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1 Introduction

The field of finance is currently grappling with the fact that there are limits to applying the

standard Bayesian paradigm to asset pricing. Specifically, in a standard Bayesian framework,

beliefs are updated with a particular model in mind. However, as noted by Hansen and

Sargent (2007), many economic models cannot be trusted completely, thereby introducing

the notion of model uncertainty. Theoretically, though, as long as the potential set of models

that all agents in an economy consider is the same ex ante, the Bayesian framework can

still apply because agents can update their beliefs about which model explains the economy.

However, if the agents consider different sets of models or they adhere to different paradigms,

then disagreement will persist regarding which model is best to describe the world or predict

the future. It is this notion of model disagreement that we focus on in this paper and

characterize its effects on asset prices, return volatility, and trade in the market.

Empirically, model disagreement appears to be important. For example, in a recent pa-

per by Carlin, Longstaff, and Matoba (2013), the authors study the effects of disagreement

about prepayment speed forecasts in the mortgage-backed securities market on risk premia,

volatility, and trading volume. Indeed, the prepayment models that traders use are often

proprietary and differ from each other, while the inputs to these models are publicly observ-

able (e.g., unemployment, interest rates, inflation). In that paper, the authors show that

disagreement is associated with a positive risk premium and is the primary channel through

which return volatility impacts trading volume.

In this paper, we analyze a continuous-time framework in which investors exhibit model

disagreement and study how this affects the dynamics of asset prices and trading volume.

In our setup, two investors have homogenous preferences and equal access to information,

but disagree about the length of the business cycle. Each investor knows that the expected

dividend growth rate mean-reverts, but uses a different parameter that governs the rate

at which this fundamental returns to its long-term mean. The disagreement is commonly

known, but each agent adheres to his own model when deciding whether to trade.1

Using disagreement about the length of the business cycle is natural and plausible. For

example, Massa and Simonov (2005) show that forecasters strongly disagree on recession

probabilities, which implies that they have different beliefs regarding the duration of re-

cessionary and expansionary phases. The origin of this disagreement may arise from many

sources. Indeed, there still remains much debate regarding the validity of long-run risk

models (e.g., Beeler and Campbell (2012); Bansal, Kiku, and Yaron (2012)). Additionally,

in practice agents might use different time-series to estimate the mean-reversion parameter

1This form of disagreement arises if agents are uncertain about the interpretation of public information,
even after observing infinitely many signals (Acemoglu, Bimpikis, and Ozdaglar, 2010).
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(e.g., use consumption versus production data). Likewise, their estimation methods may

differ (e.g., fitting the model to past analyst forecast data versus a moving-average of output

growth versus performing maximum-likelihood Kalman filter estimation). Finally, as Yu

(2012) documents, least-squares and maximum-likelihood estimators of the mean-reversion

speed of a continuous-time process are significantly biased. Some investors might be aware

of the existence of this bias and would adjust their estimation accordingly, whereas other

investors might ignore it.2

In our equilibrium model, two distinct quantities turn out to be important determinants

of asset prices and trade in the market. The first is the disagreement over fundamentals,

which is the instantaneous difference in beliefs about the expected growth rate in the econ-

omy. The second is the difference in economic outlooks, which affects expectations of future

economic variables and takes into account how both agents will disagree over fundamentals

in the future. The differences in economic outlooks at all horizons into the future are dic-

tated by the term structure of disagreement. Interestingly, different outlooks amplify return

volatility and trading volume, even when the agents agree about the current fundamentals.

To show this, we perform a numerical analysis that compares an economy populated by a

representative agent to that populated by two agents with model disagreement. Both set-

tings are otherwise observationally equivalent in terms of their average expected growth rate

and average uncertainty. Additionally, we set the disagreement over fundamentals to zero.

We show that the volatility with model disagreement is higher than what an observationally

equivalent representative agent economy generates. Also, while there is no trade in the rep-

resentative agent economy, as the difference in economic outlook increases, trading volume

follows suit. These results imply that model disagreement not only amplifies volatility, but

also provides an important mechanism by which uncertainty affects trade.

Also in the equilibrium of our model, we show that while the absolute level of volatility

is driven primarily by long-run risk, the variation and persistence of volatility (i.e., volatility

clustering) is driven by disagreement. Disagreement is persistent and increases the volatility

of the risk-adjusted discount factor and consequently also the volatility of stock returns.3

Persistent transmission from investors beliefs to stock market volatility via disagreement

causes excess volatility, which is time-varying and persistent. We disentangle the impact of

disagreement from the impact generated by the other driving forces by decomposing stock

return volatility. We show that, indeed, disagreement is the main driving force of persistent

2We further justify the assumption of different parameters in Appendix A.1 by performing a simulation
exercise in which we let the agents estimate the mean-reversion parameter with different methods. We show
that the difference between the estimated parameters is typically substantial, even though we perform 1,000
simulations of economies of length of 50 years at quarterly frequency.

3Persistent disagreement is consistent with empirical findings by Patton and Timmermann (2010) and
Andrade, Crump, Eusepi, and Moench (2014).
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fluctuations in stock market volatility, whereas the level of the volatility is mainly driven by

long-run risk, as the long-run risk literature (Bansal and Yaron, 2004) suggests.4

Our results help to explain three well-known characteristics about financial market volatil-

ity. First, volatility systematically exceeds that justified by fundamentals (Shiller, 1981;

LeRoy and Porter, 1981). Indeed, we show that model disagreement amplifies volatility,

over and above the usual effect of uncertainty. Second, volatility is time-varying (Schwert,

1989; Mele, 2008). This arises naturally out of our model because disagreement is mean-

reverting. Last, volatility is persistent (Engle, 1982; Bollerslev, 1986; Nelson, 1991), occur-

ring in clusters. This persistence (or predictability) has been described extensively in the

empirical literature, but there is a paucity of theoretical explanations. We show that model

disagreement generates a new channel of persistence transmission from investors beliefs to

stock market volatility and we fit a GARCH model on simulated stock returns to show that

volatility is indeed persistent. Our paper proposes therefore a theoretical foundation for the

GARCH-like behavior of stock returns.

Finally, we conclude the paper with a survival analysis. Indeed, in any model with

heterogeneous agents, whether all types survive in the long-run is a reasonable concern.

To address this, we perform simulations and show that all agents in our economy with

model disagreement survive for long periods of time, consistent with previous findings in

the literature (Yan, 2008). Based on this, we posit that model disagreement can have long-

lasting effects on asset prices without eliminating any players from the marketplace, which

likely makes our analysis economically important.

Our approach contrasts with previous work and thus adds to the previous finance lit-

erature. As already mentioned, Hansen and Sargent (2007) studies model misspecification

and model uncertainty, but does so for a single investor.5 In contrast, our study investigates

the consequence of disagreement about models in an economy with different investors. We

assume that investors disagree about the model governing the economy. Certainly, there are

many other forms of disagreement; in particular, several papers feature a setting in which

investors agree on the model governing the economy but disagree on the information that

they receive (see, e.g., Scheinkman and Xiong 2003, Dumas, Kurshev, and Uppal 2009, or

Xiong and Yan 2010). These models are able to generate excess volatility but they do not

identify the cause of persistent fluctuations in volatility.

4We define long-run risk here as the risk associated to a persistent expected dividend growth rate only.
In Bansal and Yaron (2004) long-run risk captures the risk associated to a persistent expected dividend
growth rate, a persistent dividend growth volatility, and a persistent expected dividend growth volatility.
In contrast, we do not assume that any fundamental variable features stochastic volatility. Instead, stock
return volatility becomes stochastic in equilibrium exactly because agents disagree about the magnitude of
long-run risk. We thus argue that long-run risk per se is not a cause of fluctuations in volatility, whereas
disagreement about long-run risk endogenously gives rise to such fluctuations.

5See also Uppal and Wang (2003), Maenhout (2004), Liu, Pan, and Wang (2005), and Drechsler (2013).
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The remainder of the paper is organized as follows. Section 2 describes the model and its

solution. Section 3 explores how model disagreement affects volatility and trading volume.

Section 4 addresses the survival of investors. Section 5 concludes. All derivations and

computational details are in Appendix A.

2 Model Disagreement

Consider a pure exchange economy defined over a continuous time horizon [0,∞), in which

a single consumption good serves as the numéraire. The underlying uncertainty of the

economy is characterized by a 2-dimensional Brownian motion W = {Wt : t > 0}, defined

on the filtered probability space (Ω,F ,P). The aggregate endowment of consumption is

assumed to be positive and to follow the process:

dδt
δt

= ftdt+ σδdW
δ
t (1)

dft = λ(f − ft)dt+ σfdW
f
t , (2)

where W δ and W f are two independent Brownian motions under the objective probability

measure P. The expected consumption growth rate f , henceforth called the fundamental, is

unobservable and mean-reverts to its long-term mean f̄ at the speed λ. The parameters σδ

and σf are the volatilities of the consumption growth and of the fundamental.

There is a single risky asset (the stock), defined as the claim to the aggregate consumption

stream over time. The total number of outstanding shares is unity. In addition, there is also

a risk-free bond, available in zero-net supply.

The economy is populated by two agents, A and B. Each agent is initially endowed with

equal shares of the stock and zero bonds, can invest in these two assets, and derives utility

from consumption over his or her lifetime. Each agent chooses a consumption-trading policy

to maximize his or her expected lifetime utility:

Ui = Ei
[∫ ∞

0

e−ρt
c1−α
it

1− α
dt

]
, (3)

where ρ > 0 is the time discount rate, α > 0 is the relative risk aversion coefficient, and

cit denotes the consumption of agent i ∈ {A,B} at time t. The expectation in (3) depends

on agent i’s perception of future economic conditions. Agents value consumption streams

using the same preferences with identical risk aversion and time discount rate but, as we will

describe below, have heterogeneous beliefs.
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2.1 Learning and Disagreement

The agents commonly observe the process δ, but have incomplete information and heteroge-

neous beliefs about the dynamics of the fundamental f . Specifically, the agents agree that

the fundamental mean-reverts but disagree on the value of the mean-reversion parameter λ.

As such, they have different perceptions about the length of the business cycle.

Agent A’s perception of the aggregate endowment and the fundamental is

dδt
δt

= fAtdt+ σδdW
δ
At (4)

dfAt = λA
(
f̄ − fAt

)
dt+ σfdW

f
At, (5)

where W δ
A and W f

A are two independent Brownian motions under agent A’s probability

measure PA. On the other hand, agent B believes that

dδt
δt

= fBtdt+ σδdW
δ
Bt (6)

dfBt = λB
(
f̄ − fBt

)
dt+ σfdW

f
Bt, (7)

where W δ
B and W f

B are two independent Brownian motions under agent B’s probability

measure PB. Both agents agree on the long-term mean of the fundamental f̄ and on the

volatility of the fundamental σf .
6

Neither agent uses the right parameter λ. Instead, the true parameter λ is assumed to

lie somewhere in between the parameters perceived by the agents. As such, there are 3

probability measures: the objective probability measure P and the two probability measures

PA and PB as perceived by agents A and B.

The agents both observe the aggregate endowment process δ and use it to estimate

the fundamental f under their respective probability measures.7 Since they use different

models, they have different estimates of f . Define f̂A and f̂B as each agent’s estimate of the

unobservable fundamental f :

f̂it ≡ Eit [fit] , for i ∈ {A,B}, (8)

6We have considered extensions of the model where agents have heterogeneous parameters f̄ and σf , with
similar results. The parameter bearing the main implications is the mean-reversion speed λ and thus we
choose to focus on heterogeneity about it and to isolate our results from other sources of belief heterogeneity.

7We assume that the only public information available is the history of the aggregate endowment process
δ. The model can also accommodate public news informative about the fundamental, but here we chose
not to obscure the model’s implications and we abstract away from additional public news. The effects of
heterogeneous beliefs about public news are well-understood (see, e.g., Scheinkman and Xiong (2003) or
Dumas et al. (2009) among others).
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which are computed using standard Bayesian updating techniques. Learning is implemented

via Kalman filtering and yields8

df̂it = λi

(
f̄ − f̂it

)
dt+

γi
σδ
dŴ δ

it, for i ∈ {A,B}, (9)

where γi denotes the posterior variance perceived by agent i and Ŵ δ
i represents the normal-

ized innovation process of the dividend under agent i’s probability measure

dŴ δ
it =

1

σδ

(
dδt
δt
− f̂itdt

)
. (10)

The process in Equation (10) has a simple interpretation. Agent i observes a realized growth

of dδt/δt and has an expected growth of f̂itdt. The difference between the realized and the

expected growth, normalized by the standard deviation σδ, represents the surprise or the

innovation perceived by agent i.

The posterior variance γi (i.e., Bayesian uncertainty) reflects incomplete knowledge of

the true expected growth rate. It is defined by9

γi ≡ Varit [fit] = σ2
δ

√λ2
i +

σ2
f

σ2
δ

− λi

 > 0, for i ∈ {A,B} . (11)

Equation (11) shows how γi depends on the initial parameters. The posterior variance

increases with the volatility of the fundamental σf and with the volatility of the aggregate

endowment σδ, and decreases with the mean-reversion parameter λi. Intuitively, if λi is small

then agent i believes the process f to be persistent and thus the perceived uncertainty in the

estimation is large. Since agents A and B use different mean-reversion parameters, it follows

that their individual posterior variances are different, that is, one of the agents will perceive

a more precise estimate of the expected growth rate. Therefore, one of the agents appears

“overconfident” with respect to the other agent, although overconfidence here does not arise

from misinterpretation of public signals as in Scheinkman and Xiong (2003) or Dumas et al.

(2009), but from different underlying models.

The innovation processes Ŵ δ
A and Ŵ δ

B are Brownian motions under PA and PB, respec-

8See Theorem 12.7 in Liptser and Shiryaev (2001) and Appendix A.2 for computational details.
9As in Scheinkman and Xiong (2003) or Dumas et al. (2009), we assume that the posterior variance

has already converged to a constant. The convergence arises because investors have Gaussian priors and
all variables are normally distributed. This generates a deterministic path for the posterior variance and a
quick convergence (at an exponential rate) to a steady-state value.
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tively. They are such that agent i has the following system in mind

dδt
δt

= f̂itdt+ σδdŴ
δ
it (12)

df̂it = λi(f̄ − f̂it)dt+
γi
σδ
dŴ δ

it, i ∈ {A,B}. (13)

A few points are worth mentioning. First, although the economy is governed by two Brownian

motions under the objective probability measure P (as shown in (1)-(2)), there is only one

Brownian motion under each agent’s probability measure Pi. This arises because there is

only one observable state variable, the aggregate endowment δ. Second, the instantaneous

variance of the observable process δ is the same for both agents, which is not the case for

the instantaneous variance of the filter f̂i. Because of the “overconfidence” effect induced by

different parameters λ, one of the agents will perceive a more volatile filter than the other.

Furthermore, agreeing to disagree implies that each agent knows how the other agent

perceives the economy and that they are aware that their different perceptions will generate

disagreement—although they observe the same process δ. This important feature (that the

aggregate endowment process is observable and thus it should be the same for both agents)

provides the link between the two probability measures PA and PB. Writing the aggregate

consumption process (12) for both agents and restricting the dynamics to be equal provides a

relationship between the innovation processes Ŵ δ
A and Ŵ δ

B (technically, a change of measure

from PA to PB):

dŴ δ
At = dŴ δ

Bt +
1

σδ

(
f̂Bt − f̂At

)
dt. (14)

Equation (14) shows how one can convert agent A’s perception of the innovation process

Ŵ δ
A to agent B’s perception Ŵ δ

B. The change of measure consists of adding the drift term

on the right hand side of (14). For example, suppose that agent A has an estimate of the

expected growth rate of f̂At = 1%, whereas agent B’s estimate is f̂Bt = 3%. Assume that

the realized growth rate (observed by both agents) turns out to be dδt/δt = 2%. It follows

that agent B was optimistic and dŴ δ
Bt = −0.01/σδ, whereas agent A was pessimistic and

dŴ δ
At = 0.01/σδ.

The extra drift term in Equation (14) comprises the difference between each agent’s

estimates of the growth rate (f̂Bt − f̂At) or the disagreement, which we denote hereafter by

ĝt. We can now use this relationship to compute the dynamics of ĝt, under one of the agent’s

probability measure, say PB.

Proposition 1. (Evolution of Disagreement) Under the probability measure PB, the dynam-
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ics of disagreement are given by

dĝt = df̂Bt − df̂At =

[
(λA − λB)(f̂Bt − f̄)−

(
γA
σ2
δ

+ λA

)
ĝt

]
dt+

γB − γA
σδ

dŴ δ
Bt. (15)

Proof. See Appendix A.3

Proposition 1 characterizes the dynamics of disagreement10, which yields several proper-

ties that make it different from previous models of overconfidence that have been studied in

the literature. First, if one of the agents believes in long-run risk, disagreement is persistent.

Second, if agents have different degrees of precision in their estimates (which happens to be

the case when they use different parameters λ), disagreement is stochastic. Third, because

its long-term drift is stochastic, disagreement will never converge to a constant but will

always be regenerated—even without a stochastic term.

To see this, observe that Equation (15) shows that disagreement is mean-reverting around

a stochastic mean, driven by f̂B. This arises because λA 6= λB. If agents adhered to the

same models, disagreement would revert to zero, as in Scheinkman and Xiong (2003) and

Dumas et al. (2009). In contrast, in our setup, the mean is driven by f̂B because the agents

use different models. In addition, if one of the agents, say agent B, believes in long-run risk,

disagreement becomes persistent because it mean reverts to a persistent f̂B.11

To appreciate the relationship between the agents’ precision and the stochastic nature

of disagreement, let us focus on the stochastic term in the dynamics of disagreement ex-

pressed in Equation (15). This term arises because γA 6= γB. As previously observed in

Equation (11), different posterior variances are a result of different mean-reversion parame-

ters. This generates stochastic shocks in disagreement. Although models of overconfidence

(Scheinkman and Xiong, 2003; Dumas et al., 2009) generate a similar stochastic term, a

key difference arises in our setup. To see this, suppose we shut down this stochastic term.

This can be done by properly adjusting the initial learning problem of the agents.12 Equa-

tion (15) shows that, even though the stochastic term disappears, disagreement will still be

time-varying—and persistent—precisely due to the first term in its drift. In contrast, shut-

ting down the stochastic term in models of overconfidence eliminates disagreement through

prompt convergence toward its long-term mean, zero. This highlights the “structural” form

of disagreement generated by different economic models.

10The dynamics of disagreement in (15) comprise only ŴB but not ŴA. Without loss of generality, we
choose to work under agent B’s probability measure PB ; however, by using (14), we could easily switch to
agent A’s probability measure and all the results would still hold.

11Alternatively, if agent A believes the fundamental is persistent, then we can write the dynamics of
disagreement under PA and the same intuition holds.

12Precisely, we can consider that agents have different parameters σf chosen in such a way that γA = γB .
This will shut down the stochastic term in Equation (15).

9



2.2 Economic Outlook

Now, let us consider how model disagreement affects each agent’s relative economic outlook.

Since each agent perceives the economy under a different probability measure, any random

economic variable X, measurable and adapted to the observation filtration O, now has two

expectations: one under the probability measure PA, and the other under the probability

measure PB. Naturally, they are related to each other by the formula

EA [X] = EB [ηX] , (16)

where η measures the relative difference in outlook from one agent to the other.

Proposition 2. (Economic Outlook) Under the probability measure PB, the relative differ-

ence in economic outlook satisfies

ηt ≡
dPA

dPB

∣∣∣∣
Ot

= e
− 1

2

∫ t
0

(
1
σδ
ĝs
)2
ds−

∫ t
0

1
σδ
ĝsdŴ δ

Bs , (17)

where Ot is the observation filtration at time t and η obeys the dynamics

dηt
ηt

= − 1

σδ
ĝtdŴ

δ
Bt. (18)

Proof. See Girsanov’s Theorem.

On the surface, the expression in (17) is simply the Radon-Nikodym derivative for the

change of measure between the agents’ beliefs. But this has a natural economic interpretation

here as the difference in economic outlook between the agents, since it captures the difference

in expectations that each agent has for the future. This contrasts with previous papers that

use ηt to express differences in the sentiment between agents (Dumas et al., 2009). In

our setting, agents do not have behavioral biases like overconfidence or optimism. Rather,

because they adhere to different models of the world, they rationally have different economic

outlooks, which are not a function of how they are feeling per se (i.e., sentiment).

One important implication of Proposition 2 is that disagreement over fundamentals and

economic outlook are different entities. In fact, relative outlook is a function of disagreement,

and there may be differences in the agents’ outlook even though they agree today on the

underlying fundamentals of the economy. This is because disagreement in our setup expresses

the difference in beliefs about the expected growth rate today, while outlook enters into the

expectations of future economic variables and thus captures the way in which agents’ beliefs

will differ into the future.
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Figure 1: Different economic outlooks

Expectation of future aggregate consumption computed by agent A (solid blue line) and
agent B (dashed red line). The state variables at time t = 0 are δ0 = 1, f̂B0 = −1%, ĝ0 = 0,
and η0 = 1. Other parameters for this example are listed in Table 1.

This is best appreciated by observing that the relative difference in outlook in (17) is a

function of the integral of disagreement that is realized over a particular horizon, not just the

disagreement that takes place at one particular instant. This implies that two agents may

have very different outlooks, even though they currently agree on the fundamentals in the

market. That is, even though their models currently yield the same fundamentals, because

they use different models, they will have different outlooks for the future. This will drive the

results in future sections where we show that trading volume may be substantial even when

there is currently no disagreement about fundamentals: trade will still take place because

the agents take into account that they will disagree in the future (i.e., they have different

economic outlooks).

To see this more clearly, consider the following example. Suppose that, at t=0, f̂A0 =

f̂B0 = −1%. Because ĝ0 = 0, both agents agree that the economy is going through a

recession. Furthermore, assume that agent B believes the economic cycles are longer than

agent A, that is, λB = 0.1 whereas λA = 0.3. Figure 1 shows the different economic outlooks

that agents hold, even though they are in agreement today. It calculates the expectation of

future dividends, Ei0 [δu]. Agent A (solid blue line) believes that the economy will recover

quickly, in about two years, whereas agent B (dashed red line) believes that it will take six

years for the economy to get back to its initial level of aggregate consumption.

It is also instructive to observe in (18) that disagreement affects the evolution of relative

outlook. It is the primary driver of fluctuations in ηt. When ĝt is large, ηt will also have large

fluctuations. Note, however, that even though dηt is zero when ĝt = 0, ηt itself can take any
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positive value and thus it still bears implications for the pricing of assets in the economy.

2.3 Equilibrium Pricing

To compute the equilibrium, we first write the optimization problem of each agent under

agent B’s probability measure PB. Since we have decided to work (without loss of gener-

ality) under PB, let us write from now on and for notational ease the following conditional

expectations operator

Et [·] ≡ EB [· | Ot] . (19)

The market is complete in equilibrium since under the observation filtration of both

agents there is a single source of risk. Consequently, we can solve the problem using the

martingale approach of Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).13

Proposition 3. (Equilibrium) Assume that the coefficient of relative risk aversion α is an

integer.14 The equilibrium price of the risky asset at time t is

St =

∫ ∞
t

Sut du, (20)

where Sut is

Sut = Et
[
ξBu
ξBt
δu

]
= e−ρ(u−t)δαt

α∑
j=0

(
α

j

)
ω(ηt)

j [1− ω(ηt)]
α−j Et

[(
ηu
ηt

) j
α

δ1−α
u

]
, (21)

where ξB denotes the state-price density perceived by agent B

ξBt = e−ρtδ−αt

[(
ηt
κA

)1/α

+

(
1

κB

)1/α
]α
, (22)

and ω(η) denotes agent A’s share of consumption

ω (ηt) =

(
ηt
κA

)1/α

(
ηt
κA

)1/α

+
(

1
κB

)1/α
. (23)

13The martingale approach transforms the dynamic consumption and portfolio choice problem into a
consumption choice problem subject to a static, lifetime budget constraint.

14This assumption greatly simplifies the calculus. To the best of our knowledge, it has been first pointed
out in Yan (2008) and Dumas et al. (2009). If the coefficient of relative risk aversion is real, the computations
can still be performed using Newton’s generalized binomial theorem.
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The risk free rate r and the market price of risk θ are

rt = ρ+ αf̂Bt − αω(ηt)ĝt +
1

2

[
α− 1

ασ2
δ

ω(ηt)(1− ω(ηt))ĝ
2
t − α(α + 1)σ2

δ

]
(24)

θt = ασδ + ω(ηt)
ĝt
σδ
. (25)

Proof. The proof mainly follows Dumas et al. (2009) and is provided in Appendix A.4. The

moment-generating function in Equation (21) is solved in Appendix A.5.

Equation (22) shows how the state-price density ξB depends on the outlook variable η.

Since disagreement ĝ directly drives the volatility of the state-price density (as shown in

Equation 18), it follows from (22) that persistence in disagreement generates persistence in

the volatility of the state-price density. Therefore, even though in our model agents disagree

about a drift component, it directly impacts the diffusion of the state price density and

consequently all the equilibrium quantities.

The optimal share of consumption, stated in Equation (23), is exclusively driven by the

outlook variable η. If η tends to infinity, which means that agent A’s perception of the

economy is more likely than agent B’s perception15, then agent A’s share of consumption

tends to one. Conversely, if η tends to zero, then ω(η) converges to zero. Unsurprisingly,

agent A’s consumption share increases with the likelihood of agent A’s probability measure

being true.

The single-dividend paying stock, expressed in Equation (21), consists in a weighted sum

of expectations, with weights characterized by the consumption share ω(·), which itself is

driven by the economic outlook η. It is instructive to study first the case α = 1 (log-utility

case), when the price of the single-dividend paying stock becomes

Sut = ω(ηt)S
u
At + [1− ω(ηt)]S

u
Bt, (26)

where Suit is the price of the asset in a hypothetical economy populated by only group i

agents. A similar aggregation result is provided by Xiong and Yan (2010). In contrast, when

the coefficient of relative risk aversion is greater than one, the aggregation must be adapted

to accomodate the additional intermediary terms (for j = 1, ..., α − 1) in the summation

(21). In fact, the summation has now α+1 terms and the price of the single dividend paying

15This can be seen from Equation (18): high η can arise either if (i) agent B is optimistic (ĝ > 0) and ŴB

shocks are negative or if (ii) agent B is pessimistic (ĝ < 0) and ŴB shocks are positive.
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stock becomes

Sut =
α∑
j=0

(
α

j

)
ω(ηt)

j [1− ω(ηt)]
α−j Sujt, (27)

where Sujt is the price of the asset in a hypothetical economy populated by agents with relative

economic outlook ηj/α (j = 0 corresponds to agent B and j = α corresponds to agent A).

Since the binomial coefficients in (27) sum up to one, the price is therefore a weighted average

of α + 1 prices arising in representative agent economies populated by agents with relative

economic outlook ηj/α. Hence, the outlook variable η not only affects the price valuation

through the expectations in (21), but also through the weights in the summation (27).

The weighted average form (27) highlights the origin of fluctuations in stock price volatil-

ity and the key role played by disagreement and the relative outlook η. The intuition is as

follows. The relative outlook η fluctuates in the presence of disagreement and causes in-

vestors to speculate against each other. This speculative activity generates fluctuations in

consumption shares: if the hypothetical investor j’s model is confirmed by the data, he or

she will consume more and thus his or her weight in the pricing formula (27) increases.

The price Sut will therefore approach Sujt not only through the expectation but also through

changes in the relative weights. These fluctuations in relative weights further amplify the

impact of disagreement on the stock price.

3 Return Volatility and Trading Volume

We analyze the impact of model disagreement on the stock return volatility and trading vol-

ume. We show that economic outlook plays a pivotal role in generating excess volatility and

trading volume in financial markets. We then turn to the implications of model disagreement

and different economic outlook for the level, fluctuations, and persistence of volatility.

Proposition 4. (Stock Return Volatility) The time t stock return volatility satisfies

|σt| =

∣∣∣∣∣σ(Xt)
> ∂St
∂Xt

St

∣∣∣∣∣ =

∣∣∣∣∣σ(Xt)
> ∫∞

0

∂Sut
∂Xt

du∫∞
0
Sut du

∣∣∣∣∣ , (28)

where σ(xt) denotes the diffusion of the state vector x = (ζ, f̂B, ĝ, µ). The stock return

diffusion, σt, can be written

σt = σδ +
Sf
S

γB
σδ︸ ︷︷ ︸

≡σf,lr

+
Sg
S

(
γB − γA
σδ

)
︸ ︷︷ ︸

≡σg,lr

+
−Sµ
Sσδ

ĝt︸ ︷︷ ︸
≡σg,i

, (29)
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where Sf , Sg, and Sµ represent partial derivatives of stock price with respect to f̂B, ĝ, and

µ ≡ ln η respectively.

Proof. The diffusion of the state vector (ζ, f̂B, ĝ, µ) is obtained from Equations (12), (13),

(15), and (18). Multiply these with Sζ/S = 1, Sf/S, Sg/S, and Sµ/S to obtain (29).

Equation (29) shows that the stock return diffusion σ consists in the standard Lucas

(1978) volatility σδ and three terms representing the long-run impact of changes in the esti-

mated fundamental f̂B (denoted by σf,lr), the long-run impact of changes in the disagreement

ĝ (denoted by σg,lr), and the instantaneous impact of changes in the disagreement ĝ (denoted

by σg,i). Since we assume the volatility of the dividend σδ to be constant, the volatility of

the price-dividend ratio is exclusively driven by these last 3 terms. Therefore, all the fol-

lowing interpretations apply to both the stock return volatility and the volatility of the

price-dividend ratio.

3.1 Economic Outlook, Excess Volatility, and Trading Volume

We use a numerical example to show how model disagreement leads to excess volatility, even

when ĝ is currently zero. Specifically, we compare an economy populated by a representative

agent to one populated by two agents with model disagreement, when the two settings

are observationally equivalent in terms of their average expected growth rate and average

uncertainty. By shutting down the direct effect of disagreement, this exercise highlights the

key role played by differences in economic outlook in generating excess volatility.

The calibration is provided in Table 1. These parameters are adapted from Brennan

and Xia (2001) and Dumas et al. (2009), with a few differences. We choose lower values

for the volatility of the fundamental and the dividend growth volatility. For the preference

parameters, we choose a smaller coefficient of relative risk aversion and a positive subjective

discount rate.

Parameter Symbol Value
Relative Risk Aversion α 3
Subjective Discount Rate ρ 0.015
Agent A’s Initial Share of Consumption ω0 0.5
Consumption Growth Volatility σδ 0.03
Mean-Reversion Speed of the Fundamental λA 0.3

λB 0.1
Long-Term Mean of the Fundamental f̄ 0.025
Volatility of the Fundamental σf 0.015

Table 1: Calibration
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Figure 2: Amplification of volatility through model disagreement

The graph compares stock volatility in two economies that are observationally equivalent
with respect to (i) uncertainty, (ii) average views of the agents on the growth rate, and
(iii) disagreement. The only difference between the economies is the existence of model
disagreement in one of them, case represented by the red dashed line. The blue solid line
thus depicts an observationally equivalent representative agent economy. Parameters are
provided in Table 1.

The mean-reversion speed chosen by agent B is 0.1, corresponding to a business cycle

half-life of approximately seven years. Agent B consequently believes in long-run risk. On

the other hand, agent A, who choses λA = 0.3, believes that the length of the business is

shorter with a perceived half-life of approximately two years. We assume that the true λ lies

somewhere in between λB and λA, and thus neither agent has a superior learning model.

Suppose now that in one economy a representative agent uses a mean-reversion parameter

λrep ∈ [0.1, 0.3]. Different levels of λrep result in different levels of uncertainty, denoted

hereafter γrep. As such, if the agent believes the growth rate of the economy to be persistent,

uncertainty is higher—due to the long-run risk effect—and thus volatility is higher. This

is reflected by the blue solid line in Figure 2. If the representative agent believes λrep to

be 0.3, then uncertainty takes the value γA. As λrep decreases, uncertainty rises up to γB,

which is attained for λrep = 0.1. To keep it simple, we assume that the filtered growth rate

of the representative agent is f̂rep = f̄ . Figure 2 thus confirms the direct, positive, effect of

uncertainty on volatility in a representative agent economy.

Now, compare this to a second economy where there is model disagreement and assume

that there are equal consumption weights for the agents (i.e., ωA = ωB = 1/2) and equal

expected growth rates (i.e., f̂rep = f̂A = f̂B = f̄). To make the comparison meaningful,

we keep the underlying uncertainty equal to the previous case, so that with λB = 0.1 and

λA ≥ 0.1, uncertainty in the representative agent economy equals the weighted average
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uncertainty in the heterogeneous agent economy; that is, λA solves

γrep ≡ ωAγA + ωBγB. (30)

We then compute the volatility that arises for all values of λA which solve (30) and with

λB = 0.1 fixed.

The red dashed line in Figure 2 shows that model disagreement amplifies volatility with

respect to a representative agent economy. This is meaningful because the two economies

are observationally equivalent. Indeed, (i) uncertainty is the same and equals γrep, (ii) the

average views of agents on the growth rate are the same and equal f̄ , and (iii) disagreement

is the same and equals ĝ = 0. The only difference between these economies is the existence

of model disagreement, which presumably is not observable by the econometrician. But

this difference generate excess volatility through different economic outlooks—even if agents

agree today, they hold different economic outlooks about the future.16 Given this, it appears

that, through the different economic outlooks that it generates, model disagreement am-

plifies volatility beyond that observed in an observationally equivalent representative agent

economy.

Now, we consider how model disagreement affects trading volume in the economy. Trad-

ing volume represents the absolute value of the change in agents’ risky position. Measuring

trading volume is straightforward in discrete time. In continuous time, however, diffusion

processes have infinite variation. We therefore follow Xiong and Yan (2010) and proxy trad-

ing volume with the volatility of agents’ risky position changes.17 For this matter, picking

agent A or agent B gives the same measure of trading volume. In order to be consistent

with what has been done so far, we choose to focus on agent B.

The number of assets held by agent B, is given by the martingale representation theorem:

πB,tStσt =
∂VBt
∂xt

σ(xt) (31)

where VBt is the wealth of agent B at time t (provided in Appendix A.4) and xt = (ζ f̂B ĝ µ)

is the state vector of the economy. Equation (31) states that fluctuations in the price of

the risky asset, scaled by the number of assets held by agent B, are perfectly matched to

fluctuations in agent B’s wealth. In other words, the agent’s position in the risky asset is

set in such a way to replicate wealth fluctuations. Naming the term on the right hand side

16Separate calculations show that volatility is further amplified with respect to the dashed red line when
ĝt < 0 (i.e., when the long-term agent B is pessimistic) and remains almost unchanged with respect to the
dashed red line when ĝt > 0 (i.e., when the long-term agent B is optimistic).

17Trading actually occurs in discrete time and it is thus reasonable to measure changes in position across
small intervals (but finite). On average these changes increase with the volatility of investors’ risky position
changes.
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Economy Parameters Trading volume
(1) No model disagreement λA = 0.3, λB = 0.3 0
(2) Moderate model disagreement λA = 0.3, λB = 0.2 0.085
(3) Severe model disagreement λA = 0.3, λB = 0.1 0.200
(4) Moderate model disagreement λA = 0.2, λB = 0.1 0.155
(5) No model disagreement λA = 0.1, λB = 0.1 0

Table 2: Model disagreement and trading volume

σVB ,t, the position in the risky asset is

πB,t =
σVB ,t
Stσt

(32)

We are interested in measuring fluctuations in this position. These fluctuations can be

gauged either by simulations, or by simply computing the absolute value of the position’s

diffusion:

σ (πB,t) =

∣∣∣∣∂πB,t∂ζt
σδ +

∂πB,t

∂f̂B

γB
σδ

+
∂πB,t
∂ĝ

γB − γA
σδ

− ∂πB,t
∂µt

1

σδ
ĝt

∣∣∣∣ (33)

Inspecting (33), the last term shows how disagreement directly moves trading volume. Of

course, it does enter indirectly as well through the partial derivatives, as do the other state

variables.

By the same train of thought as before, we assume that ĝ = 0 so we can compare

economies populated by two agents having model disagreement with those populated by

a representative agent. Table 2 describes the five distinct economies we analyze, which

are different with respect to the set of parameters (λA, λB) considered. Severity of model

disagreement is measured by the distance between the parameters λA and λB. As such, two

of the economies feature moderate model disagreement (economies 2 and 4), one economy

features more severe model disagreement (economy 3), and the last two economies have a

representative agent (economies 1 and 5).

The last column of Table 2 shows that the level of trading volume increases with the

severity of model disagreement. Clearly, trading volume is zero in the representative agent

cases (economies 1 and 5). In between, agents take on speculative positions against each

other, which increases trading volume. These results also show that investors change their

positions even though disagreement today is zero, i.e., ĝ = 0. They do so because they know

that their underlying models are different and thus they have different economic outlooks.

Once again, the key variable in generating trading volume is not disagreement per se, but

the relative economic outlook.
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3.2 Characteristics of Volatility

We turn now to the analysis of the characteristics of stock return volatility. We highlight the

key role played by the relative outlook variable η in the propagation of disagreement shocks

to volatility shocks. We then show that, while the level of volatility is mostly driven by

long-run risk as in Bansal and Yaron (2004), both the variation and persistence of volatility

are driven by disagreement.

3.2.1 Level and Variation of Volatility

Coming back to Proposition 4, a direct analysis of the stock diffusion formula (29) is obscured

by the presence of the partial derivatives Sf , Sg, and Sµ. These derivatives depend on the

state variables themselves and thus are time-varying. In order to gain more intuition and to

understand which terms drive the level of volatility and which ones drive its fluctuations, we

simulate the last three terms in Equation (29). Simulations are done at weekly frequency

for 100 years. Figure 3 illustrates one simulated path of the stock return diffusion and its

components. The significant driver of changes in stock market volatility is the fourth term

in Equation (29), σg,i, whereas terms representing long-run changes in disagreement, σg,lr,

and long-run changes in the estimated fundamental, σf,lr, are slightly time-varying but have

less significant impact on the dynamics of volatility.

The fourth term in Equation (29) is therefore key to understanding the impact of dis-

agreement on stock return volatility. This term consists in the partial derivative of the stock

price with respect to the relative outlook variable η multiplied by the volatility of η, which

itself is directly driven by disagreement (according to 18). Both disagreement and economic

outlook therefore play a role in driving volatility, by the following mechanism. When agents

are in disagreement, they hold different economic outlooks and thus the stock price fluctuates

in order to accommodate speculative trading by both agents. Higher disagreement generates

large fluctuations in economic outlook (according to 18) and thus large changes in the stock

price. One can therefore say that disagreement drives the volatility of stock returns through

changes in the relative economic outlook.

To disentangle the role played by disagreement from the role played by the relative

economic outlook, we plot in the left panel of Figure 4 the fourth diffusion component σg,i

and the disagreement ĝ. The correlation coefficient between the two lines in this particular

example yields a value of 0.95. In the right pannel of Figure 4 we plot the distribution of

the correlation between the diffusion term and disagreement for 1,000 simulations and we

find that the coefficient stays mainly between 0.8 and 1. It is therefore disagreement which

drives the fluctuations in σg,i, whereas the relative economic outlook is the primary channel

through which these fluctuations are transmitted to stock market volatility.
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Figure 3: Stock return diffusion and its components

One simulated path (100 years) of the stock return diffusion and its components. Simulations
are performed at weekly frequency, but lines are plotted at quarterly frequency to avoid
graph cluttering. The diffusion components σf,lr, σg,lr, and σg,i are defined in Equation
(29). The calibration is provided in Table 1.

We examine whether the dynamics illustrated on Figure 3 are particular to one simulation.

To this end, we plot in Figures 5 and 6 the distributions of the averages and variances of

σf,lr, σg,lr, and σg,i. Averages and variances are computed over the length of each simulation

which is chosen to be 100 years at weekly frequency.

Figure 5 shows that the diffusion components σg,lr and σg,i do not have a significant

impact on the level of volatility. The level of volatility is primarily determined by the f̂B-

term defined by σf,lr. It is worth mentioning that the f̂B-term is negative because in our

model the precautionary savings effect dominates the substitution effect. Indeed, a positive

shock in the fundamental increases future consumption. Because agents want to smooth

consumption over time, they increase their current consumption and so reduce their current

investment. This tendency to disinvest outweighs the substitution effect (which pushes

investors to invest more) and implies a drop in prices as long as agents are sufficiently

risk averse (α > 1). Hence the stock return diffusion component determined by changes

in the fundamental, σf,lr, is negative. The smaller the mean-reversion speed λB, the more

negative the σf,lr component, and consequently the larger stock return volatility becomes.

The reason is that a small mean-reversion speed implies a significant amount of long-run
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Figure 4: Volatility component σg,i and disagreement ĝ

The left panel depicts one 100 years simulation of the volatility component σg,i and the
associated disagreement ĝ. Simulations are performed at weekly frequency, but lines are
plotted at quarterly frequency to avoid graph cluttering. The volatility term σg,i is defined in
Equation (29). The calibration is provided in Table 1. The right panel shows the distribution
of the correlation between σg,i and ĝ. This correlation is computed over an horizon of 100
years (simulated at weekly frequency), for 1,000 simulations.

−0.15 −0.1 −0.05 0 0.05
0

0.1

0.2

0.3

Mean (σf,lr) Mean (σg,i) Mean (σg,lr)

F
re

q
u
en

cy

Figure 5: Distribution of the average of the diffusion components

The average over 1,000 simulations of each of the last three diffusion components in Equation
(29) is computed over a 100 years horizon, at weekly frequency. The calibration is provided
in Table 1.

risk and therefore the stock price is very sensitive to movements in the fundamental, as in

Bansal and Yaron (2004).

We try now to understand which components drive the variability of stock return diffu-

sion. This is shown in Figure 6, which depicts the variances of the diffusion components and

confirms the conclusions drawn from the example depicted in Figure 3. Variations incurred

by the stock return diffusion are almost exclusively generated by variations in the third and
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Figure 6: Distribution of the variance of the diffusion components

The variance over 1,000 simulations of each of the last three diffusion components in Equa-
tion (29) is computed over a 100 years horizon, at weekly frequency. The calibration is
provided in Table 1.

fourth diffusion terms, σg,lr and σg,i, which are both driven by disagreement. Indeed, varia-

tions in σf,lr are relatively small. We can therefore conclude that the level of the volatility is

mainly driven by the persistence of the expected consumption growth, whereas fluctuations

in volatility are driven by differences of beliefs regarding the persistence of the expected

consumption growth.

3.2.2 Persistence of Volatility

We turn now to the time-varying properties of volatility and address the question whether

the fluctuations in volatility generated by disagreement are persistent. Indeed, stock return

volatility clusters in our model because of the following mechanism. As shown in Proposition

1, disagreement ĝ mean-reverts to a stochastic mean driven by f̂B. Because one of the agents

(in this case agent B) believes the fundamental is persistent, agent B’s estimation of the

fundamental f̂B is persistent and so becomes the disagreement. Given that the disagreement

enters the diffusion of state-price density through the outlook variable η (see Proposition

2) and then enters volatility through the last component in Equation (29), stock return

volatility clusters. This mechanism, new to our knowledge, shows how persistence in the

fundamental (a component of the drift) can transmute into the diffusion of stock return and

generate volatility clustering.

To provide evidence that persistent disagreement indeed implies GARCH-type dynamics,

we simulate 1,000 paths of stock returns over a 100 years horizon at weekly frequency. For

each simulated path we compute the demeaned returns, ε, by extracting the residuals of the
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Figure 7: Model implied ARCH and GARCH parameters

Distribution of the ARCH and GARCH parameters, resulted from 1,000 simulations over
100 years, at weekly frequency. The calibration is provided in Table 1.

AR(1) regression

rt,t+1 = α0 + α1rt−1,t + εt+1, (34)

where rt,t+1 stands for the stock return between time t and t + 1. The demeaned returns ε

is then fitted to a GARCH(1,1) process defined by

εt = σtzt, where zt ∼ N(0, 1) (35)

σ2
t+1 = β0 + β1ε

2
t + β2σ

2
t . (36)

Figure 7 illustrates the distribution of the ARCH parameter β1 and the GARCH parame-

ter β2. Their associated t-stats range between 6 and 11 for the ARCH parameter and between

150 and 350 for the GARCH parameter. First, the large t-stats suggest that the estimated

parameters are significant. Second, the values of β1, β2, and in particular their sum show

that stock return volatility clusters and is close to be integrated. That is, the model implied

volatility clusters because its main driver—the disagreement among agents—is persistent.

3.2.3 Volatility Clustering in Alternative Theoretical Models

We conclude this section with two questions. First, can a single agent framework generate

volatility clustering? Second, if agents’s difference of beliefs is generated by overconfidence

instead of disagreement (Scheinkman and Xiong, 2003; Dumas et al., 2009), can we also

observe volatility clustering?

To address the first question, we observe that in a single agent model the last two terms
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in Equation (29) disappear and volatility depends only on σδ and σf,lr. The analysis above

indicates that this second term does not move significantly. Therefore, without disagreement

there are no significant fluctuations in volatility and thus single agent models have difficulties

in generating volatility clustering.

Turning now to the second question, Proposition 1 shows that disagreement mean-reverts

around a persistent f̂B and thus itself becomes persistent. In contrast, disagreement gener-

ated by overconfidence, as in Dumas et al. (2009), is not easily persistent, even though both

agents would be long-term believers. The reason is that disagreement mean-reverts around

zero with a parameter equal to λ + γ/σ2
δ (see Lemma 2 in Dumas et al. 2009). Because of

the second term, this parameter is large under usual calibrations, which is not enough to

generate persistent dynamics.

On a final note, in Appendix A.6, Table 6, we perform a robustness analysis which

further confirms the role played by disagreement for generating persistence and fluctuations

in volatility. The analysis consists in comparing the properties of the model implied volatility

for different calibrations. Consistent with our theoretical results, we find that strong long-

run risk increases the average level of volatility, while severe disagreement increases both the

variation and the persistence of volatility.

4 Survival

In our model we make the assumption that the fundamental is unobservable. It is conse-

quently reasonable to assume that both investors have different beliefs regarding the dy-

namics of an unobservable process. Furthermore, it would be arbitrary and non-realistic

to assume that one of the two agents has the correct beliefs i.e. the right model in mind.

This raises two questions: what is the true data-generating process and how long do agents

survive given this true data-generating process? This section is devoted to a discussion of

these two questions.

In order to investigate how long each agent survives, we have to assume a realistic data-

generating process in the sense that it has to be consistent with agents beliefs. Indeed,

although both agents might realistically have wrong beliefs, they agents are not too far from

the truth. Therefore, we assume that the true data-generating process is

dδt
δt

= ftdt+ σdW δ
t (37)

dft = λ(f̄ − ft)dt+ σfdW
f
t , (38)

whereW δ andW f are two independent Brownian motions under the true probability measure
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Figure 8: Expected share of consumption of agent A

Expectation under the true probability measure P of the consumption share of Agent A,
ω(ηT ). 10,000 simulations over 1,000 years are performed. The calibration is provided in
Table 1.

P. The true mean-reversion speed λ is assumed to be the average of agents A and B estimated

mean-reversion speeds. Table 3 provides the values of the true and perceived mean-reversion

speeds as well as their corresponding half-lives. Both agents misperceive the true length of

the business cycle, but one overestimates it whereas the other underestimates it.

Belief λ Half-Life
Agent A 0.3 2.31
True value 0.2 3.46
Agent B 0.1 6.93

Table 3: Mean-reversion speed and length of the business cycle

To investigate the speed at which agent A or agent B disappears from the economy,

we follow Yan (2008) and compute the P-expectation of the consumption share of agent A.

To this end we first simulate the dividend process using the true data-generating process

provided in (37) and (38). Then, we perform each agent’s learning exercise and we compute

the expectation of the consumption share of agent A, ω(ηT ), for T ranging from 0 to 1, 000

years.

Figure 8 depicts the P-expectation (i.e., under the true probability measure) of the con-

sumption share of agent A over 1,000 years. This expected consumption share slightly

decreases on average. Investors who believe in long-run risk are expected to save more and

thus have a lower survival index (Yan, 2008). Nevertheless, Figure 8 shows that both shares

of consumption remain very close to each other and that both agents survive for more than

1,000 years. This is also consistent with Yan (2008). We conclude therefore that the type of

disagreement considered here is economically important over long horizons.
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5 Conclusion

We consider a theoretical framework in which two agents interpret information using different

economic models of the economy. Specifically, in our setup agents disagree on the length of

the business cycle. We analyze the asset pricing implications of such disagreement.

We first show that the disagreement is strongly persistent, affects the volatility of the

stochastic discount factor and consequently impacts the stock return volatility. Disagreement

generates different expectations of future economic variables, or different economic outlooks,

which further amplify the return volatility and the trading volume. We decompose the

dynamics of volatility and show that disagreement is the main driver of volatility fluctuations,

while the absolute level of volatility is driven primarily by long-run risk. We thus provide a

theoretical foundation of the GARCH-like behavior of stock returns.

Several questions are the subject of our ongoing research. First, we assume that investors

do not change their economic models. It is important to understand how our results would

change if agents were to perform the full learning exercise. Our expectation is that investors’

estimates should end up close to the true model only after a very long time. Indeed, an

accurate estimator of the mean-reversion speed of a relatively persistent process requires

a large sample of data. In addition, the large set of plausible models governing the real

economy makes it virtually impossible for the agents to end up in agreement.

The learning uncertainty is by construction constant in our setup. This is because we do

not consider here any additional news (newspapers, quarterly reports, economic data, and so

on). In a setting with additional news and in which investors’ attention to news is fluctuating,

uncertainty will fluctuate. Our conjecture is that spikes in attention will exacerbate the

disagreement among agents, further amplifying the effects on volatility described in this

paper. It is therefore important to study the synergistic relationships between attention,

uncertainty, and disagreement and their impact on asset prices.

Finally, our model generates a term structure of disagreement whose shape is governed by

the difference between the mean-reversion parameters. Empirically observed term structures

of disagreement (as in Patton and Timmermann (2010) or Andrade et al. (2014)) can there-

fore help estimating the magnitude of the difference between these parameters. The term

structure of disagreement should also have implications on the pricing of firms with different

characteristics and probably explain well-known anomalies such as the value premium.
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A Appendix

A.1 Kalman/Maximum-Likelihood vs. Particle Filtering

Let us assume that the true data-generating process satisfies

dδt
δt

= ftdt+ σδdW
δ
t (39)

dft = λ(f̄ − ft)dt+ σfdW
f
t , (40)

where W δ and W f are independent Brownian motions. The true parameters defining the dynamics
of the dividend δ and the fundamental f are provided in Table 4.

Parameter Symbol Value
Dividend Growth Volatility σδ 0.03
Mean-Reversion Speed of the Fundamental λ 0.2
Long-Term Mean of the Fundamental f̄ 0.025
Volatility of the Fundamental σf 0.015

Table 4: True parameters

We simulate dividend data at quarterly frequency over a 50-year horizon18 using the true data-
generating process defined in Equations (39) and (40) and the parameters provided in Table 4.
Each agent uses the quarterly dividend data to estimate the following discrete-time model

log

(
δt+∆

δt

)
=

(
ft −

1

2
σ2
δ

)
∆ + σδ

√
∆ε1,t+∆ (41)

ft+∆ = Afft +Bf + Cf ε2,t+∆, (42)

where Af = e−λ∆, Bf = f̄
(
1− e−λ∆

)
, Cf =

σf√
2λ

√
1− e−2λ∆, and ε1, ε2 are independent Gaussian

random variables with mean 0 and variance 1.
Although agents have the same information at hand, we assume that they use different econo-

metrics techniques to perform their estimation exercise. Agent A estimates the unobservable fun-
damental and the parameters by applying the Kalman filter together with Maximum-Likelihood
(Hamilton, 1994), while agent B applies the particle filtering algorithm presented in Liu and West
(2001).19

Table 5 shows that agent A and B obtain parameter estimates of the dividend volatility σδ, the
long-term mean of the fundamental f̄ , and the volatility of the fundamental σf that are relatively
close to each other. Their estimation of the mean-reversion speed λ, however, differs significantly
from one another. Indeed, the absolute difference between the mean-reversion speed estimated by
agent A and that estimated by agent B is worth 0.1742. Relative to the true value of the parameter,
the difference in the estimated mean-reversion speeds is about 87%, whereas it is less than 25%
for all other parameters. Therefore, this calibration exercise motivates, first, our assumption to
consider heterogeneity in mean-reversion speeds only and, second, our choice to consider mean-
reversion speeds such that |λA − λB| = 0.2.

18The frequency and horizon considered match those of the Real GDP growth time-series available on the
Federal Reserve Bank of Philadelphia’s website.

19We would like to thank Arthur Korteweg and Michael Rockinger for providing us with various particle
filtering codes. The particle filtering algorithm of Liu and West (2001) estimates, at each point in time, the
unobservable fundamental and the parameters of the model.
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Definition Symbol Value
Absolute Difference in
Dividend Growth Volatility |σAδ − σBδ| 0.0022
Absolute Difference in
Mean-Reversion Speed of the Fundamental |λA − λB| 0.1742
Absolute Difference in
Long-Term Mean of the Fundamental |f̄A − f̄B| 0.0056
Absolute Difference in
Volatility of the Fundamental |σAf − σBf | 0.0032
Relative Difference in

Dividend Growth Volatility |σAδ−σBδ|
σδ

0.0749

Relative Difference in

Mean-Reversion Speed of the Fundamental |λA−λB |
λ

0.8683
Relative Difference in

Long-Term Mean of the Fundamental |f̄A−f̄B |
f̄

0.2254

Relative Difference in

Volatility of the Fundamental
|σAf−σBf |

σf
0.2105

Table 5: Estimated parameters: maximum-likelihood vs. particle filter
Agent A applies the Kalman-filter together with Maximum-Likelihood, while agent B applies
the particle filter algorithm of Liu and West (2001). The parameter values σBδ, λB, f̄B,
and σBf are those obtained at the terminal time. Numbers reported above are medians
computed over 1,000 simulations.

A.2 Filtering Problem

Agent A’s learning problem

Following the notations of Liptser and Shiryaev (2001), the observable process is

dδt
δt

= (A0 +A1fAt)dt+B1dW
f
At +B2dW

δ
At (43)

= (0 + 1 · fAt)dt+ 0 · dW f
At + σδdW

δ
At. (44)

The unobservable process fA satisfies

dfAt = (a0 + a1fAt)dt+ b1dW
f
At + b2dW

δ
At (45)

= (λAf̄ + (−λA)fAt)dt+ σfdW
f
At + 0 · dW δ

At. (46)

Thus,

bob = b1b
′
1 + b2b

′
2 = σ2

f (47)

BoB = B1B
′
1 +B2B

′
2 = σ2

δ (48)

boB = b1B
′
1 + b2B

′
2 = 0. (49)

28



The estimated process defined by f̂At = EPA(fAt|Ot) has dynamics

df̂At = (a0 + a1f̂At)dt+ (boB + γAtA
′
1)(BoB)−1(

dδt
δt
− (A0 +A1f̂At)dt), (50)

where the posterior variance γAt solves the ODE

γ̇At = a1γAt + γAta
′
1 + bob− (boB + γAtA

′
1)(BoB)−1(boB + γAtA

′
1)′. (51)

Assuming that we are at the steady-state yields

a1γAt + γAta
′
1 + bob− (boB + γAtA

′
1)(BoB)−1(boB + γAtA

′
1)′ = 0. (52)

Consequently,

df̂At = λA(f̄ − f̂At)dt+
γA
σδ
dŴ δ

At (53)

where

γA =
√
σ2
δ (σ

2
δλ

2
A + σ2

f )− λAσ2
δ (54)

dŴ δ
At =

1

σδ

(
dδt
δt
− f̂Atdt

)
. (55)

Agent B’s learning problem

The estimated process is defined by f̂Bt = EB(fBt|Ot). Doing the same computations as before
yields

df̂Bt = λB(f̄ − f̂Bt)dt+
γB
σδ
dŴ δ

Bt, (56)

where

γB =
√
σ2
δ (σ

2
δλ

2
B + σ2

f )− λBσ2
δ (57)

dŴ δ
Bt =

1

σδ

(
dδt
δt
− f̂Btdt

)
. (58)

A.3 Proof of Proposition 1

The dynamics of f̂A under the measure PB are written

df̂At = λA(f̄ − f̂At)dt+
γA
σ2
δ

(f̂Bt − f̂At)dt+
γA
σδ
dŴ δ

Bt

= λAf̄dt+ λAĝtdt− λAf̂Btdt+
γA
σ2
δ

ĝtdt+
γA
σδ
dŴ δ

Bt (59)

because by Girsanov’s Theorem

dŴ δ
At = dŴ δ

Bt +
1

σδ
ĝtdt. (60)
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Consequently, the dynamics of ĝ satisfy

dĝt ≡ df̂Bt − df̂At (61)

=

[
(λA − λB)(f̂Bt − f̄)−

(
λA +

γA
σ2
δ

)
ĝt

]
dt+

γB − γA
σδ

dŴ δ
Bt. (62)

A.4 Proof of Proposition 3

The optimization problem for agent B is

max
cBt

E

[∫ ∞
0

e−ρt
c1−α
Bt

1− α
dt

]
(63)

s.t. E
[∫ ∞

0
ξBt cBtdt

]
≤ xB0, (64)

where ξB denotes the state-price density perceived by agent B and xB0 is his or her initial wealth.
The problem for agent A (under the probability measure PB) is

max
cAt

E

[∫ ∞
0

ηte
−ρt c

1−α
At

1− α
dt

]
(65)

s.t. E
[∫ ∞

0
ξBt cAtdt

]
≤ xA0. (66)

Note how the change of measure enters the objective function of agent A, but that the expectation
in the budget constraint (66) does not need to be adjusted. This is because the state-price density
inside the expectation, ξB, is the one perceived by agent B.20

The first-order conditions are

cBt =
(
κBe

ρtξB
)− 1

α (67)

cAt =

(
κA
ηt
eρtξB

)− 1
α

, (68)

where κA and κB are the Lagrange multipliers associated with the budget constraints of agents A
and B. Summing up the agents’ optimal consumption policies and imposing market clearing, i.e.,
cAt + cBt = δt, yields the state-price density perceived by agent B:

ξBt = e−ρtδ−αt

[(
ηt
κA

)1/α

+

(
1

κB

)1/α
]α

(69)

Substituting the state-price density ξB in the optimal consumption policies yields the following
consumption sharing rules

cAt = ω (ηt) δt (70)

cBt = [1− ω (ηt)] δt, (71)

20Alternatively, we could have defined ξA, the state-price density under agent A’s probability measure.
Then, we would have EA

[
ξA1x

]
= EB

[
ηξA1x

]
= EB

[
ξB1x

]
for any event x. This implies that ξB = ηξA.
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where ω(η) denotes agent A’s share of consumption, which satisfies

ω (ηt) =

(
ηt
κA

)1/α

(
ηt
κA

)1/α
+
(

1
κB

)1/α
. (72)

We assume, as in Yan (2008) and Dumas et al. (2009), that the relative risk aversion α is an
integer. The state-price density at time T satisfies

ξBT = e−ρT δ−αT

((
1

κB

)1/α

+

(
ηT
κA

)1/α
)α

(73)

= e−ρT δ−αT
1

κB

α∑
j=0

(
α

j

)(
ηTκB
κA

) j
α

(74)

= e−ρT δ−αT
1

κB

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(
ηtκB
κA

) j
α

η
j
α
T (75)

= e−ρT δ−αT
1

κB

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(

ω(ηt)

1− ω(ηt)

)j
η
j
α
T , (76)

where the last equality comes from the fact that

ω(ηt) =

(
ηt
κA

)1/α

(
1
κB

)1/α
+
(
ηt
κA

)1/α
(77)

1− ω(ηt) =

(
1
κB

)1/α

(
1
κB

)1/α
+
(
ηt
κA

)1/α
(78)

and consequently (
ηtκB
κA

) 1
α

=
ω(ηt)

1− ω(ηt)
. (79)

Rewriting Equation (78) yields(
1

κB

)1/α

+

(
ηt
κA

)1/α

=

(
1

1− ω(ηt)

)α 1

κB
. (80)
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Thus the single-dividend paying stock price satisfies

STt = Et
(
ξBT
ξBt
δT

)
(81)

(76) and (80)
= Et

e−ρT δ−αT 1
κB

∑α
j=0

(
α
j

) (
1
ηt

) j
α
(

ω(ηt)
1−ω(ηt)

)j
η
j
α
T

e−ρt
(

1
1−ω(ηt)

)α
1
κB
δ−αt

δT

 (82)

= Et

e−ρ(T−t)

∑α
j=0

(
α
j

) (
1
ηt

) j
α
(

ω(ηt)
1−ω(ηt)

)j
η
j
α
T(

1
1−ω(ηt)

)α
δ−αt

δ1−α
T

 (83)

= e−ρ(T−t)(1− ω(ηt))
αδαt

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(

ω(ηt)

1− ω(ηt)

)j
Et
(
η
j
α
T δ

1−α
T

)
. (84)

Finally the stock price is given by

St =

∫ ∞
t

Sut du. (85)

The wealth of agent B at time t satisfies

VBt = Et
(∫ ∞

t

ξBu
ξBt
cBudu

)
. (86)

The definitions of agent B’s consumption, cB, the state-price density, ξB, and the share of
consumption, ω(η), imply that

Et
(
ξBu
ξBt
cBu

)
= Et

e−ρ(u−t)

[(
1
κB

)1/α
+
(
ηu
κA

)1/α
]α

[(
1
κB

)1/α
+
(
ηt
κA

)1/α
]α
δ−αt

(1− ω(ηu))δ1−α
u

 (87)

= Et

e−ρ(u−t)κB(1− ω(ηt))
αδαt

(
1

κB

)1/α
[(

1

κB

)1/α

+

(
ηu
κA

)1/α
]α−1

δ1−α
u

 .

(88)
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Since the relative risk aversion α is an integer we have[(
1

κB

)1/α

+

(
ηu
κA

)1/α
]α−1(

1

κB

)1/α

=

[(
ηuκB
κA

)1/α

+ 1

]α−1
1

κB

=
1

κB

α−1∑
j=0

(
α− 1

j

)(
ηuκB
κA

)j/α

=
1

κB

α−1∑
j=0

(
α− 1

j

)(
1

ηt

)j/α(ηtκB
κA

)j/α
ηj/αu

(79)
=

1

κB

α−1∑
j=0

(
α− 1

j

)(
1

ηt

)j/α( ω(ηt)

1− ω(ηt)

)j
ηj/αu (89)

Substituting Equation (89) in Equation (88) yields the desired result

Et
(
ξBu
ξBt
cBu

)
= e−ρ(u−t)δαt

α−1∑
j=0

(
α− 1

j

)
ω(ηt)

j(1− ω(ηt))
α−jEt

((
ηu
ηt

)j/α
δ1−α
u

)
. (90)

A.5 State Vector and Transform Analysis

Finding the equilibrium price boils down to computing the following expectation:

Et
[
η
j
α
u δ

1−α
u

]
= Et

[
e(1−α 0 0 j/α 0 0 0)X

]
, (91)

where we define the augmented vector of state variables X by

X =
(
ζ f̂B ĝ µ ĝ2 ĝf̂B f̂2

B

)>
. (92)

In Equation (92), ζ represents the log aggregate consumption (ζ ≡ ln δ), whereas µ represents
the log relative outlook (µ ≡ ln η). Observe that the vector of state variables (initially four)
has been augmented by adding three quadratic and cross-product terms. By doing so, the initially
affine-quadratic vector (ζ, f̂B, ĝ, µ)> is transformed into the affine vector X (see Cheng and Scaillet,
2007). It follows that the expectation in Equation (91) is the moment-generating function of an
affine vector and thus we can apply the theory of affine processes (Duffie, Pan, and Singleton, 2000)
to compute this quantity, which becomes

Et
[
η
j
α
u δ

1−α
u

]
= Et

[
e(1−α 0 0 j/α 0 0 0)X

]
= eα̃(u−t)+β̃(u−t)Xt . (93)

In Equation (93), α̃ is a 1-dimensional function of the maturity u, with boundary condition α̃(0) = 0,
whereas β̃ is a 7-dimensional function of the maturity u, with boundary condition β̃(0) = (1 −
α 0 0 j/α 0 0 0).
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In order to solve Equation (93), let us write the dynamics of the affine state-vector X as follows:

dXt = µ(Xt)dt+ σ(Xt)dŴ
δ
Bt (94)

µ(X) = K0 +K1X (95)(
σ(X)σ(X)>

)
ij

= H0ij +H1ij ·X. (96)

From Duffie (2010) we know that

Et (δεuη
χ
u) = Et

(
eεζu+χµu

)
= eα̃(τ)+β̃(τ)Xt , (97)

where τ = u − t and ε and χ are arbitrary constants. α̃ and β̃ solve the following system of 8
Ricatti ODEs

β̃′(τ) = K>1 β̃(τ) +
1

2
β̃>(τ)H1β̃(τ) (98)

α̃′(τ) = K>0 α̃(τ) +
1

2
β̃>(τ)H0β̃(τ) (99)

with boundary conditions β̃1(0) = ε, β̃2(0) = 0, β̃3(0) = 0, β̃4(0) = χ, β̃5(0) = 0, β̃6(0) = 0,
β̃7(0) = 0, and α(0) = 0. This system cannot be directly solved in closed form. However, we
know that β̃1(τ) = ε and β̃4(τ) = χ. Thus, the system can be written in a matrix Riccati form as
follows21

Z ′ = J +B>Z + ZB + ZQZ, (100)

where

Z =

 Γ β̃3/2 β̃2/2

β̃3/2 β̃5 β̃6/2

β̃2/2 β̃6/2 β̃7

 (101)

and Γ is a function of τ . The matrices J , B, and Q satisfy

J =

 0 − εχ
2

ε
2

− εχ
2

(χ−1)χ
2σδ2

0
ε
2 0 0

 (102)

B =

 0 0 0

−γAε+ γBε− (λA − λB)f̄ −λAσδ
2+γA−γAχ+γBχ

σδ2
λA − λB

γBε+ f̄λB −γBχ
σδ2

−λB

 (103)

Q =

0 0 0

0 2(γA−γB)2

σδ2
2γB(γB−γA)

σδ2

0 2γB(γB−γA)
σδ2

2γ2B
σδ2

 . (104)

Note that we set J11 and J23 to zero since they can be any real numbers. Using Radon’s lemma,

21See Andrei and Cujean (2010) for detailed explanations related to this methodology.
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we get

Z(τ) = Y −1(τ)X(τ) where X and Y satisfy (105)

X ′ = BX + JY, X(0) = [0]3×3 (106)

Y ′ = −QX −B>Y, Y (0) = I3×3. (107)

The solution of this system is

(X(τ) Y (τ)) = (X(0) Y (0))M(τ), where M(τ) is the matrix exponential (108)

M(τ) = exp

((
B −Q
J −B>

)
τ

)
. (109)

Note that the matrix exponential M(τ) has to be computed using a Jordan decomposition. Indeed,
we have

M(τ) = Sexp(Joτ)S−1, (110)

where Jo and S are, respectively, the Jordan and the similarity matrix extracted from the Jordan
decomposition. The Betas are consequently given by

β̃1(τ) = ε (111)

β̃2(τ) =
n01 +

∑8
i=1 ni1e

jiτ

b01 +
∑8

i=1 bi1e
jiτ

(112)

β̃3(τ) =
n02 +

∑8
i=1 ni2e

jiτ

b02 +
∑8

i=1 bi2e
jiτ

(113)

β̃4(τ) = χ (114)

β̃5(τ) =
n03 +

∑8
i=1 ni3e

jiτ

b03 +
∑8

i=1 bi3e
jiτ

(115)

β̃6(τ) =
n04 +

∑8
i=1 ni4e

jiτ

b04 +
∑8

i=1 bi4e
jiτ

(116)

β̃7(τ) =
n05 +

∑8
i=1 ni5e

jiτ

b05 +
∑8

i=1 bi5e
jiτ

. (117)

Notice that the function α̃(τ) is obtained through a numerical integration. Thus, this function is
not obtained in closed form. Since in our setup χ = j

α and ε = 1− α, the stock price simplifies to

St =

∫ ∞
0

Sτt dτ (118)

= δt

α∑
j=0

(
α
j

)
ω(ηt)

j(1− ω(ηt))
α−j× (119)

×
∫ ∞

0
e−ρτeα̃j(τ)+β̃2j(τ)f̂Bt+β̃3j(τ)ĝt+β̃5j(τ)ĝ2t+β̃6j(τ)f̂Btĝt+β̃7j(τ)f̂2Btdτ. (120)

Even though the above integral is computed numerically, the price process can be simulated very
efficiently.
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A.6 Robustness Analysis

Table 6 confirms that disagreement and long-run risk have different impacts on stock-return volatil-
ity. Indeed, an increase in long-run risk increases the average level of volatility (Bansal and Yaron,
2004), while an increase in disagreement increases both the variation of volatility and the persistence
of volatility.

Economy Parameter Mean Min. Max. Vol. Persist.
(1) No model disagreement λA = 0.1
and severe long-run risk λB = 0.1 0.169 0.164 0.181 0.002 0.463
(2) Moderate model disagreement λA = 0.2
and strong long-run risk λB = 0.1 0.101 0.081 0.147 0.012 0.913
(3) Severe model disagreement λA = 0.3
and moderate long-run risk λB = 0.1 0.085 0.046 0.199 0.028 0.997
(4) Severe model disagreement λA = 0.4
and weak long-run risk λB = 0.2 0.023 0.013 0.043 0.005 0.996
(5) Severe model disagreement λA = 0.5
and no long-run risk λB = 0.3 0.005 0.002 0.017 0.003 0.999

Table 6: Properties of volatility for various calibrations

This table presents the mean, minimum, maximum, volatility, and persistence of volatility
in five different models. Persistence is calculated as the sum of the parameters β1 and β2

in the GARCH(1,1) estimation. In bold is the benchmark model considered throughout the
paper. Numbers reported above are (annualized) averages computed over 1,000 simulations
of weekly data over a 100-year horizon.
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