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1 Introduction

Government subsidies to industries have been prevalent throughout economic history

and in several countries have steered industrialization and growth. An important

and open question is what is their impact on production allocation across countries,

industry prices, costs and surplus. A signi�cant challenge in this task is that govern-

ment subsidies to industries are notoriously di¢ cult to detect. Indeed, partly because

WTO agreements prohibit direct and in-kind subsidies other than infrastructure,1 the

existence and magnitude of such subsidies is often unknown.2

This paper o¤ers two contributions to the e¤ort of assessing the consequences of

subsidies. First, it provides a model-based empirical strategy to detect the presence

and gauge the magnitude of government subsidies. Second, it quanti�es the impact

of these subsidies on industrial evolution.

I apply this strategy to the world shipbuilding industry, a prototypical example

of an industry in which subsidies are believed to play a prominent role. Shipbuild-

ing in the 2000�s is a particularly interesting case because a striking reallocation of

production took place: in a single year (2006), China doubled its market share from

25% to 50%, leaving Japan, S. Korea and Europe trailing behind. In 2006, China

launched a capital subsidization plan; these capital subsidies are known, observed

and not prohibited. However, many asserted that China�s rapid rise was also driven

by government production subsidies, which are not known, unobserved and prohib-

ited; here I disentangle the contributing factors (e.g. di¤erentiated products, inherent

cost di¤erences, and most importantly, capital and production subsidies).

I develop and estimate a model of the shipbuilding industry, providing one of

the �rst empirical analysis in industrial organization looking at dynamic agents on

both the demand and the supply side. A large number of shipyards o¤er durable,

di¤erentiated ships. Their production decisions are subject to a dynamic feedback

because of time to build: shipyards accumulate backlogs, which a¤ect their future

ability to accept new ship orders. Production is also subject to an aggregate stochastic

1In its Agreement on Subsidies and Countervailing Measures, the WTO de�nes a subsidy as an
unrequited �nancial contribution by a government to enterprises in the form of: (i) direct transfer
of funds, (ii) foregone revenue that is otherwise due, (iii) provision of goods or services, except
infrastructure, (iv) payments to a funding mechanism to carry out one or more of the type of
functions illustrated in (i) to (iii).

2The Department of Commerce and the US International Trade Commission devote many re-
sources to detection of dumping and subsidies. See for example Haley and Haley (2013)� book,
which is devoted to the di¢ culties in detecting subsidies.
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cost shock, summarized in the price of steel, a key production input. Every period a

large number of identical potential shipowners decide to enter the freight market by

buying a new ship from world shipyards. Demand for new ships is driven by demand

for international sea transport, which is uncertain and volatile. As ships are long-lived

investments for shipowners, demand for new ships is dynamic.

The model primitive of interest is the cost function of potentially subsidized �rms.

As in many industries, however, costs of production are not observed. My strategy

amounts to estimating costs from demand variation, as is common in empirical in-

dustrial organization, but in a framework of dynamic demand and supply. In the

simplest example of a static, perfectly competitive framework, marginal cost is recov-

ered directly from prices. In that case, the detection strategy amounts to testing for

a break in observed ship prices in 2006 when China launched its capital subsidization

plan. In my setup, there are two complications: (i) new ship price data are scant, and

(ii) the shipbuilding production decision is subject to dynamic feedbacks. To address

(i), I add used ship prices; to address (ii) I use the shipyard�s optimality conditions

resulting from its dynamic optimization. In summary, my estimation strategy �rst

uses new and used ship prices to estimate the willingness to pay for a new ship and

then inserts it into the dynamic optimization problem of shipbuilders. The �rst step is

an extension of Kalouptsidi (2014); the second step forms a hybrid approach, inspired

by the recent literature on the estimation of industry dynamics models (e.g. Bajari,

Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007)). Finally, the estima-

tion treats China�s 2006 government plan as an unexpected and permanent change

from the point of view of industry participants: expectations and value functions are

estimated separately before and after 2006.

The �rst objective of the empirical analysis is to detect and measure changes in

costs that are consistent with subsidies. I �nd a strong signi�cant decline in Chinese

costs, consistent with subsidies equal to about 15-20% of costs, or 5 billion US dollars

at the observed production levels. A concern may be that this decline is not driven

by subsidies, but rather by technological change, or learning-by-doing. To address

this concern, I perform several robustness checks. I �nd that the results are robust

to many speci�cations that control �exibly for time-variation. I also provide evidence

that costs did not change in other countries. Most convincingly, the results hold when

I estimate costs on the subset of shipyards that existed prior to 2001. These ship-

yards are no longer learning-by-doing, nor did their technology change (though bulk
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ship production is not characterized by technological innovations to begin with). My

identi�cation relies heavily on China�s rapid expansion in market share. Using market

share and price data to detect subsidies is in fact di¤erent from current methods used

by the WTO and the US ITC, who rely exclusively on prices. To illustrate, I com-

pare my detection method to the price-gap approach used in WTO cases; the latter

recovers subsidies equal to 4-7%, less than a third of the retrieved magnitude here.

The second objective of the empirical analysis it to use the estimated model to

quantify the impact of China�s subsidies on ship prices, production reallocation across

countries, as well as industry costs and shipper surplus. I also ask whether this impact

varies by di¤erent types of subsidies (capital or production subsidies). Here is a brief

summary of my main four �ndings.

First, I �nd that subsidies lead to substantial reallocation in production: if pro-

duction subsidies are removed, China�s market share is cut to half, while Japan�s share

increases by 50%. Interestingly, production subsidies seem to have a much larger im-

pact than capital subsidies. The dynamic feedback in production, captured by the

dependence of costs on backlog, is responsible for about 7% of this reallocation.

Second, ship prices experience moderate increases in all countries; this is not

surprising, given that China�s subsidization shifted supply outward.

Third, freight rates decrease moderately because of the larger �eet between 2006

and 2012 and more so over time due to time to build. As a result, cargo shippers

bene�t from Chinese subsidies and gain about 250million US dollars in shipper surplus

in that time period. Comparing this gain to the 5 billion US dollar cost of production

subsidies implies that the bene�ts of subsidies within the maritime industries are

minimal and perhaps the Chinese government is aspiring to externalities to di¤erent

sectors (e.g. steel, defense).

Fourth, the subsidies create a wedge in the alignment of market share and produc-

tion costs: net of subsidies, they lead to a large increase in the industry average cost

of production by shifting production away from low-cost Japanese shipyards towards

high-cost Chinese shipyards.

This paper contributes to the long theoretical (e.g. Jovanovich (1982), Hopen-

hayn (1992), Ericson and Pakes (1995)) and recent empirical (e.g. Aguirregabiria

and Mira (2007), Jofre-Bonet and Pesendorfer (2003), Benkard (2004), Ryan (2012),

Collard-Wexler (2013), Xu (2008), Sweeting (2013)) literature on industry dynamics.

Methodologically, it lies closest to Hotz and Miller (1993), Pakes, Ostrovsky and Berry
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(2007) and Bajari, Benkard and Levin (2007), yet this literature considers either sin-

gle agent dynamics or dynamic �rms and static consumers. To tackle the di¢ culty

of having dynamic consumers (shipowners) and dynamic producers (shipbuilders), we

resort to second-hand sale transactions, extending Kalouptsidi (2014). Such transac-

tion prices may be helpful in other markets of durable goods which are characterized

by dynamics in both demand and supply; such setups have scarcely been studied (one

example is Chen, Esteban and Shum (2013)).

The paper also naturally contributes to the trade literature on the impact of indus-

trial policies. Grossman (1990) provides an excellent survey of the relevant literature.

Not surprisingly, there is little empirical work given the constraints in subsidy data

availability. Baldwin and Krugman (1987a) and (1987b) explore the impact of trade

policies in the wide-bodied jet aircraft and the semiconductor industries, while Bald-

win and Flam (1989) in the 30-40 seat commuter aircraft industry. They all discuss

the lack of knowledge regarding both the presence and magnitude of subsidies and

other policies and compute industrial evolution under di¤erent hypothetical scenarios.

Another strand of literature explores the impact of anti-dumping rulings on industry

(e.g. Blonigen and Wilson (2005) focus on the steel industry, but do not address the

detection of dumping). Finally, there is a long literature on China�s expansion and

trade policy in several industries (e.g. Roberts, Fan, Xu and Zhang (2011)).

The remainder of the paper is organized as follows: Section 2 provides a description

of the industry. Section 3 presents the model. Section 4 describes the data used and

provides some descriptive evidence. Section 5 presents the empirical strategy and the

estimation results. Section 6 provides the counterfactual experiments and Section 7

concludes.

2 Industry Description

Shipbuilding is often seen as a �strategic industry�as it increases industrial and de-

fence capacity, generates employment, accelerates regional development and can have

important spill-overs to the iron and steel, electronic, and machinery manufacturing

industries (OECD (2008)). Indeed, several of today�s leading economies developed

their production technologies and human capital through a phase of heavy industrial-

ization, in which shipbuilding was one of key pillars, along with steel and petrochem-

icals. In the 1850�s, Britain was the world leading shipbuilder, until it was overtaken
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by Japan in the 1950�s, which in turn lost its leading position to Korea, in the 1970�s.

Japan used its shipbuilding industry to rebuild its industrial capability motivated by

its strong maritime tradition, while Korea saw shipbuilding as a strategic core for its

economic development and gave it an exporting orientation (OECD (2008)). Over the

years, several disputes regarding subsidies have occurred.3 Until recently, China was

a small player and was regarded as a risky place to build new ships, while Chinese

built vessels commanded a discount in both the new-building and second-hand market

(Stopford (2009)).

China�s4 �Long and Medium Term Plan for the Shipbuilding Industry 2006-2015�

�implements plans to strengthen and upgrade the overall shipbuilding industrial capa-

bility through the construction of shipyards, while also upgrading existing shipbuilding

facilities� (Collins and Grubb (2008)). Nevertheless, it is claimed that the govern-

ment is not involved in general business operations of individual companies (OECD

(2008)), while even state-owned �shipyards largely function as independent corpo-

rate entities and handle day-to-day operations and contract bids�(Collins and Grubb

(2008)). Finally, China�s shipbuilding is mostly geared towards export sales which

comprised about 80% of its orderbook in 2006 (Collins and Grubb (2008)). Figure 1

shows China�s rapid expansion in capital infrastructure as measured by shipbuilding

dry docks.

Figure 1: Shipbuilding dry docks.

3A recent example was Europe�s accusation for Korean subsidies in 2001, which was not accepted
by the WTO: �No progress was achieved, as the Korean Government claimed that it had no in�uence
on the shipyards (...) and further said that it was convinced business was conducted along free market
principles�. (EU Commission)

4In recent years, China has been a target of trade disputes in many industries (see Haley and
Haley (2013) for an overview) that have trickled down to the press. A good example, is �Perverse
Advantage�, published in The Economist, April 2013: �China is the workshop to the world. It is the
global economy�s most formidable exporter and its largest manufacturer. The explanations for its
success range from a seemingly endless supply of cheap labour to an arti�cially undervalued currency.
(...) another reason for China�s industrial dominance: subsidies�.
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Commercial ships are the largest factory produced product. Based on Stopford

(2009), a 30; 000 DWT bulk carrier might contain 5; 000 tons of steel and 2; 500 tons

of other components (e.g. the main engine and numerous minor components such

as cabling, pipes, furniture and �ttings). Materials account for about half the cost

of the ship (steel is about 13%) and labor about 17% of total cost. A shipyard con-

structs the steel hull and conducts the out�tting of the hull with machinery, equipment

services and furnishings (Stopford (2009)); many of these operations are conducted

simultaneously, with individual tasks not requiring highly technical skills.

Shipbuilding demand is determined by entry in the shipping industry. In this paper

I focus on cargo transportation and in particular, bulk shipping, which concerns vessels

designed to carry a homogeneous unpacked dry or liquid cargo, for individual shippers

on non-scheduled routes (see Kalouptsidi (2014) for a detailed description of the bulk

shipping industry). The entire cargo usually belongs to one shipper and it involves

mostly raw materials, such as iron ore, steel, coal and grain. The bulk shipping market

consists of a large number of small shipowning �rms. Demand for shipping services is

driven by world seaborne trade and is thus subject to world economy �uctuations. In

the short run, the supply of shipping services is determined by the number of voyages

carried out by shipowners and is rather inelastic. In the long run, the supply of cargo

transportation adjusts via the building and scrapping of ships. Exit in the industry

occurs when shipowners scrap their ships by selling them to scrapyards where they

are dismantled and their steel hull is recycled.

3 Model

In this section, I present a dynamic model of the market for new ships, which lies

within the general class of industry dynamic models studied in Ericson and Pakes

(1995) and Hopenhayn (1992). Time is discrete and the horizon is in�nite. Shipown-

ers create demand for shipbuilders, who respond by supplying new ships. I begin by

describing shipowner behavior, then turn to shipbuilders. I also discuss how govern-

ment subsidies enter.
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3.1 Demand for New Ships (Shipowners)

There is a �nite number of incumbent shipowners (the �eet) and a large number of

identical potential entrant shipowners. I assume constant returns to scale, so that a

�rm is a ship. Ships are long-lived. The state variable of ship i at time t, sit, includes

its:

1. age, ait 2 f0; 1; :::; Ag

2. country where built, ci 2 C

while the industry state, st, includes:

1. the distribution of characteristics in sit over the �eet, St 2 RA�jjCjj

2. the backlog bt 2 RJ�T , whose (j; k)th element is the number of ships scheduled
to be delivered at period t+ k by shipyard j and T the maximum time to build

3. the aggregate demand for shipping services, dt 2 R+

4. the price of steel, lt 2 R+.5

In period t, each shipowner i chooses how much transportation (i.e. voyages

travelled) to o¤er, qit. Shipowners face the inverse demand curve:

Pt = P (dt; Qt) (1)

where Pt is the price per voyage, dt de�ned above includes demand shifters, such as

world industrial production and commodity prices and Qt denotes the total voyages

o¤ered, so that Qt =
P

i qit. Voyages are a homogeneous good, but shipowners face

heterogeneous convex costs of freight, cF (qit; sit). Ship operating costs increase with

the ship�s age and may di¤er based on country of built because of varying quality.

I assume that shipowners act as price-takers in the market for freight. Their

resulting per period payo¤s are � (sit; St; dt).

A ship lives a maximum of A periods. At the same time, a ship can be hit by

an exit shock each period. In particular, I assume that a ship at state (sit; st) exits

with probability � (sit; st) and receives a deterministic scrap value � (sit; st). Note that

� ([ait; ci] ; st) = 1, for ait � A and all ci; st.6
5The steel price is part of the state because it: (i) is a key determinant of shipyard production

costs; (ii) determines the ship�s scrap value.
6Generalizing to endogenous exit is straightforward (see Kalouptsidi (2014)).
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The only dynamic control of shipowners is entry in the industry: each period,

a large number of identical potential entrants simultaneously make entry decisions.

There is time to build, in other words, a shipowner begins its operation a number

of periods after its entry decision. To enter, shipowners purchase new vessels from

world shipyards. Shipyard j in period t can build a new ship at price PNBjt and time

to build Tjt. The assumption of a large number of homogeneous potential shipowners

implies that shipyard prices are bid up to the ships�values and shipyards can extract

all surplus. One can also think of this as a free entry condition in the shipping

industry where the entry cost is equal to the shipyard price. Therefore, the following

equilibrium condition holds:

PNBjt = E
h
�TjtV

�
sit+Tjt;st+Tjt

�
jsit; st

i
(2)

where � is the discount factor and sit in this case involves ait = 0 and the country of

yard j, while the value function V (sit; st) satis�es the Bellman equation:

V (sit; st) = �(sit; st)+ �(sit; st)�(sit; st)+(1� �(sit; st))�E [V (sit+1; st+1) jsit; st] (3)

In words, the value function of a ship at state (sit; st) equals the pro�ts from cargo

transport plus the scrap value which is received with probability �(sit; st) and the

continuation value E [V (sit+1; st+1) jsit; st], which is received with probability 1 �
�(sit; st).

In practice, shipowners can also buy a used ship. In this model, ships are indistin-

guishable from their owners and therefore, transactions in the second-hand market do

not a¤ect entry or pro�ts in the industry. In addition, since there is a large number

of identical shipowners who share the value of a ship, the price of a ship in the second

hand market, P SHit , equals this value and shipowners are always indi¤erent between

selling their ship and operating it themselves. Therefore, in equilibrium:

P SHit = V (sit; st) (4)

I revisit sales in the empirical part of the paper, where both second-hand and new

ship prices are treated as observations on the value function.
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3.2 Supply of New Ships (Shipyards)

There are J long-lived incumbent shipbuilders. The state variable of shipyard j at

time t, yjt, includes its:

1. backlog bjt 2 RT

2. country cj 2 C

3. other characteristics, such as: age, capital equipment (number of docks and

berths, length of largest dock), number of employees.

Shipyards also share the industry state, st.

In period t, shipyard j draws a private iid (across j and t) production cost shock

"jt � N (0; �) and makes a discrete production decision Njt 2
�
0; 1; :::; N

	
.7 Shipyard

j faces production costs, C (Njt; yjt; st; "jt). Even though Njt is an integer I assume

that the cost function C (Njt; �) can be de�ned over
�
0; N

�
and that as such it is

convex in Njt. I also assume that the cost shock "jt is paid for each produced unit,

so that:

C (Njt; yjt; st; "jt) = c (Njt; yjt; st) +Njt"jt (5)

In this modelNjt corresponds to the number of ships ordered in period t at shipyard

j. These ships enter the shipyard�s backlog bjt and are delivered a number of years

later.8 Under demand uncertainty, therefore, undertaking a ship order becomes a

dynamic choice. To capture this dynamic feedback, I assume that the cost function

depends on the shipyard�s backlog. As in Jofre-Bonet and Pesendorfer (2003), there

are two opposing ways the backlog can impact costs: on one hand, increased backlogs

can raise costs because of capacity constraints (e.g. less available labor); on the other

hand, increased backlogs can lower costs because of economies of scale (e.g. in ordering

inputs) or the accumulation of expertise.9

As discussed above, shipyard j sells its ships at a price equal to the shipowners�

entry value:10

7Allowing for serially correlated unobserved state variables is a di¢ cult issue that the literature
has not tackled yet.

8I consider the number of orders as the relevant choice variable (as opposed to using the number
of deliveries or smoothing orders) because the observed ship prices are paid at the order date and
may be dramatically di¤erent from the prevailing prices at the delivery date.

9Here, the shipyard�s backlog also a¤ects its demand, as it increases the time to build o¤ered.
10Note that the willingness to pay for a new ship from yard j depends only on its country of origin,

not j itself. Even though it is straightforward in the model to allow a ship�s value to change with j,
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V Ej (st) � E
�
�TjtV

�
sit+Tjt;st+Tjt;

�
jsit; st

�
(6)

where sit has ait = 0 and the country of yard j. Time to build is shipyard-speci�c

and in particular, Tjt = T (yjt; st). Note that V Ej (st) does not explicitly depend

on period t�s production, Njt; in other words yards do not face a downward sloping

demand curve. Indeed, Njt a¤ects the willingness to pay for the ship by entering into

the total backlog bt and from there into the �eet after Tjt periods. Typically, Njt
is a small integer, while the total �eet is a large number in the order of thousands.

Therefore each shipyard, when making its production decision, can ignore the impact

it has on V Ej (st); note however, that aggregates do matter so that as the total �eet

increases, shipowners�willingness to pay falls, all else equal.

Shipyard j chooses its production level to solve the Bellman equation:

W (yjt; st; "jt) = max
N2f0;1;:::;Ng

V Ej (st)N�c (N; yjt; st)�N"jt+�E [W (yjt+1; st+1; "jt+1) jN; yjt; st]

(7)

To ease notation, I also de�ne the continuation value:

Q (yjt; st; N) � E [W (yjt+1; st+1; "jt+1) jN; yjt; st] (8)

The expectation in (7), as well as (2) and (3) is over demand for shipping services,

dt, steel prices, lt and shipyard production Njt, all j. The demand state variable dt
and steel prices lt evolve according to a �rst order autoregressive process with trend

(see Section 5:1:1). Period t production, Njt, enters j�s backlog, bjt, at position Tjt,

while the remaining elements of bjt move one period closer to delivery with its �rst

element being delivered. Note that the evolution of all other states is deterministic

(see Section 5:1:1). The trend component in demand and steel prices implies that

time t is explicitly part of the state (in other words, the state notation fsit; yjt; stg
incorporates t). Allowing for time to enter the agents�decision-making o¤ers some

generality and is important in this application, as my empirical analysis of detecting

government subsidies hinges on allowing time-varying factors to a¤ect costs.

Under convex costs, the shipyard�s optimal policy amounts to comparing each

production level n to n+ 1 and n� 1, as stated in the following intuitive lemma:

the hundreds of shipyards encountered in the data make this generalization impossible.
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Lemma 1 If the shipbuilding cost function C (n; �) :
�
0; N

�
! R, is convex in n, then

the shipyard�s optimal policy is given by:

N� (yjt; st; "jt) =

=

8>>>>>>>>><>>>>>>>>>:

0; if "jt � V Ej (st) + c (0; yjt; st)� c (1; yjt; st) + � (Q (yjt; st; 1)�Q (yjt; st; 0))

n; if "jt 2
"
V Ej (st) + c (n; yjt; st)� c (n+ 1; yjt; st) + � (Q (yjt; st; n+ 1)�Q (yjt; st; n)) ;
V Ej (st) + c (n� 1; yjt; st)� c (n; yjt; st) + � (Q (yjt; st; n)�Q (yjt; st; n� 1))

#

N; if "jt � V Ej (st) + c
�
N � 1; yjt; st

�
� c

�
N; yjt; st

�
+ �

�
Q
�
yjt; st; N

�
�Q

�
yjt; st; N � 1

��
(9)

Proof. See the Online Appendix.
The timing in each period is as follows: incumbent and potential entrant shipown-

ers observe their state (sit; st), while shipbuilders observe their state (yjt; st). Shipown-

ers are hit by exit shocks and shipbuilders observe their private production cost shocks.

Shipyards make production decisions. Next, shipowners receive pro�ts from freight

services and shipyards receive pro�ts from new ship production. Exiting ships receive

their scrap value �(si; s). Finally, states are updated.

I consider a competitive equilibrium which consists of an optimal production policy

function N� (yjt; st; "jt) that is given by (9), as well as value functions W (yjt; st)

and V (sit; st) that satisfy (7) and (3) respectively, while all expectations employ

N� (yjt; st; "jt). Existence of equilibrium follows from Doraszelski and Satterthwaite

(2010), Hopenhayn (1992), and Jovanovic (1982).

Finally, I assume that China�s 2006 subsidization program was an unexpected,

one-shot, permanent and immediate change from the point of view of industry par-

ticipants. Explicitly modeling expectations with regard to policy interventions is

extremely complicated and would rely on strong and perhaps ad hoc assumptions.

Within my model, the before and after 2006 worlds di¤er in the number of shipyards,

shipbuilding infrastructure (found in yjt) and China�s cost function. I also assume that

shipyards do not make entry or capital expansion decisions. On one hand, outside of

China there is not much action (see Figure 1), while within China, these decisions are

determined by government policy.
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4 Data and Descriptive Evidence

Data All data I use come from Clarksons. I employ �ve di¤erent datasets.

The �rst, reports shipbuilding quarterly production (i.e. orders) between Q1-2001

and Q3-2012. For each shipyard and quarter I observe its bulk ship production in tons

and numbers, as well as the yard�s backlog and average time to build. There are 192

yards that produce Handysize vessels (the segment on which my empirical analysis

will focus), of which 119 are Chinese, 41 are Japanese, 21 are S. Korean and 11 are

European. The majority of bulk ship production occurs in China and Japan; hence

even though I include Europe and S. Korea in the estimation and counterfactuals,

most comparisons will be made between China and Japan.

The second dataset is a sample of shipbuilding contracts, between August 1998

and August 2012. It reports the order and delivery dates, the shipyard and price in

million US dollars. Unfortunately, prices are reported for only a fraction of contracts.

I illustrate this in Figure 2, which plots the average reported new ship price per

country and quarter. Note that several quarters, especially in the pre-2006 period

involve missing prices. In addition, for shipyard-quarter combinations that involve

zero production, the corresponding price does not exist by default.

Figure 2: Reported new ship prices.

To deal with these issues, I introduce a dataset of second-hand ship sale transac-

tions, between August 1998 and August 2012. The dataset reports the date of the

transaction, the name and age of the ship, as well as the price in million US dol-

lars. I end up with 418 observations of new ship contracts and 2016 observations

of second-hand sale contracts (2434 total), of which 1173 are pre-2006 and 1261 are

post-2006.

The fourth dataset employed reports shipyard characteristics in 2013 and includes:
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each shipyard�s �rst year of delivery, location, number of dry docks and berths, length

of its largest dock, number of employees, total past output and total TEU (i.e. con-

tainer ships) produced. The �rst year of delivery is used to compute the shipyard�s

age.11 The number of docks and berths are a crude measure of capacity, since produc-

tion bottlenecks occur during the assembly operations done on the docks/berths. The

length of a dock determines the size of the ships built and it is a proxy not only for ca-

pacity, but also for overall productivity, since bigger bulk carriers are more complicated

versions of smaller ones. Similarly, a shipyard that builds containers is more likely to

be overall more e¢ cient (when looking at shipyards that produce Handysize vessels

only 5% also produces containers). This dataset is not ideal and several shipyards

have missing observations. To allow the infrastructure of yards (i.e. docks/berths and

length) to be di¤erent before and after 2006, I employ Clarksons�s monthly �World

Shipyard Monitor�which reports the number of docks, berths and largest dock length

for the largest shipyards (about 150 per month) beginning in 2001. I use this infor-

mation to create a pre-2006 level, while the post-2006 level is taken from the 2013

snapshot.12

Finally, the �fth dataset consists of quarterly time-series for the orders of new

ships, deliveries, demolitions, �eet and total backlog. I also obtain time-series of

Japan�s steel ship plate commodity price in dollars per ton.13

Descriptive Evidence What patterns of the raw data are consistent with the

presence of subsidies? One might expect that new ship prices should react in 2006.

As Figure 2 shows, the sparsity of new ship prices makes it impossible to explore

this. Used ship prices, however, should also display a reaction. I, therefore, run

a hedonic regression of second hand prices on ship characteristics (age and country

where built) and quarter dummies. Figure 3 shows that indeed there is a short-lived

11Some shipyards took orders before having ever delivered (�green�elds�) during the 2007 boom,
implying negative shipyard age. I subtract a number of years from every �rst delivery year of all
shipyards, after consulting with Clarksons�s analysts. The results I report subtract 3 years (similar
�ndings were obtained when 6 years are subtracted).
12I do not create a quarterly measure of capital infrastructure (docks, berths, largest dock) for

several reasons. First, this changes extremely slowly (and not much outside of China). Second, the
information retrieved from the World Shipyard Monitor is rather noisy: there are several missing
observations across quarters, the matching between shipyards in the several datasets is sometimes
di¢ cult and numbers may be �uctuating (or even decreasing) out of obvious measurement error.
The pre-2006 snapshot I manually create overcomes these issues.
13Due to space limitations, some summary statistics are reported in the Online Appendix.
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drop in 2006, in a period when ships prices are trending upward due to increased

demand for freight. Of course this �nding is not proof of production subsidies; even

the announcement of the capital infrastructure subsidies should lead to a temporary

drop in prices since shipowners now expect higher competition in the future.14 Yet if

no drop were observed, one may have been concerned about the impact of this policy.

Figure 3: Hedonic regression of used ship prices on ship age, country and quarter
dummies.

Despite the importance of a price response, the main insight of this paper in terms

of identifying subsidies is that production patterns are equally important. Figure

4 depicts the evolution of China�s market share. Between 2005 and 2006, China

experiences a large, rapid increase in market share. In this paper, I employ precisely

this rapid increase in production to identify changes in costs that are consistent with

the presence of subsidies. When I come to results, I discuss alternative explanations

for this pattern (e.g. productivity or learning by doing) and claim that they are less

plausible than subsidies. To my knowledge, this is the �rst paper in the subsidy and

dumping detection literature to employ a combination of price and quantity data,

rather than just prices.

14I have unsuccessfully searched extensively in industry magazines for alternative explanations.
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Figure 4: China�s market share.

5 Model Estimation and Detection of Subsidies

To see the main idea behind the subsidy detection method, consider a static, perfectly

competitive market, so that PNBjt = MCjt for all j and t. In that case, to detect

subsidies one would simply look for a break in observed prices in 2006, since prices

are in fact the marginal costs. In my setup, there are two complications: (i) I do

not observe enough prices of new ships, and (ii) there are dynamics in the production

decision. To address (i), I complement with used ship prices; to address (ii) I use the

shipyard�s �rst order condition from its dynamic optimization.

The proposed strategy proceeds in two steps. In the �rst step, I recover the

demand curve that shipbuilders face, which coincides with the value that shipowners

place on entering the shipping industry. Retrieving this willingness to pay for a new

ship amounts to estimating the value function for a new ship, as well as shipowner

expectations. The second step inserts the estimated willingness to pay for a ship into

the optimization problem of shipbuilders to recover their costs.

5.1 Estimation of the Willingness to Pay for a New Ship

In this step, I estimate ship value functions and state transitions. All ship states

are directly observed in the data except for the demand for shipping services, dt.

I construct dt as in Kalouptsidi (2014) by estimating a demand curve for shipping

services and using the intercept. The analysis is replicated in the Appendix, for

completeness. Each estimation task is described below and followed by the results.

All results presented are for Handysize vessels. A time period is a quarter.

15



5.1.1 State Transitions

In order to compute the value of entering the shipping industry, de�ned in (6), I

need shipowner expectations over (sit; st). The transition of sit is known (age evolves

deterministically, while country of built is time invariant). The transition of st is

computationally complex: on one hand the dimension of the state space is enormous

(St has dimension 4�A -whereA is a ship�s maximum age- in the case of four countries,
while bt has dimension J �T which in my sample is in the order of several thousand);
on the other hand, updating bt requires optimal production policies for all shipyards.

Instead of working with the true transitions (as in Kalouptsidi (2014)) I follow Jia

Barwick and Pathak (2012) who assume that st follows a vector autoregressive (VAR)

model. This approach is equivalent to the �rst step of two-step estimation procedures

for dynamic games (e.g. Bajari, Benkard and Levin (2007) and Pakes, Ostrovsky and

Berry (2007)).

To deal with the state dimension, I make the following simplifying assumptions.

First, I replace the �eet distribution, St, with two age groups (S1t ; S
2
t ): the number of

ships below 20 years old and the number of ships above 20 years old.15 I do not use

the distribution of the �eet over country of built because its evolution is extremely

slow and it remains practically �at for a big part of the sample. In addition, I replace

the backlog, bt, with the total backlog Bt =
P

j;l bjtl.
16

I have experimented with several variations of the general time varying vector

autoregression (VAR) model:

st = Ct +Rtst�1 + �t

where �t � N (0;�). I allow the VAR parameters (Ct; Rt) to be di¤erent before

and after 2006: since state transitions are not modeled explicitly, the VAR model

embraces equilibrium features of agents�expectations that are likely to change after

China�s intervention. In particular, since post-2006 shipbuilding capital infrastructure

increases, shipowners know that all else equal the supply of ships has permanently

increased. This change a¤ects their ship valuations and therefore captures any changes

in demand for new ships, brought by China�s policies.

15I have also worked with statistics of the �eet age distribution (total �eet, mean age, variance of
age) and found the results to be robust.
16Ideally, the distribution of shipyards over their characteristics yjt would be part of the state.

Maintaining computational tractability does not allow for such a large state space.
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I examined several speci�cations where (Ct; Rt) vary deterministically (e.g. time

trend) or randomly with time (random walk model for Rt determined by the Kalman

�lter), or are time-invariant. The baseline speci�cation is:

26666664
S1t

S2t

Bt

dt

lt

37777775 =
26666664
cS1

cS2

cB

cd

cl

37777775 1 ft � 2006g+
26666664
cS10

cS20

cB0

cd

cl

37777775 1 ft > 2006g+
26666664
0

0

0

ad

al

37777775 t+
26666664
�S1S1 �S1S2 �S1B �S1d �S1l

�S2S1 �S2S2 �S2B �S2d �S2l

�BS1 �BS2 �BB �Bd �Bl

0 0 0 �d 0

0 0 0 0 �l

37777775 st�1+�t
(10)

and � is diagonal. Note that as discussed above, dt and lt are exogenous to the model

and are una¤ected by the pre/post-2006 regime. In contrast, I allow (S1t ; S
2
t ; Bt) to be

a¤ected by all variables to account for ship entry and exit. The baseline speci�cation

allows only C to change before and after 2006. Even though t appears explicitly

only in the exogenous variables, it a¤ects (S1t ; S
2
t ; Bt) through their dependence on

(dt; lt). I estimate the parameters of interest (C;R;�) via OLS separately for each

variable (note that separate OLS yields identical estimates to Maximum Likelihood

estimation) and work with natural logarithms for (St; Bt). Table 1 reports the results.

All variables are persistent. Signs are also in general as expected: S1 is increasing in

the backlog and demand and decreasing in steel prices (as steel prices increase, exit

increases); S2 is decreasing in S1 as more young ships increase exit and increasing in

demand which leads to less exit; the backlog is increasing in demand. All eigenvalues

of R lie inside the unit circle so that the model is stationary conditional on the trend.

Finally, the post-2006 world�s steady state has signi�cantly higher �eet.17

5.1.2 Ship Value Function

The main object entering the willingness to pay for a new ship in (6), is the ship�s value

function. In order to estimate it, I treat prices of new and used ships as observations

17I also experimented heavily with restrictions on C and R both in terms of before and after
2006, allowing � to be full, as well as parameter restrictions (e.g. time to build might imply that
�S1d = 0 ignoring ship exit). I also employed LASSO in a model where all parameters can change
in 2006 to choose the relevant terms. Finally, I allowed dt to be an AR (2). My main �ndings are
in general robust to many of these experiments. The chosen speci�cation combines the following
desired properties: it is parsimonious, stationary (conditional on the trend) and takes into account
the 2006 break.
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cd ad �d cl al �l

0.4118 0.0077 0.688 0.695 0.0209 0.796
(0:1656)� (0:0051) (0:113)� (0:395) (0:015) (0:091)�

cS1 cS2 cB

pre-2006 -1.47 2.53 -8.49
(0:97) (1:03)� (7:31)

pre-2006 -1.46 2.525 -8.503
(0:976) (1:037)� (7:348)

�S1S1 �S1S2 �S1B �S1d �S1l

1.104 0.0802 0.021 0.0046 -0.003
(0:04)� (0:094) (0:0044)� (0:0035) (0:00097)�

�S2S1 �S2S2 �S2B �S2d �S2l

-0.146 0.806 -0.0068 0.0041 0.0022
(0:043)� (0:1)� (0:0047) (0:0037)� (0:001)�

�BS1 �BS2 �BB �Bd �Bl

0.158 1.066 0.87 0.0754 -0.0094
(0:303) (0:707)� (0:033)� (0:026) (0:0073)

�S1 �S2 �B �b �d

0.0001 0.0001 0.004 0.141 1.225

Table 1: VAR parameter estimates. Stars indicate signi�cance at the 0.05 level.

of the value of entry and the value function respectively. In particular, under the

assumption of a large number of identical potential entrant shipowners, ship prices

are bid up to valuations. The empirical versions of the equilibrium conditions (2) and

(4) are:

PNBjt = E
h
�TjtV

�
sit+Tjt;st+Tjt

�
jsit; st

i
+ �nb (11)

P SHit = V (sit; st) + �
sh (12)

where �sh and �nb are measurement error. Kalouptsidi (2014) employes used ship

prices alone to nonparametrically estimate ship value functions and provides an ex-

tensive discussion on the merits and caveats of this approach, as well as direct and

suggestive evidence against worries of sample selection. To this approach I add here

the new ship contracts dataset and in order to combine (11) and (12) in a single es-
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timation step I follow a di¤erent methodology.18 In particular, I use a �exible linear

sieve approximation for the value function:

V (sit; st) = f (sit; st)

where f (�) is a polynomial function in the ship state (sit; st) and  is a (sparse)
parameter vector. Then:

PNBjt = �TjtE
�
f
�
sit+Tjt ; st+Tjt

�
jsit; st

�
= (13)

= �Tjt
Z
f
�
sit+Tjt ; st+Tjt

�
dP
�
sit+Tjt ; st+Tjt jsit; st

�
� fNB (sit; st)

P SHit = f (sit; st) (14)

P (sit+1; st+1jsit; st) is the state transition and is given by the VAR estimated above.
The parameters  enter (13) and (14) linearly; yet even though (14) can be estimated

in a straightforward manner, (13) requires the computation of the right-hand side

integrals. Indeed, (13) involves the expectation of higher order terms of the following

vector:

st+T = R
T st +

t+TX
k=t+1

Rt+T�k(Ck + ak + �k) (15)

I derive closed-form expressions for the integrals of up to third order terms in the

industry state st in the Appendix.

As the dimensionality of the state (sit; st) is large, computing high order poly-

nomial terms quickly leads to a very large number of regressors in (13) and (14). I

therefore use the LASSO, a method appropriate for sparse regression problems, i.e.

problems that involve a large number of potential regressors, only a small subset of

whom is important in capturing the regression function accurately. LASSO identi�es

the relevant regressors by performing a modi�ed OLS procedure which penalizes a

large number of nonzero coe¢ cients, through regularization by a penalty based on

18Alternatively, approach one could work only with estimated expectations and used ship prices to
estimate the value function and then use new ship prices for external validation. Kalouptsidi (2014)
shows that the three objects are indeed consistent, albeit using only an average new ship price (taken
exogenous).
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the L1 norm of the parameter. Thus  is estimated from :

min


(X
j;t

�
PNBjt � fNB (sit; st)0 

�2
+
X
i;t

�
P SHit � f (sit; st)0 

�2
+ � jj1

)

In this application, the regressors f (sit; st) and fNB (sit; st) are third order polyno-

mials in st and sit, as well as interactions of sit and st. The discount factor is set to

0:9877 which corresponds to 5% annual interest rate.

The �exible nature of this empirical approach implies that the parameters  em-

body equilibrium features which are likely to change in 2006 as agents�valuations

are altered. For example, China�s capital and/or production subsidies may have led

potential shipowners to expect a large increase in the �eet in the coming years, thus

reducing the price of ships today. Therefore, in analogy with the VAR formulation,

I allow the value function to change before and after 2006, by adding all monomials

multiplied by a post-2006 dummy variable. Figure 5 depicts the estimated value func-

tion on the observed states for zero year old ships (the relevant value function for the

value of entry). Consistent with the raw data, Chinese ships are of lower value, with

Japanese ships being of higher value; yet the di¤erences are small.19

Figure 5: Value function of a 0 year old ship. 0.95 bootstrap con�dence intervals.

5.2 Shipbuilding Production Cost Function

I next turn to estimating the shipbuilding cost function. I begin with the simple case

where shipbuilders are static and present the estimation results along with several

19Pointwise con�dence intervals are computed via 500 bootstrap samples, with the resampling
done on the error.
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robustness exercises. I then proceed to the case of dynamic shipbuilders.

5.2.1 Static Shipbuilders

If shipyard j is myopic it solves:

max
Njt2f0;1;:::;Ng

V Ej (st)Njt � c (Njt; yjt; st; �)� �"jtNjt

where "jt � N (0; 1). This is essentially an ordered choice problem and to estimate

the cost function parameters, I maximize the following likelihood function:Y
j;t:Njt=0

Pr (Njt = 0jyjt; st; �)
Y

j;t:Njt=N

Pr
�
Njt = N jyjt; st; �

�Y
n

Y
j;t:Njt=n

Pr (Njt = njyjt; st; �)

(16)

I assume that the shipbuilding cost function takes the following form:

c (Njt; yjt; st; �) = c1 (yjt; st; �)Njt + c2 (yjt; st; �)N
2
jt

with c2 (yjt; st; �) > 0 and (�; �) are the cost parameters of interest. The baseline

speci�cations involve

c1 (yjt; st; �) = �ch0 1 fChinag+ �
ch;post
0 1 ft � 2006;Chinag

+�EU0 1 fEuropeg+ �J01 fJapang+ �K0 1 fS.Koreag+ �1g(yjt; st; t)

and

c2 (yjt; st; �) = c2

where g(yjt; st; t) is a (�exible) function of the shipyard�s characteristics yjt, the in-

dustry state (steel price in particular) st and time, t. Testing that �
ch;post
0 6= 0 provides

evidence of a structural change in China�s cost function, for any value of y, s and N .

I follow Amemiya (1984) and maximize the likelihood over
�
1
�
; �
�

�
rather than (�; �).

I consider Q3-2005 as the �rst quarter of the post-2006 world, consistent with Figures

1 and 3 (results are robust to alternative thresholds around that date). Finally, I

drop shipyards with missing capital measures (docks/berths) so that the end sample
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consists of 4741 observations (all results are robust if the full sample is used).20

Table 2 reports the baseline cost function estimates. In all speci�cations there

is a strongly signi�cant decline in China�s cost after 2006 in the order of 15-20%,

as indicated by the China-POST dummy. Multiplying this parameter with China�s

production, I �nd that between 2006 and 2012 China paid between 2:5 and 5 billion US

Dollars in production subsidies. The estimates imply that the average cost of building

a ship is 38:1 million US dollars, very close to an estimate provided in Stopford (2009)

of 40:5 million US dollars. The results suggest that there is signi�cant convexity

in costs. Backlog is negative, implying cost declines due to economies of scale or

expertise. This �nding is consistent with industry participants�testimony, who claim

that shipyards have incentives to produce ships similar to those they already have

under construction. In addition, costs are decreasing in capital measures, as expected.

Not surprisingly, Europe is the highest cost producer, while either Japan or China

post-2006 are the lowest cost producer depending on the speci�cation.

Speci�cations I and II are the simplest ones; they control for the shipyard�s backlog,

docks/berths, length of the largest dock, as well as a linear time trend.

It is important to control for time-varying factors adequately in order to allevi-

ate the concern that the estimated cost declines may be driven by unobserved time

variation. The results are robust to any parametric function of time I have tried (e.g.

country speci�c time trends, polynomial trends); as an example, Speci�cation III of

Table 2 adds time trends speci�c to China and Japan. Speci�cation IV moves away

from parametric functions of time and adds year dummies; there is still a signi�cant

decline in Chinese costs, not surprisingly somewhat lower, at 14%. The most �exi-

ble speci�cation in terms of time variation is to estimate China-year dummies. As

expected, estimates (reported in the Online Appendix) are more noisy, yet as shown

in Figure 6, there is a large drop in costs between 2005 and 2006. Perhaps more im-

portantly, there seem to indeed be two regimes, before and after 2006, with the post

regime involving lower costs. Clearly, one can argue that an arbitrary productivity

process can also be consistent with these results; such a productivity process, however,

needs to feature a discontinuity in 2006 in China alone. In addition, the production

process of bulk carriers is old, without any important technological advances.

20As V Ej (st) is estimated, to compute standard errors I create 500 bootstrap samples by re-
drawing (Njt; yjt; st) and combine them with the 500 samples drawn to compute con�dence intervals
for V Ej (st). I have also used the block-boostrap where I drew shipyards with replacement, and
standard errors are una¤ected.
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Figure 6: China-Year Dummies.

The assumption that the convexity parameter c2 is constant is also not crucial.

Speci�cation V of Table 2 makes c2 a linear function of docks/berths, to allow con-

vexity to depend on capital measures. Results are robust. At the average number of

docks/berths the convexity parameter becomes 1:1, close to most estimates. I also

allow c2 to be country speci�c; results are reported in the Online Appendix due to

space limitations, and imply the same retrieved subsidies.

Speci�cation VI of Table 2 shows that no signi�cant changes occur in 2006 in other

countries. Indeed, I add a Japan-post 2006 dummy and �nd that Japan�s costs seem

to increase slightly, but the coe¢ cient is not signi�cant (similar �ndings are obtained

if other countries are used, with the caveat of having few observations on Europe and

S. Korea to begin with).

Results are also robust to adding several covariates, such as the shipyard�s: age, to-

tal TEU produced, total past production (capturing experience), dummy variables for

young ages to capture learning by doing (documented in military ships in Thompson

(2001)) somewhat more �exibly, administrative region, number of employees (reported

only in a subset of yards).21

I next reestimate costs using only shipyards that already existed in 2001. Table 3

reports the results, which show that the same cost declines are retrieved when only

old shipyards are considered. This �nding, speaks to the following two concerns:

(i) cost declines are driven by the new yards built in 2006 which perhaps are more

modern and have entirely di¤erent production capabilities (though, to reiterate, bulk

ship building technology is not subject to technological innovations often), (ii) cost

declines are driven by �rms�optimizing production under learning by doing (though in

21Working with tons produced, rather than ships, and thus using a tobit model also does not alter
�ndings.
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the next section I allow for a narrow form of expertise accumulation). Indeed, existing

shipyards do not change technology and have already gone down their learning curve.

As regional governments in China can play an important role, I consider the pos-

sibility that they implement the national subsidization plan at di¤erent dates and

magnitudes. As no o¢ cial documentation was found on implementation dates, I con-

sider the �rst quarter that new shipbuilding docks/berths come online and divide

regions into three groups. I present results in the Online Appendix, which are similar

to prior speci�cations. It seems that the last region to implement, also has the lowest

subsidy level.

One may be concerned that the estimated cost declines are solely driven by the

inherent discontinuity in the estimated V Ej (st) due to the di¤erent V AR model and

LASSO coe¢ cients. To address this concern I estimate costs using the average quar-

terly price (across shipyards and countries) of a new ship, obtained from Clarksons.

I �nd that estimated subsidies are signi�cant and of the same magnitude.

Note that my model implies that the Chinese government gives the same subsidy

to all yards. Suppose instead that the government gives subsidy x + �jt to yard j,

where �jt � N (0; ��) across j and t. In that case, the estimated cost parameters

� are still consistent (Wooldridge (2001)) and the estimated subsidy, �ch;post0 , is the

average subsidy across yards (my estimate for �, however, is no longer consistent).

More complicated models of targeted subsidies are more di¢ cult to handle.
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I II III IV V VI

China
32.4
(5:75)��

33.34
(5:95)��

33.56
(5:8)��

31.23
(5:13)��

36.83
(6:81)��

32.23
(5:84)��

China,POST
-7.67
(2:42)��

-7.63
(2:54)��

-8.01
(3:82)��

-4.21
(1:85)��

-8.85
(3:06)��

-6.51
(2:63)��

Europe
33.14
(6:04)��

34.14
(6:31)��

36.23
(7:61)��

31.76
(5:31)��

37.21
(7:08)��

33.38
(5:99)��

Japan
25.4
(3:78)��

25.94
(3:78)��

26.02
(4:16)��

28.14
(3:62)��

30.02
(4:68)��

25.14
(3:58)��

Japan, POST
1.085
(1:47)

S. Korea
31.34
(5:52)��

32.41
(5:44)��

34.85
(7:3)��

32.46
(4:54)��

34.29
(5:85)��

32.22
(5:43)��

Backlog
-0.71
(0:18)��

-0.71
(0:18)��

-0.72
(0:18)��

-0.39
(0:17)��

-0.8
(0:202)��

-0.66
(0:17)��

Docks/Berths
-0.17
(0:17)��

-0.17
(0:18)

-0.16
(0:16)

Max Length
-0.0011
(0:0011)

-0.0011
(0:0012)

-0.001
(0:0011)

Steel price
0.38
(0:24)

0.38
(0:23)

0.38
(0:24)�

0.87
(0:5)��

0.44
(0:24)�

0.36
(0:22)

t
0.33
(0:06)��

0.33
(0:06)��

0.28
(0:084)��

0.36
(0:07)��

0.3
(0:06)��

China*t
0.068
(0:13)

Japan*t
0.062
(0:09)

c2
1.31
(0:34)��

1.31
(0:35)��

1.33
(0:36)��

0.71
(0:32)��

1.22
(0:33)

c2 � (Docks/Berths)
0.32
(0:097)��

�
14.15
(3:48)

14.11
(3:85)

14.36
(3:59)

7.49
(3:3)

17.08
(4:15)

13.1
(3:27)

Year Dummies NO NO NO YES NO NO

Table 2: Baseline static cost function estimates. Time t measured in quarters. Coun-
tries refer to country dummy variables. Stars indicate signi�cance at the 0.05 level.
Standard errors computed from 500 bootstrap samples.
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China
41.02
(10:61)��

China,POST
-9.15
(4:1)��

Europe
41.65
(11:19)��

Japan
30.5
(6:51)��

S. Korea
38.1
(9:52)��

Backlog
-1.002
(0:34)��

Docks/Berths
-0.375
(0:26)

Max Length
0.0006
(0:0023)

Steel price
0.36
(0:36)

t
0.38
(0:097)��

c2
1.84
(0:63)��

�
18.69
(6:16)

Table 3: Static cost function estimates with yards existing prior to 2001. Time t
measured in quarters. Countries refer to country dummy variables. Stars indicate
signi�cance at the 0.05 level. Standard errors computed from 500 bootstrap samples.
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5.2.2 Dynamic Shipbuilders

If shipyard j takes into account the dynamic feedback of the backlog, optimal produc-

tion obeys (9). To estimate therefore the parameters (�; �), I maximize the likelihood

(16) where the choice probabilities are (to ease notation, rename the shipyard state

x = (yjt; st) and x0 = (yjt+1; st+1) and suppress (j; t)):

Pr (N = 0jx; �) = 1��
�
1

�
[V E (x) + c (0; x; �)� c (1; x; �) + � (Q (x; 1)�Q (x; 0))]

�
(17)

Pr
�
N = N jx; �

�
= �

�
1

�

�
V E (x) + c(N � 1; x; �)� c

�
N; x; �

�
+ �

�
Q
�
x;N

�
�Q

�
x;N � 1

����

Pr (Njt = njx; �) = �
�
1

�
[V E (x) + c (n� 1; x; �)� c (n; x; �) + � (Q (x; n)�Q (x; n� 1))]

�
�

��
�
1

�
[V E (x) + c (n; x; �)� c (n+ 1; x; �) + � (Q (x; n+ 1)�Q (x; n))]

�
; for n = 1; :::; N � 1

Maximizing this likelihood function would be trivial if the continuation value

Q (x; n) were known. This is the standard di¢ culty of estimating dynamic setups

and to address it, I adopt a hybrid approach based on the recent literature on esti-

mation of dynamic setups. In particular, �rst I recover the shipyard�s optimal policy

N� (yjt; st; "jt) nonparametrically using choice probabilities, in analogy to the Hotz

and Miller (1993) inversion and the �rst stage of Bajari, Benkard and Levin (2007).

Then, I am able to obtain the ex ante optimal per period payo¤s in closed-form,

which allow me to recover the shipyard�s value function. I next describe my approach

in detail.

Let

A (x; n) � 1

�
[V E (x) + (c (n; x)� c (n+ 1; x)) + � (Q (x; n+ 1)�Q (x; n))] (18)

for n = 0; 1; :::; N � 1. I rewrite the choice probabilities (17) as follows:

Pr (N� = 0jx) � p0 (x) = Pr (" � A (x; 0)) (19)
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Pr (N� = njx) � pn (x) = Pr (" � A (x; n� 1))� Pr (" � A (x; n))

Pr
�
N� = N jx

�
� pN (x) = Pr

�
" � A

�
x;N � 1

��
The function A (x; n) can be recovered from the observed choice probabilities us-

ing:22

A (x; n) = ��1

 
1�

nX
k=0

pk (x)

!
; for n = 0; 1; :::; N � 1 (20)

where � (�) is the standard normal distribution. Clearly, A (x; n) is (weakly) decreas-
ing in n. Most important, if A (x; n) is known, so is the optimal policy: For any

(x; "),

N� (x; ") = bn; such that " 2 [A (x; bn) ; A (x; bn� 1)]
Once the optimal policy is known, the value function can be recovered. Indeed,

consider shipyard j�s Bellman equation (7) which I repeat here for convenience:

W (x; ") = max
N2f0;1;:::;Ng

V E (x)N � c (N; x)�N"+ �E"0;x0 [W (x0; "0) jN; x]

where as a reminder,

E"0;x0 [W (x0; "0) jN; x] = Q (x;N)

Using the optimal policy N� (x; "), the value function becomes:

W (x; ") = V E (x)N� (x; ")�c (N� (x; ") ; x)�N� (x; ") "+�E"0;x0 [W (x0; "0) jN� (x; ") ; x]

Similarly, the ex ante value function can be written as

E"W (x; ") � W (x) = E" [� (x;N
� (x; ")) + �E"0;x0 [W (x0; "0) jN� (x; ") ; x]]

where

� (x;N� (x; ")) = E" [V E (x)N
� (x; ")� c (N� (x; ") ; x)�N� (x; ") "] (21)

is the ex ante per period pro�t. If � (x;N� (x; ")) is known then one can solve for the

22To show this, begin with p0 (x) = 1 � � (A (x; 0)), so that A (x; 0) = ��1 (1� p0 (x)).
Next, p1 (x) = � (A (x; 0)) � � (A (x; 1)) = 1 � po (x) � � (A (x; 1)), so that A (x; 1) =
��1 (1� p0 (x)� p1 (x)). The general case follows by induction.
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ex ante value function from the following relationship:

W (x) = E"� (x;N
� (x; ")) + �E";x0 [W (x0) jN� (x; ") ; x] (22)

Solving (22) can be done in several ways, such as state space discretization and ma-

trix inversion, or parametric approximation; I opt for the latter because of the large

dimension of the state space. In particular, I approximate the value function by a

polynomial function, so that:

W (x) = �f (x)

then (22) becomes

�f (x) = E"� (x;N
� (x; ")) + ��E";x0 [f (x

0) jN� (x; ") ; x]

or

(f (x)� �E" [f (x0) jN� (x; ") ; x]) � = E"� (x;N
� (x; ")) (23)

and I can therefore estimate � via LASSO. I now only need to show howE"� (x;N� (x; "))

is computed.

Under the assumption of quadratic costs, ex ante per period payo¤s become:

� (x;N� (x; ")) = E"
�
V E (x)N� (x; ")� c1 (x; �)N� (x; ") + c2 (x; �)N

� (x; ")2 � �N� (x; ") "
�

= (V E (x)� c1 (x; �))E"N� (x; ") + c2 (x; �)E"N
� (x; ")2 � �E" [N� (x; ") "]

I show in the Appendix that

E"N
� (x; ") =

N�1X
n=0

� (A (x; n)) (24)

E" [N
� (x; ")]2 = 2

NX
n=1

n� (A (x; n� 1))�
N�1X
n=0

� (A (x; n)) (25)

E" [N
� (x; ") "] = �

N�1X
n=0

� (A (x; n)) (26)

where � (�) is the standard normal density.
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To sum up, the estimation proceeds as follows (further details are in the Appendix):

1. Estimate A (x; n) using (20)

2. Compute the statistics of the optimal production in (24), (25) and (26)

3. At each guess of the parameters (�; �) in the optimization of the likelihood (16):

(a) Solve for the approximate value function parameters � from (23)

(b) Using �, compute the choice probabilities in the likelihood and update

(�; �).

Table 4 gives the estimated cost function of dynamic shipyards. The implied sub-

sidy is in the order of 20% or 5:6 billion US dollars paid between 2006 and 2012,

similarly to the case of static shipyards. Also in analogy to static shipbuilders, costs

are decreasing in the current backlog, consistent with economies of scale or accu-

mulation of expertise. More docks/berths, as well as longer docks decrease costs.

Interestingly, the estimated cost function of dynamic shipyards is signi�cantly more

convex than the one of static shipyards. Since accumulating a backlog decreases fu-

ture costs, higher cost parameters are needed to justify the observed low production

levels.

Finally, I compute the expected value of all new Chinese shipyards that are born

between 2006 and 2012, which equals 8:5 billion US dollars. One can think of this

amount as a rough estimate of the order of magnitude of the costs of building these

shipyards, which may be close to the �xed cost subsidies of China�s 2006 plan.

In summary, the static and dynamic formulations yield similar results in terms

of subsidy detection. As discussed in the following section, however, the two models

have di¤erent quantitative predictions regarding the implications of subsidies.
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China
46.12
(9:08)��

China,POST
-8.9
(3:32)��

Europe
47.42
(9:62)��

Japan
35.88
(5:76)��

S. Korea
45.63
(8:31)��

Backlog
-0.84
(0:23)��

Docks/Berths
-0.22
(0:15)

Max Length
-0.002
(0:0014)

Steel price
0.36
(0:24)

t
0.25
(0:067)��

c2
2.53
(0:69)��

�
19.75
(5:26)��

Table 4: Dynamic cost function estimates. Time t measured in quarters. Coun-
tries refer to country dummy variables. Stars indicate signi�cance at the 0.05 level.
Standard errors computed from 500 bootstrap samples.

5.2.3 Comparison to the WTO Subsidy Detection Method

Before turning to the impact of subsidies on industrial evolution, I compare my de-

tection approach to the price-gap approach, which is followed in WTO subsidy cases.

The price-gap approach, compares product end-user prices to reference prices (i.e.

prices that would prevail in markets without subsidies); yet the latter can be tough to

compute.23 In the case of ships, my understanding of the price-gap approach is that

it would essentially compare Chinese to world prices. Table 5 presents results from

a hedonic regression of (the few observed) new ship prices. The price-gap approach

would detect a 7:3% subsidy (i.e. the discount of Chinese ships), less than half of my

23See Haley and Haley (2013) for a description of this approach and its caveats.
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New Ship Prices Used Ship Prices
parameter s.e. parameter s.e.

constant 15 (3:5)�� 21.95 (1:36)��

China -3.09 (0:52)�� -0.83 (0:67)��

Japan -2.16 (0:93)�� -0.061 (0:52)��

Europe -1.36 (0:59)��

delivery lag -2.08 (0:61)��

age -0.78 (0:015)��

quarter dummies YES YES

Table 5: Hedonic regression of new ship prices.

magnitude. As Haley and Haley (2013) point out, however, there would be e¤orts to

correct for quality di¤erences. Quality corrections are performed on a case by case

basis; one thought would be to explore price di¤erences in the second-hand market

where prices may be re�ecting quality di¤erences only, rather than cost di¤erences.

Table 5 presents results from a hedonic regression of used ship prices and shows that

Chinese ships are on average 3:5% cheaper in the second-hand market. My interpre-

tation is that the price-gap approach would have now produced about 4% subsidies,

which are dramatically lower from my robustly estimated 15-20%.

6 Quantifying the Implications of Subsidies

What is the impact of government subsidies on industry prices, production reallocation

across countries, costs and consumer surplus? In addition, how do di¤erent types of

subsidies (capital vs. production) a¤ect the above? I answer these questions in the

context of China�s intervention in shipbuilding by using my model to predict the

evolution of the industry in two counterfactual scenarios: �rst, no Chinese subsidies

of any kind (i.e. no 2006 plan altogether); second, Chinese capital subsidies only (i.e.

remove (prohibited) production subsidies alone and keep docks/berths expansions and

new shipyards).

To implement the �no subsidies�counterfactual, I assume that shipowners main-

tain their pre-2006 expectations and ship value functions, while shipyards keep their

pre-2006 capital structure (i.e. docks/berths and length) and costs. To implement

the �capital subsidies only�counterfactual, I assume that shipowners switch to the

post-2006 expectations and value functions. In other words, I assume that shipowners
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understand that a change occurred in 2006; yet they can�t distinguish production vs.

capital subsidies (which may be reasonable given production subsidies are secret).

Shipyards keep their pre-2006 cost functions and their post-2006 capital structures.

I feed the observed post-2006 values for shipping demand and steel prices into the

model and simulate shipyard optimal production and ship prices. Details on the

implementation of these counterfactuals can be found in the Appendix.

As shown in Table 6, both production and capital subsidies lead to substantial

reallocation in production, by increasing China�s market share and decreasing Japan�s

share. Interestingly, production subsidies seem to have a much larger impact than

capital subsidies: if production subsidies are removed, China�s market share is cut to

half falling from 50% to 25%; if capital subsidies are removed on top, China�s share

drops to 18:5%. Similarly, Japan�s share increases from 43% to 65% in the absence

of Chinese production subsidies and to 74% in the absence of both production and

capital subsidies. This �nding is due to the high (convex) costs estimated, which

rationalize the low observed production levels. Figure 7 plots China�s total backlog

in the three counterfactual worlds and tells the same story.24 A further interesting

feature of the post-2006 period is that demand for freight services boomed and led (at

least in part) to a shipping investment boom (viewed in Figure 7, as well as ship values

in Figure 5). The crisis in 2008 led in turn to a crash. Figure 7 implies that China�s

subsidies ampli�ed the boom and bust in shipping investment in the last decade.

Figure 7: Backlog and Ship Price, China, Counterfactuals.

24This �nding does not seem to depend on the assumption that c2 is constant. I replicated the
counterfactuals in the case of static shipyards under cost speci�cation V of Table 2, where c2 is linear
in the number of docks/berths, and �nd that still production subsidies have a more substantial impact
than capital subsidies.
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Capital & Production
Subsidies

Capital
Subsidies

No
Subsidies

Market Share, China 50% 25.1% 18.4%
Market Share, Japan 43.4% 64.8% 73.9%
Ship Price, China 23.8 24.5 25
Ship Price, Japan 25.5 26.1 26.6

Japan, Shipyard Pro�ts 95.1 101.3 105.4
Freight Rate (price per voyage) 1.25 1.27 1.28
Consumer Surplus (shippers) 5617 5378 5331
Industry AVC 0.42 0.54 0.65

Table 6: Counterfactual results. Prices, surplus and cost measured in million US
Dollars. Pro�ts and surplus refer to the total amount between 2006 and 2012.

Table 6 also compares ship prices in all counterfactual worlds and shows that ship

prices are higher for all countries in the absence of China�s subsidization plans (by

about 2% and 5% in the two counterfactuals respectively). This is not surprising,

given that China�s subsidization shifted supply outward. Figure 7 plots ship prices

for China (the behavior of Japanese ships�prices is very similar).

Next, I turn to costs, pro�ts and shipper surplus, shown in the lower half of Table

6. Chinese subsidies decrease pro�ts of other countries by moderate amounts; for

example, Japan�s pro�ts fall by 6:5% (11%) because of Chinese production (production

and capital) subsidies between 2006 and 2012. In this model, shipowners neither

gain, nor lose from subsidies: because of the free entry condition in shipping, they

are always indi¤erent between buying a ship or not. Shippers of cargo, however, gain

from subsidies as they lead to higher shipbuilding production and thus to a larger

�eet. I use the demand curve estimated in the Appendix to compute shipping prices

and shipper surplus. This cargo shipping demand curve gives the price per voyage

as a function of the total number of voyages. I assume that there is a constant �eet

utilization rate to map the �eet into voyages. As shown in Table 6, the freight rate is

moderately higher (by 2% and 3% respectively) in the absence of Chinese subsidies.

The di¤erence in prices, however, increases over time between 2006 and 2012: because

of time to build it takes time until the di¤erent worlds lead to di¤erent �eet levels.

Indeed, between 2009 and 2012 prices are higher by 4% and 5% respectively. As a
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result, cargo shippers bene�t from Chinese subsidies; their consumer surplus is higher

by 4% (5%) because of production (production and capital) subsidies and increases

over time (between 2009 and 2012 consumer surplus is higher by 7% (8%)). Between

2006 and 2012 production subsidies cost about 5:6 billion US dollars and resulted

in consumer surplus gains of 240 million US dollars. This calculation implies that

the bene�ts of subsidies within the maritime industries are minimal and perhaps the

Chinese government is aspiring to externalities to di¤erent sectors (e.g. steel, defense)

or, even, national pride (Grossman (1990)).

Next, I turn to the cost implications of subsidies. I compute the average cost of a

ship at the industry level and �nd that as expected, subsidies decrease costs of produc-

tion. Thus, looking at the last row of Table 6 one might think that subsidies bene�t

the industry by better aligning market share and costs. If I decompose the average cost

to subsidies and market share allocation, however, this picture is entirely di¤erent.

Indeed, consider the cost function cjN + cN2, for j 2 fChina, EU, Japan, S.Koreag,
which for j =China becomes (cchina � s)N + cN2 post-2006. The change in the in-

dustry average cost because of subsidies is equal to a sum of two terms: the �rst is

s NChina
NChina+NEU+NJapan+NSK

, while the second includes all other terms and is related to

the reallocation of production and market share. As shown in Table 6, the change

in industry average cost brought about by production subsidies is 0:12 million. The

term s NChina
NChina+NEU+NJapan+NSK

equals 4:44 million, implying a negative reallocation ef-

fect equal to 0:12 � 4:44 = �4:32 million. In other words, the subsidization in costs
should have led to a much larger decline in the industry average cost of production;

but as subsidies shift production away from the low-cost Japanese shipyards towards

the high-cost Chinese shipyards, the industry produces at a much higher average cost

net of subsidies.

Finally, there are two questions of interest related to the importance of allowing

for dynamics in shipbuilding production. First, how important is the interaction

of subsidies and dynamics in production? To answer this question, I simulate the

model setting the impact of backlog in the cost function equal to zero. I �nd that

reallocation would have been somewhat lower in the absence of dynamics: about 7%

of China�s increase in market share can be attributed to the dynamic production

feedback. As increased backlog decreases costs, market share gains multiply and

lead to more reallocation favorable to China and unfavorable to Japan. The second

question of interest, is whether the static model leads to the same counterfactual
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results. To answer, I use speci�cation II of Table 2 to simulate the model. I �nd that

even though the static and dynamic models yield similar results in terms of detecting

subsidies, they lead to di¤erent predictions regarding the implications of subsidies. In

particular, I �nd that the static model leads to signi�cantly more reallocation than

the dynamic model: China�s loses 62% (73%) of its market share in the absence of

production (production and capital) subsidies, while Japan�s share almost doubles.

This di¤erence is mainly driven by the di¤erent cost function, which is higher and

more convex in the case of dynamic shipyards.

7 Conclusion

Industrial trade policies can have a substantial impact on the evolution of industries.

To understand this impact, one needs to �rst know what policies are in place. This

paper detects production subsidies and quanti�es their impact for the case of world

shipbuilding. I �nd strong evidence consistent with China having subsidized the

shipbuilding industry by decreasing �rm production costs by 15-20%. In my model,

the government gives subsidies because of �exogenous� reasons (i.e. there are no

factors such as learning spillovers between Chinese �rms). This may be reasonable

because of shipbuilding�s important externalities to other sectors, such as the steel

industry or the readiness of the military sector. Yet, understanding the impact of

subsidies when such considerations are in place, provides an interesting avenue for

future research.

8 Appendix

8.1 Creation of shipping demand state

I estimate the inverse demand for shipping services via instrumental variables regres-

sion, to create the state dt. The analysis follows Kalouptsidi (2014). The empirical

analogue of the demand curve in (1) chosen is:

Pt = �
d
0 + �

d
1X

d
t + �

d
2Qt + "

d
t (27)
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where Pt is the average price per voyage observed in a quarter, Xd
t includes demand

shifters, whileQt is the total number of voyages realized. Xd
t includes the index of food

prices, agricultural rawmaterial prices and minerals prices (taken fromUNCTAD), the

world aluminum (taken from the International Aluminum Institute) and world grain

production (taken from the International Grain Council), as well as the Handymax

�eet (as a potential substitute). The �rst stage instruments include the total �eet and

its mean age. Both instruments are key determinants of industry supply capacity, as

ship operating costs are convex and depend on age. Instrumentation corrects both for

endogeneity, as well as measurement error (I observe the number of voyages realized,

rather than ton-miles).

1st stage 2nd stage
parameter parameter/106

constant
-2731.3
(790:28)��

-1.403
(1:26)

food P
0.61
(0:693)

0.0051
(0:0038)

agr raw mat P
1.35
(0:48)��

0.0022
(0:0028)

mineral P
-0.43
(0:33)

0.0014
(0:0018)

aluminum prod
-0.28
(0:11)��

0.0012
(0:00057)��

grain prod
-0.86
(0:9)

0.0047
(0:0044)

subst �eet
0.38
(0:15)��

-0.0022
(0:00052)��

�eet
0.55
(0:22)��

mean age �
96.67
(18:5)��cQt -0.0033

(0:001)��

Table 7: Demand IV regression results.

Table 7 reports the results. The impact of all shifters is lumped into the state
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variable dt (the residual b"dt is included in dt as it captures omitted demand shifters):
dt =

c�d1Xd
t +

b"dt
8.2 Derivation of state expectations in ship value function

I derive the expressions required for the LASSO estimation of the value functions of

Section 5:1:2. Remember that I approximate the value function with a polynomial

function, so that:

V (xt) = f (xt) =
dX
i=1

ix
(i)
t

where xt = (sit; st), and x
(i)
t are Kronecker products, so that x(2)t = xt 
 xt, x(3)t =

x
(2)
t 
 xt, etc. Then, note that (13) can be written as:

PNBjt = �TjtE
�
f
�
xt+Tjt

�
jxt
�
= �Tjt

dX
i=1

iE
�
x
(i)
t+Tjt

jxt
�

(28)

The conditional expectation is only necessary for st since sit evolves deterministi-

cally. I use the general VAR model (6) to get that:

st+T = � (t+ T; t) st +
t+TX
k=t+1

� (t+ T; k) (Ck + �k)

where

� (t+ T; k) =

(
Rt+TRt+T�1:::Rk+1; for k < t+ T

I; for k = t+ T

For example, since here I set Rt = R, all t, I get (15) of the main text.

The above expression takes the form:

st+T = A+ v
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where

A = � (t+ T; t) st +
t+TX
k=t+1

� (t+ T; k)Ck

v =

t+TX
k=t+1

� (t+ T; k) �k

Note that conditional on st, A is constant. Moreover, v is zero-mean normal with

covariance

�v = Ev
0v =

t+TX
k=t+1

Rt+T�k� (R0)
t+T�k

Therefore, (28) becomes:

PNBjt = �Tjt
dX
i=1

iE
�
(A+ v)(i) jst

�
I next compute the conditional expectations for up to third order terms:

E (A+ vjst) = A

E
�
(A+ v)(2) jst

�
= A(2) + vec (�v)

E
�
(A+ v)(3) jst

�
= A(3) + A
 vec (�v) + vec (�v)
 A+ Tmm2A
 vec (�v)

where vec (x) denotes the vector formed by stacking the columns of x one after the

other; given a L � n matrix A, TLn is an Ln � Ln matrix de�ned by TLnvec (A) =
vec (A0). The �rst of the above equations is straightforward. To prove the second,

use:

E
�
(A+ v)(2) jst

�
= E

�
(A+ v)(2)

�
= A
 A+ A
 E (v) + E (v)
 A+ Ev(2)

It is easy to see that Ev(2) = vec (Evv0) = vec (�v) using the property

vec (BXC) = (C 0 
B) vec (X)
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Finally, I prove the third order equation. Note that

E
�
(A+ v)(3) jst

�
= A
 E (A+ v)2 + Ev 
 (A+ v)2

= A

�
A(2) + vec (�v)

�
+ E (v 
 A
 v) + E (v 
 v 
 A) + Ev(3)

Ev(3) is zero since v is Gaussian. Moreover,

E (v 
 A
 v) = Tmm2 
 Ev(2)

Indeed, if B and C are matrices of dimensions (L; n) and (n; q) respectively, then

B 
 C = Tpl (C 
B)Tnq

8.3 Statistics of the Optimal Production

To derive (24) I use (19) to get:

E"N
� (x; ") =

NX
n=1

npn (x) =
N�1X
n=1

n [� (A (x; n� 1))� � (A (x; n))] +N�
�
A
�
x;N � 1

��
=

N�2X
n=0

(n+ 1)� (A (x; n))�
N�1X
n=1

n� (A (x; n)) +N�
�
A
�
x;N � 1

��
= �(A (x; 0)) +

N�2X
n=1

� (A (x; n)) + �
�
A
�
x;N � 1

��
=

N�1X
n=0

� (A (x; n))

Equation (25) follows similarly. Finally, let � (") denote the standard normal

density. Then, Z b

a

"� (") = � 1

2
p
�

Z b

a

de�
1
2
"2 = � (a)� � (b)
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and therefore:

E""N
� (x; ") =

Z
"N� (x; ")� (") d" =

=

N�1X
n=1

n

Z A(x;n�1)

A(x;n)

"� (") +N

Z A(x;N�1)

�1
"� (")

=
N�1X
n=1

n [�(A (x; n))� � (A (x; n� 1))]�N�
�
A
�
x;N � 1

��
= �

N�1X
n=0

�(A (x; n))

8.4 Estimating costs for dynamic shipbuilders: Details

I provide details on each step performed when estimating the cost function of dynamic

shipyards.

Step 1: Estimate A (y; s; n) using (20). In this step, I �rst compute the choice
probabilities fpn (yjt; st)gNn=0 from observed frequencies. I also include a post-2006

dummy in the state to capture di¤erences in the policy function before and after

2006. As is common in dynamics applications, there are not many observations for all

n = 0; 1; :::; N at each state (yjt; st). To overcome this sparsity, I �rst cluster the data

�nely, using the kmeans algorithm, and compute frequencies on this subset of states.

Second, I smooth the frequency matrix using kernels. In particular, to compute the

choice probability pn (x) at state x = (yjt; st), I use the following formula:

pn (x) =
X
x0

w (x0 � x) epn (x0)
where epn (x) is the observed frequency count of n at state x and w (�) is a kernel
that appropriately weights the distance of x from every other state x0. For numerical

states (backlog, docks/berths, length, time, �eet, total backlog, demand, steel price)

I use normal kernels with diagonal covariance. For categorical states (country and

post-2006 dummy) I use the following kernel:

w (x0 � x) =
(
1� h; if x0 = x
h=kx; if x0 6= x

41



where kx is the number of values that x can take (in the case of country it�s 4, in

the case of the post dummy 2) and h represents the bandwidth of the kernel. As

h gets close to 0, this kernel weights states that share the same variable x. I also

experimented with parametric speci�cations for A (y; s; n). In particular, I estimated

an ordered probit model using directly the production data, so that:

A (x; n) = �f (x) + n

while the observed variables are the production values given by

N� (x; ") = bn; such that " 2 [A (x; bn) ; A (x; bn� 1)]
I estimate � and n for n = 0; :::; N � 1 via Maximum Likelihood. This speci�cation

is �exible in terms of n but less so in terms of (y; s).25 It overall gives similar results

to the nonparametric speci�cation above. Finally, I chose N = 10, since 99:75% of

observations involve N � 10.
Step 2: Compute the terms EN�, EN�2, E"N using (24), (25) and (26)

Step 3: At each guess of the parameters (�; �) in the optimization of the likelihood
(16):

Step 3a: Solve for the approximate value function parameters � from (23). Note

that the choice probabilities require the continuation value Q (x; n) = �E [f (x0) jn; x].
To estimate � from (23) I need

E";x0 [f (x
0) jN� (x; ") ; x] = �

NX
n=0

pn (x)Ex0 [f (x
0) jn; x] (29)

I use polynomials of third order in all variables (I have also tried fourth order which

doesn�t alter the results). The industry state s evolves by the estimated VAR model

described in Section 5.1.1, while the expectations of its polynomial powers are given

in Appendix 8.3. I assume that the shipyard�s individual backlog, bjt, transitions as

25The plot of n with respect to n exhibits small deviation from linearity. This is consistent with
the static model where

A = ��1
�
1

�
(V E � c1 � c2 (2n+ 1))

�
This is relevant in case one thought that (in the static case) imposing both a distributional assumption
on "�s, as well as a parametric form on c (n) is restrictive.
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follows:

bjt+1 = (1� �) bjt + n

�% of the backlog is delivered and period t�s orders n enter the backlog. I experi-

mented extensively with the above transition rule. In particular, I�ve tried models

of time-varying � (e.g. � is drawn from a beta distribution estimated from the data

whose mean can depend on the shipyard�s current backlog, docks/berths or length;

alternately, � is taken as a discrete random variable with probabilities estimated from

the data; in other experiments, I used deliveries, instead of �, described by a binomial

random variable whose parameters can again depend on shipyard observables). It was

found that the simplest model where � is taken constant over shipyards and time and

equal to the sample mean (which is 10%) performs equally well to more complex mod-

els (and even better than several). Given the state transitions it is straightforward to

compute (29). I estimate (23) using the LASSO in two ways. First, call the LASSO

within the likelihood maximization with the regularization parameter chosen using

Belloni and Chernozhukov (2011). Second, estimate (23) with LASSO using pro�ts

obtained from the static cost estimates. The goal here is to recover which polynomial

terms should be kept. I then run OLS within the likelihood with only these terms

(and repeat the estimation for many values of the regularization parameter). Results

are overall robust to all of the above.

Step 3b: Using �, compute choice probabilities in the likelihood and update (�; �).
A concern in two-step approaches to dynamic frameworks is that the �rst stage

policy functions (in this case, the nonparametric A (x; n) that I recover) may be di¤er-

ent from the optimal policy computed using the true parameters and value function,

i.e. from (18). To check this, I compute A (�) from (18) and �nd that it is close to

the its �rst stage estimate. I then re-optimize the likelihood using the new A (�). The
parameters that I report result from this loop.

8.5 Counterfactual Computation

There are two steps in the implementation of the counterfactual scenarios presented in

Section 6. First, I compute the equilibrium of the model in each scenario (if shipyards

are static this step is skipped). Second, I simulate the model using the observed paths

of demand and steel prices which are exogenous. Note that if one is only interested in

the �no subsidies�counterfactual, one can simply use the pre-2006 expectations and
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value functions and simulate the model.

To predict how the industry would evolve under di¤erent counterfactual scenarios

I need to obtain shipyards�optimal policies and value functions under each scenario.

I can no longer use the estimated VAR for state transitions, since this formed an

approximation to expectations that hid equilibrium features. I therefore turn to the

following state transitions for (S1t ; S
2
t ; Bt), where S

1
t is the number of ships younger

than 20 years old, S2t is the number of ships older than 20 years old and Bt is the

total backlog:

S1t+1 = �Bt + (1� �1t)S1t (30)

S2t+1 = S2t + �1tS1t � � (st)
Bt+1 = (1� �)Bt +

X
j

Njt (31)

where � (st) is the number of ships that exit at state st, �1t is the percentage of ships

that transit from 19 years old and 3 quarters to 20 years old and � is the percentage of

the backlog that is delivered, consistent with the individual backlog transition used in

the estimation and described in Appendix 8.5. In words, the number of young ships

S1t+1 equals last period�s young ships plus deliveries from the total backlog, minus

exiting ships (as documented in Kalouptsidi (2014) there is virtually no exit in ships

younger than 20 years old). The number of old ships S2t+1 equals last period�s old

ships plus the aging ships minus exiting ships. Finally, total backlog Bt+1 equals last

period�s total backlog minus deliveries, plus total new ship orders. I calibrate �1t to

3% which is the sample average. To predict ship exit � (st) I follow Kalouptsidi (2014)

where the number of exiting ships is regressed on the industry state (in particular,

log �t = ��st); note that exit rates are extremely low (even during the 2008 crisis).

Demand dt and steel price lt retain their original transition processes, since these are

exogenous to this model.

To �nd the equilibrium of the model in any of the counterfactual worlds I use

a standard �xed point algorithm with the goal of recovering the shipyard�s optimal

policy function p�n (x), for all n and x = (y; s), as well as the shipyard�s value function

W � (x). At each iteration l I use the policies pln (x) to update to p
l+1
n (x) and I keep

iterating until jjpl+1n (x)� pln (x) jj � eps. Each iteration performs the following steps:
Step 1: Update the value function using a sparse parametric approximation

and LASSO (third order polynomials are used). The estimation of � relies on the
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approximate Bellman equation:

�
f (x)� �E

�
f (x0) jpln (x) ; x

��
�l+1 = �

�
x; pln (x)

�
where:

Step 1a: Ex ante pro�ts are computed by:

�
�
x; pln (x)

�
= [V E (x)� c1 (x)]

NX
n=0

npln (x)� c2
NX
n=0

n2pln (x) + �

N�1X
n=0

�(Al (x; n))

where A (x; n) = ��1
�
1�

Pn
k=0 p

l
k (x)

�
, n = 0; 1; :::; N � 1. To derive the above, use

(21) and (26).

Step 1b: To compute E
�
f (x0) jpln (x) ; x

�
, I simulate dt and lt one period forward

since these are the only stochastic states now. I compute next period�s (S1t ; S
2
t ; Bt)

using the deterministic transitions (30). Due to computational constraints I have

assumed throughout that shipyards keep track of the total backlog rather than the

distribution of backlogs. Therefore, at this stage shipyards don�t have the full in-

formation to predict total orders accurately. To circumvent this issue I make the

simplifying assumption that shipyards believe they are all at the same state and can

predict total orders using the total number of �rms.

Step 2: Update the choice probabilities:

pl+10 (x) = 1� �
�
1

�

�
V E (x)� c1 (x)� c2 + �

�
W l+1 (1)�W l+1 (0)

���
pl+1n (x) = �

�
1

�

�
V E (x)� c1 (x)� c2 (2n� 1) + �

�
W l+1 (n)�W l+1 (n� 1)

���
�

��
�
1

�

�
V E (x)� c1 (x)� c2 (2n+ 1) + �

�
W l+1 (n+ 1)�W l+1 (n)

���
pl+1
N
(x) = 1�

N�1X
n=0

pl+1n (x)

I solve the above �xed point under three scenarios: the true post-2006 world, a

world with no China interventions and a world with only China�s capital interventions.

These worlds di¤er in the shipyard cost function, the set of active shipyards and the

shipyard capital structure. I perform the �xed point on all data (as a robustness I

have also used a set of states chosen by the kmeans algorithm, as well as the pre-2006

45



data alone for the relevant counterfactuals).

Finally, to simulate the model, I draw cost shocks " and obtain the corresponding

optimal production using (9) which in turn relies on the value function computed

using the parameters � retrieved by the �xed point algorithm. At each state visited

I still need to compute E [f (x0) jp�n (x) ; x] which I do as above, using the retrieved
equilibrium choice probabilities.
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