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1 Introduction

For many central banks, communication has become part of the policy toolkit. Inflation

targeters provide a prime example as they rely on clear and transparent communication

to anchor inflation expectations over various horizons (e.g. Carney (2012)). The rise of

communication has also been visible since December 2008 when the Federal Reserve hit

the zero lower bound and unveiled a series of unconventional programs to shore up the

financial system and stem deflationary expectations. This paper proposes a new framework

for understanding the effectiveness of central bank announcements.

While communication has gained attention among macroeconomists, many of the key

insights depend on public uncertainty about the central bank’s current or future actions

(e.g. Melosi (2012) and Eggertsson and Pugsley (2006)). A similar dependence exists in

game theoretic work, with asymmetric information between the public and the central bank

used to explain the pre-Greenspan Fed’s preference for ambiguity (e.g. Stein (1989) and

Cukierman and Meltzer (1986)). Such preferences have since subsided – see, for example,

Woodford (2005) and Blinder et al. (2008) – so public information about policy goals is

now a relevant baseline. Interestingly though, increased transparency has not eliminated

heterogeneity in inflation expectations (e.g. Mankiw, Reis and Wolfers (2004)). Why does

disagreement about future inflation persist despite clear announcements by the central bank?

How can announcements be designed to achieve maximal anchoring of expectations? To help

answer such questions, models of the expectation formation process have been called for by

prominent policy-makers (e.g. Kroszner (2012), Boivin (2011), and King (2005)).

Our paper takes a step in this direction. We construct a simple model of inflation determi-

nation where monopolistically competitive firms must make decisions before the aggregate

price level is known and thus rely on inflation forecasts. Existing evidence points to two

natural forecasting rules: one that is consistent with central bank announcements and one

that is consistent with a random walk. We set up our model so that each rule is indeed an

unbiased forecast of inflation when adopted by all firms. For example, if all firms use the
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central bank’s announcements as a basis for forecasting (i.e., if the bank is highly credible),

then firm decisions are such that the announcement is in fact realized. The opposite is true

if the bank is not credible. The fraction of firms with announcement-consistent forecasts is

thus a crucial variable in our model and we endogenize it using social dynamics. In particu-

lar, once inflation has been realized, firms can meet and potentially switch forecasting rules

based on relative performance. A small and/or temporary divergence of realized inflation

from the central bank’s announcements may not have enough momentum to significantly

affect credibility. However, prolonged divergence may convince some firms to abandon the

central bank’s cues in favor of more successful forecasting rules, limiting the extent to which

future announcements will be realized. Combining our model of inflation determination with

our model of social dynamics, we investigate how announcements can be tailored to limit

divergence and build credibility.

Our headline result is that abruptly introducing a low inflation target to achieve a large

disinflation can cause temporary overshooting of the target, even when the central bank

is transparent and firms reset prices every period. In contrast, gradually introducing the

target (i.e., via interim targets) directs the economy to the long-term goal more smoothly

because the interim targets provide more scope for credibility-building when beliefs evolve

through social dynamics. We then present some new empirical evidence that corroborates

the correlation between abruptness and overshooting predicted by our model.

Our next set of results concerns strategies for eliminating deflation. We start by showing

that gradualism is actually less effective here: the central bank can eliminate deflation more

quickly by communicating an aggressive increase in its short-term inflation goals. Price-

level targeting may thus have some communication-based benefits during a deflation. We

then show how two dimensions of quantitative easing – number of rounds and intensity of

announcements – can be used to guide the economy out of deflation without explicit changes

in short-term targets. While much of the QE literature has focused on yield curves,1 our

1See, for example, Gagnon et al. (2010), D’Amico and King (2010), Williams (2011), Hamilton and Wu
(2012), and the references therein.
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model speaks to the inflation channel in Krishnamurthy and Vissing-Jorgensen (2011).

Since our results are driven by the interaction between inflation determination and social

dynamics, they are difficult to generate if expectations are homogeneous and rational as

assumed in workhorse models of monetary policy.2 The use of rule-based agents to bridge

the gap between tractability and realism has recently gained attention in economic model-

ing, with Ellison and Fudenberg (1993) showing that even naive rules-of-thumb can achieve

fairly efficient outcomes. Further work has also demonstrated how social dynamics between

heterogeneous agents can change the predictions of more standard models (e.g. Arifovic,

Bullard and Kostyshyna (2012)) and/or explain otherwise puzzling aggregate dynamics (e.g.

Burnside, Eichenbaum and Rebelo (2013)).3 Although there is a large literature on repre-

sentative learning of central bank goals – see, for example, Orphanides and Williams (2005),

Berardi and Duffy (2007), Eusepi and Preston (2010), and Branch and Evans (2011) – we

are not aware of any papers that have introduced social dynamics into a model of inflation

determination to endogenize the credibility of transparent communication. In this regard,

we also differ from Arifovic et al. (2010) who allow the central bank to choose both inflation

announcements and realized inflation in a cheap talk economy with social learning.

The rest of the paper proceeds as follows: Section 2 explains the evolution of credibility

through social dynamics, Section 3 builds a model of inflation determination for use in

simulations, Sections 4 and 5 present the simulation results, and Section 6 concludes. All

proofs are collected in the Appendix.

2 Expectation Formation via Social Dynamics

Inflation expectations are an important equilibrium object in our model: they respond to

realized inflation through social dynamics and affect realized inflation through price-setting.

2See, for example, Clarida, Gali and Gertler (1999), Woodford (2003), Smets and Wouters (2003) and
Christiano, Eichenbaum and Evans (2005).

3For more on agent-based models, see LeBaron (2001), Judd and Tesfatsion (2006), Colander et al. (2008),
Ashraf and Howitt (2008), and Page (2012).
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This section explains how we use social dynamics to capture the evolution of inflation ex-

pectations. The next section then elaborates on the price-setting environment.

Consider a continuum of agents i ∈ [0, 1]. At the beginning of date t, agent i expects an

inflation rate π̂it. This expectation is drawn from a forecasting rule, with the choice of rule

subject to social dynamics. Two mean rational rules – that is, two rules which yield unbiased

forecasts when adopted by all agents – will suffice to expound these dynamics. In the short-

run, selection between competing alternatives is the core of social dynamics so having at

least two rules is important. In the long-run, selection algorithms typically converge to one

alternative so focusing on mean rationality ensures convergence to an unbiased rule.

2.1 Forecasting Rules

Based on existing evidence, central bank announcements and random walk forecasts are

natural candidates for our two forecasting rules: Atkeson and Ohanian (2001) find that

random walk forecasts of inflation perform very well against more sophisticated statistical

models, Faust and Wright (2012) find that the Fed’s Greenbook forecasts are difficult to

beat, and Gurkaynak et al. (2005) and Campbell et al. (2012) find that markets do indeed

view FOMC statements as a source of new and reliable information about future economic

conditions. While the viability of each rule will be determined endogenously, emergence of

these approaches in the real world motivates their inclusion in the option set.

With at least some pass-through from professional forecasts to individual expectations

(e.g., Carroll (2003b)), data from the Survey of Professional Forecasters (SPF) can be used

to further discipline our forecasting rules. Of particular relevance is a special question on

the 2012Q2 SPF which asked respondents whether their forecasts were consistent with the

Fed’s inflation target. Forecasters who self-identified as consistent formed a tight distribution

around the Fed’s target while the remaining forecasters formed a wider distribution around

past inflation.4 Let πt denote the central bank’s date t announcement and let π∗t−1 denote

4Raw data is available at www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-
forecasters/2012/survq212.cfm
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realized inflation at the end of date t−1. Also define variances σ2
A and σ2

B such that σA < σB.

The two forecasting rules can now be formally stated:

Definition 1 Agent i is a Fed Follower (FF) at date t if π̂it ∼ N (πt, σ
2
A)

Definition 2 Agent i is a Random Walker (RW) at date t if π̂it ∼ N
(
π∗t−1, σ

2
B

)
In our definitions, N (µ, σ2) means a forecasting rule based primarily on µ but subject to

individual interpretation as per σ. Writing π̂it ∼ N (µ, σ2) then means a single draw from

this rule. Fed Followers will thus form a tighter distribution around πt than Random Walkers

will form around π∗t−1. Going forward, the fraction of Fed Followers is denoted by ξt ∈ [0, 1].

If ξt = 1, then everyone adopts the FF rule and mean rationality implies π∗t = πt. In other

words, the central bank can achieve inflation goals using only communication. We thus

interpret ξt as a measure of central bank credibility.

2.2 Social Dynamics and the Evolution of Forecasts

To endogenize the evolution of ξt, we posit that agents whose forecasts are consistently

outperformed by their peers will want to change how they forecast. Social dynamics then

provides a useful approach to modeling how an agent discovers he is being outperformed and

how much of this outperformance he attributes to one-time shocks rather than fundamentals.

Initializing ξ0 = 0, we let ξt+1 evolve via tournament selection and mutation.

Tournament selection simulates information transmission in a complex world. Versions

of the approach appear in Carroll (2003a), Acemoglu, Ozdaglar and ParandehGheibi (2010),

Arifovic et al. (2010), Arifovic et al. (2012), and Burnside et al. (2013). Relative to other

studies, our tournaments (1) favor agents who are endogenously more successful and (2)

permit success to be judged over multiple observations. In particular, agents meet in pairs

and compare forecast errors after the realization of π∗t . Consider a meeting between agents

i and j. Agent i counts one strike against his forecasting rule if j used a different rule and∣∣π̂jt − π∗t ∣∣ < ∣∣π̂it − π∗t ∣∣. When ξt is sufficiently high, π∗t will be close to πt so |πt − π∗t−1| � 0
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will allow Fed Followers to outperform Random Walkers in many meetings. Strikes will

thus tend to be counted against the RW rule, suggesting ξt+1 ≥ ξt. In contrast, when ξt is

sufficiently low, π∗t will be close to π∗t−1 so |πt−π∗t−1| � 0 will instead allow Random Walkers

to outperform Fed Followers in many meetings. Strikes will thus tend to be counted against

the FF rule, suggesting ξt+1 ≤ ξt. This is the sense in which success is endogenous.

How quickly do strikes lead to ξt+1 6= ξt? Experimental evidence suggests that agents are

very reluctant to contradict their own information, even when Bayesian updating suggests

they should (e.g., Weizsacker (2010) and Andreoni and Mylovanov (2012)). We thus allow

agents to accumulate several strikes before deciding to switch forecasting rules. This is the

sense in which success is judged over multiple observations. We use S to denote the number

of strikes needed for a switch: after S strikes, agent i switches rules and begins counting

strikes against his new rule. We also refer to S as stubbornness, with higher S implying

more stubborn beliefs. To gauge the importance of S, we simulate our model for different

values and different accumulation rules. As Section 4.3 will show, the extent of stubbornness

is an important input into our social dynamics.

Strikes accumulate across meetings and periods so we must now specify how pairwise

meetings come about. In our baseline specification, pairs are drawn randomly with replace-

ment from the entire population. Drawing with replacement ensures that each agent can

have zero to many meetings in a given period. Drawing from the full population ensures

that even agents who do not participate in economic activity are represented in tournaments.

This is appealing since participation decisions are driven by expectations. In an alternative

specification, we allow tournaments to occur locally rather than at random: agents lie along

a circle and each agent meets his right and left neighbors every period. With interactions

set up as such, agents always meet the same people. As we will see in Section 4, this creates

clusters of agents that use the same forecasting rule. Agents at the center of a cluster are

thus more likely to meet other agents using the same rule, increasing their effective stub-

bornness for any value of S. These results suggest an alternative interpretation for our S:
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higher values of S are a stand-in for more localized interactions.

Lastly, to capture the fact that some changes may not be performance-driven, we incor-

porate mutations: at the beginning of date t + 1, a very small fraction θ ∈ (0, 1) of agents

randomly switches rules regardless of strikes. The timing of our social forces can now be

summarized as follows: (i) mutation turns the fraction of FFs into ξ̃t = (1− θ) ξt+θ (1− ξt)

if t ≥ 1; (ii) each agent i draws expectation π̂it from his forecasting rule; (iii) the set of

expectations
{
π̂it | i ∈ [0, 1]

}
determines π∗t as per the model developed next in Section 3;

(iv) tournament selection transforms ξt into ξt+1 if t = 0 and ξ̃t into ξt+1 if t ≥ 1.

3 An Expectations-Based Model of Inflation

We now present a formal model to map inflation expectations into realized inflation. Interpret

the continuum of agents in Section 2 as a continuum of firms, each producing a differentiated

perishable good i ∈ [0, 1]. The demand for good i in date t is Dit =
(
γtPt
pit

) 1
1−ρ

, where pit

is the price charged by firm i, Pt is the aggregate price level, and γt ∈ [1− ε, 1 + ε] is an

exogenous and independently distributed aggregate taste shock. Assume ρ ∈ (0, 1) so that

the demand for each good is decreasing in its relative price pit
Pt

and increasing in the taste

shock γt. The supply of good i is then given by the production function F (`it) = `αit, where

α ∈ (0, 1) is a constant and `it is the labor input used by firm i. The aggregate stock of

labor is normalized to one and inelastically available at unit wage wt. As an alternative to

production, each firm also has an exogenous outside option with real value U > 0. A firm

is said to operate if and only if it does not take its outside option. We will elaborate on the

choice of α < 1 and the role of γt at the end of Subsection 3.1. The introduction of U > 0

is then discussed in Subsection 3.2.

3.1 Timing and Equilibrium

Firms have to make pricing and production decisions before Pt and γt are realized – that is,

before they know the actual demand for their products. This assumption creates a role for
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expectations. In particular, at the beginning of date t, each firm i forecasts an aggregate

price level of P̂ i
t ≡ exp(π̂it)P

∗
t−1, where P ∗t−1 is last period’s realized price level and π̂it is the

firm’s inflation expectation for the current period. Firm i will ultimately draw π̂it from one of

the two forecasting rules described in Section 2 but, for now, we can imagine any draw that

does not change within date t. To simplify the exposition and remain focused on inflation

expectations, assume that all firms also forecast a taste shock of one. In other words, the

forecasting rule for γt is simply the mean of the shock.

Individual Decisions Conditional on its forecast P̂ i
t and the prevailing wage wt, firm i

chooses pit and `it to solve a static profit maximization problem. Charging pit for good i

yields an expected demand of
(
P̂ it
pit

) 1
1−ρ

which in turn necessitates
(
P̂ it
pit

) 1
α(1−ρ)

units of labor.

Stated in real terms, firm i’s problem is thus:

max

{
max
pit

[
pit
P̂ it

(
P̂ it
pit

) 1
1−ρ − wt

P̂ it

(
P̂ it
pit

) 1
α(1−ρ)

]
, U

}

From the inner maximization problem, the pricing decision of an operating firm is:

p
(
wt; P̂

i
t

)
=
(
wt
αρ

)α(1−ρ)
1−αρ

(
P̂ i
t

) 1−α
1−αρ

(1)

From the outer maximization problem, the set of operating firms is then:

Ot (wt) =

{
i | P̂ i

t ≥ 1
αρ

(
U

1−αρ

) 1−αρ
αρ

wt

}
(2)

If i /∈ Ot (wt), then the firm’s labor demand is `
(
wt; P̂

i
t

)
= 0. Otherwise, the first order

conditions from the inner problem yield:

`
(
wt; P̂

i
t

)
=
(
αρ

P̂ it
wt

) 1
1−αρ

(3)

Notice that operating firms with higher price expectations charge higher prices. They also

hire more labor, resulting in more output. For any given wage, firms with higher expectations
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are also more likely to operate. The higher the wage though, the smaller the set of operating

firms, the lower the output of each operating firm, and the higher the prices charged.

Wage Determination Given the individual decisions above, the wage is set to clear the

labor market. More precisely, an auctioneer chooses w∗t to solve
∫

Ot(w∗
t )

`
(
w∗t ; P̂

i
t

)
di = 1, with

Ot (wt) and `
(
wt; P̂

i
t

)
as per equations (2) and (3) respectively. This yields:

w∗t = αρ

[ ∫
Ot(w∗

t )

(
P̂ i
t

) 1
1−αρ

di

]1−αρ

(4)

Following the determination of w∗t , each firm i ∈ Ot (w∗t ) posts price p∗it ≡ p
(
w∗t ; P̂

i
t

)
and

hires labor to produce its expected demand q∗it ≡
(
P̂ it
p∗it

) 1
1−ρ

. Price expectations are not

updated based on w∗t so, in this sense, the model deviates from rational expectations (RE).

While some updating can certainly be accommodated, there must be residual heterogeneity

for social dynamics to operate at the end of the period.

Realized Inflation After p∗it and q∗it have been set, the taste shock γt is realized and the

aggregate price level is computed as a consumption-weighted average of individual prices. At

price level Pt, the realized demand for good i is
(
γtPt
p∗it

) 1
1−ρ

which may differ from the available

supply q∗it. Consumption is thus the minimum of demand and supply so the auctioneer

computes P ∗t to solve P ∗t =
∫

cit∫
cjtdj

p∗itdi and cit = min

{
q∗it,
(
γtP

∗
t

p∗it

) 1
1−ρ
}

.5 The result is:

P ∗t
∫

Ot(w∗
t )

(
min{P̂ it ,γtP ∗

t }
p(w∗

t ;P̂ it )

) 1
1−ρ

di =
∫

Ot(w∗
t )

(
min{P̂ it ,γtP ∗

t }
p(w∗

t ;P̂ it )

) 1
1−ρ

p
(
w∗t ; P̂

i
t

)
di (5)

with p (·), Ot (·), and w∗t as per equations (1), (2), and (4) respectively. We now have a

mapping from a set of price expectations
{
P̂ i
t | i ∈ [0, 1]

}
to the realized price level P ∗t .

Recalling P̂ i
t ≡ exp(π̂it)P

∗
t−1 and invoking P ∗t ≡ exp(π∗t )P

∗
t−1, the mapping from a set of

5While our results are robust to different consumption aggregators, we use
∫
cjtdj to ensure that our

consumption weights sum to one. Weights computed using a CES aggregator only sum to one if consumption
is homogeneous across goods, a condition which does not hold in our framework.
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inflation expectations
{
π̂it | i ∈ [0, 1]

}
to realized inflation π∗t is straightforward.6

Discussion We now elaborate on some of the modeling elements used above, namely the

role of γt and the choice of α < 1. As per Woodford (2013), “it is appealing to assume

that people’s beliefs should be rational, in the ordinary-language sense, though there is a

large step from this to the RE hypothesis.” The principle of ordinary-language rationality

motivates the timing of our taste shock. Without γt in equation (5), the auctioneer could

compute P ∗t at the same time as w∗t . While our firms deviate from the RE hypothesis by

not updating P̂ i
t based on w∗t , they would also be deviating from rationality in the ordinary-

language sense if they did not update P̂ i
t based on P ∗t . The choice of α < 1 is similarly

motivated. Notice from equation (1) that α = 1 prompts all firms to set the same price –

namely a constant mark-up over the wage – regardless of expectations. This has advantages

and disadvantages. On one hand, it helps isolate how expectations affect realized inflation

through just the labor market but, on the other, it eliminates the lag between w∗t and P ∗t in

the auctioneer’s problem. With α < 1, prices are not simple mark-ups so γt enters (5) and

the lag is restored. Importantly, this restoration stems from production being non-linear in

labor, not from production being decreasing returns to scale.7 Our full model thus employs

α < 1, presenting α = 1 as an intermediate step only when it helps unpack the results.

3.2 Results with One Forecasting Rule

Before combining the model of Subsection 3.1 with the two forecasting rules in Section 2, it

will be instructive to establish how the model works with one forecasting rule:

Proposition 1 If π̂it ∼ N (µ, σ2) for all i, then:

6As equations (4) and (5) show, our model is one where actual inflation is determined entirely by expected
inflation. In other words, the central bank can only change inflation by changing expectations. While our
abstraction from conventional policy tools is done to isolate the effect of communication, current work by
Campbell (2013) demonstrates that it may in fact be optimal for policymakers to rely on open mouth
operations, even when open market operations are available.

7In a previous version, we showed that the key properties of our model hold when production is instead

given by F (`it, zit) = `αitz
1−α
it , where zit is firm effort and the real disutility of such effort is

zλit
λ with

λ ∈ (1,∞]. Notice that F (`it) = `αit is just the limiting case of λ→∞.
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1. π∗t = µ+ f (σ)

2. If α = 1 and U = 0, then f (σ) = σ2

2(1−ρ)
.

3. If α ≤ 1 and U > 0, then the set of operating firms is shrinking in σ.

4. If α = 1 and U ≥ 1− ρ, then f (σ0) = 0 for a unique σ0 > 0. Moreover, f ′ (σ0) > 0.

5. There exist constants α ∈ (0, 1) and U > U > 0 such that α ∈ (α, 1) and U ∈
(
U,U

)
yield f (σA) = f (σB) = 0 for σB > σA > 0. Moreover, f ′ (σA) < 0 and f ′ (σB) > 0.

The first part of Proposition 1 says that excess inflation, π∗t − µ, depends only on the

extent of expectations heterogeneity. In the long-run, however, we should not observe excess

inflation: if everyone draws inflation forecasts from N (µ, σ2) but realized inflation ends up

being π∗t 6= µ, then N (µ, σ2) is a biased forecasting rule and its survival into the long-run

would seem at odds with ordinary-language rationality. The rest of Proposition 1 establishes

conditions under which heterogeneity (σ > 0) and unbiasedness (π∗t = µ) are consistent.

To fix ideas, consider the limiting case of α = 1. As per Subsection 3.1, prices will be

a constant mark-up over the wage and realized inflation will be determined in the labor

market. We can thus focus on equation (4). Absent an outside option, all firms will operate

so Ot (wt) = [0, 1] for any wt. In other words, the operating set will be independent of

the wage. The second part of Proposition 1 reveals that realized inflation will exceed the

mean expectation in this case. The excess, σ2

2(1−ρ)
, is a Jensen’s inequality term which arises

whenever normal inflation expectations are compounded into log-normal price expectations

and aggregated.8 Mathematically, restoring unbiasedness without eliminating heterogeneity

requires overcoming the σ2 term generated by Jensen’s inequality. Intuitively, it requires

giving low expectation firms more pull to overcome the pull that compounding gives high

8The Jensen’s term is exacerbated by more heterogeneity in inflation expectations (i.e., higher σ) and
more substitutability between goods (i.e., higher ρ). As σ increases, the compounding process skews the
distribution of price expectations further right. The highest expectation firms thus drive input costs and
prices up more than the lowest expectation firms drive them down. The effect is strongest when goods
are more substitutable because high expectation firms foresee a huge increase in sales by undercutting the
aggregate price level and thus participate more actively in the labor market.
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expectation firms. Allowing low expectation firms to not produce by introducing a positive

outside option is one way to achieve this, motivating our use of U > 0.9

The remainder of Proposition 1 restricts attention to positive outside options. The third

part establishes that more heterogeneity in expectations decreases operation. Higher σ am-

plifies the asymmetric effect that high expectation firms have on wage determination. Since

higher wages cut into expected firm profits, the presence of a positive outside option means

that more firms will choose not to operate. This puts downward pressure on wages and

helps offset the Jensen’s inequality effect. Indeed, with linear production, the fourth part

of Proposition 1 shows that a sufficiently lucrative outside option introduces a point σ0 > 0

with no excess inflation (i.e., a point where f (·) = 0 or, equivalently, a point of mean ratio-

nality). This is illustrated by the solid gray line in Figure 1(a).10 Existence of such a point

is robust to non-linearities in production and, under some restrictions on α and U , the fifth

part of Proposition 1 says that our model actually produces two mean rational points.

As discussed in Section 2, the goal is to have two mean rational forecasting rules so we

shall proceed with the restrictions at the end of Proposition 1: α ∈ (α, 1) and U ∈
(
U,U

)
.

By way of example, the blue dots in Figure 1(b) show the combinations of α and U that

satisfy these restrictions when ρ = 0.9. For any such combination, Proposition 1 says the

graph of f (·) will resemble the blue line in Figure 1(a). Notice from this line that f (·) is

negative between the two mean rational points. In other words, excess inflation is negative.

To understand why, recall the competing effects of higher σ on wages in equation (4). As

σ increases, the compounding of inflation expectations into price expectations skews the

distribution of price expectations right and puts upward pressure on the wage through the

labor demands of high expectation firms. As the wage increases though, low expectation firms

find it more profitable to take their outside option and the resulting decline in operation

9In principle, one could instead assume normality (rather than log-normality) of price expectations. In
practice though, prices cannot be negative so the appropriate assumption would be truncated normality
which, like log-normality, is not symmetric.

10The ability of exit to counter Jensen’s inequality does not hinge on inflation expectations being single
draws from a normal distribution: if each firm were to treat its forecasting rule as a full prior, the proof of
Part 4 shows that exit can be restored with two forecasting rules and appropriate bounds on U .
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puts downward pressure on the wage. For lower values of σ, the exit of low expectation

firms dominates and dampens the wage but, when σ becomes sufficiently large, the labor

demands of high expectation firms take over. The dependence of w∗t on σ is thus U-shaped.

We know from equation (1) that individual prices respond positively to wages so, all else

constant, the shape of w∗t feeds into P ∗t . Notice, however, that α < 1 implies additional

upward pressure on P ∗t at the price aggregation stage. Since only firms with sufficiently high

expectations produce, the individual prices aggregated by equation (5) are p
(
w∗t ; P̂

i
t

)
with

P̂ i
t high. Therefore, the pass-through from w∗t to P ∗t varies across σ but, for α ∈ (α, 1) and

U ∈
(
U,U

)
, it is enough to generate two mean rational points with a U-shaped pattern in

between. If the outside option is too high or the returns to labor are too low, then exit is

too strong relative to labor demand and we get only one mean rational point. If the outside

option is too low, then exit is weak and we get no mean rational points.

3.3 Results with Two Forecasting Rules

Consider now the determination of π∗t when expectations are drawn from different forecasting

rules. In particular, a group of size ξt forecasts according to π̂it ∼ N (µ, σ2
A) and a group of

size 1− ξt forecasts according to π̂it ∼ N (µ, σ2
B). There are two dimensions of heterogeneity

here: within group (σA > 0 and σB > 0) and across groups (σA 6= σB). We will also relax

homogeneity of µ in our simulations but, for now, imagine πt = π∗t−1 = µ in Definitions 1

and 2. This approximates an economy which approaches its central bank’s inflation target

with a lot of expectations heterogeneity. To simplify notation, define:

yt ≡ π∗
t−µ

1−αρ , xt ≡
ln

(
1
αρ(

U
1−αρ)

1−αρ
αρ w∗

t
P∗
t−1

)
−µ

1−αρ , and υj ≡ σj
1−αρ

The variable yt is just excess inflation scaled up by a constant. The variable xt provides a

more compact way to express the operation condition in equation (2). In particular, if the

difference between a firm’s inflation forecast and the mean forecast is greater than or equal

to xt, then the firm operates. With a mixture of normal expectations, equations (2) and (4)

14



yield xt implicitly defined by:11

xt = 1
αρ

ln
(

U
1−αρ

)
+ ln

[
ξt exp

(
υ2
A

2

)
Φ
(
υA − xt

υA

)
+ (1− ξt) exp

(
υ2
B

2

)
Φ
(
υB − xt

υB

)]

The expression for excess inflation then comes from equation (5). If the realized taste shock

is small enough to support γtP
∗
t ≤ P̂ i

t for all operating firms, then γtP
∗
t will drop out of

the consumption weights, leaving P ∗t and y∗t explicitly defined. Otherwise, P ∗t and y∗t will be

implicitly defined. The threshold γt works out to:

Υ (xt, ξt) ≡

[
ξt exp

(
υ2
A
2

)
Φ
(
υA−

xt
υA

)
+(1−ξt) exp

(
υ2
B
2

)
Φ
(
υB−

xt
υB

)]1−α
( U

1−αρ)
1−αρ
αρ

ξt exp


(
ρ(1−α)υA

1−ρ

)2

2

Φ

(
− ρ(1−α)υA

1−ρ − xt
υA

)
+(1−ξt) exp


(
ρ(1−α)υB

1−ρ

)2

2

Φ

(
− ρ(1−α)υB

(1−ρ) − xt
υB

)

ξt exp


(

(1−α)υA
1−ρ

)2

2

Φ

(
− (1−α)υA

1−ρ − xt
υA

)
+(1−ξt) exp


(

(1−α)υB
1−ρ

)2

2

Φ

(
− (1−α)υB

1−ρ − xt
υB

)

If γt ≤ Υ (xt, ξt), then yt = xt − ln Υ(xt,ξt)
1−αρ . Otherwise, yt solves:

yt = α(1−ρ)
1−αρ

[
xt − 1

αρ
ln
(

U
1−αρ

)]
+ 1

1−αρ ln

(
ξth(xt,yt,γt,υA,1,

ρ(1−α)
1−ρ )+(1−ξt)h(xt,yt,γt,υB ,1,

ρ(1−α)
1−ρ )

ξth(xt,yt,γt,υA,α, 1−α1−ρ )+(1−ξt)h(xt,yt,γt,υB ,α, 1−α1−ρ )

)
where

h (xt, yt, γt, υ, β, δ) ≡ exp
(

(βυ)2

2

)[
Φ
(
βυ − xt

υ

)
− Φ

(
βυ − yt+

ln(γt)
1−αρ
υ

)]
+ exp

(
(δυ)2

2
+

(1−αρ)
(
yt+

ln(γt)
1−αρ

)
1−ρ

)
Φ

(
−δυ − yt+

ln(γt)
1−αρ
υ

)

The limiting cases of ξt = 0 and ξt = 1 return the model with expectations characterized by

a single normal distribution. For a mixture of distributions, we have:

Proposition 2 Suppose π̂it ∼ N (µ, σ2
A) for a group of size ξt and π̂it ∼ N (µ, σ2

B) for the

rest, where f (σA) = f (σB) = 0. If α = 1, then yt = 0 for all ξt ∈ (0, 1).

Under α = 1, Proposition 2 says that the entire population is mean rational when each

subpopulation is individually mean rational. We know from equation (1) that all firms set

11The derivations that follow parallel those in the proof of Proposition 1, Part 1 and are thus omitted. The
only difference is the use of a mixture of normals rather than a single normal when evaluating any integrals.
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the same price when α = 1 so any heterogeneity in expectations only affects the economy

through labor market clearing, namely equation (4). The latter aggregates linearly across

subpopulations so, if the component distributions are each parameterized to deliver π∗t = µ,

then their mixture will also deliver π∗t = µ.

In contrast, Figure 2 shows what can happen when α < 1 also introduces heterogeneity

into the price aggregation of equation (5): the mixture distribution produces negative excess

inflation even if each subpopulation possesses the mean rational property. Using ρ = 0.9 as

before, panel (a) reveals that combinations of α and U which generate two distinct mean

rational distributions also generate negative excess inflation for any mixture of these distri-

butions. Panel (b) then provides a representative plot of yt as a function of ξt. Notice that

the shape of yt over ξt ∈ [0, 1] resembles the shape of f (·) over σ ∈ [σA, σB]. This is useful

as it permits interpretation of our results vis-à-vis Figure 1(a): if one uses N (µ, σ2
x) with

some σx ∈ (σA, σB) to approximate the aggregate distribution generated by ξt ∈ (0, 1) and

πt = π∗t−1 = µ, then π∗t < µ follows for the reasons in Subsection 3.2.

4 Introducing Inflation Targets

From the economic model of Section 3, we can calculate π∗t conditional on ξt and the fore-

casting rules. Using social dynamics as per Section 2, we can then determine ξt+1 conditional

on π∗t , ξt, and the forecasting rules. We now investigate how a central bank can use inflation

announcements to achieve a large disinflation in this environment. The end of this section

then presents some new empirical evidence that supports our core prediction.

4.1 Parameterization

We set ρ = 0.9 which captures high but imperfect substitutability between goods. To obtain

two individually mean rational subpopulations, we pick α and U from the blue region in

Figure 1(b). We set α = 0.9 and U = 0.18 but any choice from the aforementioned region

will deliver qualitatively similar results. Lastly, we assume that the taste shock is uniformly
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distributed according to γt ∼ U [0.99, 1.01]. These parameter choices deliver σA = 0.0036

and σB = 0.0643 as the solutions to f (·) = 0. Substituting σA and σB into Definitions 1 and

2 completes the characterization of our forecasting rules. The mutation parameter is then

set to θ = 0.02 which is conservative compared to the social dynamics literature.

4.2 Results for Baseline Specification

In our baseline social dynamics, randomly matched firms compare forecasting performance

and switch rules after being outperformed eight times (i.e., S = 8). We use 1000 firms and

draw 1000 matches with replacement at the end of each period. Figure 3 presents results for

the introduction of a 2% inflation target in an economy with 20% initial inflation. Blue lines

average over 100 simulations while shaded areas are [10%, 90%] confidence intervals. Initially,

ξ0 = 0 so all firms are Random Walkers who forecast according to π̂it ∼ N (20%, σ2
B). The

mean rational property thus yields π∗0 = 20%.

Consider first a central bank that introduces its target abruptly, announcing πt = 2% for

all t ≥ 1. The bank’s announcement introduces a new forecasting rule, Fed Following, which

a small fraction of firms mutate towards. Figure 3(a) demonstrates that inflation converges

to 2% but is followed by a temporary overshooting of the target. Recall from Section 3 that

firms with low expectations (relative to their peers) are less likely to operate. Fed Followers

thus do not participate in the labor market early on, putting downward pressure on input

prices and lowering inflation. To see why overshooting emerges, turn to the fraction of FFs

just before the economy reaches 2%. With realized inflation near target and σA < σB,

Fed Following is often a better forecasting rule than Random Walking. If beliefs were not

stubborn (i.e., if S was low), RWs would switch very quickly and ξt would rise sharply.

Virtually all firms would then forecast according to π̂it ∼ N (2%, σ2
A) and we would thus

observe π∗t = 2%. With stubbornness, however, the economy reaches 2% with a mix of

FFs and RWs which, as per Subsection 3.3, generates π∗t < 2%. Over time though, RWs

accumulate enough strikes to compel them to become FFs, returning inflation to target.

17



Figure 3(b) shows that overshooting can be avoided with gradual targets – that is, a path

which interpolates between initial inflation and the long-run target. By achieving interim

targets along this path, the central bank converts more firms into Fed Followers on the

way down to 2%. In turn, the economy is very close to a situation where all firms forecast

according to π̂it ∼ N (2%, σ2
A) when 2% is actually reached, resulting in π∗t = 2%.

4.3 Results for Alternative Specifications

Lower Stubbornness The results so far have considered firms that are somewhat stub-

born in their beliefs, refusing to switch forecasting rules at the first sign of a better rule.

We now use S = 1 to investigate less stubborn beliefs. Figure 4(a) shows that an abrupt

introduction no longer leads to overshooting. As noted earlier, RWs who are not stubborn

will switch rules very quickly once inflation approaches 2%, implying excess inflation of vir-

tually zero. Notice, however, that S = 1 converges more slowly than S = 8 and with wider

confidence bands. Slower convergence stems from fewer FFs persisting in early tournament

selections. Without a large endowment of FFs, realized inflation remains relatively close to

20% for the first few periods so the huge gap between 20% and the mean FF forecast of 2%

implies that FF forecasts are almost always outperformed by RW forecasts. Under low stub-

bornness, this will prompt FFs to switch rules very quickly and return to the labor market,

thus mitigating the downward pressure through input prices. Wider confidence bands stem

from ξt (and thus π∗t ) being more sensitive to the specific pattern of random meetings during

tournament selection now that firms do not distinguish between one-time outperformance

and sustained outperformance.

Local Interactions We now return to S = 8 and relax the assumption that firms meet at

random to compare forecasting rules. Suppose instead that tournaments occur locally, with

each firm meeting its right and left neighbors every period. As discussed in Section 2, this set

up will lead to clusters of FFs and clusters of RWs, increasing the effective stubbornness of

firms at the center of each cluster. Figure 5 illustrates the clustering for a subset of 300 firms.
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A white (blue) dot at coordinate (i, t) means that firm i is a RW (FF) at date t. Panels (b)

and (c) in Figure 4 then show that overshooting will be more pronounced under an abrupt

target and the central bank will need to be more gradual to prevent it if interactions are local

rather than random. This is consistent with local interactions generating more stubbornness.

Negative Strikes Up to this point, we have only allowed for the accumulation of strikes

against one’s own forecasting rule. What if in between accumulating strikes an agent has

several meetings where his rule outperforms the other? To investigate whether this changes

our results we now allow for the de-accumulation of strikes. Firms still switch after S strikes

and still add a strike when outperformed by a different forecasting rule but now they also

subtract a strike when their rule is the outperformer. The results for abrupt introduction are

shown in Figure 4(d). We have used S = 8 and random interactions so comparing against

Figure 3(a) will isolate the effect of negative strikes. As realized inflation falls, the fraction

of FFs starts rising sooner and the 2% target is reached more quickly in the version with

negative strikes. However, once at 2%, the fraction of FFs does not accelerate as quickly as

it did absent these strikes so overshooting is more pronounced. In essence, the introduction

of negative strikes creates more effective stubbornness when inflation is near target because

both forecasting rules have a chance to outperform and de-accumulate prior strikes.

Discussion The picture painted by our alternative specifications is two-fold. First, richer

specifications such as local interactions and negative strikes matter insofar as they change

effective stubbornness during the transition. Second, stubbornness has advantages and dis-

advantages for a central bank trying to achieve a large disinflation. On one hand, higher

stubbornness among FFs yields faster and more certain convergence to the bank’s target

but, on the other, higher stubbornness among RWs leads to a temporary overshooting of the

target if the target is introduced abruptly. This dichotomy prompts a policy tradeoff when

stubbornness is high enough: abrupt targets will lower inflation quickly but create over-

shooting; gradual targets will eliminate overshooting but bring inflation down more slowly.
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4.4 Comparison to Benchmarks

Fixed Proportions A key insight from the above discussion is that the occurrence of

overshooting hinges on the fraction of FFs when the economy reaches the long-run target.

To better appreciate the role of social dynamics in determining this fraction, it will be

instructive to compare our baseline results with a benchmark that fixes ξt = ξ for all t.

The comparison is presented in panels (a) and (b) of Figure 6 for different values of ξ. If

ξ = 0 (i.e., if the central bank is never credible and no one uses its announcements as a

basis for forecasting), then inflation is stable at 20% and announcements are never effective.

In contrast, if ξ = 1 (i.e., if the central bank is always credible and everyone uses its

announcements as a basis for forecasting), then the introduction of abrupt targets makes

inflation fall to 2% immediately and with no overshooting. Consider now ξ ∈ (0, 1) so that

the mix of FFs and RWs is constant but interior. The introduction of targets still succeeds

in lowering inflation but we do not drop to 2% immediately. Moreover, if the mix of FFs and

RWs is sufficiently interior, then inflation settles noticeably below 2%. With a constant mix,

ξt is independent of how the central bank introduces its target and how well different rules

perform so there is no mechanism to eliminate overshooting. Endogenizing credibility thus

introduces an important channel through which central bank announcements affect inflation,

providing a richer and more plausible set of dynamics.

Mutation Only Recall that our social dynamics have two elements: mutation and tour-

nament selection. To see the impact of each, panels (c) and (d) of Figure 6 compare the full

dynamics from Figure 3 against the results that would arise under only mutation. With just

mutation, ξt+1 = (1− θ) ξt + θ (1− ξt) for all t so the fraction of FFs converges smoothly to

0.5. The contribution of tournaments over and above mutation is visible at several points.

When targets are introduced abruptly, many FF forecasts are initially outperformed by RWs

so tournaments slow the accumulation of FFs and extend the time needed to hit 2%. Around

2% though, the tables turn and many RW forecasts are outperformed by FFs so tournaments

accelerate the accumulation of FFs and ensure convergence to 2%. Moreover, when targets
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are introduced gradually, the accelerated accumulation occurs before 2% is actually reached,

allowing convergence to be achieved without even a temporary overshooting. Again then,

letting credibility evolve within the model generates fundamentally different predictions.

4.5 Empirical Evidence

As described above, an important prediction of our model is that abrupt targets lead to tem-

porary overshooting while gradual targets do not. We now demonstrate that this prediction

is indeed borne out in the data. Our point of departure is the set of 29 inflation targeters

in Roger (2009) and Svensson (2010). Using these authors’ dates for the formal adoption

of inflation targeting in each country, we collect data on the path of inflation targets from

individual central bank websites. Our data on actual inflation then come from the IMF’s

International Financial Statistics database, as per Mishkin and Schmidt-Hebbel (2007). The

last observation in our sample is 2013Q3. To conduct the analysis, we exclude any countries

that either began with an inflation target above actual inflation or eventually abandoned

inflation targeting. This leaves us with the 19 countries listed in Table 1.

We next construct some intuitive dummies for abruptness in a given country. The first,

abrupt1, equals one if the targeted path is flat. This is the least subjective measure of

abruptness so we adopt it as the baseline. The second dummy, abrupt2, equals one if the

absolute value of the net change in inflation targets between the time of introduction and

the end of our sample is less than 40% of the absolute value of the net change in realized

inflation over the same period. The third dummy, abrupt3, equals one if the standard error

of the inflation targets that make up the targeted path is smaller than the final target. The

left panel in Table 1 shows the division of countries between abrupt and gradual according

to each measure. By definition, any country with abrupt1 = 1 will also have abrupt2 = 1

and abrupt3 = 1. To help visualize the data, Figure 7 compares the average inflation

rates and targeted paths for abrupt versus gradual targeters. The top panel averages over

countries with abrupt1 = 1 while the bottom panel averages over countries with abrupt1 =
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0. Averages are for each point in time, with time 0 denoting the introduction of inflation

targets. The plots line up quite well with the simulations in Figure 3: overshooting is more

characteristic of abrupt inflation targeters.

For more formal evidence, we run some simple qualitative cross-country regressions. The

benefit of this approach is that it is model-free and scale-free: the results are less susceptible

to outliers and thus more robust for small samples. To construct a dummy variable for

overshooting, let t1 denote the first quarter in which actual inflation hits the targeted path

from above and let t2 > t1 denote the first quarter in which actual inflation hits the final

target from below.12 Our main dependent variable, overshoot1, is a dummy that equals one

if average inflation is less than the average target over the period t1 to t2. As an alternative,

we also define overshoot2 which equals one if average inflation is less than the average

target for the period t1 to 2013Q3. The right panel in Table 1 shows the division of countries

between overshooting and no overshooting according to each measure.

The first two panels in Table 2 report the results of our qualitative regressions. The

first three columns in the left panel regress overshoot1 on abrupt1, abrupt2, and abrupt3

respectively. The middle panel repeats the exercise using overshoot2 as the dependent

variable. The intercepts in our regressions are generally small and statistically insignificant

whereas the abruptness coefficients are generally large and significant. On the whole, the

range of intercepts suggests that the probability of overshooting is 0-29% for gradual tar-

geters while the range of intercepts plus slopes suggests that this probability is 46-100%

for abrupt targeters. The difference is economically and statistically significant, consistent

with our model’s prediction that abrupt targets are associated with overshooting. To check

the robustness of our empirical results, we also run regressions that control for the distance

between initial and desired inflation (d2target). Comparing the first and fourth columns

in each panel of Table 2 reveals that the abruptness coefficient is largely unchanged, both

quantitatively and qualitatively. In contrast, the coefficient on d2target is always small

12If actual inflation never hit the final target from below, we set t2 equal to the last quarter in our sample
(i.e., 2013Q3). If actual inflation also never hit the targeted path from above, we set t1 equal to the first
quarter in which the final target became effective.
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and insignificant. Therefore, even controlling for initial conditions, there is evidence that

overshooting is more characteristic of abrupt targeters.

To complement the qualitative results, the last panel in Table 2 presents some quanti-

tative cross-country regressions. Our dependent variable, overshoot num, is defined as the

average difference between actual and targeted inflation over the period t1 to t2. Notice that

overshoot1 = 1 if and only if overshoot num < 0 so overshooting will now be indicated by

negative regression coefficients. The intercepts in the first three columns of this last panel

measure the average overshooting among gradual targeters whereas the sum of the inter-

cepts and abruptness coefficients measure the average overshooting among abrupt targeters.

The intercepts are positive but generally insignificant whereas the abruptness coefficients are

negative and generally significant. Classifying abruptness according to abrupt1, the first col-

umn says that actual inflation will average 0.97 percentage points below an abrupt target.

The last column then says this result is robust to initial condition controls. The quantitative

results thus align with the qualitative ones, underscoring our model’s prediction.

5 Simulations: Eliminating Deflation

Having seen how communication can be used to reduce inflation, we now investigate how

it can be used to pull the economy out of deflation. We keep the parameterization as in

Subsection 4.1 and start by considering announcements regarding the 2% target. We then

move to announcements like the Fed’s recent Quantitative Easing (QE) program which have

the potential to skew the entire distribution of inflation expectations.

5.1 Using Targets

Suppose the economy starts at −2% inflation and the central bank announces that it will

target 2% for all t. In our previous simulations, FFs were the low expectation firms and

their initial impact was to decrease inflation via exit. Now, however, FFs are the high

expectation firms so their initial impact is to increase inflation via price-setting. For our
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baseline specification, the top row of Figure 8 shows that the accumulation of FFs – first via

mutation then via tournament selection – eventually brings the economy up to 2%.13

What happens if the central bank instead decides to gradually lead the economy back to

2%? As the middle row of Figure 8 reveals, a very gradual strategy involves more persistent

deflation early on. Recall from Subsection 3.1 that firms with higher price expectations set

higher prices. The central bank’s gradual path initially implies π1 = −2% + ε where ε > 0 is

small so the average FF only sets a slightly higher price than the average RW. The upward

pressure from FF price-setting thus does not outpace the downward pressure from RW exit

and the economy continues to experience deflation.

Lastly, the bottom row of Figure 8 shows that aggressive communication may be the

most effective at eliminating deflation. The path we consider is one where the central bank

announces short-term targets well above its long-run goal of 2%. Aggressive short-term

targets induce any FFs to set very high prices, pushing realized inflation upwards. At the

same time, however, the big gap between realized and targeted inflation does nothing to help

the central bank accumulate more FFs and bring ξt towards 1. Therefore, when the target

returns to 2% and the economy approaches it from above, we have the same overshooting

problem we had in Figure 3(a). In order to eliminate this dip, the central bank would have

to implement a gradual path on the way down to 2% and thus keep the economy above 2%

for longer. To some extent, this suggests that price-level targeting – which would indeed

require periods of high inflation to balance out periods of deflation – has some advantages

over inflation targeting when dealing with deflations and somewhat stubborn beliefs.

5.2 Quantitative Easing

Up to this point, the direct effect of central bank announcements has been limited to the

mean of the FF distribution. We now consider more potent announcements which can di-

13Note that convergence to 2% would now occur more quickly under lower stubbornness. The difference
between initial inflation of −2% and the mean FF forecast of 2% is such that FFs are not always outperformed
by RWs in early tournaments. As a result, some Random Walkers incur strikes early on and, the faster they
switch rules, the faster 2% will be reached.
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rectly affect the skewness of the economy-wide distribution. A practical example is what

Krishnamurthy and Vissing-Jorgensen (2011) dub the inflation channel of QE: curbing de-

flationary expectations through the Fed’s widely publicized large scale asset purchases.

We introduce this channel into our model via redraws. More precisely, some firms with

deflationary expectations redraw their π̂its after hearing that the central bank will take a

proactive approach to stimulating the economy. Each redraw comes from the same distribu-

tion as the original draw so not all deflationary expectations will be eliminated. However,

redraws do have the effect of skewing the RW and FF distributions so that more mass exists

to the right of the mean. Since very few FFs actually expect deflation, the skew is stronger

for RWs but, either way, the effect of QE communications is to increase expectations, reduce

dispersion, enlarge the set of operating firms, and put upward pressure on inflation.

We consider two dimensions of QE: rounds and intensity. In our context, rounds means

the number of periods with media coverage about QE and, therefore, the number of periods

that have redraws. Intensity means the fraction of deflationary firms that are exposed to

this coverage and, therefore, the fraction that redraw in a given period. Our central bank

again faces −2% inflation but, as an inflation targeter, would like to return to 2% without

changing its short-term targets. Figure 9 illustrates how this can be achieved in our baseline

specification (S = 8, random interactions) by varying rounds and intensity.

To isolate the effect of rounds, the top two rows of Figure 9 fix intensity at 1: all firms

with deflationary expectations redraw. The first row demonstrates that one round of QE

announcements helps increase inflation but more time is needed to accumulate FFs and

reach 2%. The second row shows that two rounds of QE announcements actually push

the economy above 2% for a short-time then below 2% for several periods. If the central

bank wants to eliminate the dip back below target, it must increase the number of rounds.

However, increasing rounds without decreasing intensity means that the bank has to tolerate

more above-target inflation.

The third row of Figure 9 shows that two rounds with less than full intensity can bring
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the economy to 2% quickly and without any time above target. However, once the rounds

run out, the economy dips back below target for several periods. Just as redraws skew

the distributions and increase operation, the end of redraws unskews the distributions and

decreases operation. Therefore, if the fraction of FFs is low when the redraws stop, exit

among RWs returns the overshooting problem of Figure 3(a).

Finally, the fourth row of Figure 9 illustrates the outcome of many rounds and low

intensity. Why do many rounds make it possible to find a monotonicity-inducing intensity?

Avoiding the rise above 2% experienced in the second row requires stopping QE right when

inflation hits its target. At the same time, avoiding the dip below 2% experienced in the

third row requires a very high fraction of FFs when QE stops. Therefore, with T rounds

of QE, the bank has T periods to accomplish two things: hit 2% and accumulate a lot of

FFs. As we shorten T , accumulating a lot of FFs requires higher intensity. However, higher

intensity also hastens the return to 2%. When firms are stubborn in their beliefs, a small

increase in intensity will have a stronger effect on the speed of recovery than it will on the

accumulation of FFs. The intensity increase needed to accumulate enough FFs thus exceeds

the intensity increase needed to hit 2%. Stated otherwise, decreasing the number of rounds

makes it harder to find an intensity that returns inflation to 2% monotonically.

6 Conclusion

This paper has investigated the effectiveness of central bank communication when price-

setters with heterogeneous inflation expectations are subject to social dynamics. Prolonged

periods of divergence between realized inflation and central bank announcements can lead

to a loss of credibility through these dynamics and make future announcements much less

effective. In this context, we identified how central bank communications can be tailored to

endogenously build credibility. We demonstrated that abruptly introducing a low inflation

target leads to temporary overshooting of the target. In contrast, gradually introducing the

target (i.e., via interim targets) directs the economy to the long-term goal more smoothly.
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Empirical evidence was then presented to support the correlation between abruptness and

overshooting predicted by our model. Our next set of results concerned communications to

guide the economy away from deflation. We found that combating deflation requires either

aggressive announcements that are broadly consistent with price-level targeting or QE-type

announcements that stem deflationary expectations without changing inflation targets.
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Table 1: Data

Country abrupt1 abrupt2 abrupt3 overshoot1 overshoot2

Canada 0 1 1 1 1
Chile 0 0 0 0 0
Colombia 0 0 0 0 0
Czech Republic 0 1 1 1 1
Ghana 1 1 1 1 1
Guatemala 0 1 1 0 0
Hungary 0 0 1 0 0
Iceland 1 1 1 1 0
Indonesia 0 0 1 0 0
Israel 0 0 0 0 0
Mexico 0 0 0 0 0
New Zealand 0 1 1 0 0
Norway 1 1 1 1 1
Peru 0 0 0 1 0
Romania 0 0 1 0 0
South Africa 1 1 1 1 0
Sweden 1 1 1 1 1
Turkey 0 0 0 0 0
United Kingdom 0 0 1 1 1

Notes: The left panel classifies countries as abrupt versus gradual targeters based on the
abruptness measures defined in Subsection 4.5. The right panel then codes whether or not
the targeted path was overshot based on the overshooting measures in the same subsection.

Table 2: Regressions

overshoot1 overshoot2 overshoot num

intercept 0.29** 0.20 0.17 0.33** 0.21* 0.10 0.00 0.32* 0.39 0.66** 0.40 0.15
(0.02) (0.16) (0.41) (0.05) (0.10) (0.47) (1.00) (0.07) (0.15) (0.04) (0.40) (0.67)

abrupt1 0.71*** 0.68** 0.39 0.28 -1.36** -1.14*
(0.00) (0.01) (0.12) (0.29) (0.02) (0.05)

abrupt2 0.58*** 0.46** -1.33***
(0.01) (0.03) (0.01)

abrupt3 0.45* 0.46** -0.53
(0.08) (0.05) (0.35)

d2target 0.00 -0.01 0.02
(0.70) (0.33) (0.33)

Notes: Regression coefficients with p-values in brackets. * denotes rejection at the 10% level,
** at the 5% level, and *** at the 1% level. All variables are as defined in Subsection 4.5.
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Figure 1: One Forecasting Rule

(a) Illustration of Proposition 1 (b) Parameter Space Example
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Figure 2: Two Forecasting Rules

(a) Parameter Space Example (b) Dependence of yt on ξt
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Figure 3: Introduction of IT, Baseline Specification
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(b) Gradual Strategy
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Figure 4: Alternative Specifications

(a) S = 1, Random Interactions, Abrupt Strategy
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(b) S = 8, Local Interactions, Abrupt Strategy
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(c) S = 8, Local Interactions, Gradual Strategy
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(d) S = 8, Random, Abrupt, Positive/Negative Strikes
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Figure 5: FF Accumulation for Different Interaction Types (S = 8)
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Figure 6: Benchmarks

(a) Baseline vs Fixed Proportions, Abrupt Strategy
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(b) Baseline vs Fixed Proportions, Gradual Strategy
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(c) Baseline vs Mutation-Only, Abrupt Strategy

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Inflation Rate

 

 

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Fraction of Fed Followers

 

 

Dynamic
0% FF
25% FF
50% FF
75% FF
100% FF
target

(d) Baseline vs Mutation-Only, Gradual Strategy
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Figure 7: Abrupt vs Gradual Targeters in the Data
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Notes: Average inflation targets and average realized inflation. The horizontal axis is time
in quarters since IT adoption. The top panel averages over abrupt targeters (abrupt1 = 1)
while the bottom panel averages over gradual targeters (abrupt1 = 0).
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Figure 8: Eliminating Deflation: S = 8, Random Interactions
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Figure 9: QE Announcements
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Appendix - Proofs

Proof of Proposition 1

Part 1 Let φ (·) and Φ (·) denote the standard normal PDF and CDF respectively. From

Pezzey and Sharples (2007), the moment generating function of a truncated normal random

variable with mean 0 and variance σ2 is:

∫
x≥c

exp (rx)φ
(
x, σ2

)
dx = exp

(
r2σ2

2

)
Φ
(
rσ − c

σ

)
(6)

Using P̂ i
t = exp

(
π̂it
)
Pt−1 and π̂it = µ+εit with εit ∼ N (0, σ2) in equation (2), we can rewrite

the operation constraint as:

εit ≥ ln

(
1
αρ

(
U

1−αρ

) 1−αρ
αρ w∗

t

P ∗
t−1

)
− µ ≡ X (7)

Combining equations (6) and (7) with the wage equation in (4) then yields an implicit

definition of X which is independent of µ:

X = 1−αρ
αρ

ln
(

U
1−αρ

)
+ σ2

2(1−αρ)
+ (1− αρ) ln Φ

(
σ

1−αρ −
X
σ

)
(8)

Turn now to inflation. Substitute the firm pricing equation (1) into the price aggregator (5)

and simplify to get:

π∗t = 1−ρ
ρ

ln
(

1−αρ
U

)
+ α(1−ρ)(X+µ)

1−αρ + ln


∫

εit≥X
exp

(
min

{
π̂it

1−ρ ,
π∗t+ln(γt)

1−ρ

}
− ρ(1−α)π̂it

(1−ρ)(1−αρ)

)
di∫

εit≥X
exp

(
min

{
π̂it

1−ρ ,
π∗t+ln(γt)

1−ρ

}
− (1−α)π̂it

(1−ρ)(1−αρ)

)
di

 (9)

Combining equations (8) and (9) then yields:

π∗t = α(1−ρ)
1−αρ

(
µ+ σ2

2(1−αρ)

)
+ α (1− ρ) ln Φ

(
σ

1−αρ −
X
σ

)
(10)

+ ln


∫

εit≥X
exp

(
min

{
π̂it

1−ρ ,
π∗t+ln(γt)

1−ρ

}
− ρ(1−α)π̂it

(1−ρ)(1−αρ)

)
di∫

εit≥X
exp

(
min

{
π̂it

1−ρ ,
π∗t+ln(γt)

1−ρ

}
− (1−α)π̂it

(1−ρ)(1−αρ)

)
di


Now use π̂it = µ+ εit and εit ∼ N (0, σ2) with (6) to simplify (10). It will help to define:

Υ (X, σ) ≡
Φ(− (1−α)σ

(1−ρ)(1−αρ)−
X
σ )
[
Φ( σ

1−αρ−
X
σ ) exp

(
[2−α(1+ρ)]σ2

2(1−ρ)(1−αρ)2

)]1−α
( U

1−αρ)
1−αρ
αρ

Φ(− ρ(1−α)σ
(1−ρ)(1−αρ)−

X
σ )

(11)
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If γt ≤ Υ (X, σ), then:

π∗t − µ = (α−ρ)(1−αρ)−(1−α)2

(1−ρ)(1−αρ)2
σ2

2
+ α (1− ρ) ln Φ

(
σ

1−αρ −
X
σ

)
+ ln

(
Φ(− ρ(1−α)σ

(1−ρ)(1−αρ)−
X
σ )

Φ(− (1−α)σ
(1−ρ)(1−αρ)−

X
σ )

)
(12)

Otherwise, π∗t − µ solves:

π∗t − µ = 1−α2+α(1−ρ)

(1−αρ)2
σ2

2
+ α (1− ρ) ln Φ

(
σ

1−αρ −
X
σ

)
(13)

+ ln

(
Φ( σ

1−αρ−
X
σ )−Φ

(
σ

1−αρ−
π∗t−µ+ln(γt)

σ

)
+exp

(
π∗t−µ+ln(γt)

1−ρ − (1+αρ−2ρ)σ2

2(1−ρ)2(1−αρ)

)
Φ

(
− ρ(1−α)σ

(1−ρ)(1−αρ)−
π∗t−µ+ln(γt)

σ

)
Φ( ασ

1−αρ−
X
σ )−Φ

(
ασ

1−αρ−
π∗t−µ+ln(γt)

σ

)
+exp

(
π∗t−µ+ln(γt)

1−ρ +
(1+αρ−2α)σ2

2(1−ρ)2(1−αρ)

)
Φ

(
− (1−α)σ

(1−ρ)(1−αρ)−
π∗t−µ+ln(γt)

σ

)
)

Either way, we have a definition of π∗t − µ which is independent of µ. �

Part 2 Impose α = 1 on equations (1), (2), and (3) to get p
(
wt; P̂

i
t

)
= wt

ρ
, Ot (wt) = [0, 1],

and `
(
wt; P̂

i
t

)
=
(
ρP̂ it
wt

) 1
1−ρ

. Substituting p
(
w∗t ; P̂

i
t

)
into equation (5) gives P ∗t =

w∗
t

ρ
and

substituting `
(
w∗t ; P̂

i
t

)
into equation (4) gives

w∗
t

ρ
=

[∫ (
P̂ i
t

) 1
1−ρ

di

]1−ρ

. Combining these two

expressions and using the definitions of π̂it and π∗t then yields π∗t = (1− ρ) ln
(∫

exp
(

π̂it
1−ρ

)
di
)

.

With π̂it ∼ N (µ, σ2), we can use the moment generating function of the normal distribution

to simplify the preceding integral. The integral is taken over the entire set so the moment

generating function just yields π∗t = µ+ σ2

2(1−ρ)
. �

Part 3 The fraction of firms not operating is ∆ ≡ Φ
(
X
σ

)
. Taking derivatives yields

d∆
dσ
∝ dX

dσ
− X

σ
so what we want to show is dX

dσ
> X

σ
. Using equation (8) from the proof of

Part 1 above produces:
dX

dσ
= σ

1−αρ +
X
σ

1 +
Φ( σ

1−αρ−
X
σ )

φ( σ
1−αρ−

X
σ )

σ
1−αρ

(14)

The desired inequality is thus
(

σ
1−αρ −

X
σ

) Φ

(
σ

1−αρ−
X
σ

)
φ

(
σ

1−αρ−
X
σ

) > −1. Showing xΦ (x) > −φ (x)

completes the proof: xΦ (x) = x
x∫
−∞

φ (t) dt >
x∫
−∞

tφ (t) dt = −
x∫
−∞

φ′ (t) dt = −φ (x). �

Part 4 If α = 1, then the equations in Part 1 reduce to:

X = 1−ρ
ρ

ln
(

U
1−ρ

)
+ σ2

2(1−ρ)
+ (1− ρ) ln Φ

(
σ

1−ρ −
X
σ

)
(15)
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π∗t − µ = σ2

2(1−ρ)
+ (1− ρ) ln Φ

(
σ

1−ρ −
X
σ

)
(16)

We can thus write f (σ) = X− 1−ρ
ρ

ln
(

U
1−ρ

)
with X dependent on σ as per (15). To make this

dependency explicit, we further write X (σ) in place of just X. Consider any σ0 > 0 satisfying

f (σ0) = 0. That is, consider any σ0 > 0 satisfying X (σ0) = 1−ρ
ρ

ln
(

U
1−ρ

)
. If U ≥ 1 − ρ,

then X (σ0) ≥ 0 which, given dX
dσ

> X
σ

from the proof of Part 3, implies X ′ (σ0) > 0. Notice

f ′ (·) = X ′ (·). This means that, if U ≥ 1 − ρ, then any σ0 > 0 satisfying f (σ0) = 0 must

also satisfy f ′ (σ0) > 0. There is thus at most one σ0 > 0 such that f (σ0) = 0. To show

exactly one such σ0 > 0, it will suffice to show lim
σ→0+

f (σ) < 0 and lim
σ→∞

f (σ) > 0. Equation

(15) yields X (0) ≡ lim
σ→0+

X (σ) = (1− ρ)

[
1
ρ

ln
(

U
1−ρ

)
+ ln Φ

(
lim
σ→0+

−X(σ)
σ

)]
. Notice that

X (0) > 0 is impossible while X (0) < 0 is only possible if U < 1− ρ. Therefore, U ≥ 1− ρ
implies X (0) = 0 and thus lim

σ→0+
f (σ) = −1−ρ

ρ
ln
(

U
1−ρ

)
< 0. Equation (15) also yields

lim
σ→∞

X (σ) =∞ and thus lim
σ→∞

f (σ) =∞. Putting everything together, we can now conclude

that there is exactly one σ0 > 0 such that f (σ0) = 0. Moreover, f ′ (σ0) > 0.

The exit channel behind this result depends on heterogeneity, not on π̂it being a point

expectation. To see this, consider two types of firms j ∈ {1, 2}. The fraction of type 1 firms

is τ and the fraction of type 2 firms is 1− τ . A type j firm takes inflation expectations over

the entire distribution N
(
µ, σ2

j

)
, with the resulting CDF for its price expectations denoted

by Fj (·). The price-setting problem with α = 1 still yields P ∗t =
w∗
t

ρ
but the labor demand

of a type j firm is now
(

ρ
w∗
t

) 1
1−ρ ∫

P̂
1

1−ρ
t dFj

(
P̂t

)
and operation requires:

w∗
t

ρ
≤
[

1−ρ
U

∫
P̂

ρ
1−ρ
t dFj

(
P̂t

)] 1−ρ
ρ

(17)

If only one type operates (say j = 1), then labor market clearing yields:

w∗
t

ρ
=

[
τ

∫
P̂

1
1−ρ
t dF1

(
P̂t

)]1−ρ

(18)

To ensure that only type 1 firms operate, we need (17) with
w∗
t

ρ
as per (18) to hold at j = 1

but not at j = 2. Stated otherwise, we need:

1−ρ

τρ exp

(
ρ(σ2

1−ρσ
2
2)

2(1−ρ)2

) < U ≤ 1−ρ

τρ exp

(
ρσ2

1
2(1−ρ)

)

A necessary condition is
ρ(σ2

1−ρσ2
2)

2(1−ρ)2 >
ρσ2

1

2(1−ρ)
or, equivalently, σ1 > σ2. Combining P ∗t =

w∗
t

ρ

with (18), we can now write:
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π∗t = µ+
σ2

1

2(1−ρ)
+ (1− ρ) ln τ

If τ = 1, then all firms use the same prior so everyone operates and we again have π∗t > µ.

If τ ∈ (0, 1), then only type 1 firms operate and π∗t = µ provided σ1 = (1− ρ)
√

2 ln
(

1
τ

)
. �

Part 5 Define U ≡ 1− αρ. It will suffice to establish the result for some subset of
(
0, U

)
.

At σ = 0, equations (12) and (13) both reduce to:

f (0) ≡ lim
σ→0+

f (σ) = α (1− ρ) ln Φ

(
lim
σ→0+

−X(σ)
σ

)
(19)

If lim
σ→0+

−X(σ)
σ

=∞, then f (0) = 0. Moreover, (12) and (13) will both also produce:

f ′ (0) ≡ lim
σ→0+

f ′ (σ) = α (1− ρ) lim
σ→0+

φ(−X(σ)
σ )

Φ(−X(σ)
σ )

1
σ

(
X(σ)
σ
−X ′ (σ)

)
= α(1−ρ)

1−αρ lim
σ→0+

X ′ (σ) (20)

where the last equality follows from using equation (14). Turn now to X (·). At σ = 0,

equation (8) yields:

X (0) ≡ lim
σ→0+

X (σ) = U

[
1
αρ

ln
(
U
U

)
+ ln Φ

(
lim
σ→0+

−X(σ)
σ

)]
(21)

Notice from (21) that X (0) > 0 is impossible while X (0) < 0 is only possible if U < U .

Therefore, U = U implies X (0) = 0 and thus lim
σ→0+

−X(σ)
σ

=∞. Since X ′ (0) ≡ lim
σ→0+

X ′ (σ) ∼=
X(h)−X(0)

h−0
= X(h)

h

h→0+

−−−→ −∞, it now follows that f (0) = 0 and f ′ (0) < 0 when U = U . Taken

together, f (0) = 0 and f ′ (0) < 0 imply existence of a σ > 0 such that f (σ) < 0. Combined

with lim
σ→∞

f (σ) = ∞, this then implies existence of a σB > 0 satisfying f (σB) = 0 and

f ′ (σB) > 0. For f (·) continuous in U , we can thus find an ε > 0 such that there also exists

a σB > 0 satisfying f (σB) = 0 and f ′ (σB) > 0 when U ∈
(
U − ε, U

)
. To show existence

of a σA ∈ (0, σB) satisfying f (σA) = 0 and f ′ (σA) < 0, it will suffice to show f (0) = 0

and f ′ (0) > 0 when U ∈
(
U − ε, U

)
. If f ′ (0) = 0, then it will suffice to show f (0) = 0

and f ′′ (0) ≡ lim
σ→0+

f ′′ (σ) > 0. For any U ∈
(
0, U

)
, we have X (0) ∈ (−∞, 0) from (21) and

thus f (0) = 0 from (19). We also have X ′ (0) = 1−αρ
X(0)

lim
σ→0+

(
X(σ)
σ

)2

φ
(
−X(σ)

σ

)
= 0 from

(14) and the property lim
z→−∞

z2φ (−z) = 0. Therefore, equation (20) yields f ′ (0) = 0 and

it remains to show f ′′ (0) > 0. With σ = 0 and lim
σ→0+

−X(σ)
σ

= ∞, equation (11) implies

Υ (X (0) , 0) =
(
U
U

) 1−αρ
αρ < 1 so, for small taste shocks, the behavior of f ′′ (·) around zero is

dictated by equation (13). After some algebra (available upon request), we obtain f ′′ (0) =
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(1−α)(α−ρ)+α(1−ρ)2

(1−αρ)2(1−ρ)
which is positive for α ∈

(
1− ρ(1−ρ)

2
−
√(

1− ρ(1−ρ)
2

)2

− ρ, 1

)
≡ (α, 1).

Therefore, there must exist a σA ∈ (0, σB) satisfying f (σA) = 0 and f ′ (σA) < 0 when

U ∈
(
U − ε, U

)
and α ∈ (α, 1). �

Proof of Proposition 2

To simplify notation, define λ ≡ 1
ρ

ln
(

U
1−ρ

)
. If α = 1, then the mixture equations reduce to:

exp (yt) = ξt exp
(
υ2
A

2

)
Φ
(
υA − yt+λ

υA

)
+ (1− ξt) exp

(
υ2
B

2

)
Φ
(
υB − yt+λ

υB

)
(22)

Under ξt = 0, equation (22) yields exp (yt) = exp
(
υ2
B

2

)
Φ
(
υB − yt+λ

υB

)
. Under ξt = 1, it

yields exp (yt) = exp
(
υ2
A

2

)
Φ
(
υA − yt+λ

υA

)
. Since yt = f (σB) = 0 at ξt = 0 and yt = f (σA) =

0 at ξt = 1, it follows that exp
(
υ2
A

2

)
Φ
(
υA − λ

υA

)
= 1 and exp

(
υ2
B

2

)
Φ
(
υB − λ

υB

)
= 1.

Consider now ξt ∈ (0, 1). If yt < 0, then exp
(
υ2
i

2

)
Φ
(
υi − yt+λ

υi

)
> exp

(
υ2
i

2

)
Φ
(
υi − λ

υi

)
= 1

for i ∈ {A,B} so equation (22) implies yt > 0 which is a contradiction. If yt > 0, then

exp
(
υ2
i

2

)
Φ
(
υi − yt+λ

υi

)
< exp

(
υ2
i

2

)
Φ
(
υi − λ

υi

)
= 1 for i ∈ {A,B} so equation (22) implies

yt < 0 which is a contradiction. Therefore, yt = 0 for ξt ∈ (0, 1). �
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