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1 Introduction

This paper develops a novel integration of consumption-based asset pricing with macroeco-

nomics. Asset prices measure agents’ forward-looking expectations and are at the heart of

consumption and savings decisions. An integrated framework can therefore impose valuable

discipline on both macroeconomic and asset pricing models. We develop a new specification

of preferences, building on the consumption-based habit formation model of Campbell and

Cochrane (CC 1999), and use it to model macroeconomic dynamics jointly with bond and

stock returns.

The CC habit formation model has become a benchmark for understanding asset prices,

and specifically time-varying risk premia, but it has been difficult to apply outside the original

setting of exogenous unpredictable consumption growth. We generalize CC preferences to

more general consumption and interest rate dynamics. The process for habit in our model

implies an exact loglinear Euler equation relating consumption to the riskless real interest

rate. We assume a simple, empirically realistic link between consumption and the output

gap so that we can express the Euler equation in terms of the output gap as is standard in

New Keynesian models (e.g. Clarida, Gali, and Gertler 1999 or Woodford 2003).

Because our preferences are consistent with a loglinear Euler equation they are also con-

sistent with loglinear, conditionally homoskedastic processes for macroeconomic variables.

We combine the loglinear Euler equation with reduced-form, loglinear, homoskedastic dy-

namics for inflation and the Federal Funds rate. The resulting model captures the main

empirical properties of the output gap, inflation, and the funds rate in a tractable fashion;

and it raises the bar for our preference specification, by requiring it to generate time-varying

risk premia even without nonlinear driving processes. We solve for the prices of nominal

and real bonds and stocks, modeled as levered consumption claims whose dividends are
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cointegrated with consumption. While this paper does not take a stand on the details of

macroeconomic frictions or the monetary policy rule, we provide a new tool that can be used

to study the asset pricing implications of alternative structural macro models.

To demonstrate the usefulness of our approach, we apply our model to understand why

nominal Treasury bonds changed from risky (comoving positively with stocks) in the 1980s

and 1990s to safe (comoving negatively with stocks) in the first decade of the 2000s. This

application is especially suitable because it requires an internally consistent macroeconomic

and asset pricing framework of the sort that our model provides. The model explains the

qualitative change in Treasury risks by a change in the comovement between inflation and the

output gap, but a full quantitative explanation requires that risk premia change endogenously

as predicted by the model. This is a striking result because our model tightly restricts time-

variation in risk premia and does not allow them to change independently of cash flows.

We start our empirical application by testing for an unknown break date in the relation

between inflation and the output gap in US data from 1979Q3 through 2011Q4. We detect

a break in 2001Q2, with a negative inflation-output gap correlation before and a positive

correlation after. Because nominal bond returns are inversely related to inflation and stock

returns are positively related to the output gap, one might expect that the comovement

between bonds and stocks should change in the opposite direction around this break date.

Figure 1, Panel A shows that indeed the correlation of bond and stock returns was positive

on average before 2001Q2 but negative afterwards. Figure 1, Panel B shows a similar change

in the beta of nominal bond returns with respect to the stock market. Figure 1 uses daily

data to estimate persistent components in the second moments of bond and stock returns.2

2The end-of-quarter bond-stock correlation is the correlation of daily log returns on 5-year nominal
Treasury bonds with daily log CRSP value-weighted stock market returns including dividends over a rolling
three-month window. The end-of-quarter bond beta is the regression coefficient of the same bond returns
onto stock returns over the same rolling window. We use a Kalman filter to filter out measurement noise.
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We estimate our model separately for the two periods 1979Q3–2001Q1 (period 1) and

2001Q2–2011Q4 (period 2) identified by our macroeconomic break test. We calibrate pref-

erence parameters following CC and set them equal across subperiods. We estimate the

parameters governing macroeconomic dynamics separately for each subperiod using simu-

lated method of moments (SMM). We use only macroeconomic dynamics and no bond or

stock returns for the estimation. The moments used for the estimation are the empirical

impulse responses of a standard VAR in the output gap, inflation, and the Federal Funds

rate, and the correlation between the 5-year average Federal Funds rate and the output gap.

The model is broadly successful at matching the empirical impulse responses, and it gen-

erates empirically plausible bond and stock returns. As in CC, habit-formation preferences

generate volatile and predictable equity returns to address the “equity volatility puzzle,” one

of the leading puzzles in consumption-based asset pricing (Campbell 2003). Unlike CC, the

model generates realistic bond return volatility and predictability of both bond and stock

returns from the output gap.

Despite being estimated only on macroeconomic dynamics, the model matches the chang-

ing comovement of quarterly bond and stock returns. In period 1, the model generates a

quarterly bond-stock correlation of 0.50 compared to 0.21 in the data. In period 2, the

model’s bond-stock correlation is −0.72, closely matching the highly negative correlation in

the data of −0.64. Decomposing bond and stock returns into cash-flow news, real-rate news,

and risk-premium news, we find that the correlation between bond and stock cash-flow news

switches from positive in period 1 to negative. However, the cash-flow news correlations are

Specifically, we assume that the bond-stock correlation follows an AR(1) process plus white measurement
noise. We use a Kalman filter to estimate the AR(1) parameters by maximum likelihood and then to filter
for the unobserved persistent component. Panel A plots the filtered persistent component and its 95%
confidence interval. The filtered bond-stock beta and its 95% confidence interval in Panel B are constructed
similarly. See the appendix for details of the Kalman filter.
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only 0.12 in period 1 and −0.14 in period 2. The correlation between bond and stock risk

premia switches from almost perfectly positive to almost perfectly negative and drives the

quantitatively larger overall bond-stock correlations.

The interplay between the dynamics of inflation and the behavior of risk premia is both

quantitatively important and intuitive. The sign switch in the correlation between inflation

and the output gap moves the correlation between bond cash flows and stock cash flows from

positive in period 1 to negative in period 2, and changes the sign of Treasury risk premia

from positive to negative as emphasized by Campbell, Sunderam, and Viceira (2017). But

habit formation preferences imply that recessions make investors more risk averse, driving

down the prices of risky assets and driving up the prices of hedge assets in a “flight to safety”.

In period 1, Treasuries are risky assets that suffer from the flight to safety along with stocks,

while in period 2 Treasuries are hedge assets that benefit from the flight to safety. Thus,

time-varying risk aversion amplifies the positive comovement of bonds and stocks in period

1 and amplifies the negative comovement in period 2. Our model implies that time-varying

macroeconomic dynamics and risk premia are not separate explanations for the change in

bond risks, but instead are linked when consumers have consumption-based habit formation

preferences.

1.1 Literature review and outline

This paper contributes to two main literatures. First, it further integrates the literatures

on habit formation in asset pricing and macroeconomics. Habit in macroeconomic models

without asset prices, such as Fuhrer (2000), Christiano, Eichenbaum, and Evans (2005) and

Smets and Wouters (2007), serves to generate persistence in macroeconomic fluctuations.

The macro-finance literature has found it difficult to generate volatile asset returns from
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consumption-based habit formation preferences without implausibly distorting the dynamics

of consumption, output, and the real interest rate. This is particularly true in simple models

where habit is proportional to lagged consumption (Heaton 1995, Jermann 1998, Boldrin,

Christiano, and Fisher 2001), but is also a problem in models with persistent but linearized

habit dynamics (Lettau and Uhlig 2000, Uhlig 2007, Rudebusch and Swanson 2008, Lopez,

Lopez-Salido, and Vazquez-Grande 2015).

One response to this problem has been to generate time-varying risk premia from het-

eroskedasticity in consumption growth (Chen 2017); but this requires large and extremely

persistent movements in macroeconomic volatility just as in the long-run risk literature that

works with recursive preferences (Bansal, Kiku, and Yaron 2012), and encounters the diffi-

culty that empirical equity risk premia do not vary in proportion with equity volatility (Beeler

and Campbell 2012). In contrast to these papers, we assume homoskedastic driving pro-

cesses for macroeconomic variables and generate time-varying risk premia endogenously from

CC’s highly nonlinear preference specification. Our approach is complementary to Bekaert

and Engstrom (2017), who model time-variation in the higher moments of consumption

growth within the CC framework, while we model time-variation in the conditional mean of

consumption growth.

Second, we add to the literature on the term structure of interest rates and macroeco-

nomic factors by modeling risk premia from consumption-based habit formation preferences.

Within this literature, our paper is most closely related to those that price both bonds and

stocks (for example Bekaert, Engstrom, and Grenadier 2010 and Lettau and Wachter 2011),

and more specifically to papers that investigate changes in bond-stock comovements over

time (Baele, Bekaert, and Inghelbrecht 2010, Campbell, Shiller, and Viceira 2009, Camp-

bell, Sunderam, and Viceira 2017, Gourio and Ngo 2018, Song 2017, Viceira 2012). In
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contrast to us, these papers do not use consumption-based habit formation preferences, rely-

ing either on an exogenous reduced-form stochastic discount factor or recursive preferences

combined with stochastic volatility. Our model is also complementary to David and Veronesi

(2013), who study bonds and stocks in an endowment economy with learning.

The organization of the paper is as follows. Section 2 describes our model, with the

consumption Euler equation, the assumed relation between consumption and the output

gap, and our new preference specification (section 2.1), inflation and interest rate dynamics

(section 2.2), and the specification for equity dividends (section 2.3). Section 3 explains

how we solve the model. Section 3.1 discusses the solution for macroeconomic dynamics,

including our procedure for selecting an equilibrium when multiple equilibria exist. Section

3.2 provides intuition for time-variation of risk premia and explains our numerical solution

method for asset prices. Section 4 on econometric methodology describes the data (section

4.1), break date tests (section 4.2), calibration of time-invariant parameters (section 4.3),

and estimation of subsample-dependent parameters (section 4.4). Section 5 presents our

empirical results. Section 5.1 discusses parameter estimates and section 5.2 the implied

macroeconomic dynamics. Section 5.3 presents implications for asset prices, and section 5.4

a decomposition into news about cash flows, real interest rates, and risk premia. Section 6

concludes, and highlights the potential of our framework for future research.

2 Model

2.1 Euler equation and preferences

Macroeconomic dynamics in our model satisfy a loglinear Euler equation typical of New

Keynesian models, where the log output gap is linked to its own lead and lag and the log
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real risk-free interest rate (see Woodford, 2003, Chapters 4 and 5):

xt = fxEtxt+1 + ρxxt−1 − ψrt.

The New Keynesian literature defines the log output gap xt as log real output minus log

potential real output, where potential output is the hypothetical equilibrium without price-

and wage-setting frictions (Woodford, 2003, p.245). rt denotes the log real risk-free interest

rate that can be earned from time t to time t + 1. The coefficients fx, ρx, and ψ are

positive parameters. Intuitively, a high real interest rate means that consumers have a

strong incentive to save, thereby depressing contemporaneous consumption and output. We

model the output gap, inflation, and short-term interest rates relative to a steady state, so

the loglinear Euler equation is specified up to a constant.

Our preferences are such that the loglinear Euler equation is indeed the first-order con-

dition for the real risk-free rate and this is what distinguishes our preferences from CC and

other habit utility functions popular in asset pricing.3 Our modeling choices ensure that

the loglinear Euler equation is exact with no approximation error. Because loglinear Euler

equations are pervasive in structural macroeconomic models, this makes our preferences a

natural stepping stone to study consumption-based asset prices in researchers’ and policy

makers’ preferred models of the macroeconomy. Next, we describe what is required to make

consumption-based habit formation preferences consistent with a loglinear Euler equation.

3CC is not consistent with a loglinear Euler equation, because it implies a constant real rate. In Menzly,
Santos, and Veronesi (2004) and Wachter (2006) the real risk-free rate is a nonlinear function of current
and past consumption shocks, and in Bekaert and Engstrom (2017) the real rate depends in addition on an
unobserved state variable governing higher moments of consumption growth.
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2.1.1 Consumption and the output gap

The loglinear Euler equation generates endogenous dynamics for the output gap, but not di-

rectly for consumption. We therefore need a link between the output gap and consumption,

so we can solve for consumption dynamics from the output gap. We make the simple assump-

tion that the log real output gap, xt, equals stochastically detrended log real consumption,

ĉt:

xt = ĉt ≡ ct − (1− φ)
∞∑
i=0

φict−1−i, (1)

where φ is a smoothing parameter. Here, we again ignore constants, because xt is specified

relative to steady-state.

To see that the consumption-output gap relation is consistent with the New Keynesian

macroeconomics literature, one could augment the model with two stylized assumptions: a)

consumption equals output, and b) log potential output is a stochastic trend of log output,

consistent with how potential output is measured empirically (Staiger, Stock, and Watson

1997, Shackleton 2018). It then follows that the output gap is detrended output, which

also equals detrended consumption, i.e. equation (1). Since the interpretation of the output

gap is not important for us, it can simply be regarded as stochastically detrended output

throughout the paper.

In the appendix, we show empirical evidence that (1) is also a strikingly close description

of the data when the detrending parameter φ is set equal to 0.93 per quarter. We impose

this value when we calibrate our model.
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2.1.2 Habit preferences

As in CC, utility is a power function of the difference between the level of consumption C

and external habit H:

Ut =
(Ct −Ht)

1−γ − 1

1− γ
=

(StCt)
1−γ − 1

1− γ
. (2)

Here

St =
Ct −Ht

Ct
(3)

is the surplus consumption ratio, the fraction of consumption that is available to generate

utility, and γ is a curvature parameter that controls risk aversion. Relative risk aversion

varies over time as an inverse function of the surplus consumption ratio: −UCCC/UC = γ/St.

Marginal utility in this model is

U ′t = (Ct −Ht)
−γ = (StCt)

−γ . (4)

Standard no-arbitrage conditions in asset pricing imply that the gross one-period real return

(1 +Rt+1) on any asset satisfies

1 = Et [Mt+1 (1 +Rt+1)] , (5)

where the stochastic discount factor is related to the log surplus consumption ratio st+1 and

log consumption ct+1 by

Mt+1 =
βU ′t+1

U ′t
= β exp (−γ(∆st+1 + ∆ct+1)) . (6)
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2.1.3 Surplus consumption dynamics

The dynamics of the log surplus consumption ratio are given by:

st+1 = (1− θ0)s̄+ θ0st + θ1xt + θ2xt−1 + λ(st)εc,t+1, (7)

εc,t+1 = ct+1 − Etct+1 = xt+1 − Etxt+1, (8)

where s̄ is the steady-state log surplus consumption ratio and εc,t+1 is a conditionally ho-

moskedastic shock to consumption (equivalently, to the output gap) with standard deviation

σc.

Equation (7) takes the same form as in CC, but with two new terms θ1xt and θ2xt−1. If

θ1 = θ2 = 0 our model is identical to CC. Equation (7) implies that log habit is approximately

a distributed lag of consumption. Positive θ1 and θ2 imply that habit loads less strongly on

the two most recent lags of consumption but more strongly on medium-term lags compared

to CC. We derive the approximate relation between habit and lagged consumption near the

steady state in the appendix.

The sensitivity function λ(st) is identical to that in CC:

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1 st ≤ smax

0 st ≥ smax

, (9)

S̄ = σc

√
γ

1− θ0

, (10)

s̄ = log(S̄), (11)

smax = s̄+ 0.5(1− S̄2). (12)

Just as in CC, the downward-sloping relation between λ(st) and st has the intuitive implica-
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tion that marginal consumption utility is particularly sensitive to consumption innovations

when investors are too close to their habit consumption level, as would be the case following

an adverse shock.4

2.1.4 Deriving the Euler equation from preferences

Substituting log surplus consumption dynamics (7) into the stochastic discount factor (6) and

the no-arbitrage condition (5) for the one-period real risk-free bond gives (up to a constant):

rt = γEt∆ct+1 + γEt∆st+1 −
γ

2
(1 + λ(st))

2 σ2
c .

Our modeling choices simplify the first-order condition for the real risk-free rate. First,

the surplus consumption dynamics imply that we can substitute out for Et∆st+1:

rt = γEt∆ct+1 + γ (θ0 − 1) st + γθ1xt + γθ2xt−1 −
γ

2
(1 + λ(st))

2 σ2
c .

Second, the consumption-output gap relation (1) implies that we can write expected con-

sumption growth in terms of the current and expected output gap: Et∆ct+1 = Etxt+1−φxt.

The real rate first-order condition then becomes

rt = γEtxt+1 − γφxt + γ (θ0 − 1) st + γθ1xt + γθ2xt−1 −
γ

2
(1 + λ(st))

2 σ2
c .

Third, the sensitivity function has just the right form so that st drops out. Substituting in

4If θ1 and θ2 are different from zero, there is the theoretical possibility that the log surplus consumption
ratio exceeds the maximal value smax. However, the probability of this event is small in our estimated model
(less than 1% per quarter). In this respect our model is similar to CC, who also have an upper bound on
surplus consumption that is crossed with very low probability in discrete time (and can never be crossed in
continuous time).
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the sensitivity function (7) through (12) and re-arranging, continuing to ignore constants,

gives the loglinear Euler equation:

xt =
1

φ− θ1︸ ︷︷ ︸
fx

Etxt+1 +
θ2

φ− θ1︸ ︷︷ ︸
ρx

xt−1 −
1

γ(φ− θ1)︸ ︷︷ ︸
ψ

rt. (13)

The expressions for the coefficients in equation (13) illustrate the role of the new pa-

rameters θ1 and θ2 that we have introduced into the CC model. A positive value of θ2 is

needed to obtain a positive coefficient on the lagged output gap that previous papers have

found important to capture the hump-shaped response of output to shocks (Fuhrer 2000,

Christiano, Eichenbaum, and Evans 2005, Smets and Wouters 2007). A positive value of θ1

increases all the coefficients in (13).

As in CC, we specify the unique sensitivity function such that st cancels out of (13) and

habit is pre-determined at the steady-state. We need these highly non-linear preferences

to obtain a simple first-order condition for the real risk-free rate and linear macroeconomic

dynamics. A simpler sensitivity function would complicate the first-order condition for the

real risk-free rate (13) by introducing st as an additional state variable. For instance, if we

were to assume that λ is linear in st, there would be s2
t terms in (13).

The derivation of the loglinear Euler equation (13) shows that it holds exactly for our

preferences. Further, (13) follows from our preferences and the consumption-output gap

relation irrespective of the specific microfoundations of a macroeconomic model, as long as

consumption is conditionally homoskedastic.

Three features differentiate (13) from macro Euler equations typically used in New Key-

nesian models. First, the coefficients on the lagged output gap and the expected future

output gap do not generally sum to one. With positive θ1 and θ2 as we assume, the sum of
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the coefficients is greater than one. Second, because of the distinction between consumption

and the output gap, the slope of the Euler equation ψ does not equal the representative

consumer’s elasticity of intertemporal substitution (EIS), as can be seen from the fact that

ψ depends on the parameter φ linking consumption and output gap dynamics. Third, the

loglinear Euler equation holds without shocks.

2.2 Inflation and interest rate dynamics

We now turn to the description of macroeconomic dynamics. We introduce two dynamic

equations for inflation and the Federal Funds rate, the minimum state variables needed to

price nominal and real bonds. We assume that log inflation and the log Federal Funds rate

share a common stochastic trend (unit root), consistent with the extremely high persistence

in US inflation data (Ball and Cecchetti 1990, Stock and Watson 2007) and stationarity

of the real interest rate. In addition we assume that log inflation and the log Federal

Funds rate are conditionally homoskedastic. Because our assumed consumer preferences

are consistent with the loglinear Euler equation, this ensures that both the output gap and

consumption are also conditionally homoskedastic—as in fact required by our derivation of

the Euler equation.

To make the dynamics of inflation and interest rates tractable, we approximate the log

one-period nominal interest rate as the log real rate plus expected log inflation:

it = rt + Etπt+1.

This approximation improves tractability for the macroeconomic dynamics, because it avoids

introducing a small heteroskedastic term. The approximation is standard in New Keynesian
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models. For our preferences and at our point estimates, the approximation error has a

negligible standard deviation of 2 basis points.

Because we are interested in bond risk premia, it is important that we do not make this

approximation for longer-term bonds. In our model risk premia are time-varying and the

expectations hypothesis of the term structure of interest rates does not hold. We solve

numerically for the risk premia on longer-term bonds.

We write the unit-root component of inflation as π∗t and define inflation and interest-rate

gaps as deviations from π∗t:

π̂t = πt − π∗t, ı̂t = it − π∗t. (14)

We choose a unit root specification rather than a highly persistent mean-reverting inflation

component, because this way we can write the macroeconomic dynamics in terms of ît and

π̂t, thereby reducing the dimensionality of the state space. We normalize xt, π̂t, and ît to

have zero averages.

Macroeconomic dynamics are then described by (13) and the following equations:

π̂t = pπxxt−1 + pπππ̂t−1 + pπiı̂t−1 + vπ,t, (15)

ı̂t = pixxt−1 + piππ̂t−1 + pixı̂t−1 + vi,t, (16)

π∗t = π∗t−1 + v∗t. (17)

It is important to note that (15) and (16) represent equilibrium dynamics and not a structural

model. The standard deviations of shocks are denoted σπ, σi, and σ∗ and their cross-

correlations are given by ρπi, ρπ∗, and ρi∗.
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2.3 Dividends

We model stocks as a levered claim on consumption, as is common in the asset pricing

literature (Abel 1990, Campbell 1986, 2003), while being careful to preserve the cointegration

of log consumption and log dividends.

Let P c
t denote the price of a claim to the consumption stream Ct+1, Ct+2,... We assume

that stocks are a claim to all future equity cash flows of a levered firm that invests in the

consumption stream. At time t the firm buys P c
t and sells equity to its investors worth δP c

t ,

so its equity financing share is δ which we assume to be constant over time. The remainder

of the firm’s position is financed by one-period risk-free debt worth (1− δ)P c
t . We make the

simplifying assumption that equity holders give up limited liability.

At time t+ 1, the firm receives a cash flow Ct+1 + P c
t+1, pays (1− δ)P c

t exp (rt) to bond

holders, and raises new financing from equity holders δP c
t+1, which we model as a negative

dividend. The period t + 1 gross dividend to equity holders then equals the firm cash flow,

minus payments to bond holders and new equity financing:

Dδ
t+1 = P c

t+1 + Ct+1 − (1− δ)P c
t exp (rt)− δP c

t+1. (18)

If P c
t /Ct and rt are stationary, (18) implies that Dδ

t /Ct is stationary, so log dividends and

log consumption are cointegrated.

The price of the claim to all future cash flows (18) is P δ
t = δP c

t . From (18) the gross

stock return (1 +Rδ
t+1) equals the gross consumption claim return (1 +Rc

t+1) times leverage,

less a term reflecting the firm’s debt payments:

(1 +Rδ
t+1) =

Dδ
t+1 + P δ

t+1

P δ
t

=
Dδ
t+1 + δP c

t+1

δP c
t

=
1

δ
(1 +Rc

t+1)− 1− δ
δ

exp(rt). (19)
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Since the levered firm is a pure intermediary and does not add value, the expression for the

stock return is independent of whether or not equity investors are required to reinvest.

3 Model solution

This section describes the solution methods for macroeconomic dynamics and asset prices.

Further details are available in the appendix.

3.1 Macroeconomic dynamics and equilibrium selection

In order to illustrate the properties of our preferences, we need to choose a macroeconomic

equilibrium. Although we do not have a full structural New Keynesian model, the forward-

and backward-looking Euler equation (13) means that we face a version of the well-known

issue of equilibrium multiplicity in New Keynesian models (Cochrane 2011). Because this

multiplicity is still an unresolved question, we follow a simple transparent equilibrium selec-

tion procedure, which we describe next.

We solve for equilibrium dynamics of the form:

Ŷt = PŶt−1 + Σvt, (20)

where

Ŷt = [xt, π̂t, ı̂t]
′. (21)

We solve for P ∈ R3×3 and Q ∈ R3×4 using the method of generalized eigenvectors (Uhlig

1999). We do not pursue solutions with more complicated dynamics, such as dependence on

higher-order lags of Ŷt.
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In our estimation, we only consider parameter values that have an equilibrium of the

form (20) and where the equilibrium satisfies a set of reasonable requirements. Parameter

values that do not have an equilibrium of the form (20) are excluded from the estimation.

We require eigenvalues of P to be less than one in absolute value and to occur in complex

conjugate pairs, so equilibrium dynamics are non-explosive and real-valued. We also require

that all real eigenvalues of P are greater than −0.2 and that equilibrium impulse responses

do not switch sign within the first four quarters of a shock, thereby ruling out strongly

oscillating impulse responses.

If only one equilibrium satisfies these requirements at a set of parameter values, we pick

that equilibrium. If there are more than one, we select the equilibrium that minimizes the

weighted sum of squared differences between model and data impulse responses, where we

use the same impulse response moments and weights as in the SMM estimation. At our

point estimates there exist multiple real-valued non-explosive equilibria, so we do employ

this last empirical selection criterion.

3.2 Solving for asset prices

Asset prices are highly nonlinear and we need to solve for them numerically. We follow

the best practices of Wachter (2005) for solving asset prices with highly nonlinear habit

formation preferences and evaluate expectations iteratively along a grid. For details see the

appendix.

To illustrate the sources of nonlinear risk premia, we start by showing analytically that

the risk premia for near-term claims to consumption and nominal dollars are nonlinear.

Consider a one-period zero-coupon consumption claim that pays aggregate consumption

in period t + 1 and pays nothing in any other period. We denote its log return by rc1,t+1.
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Since consumption shocks are conditionally perfectly correlated with the output gap, the risk

premium, adjusted for a standard Jensen’s inequality term, equals the conditional covariance

between the negative log SDF and and the output gap:

E1

[
rc1,t+1 − rt

]
+

1

2
V ar

(
rc1,t+1

)
= Covt (−mt+1, xt+1) ,

= γ (1 + λ (st))σ
2
x. (22)

The time t + 1 real payoff on a two-period nominal bond equals exp (−it+1 − πt+1) and

is lognormal, so we can solve for the two-period nominal bond risk premium analytically.

Denoting the log return on the two-period bond from time t to t + 1 by r$
2,t+1, the risk

premium (again including a Jensen’s inequality term) equals:

E1

[
r$

2,t+1 − rt
]

+
1

2
V art

(
r$

2,t+1

)
= Covt (−mt+1,−it+1 − πt+1) ,

= γ (1 + λ (st)) Covt (xt+1,−it+1 − πt+1) . (23)

Expressions (22) and (23) show that consumption claim and bond risk premia are propor-

tional to the sensitivity function λ(st), and hence nonlinear in log surplus consumption.

We use the following recursion to solve for the price-consumption ratio of an n-period

zero-coupon consumption claim:

P c
nt

Ct
= Et

[
Mt+1

Ct+1

Ct

P c
n−1,t+1

Ct+1

]
. (24)

The price-consumption ratio for a claim to aggregate consumption is then the infinite sum
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of zero-coupon consumption claims:

P c
t

Ct
=
∞∑
n=1

P c
nt

Ct
. (25)

The price of a levered stock equals P δ
t = δP c

t , where δ is the firm share financed by equity.

We initialize the bond price recursion by noting that the price of a one-period nominal

bond equals:

P $
1,t = exp(−ı̂t − π∗t − r̄), (26)

where r̄ denotes the steady-state log risk-free rate. The n-period zero coupon nominal bond

price follows the recursion:

P $
n,t = Et

[
Mt+1 exp(−πt+1)P $

n−1,t+1

]
. (27)

To see why we need a flexible numerical solution method for asset prices, consider the

consumption-claim recursion (24) for n = 2 as an example. The price of the one-period

zero-coupon consumption claim P c
1,t+1 moves inversely with the required risk premium (22),

making P c
1,t+1/Ct+1 a nonlinear function of log surplus consumption. When evaluating the

expectation (24), the crucial covariance between the SDFMt+1 and P c
1,t+1/Ct+1 hence changes

with st, such that there is no analytic solution and asset prices cannot easily be approximated

by standard functions. Iterating along a grid, as opposed to local approximation or global

solution methods, is the best practice for this type of numerical problem. The reason is that,

when combined with a large grid for surplus consumption, iterating along a grid imposes the

least structure on the relation between asset prices and surplus consumption.
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Numerical solutions for bond and stock risk premia inherit important properties from

analytical near-term risk premia. Similarly to (22), equity risk premia are positive on average.

They increase when surplus consumption is low, because marginal utility is very sensitive to

consumption shocks in those states of the world. By contrast, nominal bond risk premia can

increase or decrease when surplus consumption is low, depending on how bond cash flows

covary with consumption. If two-period nominal bond cash flows covary negatively with the

output gap (that is, if Covt (xt+1,−it+1 − πt+1) < 0 in equation (23)), two-period nominal

bond risk premia are negative and they decrease (become even more negative) when surplus

consumption is low. Intuitively, investors are particularly risk averse in states of low surplus

consumption, and are therefore particularly willing to hold nominal bonds with low expected

returns. This flight-to-safety effect works similarly for longer-term bonds, so when bonds’

cash flows have hedging value to consumers, the model implies that bond and stock risk

premia are negatively correlated.

4 Econometric Methodology

4.1 Data and summary statistics

We use quarterly US data on output, inflation, interest rates, and aggregate bond and stock

returns from 1979Q3 to 2011Q4. Our sample period starts with Paul Volcker’s appointment

as Fed chairman, because of evidence that monetary and macroeconomic dynamics changed

at that time (e.g. Clarida, Gali, and Gertler 1999). The goal of our empirical analysis is to

illustrate the properties of our model without the additional complications of the “zero lower

bound” of close-to-zero short-term nominal interest rates, so we end the sample in 2011Q4.

Real GDP, real consumption for nondurables and services, real potential GDP, and the
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GDP deflator in 2009 chained dollars are from the FRED database at the St. Louis Federal

Reserve.5 There is an ambiguity with respect to the timing of output and asset prices.

Output, just like consumption, is a flow over a quarter, while asset prices are measured at

a point in time. Time-averaged output observed in a quarter could therefore reasonably be

treated as occurring at the beginning or the end of the quarter. In the consumption-based

asset pricing literature, it has been found preferable to treat time-averaged output and

consumption as occurring at the beginning of the quarter, because correlations with stock

returns tend to be higher (Campbell 2003). We follow this beginning-of-quarter timing

convention throughout the paper and align consumption and output reported by FRED for

quarter t with asset prices measured at the end of quarter t− 1.

We use the end-of-quarter Federal Funds rate from the Federal Reserve’s H.15 publication.

The end-of-quarter five year bond yield is from the CRSP monthly Treasury Fama-Bliss

discount bond yields. We use the value-weighted combined NYSE/AMEX/Nasdaq stock

return including dividends from CRSP, and measure the dividend-price ratio using data for

real dividends and the S&P 500 real price. Interest rates, and inflation are in annualized

percent, while the log output gap is in natural percent units. All yields and returns are

continuously compounded. We consider log returns in excess of the log T-bill rate, where

the end-of-quarter three-month T-bill is from the CRSP monthly Treasury Fama risk-free

rate files and is based on the average of bid and ask quotes.

4.2 Break date tests

We start by dividing our sample according to changes in inflation dynamics. We run a Quandt

Likelihood Ratio (QLR) test for an unknown break date in the relation between inflation

5Accessed 08/05/2017.
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and the output gap on our full sample running from 1979Q3 until 2011Q4. For every quarter

τ we estimate a full-sample regression of quarterly log inflation onto a constant, a dummy

that takes the value of one if t ≥ τ and zero otherwise, the log output gap, and the log

output gap interacted with the dummy:

πt = aτ + bτIt≥τ + cτxt + dτIt≥τxt + εt. (28)

For each potential break quarter τ , we compute the F-statistic corresponding to dτ with

Newey-West standard errors and one lag. The QLR test statistic is the maximum F-statistic,

and the break is statistically significant at the 95% level if the QLR statistic exceeds 8.68,

which is the critical value for one constraint and 15% trimming by Andrews (2003). The

estimated break date is the quarter τ with the highest F-statistic.

Figure 2 plots the F-statistic against the quarter τ , showing a single-peaked distribution

with a statistically significant maximum in 2001Q2. This break date test, which is based

only on inflation and output data and does not use asset prices, therefore provides clear

evidence for a change in inflation dynamics in the early 2000s.

Empirical inflation-output gap betas suggest that inflation and output dynamics con-

tributed to changing bond risks around the break date. The slope coefficient of inflation

onto the log real output gap changed sign in the opposite direction as bond-stock betas,

which are reported in Figure 1 and Table 5. Before the break we estimate a significantly

negative inflation-output gap beta of -0.32 (0.11) and the correlation equals -0.28 (Newey-

West standard error with one lag in parentheses). After the break we estimate a significantly

positive inflation-output gap beta of 0.33 (0.07) and the corresponding correlation is 0.65.

Hence, while prior to the break the US economy was in a stagflationary regime, where infla-

tion increased during periods of low output, after the break inflation has tended to increase
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during expansions.

A formal test for a break in the relation between daily bond and stock excess returns

confirms that the break date from macroeconomic data lines up closely with changes in

bond risks. We run a QLR test for an unknown break date in the relation between bond and

stock excess returns.6 For every date τ within the middle 70% of the sample, we estimate a

regression using daily log bond and stock excess returns:

r$
t+1 = aτ + bτIt≥τ + cτr

stock
t + dτIt≥τxr

stock
t + εt. (29)

This QLR test based on asset returns indicates a break date on December 6, 2000. This

break date is statistically significant at the 95% level and remarkably close to the break date

estimated with inflation and output data. The regression beta of daily 5-year bond returns

onto stock returns switches sign around the estimated break date and is highly significant in

each subperiod, consistent with the sign-switch in rolling bond betas in Figure 1.

4.3 Calibrated parameters

Time-invariant calibrated parameter values are summarized in Panel A of Table 1. Our se-

lection of parameter blocks is consistent with Smets and Wouters (2007), who find important

changes in shock volatilities and parameters driving inflation and Federal Funds rate dynam-

ics, but stable preference parameters. The block of time-invariant parameters includes those

governing the relation between the output gap, consumption, and dividends (φ, g, δ), and

parameters determining investor and consumer preferences (γ, θ0, θ1, θ2, r̄).

6We use daily log returns on 5-year nominal Treasury bonds and daily log CRSP value-weighted stock
market returns, as in Figure 1. To reduce the effect of outliers, we winsorize bond and stock returns at the
0.5% and 99.5% levels.
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We set the average consumption growth rate, g, utility curvature γ, surplus consumption

persistence, θ0 (reported after compounding to an annual frequency) and the average real

risk-free rate r̄ exactly as in CC. We set our new habit-formation parameters, θ1 and θ2,

equal for simplicity. As discussed earlier, we need θ2 to be positive to obtain a backward-

looking term in the Euler equation (13). We choose a small value for θ1 = θ2 = 0.02 to

limit the magnitude of the deviations from the well-understood CC preferences.

The parameter φ determines the link between the output gap and consumption. We

choose φ = 0.93, the value that maximizes the empirical correlation between stochastically

detrended consumption and the output gap over our full sample.

The leverage parameter δ scales up the volatility of equity returns, while preserving

their Sharpe ratio. We choose a leverage ratio of δ = 0.50 to obtain empirically plausible

equity return volatilities. We interpret δ as capturing a broad concept of leverage, including

operational leverage.

The calibrated preference parameters imply an annualized discount factor of β = 0.90

and an Euler equation with a large forward-looking and a small backward-looking component

(ρx = 0.02, fx = 1.10). The real rate slope in the Euler equation is ψ = 0.14, within the

range of empirical estimates by Yogo (2004) and earlier work by Hall (1988).

4.4 Parameter estimation in subperiods

The remaining parameters are estimated to minimize the distance between model and empir-

ical moments describing macroeconomic dynamics. For each subperiod, we separately esti-

mate the twelve-dimensional parameter vector using simulated method of moments (SMM):

params = [pπi, pππ, pπi, pix, piπ, pii, σπ, σi, σ∗, ρπi, ρπ∗, ρi∗] . (30)
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We target VAR(1) impulse responses for the output gap, inflation, and the Federal Funds

rate, as well as the correlation between the 20-quarter average Federal Funds rate and the

output gap. We do not use bond or stock returns for the estimation. We follow a simple

methodology for estimating impulse responses that is identical in actual and model-simulated

data and that generates a unique mapping between model and empirical moments. For

comparability with the literature, we follow Christiano, Eichenbaum, and Evans (CEE 2005)

and estimate the VAR in levels and with a end-of-quarter timing convention for the output

gap. In our notation, this means that we estimate the VAR(1) in [xt−1, πt, it]. This state

vector differs from that in equation (20), which includes stationary deviations π̂t and ı̂t rather

than levels πt and it. Simulated model and empirical samples have the same length to ensure

that empirical and model impulse responses reflect the same small sample effects. Because

samples are relatively short, impulse responses cannot detect the unit root in inflation, so

model and empirical impulse responses converge back to zero.

To obtain a unique mapping between model and empirical impulse responses, we or-

thogonalize the VAR innovations such that the innovation to the Fed Funds rate does not

enter into contemporaneous inflation or the output gap, and the innovation to inflation does

not enter into the contemporaneous output gap. If one wanted to assume that output and

inflation react to monetary policy with a one quarter lag, the orthogonalized Fed Funds

rate innovation would correspond to a structural monetary policy shock (Sims 1986, CEE).

However, our SMM estimation does not require this stronger structural interpretation. The

appendix provides further details and explains the bootstrap procedure used to obtain con-

fidence intervals and standard errors for empirical impulse responses.

In addition to the impulse responses, we target a long-term Fed Funds-output gap corre-

lation to closely match the business cycle properties of the Federal Funds rate. The empirical
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correlation of the average expected Federal Funds rate over the next 20 quarters with respect

to the output gap is reported in Table 5. Similarly to the sign switch in inflation cyclicality

documented in Section 4.2, this correlation moves from −0.38 in the 1979Q3-2001Q1 period

to 0.57 in the 2001Q2-2011Q4 period.

The vector Ψ̂ − Ψ(params) consists of differences between the data and the model:

differences in impulse responses at one (shock period), two, four, 12, 20, and 40 quarters,

excluding those that are zero by construction, and the square root of the absolute difference

in the 20-quarter Federal Funds rate-output gap correlation. The estimated parameter vector

̂params minimizes the objective function:

Obj(params) =
[
Ψ̂−Ψ(params)

]′
Ŵ
[
Ψ̂−Ψ(params)

]
. (31)

Here, Ŵ is a data-based, symmetric, positive-definite weighting matrix. To avoid matrix

invertibility issues, we follow CEE and take Ŵ to be a diagonal matrix with inverse sample

variances of Ψ̂ along the diagonal. We require the model to match the Fed Funds-output

gap correlation closely by setting the last element of Ŵ to 200.

Our twelve-dimensional parameter space is ill-suited for gradient-based optimization

methods. We therefore minimize the objective function by grid search over the parame-

ter space. The appendix provides details of the grid search procedure.
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5 Empirical Results

5.1 Parameter estimates

Table 1, Panel B shows the estimated macroeconomic parameters for 1979Q3–2001Q1 and

2001Q2–2011Q4. The first part of the panel reports the estimated lag parameters. Three

parameters, pπx, pix, and piπ, switch sign between periods 1 and 2, even though these changes

are not statistically significant. Keeping in mind that (15) and (16) represent equilibrium

dynamics and not a structural model, the increase in pπx is suggestive of an increase in

a Phillips curve-type relation between slack in the economy and inflation. The increase

in pix from negative to positive and the corresponding decrease in piπ are suggestive of an

increase in the Fed’s interest in stabilizing output in period 2, relative to the strong focus

on stabilizing inflation in period 1.

Moving to the volatility parameters, the most notable change from period 1 to period

2 is the economically and statistically significant decrease in the volatility of shocks to the

unit-root component of inflation from 0.56 to 0.28. This squares well with long-term inflation

surveys, which have been very stable during our second subperiod.

Among the correlations, the most notable change is that the correlation ρi∗ between

interest rate innovations and shocks to the unit-root component of inflation switches sign

from positive in period 1 to negative in period 2. Finally, panel B reports the implied

steady-state and maximum surplus consumption ratios, which are similar to CC in both

subperiods.
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5.2 Estimated macroeconomic dynamics

Table 2 shows that the model provides a good fit for nominal and real macroeconomic

dynamics. We start by discussing nominal moments, because those are especially important

for bond risks. The model generates declining nominal rate volatility and stable inflation

volatility from period 1 to period 2, just as in the data. The persistence of inflation changes

is similar in the model and the data, but the model implies that interest rate changes are

close to serially uncorrelated, failing to fit the empirical negative autocorrelation in period

1 and positive autocorrelation in period 2.

The model generates low volatilities for consumption growth and the output gap, broadly

consistent with the data. In both subperiods the annualized consumption growth volatility

is 1.6% in the model compared to 0.9% in the data. The standard deviation of the model

output gap is even closer, averaging 1.8% across subperiods compared to 2.0% in the data.

The model generates a persistent output gap and close to serially uncorrelated consumption

growth, whereas in the data, consumption growth appears slightly positively autocorrelated.

This difference between the model and the data may arise from persistent changes to empir-

ical growth rates, which our model does not aim to capture.

Figures 3 through 5 show that the model fits the empirical impulse responses used for

the model estimation, as described in section 4.4. Model impulse responses are generally

within the 95% confidence bands for empirical impulse responses, with the few exceptions

being short-lived.

Figure 4 illustrates the important role of inflation innovations for the changing inflation-

output gap correlation. It shows that output gap responses to inflation innovations switch

from negative in period 1 to positive in period 2, while inflation and Federal Funds rate

responses are positive and economically meaningful in both periods. Figures 3 and 5 show
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that inflation and Federal Funds rate responses to output gap innovations and Federal Funds

rate innovations are smaller and mostly statistically insignificant, so these innovations appear

less important for changing inflation cyclicality. We note however that the output response

to Federal Funds rate innovations does switch sign across the two subperiods, and even

though this response is imprecisely estimated our model replicates this sign switch.

Having seen that the model matches changing macroeconomic dynamics in the data, we

next turn to understanding how changing macroeconomic dynamics contribute to bond risks.

5.3 Asset pricing implications

Table 3 shows that the model replicates the successes of CC for the stock market. The

model generates a high stock market Sharpe ratio and volatile and predictable stock returns.

To mimic firms’ dividend smoothing in the data, we compare empirical moments for the

price-dividend ratio to the price of levered equities divided by dividends smoothed over 64

quarters. The model generates a highly persistent price-dividend ratio, though it is slightly

less volatile than in the data. The model generates an empirically plausible degree of stock

return predictability, as can be seen from the coefficient of 1-year stock returns onto the

lagged price-dividend ratio. While we undershoot equity volatility in period 2, we are not

concerned about this because we generate a plausible Sharpe ratio. The model could easily

accommodate higher equity volatility without changing the Sharpe ratio by adjusting equity

leverage.

Table 4 shows the bond market implications of our model. Results in this table are

new relative to CC. Bond returns are volatile, with standard deviations of 6.07% in period

1 and and 3.72% in period 2, even though they are somewhat smaller than in the data.

Importantly, the volatility of bond returns declines from period 1 to period 2, just as in the
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data, even though no asset prices were used in the model estimation. The spread between

the 5-year nominal log yield and the log Federal Funds rate is persistent, though somewhat

less volatile than in the data. We reconcile the negative model term premium in period

2 by noting that this was a period of declining interest rates that could hardly have been

predictable, driving up the realized term premium relative to ex ante expectations.

The bottom of Table 4 shows that our model does not generate the return predictability

regressions of Campbell and Shiller (CS 1991) within periods, even though bond excess

returns do move with the term spread across periods. The regression of subperiod average

bond excess returns onto average log yield spreads generates a slope coefficient of 1.77, in line

with the slope coefficients reported in CS. In a model extension with time-varying regime

probabilities, this cross-regime relation between yield spreads and bond excess returns would

presumably generate higher-frequency bond return predictability.

Table 5 turns to our main object of interest: the changing comovement of bond and

stock returns. In the model, the bond-stock return correlation switches from positive 0.50

in period 1 to negative −0.72 in period 2 . The close fit of empirical bond-stock correlations

is remarkable, since the model was estimated only on macroeconomic moments. The model

stock-market beta of nominal bond returns also shows an economically significant change

from 0.16 in period 1 to −0.36 in period 2.

The middle panel in Table 5 shows that changing bond-stock return comovements are

underpinned by changing nominal-real comovements. In the absence of risk premia, nominal

bond returns fall with inflation and stock dividends rise with the business cycle, so a change

in the inflation-output gap correlation should coincide with the opposite change in the bond-

stock return correlation. Consistent with this intuition, Table 5 shows that the empirical

inflation-output gap correlation switched from negative to positive between periods 1 and
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2, and that this change was economically significant. Output gap correlations with 5-year

average inflation and the 5-year average Federal Funds rate show similar sign-switches in the

data. Our estimation explicitly targets the 5-year Fed Funds-output gap correlation, so it

is reassuring that the model fits the changes in this correlation and, in addition, changes in

empirical inflation-output gap correlations.

The last panel of Table 5 shows that the model generates an empirically reasonable link

between the output gap and risk premia. In the model, this link arises because low output

means low consumption relative to habit, so investors become risk averse. Hence, the model

output gap forecasts stock excess returns negatively; and Table 5 shows that the magnitude

is similar to the empirical relation documented by Cooper and Priestley (2009). Turning to

bonds, the output gap’s ability to forecast bond excess returns is mixed, both in the model

and the data. In period 1, where bonds have a positive stock beta, their risk properties

are similar to stocks’, so the model predicts a negative relation between the output gap

and future bond excess returns. We confirm this prediction in period 1 data, where the

coefficient is statistically indistinguishable from the model and significantly negative at the

90% confidence level. In period 2, the model predicts a positive coefficient, because bonds

have negative stock betas, and so their risk properties are the opposite of stocks’. In the

data, the period 2 forecasting coefficient increases relative to period 1 and is statistically

indistinguishable from the model at conventional significance levels.

Figure 6 explores which model parameters are responsible for the change in the model

bond-stock correlation between periods 1 and 2. The figure reports changes in the bond-stock

correlation and the inflation-output gap correlation while changing subsets of parameters

from their period 1 to their period 2 values. It shows that lag parameters generate the

largest changes in both bond-stock and inflation-output gap correlations and are sufficient
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to generate almost the entire effect. There is a much smaller contribution from shock

correlations and a modest offsetting effect from changes in shock standard deviations.

Table 6 shows model implications for real bonds. Model-implied real bond-stock return

correlations changed from positive in period 1 to negative in period 2. US inflation-indexed

bonds (TIPS) only became available during the second half of our sample and even then

remained illiquid. With this caveat, the model real bond beta is in line with the data. In

period 2, the stock market beta of empirical quarterly log TIPS excess returns was −0.08

in the data, compared to −0.27 in the model.7 The empirical correlation between log TIPS

excess returns and stock returns was large and negative at −0.33, compared to −0.89 in

the model. The direction of change in the model-implied real bond-stock correlation is also

empirically plausible. US inflation-indexed bonds were not available in our first period,

but UK inflation-indexed bonds were. Campbell, Shiller, and Viceira (2009) show that the

UK inflation-indexed bond-stock correlation was positive before 2000 and became negative

thereafter, similarly to the change implied by our model.

To summarize, we have seen that the model links changing bond risks and changing

macroeconomic dynamics, and that it generates empirically plausible risk premia from the

business cycle. However, Table 5 does not reveal the importance of time-varying risk premia

for changing bond risks. We turn to this next.

5.4 The role of risk premia

Table 7, Panel A extends the impulse response analysis of Figures 3 through 5 to model stock

and bond returns, decomposed into news about cash flows, real rates, and risk premia as in

7We measure the quarterly log TIPS excess return as −(n − 1)yn,t+1 + nyn,t − it + πt+1, where yn,t
is measured as the five year continuously compounded TIPS yield. We obtain 5-year TIPS yields from
Bloomberg ticker ”USGGT05Y Index”.
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Campbell and Ammer (1993). The first row regresses simulated log equity excess returns,

xrδt , onto the same orthogonalized one-standard-deviation innovations used in Figures 3

through 5. We report slope coefficients averaged across 100 independent model simulations.

The slope coefficients for the components of log equity excess returns and bond equity excess

returns are computed analogously.

Table 7, Panel A shows that stocks—like the output gap—respond positively to output

gap innovations in both periods. By contrast, the stock return responses to inflation and

Federal Funds rate innovations change sign between periods 1 and 2—again like the output

gap. Because stocks are a levered claim on consumption and consumption is linked to the

output gap, equity cash-flow news behaves like the output gap. Equity risk-premium news

amplifies cash-flow news and accounts for the majority of stock return volatility. Intuitively,

higher output means higher surplus consumption, leading to higher risk tolerance and stock

valuations.

The key takeaway from the second half of Panel A is the changing role of bond risk

premia from period 1 to period 2. Bond cash flow responses are straightforward, being

simply the mirror image of inflation responses in Figures 3 through 5. Bond risk premia

respond to output gap innovations in the same direction as equity risk premia in period

1, but in the opposite direction in period 2. The intuition for this change goes back to

the analytic expressions (22) and (23). When investors’ risk aversion increases following

an adverse output shock, a flight-to-safety effect arises, driving down bond valuations when

bonds are risky as in period 1, and driving them up when bonds are safe as in period 2. Bond

risk premium responses to Federal Funds rate and inflation innovations are small. Taken

together, the comovement between bond and stock risk premia switches sign from period 1

to period 2 along with the comovement of cash-flow news.
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Table 7, Panel B shows that risk-premium news generates a large change in the comove-

ment of bond and stock returns from a small change in bonds’ cash-flow risks. For period 1,

we see that the substantially positive bond-stock return correlation reflects a small positive

correlation of cash-flow news, and a much larger positive correlation of risk-premium news.

The risk-premium effect is also the dominant contributor to the positive bond-stock covari-

ance, reflecting the importance of time-varying risk premia for asset returns and especially

for stock returns. By contrast, the period 2 decomposition shows a small negative cash-

flow news correlation, and a much larger negative risk-premium news correlation. Again,

the risk-premium effect dominates the negative bond-stock covariance. Real rate news con-

tributes to a positive bond-stock correlation in both periods, so it is not a driver of the sign

switch. This is intuitive, because both bonds and stocks are long-term assets and real rates

therefore affect them similarly.

In summary, Table 7 shows that changing macroeconomic dynamics—in particular changes

in the responses of the output gap to news about inflation and the Federal Funds rate—

explain why bonds’ cash flows were risky in period 1 but safe in period 2. But it also shows

that understanding changes in cash flow risk is not sufficient, as quantitatively large changes

in bond risks can only be understood from the time-varying role of bond risk premia.

6 Conclusion

We provide a new framework for understanding how macroeconomic dynamics drive stocks

and bonds and apply it to changing bond-stock return comovements. Our model is the

first one to combine Campbell and Cochrane (1999) habit-formation preferences with ho-

moskedastic, loglinear macroeconomic dynamics. As such, it should serve as a useful tool to
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study the role of time-varying risk premia in a wide range of macroeconomic models that

give rise to such dynamics either exactly or approximately. We conclude by discussing some

of the possibilities for future research along these lines.

A natural extension would be to study time-varying consumption-based risk premia in

a structural macroeconomic model. One could start from a standard small scale New Key-

nesian model and loglinearize firms’ optimal price-setting condition to yield a Phillips curve

(Woodford 2003). One could then add an interest rate rule for monetary policy as in Taylor

(1993), and close the model with our preferences, which will generate both asset prices and

the standard consumption Euler equation. Using the method of generalized eigenvectors

(Uhlig 1999) one could then solve for inflation and interest rate dynamics of the form (15)

through (17).

There are some difficulties that this approach will have to confront. Even simple New

Keynesian models may have multiple equilibria or explosive solutions (Cochrane, 2011). In

addition, there are well documented challenges in modeling households’ labor-leisure choice

in the presence of habit formation preferences (Lettau and Uhlig, 2000). Similarly to what

we have done in this paper, judicious choices in relating the value of leisure to the habit

stock may be one possible avenue to resolve this second challenge.

Loglinearized models with additional state variables, such as Smets and Wouters (2007)

or models with a fiscal sector, are of even greater interest to policy makers. Our preferences

generate a loglinearized Euler equation similar to that in Smets and Wouters (2007), giving

reason to be optimistic that inserting our preferences into that model would preserve its

desirable macroeconomic properties. For a model with real investment, researchers would

need to use the structural relation between consumption, output and investment to relate

the output gap to surplus consumption.
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While we select our state variables inspired by the New Keynesian literature, our pref-

erences are more widely applicable. For a real business cycle model, it would be typical to

have a loglinear Euler equation in terms of consumption rather than the output gap. It is

straightforward to substitute the output gap out of the loglinear Euler equation (13) using

the link between consumption and the output gap, and thereby write the Euler equation

entirely in terms of consumption. In fact, it is not at all necessary to define the output gap

to work with our preferences. It would also be possible to regard xt simply as a stationary

function of current and lagged consumption.

It would be conceptually straightforward to add lags or state variables in the macroe-

conomic dynamics and then solve for asset prices, whether these dynamics result from a

structural model or are reduced form. Similarly, one could replace the unit root in inflation

and interest rates by a slowly mean-reverting component, at the expense of introducing an-

other state variable. The key challenge here would not be conceptual but computational,

potentially requiring the use of a lower-level programming language. Finally, one particu-

larly interesting application of our model will be to study the role of the zero lower bound

for bond risks.
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Table 1: Parameters

Panel A: Calibrated Parameters
Consumption Growth Rate g 1.89
Utility Curvature γ 2.00
Steady-State Riskfree Rate r̄ 0.94
Persistence Surplus Cons. θ0 0.87
Dependence Output Gap θ1 0.02
Dependence Lagged Output Gap θ2 0.02
Smoothing Parameter Consumption φ 0.93
Leverage δ 0.50

Implied Parameters
Discount Rate β 0.90
Euler Eqn. Lag Coefficient ρx 0.02
Euler Eqn. Forward Coefficient fx 1.10
Euler Eqn. Real Rate Slope ψ 0.14
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Table 1: Parameters (continued)

Panel B: Estimated Parameters
Lag Parameters 79Q3-01Q1 01Q2-11Q4

Inflation-Output Gap pπx -0.44 0.44
(0.71) (1.28)

Inflation-Inflation pππ -0.78 -0.33
(0.59) (0.72)

Inflation-Fed Funds pπi -0.78 -0.56
(0.22) (0.33)

Fed Funds-Output Gap pix -0.44 0.44
(0.82) (0.75)

Fed Funds-Inflation piπ 0.33 -0.11
(0.58) (0.46)

Fed Funds-Fed Funds pii 0.33 0.11
(0.18) (0.35)

Std. Shocks (%)
Std. Infl. σπ 0.28 0.44

(0.10) (0.15)
Std. Fed Funds σi 0.44 0.44

(0.21) (0.09)
Std. Infl. Unit Root** σ∗ 0.56 0.28

(0.07) (0.05)

Shock Correlations
Inflation-Fed Funds ρπi -0.11 -0.33

(0.46) (0.55)
Inflation-Infl. Unit Root ρπ∗ 0.11 0.55

(0.31) (0.70)
Fed Funds-Infl. Unit Root* ρi∗ 0.11 -0.55

(0.25) (0.30)
Implied Parameters

Steady-State Surplus Cons. Ratio S̄ 0.06 0.06
Max. Surplus Cons. Ratio smax 0.10 0.10

Panel A shows calibrated parameters, that are held constant across subperiods. Consumption growth and
the steady-state risk-free rate are in annualized percent. The discount rate and the persistence of surplus
consumption are annualized. The estimated macroeconomic parameters in Panel B are reported in units
corresponding to our empirical variables, i.e. the output gap is in percent, and inflation, the Fed Funds rate
and the unit root component of inflation are in annualized percent. We report quarterly standard deviations
of shocks to annualized percent inflation, Fed Funds rate, and inflation target. We use superscripts *,**,
and *** to denote that for a parameter we can reject that it is constant across subperiods at the 10%, 5%,
and 1% levels, accounting for estimation uncertainty in both periods.
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Table 2: Macroeconomic Dynamics

79Q3-01Q1 01Q2-11Q4
Empirical Model Empirical Model

Nominal Short Rate Changes
Volatility 1.94 0.82 0.53 0.46
AR(1) Coefficient -0.36 0.04 0.60 -0.01

Inflation Changes
Volatility (%) 0.83 0.71 1.03 0.73
AR(1) Coefficient -0.27 -0.16 -0.40 -0.34

Consumption growth
Volatility (%) 0.90 1.59 0.90 1.59
AR(1) Coefficient 0.21 -0.03 0.60 0.01

Output gap
Volatility (%) 1.93 1.30 2.04 2.34
AR(1) Coefficient 0.92 0.80 0.94 0.94

The empirical nominal rate change equals the one-quarter change in the log end-of-quarter Federal Funds
rate from the Federal Reserve’s H.15 publication. The log Federal Funds rate is averaged over the last five
business days of each quarter and expressed in annualized percent. The inflation change equals the one-
quarter change in log quarterly inflation. Log quarterly inflation is the log change in the seasonally adjusted
GDP deflator in annualized percent. Log real quarterly consumption growth and the log real output gap
are in percent. The standard deviation of consumption growth is annualized. We use real consumption
expenditures data for nondurables and services from the Bureau of Economic Analysis National Income and
Product Accounts Tables. The output gap is log real seasonally adjusted GDP minus log potential real GDP
from the Congressional Budget Office. Consumption, the GDP deflator, and real output variables are in
chained 2009 dollars and obtained via the St. Louis FRED. Model moments are averaged over 2 simulations
of length 10000.
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Table 3: Stocks

79Q3-01Q1 01Q2-11Q4
Empirical Model Empirical Model

Excess Returns
Equity Premium 7.97 9.33 4.03 4.27
Volatility 16.42 18.65 20.00 7.36
Sharpe Ratio 0.49 0.50 0.20 0.58

Log Price-Dividend Ratio
Mean (exp(mean(pd))) 34.04 17.19 53.73 46.72
Volatility 0.46 0.11 0.20 0.07
AR(1) Coefficient 1.00 0.95 0.86 0.99

Predictability
1-YR Excess Return on pd -0.01 -0.37 -0.43 -0.22
R2 0.00 0.05 0.22 0.05

Log stock excess returns are quarterly log returns for the value-weighted combined NYSE/AMEX/Nasdaq stock return including dividends from
CRSP in excess of the log 3-month T-bill from the CRSP Monthly Treasury file plus one-half times the log excess return variance to adjust for
Jensen’s inequality. The empirical price-dividend ratio is the S&P 500 real price divided by real dividends from Robert Shiller’s website. The model
price dividend ratio divides by dividends smoothed over 64 quarters. The last two rows report results from regressing 4-quarter log excess returns
onto the lagged log price-dividend ratio: xrstockt→t+4 = b0 + b1pdt + εt+4. Model moments are averaged over 2 simulations of length 10000.
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Table 4: Bonds

79Q3-01Q1 01Q2-11Q4
Empirical Model Empirical Model

Excess Returns
Term Premium 2.31 1.57 3.23 -1.40
Volatility 8.37 6.07 5.98 3.72
Sharpe Ratio 0.28 0.26 0.54 -0.38

Yields
Mean log Yield Spread 1.16 0.84 1.40 -0.78
Volatility 1.29 0.62 0.93 0.41
AR(1) Coefficient 0.70 0.73 0.79 0.53

Predictability
1-YR Excess Returns on log Yield Spread 2.78 0.01 0.39 -0.29
R2 0.19 0.00 0.01 0.00

Log bond excess returns are quarterly log returns on 5-year nominal bonds in excess of the log nominal 3-month T-bill. We compute empirical log
returns on the n-quarter nominal bond from log nominal bond yields: r$n,t+1 = −(n − 1)y$n−1,t+1 + ny$n,t. We measure quarter-end 5-year bond
yields and 3-month T-bill yields with CRSP Monthly Treasury continuously compounded yields based on the average of bid and ask quotes. We
approximate 19-quarter yields with 5-year bond yields in the data. The log yield spread is computed as the log 5-year bond yield minus the log
nominal 3-month Treasury bill. The term premium is the average log 5-year nominal bond return in excess of the log nominal 3-month T-bill plus
one-half times the log excess return variance to adjust for Jensen’s inequality. The term premium, volatility of real bond excess returns, and the log
yield spread are in annualized percent. The last two rows report results from regressing 4-quarter log excess returns onto the lagged log yield spread:
xr$n,t→t+4 = b0 + b1spreadt + εt+4. Model moments are averaged over 2 simulations of length 10000.
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Table 5: Bonds and Stocks

79Q3-01Q1 01Q2-11Q4
Empirical Model Empirical Model

Bond-Stock Comovement
Correlation Bond and Stock Returns 0.21 0.50 -0.64 -0.72
Beta Bond Returns on Stock Returns 0.11 0.16 -0.19 -0.36

Nominal-Real Comovement
Correlation Quarterly Inflation and Output Gap -0.28 -0.37 0.65 0.31
Correlation 5-Year Average Inflation and Output Gap -0.15 -0.14 0.20 0.16
Correlation 5-Year Average Federal Funds Rate and Output Gap -0.38 -0.38 0.57 0.65

Predictability
1-YR Excess Stock Return on Output Gap -1.05 -1.92 -4.71 -0.84
R2 0.02 0.02 0.21 0.07
1-YR Excess Bond Return on Output Gap -0.89 -0.28 -0.11 0.26
R2 0.05 0.00 0.00 0.03

The bond-stock correlation is the correlation of quarterly log bond excess returns with log stock excess returns. The bond-stock beta is the slope
coefficient from regressing quarterly log bond excess returns onto log stock excess returns: xr$n,t+1 = b0 + b1xr

stock
t+1 + εt+1. The bond-stock covariance

is for the same returns in quarterly percent. “Correlation 5-Year Average Inflation and Output Gap” reports the empirical correlation between xt
and (πt + πt+1 + ...+ πt+20) /20, where t ranges from the first quarter in the subperiod to the last. “Correlation 5-Year Average Federal Funds Rate
and Output Gap” is computed similarly. The last four rows report results from regressing 4-quarter log stock excess returns onto the lagged output
gap: xrstockt→t+4 = b0 + b1xt + εt+4. The regression for 5-year log bond excess returns is analogous. Data for inflation, the Federal Funds rate, and the
log output gap are described in Table 2. Data for quarterly 5-year nominal bond excess returns and stock excess returns are described in Tables 3
and 4. All model moments are averages over 2 simulations of length 10000, with the exception of the conditional inflation-output gap and Federal
Funds rate-output gap correlations, which are computed analytically.
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Table 6: Real Bonds

79Q3-01Q1 01Q2-11Q4
Excess Returns

Term Premium 1.07 -1.08
Volatility 2.20 2.28
Sharpe Ratio 0.49 -0.48

Yields
Mean log Yield Spread 0.69 -0.57
Volatility 0.75 0.43

Bond-Stock Comovement
Bond-Stock Beta 0.12 -0.27
Bond-Stock Correlation 0.98 -0.89

This table reports model moments for 5-year real zero coupon bonds. The quarterly 5-year real bond excess
return is defined as the quarterly log return on a 5-year real zero-coupon bond in excess of the 3-month
log real risk-free rate. All moments for real bonds are computed analogously to nominal bond moments in
Table 4. The term premium, volatility of real bond excess returns, and the log yield spread are in annualized
percent. Model moments are averaged over 2 simulations of length 10000.
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Table 7: Decomposition of Model Stock and Bond Returns

Panel A: Return Loadings on Estimated VAR(1) Shocks
Output Gap Inflation Fed Funds

Stocks 79Q3-01Q1 01Q2-11Q4 79Q3-01Q1 01Q2-11Q4 79Q3-01Q1 01Q2-11Q4
Full 7.98 2.49 -0.13 0.69 -2.99 0.89
Cash Flow 0.91 0.44 -0.02 0.14 -0.36 0.15
Real Rate 0.65 -0.78 0.00 0.01 -0.29 -0.43
Risk Premium 6.42 2.83 -0.11 0.54 -2.34 1.17

Bonds
Full -0.08 -0.45 -2.63 -1.17 -1.05 -0.87
Cash Flow -0.86 0.37 -2.63 -1.15 -0.71 -0.44
Real Rate 0.36 -0.55 0.00 0.03 -0.19 -0.32
Risk Premium 0.41 -0.27 0.00 -0.05 -0.15 -0.11

Panel B: Covariances and Correlations
79Q3-01Q1 01Q2-11Q4

Cash Flow Real Rate Risk Premium Cash Flow Real Rate Risk Premium
Bond-Stock Correlation 0.12 0.98 0.96 -0.14 0.98 -0.94
Bond-Stock Covariance 0.41 0.57 3.57 -0.15 1.00 -1.64

This table decomposes model stock and nominal bond returns into cash flow news, real rate news, and risk premium excess returns (Campbell
and Ammer 1993). We solve for risk-neutral bond and stock returns with the risk-neutral pricing kernel Mrn

t+1 = exp(−rt). We use the loglinear
approximation of Campbell and Shiller (1988) to compute real rate news for model stock and bond returns. Cash flow news are computed as risk-
neutral excess returns minus real rate news. Risk premium excess returns are the difference between stock or bond log excess returns and risk neutral
log excess returns. For details of this decomposition see the appendix. Panel A shows the regression coefficients of model cash flew news, real rate
news, and risk premium excess returns onto estimated orthogonalized one-standard-deviation shocks used for impulse responses in Figures 3, 4, and
5. Panel B shows the correlation between bond cash flow news and stock cash flow news, the correlation between bond real rate news and stock real
rate news, and the correlation between bond risk premium excess returns and stock risk premium excess returns. The table shows covariances of
returns in quarterly percent.
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Figure 1: Rolling Bond-Stock Comovement

Rolling nominal bond-stock correlations and bond-stock betas use daily log returns on 5-year nominal Trea-
sury bonds and daily log CRSP value-weighted stock market returns including dividends over past three
months. We approximate daily nominal bond returns using changes in continuously compounded 5-year
bond yields from Gürkaynak, Sack, Wright (2007). We show filtered correlations and betas from a Kalman
filter, that assumes that observed correlations and betas follow an AR(1) trend plus white observation noise.
95% confidence intervals are shown in dashed. A red vertical line indicates the estimated break date from
the Quandt Likelihood Ratio test for an unknown break date in the slope of quarterly inflation onto the
quarterly output gap, described in detail in Section 4.2. Horizontal lines indicate subperiod averages.
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Figure 2: Testing for Break in Inflation-Output Relation

This figure plots the F-statistic for dτ in the quarterly regression πt = aτ + bτIt≥τ + cτxt + dτIt≥τxt + εt
for all τ in the middle 70% of our sample. We reject the null hypothesis of no break in the relation between
πt and xt if the maximum F-statistic exceeds the 95% critical value with one constraint and 15% trimming
(Andrews 2003). The critical value is indicated by the red horizontal line. The vertical line shows the
estimated break date (2001Q2), which equals the quarter with the maximum F-statistic.
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Figure 3: Empirical and Model Impulse Responses to Output Gap Innovations
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This figure shows model (black) and data (blue with 95% CI) orthogonalized impulse responses for the output gap, inflation, and the Federal Funds
rate in response to a one-standard deviation output gap innovation. To provide a unique rotation of impulse responses, shocks are ordered such that
an output gap shock affects inflation and the Fed Funds rate contemporaneously, an inflation shock affects the Fed Funds rate but not the output
gap contemporaneously, and a Fed Funds rate shock affects neither inflation nor the output gap contemporaneously.
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Figure 4: Empirical and Model Impulse Responses to Inflation Innovations
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This figure shows model (black) and data (blue with 95% CI) orthogonalized impulse responses for the output gap, inflation, and the Federal Funds
rate in response to a one-standard deviation inflation innovation. To provide a unique rotation of impulse responses, shocks are ordered such that an
output gap shock affects inflation and the Fed Funds rate contemporaneously, an inflation shock affects the Fed Funds rate but not the output gap
contemporaneously, and a Fed Funds rate shock affects neither inflation nor the output gap contemporaneously.
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Figure 5: Empirical and Model Impulse Responses to Fed Funds Innovation
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This figure shows model (black) and data (blue with 95% CI) orthogonalized impulse responses for the output gap, inflation, and the Federal Funds
rate in response to a one-standard deviation Federal Funds rate innovation. To provide a unique rotation of impulse responses, shocks are ordered
such that an output gap shock affects inflation and the Fed Funds rate contemporaneously, an inflation shock affects the Fed Funds rate but not the
output gap contemporaneously, and a Fed Funds rate shock affects neither inflation nor the output gap contemporaneously.
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Figure 6: Counterfactuals

This figure shows changes in the bond-stock return correlation and in the quarterly inflation-output gap
correlation when changing subsets of parameters from their period 1 to their period 2 values. “All” shows
the difference between period 2 and period 1 model correlations tabulated in Table 5. “Lag Parameters”
shows the change in the model correlation when moving lag parameters pπx, ..., pii from their period 1 to
their period 2 values. “Std. Shocks” changes only the standard deviations of shocks while holding all other
parameters constant at their period 1 values. “Shock Correlations” changes only the correlations of shocks
ρπi, ρπ∗, ρi∗ while holding all other parameters constant at their period 1 values.
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