q/k̄ = 1. The top right panel plots ρ̄

as a function of α keeping all other parameters (including Q/k̄) at their baseline values for the

2007 calibration. These results are in line with the discussion at the end of Section 6.3. The

bottom row of Figure 5 does the same exercise for the 2011 calibration.

D.2.2 Mean-preserving spreads of the initial distribution of balances

Consider a Gaussian mixture with parameters (µ1, µ2, σ1, σ2, p1). We parametrize a family of

mean-preserving spreads of this distribution as follows. For any σ̄ ∈ R+, define µ̃1 = µ1 + δp2,

µ̃2 = µ2 − δp1, and σ̃i = σ̄σi for i = 1, 2, with δ ≡ (1− σ̄) (µ2 − µ1). Then it is easy to see

that σ̄ indexes a family of Gaussian mixtures with parameters (µ̃1, µ̃2, σ̃1, σ̃2, p1), where each

member of the family has the same mean, p1µ1 + p2µ2, and a standard deviation proportional

to σ̄. Thus by varying σ̄ we can generate mean-preserving spreads of the original Gaussian

mixture. Clearly, the special case σ̄ = 1 corresponds to the original distribution with parameters

(µ1, µ2, σ1, σ2, p1).
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Figure 6 shows the effects of a mean-preserving spread of the initial distribution of balances.

The top row corresponds to the 2007 calibration, with the initial distribution of reserves given by

Gaussian mixture with parameters (µ1, µ2, σ1, σ2, p1) estimated as described in Section C.2.2.

The top left panel plots the equilibrium value weighted fed funds rate, ρ̄, as a function of

the aggregate normalized level of reserves, Q/k̄, corresponding to five values of σ̄. Again, we

confirm that the distribution is neutral if the market is balanced, i.e., if Q/k̄ = 1 (notice that

ρ̄ is invariant to σ̄ when Q/k̄ = 1). The top right panel plots ρ̄ as a function of σ̄ keeping all

other parameters (including Q/k̄) at their baseline values for the 2007 calibration. The bottom

row of Figure 6 does the same exercise for the 2011 calibration.
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