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1 Introduction

The excess volatility of asset prices is a long standing puzzle in financial economics. Recent

research argues that taking into account time variation in uncertainty helps reconcile price

volatility and investor behavior. For example, if investors perceive a lot of uncertainty in bad

times, they are reluctant to buy equity and prefer bonds. As uncertainty premia on equity

rise, stock prices fall until they appear excessively low. Based on this intuition, several

studies have now shown that stock prices and dividends can be consistent with investor

optimization.1 The results suggest that accounting for uncertainty shocks might also help

improve asset pricing implications of business cycle models.

A fully specified general equilibrium business cycle model makes explicit not only the

behavior of investors who demand assets, but also the choices of firms who supply those

assets. In particular, the quantity of shares issued and the payout to shareholders are

determined jointly with investment and production decisions. Much existing literature

on business cycles simplifies here by assuming that payout and leverage follow exogenous

decision rules.2 It is natural to ask, however, how firms optimally choose capital structure

and payout in response to uncertainty shocks and to require the model to be consistent with

evidence on such choices.

This paper proposes and estimates a DSGE model with endogenous financial asset supply.

Firms face frictions in debt and equity markets and choose capital structure as well as the

net payout to shareholders in order to maximize shareholder value. Shareholders perceive

time varying uncertainty about cost, and hence profit. Their response to uncertainty shocks

allows the model to match the joint dynamics of equity prices, interest rates, real activity,

as well as corporate sector leverage and payout for the postwar United States. The key

mechanism is that an increase in uncertainty about profit increases the equity premium and

raises shareholders’ concern with future financing constraints. Firms then respond not only

on the real side by cutting production and investment, but also reoptimize capital structure

by reducing debt and lowering payout.

Our approach allows for two effects of uncertainty shocks: changes in volatility are

reflected in the size of realized shocks, while changes in perceived uncertainty can be inferred

from agents’ actions and their effect on asset prices, in particular the presence of time

varying uncertainty premia. While changes in volatility always induce changes in perceived

1The typical approach assumes that investors have recursive utility that exhibits strong aversion to
persistent shocks (for example, Epstein-Zin utility with risk aversion substantially higher than the inverse
of the intertemporal elasticity of substitution) together with time variation in higher moments, for example
through stochastic volatility or movements in the probability of a disaster.

2For example, studies often equate the value of equity and the value of the capital stock, or impose a
fixed leverage ratio.
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uncertainty, the latter can occur also if volatility does not move. For example, the arrival

of news that raises concerns about the future path of cost may induce firms to act more

cautiously even if costs are not more volatile.

We find that both effects of uncertainty shocks are important and that they operate at

different frequencies. On the one hand, volatility moves slowly. In particular, a regime of high

volatility in cost during the 1970s and 80s was responsible for fluctuations in leverage and

payout during that time. Its presence introduces a slow moving component of equity prices

that is not connected with the business cycle. On the other hand, perceived uncertainty also

tends to decline during booms and increase in recessions, making the stock market rise and

fall ”in sync” with the business cycle, especially in recent decades.

In our model, equity and corporate debt are priced by a representative agent. The supply

of equity and debt, and hence leverage, is endogenously determined. Firms face an upward

sloping marginal cost curve for debt: debt is cheaper than equity at low levels of debt,

but becomes eventually more expensive as debt increases. Firms also have a preference for

dividend smoothing. To maximize shareholder value, they find interior optima for leverage

and net shareholder payout. Firm decisions are sensitive to uncertainty since shareholder

value reflects the preferences of the representative agent and thus incorporates uncertainty

premia.

We capture investors’ behavior towards uncertainty by recursive multiple priors utility.3

Formally, when agents evaluate an uncertain consumption plan, they use a worst case

conditional probability drawn from a set of beliefs. A larger set indicates higher perceived

uncertainty. Following Ilut and Schneider (2014), we parametrize beliefs about shocks by

their means and describe belief sets as intervals for the mean that are centered around

zero. The width of the interval then measures the amount of uncertainty about a particular

shock. Different degrees of uncertainty perceived about different sources of shocks are

accommodated by different widths.

We allow perceived uncertainty to change for two reasons. First, it can increase with the

volatility of shocks. It makes sense that people worry more about the future in turbulent

times. In existing models, this effect is generated by the interaction of higher volatility

and risk aversion; in our setup, higher volatility makes agents act as if they face lower

means. Either way, higher volatility lowers certainty equivalent consumption and welfare.

Second, perceived uncertainty can change in our model even if there is nothing unusual in

realized fundamentals. The idea here is that investors may receive intangible information, for

3The multiple priors model was introduced by Gilboa and Schmeidler (1989) to describe aversion to
ambiguity (or Knightian uncertainty); it was extended to intertemporal choice by Epstein and Wang
(1994) and Epstein and Schneider (2003). It has since been used in a number of studies in finance and
macroeconomics. See Epstein and Schneider (2010) or Guidolin and Rinaldi (2013) for surveys.
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example, worrisome news about the future. The estimation can disentangle the two channels

because an increase in volatility is reflected not only in agents’ precautionary behavior and

asset premia (as is any other change in uncertainty), but also in larger realized innovations.

We estimate the model with postwar US data on five observables. We include three

quantities chosen by the nonfinancial corporate sector: investment growth, net payout to

shareholders relative to GDP and market leverage. In addition, we include the value of

nonfinancial corporate equity relative to GDP. We thus effectively consider also the corporate

price/payout ratio, which behaves similarly to the price-dividend ratio. Finally, we include

the real short term interest rate. In sum, we ask our model to account for the price and

quantity dynamics of equity and debt, along with real investment.

Our estimation assumes two sources of shocks: a shift in the marginal product of

capital and an operating cost that affects corporate sector earnings but does not scale with

production. The latter cost may reflect, for example, expenses incurred in ”packaging”

corporate sector earnings in the form of individual firm payout. For example, the cost of

reorganization through changes in composition such as mergers, spin-offs or IPO’s can vary

over time because of changes in financial conditions. More generally, the operating cost may

reflect other reorganization activities – changes in compensation or the relationship with the

government – that redistribute resources away from shareholders. We emphasize that just

two shocks – as well as changes in uncertainty about them – can account for much of the

variation in the key price and quantity variables.4

We allow changes in uncertainty to exhibit large discrete changes triggered by a finite

state Markov chain. The presence of large shocks allows the model to capture asymmetries in

business cycle dynamics. A convenient feature of working with multiple priors utility is that

linearized decision rules capture the (first order) effect of uncertainty shocks. As a result,

the model solution can be represented as a Markov-switching DSGE (MS-DSGE) that can

be estimated using the methods described in Bianchi (2013).The specification of uncertainty

shocks is flexible enough to allow perceived uncertainty change with either realized volatility

or intangible information.5

The fit of the model is due in large part to how firms and the investor households respond

4This result is related to Greenwald et al. (2014) who decompose changes in stock market wealth into three
components that they label productivity, factor share and risk aversion shocks. The latter are responsible
for most of the variation in equity prices in their setting and thus play a role similar to changes in perceived
uncertainty shocks in our model. At the same time, our specification allows for stochastic volatility and thus
relates high equity premia in part to the occurrence of large shocks.

5To discipline the size of the latter shocks, we follow Ilut and Schneider (2014) in specifying priors for the
ambiguity parameters that bound the range of conditional means for an innovation relative to the variance
of that innovation. Intuitively, this assumes that agents should entertain forecasts as part of their belief sets
only if those forecasts perform well sufficiently often in the long run.
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to uncertainty shocks. Consider first the role of investor responses for asset pricing. Investors’

perceived time variation in ambiguity accounts for the fact that stock prices (normalized by

dividends) forecast excess stock returns. Intuitively, when investors evaluate an asset as

if the mean payoff is low, then they are willing to pay only a low price for it. To an

econometrician, the return on the asset – actual payoff minus price – will then look unusually

high. The more ambiguity investors perceive, the lower is the price and the higher is the

subsequent return.

At the same time, the riskless interest rate in our model is determined as usual by the

representative agent’s first order condition. It varies much less than stock returns because

there is less ambiguity about consumption growth than about payout growth. The latter

is affected by uncertainty about operating cost, a small share of GDP which is nevertheless

important for equity valuation. With interest rates that are stable the price-dividend ratio

then helps to forecast excess returns on stocks, that is, there are time varying premia on

stocks. This allows the model to account for the joint dynamics of prices and excess returns.6

Firms’ responses to uncertainty shocks account for the fact that changes in debt comove

positively with shareholder payout and stock prices. In particular, in good times, when

prices are high and uncertainty premia are low, firms increase debt and pay out more to

shareholders. The basic intuition here is that firms that try to smooth dividends over time

will increase debt when they receive good news about future profits.

A firm that experiences lower uncertainty about profits acts as if mean profits will be

higher. In order to smooth payout, it borrows and increases current dividend payout.

Uncertainty shocks thus induce positive comovement of payout and debt. At the same time,

market leverage is countercyclical even though debt increases in booms; this is because a

lower uncertainty also raises equity values in line with the data. In contrast to an uncertainty

shock, a shock to realized cash flow has the opposite effect: a firm that faces a temporary

shortfall of funds will both pay out less and borrow to make up the shortfall. Cash flow

shocks, such as realized changes in operating cost thus generate negative comovement of

payout and debt and play a relatively small role for fluctuations.

Relative to the literature, the paper makes three contributions. First it specifies a linear

DSGE model that allows for both endogenous asset supply and time varying uncertainty

premia. Second, the model can accommodate first order effects of stochastic volatility

and hence distinguish between realized volatility and perceived uncertainty. The model

nevertheless remain tractable and can be estimated jointly with data on quantities and

prices. Finally, the results suggest a prominent role for uncertainty shocks in driving asset

6Put differently, if an econometrician were to run a regression of excess return on price (normalized by
dividends) on data simulated from our model, he would find a negative coefficient, as in the data.
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prices and firm financing decisions jointly.

There are a number of papers that study asset pricing in production economies with

aggregate uncertainty shocks. Several authors have studied rational expectations models

that allow for time variation in higher moments of the shock distributions. The latter can

take the form of time varying disaster risk (Gourio (2012)) or stochastic volatility (Basu and

Bundick (2011), Caldara et al. (2012), Malkhozov and Shamloo (2012)). Another line of

work investigates uncertainty shocks when agents have a preference for robustness (Cagetti

et al. (2002), Bidder and Smith (2012), Jahan-Parvar and Liu (2012)). Most of these papers

identify equity with the value of firm capital or introduce leverage exogenously. In contrast,

our interest is in how uncertainty shocks drive valuation when leverage responds optimally

to those shocks.

Recent work has explored whether the interaction of uncertainty shocks and financial

frictions can jointly account for credit spreads and investment. Most of this work considers

changes in firm-level volatility (Arellano et al. (2010), Gilchrist et al. (2010), Christiano et al.

(2013)). Gourio (2013) incorporates time varying aggregate risk and thus allows risk premia

to contribute to spreads. In contrast to our paper, this line of work does not focus on the

determination of equity prices.

We also build on a recent literature that tries to jointly understand financial flows and

macro quantities. Jermann and Quadrini (2012), Covas and Den Haan (2011, 2012), and

Begenau and Salomao (2013) develop evidence on the cyclical behavior of debt and equity

flows. Their modeling exercises point out the importance of shocks to firm profits other than

productivity, a finding that is confirmed by our results. We also emphasize, however, the role

of uncertainty about financial conditions. The latter is essential in order for our estimated

model to account for time variation in risk premia on equity.

Glover et al. (2011) and Croce et al. (2012) study the effects of taxation in the presence

of uncertainty shocks. Their setups are similar to ours in that they combine a representative

household, a trade-off theory of capital structure and aggregate uncertainty shocks (in their

case, changes in stochastic volatility under rational expectations). While their interest is in

quantifying policy effects, our goal is to assess the overall importance of different uncertainty

shocks.

Our estimation strategy follows the literature in using Bayesian techniques for inference
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of DSGE models, but also incorporates financial variables and particularly asset prices.7

We build on the Markov switching model introduced by Hamilton (1989) that is now a

popular tool for capturing parameter instability. For example, Sims and Zha (2006) use a

Markov-switching vector autoregression to investigate the possibility of structural breaks in

the conduct of monetary policy, while Schorfheide (2005), Liu et al. (2011), Davig and Doh

(2013), Bianchi (2013), and Baele et al. (2011) estimate MS-DSGE models.8 We show that

the MS-DSGE setup can also accommodate uncertainty averse agents’ responses to volatility

shocks. Indeed, since switches in volatilities have first order effects on decision rules, agents’

responses are reflected in switches of the constants in the MS-DSGE.

The paper is structured as follows. Section 2 presents the model. Section 3 uses first

order conditions for households and firms to explain the effect of uncertainty shocks on firm

asset supply and asset prices. Section 4 describes our solution and estimation strategy, and

then discusses the estimation results.

2 Model

Our model determines investment, production and financing choices of the US nonfinancial

corporate sector as well as the pricing of claims on that sector by an infinitely-lived repre-

sentative household. Firms are owned by the household and maximize shareholder value.

2.1 Technology and accounting

There is a single perishable good that serves as numeraire.

Production

The corporate sector produces numeraire from physical capital Kt according to the

production function

Yt = ZtK
α
t ξ

(1−α)t (1)

7Most estimated DSGE models do not include asset prices other than interest rates and do not address
facts discussed in the empirical asset pricing literature such as the equity premium. A recent exception is
Kliem and Uhlig (2013) who propose a new estimation approach for DSGE models that consists of using
an augmented prior distribution in order to account for stylized asset pricing facts which are not directly
included in the likelihood. The authors show that their estimated model can replicate stylized business cycle
facts even when constrained to match the unconditional Sharpe ratio for equity.

8An alternative approach models smooth changes in the parameters (see Fernandez-Villaverde et al.
(2010), Fernandez-Villaverde et al. (2011), and Justiniano and Primiceri (2008) for applications in a DSGE
model and Primiceri (2005) and Cogley and Sargent (2006) for applications in a VAR).
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where ξ is the trend growth rate of the economy and α is the capital share. The shock Zt to

the marginal product of capital accounts for fluctuations in variable factors including labor.

We will assume below that realizations of Zt are correlated with changes in uncertainty about

future Zt. The shock thus captures how firms adjust variable factors in response to changes

in uncertainty.9

Capital is produced from numeraire and depreciates at rate δ

Kt+1 = (1− δ)Kt +

[
1− S

′′

2
(It/It−1 − ξ)2

]
It, (2)

Capital accumulation is subject to adjustment costs that are convex in the growth rate of

investment It, as in Christiano et al. (2005). This functional form captures the idea that

the scale of investment affects the organization of the firm. For example, investing at some

scale It requires allocating the right share of managerial effort to guiding expansion rather

than overseeing production. Moving to a different scale entails reallocating managerial effort

accordingly.

Financing and operating costs

In addition to investment, shareholders choose firms’ net payout and their level of debt.

Two types of frictions are relevant here. First, there are operating costs of running the

corporate sector that are unrelated to production and credit. Every period, shareholders

pay a cost

φ (Dt/Dt−1) = ftξ
t +

φ′′ξt

2
(Dt/Dt−1 − ξ)2 (3)

where ft is random. These costs apply at the sectoral level: they represent expenditure

incurred by shareholders who own many firms that are managed independently, for example

because of limited managerial span of control. Shareholders thus not only choose net

aggregate payout, but also make changes to the organization and ownership structure of

firms.

The variable component is motivated by costs that occur as the scale of payout is changed,

analogously to (2). For example, paying out at a large positive scale (continually repurchasing

many shares or paying dividends at a high rate) requires shareholders to pressure managers

to relinquish cash flow. In contrast, paying out at a large negative scale (continually raising a

lot of new capital) requires the firm to focus more on maintaining relationships with primary

9Ilut and Schneider (2014) consider a model with nominal frictions and show that uncertainty about
TFP can lead to large fluctuations in labor input over the business cycle. Modeling Z as a joint change
in marginal product of capital today and uncertainty perceived about the marginal product of capital in
the future allows us to accommodate business cycle implications of uncertainty shocks without explicitly
modeling nominal frictions.
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investors. In both cases, refocusing the firm quickly is difficult.

The fixed component is motivated by expenditure that varies independently from shocks

shifting the production technology and that is unrelated to the scale of payout. Examples

include costs from restructuring of the corporate sector (due to mergers and spin-offs, for

example), reorganization of compensation, compliance with regulation, or lawsuits. In these

examples, part of the cost to the corporate sector consists of a transfer payment to some

other sector of the economy (the financial sector, households, or the government).

At the same time, we assume that a (possibly small) part of the cost directly lowers

the value added of the nonfinancial corporate sector itself. Here we have in mind the labor

productivity of management or other employees not directly related to increasing the scale of

production (such as the legal or human resources department). For example, reorganization

of compensation through negotiation with workers, or dealing with lawsuits implies that

management is less productive in its other tasks. A key implication is that shocks like

reorganization and lawsuits are not a pure redistribution across sectors, but instead result

in a loss of surplus. Even if the loss of surplus is arbitrarily small, a higher fixed cost is then

undesirable from the perspective of the representative household – this is the property that

matters below.

The second friction arises in the credit market. Firms issue one period noncontingent

debt. Let Qb
t denote the price of a riskless short bond. Suppose the corporate sector issues

Qb
t−1B

f
t−1 worth of bonds at date t− 1. At date t, it not only repays Bf

t to lenders, but also

incurs the financing cost

κ
(
Bf
t−1

)
=

Ψ

2

1

ξt

(
Bf
t−1

)2
The marginal cost of issuing debt is thus upward sloping. This feature naturally arises if

there is a idiosyncratic risk at the firm level and costly default. When firms choose capital

structure, they trade off this cost against the tax advantage of debt.

Consider the firm’s cash flow statement at date t. Denoting the corporate income tax

rate by τk, we can write net payout as

Dt = αYt − It − κ(Bf
t−1)− φ (Dt, Dt−1)− (Bf

t−1 −Qb
tB

f
t ) (4)

− τk
[
αYt −Bf

t−1
(
1−Qb

t−1
)
− δQk

t−1Kt−1 − It
]

The first line records cash flow in the absence of taxation: payout equals revenue less

investment, operating and financing costs as well as net debt repayment. The second line

subtracts the corporate income tax bill: the tax rate τk is applied to profits, that is, income

less interest, depreciation and investment.
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Household wealth

We denote the price of aggregate corporate sector equity by Pt. In addition to owning

the firm, the household receives an endowment of goods πξt and government transfers trξ
t.

We assume a proportional capital income tax. Moreover, capital gains on equity are taxed

immediately at the same rate. The household budget constraint is then

Ct + Ptθt +Qb
tB

h
t = (1− α)Yt + πξt + trξ

t +Bh
t−1 + (Pt +Dt) θt−1 (5)

− τl
[
(1− α)Yt + (1−Qb

t−1)B
h
t−1 +Dtθt−1 + (Pt − Pt−1)θt−1 + πξt

]
− τcCt

The first line is the budget in the absence of taxation: consumption plus holdings of equity

and bonds – equals labor and endowment income plus the (cum dividend) value of assets.

The second line subtracts the tax bill. The income tax rate applies to labor income, interest,

dividends as well as capital gains. The consumption tax rate is denoted by τc.

We do not explicitly model the government, since we do not include observables that

identify its behavior in our estimation. To close the model, one may think of a government

that collects taxes based on the rates τl, τc, τk and uses lump sum transfers to follow a

Ricardian policy of stabilizing its debt. The market clearing condition then states that

Bf
t = Bh

t and that equity holdings θt = 1. The model is thus consistent with households

owning not only corporate debt but also government debt.

2.2 Uncertainty and preferences

We denote information that becomes available to agents at date t by a vector of random

variables εt and write εt = (εt, εt−1, ...) for the entire information set as of date t. Agents

perceive ambiguity about shocks to the marginal product of capital and operating cost. The

dynamics of these shocks can be written as

logZt+1 = z̃
(
εt
)

+ µ∗t,z + σ̃t,zε
z
t+1 + vzt+1 (6)

ft+1 = f̃
(
εt
)

+ µ∗t,f + σ̃t,fε
f
t+1

where εzt+1, ε
f
t+1 and vzt+1 are iid with εit+1 ∼ N (0, 1), i = z, f and µ∗t,z and µ∗t,f are

deterministic sequences. The components z̃ (εt) and f̃ (εt) capture the time dependence

of the shocks, while allowing for a nonnormal innovation vzt+1 in addition to εzt+1 is helpful

for a more flexible specification of business cycle risk, as explained below.10

10The process for the f shock in (6) is linear in levels which is helpful to allow for large shocks relative to
the size of the steady state operating cost.

9



The decomposition of the innovations into deterministic and random components serves

to distinguish between ambiguity and risk, respectively. In particular, changes in risk are

modeled in the usual way as changes in realized volatility; we assume throughout that the

volatilities are bounded away from zero. For the ambiguous components µ∗t,i, we assume

that the long empirical distribution of µ∗t,i is iid normal with mean zero and variance σ2
i,µ

that is independent of the shocks εit and vzt . As a result, it is impossible for an agent (or

an econometrician) to learn the sequences µ∗t,i in (6), even with a large amount of data: the

sequence µ∗t,i cannot be distinguished from the realization εit.

In our econometric work below, we resolve this uncertainty probabilistically: we work

with volatility processes σ2
t,i = σ̃2

t,i + σ2
i,µ and an iid innovation process, that is, µ∗t,i = 0.

However, the probability we use is not the only one that is consistent with the data – there

are many others corresponding to different decompositions of the variance into σ̃2
t,i and σ2

i,µ

as well as particular sequences µ∗t,i. We assume that agents in the model treat uncertainty

as ambiguity: they do not resolve uncertainty about µ∗t,i by thinking in terms of a single

probability. We describe next the set of probabilities they use for contemplating the next

innovation at any given history.

Uncertainty shocks and changes in confidence

Based on date t information, agents consider an interval of conditional means µt,i ∈
[−at,i, at,i] for each component i. They are not confident enough to further integrate over

alternative forecasts (and so in particular they do not use a single forecast). The vector

at = (at,z, at,f )
′ summarizes ambiguity perceived about Z and f given date t information. It

can be thought of as an (inverse) measure of confidence. If at,i is low, then agents find it

relatively easy to forecast the fundamental shock i and their behavior is relatively close to

that of expected utility maximizers (who use a single probability when making decisions).

In contrast, when at,i is high, then agents do not feel confident about forecasting.

We allow for two sources of changes in confidence (and thus perceived ambiguity). On

the one hand, confidence can depend on observed volatility. It is plausible that in more

turbulent times agents find it harder to settle on a forecast of the future. On the other hand,

confidence can move with intangible information that is not reflected in current fundamentals

or volatility. To accommodate both cases, we let

at,i = ηt,iσt,i; i = f, z (7)

Here the ηt,is are stochastic processes that describe changes in confidence due to the arrival

of intangible information. Their laws of motion, like those of the volatilities σt,i, are known
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to agents. The information εt received at date t thus includes not only εzt and εft , but also

innovations to σt,i and ηt,i.

We can derive the linear relationship in (7) from the assumption that µt,i ∈ [−at,i, at,i] if

and only if
µ2
t,i

2σ2
t,i

≤ 1

2
η2t,i

Here the left hand side is the relative entropy between two normal distributions that share

the same standard deviation σt,i but have different means µt,i and zero, respectively. The

agent thus contemplates only those conditional means that are sufficiently close to the long

run average of zero in the sense of conditional relative entropy. The relative entropy distance

captures that intuition through the fact that when σt,i increases it is harder to distinguish

different models.

Preferences

The representative household has recursive multiple priors utility. A consumption plan

is a family of functions ct (εt). Conditional utilities derived from a given consumption plan

c are defined by the recursion

U
(
c; εt

)
= log ct

(
εt
)

+ β min
µt,i∈×i[−at,i,at,i]

Eµ
[
U
(
c; εt, εt+1

)]
, (8)

where the conditional distribution over εt+1 uses the means µt,i that minimize expected

continuation utility. If at = 0, we obtain standard separable log utility with those conditional

beliefs. If at > 0, then lack of information prevents agents from narrowing down their belief

set to a singleton. In response, households take a cautious approach to decision making –

they act as if the worst case mean is relevant.11

Given the specification of the ambiguous shocks, it is easy to solve the minimization step

in (8) at the equilibrium consumption plan: the worst case expected cash flow is low and

the worst case expected operating cost is high. Indeed, consumption depends positively on

cash flow and negatively on the operating cost. It follows that agents act throughout as if

forecasting under the worst case mean µf,t = af,t and µz,t = −az,t. This property pins down

the representative household’s worst case belief after every history and thereby a worst case

belief over entire sequences of data. We can thus also compute worst case expectations many

periods ahead, which we denote by stars. For example E∗Dt+k is the worst case expected

11In the expected utility case, time t conditional utility can be represented as as Et [
∑∞
τ=0 log ct+τ ] where

the expectation is taken under a conditional probability measure over sequences that is updated by Bayes’
rule from a measure that describes time zero beliefs. An analogous representation exists under ambiguity:
time t utility can be written as minπ∈P E

π
t [
∑∞
τ=0 log ct+τ ] . The time zero set of beliefs P can be derived

from the one step ahead conditionals Pt as in the Bayesian case; see Epstein and Schneider (2003) for details.
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dividend k periods in the future.

3 Uncertainty shocks, firm financing and asset prices

In this section, we describe the main trade-offs faced by investors and firms when pricing

assets and deciding asset supply, respectively. To ease notation here, we set the trend growth

rate log ξ equal to zero. The solution of the model with positive growth is provided in the

appendix.

Contingent claims prices and shareholder value

To describe t-period ahead contingent claims prices, we define random variables M t
0 that

represent prices normalized by conditional worst case probabilities. This normalization is

convenient for summarizing the properties of prices, which are derived from households’ and

firms’ first order conditions. We also define a one-period-ahead pricing kernel as Mt+1 =

M t+1
0 /M t

0. From household utility maximization, we obtain

Mt+1 = β
Ct
Ct+1

1− τl
1− τlβE∗t [Ct/Ct+1]

The pricing kernel is the marginal rate of substitution, multiplied by a factor that corrects

for taxes. Since the qualitative effects we emphasize here do not depend on the level of

personal income taxation, we set τl = 0 for the remainder of this section.

The formulas for bond and stock prices are then standard, except that expectations are

taken under the worst case belief:

Qt = E∗t [Mt+1]

Pt = E∗t [Mt+1 (Pt+1 +Dt+1)] (9)

An increase in ambiguity makes the worst case belief worse and thereby changes asset prices.

For example, if agents perceive more ambiguity about future consumption, then the bond

price rises and the interest rate falls. Similarly, more ambiguity about dividends tends to

lower the stock price.

The firm maximizes shareholder value

E∗0

∞∑
t=1

M t
0Dt

Shareholder value also depends on worst case expectations. Indeed, state prices determined in
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financial markets reflect households’ attitudes to uncertainty, as illustrated by the household

Euler equations. For example, when there is more ambiguity about future consumption then

– other things equal – cash flows are discounted less. When there is more ambiguity about

future cash flow, the firm tends to be worth less.

3.1 Payout and capital structure choice

Let λt denote the multiplier on the firm’s date t budget constraint (4), normalized by the

contingent claims price M t
0. In the presence of operating and financing costs, the shadow

value of funds inside the firm can be different from one. The firm’s first order equation for

debt is

Qb
tλt = E∗t [Mt+1λt+1] (1− τk

(
1−Qb

t

)
+ κ′(Bf

t )) (10)

The marginal benefit of issuing an additional dollar of debt is the bond price multiplied

by the firm’s shadow value of funds. The marginal cost includes not only the present value of

a dollar to the firm, but also the tax advantage of debt and the marginal financing cost. The

tax advantage implies that marginal cost is typically below marginal benefit at low levels of

debt. At the optimal capital structure, it is traded off against the financing cost.

The firm’s first order condition for payout is

Dt (1− λt) = λtφ̃

(
Dt

Dt−1

)
− E∗t

[
Mt+1λt+1φ̃

(
Dt+1

Dt

)]
(11)

where the function φ̃ (Dt/Dt−1) := (Dt/Dt−1)φ
′ (Dt/Dt−1) is increasing and satisfies φ̃ (1) = 0

since we abstract from growth in this section. It is thus optimal for the firm to stabilize the

growth rate of payout in uncertainty adjusted terms. Indeed, at the steady state we have

λt = 1. Near a steady state, payout will thus be set to equate the uncertainty adjusted

expected growth rate to the realized growth rate.

Consider now the firm’s response to an increase in uncertainty. In particular, suppose

that, under the worst case belief, future dividends are low so that funds are scarce, that is,

the relative shadow value of funds E∗t [Mt+1λt+1] /λt increases. From (10), holding fixed the

riskless rate, the marginal cost of debt increases and the firm responds by cutting current

debt Bf
t . At the same time, (11) suggests that the firm will decrease the payout already at

date t in order to smooth the drop in the growth rate of the payout. As a result, uncertainty

shocks make the payout and debt move together.

In contrast, consider a shock to the cash flow that temporarily lowers dividends and

makes current funds more scarce relative to funds in the future. In this case, (10) suggests
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that the firm should borrow temporarily so as to cover the shortfall in funds. Cash flow

shocks thus tend to move payout and debt in opposite directions.

3.2 Asset pricing

To see how asset pricing works in our model, we consider an approximate solution that is

also used in our estimation approach. The approximation proceeds in three steps. First,

we find the “worst case steady state”, that is, the state to which the model would converge

if there were no shocks and the data were generated by the worst case probability belief.

Second, we linearize the model around the worst case steady state. Finally, we derive the

true dynamics of the system, taking into account that the exogenous variables follow the

data generating process (6).12

Linearization around the worst case steady state

At the worst case steady state, the Euler equations (9) imply that the bond price is β

and the price dividend ratio is β/ (1− β). These values are the same as in the deterministic

perfect foresight steady state. However, the level of consumption and dividends as well

as other variables will be lower than in a perfect foresight steady state. This is because

they are computed using the worst case mean productivity Z∗ and operating cost f ∗. These

worst-case values are the steady states of the exogenous variables Zt and ft when the worst-

case one-step mean is µf = af and µz = −az, respectively. Denoting by ρz and ρf the

AR(1) persistence parameters of the two processes we then have that Z∗ = Z̄e−az/(1−ρz) and

f ∗ = f + af/ (1− ρf ), where Z̄ and f are the mean values under the econometrician’s data

generating process.

We mark log deviations from the worst case steady state by both a hat (for log deviation)

and a star (to indicate that the perturbation is around the worst case steady state). The

loglinearized pricing kernel and the household Euler equation for bonds and equity are

m̂∗t+1 = ĉ∗t − ĉ∗t+1

q̂∗t = E∗t [m̂t+1]

p̂∗t = E∗t

[
m̂t+1 + βp̂∗t+1 + (1− β) d̂∗t+1]

]
(12)

The short term interest rate is r̂∗t = −q̂∗t = −E∗t m̂∗t+1. Linearization implies that asset

prices do not reflect risk compensation. However, they still reflect uncertainty premia since

12The worst case steady state used in steps 1 and 2 should be viewed as a computational tool that helps
describe agents’ optimal choices. Agents choose conservative policies in the face of uncertainty, and this
looks as if the economy were converging to the worst case steady state.
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expectations are computed under the worst case mean.

Stock price and interest rate volatilities

We can use the loglinearized Euler equations to understand the relative volatility of

stock prices and interest rates in a model with ambiguity shocks. Substituting into the Euler

equation for stocks, the price dividend ratio, or more precisely the price payout ratio, can

be written as

p̂∗t − d̂∗t = −r̂∗t + E∗t

[
β(p̂∗t+1 − d̂∗t+1) + d̂∗t+1 − d̂∗t ]

]
(13)

The above relation expresses the price dividend ratio as the worst case expected payoff

relative to dividends, discounted at the riskless interest rate. In general equilibrium, an

increase in uncertainty can move both the payoff term (if cash flow becomes more uncertain),

and the interest rate (if consumption becomes more uncertain). In the data, interest rates

are relatively stable whereas the price dividend ratio moves around a lot. As a result, the

first effect must dominate the second if uncertainty shocks are to play an important role.

We can solve forward to express the price dividend ratio as the present value of future

growth rates in the dividend-consumption ratio

p̂∗t − d̂∗t = E∗t

[
β(p̂∗t+1 − d̂∗t+1) + (d̂∗t+1 − ĉ∗t+1)−

(
d̂∗t − ĉ∗t

)]
= E∗t

∞∑
τ=1

βτ−1
(

(d̂∗t+τ − ĉ∗t+τ )−
(
d̂∗t − ĉ∗t

))
(14)

If dividends are proportional to consumption, then the price dividend ratio is constant – with

log utility, income and substitution effects cancel. In contrast, if dividends are a small share

of consumption (as in the data), then uncertainty about dividends will tend to dominate

and an increase in uncertainty can decrease the price dividend ratio. The formula also shows

that the price dividend ratio reflects expected worst case growth rates. If firms smooth these

growth rates in response to uncertainty shocks, this tends to contribute to price volatility.

Zero risk steady state and unconditional premia

Unconditional premia predicted by the model depend on the average amount of ambiguity

reflected in decisions. Suppose all shocks are equal to zero, but agents still use decision rules

that reflect their aversion to ambiguity. In particular, agents perceive constant ambiguity,

as in the worst case steady state. We can study this “zero risk” steady state using decision

rules derived by linearization around the worst case steady state. From this perspective, the

true steady state productivity and operating cost (Z̄, f̄) look like a positive deviation from

the steady state summarized by the vector (−āz, āf ). Mechanically, we are looking at the

steady state of a system in which technology is always at (Z̄, f̄), but in which agents act as
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if the economy is on an impulse response towards the worst case steady state (Z∗, f ∗).

Consider the impulse response that moves from the zero risk steady state log consumption

and dividend,
(
C̄, D̄

)
say, to their worst case counterparts

(
C̄∗, D̄∗

)
. We work with

loglinearized impulse responses and write c̄ = log C̄ − log C̄∗. Along the linearized impulse

response, the Euler equations (12) hold deterministically. For example, the steady state log

bond price is

Q̄ = β exp (q̄) = β exp (c̄− ĉ1) ,

where ĉ1 is the first value along the impulse response. If there is ambiguity about consump-

tion we would expect the impulse response to decline towards the worst case. In this case,

the bond price is higher than β, the worst case (as well as rational expectations) steady

state bond price. In other words, ambiguity about consumption lowers the interest rate – a

precautionary savings effect.

Consider now the steady state price dividend ratio. The log deviation of p̄∗ − d̄∗ from

the worst case value β/ (1− β) is given by (14), where the sum is over the consumption

and dividend path along the linearized impulse response. For example, if the dividend-

consumption ratio declines along the impulse response – say because there is a lot of average

ambiguity about dividends and dividends are a small share of consumption – then p̄∗ − d̄∗

is negative, that is, the steady state price dividend ratio P̄ /D̄ is below β/ (1− β) . The

presence of ambiguity thus induces a price discount.

Combining the bond and stock price calculations, the equity premium at the zero risk

steady state is13

log
(
P̄ + D̄

)
− log P̄ + log Q̄ = (1− β)

(
d̄∗ − p̄∗

)
− (c̄− ĉ1)

There are two reasons why ambiguity can generate a positive steady state equity premium.

First, the average stock return can be higher than under rational expectation because the

price dividend ratio is lower. This is the first term. Second, the interest rate can be lower.

The second effect is small if dividends are a small share of consumption and ambiguity is

largely about dividends. We emphasize the role of the first effect: it says that average equity

returns themselves are higher than in the rational expectations steady state. Ambiguity thus

does not simply work through low real interest rates.

13The log stock return at the zero risk steady state is

log
(
P̄ + D̄

)
− log P̄ ≈ (1− β)

(
d̄− p̄

)
− log β

where we are using the fact that all asset returns are equal to − log β at the worst case steady state.
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Predictability of excess returns

A standard measure of uncertainty premia in asset markets is the expected excess return

on an asset computed from a regression on a set of predictor variables. The log excess stock

return implied by our model can be approximated as

xet+1 = log(pt+1 + dt+1)− log pt − log(it)

≈ βp̂∗t+1 + (1− β) d̂∗t+1 − p̂∗t + q̂∗t

= β
(
p̂∗t+1 − d̂∗t+1 − E∗t [p̂∗t+1 − d̂∗t+1]

)
+ d̂∗t+1 − E∗t d̂∗t+1

Here the second line is due to loglinearization of the return around the worst case steady

state. The third line follows from the household Euler equation for stocks and can easily be

derived using equation (13).

Consider now an econometrician who attempts to predict excess stock returns in the

model economy. Suppose for concreteness that he has enough predictor variables to actually

recover the theoretical conditional expectation of the payoff next period given the state

variables of the model. With a large enough sample, he will measure the expected excess

return Etx
e
t+1, where the expectation is taken with the conditional mean µ∗t = 0.14 Using

the above expression, we can write the measured risk premium as

Etx
e
t+1 = β(Et − E∗t )[p̂∗t+1 − d̂∗t+1] + (Et − E∗t )d̂∗t+1

where (Et − E∗t ) represents the difference between the expectation under µ∗t = 0 and the

worst case expectation. This is a term that is proportional to ambiguity at. This expression

suggests an interesting approach to quantify ambiguity in a linear model. Since risk premia

must be due to ambiguity, it is possible to learn about ambiguity parameters up front from

simple linear regressions without solving the DSGE model fully.

4 Estimation

4.1 Data

Our estimation uses data on investment growth, leverage, the ratios of shareholder payout

to GDP and equity value to GDP, as well as the short term real interest rate. The time

period is 1959Q1 to 2011Q3. All firm variables are for the US nonfinancial corporate sector.

14Indeed, since all unconditional empirical moments converge to those of a process with µ∗t = 0 by
construction, the same is true for conditional moments.
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We thus include all nonfinancial firms that are corporations for tax purposes. In terms of

value, however, most fluctuations in financial variables are driven by the largest firms, who

are also publicly traded (see for example, Covas and Den Haan (2011)).

Investment and GDP numbers come from the National Income and Product Accounts

(NIPA), published by the Bureau of Economic Analysis. The nonfinancial corporate sector

accounts for about one half of total US GDP. Cyclical behavior of its macro aggregates is

familiar from statistics for the economy as a whole. For example, Investment growth is

displayed in the bottom left panel of Figure 1, with NBER recessions shaded. The other

major sectors contributing domestically in the US are households and noncorporate business

(who produce most housing services, for example) and the government.

The NIPA accounts are integrated with the Flow of Funds Accounts (FFA), published

by the Federal Reserve Board, from which we take financial variables. The market value of

equity for the nonfinancial corporate sector is shown in the top left panel of Figure 1. It

exhibits a strong low frequency component with a dip in the 1970s and early 1980s, as well

more cyclical behavior recently. It shares both features with other measures of stock prices

normalized by real variables, such as the price earnings ratios for the NYSE.

We define net debt issuance as debt issuance less increases in bond holdings. Here we

add up over all fixed income instruments listed in the flow of funds accounts. The idea is

that all types of bonds are close substitutes, at least compared to equity. To quantify a

model that delivers a choice between debt and equity, it thus makes sense to lump all types

of bonds together. The market leverage ratio of the nonfinancial corporate sector is defined

as outstanding net debt divided by the market value of equity. It is shown as dark blue

line in the top left panel of Figure 2 and displays strong countercyclical fluctuations: while

there is some cyclical movement in the level of debt, the ratio is mostly driven by stock price

fluctuations.

We define shareholder payout as dividends plus share repurchases less issuance of equity.

Both debt and equity flows in raw FFA data are highly seasonal. We thus compute four

quarter trailing moving averages. There are also two large outliers in bonds acquired by

the nonfinancial corporate sector: 14.5% of total GDP in 1977:Q3 and an 9.6% of GDP in

1993:Q4. Both outliers are more than four standard deviations above the mean, whereas

the next smallest data point is less than three standard deviations above the mean. Since

we cannot expect a business cycle model to account for such sharp changes, and to guard

against contamination of our other inference, we linearly interpolate the net debt series for

these two quarters. The resulting series for net payout and net debt issuance are shown in

the top and bottom right hand panels of Figure 1. In addition to the low frequency dip and

upward movement in payout, the most pronounced pattern is the positive comovement at
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business cycle frequencies, consistent with Jermann and Quadrini (2012).

We need a measure of the real three month interest rate over the entire sample period,

even though indexed bonds were not traded in the US over most of that period. We rely on a

state space model of interest rate and inflation dynamics estimated by Piazzesi et al. (2013).

The advantage of a state space approach is that it separates slow moving and transitory

components of the inflation process, thus yielding a better fit of inflation dynamics. The

resulting real interest rate series is shown as a dark blue line in the bottom left panel of

Figure 2. It displays the familiar properties of low real rates in the 1970s, high rates in the

early 1980s and procyclical behavior since then.

4.2 Dynamics of shocks, volatility, and ambiguity

We now specialize the fairly general shock dynamics (6) and (7) by choosing functional forms

for shocks to the marginal product of capital and the operating cost as well as uncertainty

about those shocks.

Volatility and ambiguity regimes

To parsimoniously model correlated changes in uncertainty, and to account for nonlinear

dynamics in uncertainty, we use finite state Markov chains. The standard deviations σt,z and

σt,f in (6) are driven by a two-state Markov chain sσt with transition matrix Hσ. Each state

in sσt represents a ”volatility regime”; a regime switch simultaneously moves both standard

deviations. The regime is known at date t so that volatility is known one period in advance.

Movements in confidence due to intangible information, denoted by ηt,i also depend on the

realization of a two-state Markov chain. This chain, denoted sηt , is independent from sσt

and is governed by a transition matrix Hη. As for the volatility regimes, each state in sηt

simultaneously changes both levels ηt,z and ηt,f .

To derive a loglinear approximation to equilibrium in the presence of stochastic volatility,

it is helpful to write the chains as VARs as in Hamilton (1994). For example, sσt can be

written as [
eσ1,t

eσ2,t

]
= Hσ

[
eσ1,t−1

eσ2,t−1

]
+

[
vσ1,t

vσ2,t

]
(15)

where eσj,t = 1sσt =j is an indicator operator if the volatility regime sσt is in place, and the

shock vσt is defined such that Et−1 [vσt ] = 0. A similar VAR representation is available for sηt .

Operating cost

Operating cost is modeled as a persistent AR(1) process in levels, with ambiguity driven
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by the regimes:

f̃
(
εt
)

= f̄ + ρf
(
ft − f̄

)
,

at,f = ηf (s
η
t )σf (s

σ
t ), (16)

In the first line, f̃ is the mean function used in (6) and f̄ is the steady state operating cost.

The second line shows that ambiguity about operating cost follows a four-state Markov chain.

Marginal product of capital

The shock to the marginal product of capital is handled differently because we view Zt

as incorporating the responses of variable inputs to an underlying uncertainty shock. We

model shocks to Zt as a joint change in marginal product of capital today and ambiguity

perceived about the marginal product of capital in the future.15 This requires two extensions

to the functional form (16). On the one hand, the current shock should depend (negatively)

on the current uncertainty regime.

Correlation between uncertainty regime switches and Zt is due to the nonnormal shock

vzt+1 introduced in (6). It is proportional to the forecast error for ambiguity given the

current regime. The conditional mean forecast enters into the term z̃ (εt) that describes how

Zt depends on the past. We thus define

z̃
(
εt
)

= log Z̄ + ρz
(
logZt − log Z̄

)
− κEt

[
ηz(s

η
t+1)σz(s

σ
t+1)|s

η
t , s

σ
t

]
vzt+1 = −κ

(
ηz(s

η
t+1)σz(s

σ
t+1)− Et

[
ηz(s

η
t+1)σz(s

σ
t+1)|s

η
t , s

σ
t

])
(17)

On the other hand, ambiguity should move continuously (negatively) with the shock.

To this effect, we introduce an AR(1) component of at with innovations that are perfectly

negatively correlated with those to logZt :

at,z = ηz(s
η
t )σz(s

σ
t ) + ãct,z

ãct,z = ρaã
c
t−1,z − σaσz(sσt−1)εzt (18)

15Ilut and Schneider (2014) show that an increase in ambiguity about total factor productivity makes firms
and households act cautiously so that hours worked and economic activity can contract even if current labor
productivity did not change. We capture similar effects here by making the innovations to real technology
negatively correlated with the current innovation to ambiguity about it.
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4.3 Markov-switching VAR representation of the equilibrium

We can write the equilibrium representation of our model as a Markov-switching VAR (MS-

VAR) in the DSGE state vector containing all the variables of the model. The interval of

one-step ahead conditional means given by [−at,i, at,i] for each shock i is affected by the

product at,i = ηt,iσt,i of the two sources of ambiguity. Both uncertainty chains sηt and sσt

linearly affect at,i and hence the worst-case conditional expectation. Moreover, the chains

are stationary and ergodic and their dynamics are the same under the true and worst case

dynamics. The worst case steady state depends on their long run averages ηi and σi. As

intangible ambiguity ηt,i or volatility σt,i fluctuate around their respective long run means,

there are ”shocks” to ambiguity at,i and therefore shifts in the constants of the MS-VAR

representation.

Formally, we define the vector of linear deviations of the product ηi(s
η
t )σi(s

σ
t ) for i = z, f

from its ergodic values of ηiσi as following a four-state Markov chain, which is obtained by

mixing the two independent chains sηt and sσt . We can then write the VAR representation of

this composite Markov chain as
eησ1,1,t

eησ1,2,t

eησ2,1,t

eησ2,2,t

 = Hησ


eησ1,1,t−1

eησ1,2,t−1

eησ2,1,t−1

eησ2,2,t−1

+


υησ1,t

υησ2,t

υησ3,t

υησ4,t

 (19)

where eησm,n,t = 1sηt=m,sσt =n is an indicator operator if at time t the intangible ambiguity regime

m and the volatility regime n are in place, where m,n ∈ {1, 2}. The realizations of the shock

υησt are such that Et−1 [υησt ] = 0. The transition matrix is Hησ = Hη ⊗Hσ.

For each shock i and the four m,n combinations we can define ai(m,n) ≡ ηi(s
η
t =

m)σi(s
σ
t = n) − ηiσi. For example, when the intangible information regime 1 and volatility

regime 1 are in place, eησ1,1,t = 1 and the rest of the three eησm,m,t = 0. This means that our

system of equations will load ai(1, 1)eησ1,1,t = ai(1, 1) and put zero weight on the other three

realizations ai(1, 2), ai(2, 1) and ai(2, 2). In this case, the realization of the υησt shock such

that eησ1,1,t = 1 makes the linear deviation ηi(s
η
t = 1)σi(s

σ
t = 1) − ηiσi hit the economy as a

discrete shock. By augmenting the DSGE state vector with the vector eησt we control for the

first order effects of the shifts in intangible ambiguity and volatility.

Given these first-order shifts, we can then proceed to linearize the rest of the equilibrium

conditions of the model. We then use an observational equivalence result according to

which our economy behaves as if the agent maximizes expected utility under the worst-case

belief. Given this equivalence, we use standard perturbation techniques that are a good
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approximation of the nonlinear decision rules under expected utility. This allows us to solve

the model using standard solution algorithms, such as gensys by Sims (2002). The model

solution assumes the form of a Markov-switching VAR that allows for changes in the volatility

and in the constants:

S̃t = C(sσt , s
η
t ) + T S̃t−1 +Rσ(sσt−1)εt

where S̃t is a vector containing all the variables of the model. Notice that changes in

uncertainty have first order effects captured by changes in the constants of the MS-VAR.

Not all variables of the vector S̃t are observable. We then combine the solution with a

set of observation equations, obtaining a model in state space form that can be estimated

with likelihood based techniques. Further details on the representation of the solution are

presented in Appendix 5.1.

4.4 Estimates

We estimate the model using the methods developed in Bianchi (2013). Specifically, we

employ a Metropolis-Hastings algorithm initialized around the posterior mode and compute

the likelihood using the methods described in Kim and Nelson (1999).16 Because we only

have two continuously distributed shocks but we have five observables, to avoid stochastic

singularity we need to introduce three observation errors. We set these errors on the dividend

to GDP ratio, real interest rate, and the firm debt to equity value ratio.

There are two key differences from a standard Bayesian estimation of a homoskedastic

linear DSGE model. First, we have to account for heteroskedasticity in the shocks of our

model, as in the literature on regime-switching volatilities. Second, differently from that

literature, the volatility regimes, as well as the intangible ambiguity ones, have first order

effects on the endogenous variables of our linear model.

Our approach achieves identification of the volatility and intangible ambiguity regimes

through two channels: on the one hand, since they enter as a product in the linearized

model, both these uncertainty regimes shift the constant of the Markov-switching DSGE.

On the other hand, the two types of regimes can be differentiated through the properties of

the fundamental shocks. While the intangible information regime sηt leaves unaffected the

moments of the shocks, the volatility regime sσt shows up as changes in the second moment

of the next period innovations. Through the use of the Kalman smoother, the estimation

can then identify how likely it is that a shift in the constant is due to the high volatility or

16We also considered an alternative approach based on a Metropolis-within-Gibbs algorithm. The two
methods lead to similar results.

22



the high intangible ambiguity regime.

Choosing ambiguity parameters

The regime-switching dynamics of risk and ambiguity are governed by the Markov chains

sσt and sηt . There we estimate directly the corresponding two values of σt,i and ηt,i together

with the transition matrices Hσ and Hη. We are then left with choosing parameters σa, ρa

and κ. In order for the set [−at,z, at,z] to be well-behaved we need the process for at,z to

remain nonnegative. Similarly to the parametrization used in Ilut and Schneider (2014), we

then set

3σa = ηz,L
√

1− ρ2a (20)

where ηz,L is the value for ηz in the low ambiguity regime. This ensures that even in the low

ambiguity regime, the probability that ηt,z becomes negative is .13%, and any negative ηt,z

will be small.

The second consideration is that we want to bound the lack of confidence by the measured

variance of the shock that agents perceive as ambiguous. Ilut and Schneider (2014) argue that

a reasonable upper bound for at,i is given by 2σt,i. Because the ambiguity on the marginal

product of capital has a linear component, we cannot enforce the bound exactly. Here we

assume that it is violated with probability .13% even in the high ambiguity regime

ηz,H + 3
σa√

1− ρ2a
≤ 2. (21)

We satisfy the constraints in (20) and (21) by imposing that both values ηz,L and ηz,H are

lower than 1. Finally, we set the proportionality factor κ in (17) equal to σ−1a . This means

that the negative effect on the current ẑt of one unit increase in ãct,z is the same as that of

ηz(s
η
t )σz(s

σ
t ). We then are left with estimating the values ηz,L, ηz,H and ρa as we can then

infer σa from (20). Finally, we find that throughout the estimates this bound is not binding

for the two estimated values for ηf .

Parameter estimates

We estimate a subset of the parameters, with values reported Table 1. The other

parameters are fixed, as reported in Table 2, to calibrated values to match some key ratios

from the NIPA accounts. Further details are in Appendix 5.2.1. The priors for the estimated

parameters are chosen as follows. We first specify loose independent priors for the different

parameters of the model. These priors are described in Table 1. We then specify a prior on

the zero-risk steady state of the observables, inducing a joint prior on the model parameters.

This second set of priors is described in Table 3.
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Our approach is in line with the methods developed by Del Negro and Schorfheide (2008)

and allows us to take into account that the zero risk steady state, i.e. the steady state that

is observed ex-post by the econometrician, depends on the actual solution of the model.

Therefore, unlike in many rational expectations models, the observed steady state is not

controlled by a particular parameter or by a simple transformation of a subset of parameters.

4.5 Results

In this subsection we describe the economic forces identified by our estimation through a

series of figures. We discuss posterior estimates, the role of measurement error and the

patterns, identification and economic effects of the estimated uncertainty regimes.

Posterior estimates

Table 1 provides details on the posterior estimates. Consider the magnitude of the

nonstandard parameters. The parameter Ψ, implied by the normalization of Ψy, controls

the marginal cost of extra debt. When the equilibrium condition for firm’s optimal debt,

presented in (31), is evaluated at steady state, the parameter Ψ, together with the calibrated

tax advantage of debt, determines the steady state level of debt. For our estimation, the

implied debt-to-GDP ratio is about 45%.

The estimated operating cost f is about 0.89% of the zero-risk steady state of GDP,

denoted further by YGDP .17 The estimated ambiguity about operating cost at the zero risk

steady state is af = 0.022f. Given the persistence in the operating cost process, this implies

a worst-case steady state value of f ∗ of 2.8% of YGDP . Operating cost matters because it

affects payout both directly and indirectly through the endogeneity of the payout choice. As

a ratio of YGDP , payout in the zero risk steady state is 5.39% and investors behave as if it

converges to 1.22% in the worst-case steady state.

Ambiguity due to intangible information differs across regimes for both marginal product

of capital and, more importantly, for the operating cost. Indeed, for the operating cost, we

obtain ηf,L = 0.0142 and ηf,H = 0.339, while for the marginal product of capital the values

are ηz,L = 0.929 and ηz,H = 0.979. From (7), we can interpret the range of means entertained

by investors as the current volatility multiplied by the η relevant for the current regime. In

particular, the worst case mean induced by the regimes is never more than one standard

deviation below the mean observed by the econometrician. The degree of ambiguity induced

by the regimes is thus well below the upper bound of two standard deviations away argued

as reasonable in Ilut and Schneider (2014).

17Appendix 5.2.1 discusses in detail how to map the estimated parameters fy, ςf and ηf,r into values for
f, f∗, ηf,L and ηf,H .
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Intangible ambiguity matters only occasionally when the regime sηt selects the high value

ηf,H . Indeed, in the regime with low ambiguity about cost – which has an estimated ergodic

probability of 88% – there is a negligible effect of ambiguity on decision rules, because ηf

is very close to zero. This is true regardless of whether the regime coincides with high or

low realized volatility. However, intangible ambiguity about cost emerges as a relevant force

when ambiguity due to intangible information is high.

The role of measurement error

Figure 2 shows our three observables on which we have measurement error together with

their smoothed model implied counterparts. The model exactly matches investment and

the equity-gdp-ratio, which are plotted in Figure 1. For the three series where we include

measurement error, the latter is small especially for leverage and the dividend-gdp ratio.

The model generates movements in those variables both at low frequency and business cycle

frequencies. It misses some of the low frequency movements in the real interest rate in the

1970s and 80s. The behavior of the real interest rate over these years was probably affected

by events like oil shocks and changes in the monetary policy regime that we do not speak to

directly. A key takeaway for our purposes is that the model implied real interest rate is not

very volatile, as in the data. The model can therefore explain the excess volatility of equity

prices without also making bond prices excessively volatile.

Regime shifts

There are four sources of exogenous variation: the two shocks Zt and ft as well as the

regimes for volatility and intangible ambiguity. The top and bottom panels of Figure 3

display, for each sample date, the smoothed probabilities at the posterior mode of the high

volatility and high ambiguity regimes. The high volatility regime was most likely in place

from the mid 1970s to the beginning of the ’90s. It is worth pointing out that a similar

pattern for breaks in volatility has been obtained by papers that studied the source of the so

called ”Great Moderation”, the period of remarkable macroeconomic stability that preceded

the recent financial crisis.18 Table 1 shows that the volatility regimes differ mostly in the

volatility of operating cost.

Identification of the volatility regimes is driven by the two channels through which

volatility operates in the model. Consider first the direct effect of volatility on the size

of innovations. The leverage ratio is quite volatile from the mid-1970s to beginning of

the ’90s. This increase in volatility calls for an increase in the volatility of shocks that

18See for example Justiniano and Primiceri (2008), Fernandez-Villaverde et al. (2010) and Bianchi (2013).
These papers generally find that the return to low volatility occurred a bit earlier, in the mid-80s. However,
in our case identification comes from both changes in volatility and in levels, as it will become clear later on.
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drive fluctuations in financial variables, such as the operating cost. In contrast, investment

growth displays a more complex pattern, with violent contractions from the early ’70s to the

mid-80s, but even larger ones in the last two recessions. The model captures a significant

fraction of these downturns with the discrete shocks to intangible ambiguity. As a result,

breaks in the volatility of the Gaussian innovations to productivity are not necessary to

explain investment.

The second channel is that volatility has first-order effects on decisions. Here there are

two main differential effects of changes in volatility about Zt against those produced by

ft that explain identification. On the one hand, a significantly larger volatility in Zt, lasting

for more than a decade, would have produced a counterfactual deep and prolonged recession

together with very small asset price changes. In contrast, an increase in the volatility of ft

does not imply large changes in real activity but is able to generate a large drop in equity

value, a pattern we also see in the data. Both channels thus point toward a substantial break

in the volatility of the operating cost shock, while keeping fairly constant the volatility of

the marginal product of capital innovations.

The high intangible ambiguity regime is characterized by lower confidence about both the

shock to the marginal product of capital Zt and the operating cost ft, with a stronger effect

for the latter. In terms of time-variation, we find pronounced decreases in confidence around

recessions. In particular, there is strong evidence that the drop in prices associated with the

last recession can be in part explained by a loss of confidence and that the fluctuations

following that drop are due to switches between the high and low confidence regimes.

However, our estimation is not conclusive about the regime in place at the very end of

the sample. We interpret this as an effect of the lack of sufficient post- crisis history to

separate the end-of-sample movements in stock prices into uncertainty premia or measured

cash-flow changes.

The volatility regimes are substantially more persistent. This is reflected in the esti-

mates of the diagonal elements of the transition matrix Hσ, substantially larger than the

corresponding elements of Hη. However, it is worth pointing out that identification of these

parameters does not only come from the frequency of regime changes, but also from the

impact that they have on agents expectations. In fact, the estimated high persistence of the

volatility regimes also reflect the fact that changes in volatility seem to have a very large

impact on asset prices, as it will be illustrated later on: The larger the persistence, the larger

the revision of agents’ expectations in response to a regime change.

Real uncertainty and the business cycle

Movements in business cycle quantities are mostly accounted for by Zt, the joint shock

to the marginal product of capital and uncertainty. Figure 4 shows the contributions of
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different sources of variation to year-on-year investment growth. Each panel focuses on a

different source of exogenous variation: the top panel looks at Zt, the middle panel at the

operating cost ft, and the bottom panel at the regime shifts. For each source of variation,

its panel shows the data series as a red dash-dotted line. The solid blue line is what the

model would predict if all variation came from the source considered in the panel. The bulk

of the variation in investment is clearly due to movements in Zt, although shifts in regimes

also play a role.

Intuitively, movements in Zt have two effects. On the one hand, they move the marginal

product of capital. It is natural that a decrease in Zt lowers output and investment, as it

would in a standard real business cycle model. On the other hand, the change in the current

marginal product of capital comoves negatively with ambiguity about future capital. This

further lowers the return on investment. In addition, it induces ambiguity about future

consumption and lowers the real interest rate.

Figure 5 shows the contribution of Zt to the other observables. In addition to its cyclical

effect on investment, it also plays an important role for dividends and the real interest

rate. In particular it helps account for sharp drops in the real interest rate in both recent

recessions. This effect would not occur if Zt were purely a TFP shock: mean reversion in

TFP would then tend to raise interest rates in recessions. While the real uncertainty shock

matters for real quantities, its effect on the stock price is relatively small.

Uncertainty about financial conditions

Figure 6 displays the impulse response to a boost in confidence due to intangible

information. This type of shift affects mostly confidence about financial conditions; the

estimation suggests it took place for example in the mid 1980s and late 1990s. The figure

presents the impulse response by stripping out the contemporaneous negative correlation

between a drop in ambiguity about future capital and a higher current marginal product of

capital. This helps us isolate the pure effects of changes in uncertainty and thus also link

easier the responses based on this quantitative model to the intuition presented in subsection

3.1, where such a negative correlation was absent. Furthermore, the figure plots not only our

five observables, but adds also the ratio of debt to GDP so as to make the effects on capital

structure more transparent. In each panel, the model is initially in the conditional steady

state for the high ambiguity regime. It then experiences a regime shift to the low ambiguity

regime in period 20.

A boost in confidence leads to a joint increase in payout and debt (see the middle panels

in the top and bottom rows). At the same time, the stock market rises. The price effect is

strong enough that leverage of the corporate sector falls even as debt expands. An initial

drop in investment – accompanied by a short term upward spike in the interest rate – quickly
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turns into an investment boom.

The intuition for the comovement of financial quantities follows from the firm’s optimal

policies discussed in subsection 3.1. Shareholders would like to issue debt to exploit the

tax advantage, but they worry that an increase in operating costs might make internal

funds scarce. When they become more confident that funds will be cheap, they effectively

substitute away from equity financing by issuing debt and paying dividends to themselves.

The increase in the equity-gdp ratio is stronger than that of the dividend-gdp ratio (see

the first two panels in the top row). In other words, the boost in confidence increases the

price dividend ratio. As discussed in subsection 3.2, this is due in part because a decline in

ambiguity reduces the uncertainty premium on stocks. The stock market boom is not due

to a decline in interest rates – in fact the real rate rises as confidence goes up.

Figures 7 displays the impulse response to an increase in volatility. The effect on

financial quantities and the stock price are essentially the opposite as in Figure 6. This is

to be expected since the increase in volatility affects decision rules by increasing ambiguity.

Another similarity is that the effects are quite drawn out over time. This raises the question

of what a sequence of regime changes contributes to our interpretation of the data.

To address this question, Figure 8 starts the economy as it was at the beginning of

the sample and shocks it with a sequence of regime changes consistent with our posterior

mode estimates. Specifically, we make draws for the regime sequence based on the regime

probabilities at the posterior mode reported in Figure 3. Therefore, the resulting series show

how the economy would have behaved if only the Markov-switching regime changes had

occurred, while all the Gaussian shocks had been absent. The panels report the contribution

of the regimes to financial quantities, investment and prices. Of particular interest is the fact

that breaks in the volatilities of the shocks can account for the low frequency movements of

the financial variables, while breaks in ambiguity play an important role at higher frequencies.
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5 Appendix

5.1 Solution method for a model with ambiguity and MS volatility

Here we describe our approach to solving the model with regime switching ambiguity and

volatility. The steps of the solution are the following:

1. Describe the law of motion for the shocks

(a) The perceived law of motion for the continuous shocks:

ẑt+1 = ρz ẑt − κηz(sηt+1)σz(s
σ
t+1) + µ∗t,z + σz(s

σ
t )εzt+1

f̂t+1 = ρf f̂t + µ∗t,f + σf (s
σ
t )εft+1

where each element i in the vector µt belongs to a set

µt,f ∈ [−at,f , at,f ]

µt,z ∈ [−at,z, at,z]

(b) Volatility follows a two-state Markov chain sσt with transition matrix Hσ.

(c) There is an independent two-state Markov chain sηt that governs intangible am-

biguity for operating cost. Thus the ambiguity process at,f follows:

at,f = ηf (s
η
t )σf (s

σ
t )

For the shock to the marginal product of capital, ambiguity follows the process

at,z = ηz(s
η
t )σz(s

σ
t ) + ãct,z

ãct,z = ρaã
c
t−1,z − σaσz(sσt−1)εzt

2. Guess and verify the worst-case scenario. As discussed in detail in Ilut and Schneider

(2014), the solution to the equilibrium dynamics of the model can be found through a

guess-and-verify approach. To solve for the worst-case belief that minimizes expected

continuation utility over the i sets in (8), we propose the following procedure:

(a) guess the worst case belief µ0

(b) solve the model assuming that agents have expected utility and beliefs µ0.

(c) compute the agent’s value function V
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(d) verify that the guess µ0 indeed achieves the minima.

The following steps detail the point 2.b) above. Here we use an observational equiva-

lence result saying that our economy can be solved as if the agent maximizes expected

utility under the belief µ0. Given this equivalence, we can use standard perturbation

techniques that are a good approximation of the nonlinear decision rules under expected

utility. In particular, we will use linearization. When we refer to the guess below, we

use µ∗z,t = −az,t and µ∗f,t = af,t.

3. Compute worst-case steady states

(a) Compute the ergodic values ηi and σi.

(b) Based on the guess above compute the worst-case steady states for the shocks,

denoted by τ ∗ = (z∗, f ∗).

(c) Compute the worst-case steady state Y ∗ of the endogenous variables. For this,

use the FOCs of the economy based on their deterministic version in which the

one step ahead expectations are computed under the guessed worst-case belief.

4. Dynamics:

(a) Linearize around Y ∗ and τ ∗ by finding the coefficient matrices from linearizing

the FOCs. Here use that

at,i − ai = ηt,iσt,i − ηiσi

and define a composite Markov-chain for the product ηt,iσt,i as in equation (19).

The linearized FOCs can be written in the canonical form used for solving rational

expectations models:

Γ0Ŝ
∗
t = Γ1Ŝ

∗
t−1 + Ψ

[
ε′t, υ

ησ′
t

]′
+ Πωt

where Ŝ∗t is the DSGE state vector that includes the dummy variables controlling

the regime in place. This vector represents deviations around the worst-case

steady state S∗, which contains Y ∗ and τ ∗.

(b) Given that the shock vt is defined such that Et−1 [υησt ] = 0, a standard solu-

tion method to solve rational expectations general equilibrium models can be

employed. The solution can then be rewritten as a VAR with stochastic volatility

Ŝ∗t = T ∗Ŝ∗t−1 +R∗σ(sσt−1)
[
ε′t, υ

ησ′
t

]′
(22)
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(c) Verify that the guess µ0 indeed achieves the minima of the time t expected

continuation utility over the sets in (8).

5. Equilibrium dynamics under the true data generating process (DGP). The above

equilibrium was derived under the worst-case beliefs. We need to characterize the

economy under the econometrician’s law of motion. There are two objects of interest:

the zero-risk steady state of our economy and the dynamics around that steady state.

(a) The zero-risk steady state, denoted by S. This is characterized by shocks,

including the volatility regimes, being set to their ergodic values under the true

DGP. S can then be found by looking directly at the linearized solution, adding

R∗zηzσz and subtracting R∗fηfσf :

S − S∗ = T ∗
(
S − S∗

)
+R∗zηzσz −R∗fηfσf (23)

where R∗z and R∗f are the equilibrium response to positive innovations to ẑt and

f̂t respectively.

(b) Dynamics. The law of motion in (22) needs to take into account that expectations

are under the worst-case beliefs which differ from the true DGP. Then, we define

Ŝt ≡ St − S and use (22) together with (23) to obtain:

Ŝt = T ∗Ŝt−1 +R∗σ(sσt−1)
[
ε′t, υ

ησ′
t

]′
+R∗z(ηz(s

η
t−1)σz(s

σ
t−1)− ηzσz + ãct−1,z)− (24)

−R∗f
(
ηf (s

η
t−1)σf (s

σ
t−1)− ηfσf

)
By defining the matrix T accordingly, we represent the law of motion in (24) as

Ŝt = T Ŝt−1 +Rσ(sσt−1)
[
ε′t, υ

ησ′
t

]′
(25)

where we have also used the notation R = R∗. Intuitively, under the econome-

trician’s DGP the economy responds to the exogenous state variables controlling

uncertainty differently since the implied worst-case expectations are not materi-

alized in the current shock processes.

Finally, we can partition out the state vector Ŝt in a way that the Markov-

switching regimes show up as time-varying constants in the law of motion de-

scribed by (25). In particular, this change allows us to rewrite (25) as

S̃t = C(sσt , s
η
t ) + T S̃t−1 +Rσ(sσt−1)εt (26)
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where S̃t contains the same state variables of Ŝt, except eησ1,1,t, e
ησ
1,2,t, e

ησ
2,1,t, and

eησ2,2,t which have been replaced with the MS constant C(sσt , s
η
t ). To avoid further

notation, the matrices T and R in (26) are the appropriate partitions of the

corresponding objects in (25) so that they only capture the effect of S̃t. Thus, the

DSGE model is represented as a Markov-switching VAR (MS-VAR), where the

changes in the constant arise from the first order effects of the composite regimes

of stochastic volatility and ambiguity.

5.2 Equilibrium conditions for the estimated model

Here we describe the equations that characterize the equilibrium of the estimated model in

Section 4. To solve the model, we first scale the variables in order to induce stationarity.

The variables are scaled as follows:

ct =
Ct
ξt
, yt =

Yt
ξt
, kt =

Kt

ξt
, it =

It
ξt

Financial variables:

pt =
Pt
ξt
, dt =

Dt

ξt
, bit =

Bi
t

ξt
; i = f, h

The borrowing costs:

κ
(
Bf
t−1

)
ξt

=
Ψ

2

1

ξ2

(
bft−1

)2
;
φ (Dt, Dt−1)

ξt
= ft +

φ′′ξ2

2

(
dt
dt−1

− 1

)2

We now present the nonlinear equilibrium conditions characterizing the model, in scaled

form. The expectation operator in these equations, denoted by E∗t , is the one-step ahead

conditional expectation under the worst case belief µ0. According to our model, the worst

case is that future zt+1 is low, and that the financing cost ft+1 is high.

The firm problem is

maxE∗0
∑

M f
0.tDt

subject to the budget constraint

dt = (1− τk)

[
αyt −

bft−1
ξ

(
1−Qb

t−1
)
− φ′′ξ2

2

(
dt
dt−1

− 1

)2

− it

]
− (27)

− ft −
Ψ

2

1

ξ2

(
bft−1

)2
+ δτkq

k
t−1

kt−1
ξ
−
bft−1
ξ
Qb
t−1 + bftQ

b
t

and the capital accumulation equation
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kt =
(1− δ)kt−1

ξ
+

[
1−

(
S

′′

2

itξ

it−1
− ξ
)2
]
it (28)

Let the LM on the budget constraint be λtM
f
0.tεt and on the capital accumulation be

µtM
f
0.tεt. Then the scaled pricing kernel is

mf
t+1 ≡Mt+1

ξt+1

ξt
= β

ct
ct+1

1− τl
1− τlβE∗t [ct/ (ct+1ξ)]

. (29)

The FOCs associated with the firm problem are then:

1. Dividends:

1 = λt

[
1 + (1− τk)φ′′ξ2

1

dt−1

(
dt
dt−1

− 1

)]
− Etmf

t+1λt+1

[
(1− τk)φ′′ξ2

dt+1

d2t

(
dt+1

dt
− 1

)]
(30)

2. Bonds:

Qb
tλt = E∗tm

f
t+1λt+1

1

ξ

[
1− τk

(
1−Qb

t

)
+

Ψ

ξ
bft

]
(31)

3. Investment:

1 =
qkt

(1− τk)

[
1− S

′′

2
ξ2
(

it
it−1
− 1

)2

− S ′′
ξ2
(

it
it−1
− 1

)
1

it−1

]
+ (32)

+ E∗tm
f
t+1

λt+1

λt
qkt+1S

′′
ξ2
i2t+1

i2t

(
it+1

it
− 1

)
where

qkt ≡
µt
λt

4. Capital:

1 = E∗tm
f
t+1

λt+1

ξλt
RK
t+1 (33)

Rk
t+1 ≡

(1− τk)α
(
kt
ξ

)α−1
L1−α + (1− δ)qkt+1

qkt
+ δτk
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The household problem is as follows:

maxE∗0
∑

βt log ct

(1 + τc)ct + ptθt = (1− τl)
[
(1− α)yt + π + dtθt−1 +

bht−1
ξ

(
1−Qb

t−1
)]

+ (34)

+ ptθt−1 − τl(pt −
1

ξ
pt−1)θt−1 +

bht−1
ξ
Qb
t−1 − bhtQb

t + tr

Thus, the FOCs associated to the household problem are:

1. Bond demand:

Qb
t = βE∗t

ct
ξct+1

[
1− τl

(
1−Qb

t

)]
(35)

2. Equity holding:

pt = βE∗t
ct
ct+1

[
(1− τl) (pt+1 + dt+1) +

τl
ξ
pt

]
(36)

The market clearing conditions characterizing this economy are:

bht = bft (37)

ct + it +
φ′′ξ2

2

(
dt
dt−1

− 1

)2

+ ft +
Ψ

2

1

ξ2

(
bft−1

)2
= yt + π (38)

θt = 1

corresponding to the market for bonds, goods and equity shares, respectively.

Thus, we have the following 11 unknowns:

kt, it, b
f
t , b

h
t , Q

b
t , pt, ct, dt, q

k
t , λt,m

f
t

The equations (28), (29), (30), (31), (32), (33), (35), (36), (37),(38) give us 10 equations. By

Walras’ law, we can then use one out of the two budget constraints in (27) and (34) (using

θt = 1). This gives us a total of 11 equations.

5.2.1 Parametrization

Rescaling and calibrating parameters

We estimate a subset of the parameters, with values reported in Table 1. The other

parameters are fixed, as reported in Table 2, to match some key ratios from the NIPA

accounts.
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For the steady state calculation of the model it is helpful to rescale some parameters.

Specifically, denote by y∗GDP the worst-case steady state measured GDP, i.e. total goods

y + π minus financing costs. Then, define the following ratios:

πy =
π

y∗GDP
, ty =

tr
y∗GDP

; Ψy =
Ψ

y∗GDP
(39)

fy =
f

y∗GDP
; 1 + ςf =

f ∗

f
; ηf,r =

ηf,L
ηf

(40)

Let us first discuss the normalizations in (39). Total measured GDP in our model, denoted

here by yGDP , corresponds to the non-financial corporate sector (NFB) output plus goods

produced by the other productive sectors- financial, non-corporate and household. We

associate the firm in our model with the NFB sector and thus πy is set to match goods

produced by other productive sectors divided by yGDP . The ratio ty equals government

transfers (including social security and medicare) plus after-tax government wages divided

by yGDP . Finally the parameter Ψy is estimated and after computing the level of the economy

it then implies a value of Ψ.

The tax parameters are computed as follows: τl equals total personal taxes and social

security contributions divided by total income, where the latter is defined as total wages

plus dividends. τk equals NFB taxes divided by NFB profits and τc equals NFB sales taxes

divided by NFB output. The government spending ratio g equals government net purchases

from other sectors plus net exports divided by yGDP .

The parameters in (40) are estimated and control the size of the operating cost. First,

fy determines f, the value of the steady state cost under the true DGP. The parameter ςf

controls by how much higher is f ∗, the worst-case steady state operating cost, compared to

f . This normalization is helpful because it allows us to use meaningful priors on this ratio

in terms of the type and size of prior mean. Since

f ∗ = f +
ηfσf

(1− ρf )

then based on ςf we compute:

ηf = σ−1f (1− ρf ) ςff

where f is obtained after solving for the level of the economy. Finally, the parameter ηf,r,

which has a beta prior, determines the value of ηf in the Low ambiguity regime compared

to its ergodic value of ηf :

ηf,L = ηf,rηf
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Based on the estimated transition matrix for the ambiguity regimes, the value of ηf in

the High ambiguity regime is then easily computed as:

ηf,H =
ηf − pη,Lηf,L

1− pη,L

where pη,L is the ergodic probability of the Low ambiguity regime computed using the

estimated transition matrix Hη.
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Figure 1: This figure shows the net change in non-financial corporate debt, as a percent of
GDP, together with three of the observables used for our estimation: log(equity value/GDP),
investment growth and log(net equity payout/GDP). NBER recessions are marked as yellow
shades. The other two series used for the estimation, namely firm debt to equity value ratio
and the short term real interest rate, are plotted in Figure 2. See Section 4.1 for details on
data construction.
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Figure 2: Variables used for estimation that allow for measurement error. Red line is the
smoothed model-implied path substracting the estimated observation error. The blue line
represents the data.
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Figure 3: Smoothed regime probabilities. Top panel refers to volatility regime number 1,
which we refer to as the High volatility regime. Bottom panel refers to intangible ambiguity
regime number 2, which we refer to as the High ambiguity regime. Estimates for the values
across regimes are shown in Table 1. Further discussion on normalizations is in Appendix
5.2.1
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Figure 4: Contribution of different sources of variation on the year-on-year investment
growth. Blue line is the counterfactual model-implied evolution based only on that source.
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Figure 5: Contribution of the marginal product of capital shock to different financial
variables. The blue line is the model-implied counterfactual evolution based only on that
shock.
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Figure 6: Impulse response for a switch from a high ambiguity-low volatility regime to a low
ambiguity-low volatility regime. The switch occurs in period 20.
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Figure 7: Impulse response for a switch from a high ambiguity-low volatility regime to a
high ambiguity-high volatility regime. The switch occurs in period 20.
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Figure 8: Evolution induced by draws for the regime sequence based on the smooth
probabilities of Figure 3.
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Table 1: Modes, means, 90% error bands, and priors of the DSGE parameters
Parameter Mode Mean 5% 95% Type Para 1 Para 2

ηz,L 0.9290 0.9107 0.8654 0.9431 B 0.5000 0.2500
ηz,H 0.9796 0.9581 0.9103 0.9921 B 0.5000 0.2500
ηf,r 0.2583 0.2898 0.0948 0.5150 B 0.5000 0.2000
ςf 2.1584 2.1747 1.8542 2.5777 G 1.0000 0.5000
φ′′ 0.0020 0.0021 0.0017 0.0025 G 0.1000 0.0800
Ψy 0.0022 0.0022 0.0020 0.0024 G 0.0050 0.0040

100 (ξ − 1) 0.4243 0.4375 0.3802 0.4921 G 0.3000 0.0500
100fy 1.3261 1.3110 1.1571 1.4783 G 2.0000 1.5000
δ 0.0053 0.0053 0.0046 0.0060 B 0.0250 0.0100
α 0.2335 0.2333 0.2216 0.2454 B 0.3500 0.0500
S ′′ 0.1346 0.1484 0.1167 0.1865 G 2.0000 1.0000

100 (β−1 − 1) 0.5566 0.5581 0.5192 0.5970 G 0.3000 0.2000
ρz 0.9714 0.9722 0.9697 0.9747 B 0.5000 0.1500
ρf 0.9995 0.9994 0.9990 0.9998 B 0.5000 0.1500
ρa 0.9628 0.9634 0.9600 0.9666 B 0.5000 0.2500

100σz (1) 1.2874 1.3242 1.2196 1.4254 U 0.01 10
100σf (1) 0.7064 0.6870 0.5581 0.8230 U 0.01 10
100σz (2) 1.2857 1.3227 1.2185 1.4234 U 0.01 10
100σf (2) 0.4301 0.4004 0.3278 0.4780 U 0.01 10
Hσ

11 0.9990 0.9985 0.9971 0.9995 D 0.8333 0.1034
Hσ

22 0.9994 0.9992 0.9985 0.9997 D 0.8333 0.1034
Hη

11 0.9678 0.9689 0.9570 0.9798 D 0.8333 0.1034
Hη

22 0.7755 0.7730 0.7292 0.8160 D 0.8333 0.1034
100σoe,D/Y 18.3919 18.9841 17.4483 20.4196 IG 5.0500 1.0100

100σoe,Debt/P 3.7053 3.7835 3.4775 4.1194 IG 1.3943 0.2789
100σoe,RIR 0.2676 0.2733 0.2591 0.2892 IG 0.0503 0.0101

B refers to Beta, G to Gamma, IG to Inverse-gamma, U to uniform and D to the
Dirichlet distribution. Para 1 and Para 2 denote the mean and standard deviation for all
prior distributions except for the uniform distribution. In this last case they denote the
two bounds of the distribution.

Table 2: Calibrated parameters
τl τk τc πy ty g
0.189 0.193 0.09 0.3 0.21 0.05
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Table 3: Priors and posteriors for zero-risk steady state
Variable Mode Mean 5% 95% Type Mean st.dev.

100∆I 0.4234 0.4366 0.3795 0.4909 N 0.47 0.23
D/GDP 0.0539 0.0538 0.0494 0.0589 N 0.06 0.02
SP/GDP 6.5040 6.4572 6.1489 6.7745 N 5 1
B/SP 0.0686 0.0681 0.0617 0.0748 IG 0.2 0.06

100RIR 0.3604 0.3568 0.2817 0.4273 N 0.47 0.23

Priors and posteriors for the zero-risk steady state of our observables: investment growth
(∆I), dividend to GDP ratio (D/GDP ), equity price to GDP ratio (SP/GDP ), firm
debt to equity value ratio (B/SP ) and the short term real interest rate (RIR). The
priors for variables D/GDP and SP/GDP are expressed here in levels.

Table 4: MCMC convergence statistics

Parameter PSRF Parameter PSRF Parameter PSRF

ηz,L 1.03 100 (β−1 − 1) 1.05 100σf (2) 1.09
ηz,H 1.04 ρz 1.07 Hσ

11 1.02
100fy 1.13 ρf 1.00 Hσ

22 1.01
φ′′ 1.01 ςf 1.15 Hη

11 1.03
Ψy 1.04 ηf,r 1.07 Hη

22 1.01
100 (ξ − 1) 1.04 ρa 1.00 100σoe,D/Y 1.13

δ 1.01 100σz (1) 1.10 100σoe,Debt/P 1.00
α 1.02 100σf (1) 1.02 100σoe,RIR 1.01
S ′′ 1.01 100σz (2) 1.10

The table reports the Brooks-Gelman-Rubin Potential Scale Reduction Factor (PSRF)
for each parameter. Values below 1.2 denote convergence.
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