
NBER WORKING PAPER SERIES

INFLATIONARY CONSEQUENCES OF
ANTICIPATED MACROECONOMIC POLICIES

Allan Drazen

Elhanan Helpman

Working Paper No. 2006

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 1986

This is a combined and shortened version of Drazen & Helpman
(1985a, 1985b). We would like to thank Zvi Eckstein, David Pines,
and Assaf Razin for comments on a preliminary draft, as well as

seminar participants at Chicago, Columbia, The Hebrew University,
MIT, Northwestern, Pennsylvania, Stockholm and Tel—Aviv. This
research was supported by funds granted to the Foerder Institute
for Economic Research by the NUR MOSHE FUND. The research reported
here -is part of the NBER's research program in Economic

Fluctuations. Any opinions expressed are those of the authors and
not those of the National Bureau of Economic Research.



Working Paper #2006
August 1986

Inflationary Consequences of Anticipated Macroeconomic Policies

ABSTRACT

We consider a model in which the le't,el of taxes and seignorage are too

low to finance government expenditures and debt service. Government debt

will therefore grow without bound, implying the eventual need to change

policy. Starting with utility maximization, we analyze the effect of the

expected switch on equilibrium time paths before the switch takes place. We

analyze stabilization via increasing taxes, increasing money growth rates,

or cutting expenditures, both under certainty and under uncertainty about

the composition or timing of a stabilization.

Under full certainty, inflation may rise, fall, or remain constant

before the stabilization, depending on which policy tool is used to

stabilize. Uncertainty solely about the composition of the stabilization

will yield paths in between the above cases, with a price Jump at the time

of stabilization. In general there is no simple correlation between changes

in the budget deficit and inflation. With uncertainty about the timing of a

stabilization, the inflation rate will most likely exhibit fluctuations and

may overshoot its steady state value, even when real balances move

monotonically. Uncertainty about the timing of a stabilization can

therefore itself induce fluctuation in inflation, even if underlying utility

and subjective probability functions are smooth.
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1. Introduction

What happens when the government follows monetary and fiscal policies

which are known to be infeasible, except over the short run? The recognized

unsustainability of the policy means that it is known that at some point in

the future the policy will be abandoned. What is generally not known is

exactly when the regime switch will take place, and the policy mix that will

follow. The eventual infeasibility of the given policy yields not a specific

abandonment date, but only a presumption that the longer the policy has been

in force, the higher the probability that it will be abandoned in the current

period. Though most people would accept the above characterization of the

increasing probability of regime switch, there has been relatively little

work in analyzing the time path of an economy facing a probabilistic

abandonment of an infeasible policy (see, however, Flood and Garber (l984)).

Given the obvious relevance of such a question in, for example, foreign

exchange markets and debt management, such an analysis is highly desirable.

In this paper we analyze this issue by considering a model where for the

existing level of government debt, the government's choice of expenditures g,

a rate of monetary expansion i, and level of taxation r are inconsistent

with ever attaining a steady state. Specifically, the level of seignorage

and regular tax revenues are too low to finance government expenditures and

debt service by themselves. The level of government indebtedness must

therefore be continually increased, and, for unchanged macroeconomic

policies, government debt will grow without bound.
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To analyze the effects of policy mix and timing uncertainty, our

strategy is as follows. We begin with the full certainty case. We first set

up the individual's maximization problem to derive necessary first-order

conditions. Combined with market equilibrium conditions and the government's

budget constraint, these will yield dynamic equations for debt and real

balances and hence inflation before the regime switch, where the exact path

will depend on the necessary characteristics of the time paths after the

switch. The case of a known switch date but uncertain post-switch policy mix

is a simple extension of the full certainty results.

We then consider the case where the policy mix after the regime switch

is known, but the date of the switch is uncertain. We similarly derive time

paths for bonds, real balances, and inflation, and illustrate these time

paths both via phase diagrams and via computer simulations.

The main results are as follows. Under full certainty, stabilization

via an increase in the rate of monetary growth will imply a monotonically

increasing inflation rate (and a monotonically declining level of real

balances) until the regime switch occurs, while stabilization via increased

non-distortionary taxes will yield a constant level of real balances and

inflation both before and after the switch. Stabilization via budget cuts

implies that inflation must eventually fall, but it could rise or fall prior

to stabilization. Hence, the correlation of inflation and the budget deficit

depends on the public's expectation about the policies that will effect

stabilization.
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In the remaining part of the paper we discuss uncertain policies. If

the switch date is known, but the post-switch policy mix is not, real

balances and inflation before the regime switch will follow a path in between

the cases above. The exact nature of the path will depend on the subjective

probability assigned to various combinations of policies used to effect the

stabilization. There will in general be a one-time price jump (which may be

either up or down) at the time of the regime switch.

When there is uncertainty about the timing of the switch, the inflation

rate will most likely exhibit fluctuations and may overshoot its steady state

value, even when real balances move nionotonically. Therefore uncertainty

about the timing of stabilization policy can of itself induce fluctuations in

the inflation rate even if the underlying utility and subjective probability

(of timing or policy mix) functions are smooth. There exist beliefs about

the probability of a policy switch which induce very rapid changes in the

rate of inflation, and there will almost surely be price jumps following a

stabilization effort. Price jumps before a stabilization are also possible

if the distribution of the timing of the policy switch has mass points. The

results on uncertainty strengthen the result that there will be no simple

correlation between changes in the budget deficit on the one hand and in

inflation on the other.

Our interest in possible correlations stems from the recent Israeli

experience with inflation. Recently there has been no simple correlation

between changes in the deficit and inflation. This has been taken by some as

proof that the root cause of the Israeli inflation has not been the
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peresistent deficit. By building a model in which it is clear that the

deficit drives inflation, but where no simple correlation emerges, we show

that lack of correlation does not mean lack of causation.

2. Regime Switch at a Known Date

We first consider the case where the exact date of a switch away from an

infeasible policy is known, although the exact nature of the policy change

may not be known. The regime switch at time T can be described as follows.

The level of per capita real bond holding achieved at T, namely b(T), will

be frozen by choice of a new monetary growth rate a new tax rate i

and/or a new level of government spending g5, which imply that government

spending plus debt service can be financed by a constant level of taxes

(inflation and regular) with no further growth in debt. Uncertain policy mix

means that the exact combination of policy changes which will effect the

stabilization is unknown before T. As we shall see below, when there is

uncertainty about the policy mix, stabilization will require a jump in the

price level at T to some post switch level P5(T), and the relevant

uncertainty of the individual is uncertainty about the value of P(T). We

begin by considering the individual's problem.

a. Individual maximization

The individual is assumed to derive utility from consumption and real

money balances, where his instantaneous utility function is assumed separable

across commodities and across time. Utility at instant t may then be

written as
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M(t)
(1) u(c(t)) + v(p(t))

where c, M, and P are real consumption, nominal balances, and the price

level. The individual can hold either real money balances or real bonds b

as assets, the real interest rate on the latter being r. He has a discount

rate $ and receives after-tax labor income y per period. We assume that

total output y0 is exogeneously given, so that a fixed level of taxes imply

that after-tax income is fixed as well.

The individual's objective is to maximize expected discounted utility

over an infinite horizon. In the case of full certainty, this is easily

represented. Let vS(.) be the present discounted value of maximized

utility from T onwards. VS will be a function of the real value of an

individual's assets at T, namely b(T) + M(T)/P(T), and perhaps of T as

well. The present discounted welfare from 0 to infinity if a switch occurs

at T is then

(2) $Tet[u(c(t)) + v())dt + eTV5(b(T) + T)

where the characteristics of VS(.) are to be determined.

If we define by z(t) the addition to nominal cash balances at time t,

the individual's choice problem may be thought of as choosing functions
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c(t), M(t), and z(t) to maximize (3) subject to two constraints -- one on

income, the other on the relation of M and z -- and to boundary

conditions.

The income constraint is that the present discounted value of income

between 0 and t plus the value of wealth at 0 must equal the discounted

value of expenditures on c and z/P, plus the value of bonds at t

discounted to time zero, plus initial real money balances. This must hold

for all t. For t — T we obtain

(3) eT)b(T) + Jet)(c(t) + - y)dt + - w(0)

where wealth w(0) equals initial bonds plus the initial value of nominal

balances evaluated at the initial price level, and where R(t) is the

integral of the interest rate from 0 to t.

The second constraint is that the change in money balances between any

two points in time is the integral of the z(x), namely, between 0 and t,

rt
(4) M(t) — M(O) + z(x)dx.

Jo

Maximization of (2) subject to constraints (3) and (4) will yield the

individual's optimal time paths under full certainty. In the case of

uncertainty about the policy mix after T, it will turn out (as shown in
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section c below) that the individual's relevant uncertainty is about the post

switch price level P5(T). Denoting the distribution of post-switch price

level induced by the policy mix by C(P(T)), the individual maximizes

(5) Jet[u(c(t) + v()]dt

p

+ eT
J

vS(b(T) + M(T)
;T)dG(P (T))

P (T)—O
S

subject to constraints (3) and (4),l

The mathematical derivation of the solution to the individual's optimum

problem from the first-order conditions is presented in Appendix 1. That

derivation makes clear that the basic dynamic equations for debt and real

balances turn out to be equivalent for the certainty and uncertainty case,

except for the terminal condition. The results that follow in this and the

next section will therefore apply to both cases.

Consumption may be written c — y0
- g. The marginal utility of

consumption will be denoted by 8 before a stabilization and after.

These values will be constant, but unequal if the stabilization includes a

change in government spending, and hence a change in consumption.

Optimal consumer behavior implies (see the first-order conditions (Al.2)

through (A1.4) in Appendix I)
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(6) efitu1(y0g) — eTu(y0.g5)eR(T)t) o t < T

(7) P(t)
- Je p()dX + eT)t)JpT), O�t<T

where the last equation is derived from combinging (Al.3) and (Al.4) in the

Appendix. This is a standard asset pricing equation showing that the value

of one unit of money at time t equals the suni of the discounted earnings

(here, marginal utility) stream plus the discounted resale value.

Equation (6) implies that the instantaneous interest rate is equal to

before the stabilization, but that there might be a jump in the interest

factor at the stabilization date. (It can also be shown that after

stabilization the interest is also equal to ). More precisely, from (6)

and the initial condition R(O) — 0 we obtain (see A1.5):

[t
for 0�t<T

(8) R(T) -

I u'(y0-g)
lfit+ln for t—T

u (y0-g5)

This may be represented as in Figure 1.

Differentiating (7) with respect to t yields (see the discussion

preceding (Al.9) in the appendix)

(9) v'(m)P 0�t<T
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where the right-hand-side is the real interest rate plus the inflation rate.

A further implication of (7) is that a cut in government expenditure at

time T, even if perfectly foreseen, will induce a jump in the price level.

This may be seen by noting that (7) implies

P(T) R(T)-R(T

which, by (8) yields

P(T) 9
(10)

P (T) 9'
S S

so that g < g implies a (fully anticipated) downward jump in the price

level due to the upward jump in consumption necessary to clear the output

market.

One may explain this price level jump under perfect foresight, which

comes from the jump in the interest factor, as follows. Because bonds are

denominated in real terms with a fixed price in terms of the consumption

good, the real stock of bonds cannot jump at T (see footnote 3 below). If

bonds were nominal or if we allowed their price relative to consumption to

vary, then the real stock would jump2. Given the fixed real price of bonds,

the interest factor R(T) must jump. The infinite return on one asset at the

instant T requires an infinite return on the other asset, money, implying a

price level jump.
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The result of a jump in the price level is robust to a number of

reasonable alternative specifications of the output market. First, suppose

we opened the economy, so that we could import goods from abroad at fixed

terms-of-trade. As long as some part of the cut in government expenditures

fell on nontraded goods, there would still be a jump in the price of

nontraded goods and a jump in the interest rate in terms of nontradables.

The overall price level would therefore also jump (see Drazen and Helpman

(1986)).

A second modification would be to allow investment so that a fixed level

of output does not automatically imply a one-to-one relation between changes

in private and government consumption. As long as there are convex

adjustment costs to investment or disinvestment, utility maximization would

yield a jump in consumption at T.

b. Government behavior and the dynamic equations

We may derive the dynamic equations for b and in by embedding the

equilibrium conditions in the government behavioral equations. The

government budget constraint implies that the basic deficit plus debt service

must be financed either by issuing bonds or printing money. We therefore

have

(11) bf3b-4-d-M/P

— b + g - -
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for 0 � t < T, where d is the basic real deficit (d — g - r) and where

M/P — M/P — pm. At T the interest rate will jump if g is cut.3

Combining this with the definitional relation for the change in real

balances, namely in — (p - )m, where we assume population growth is equal to

zero, we obtain

(12) m — (fi + p)m - mv'(m).

As indicated above and demonstrated in Appendix 1, the dynamic equations

(11) and (12) describe the motion of the system before a known switch date T

both for the case of full certainty and for the case of uncertain post-switch

policy mix. The difference between the two cases concerns the nature of the

terminal condition at T. Before considering the terminal conditions, we can

describe the motion of the system until T. The b — 0 and m — 0 loci,

which follow from (11) and (12), may be represented as in Figure 2, with the

implied motion for points off the loci.

The steady state A is a point of unstable equilibrium (a source). For

any values of p, r, and g there is only one value of debt which is

consistent with steady state. If, for given p, r, and g, the values of

debt and real balances are such that we are to the right of the b — 0

locus, debt will grow without bound in the absence of a regime switch. We

only consider initial values of debt which are to the right of the steady

state point described in Figure 2, that is, b0 > b.
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c. The full time paths under certainty

To derive the full time paths starting from a value of b0 that will

induce a policy switch at T, we consider the transversality condition at T.

We first consider the polar cases under certainty, where only one of the

policy instruments is changed at T, the others left unchanged. In each

case, the relevant policy variables must be chosen so that post-switch real

balances and debt are at steady state values.

For each of the policy instruments, the terminal locus (the feasible

combinations of m and b in steady state) may be found by considering

the intersection of the m — 0 and b — 0 loci as the value of that

instrument is varied. We first consider money based stabilization. For

increases in p, both loci shift down, the location of the intersection

depending on the elasticity of money demand.4 When this elasticity Is

everywhere less than one, this locus will be downward sloping, with the new

intersection at point B. More generally, if seignorage revenues pm reach

a maximum at some finite value of p, say p*, the locus of intersection

points will lie to the southeast of the original point until seignorage

revenue reaches its maximum, after which the locus will slope down to the

southwest. Associated with maximum seignorage is a maximum value of debt,

say b, which can be financed in steady state by the inflation tax, for a

given deficit. Below this maximum a given value of debt is associated with

two values of mu and hence p . We will assume that for values of debt
S S

below the maximum the government chooses to stabilize at the lower possible

p , so that we have a functional relation between mu and b . We denote
5 5 5
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this by m(b) where the superscript indicates which policy variable has

been changed to effect the stabilization. This curve is downward sloping

along the relevant section, as in Figure 3•5

The full time path may now be easily derived (more details may be found

in Drazen [1985)). The possibility of stabilization at T for some value of

s means that the values of b(T) and M(T)/P(T) must lie on the terminal

surface. Since the value of T is known with certainty beforehand, there

can be no jump in P at T. This may be seen by inspection of equation (7).

Therefore the dynamic path for real balances and debt must just arrive at

at T. The path is uniquely specified given: this terminal

requirement; the dynamic behavior of debt and real balances from time 0 to

T as specified by (11) and (12); and, the initial predetermined value of

real per capita bonds b0. Put another way, there is only one path starting

at b0 at time zero and arriving at m(b) at time T which satisfies the

dynamic equations. Such a path is illustrated in Figure 3 by the falling

arrow path. One notes that along this path debt is rising and real balances

are falling monotonically. By condition (9), inflation must therefore be

monotonically rising from 0 to T. Specifically, inflation is between

and along the path and equals after a stabilization.

It may be shown that the optimal path must cut the m(b) locus from

below if T is sufficiently large. Moreover, if the slope of d(b) is flat

at b0, the dynamic path will start above n(b) and cut it at some

t < T.6 The drawing in Figure 3 reflects this possibility.
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The case in which non-distortionary taxes r are used to stabilize with

certainty at T may be simply analyzed. Since r does not appear in the

dynamic equation for money balances, changes in r do not shift the m — 0

locus when g and p are held fixed. The locus of intersections of the

rn—O and b — 0 lines for changes in r, denoted mT(b), is then simply the

horizontal in — 0 locus, as indicated in Figure 3. As before, there is a

maximum level of debt consistent with tax-based stabilization.

The dynamic path in this case must then always lie on the mT(b) locus

(that is, the in — 0 locus) if it is to end up there. This is represented by

the horizontal arrow path in Figure 3. Along this path real balances and

hence inflation will be constant, the latter equal to the unchanged value of

p. A Ricardian equivalence result obtains, since only the timing of

noh-distortionary taxation is affected.

If taxes are distortionary (for example, labor income taxes) the above

result no longer holds. Changes in the tax rate affect the level and

marginal utility of consumption, as in the case of stabilization via

government expenditure cuts. The results are conceptually similar in most

respects to the results for that case and are treated in detail in Drazen and

Helpman (l985c).

For a stabilization via expenditure cuts under certainty, the terminal

surface, denoted (b), is upward sloping, as in Figure 4. A cut in g

shifts the b — 0 locus down and the m — 0 locus up so that the new

intersection lies to the north-east.7 Hence, real balances unambiguously
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rise with increases in debt. As with stabilization based on changes in money

growth or taxes, there is a maximum feasible level of steady state debt, say

6, which can be supported by a budget cut, as g can drop at most to zero.

The key difference between this and the earlier cases is the behavior of

the price level and the real interest rate at T. With stabilization via

budget cuts there will be a jump in the real interest factor and in the price

level, and hence, in real balances at T.

To derive the dynamic path and see the implications of the jump at T

we begin by writing the endpoint condition (10) as

in(T)
(13)

m(T) 9

If we denote by ii the value of real balances for which zn — 0, we have that

— v'(m )v(m) s

9 —+— 9

Combining this with (13) and rearranging, we may write

v'(m )m
(14)

m(T) — s s

in v'(rn)rn

It is clear from (14) that the value of its right-hand-side determines

whether real balances just before the price jump at T are above, on, or
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below the horizontal m — 0 locus. If this value is larger than (equal to,

less than) one, real balances have to be above (on, below) the m — 0 locus.

Obviously, since m5 depends on the stabilization date T, so does this

value. It is, however, clear from the directions of movement indicated in

Figure 2 that if the economy is above m — 0 at some time it has to be above

m — 0 at all times, and similarly for being on or below m — 0. Therefore,

there exist three possibilities of economic dynamics according to whether the

right-hand-side of (14) is larger, equal, or smaller than one. In each case,

real balances will jump at I as a result of the downward price jump.

The first possibility is that real balances are rising over time, as

indicated by the upward sloping arrow path in Figure 4, until the switch

takes place at b = b(T) and real balances jump from A1 to B. The rate

of inflation is falling over time (from (9)) and is lower than the rate of

monetary growth (as real balances are rising). After the policy switch, the

rate of inflation equals the rate of monetary growth. Panel (i) of Figure 5

displays the resulting time paths of the price level and the rate of

inflation.

The second possibility is constant real balances over time (the

horizontal path leading to A2) and a jump up to B. The rate of inflation

will be constant, except at T, as in panel (ii) in Figure 5.

Finally, real balances may fall, leading to A3, followed by an upward

jump to B. The rate of inflation is rising before the policy switch, then

drops to a lower level, as in panel (iii) of Figure 5.
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To summarize these results, one may note that v'(m)m is increasing in

real balances when the interest elasticity of demand for real balances is

larger than one (in absolute value) and it is declining in real balances when

the interest elasticity of demand for real balances is smaller than one.

(This is immediately seen by using (8) to write the demand for real balances

in implicit form as v'(m) — Oi or v'(m) — where i is the nominal

interest rate.) Hence, since m5 > ni, the right-hand-side of (14) is larger

than one for everywhere interest-elastic demand functions for money and

smaller than one for everywhere interest-inelastic demand functions for

money. This implies that the time path of inflation and real balances

depends on whether the interest elasticity of money demand is larger or

smaller than one, but does not depend on the timing of the policy switch.

However, the timing of the policy switch does affect the nature of the

inflationary process when the interest elasticity of money demand is on both

sides of one for real balances above ii. 8

The certainty framework could be used to analyze multistage

stabilization programs, which would imply more complex time paths. For

example, suppose the stabilization is known to entail a cut in government

expenditures at I followed by a reduction in money growth at I' > I, the

two changes together leading to no further growth in debt. This program

(which resembles those often used to end hyperinflations) can be shown to

imply a fall in real balances until I, followed by a rise from I to I',

with inflation moving in the opposite direction. (After I', all variables

are constant). As noted below, this result mimics a characteristic of
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in rázenand Helpnian (1985bY.)

With the three polar cases having been analyzed, known combinations of

and g to finance a given budget at T may be easily analyzed. Any

policy mix rule which determines endogeneous combinations of the policy tools

consistent with stabilization will determine a terminal locus relating m

to b. When the policy mix is limited to changes in j, r, and g in the

direction of a lower deficit (increases in the first two, decreases in the

last) this locus will lie between the m(b) loci, its precise position

depending on the policy mix (Otherwise, of course, the terminal surface

could lie above m(b) or below m(b)). The dynamic path will then be that

which starts at b0 and, foilowing the dynamic equations (11) and (12), just

hits the terminal surface t T.

d. The time paths under yolicy mix uncertainty

The above analysis of the certainty case makes clear that, from the

point of view of the individual, the relevant differences between alternative

policy mixes at T i� in different levels of the post-switch price level

P5(T). Uncertainty about P(T) may be represented by a distribution

C(P(T)), which is induced by a subjective probability distribution over

possible policy mixes, andknówledge of the structure of the economy linking

each policy mix to a value of P(T). The optimum problem is then to

maximize expected discountedütility Over an infinite horizon where T is

known and where G(P5(T)) is usedto form expected utility. This is exactly

the problem set out in equation (5) above and solved in Appendix 1, yielding
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dynamic equations (11) and (12). Therefore, once behavior at T is

specified, the entire path will be known.

After the policy mix is announced at T, we must be on the relevant

terminal surface. Since the chosen mix is unknown before T, it is obvious

that there will be a jump to the relevant surface at T due to a price level

jump.9 The price level before the jump will be determined by an asset

pricing equation, namely (see equation A1.13 in Appendix 1):

(15) — JText) v'(m(x))
P(x) + eTt)J — dG(P)

As t approaches T, we therefore have that
P(t)

must approach the

expectations of taken over G(P(T)). This ties down the price level

along the optimal path the instant before T, which, in turn, ties down the

whole path. The equilibrium path may then be represented as in Figure 6,

with its exact location at t—T dependent on how much weight is assigned to

each possible choice of policy mix at T. If, for example, it is considered

highly likely that the main adjustment will come in an increase in the rate

of monetary growth, with the expectation that there will be a relatively

small increase in taxes and cut in expenditures, the path will be relatively

closer to the m1(b) line. At T, when the actual program is announced, we

jump to the relevant terminal surface. To continue the example, if the

actual program includes a smaller increase in p than was expected, so that

the terminal surface is above the optimal path based on the contrary
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expectations, there will be an upward jump in m, or, equivalently, a

downward price level jump. In this case the stabilization program implies an

actual rate of monetary growth lower than was expected, which calls for a

downward price adjustment. If the stabilization included a decrease in p

coupled with a sufficiently large value of r to support it, then the

terminal value of real balances may happen to be larger than rn. More

generally, policy mixes which include a decrease in taxes or the rate of

money growth or increases in government spending imply a post-stabilization

value of real balances outside the region between the terminal surfaces.

3. Uncertainty about the Timing of the Regime Switch

a. The basic structure

The basic structure is the same as above, but we now assume that the

switch may occur at any time between 0 and some Tx where the cumulative

distribution of a switch occurring until T is F(T). Clearly F(0) — 0

and F(Tmax) — 1. We consider the case where only one switch takes place.

For simplicity, we assune the policy mix is known.

The expectation of discounted utility over the horizon is taken over

dF(T). The individual's present discounted utility if a switch occurs at T

is given by (2). Expected welfare over all possible realizations of T may

then be written
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(16) Jmax($et[u(c(t))+ v()]dt + eT VS(b(T) + p(T);TfldF(T)

The individual's problem is therefore to maximize (16) subject to constraints

(3) and (4). The derivation of the first-order conditions for this case

(which are derived in Appendix 2) are

rT a, v, , .. n
(17) [l-F(t)]et9 — j

max

(18)
1 i. ITinaxilT -(x-t) v'(m(x) 1 d +

P(t) 1-F(t) J je 9 P(x)
X

9 (T)

+ eTt) P(T)''(T)

Differentiating (17) with respect to t yields

e

(19) dR — dt + - 91-F

In the case of a (non-distortionary) tax-based or money-based

stabilization, the marginal utility of consumption is equal before and after

a stabilization, so that the real interest rate is constant and equal to

with uncertainty about timing. In the case of a budget cut, the real

interest rate will include a risk premium reflecting the probability of a

jump in the marginal utility of consumption. The marginal utility of

consumption after a stabilization, is falling over time, since the

longer that no stabilization has taken place, the higher is the level of debt

at the time of stabilization, the lower must be government post-stabilization
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expenditures, and hence the higher is private consumption. The risk premium

is the product of the instantaneous probability of a regime switch at t

conditional on one not having previously taken place (!F) and the

percentage fall in marginal utility of consumption which the regime switch

8-8

induces
8

5) Since typically both of these terms are rising over time

until a switch occurs, the real interest rate dR will be rising as well.

(The hazard rate may in some circumstances be failing over time).

Differentiating (18) with respect to t and rearranging, we obtain (see

equation (A2.8) in Appendix 2)

v'(m) dP dF s s
(20a) dt — f3dt + i— + -(i - )

(20b) /3dt + -(l - -) + + lFU - .)
The right-hand-side is the nominal interest rate, which includes both a

nominal and real risk premium. The second right-hand-side term in (20b) is

the real risk premium associated with jumps in the real interest rate. The

last term is a nominal risk premium reflecting changes in the real value of

money due to a regime switch. It includes three effects: the hazard rate,

the percentage change in the real value of nominal balances from a price jump

1/P - 1/P
S), and the change in the utility value of real balances (9/9).

The form of (20) allows for the possibility of a jump in F. It makes clear

that a jump in F induces a jump in P. For example, if is less than

P. a jump in F induces an upward jump in P.
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b. The dynamic eouations for in and b

Equation (20) allows us to derive dynamic equations for debt and real

balances, precisely as in the previous section. When F is differentiable,

we obtain from (11) and (12)

• 9

(21) b — ( + h[l - !])b + g - r -

m(b)9m - v'(rn F
(22) - — + p - ' + -

in

where m(b) refers to the relevant terminal surface for the policy chosen.

These equations may be expressed in a time-autonomous form. Note first

that 0 may be written as a function of b since 0 — v'(m(b))/( ÷p)

(see footnote 7). The conditional probability of a switch should logically

also be a function of debt. Since there is a maximum level of debt

consistent with stabilization and since b grows without bound in the

absence of stabilization, one must expect that if no regime switch has

occurred before b hits some b (less than or equal to maximum feasiblemax

steady state b attained, for example, at g — 0), then a regime switch

must occur at that time. More generally, one may argue that the probability

of a regime switch grows as b(t) approaches bmx with a regime switch

occurring with certainty sometime between 0 and the time b(t) hits

b.1° We represent this by writing the conditional density of a switch as

a function of b
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(23) —

where '(b) � 0. The restriction that F(T) — 1 will imply that

becomes infinite as b approaches bmax unless the distribution has a mass

11
point at T

max
F'

Given these specifications of 6 and j—, (21) and (22) may be

written

• 6(b)
(24) b — ( + 4(b)[1 -

S ])b + g - r - pm

m(b)6(b)
(25) — + p - v(m) + (b)[l -

S
e

Equations (24) and (25) form an autonomous system of two equations in m and

b which yield equilibrium time paths for any specification of (.)

satisfying the above-noted restrictions. It is the existence of both real

and nominal risk premia which complicate these equations.

c. The time paths for debt and real balances under monetary stabilization

To derive the characteristics of the full-time paths when a regime

switch is effected solely by changing the rate of money growth, we begin by

deriving phase diagrams in rn-b space. Since 6 — 9, the dynamic equation

for debt is equivalent to the certainty case, as is the b — 0 locus. The

dynamic equation for real balances becomes
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(26) in — (fi+)m -
mv'(m) + (b)(m - m4(b))

Since b enters the dynamic equation for real balances, the in — 0 locus is

no longer horizontal and will depend on the sign of m - in along in — 0. One

can show that the in — 0 locus must lie below the in — 0 locus under

certainty.
12

The phase diagram for uncertain T when only p changes with a regime

switch can be represented as in Figure 7. As will be demonstrated below,

equilibrium will require that if we are not already in a steady state, we

must be in the unshaded region to the right of b where b is rising and m

13
is falling.

We may now specify the equilibrium dynamic path. After a stabilization

at some T and associated b(T), we must be on We therefore jump at

T to the value of m5 consistent with b(T) according to the terminal

surface. What is the path before T? As in the previous section, we

consider the terminal condition and work backwards.

Suppose the regime switch occurs only at the last possible moment

(rather than considering this final instant in the time domain, let us

consider it in terms of b and b ). There can then be no jump in real
max

balances before b . But if a switch occurs with positive probability atmax

b there can also be no jump at b . Intuitively this is easy to see.max max
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If we know that with non-zero probability there will be a regime switch at

the last instant (conditional on the switch not having taken place before), a

path which implies a jump at this last instant means that inunediately before

one may expect with certainty an infinite rate of capital gain (or loss) on

money holdings. In such a case, money holdings would adjust before the last

instant to eliminate this possibility. Hence, on a path where the regime

switch occurs at b with non-zero probability, we must approach m(b )mv mv
14

smoothly.

Since the path before a regime switch must arrive smoothly at

(b in(b )) if a switch occurs only at T , it is clear from the slopemax s max max

of m(b) that starting at any b0 < bmax debt must be rising and real

balances must be falling. This is why the initial value of real balances

consistent with initial debt and equilibrium at every point in time must be

in the unshaded region in Figure 7. The exact value of initial balances in0

may be found by starting at bmax and "running the dynamic equations

backwards."

At T � T, when the regime switch actually occurs, we jump to the

Tn(b) line, meaning the price level jumps to P(T). The direction of the

jump depends on whether the dynamic path is above or below the m'(b) line

(where we assume as before that b is strictly less than b). If b is
max max

sufficiently close to 6, one can show that for b(t) close to b , the
max

optimal dynamic path must be below m(b), as in Figure 715 A regime switch

"late in the game" will therefore induce an upward jump in real balances

meaning a downward price jump. On the other hand, if the horizon is
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sufficiently long, the dynamic path may start above m'(b) and a regime

switch fairly early on will imply an upward jump in P.

d. Fluctuation in inflation and the risk rremium under monetary
stabilization

Monotonically declining real balances until the switch takes place

implies a rising nominal interest rate, which in the case where the date of

the switch is known with certainty, implies a monotonically rising inflation

rate. This result does carry over. Uncertainty about the switch date may

induce fluctuations in the inflation rate even when (•) is well-behaved and

real balances move nionotonically.

Analytically, such a possibility is easy to see. The first-order

condition equates the ratio of marginal utilities of real balances and

consumption to the nominal interest rate, where under uncertainty the latter

is the sum of the real interest rate, the inflation rate, and a "risk premiun"

4(l - P/P5). The risk premium reflects the possibility that at any instant a

regime change may take place which would induce a price jump and a capital

loss (or gain) on nominal balances. Solving for the inflation rate ,r(t) we

obtain (in the case where F(t) is differentiable, except perhaps at Tmax)

m1b (t))

(27) ir(t) — - + v'(In(t)) - (b(t))[l -
S
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One notes that a large negative risk premium implies a large positive rate of

inflation. Therefore, during the pre-switch period the rate of inflation may

happen to be higher than in the post-switch equilibrium. Differentiating (27)

with respect to time we obtain

m . m dnP/dbm.mv" . S ,.,.. 5 .. S
UL) w - + DL- -

m

The term multiplying in/rn is unambiguously negative, so that the first

term is unambiguously positive along the dynamic path, pushing inflation

upwards. The term in the second parentheses and hence the whole second term,

is, however, negative if 4i'(b) > 0 and m(t) is larger than nP(b(t)), and

ambiguous if it is smaller. Therefore, dir/dt may be of either sign and can

change sign as the relative strength of the various influences changes.

therefore need not be monotonic and may fluctuate. (One may note that the

expected inflation rate inclusive of the expected jump in P is monotonically

rising). Comparison with the case where T is known shows that it is the

uncertainty about the switch date (and the implied risk premium) which is the

source of these fluctuations.

The importance of the risk premium will be especially great as we

approach T when the instantaneous probability of a regime switch

approaches infinity. Here, instantaneous movements in the risk premium will

be the dominant factor in determining movements in the rate of inflation and
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may well induce "overshooting." Consider the first term in the second

brackets of (28). As b approaches b , m will approach UIM(b ) (frommax 5 max

below if b is close to b, given our arguments in section 2c above), so
max

that (1 - rn/rn) will approach zero from below. Since '(b) is infinitely

large at b when there is no mass point of F at T , '(b) willmax max

approach infinity as b approaches b. If ' approaches infinity faster

than (1 - rn/rn) approaches zero, the negative contribution of this term will

dominate the other terms and the inflation rate will fall rapidly as debt

approaches its maximum feasible value. Earlier in the path, when the risk

premium is small, the behavior of ir will be closer to the case of certainty,

so that inflation will be rising. Therefore, one may anticipate overshooting

if no regime switch has occurred as t approaches T. This argument does

not, of course, rule out earlier fluctuations in the rate of inflation.

To examine these presumptions about fluctuations in w, we ran numerous

simulations of the model. We considered the utility function specified in

footnote 5 and the function 4(b) — 1 + lOO(6-b)2 which satisfies the

restrictions on 4 in footnote 11. For a range of specified values for the

exogenous variable, we indeed found there to be overshooting in as b

approached bm• The results of one simulation may be seen in Table 1 (this

is a sample from several thousand points) which presents the relationship

between debt, real balance, the rate of inflation and the risk premium. The

relationship between debt and the rate of inflation is plotted in Figure 8,

showing a rise in the rate of inflation followed by a rapid fall as debt

approaches its upper limit.
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It is also of interest to note from equation (20a) (or (A2.5) in Appendix

2) that if the distribution function F(t) is discontinuous, so is the price

function P(t). This implies that if at some point in time people believe

that there is a probability mass of a switch taking place, this will result in

a price jump independently of whether the switch does in effect take place.

If real balances are above m'(b), that is, if the risk premium is positive,

there is a downward price jump just before it becomes known whether a policy

switch takes place. If it does not take place the price level changes

continuously, and if it does take place, the price level jumps upwards. Jumps

in opposite directions result at times at which the risk premium is negative.

A situation such as this may arise if there is a threshold debt level (or

a point in time) at which a switch is most likely to occur. This describes,

therefore, a realistic possibility. Since a discontinuity in the distribution

function can be approximated by a very fast increase in F(t), this shows also

that in the presence of uncertainty about marcoeconomic policies there can be

rapid changes in the rate of inflation. For example, suppose the distribution

function rises very quickly over a very short time interval and flattens out

subsequently. If the risk premium is positive during this time interval,

inflation will rapidly decline initially and rapidly increase subsequently,

but if it is negative, inflation will rapidly increase initially and rapidly

decline subsequently, provided that no policy change has taken place.

Our analysis has a bearing on the issue of tight money and inflation that

was raised by Sargent and Wallace (1981). They consider an economy initially

in steady state with a constant rate of inflation and money growth in which
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taxes or expenditure. This induces a growth in debt which is stopped

when the rate of monetary growth is raised to the necessary level. They ask

what are the inflationary consequences of a currettightening of monetary

growth, given the anticipation of an eventual inevitable increase in the money

growth rate. As Drazen (1985) has shown in an environment of the type

considered in this paper, the temporary tightening of money growth can bring

about an initial increase or reduction in the rate f latinL,

thereafter the rate of inflation will rise over time until it reaches its new

higher steady state level. There may, but need not be, short-run decreases in

the rate of inflation. It is in fact posill&tthe t1ht mhoHy to

bring about higher information at all times. In that analysis the date at

which debt is stopped from grdwiiig Is known with certainty

Our analysis implies that in the presence of uncertainty abcut the date

in which debt growth will be stopped, a tight money policy can generate

temporarily very high inflation rates, with the rate of inflation declining

over time as long as debt is not prevented from growing (see the last part of

the graph in Figure 8). This is more likely the larger the initial debt level

and tEe larger the ins tantaneous conditional probability of apfiye

that is, the less confidëncethere is in thetight money policy.

:jJhw via a the4yai4c

equations are of the general form of (24) and (25) with m(b) set equal to
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mC). To derie phase d-fatants, tb euattot fk the b O Io.i- inay1*L

writcefl

(29) fib +(b)(l - )b + g - r — pm

Assuming that 4,() is rising in b the second left-hand-side term is
-

unambiguously increasing in b. Hence, the b — 0 locus is upward sloping

with a slope greater than in the certainty case. b is rising to the right of

this locus, falling to the left of it.

- The in - locus deneà b --

9
(30)

v(m) - p + p) ..#(b)[l -
Om

As steady state b rises, 9 falls and in rises. The derivative of the
S 5 --

right-hand-side of (30) is therefore ambiguous with respect to b. Therefore

the in — 0 locus may either rise or fall in rn-b space and in fact need not

be sinle-signed. Real balances will befalling below the locus, rising above

it. The locus will lie below (b), since along (b) the probability #

of a regime switch is zero, so that,s->.O

be nted a'1n tti9 where iishowti possible f- EO.
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We may now derive the dynamic path. The ambiguity about the possible

slope of the in — 0 locus (discussed in the previous paragraph) combined with

the jump in real balances at Tinax (due to a jump in the marginal utility of

consumption and hence the price level at this point) will lead to a variety of

possible paths. Specifically, at T we have (see equation (A2.7) in

Appendix 2)

P(T ) (b )
B max s max

'' '
9 (b )

—
P (T )

—
ins max $ max max

where in denotes the pre-switch level of real balances at Tmax max

(analogous to m(T) in the certainty case). Since 9 > Os(bmax) (as

government spending is lower and therefore consumption higher after a

stabilization), in must lie below ).max s max

The key to the behavior of the dynamic path is the location of in
max

relative to in — 0 locus. If in lies above this locus, the dynamic path

will be rising as we approach T; if it lies below, it will be falling.

As demonstrated in Appendix 3, where possible paths are discussed in detail,

the location of in relative to the in — 0 locus depends on whether it ismax

greater or lesser than , the value of real balances for which in — 0 in the

certainty case (see the discussion preceding equation (14)). in will lie

below the in — 0 locus under uncertainty when in is less than i and willmax

lie above when it is greater.
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The other crucial characteristic is whether the dynamic path crosses the

m — 0 locus. If it does, real balances will not move monotonically along the

path. If it does not cross, they will. (Debt is monotonically rising along

every path). Of course, whether or not the dynamic path crosses the ni — 0

locus depends on the characteristics of that locus. Leaving a more detailed

discussion of the paths to be presented in Appendix 3, the two possibilities

about the location of m and the two possibilities about crossing m — 0
max

yield four general types of paths for real balances: they may rise

nionotonically; they may rise near Tmax falling or oscillating beforehand;

they may fall monotonically; arid, they may fall near Tmax rising or

oscillating beforehand. The conditions for each case are summarized in Table

2, and the cases are illustrated in the four panels of Figure 10. One should,

of course, remember that these are paths only until a stabilization takes

place. When a stabilization takes place at some t before T , the value of
max

real balances jumps to (b()), due to a price level jump.

The behavior of inflation along any path depends not only on the behavior

of real balances, but also on the existence of the risk premia, which reflect

the possibility that at any instant a regime change may take place which would

induce a jump in both the price level and the real interest rate. The

first-order condition (20) equates the ratio of marginal utilities of real

balances and consumption to the nominal interest rate, which reflects risk

premia which may fluctuate. Solving for the inflation rate, we obtain (where

F() is differentiable):



- 35 -

9 (b(t))
(32) w(t) — - + V (rn(t)) - (b())(1 -

S

0
9 (b(t))

P(t) 0
S

S v'((t)) 0 (b(t)) (())
— - +

0
- (b(t))[l -

m(t)

Differentiating with respect to time we obtain

o

(33)

9 dO /db 0 drn/db+ b[-'(l - 1) + + S

The term multiplying rn/rn is unambiguously negative, so that the first term

is unambiguously positive along the dynamic path, when real balances are

falling, negative if they are rising. The term in the second brackets is of

ambiguous sign, so that dir/dt may be of either sign and can change sign.

Therefore,inflation and real balances need not move in opposite directions.

In Drazen and Helpman (1985b) we present an example that replicates the

time path shown in panel b of Figure 10. This may be of especial interest in

connection with the European hyperinflations of the 1920's, which were ended

by fiscal reforms including sharp cuts in government expenditures whose timing
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was uncertain ex-ante. In a number of cases the sharp drop in real balances

which characterize hyperinflations was reversed before the fiscal reforms

which led to a lower rate of growth of money were enacted. (Austria and

Hungary provide two examples). We think it useful to show that such behavior

can arise in this sort of model, in particular in view of the fact that in

that example it was assumed that the instantaneous probability of a switch to

constant, so that this variable is not the main driving force behind the

result. This lengthy example is not presented here in order to save space.

g. Dynamic Behavior under tax stabilization

When stabilization is effected via a change in non-distortionary taxes,

the dynamic equations are identical to the case of money-based stabilization.

Since the dynamic pathliust intersect m(b) at Tmax which is identical to

the m — 0 locus under certainty, the path must always be on this locus. The

dynamic equations and results therefore turn out to be identical to the

certainty case.

5. SUMMARY AND CONCLUSIONS

The purpose of this paper was to consider situations where current

macroeconomic policies are known to be infeasible, implying an eventual regime
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switch, but where the exact timing or nature of this switch is unknown. Our

goal was to consider the effects of this uncertainty on macroeconomic

variables.

We found that under full certainty, stabilization via an increase in the

money growth rate implies a monotonically increasing inflation rate before a

regime switch occurs, while tax-based stabilization induces a constant

inflation rate, everywhere lower than in the previous case. Stabilization via

budget cuts induces a jump in the price level and a "blip" in the real

interest rate at the date of stabilization. This occurs because the upward

jump in private consumption means that the price level and the real interest

rate must jump to ensure market clearing at every point in time. Real

balances may rise, stay constant, or fall before a stabilization, with

inflation moving in the opposite direction. Tinder uncertainty only about the

policy mix, there will be a one-time price jump when the switch occurs whose

sign and magnitude depend on the actual policy mix adopted relative to what

was expected.

In contrast to these results, when it is known with certainty that the

regime switch will entail an increase in the rate of monetary growth, but the

timing of the switch is uncertain, not only will there be a jump in the price

level at the actual switch date, but fluctuations in the rate of inflation may

also result. Therefore, uncertainty about the timing of an inevitable policy

change may of itself induce fluctuations in the inflation rate. Furthermore,

when budget Cuts whose timing is uncertain are used to stabilize, the real

balances may rise nionotonically, fall monotonically, or may oscillate. The

rate of inflation may similarly exhibit a wide range of paths.
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A further characteristic of the time paths which emerges is the lack of

any necessary contemporaneous correlation between budget deficits and the rate

of monetary growth on the one hand and the rate of inflation on the other.

Depending on the expected policy mix which effects the regime switch, a rising

deficit (inclusive of debt service) may induce a rising, constant, or falling

inflation rate. With uncertainty about the timing of a policy change, a

constant rate of money growth and a constant deficit (exclusive of debt

service) may be associated with a fluctuating inflation rate. This lack of

correlation arises even though it is clear that the budget deficit is the

ultimate cause of inflation.



APPENDIX I - KNOWN SWITCH DATES

In this appendix we derive the first-order conditions when the switch

date is known. These are necessary and sufficient conditions. The problem

of maximizing present discounted utility (2) subject to constraints (3) and

(4) may be written

I \Mv I \ lAs-

(c(t) ,z(t) ,M(t) }J0

(A.1.l) + eTV5[eT)w(O) - e T)JTeR(t)(c(t) +
- y)dt

M(O) ÷ 1Tzd rt
+

P (T) + J 7(t)[M(O) + J z(x)dx - M(t)}dt
S 0 0

where y(t) is the multiplier on constraint (4)) in the text. Maximization

of (Al.1) with respect to each of the c(t), z(t) and M(t) yields,

respectively, (where V5 is the derivative of VS(.) with respect to

wealth which equals u'(y0-g)):

(Al.2) etu1(y0g) — eTu1(y0g5)eTt)

(Al.3) J(x)dx — e Tus(y -g )[e T-R(t) P(t)
- P(T)
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(A1.4) etv() P(t)
— -y(t)

Condition (Al.2) implies that (using R(O) — 0)

forOt<T dtforO�t<T

(Al.5) R(t) — dR(t) —

u'(y0-g) u'(y0-g)
T+1n , for t — T dt+ln , for

u (y0g5) u (y0-g)

t—T

The conditions (Al.3) through (Al.5) also imply

(Al.6) Pt) -
$Te

t)v'x)) P(x) + eTtflpT), 0 � t < T

where 0 — u'(y0 - g). Thisis a standard asset pricing equation. (Al.6)

implies that at T there is a price junip since we have that

P(T) R(T) - R(T)
P (T)

— e
S

which from (Al.5) yields

T u'(y -g)

P5(T) u'(y0-g5)
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Differentiating (A1.6) we obtain

(A1.8) v'(m)dtdR+dP , Ot<T

APPENDIX 2 - UNCERTAIN DATE OF A REGIME SWITCH

In this appendix we derive the first-order conditions when the date T

of a switch is unknown. When the cumulative distribution of a switch

occurring until T is F(T), the individual maximizes (16) in the text,

subject to (3) and (4). The choice problem may be written

max JTJTT + v()Jdt
{c(t),z(t),M(t)} 0 0

(A2.l) + e TV5[e1)w(O) - JeT(t)(c(t) + - y)dt

rT
M(O) + I z(x)dx

rT rt
+

P (T) + J y(t)[M(O) + J z(x)dx - M(t)}dt}dF(T)
S 0 0

where y(t) is the multiplier on the constraint (4)in the text.

Maximization of (A2.l) with respect to each of the c(t), z(t), and M(t)

yields, respectively, where e — u'(y0-g) is the derivative of

with respect to wealth and where e — u'(y0-g),
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(A2.2) [1 - F(t)]et9 —
jT

-fiT R(T)-R(t)9 (T)dF(T)e e

t
S

T 1
0(T) -fiT

T
+ I 7(x)dx)dF(T)—Omax -fiT R(T) R(t) + e

(A2.3) 1 9 (T)e e
-

P(t) P(T)
St -s

-fiT 1
(A2.4) e

P(t)
v(m(t)) — -y(t)

Differentiating (A2.2) with respect to t we obtain

8 dF
(A2.5) — fidt + (1 -

We may rewrite (A2.3) as

T1 rmax T T
(A2.6) et) P(T) J 0 (T)e!T) fiT I maxl -fix v'(m(x))ddF(T)÷dF(T)—I let $ P(x)

T 9(T)
I max -fit $

dF(T)+1 e
P(T)Jt s

-fite
where by (A2.2) the left-hand-side of (A2.6) is simply [1F(tfl9p(t) Upon

substitution of the expression on the left-hand-side of (A2.6) we obtain the

asset pricing equation for money balances. As t approaches T we
max

therefore have
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9(T )
9 s max

(A2.7)
P(T )

—
P (T )max s max

Differentiating (A2.6) with respect to t (after the substitution of

(A2.2)) we obtain

____ et et dP
- fl(l-F)9 ,

dt - (l-F)9 , i—

— - (lF)etv(m)dt - etdF

which, upon rearranging becomes

9/P
(A2.8) v(m)d — P + ÷ lFG - SS)

APPENDIX 3: POSSIBLE DYNAMIC PATHS UNDER UNCERTAINTY

In this appendix we consider in detail possible dynamic paths under

uncertainty about the timing of the regime switch. We will derive four

general types of paths which may obtain if no switch occurs before Tmax•

Two sets of characteristics are key: first, whether the value of real

balances at T prior to a switch, denoted in , lies above or below the
max max

in — 0 locus; second, whether the dynamic path crosses the in — 0 locus.
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On the first, if we denote by in the value of real balances when iii —

0 in the certainty case, in will lie below the in — 0 locus under
max

uncertainty when in is less than in, and will lie above it when it is
max

greater. This follows from noting that since
v(in) — + p we have (using

(31) in the text) that

v'(m )

— = -
max

in'"''inax' ' •

B

(A3.l)

> >-
0 as in in< max<

Whether or not the dynamic path crosses the in — 0 locus will clearly

depend on the slope of the locus and the relative position of in • If the
max

locus is inonotonically upward sloping, the dynamic path cannot cross if

in lies above the locus. This follows from noting that the dynamic path
max

must end up above the in — 0 locus, which will be true when the locus is

always rising only if it is everywhere above the locus. In this case the

dynamic path itself is nionotonically rising (Figure lOa). One may note that

even if the locus is downward sloping, the dynamic path may still be

everywhere rising, though a negatively sloped in
— 0 combined with in >

i is not sufficient for a rising dynamic path as was true in the first

case.
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Analogously, if in lies below the in — 0 locus (in < in), themax max

dynamic path must be monotonically falling if in — 0 is monotonically

falling (Figure lOc). When 'umax < rn, a positively sloped in — 0 locus

can, but need not yield a monotonically falling dynamic path.

In other cases, especially those where the in — 0 locus itself changes

sign, the dynamic path may change sign, or equivalently, the dynamic path

will cross the in — 0 locus. For example, when in lies above the
max

in — 0 locus, a path along which real balances first fall and then rise is

consistent either with in — 0 first rising and then falling, or with the

locus everywbere falling (Figure lOb). When in lies below the in — 0

locus, real balances first rising and then falling is consistent with in — 0

first falling and then rising, or with it rising throughout (Figure lOd).

If the dynamic path crosses the in — 0 locus more than once, real

balances will oscillate, the number of sign changes obviously being equal to

the number of crossings. Multiple crossings may occur even when the slope

of the in — 0 locus change sign only once.

All of these possibilities are summarized in Table 2.



FOOTNOTES

1. We assume that the distribution of expected policy mixes does not

change with the passage of time, so that G(P(T)) is time autonomous.

We consider below the effects of changing this assumption.

2. The stock of real debt could jump as the result of an open-market

operation, a policy tool we exclude from consideration here.

Open-market operations are considered in Drazen and 1-lelpman (1985c).

3. The government budget constraint shows that although b is not

continuous, b will be for the case of a stabilization via an

expenditure cut. This may be seen by writing the budget constraint in

integral form

b(t) — b0
+ Je'(g(t) - - pm(x))dx for all t

where

g for Ot<T

g(t) —

for tT
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4. The mathematical expression for the terminal surface may be derived by

combining the in — 0 locus with the b — 0 locus (the government

budget constraint in steady state) to obtain

v'(m5) 48b5 + g - r
B m

Diagramatically, when the elasticity of money demand is less than one,

an increase in p shifts the in — 0 locus downward less than the b —

o locus so that the new intersection is to the southeast of the

original intersection.

5. For example, if the instantaneous utility of money balances is

J
lnxdx

in

0 nil

the money demand function is in — e0 +
P/P), so that inflation tax

revenue reaches a maximum at P/P — 1/9. Maximum sustainable bond
- 1 -(l+fiO) dholdings are b — e

6. Adding (11) and (12) together, one notes that the locus in + b — 0 is

identical to the ri?(b) locus in footnote 4, so that total assets are

rising above the inM(b) locus, falling below it, and locally constant
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on the curve. Since the absolute value of the slope of the path

relative to unity depends on whether m + b is rising or falling, the

slope of the path will be less than, equal to, or greater than one in

absolute value depending on whether we are above, on, or below m'(b),

whose slope approaches infinity as b approaches 6. The optimal path

must therefore cut this curve from below if T is sufficiently large,

and will be above n?(b) if it is flat.

7. Algebraically, we may derive the equation for the terminal surface as

follows. After a budget cut, we have

c — - g5

—
y0

- b - r -

from the steady state government budget constraint. Along the in — 0

locus this implies

v' (m)

- r

which yields an upward sloping m(b) curve.

8. This point is treated more fully in Drazen and Helpman (1985b).

9. The jump in the price level will reflect not only the "arrival of new

information" about the actual stabilization program, but also any

change in c and 9 if the stabilization includes a budget cut.
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10. The previous section indicated that the maximum level of debt under

each policy mix is fixed by the underlying behavioral relations. It is

therefore independent of F(t). The time it takes for debt to hit this

maximum will, however, depend on F(t) under uncertainty about timing.

T therefore depends on F(t) via the behavioral relations, though

the individual takes T as given in his optimization problem.max

11. This may be shown by solving the differential equation (26) to yield

T
F(t) — 1 - exp(-

max

Jo

where we have used the boundary condition F(0) — 0. The other

T

boundary condition, F(T) — 1, obviously implies that J max(b(X))dX
0

— + , unless the distribution has a mass point at t —T . Usingmax

equation (9) for b we find

T b

J rnax(b())d - J
max

(b)
0

b0

— I max #(b)

b fib + g - - im(b)
0

Since 1b
8(b) db >

b fib+g-r-m(b)
0
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(fib + g - r - ,m(b))1J #(b)db,

rt
a sufficient condition for

J #(b(t))dt to approach + as t
Jo

approaches is that #(b)db approaches + as b

approaches b . This can also be shown to be a necessary condition.
max

12. It turns out that all we need to know about the in — 0 locus is its

position relative to the InM(b) locus and the b — 0 locus. On the

first, note that along mIL(b), the final term in (26) vanishes, so that

the movement of real balances is identical to the certainty case.

Since ni(b) lies below the in — 0 locus under certainty, we

therefore know that on in(b), in < 0 (and b > 0 to the right of b

in Figure 7), for any (•) function. Therefore, the in(b) curve must

lie below the in — 0 curve when T is uncertain. Since in is

therefore greater than m(b) along in — 0, (b)(m-m) is

unambiguously positive and the in — 0 curve is downward sloping when

is increasing in b. In this case it must also lie below the b — 0

curve.

13. We have drawn the in — 0 locus as horizontal to the left of the b — 0

locus, since when b is falling, there is no inevitability of

stabilization, implying that (b) — 0 and a — 0 is horizontal.
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14. Technically, the impossibility of a jump at Tmax may be seen by

examining the individual's first-order conditions (A2.3) and (A2.4) in

Appendix 2 as t approaches Tmax• From the definition of 7(t) in

(A2.4) we see that the second integral in (A2.3) must be zero at

t — T . This means that as long as dF(T ) is non-zero, the term
max max

in brackets in the first integral must be zero at T, so that

P_(T) is equal to P(T_J. That is, there is no price jump.-

15. This may be seen by noting first that for bmax strictly less than 6,

(b) will be finite at b from our earlier assumptions. Since the

dynamic path must intersect m(b) at b, meaning in - in

approaches zero, the equations for the dynamic path and m(b)

approach those of the certainty case, so the slope of the dynamic path

approaches one at b . For b close to 6, the slope of n?(b)max max s

at bmax approaches infinity, so the dynamic path must cut from below.

16. One may note that if the utility function is log-linear in real

balances, the results are identical to the certainty case. This arises

because if the dynamic path ever crosses the m'(b) locus, it must

remain on this locus. The dynamic path must therefore a1ays be n

this locus. This case is discussed in Drazen and Helpman (l985a). See

also Liviatan (1984) and Drazen (1985).
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TABLE 1

-ln(m/100), 0 m 1

v'(m) — , — 1 + 100(6-b)'2

O m1
8—1,fl—.5,-y—.5, g-r—lO

6 — 24.626, b — 23.788
max

b

public debt

m

real balances

P/P

inflation

(1
risk

---a)
premium

21.885 30.415 .8018 - .1116
22.002 30.227 .8170 - .1206
22.244 29.983 .8516 - .1418
22.370 29.612 • .8719 - .1549
22.500 29.385 .8946 - .1699
22.633 29.147 .9202 - .1874
22.771 28.895 .9490 - .2074
22.912 28.627 .9823 - .2315
23.207

'
28.034 1.0677 - .2960

23.351 27.702 1.1232 - .3395
23.362 27.738 1.1794 - .38i0
23.701 26.928 1.1751 - .3629
23.753 26.823 1.0393 - .2233
23.788 26.776 .8177 0



TABLE 2

POSSIBLE DYNAMIC PATHS

2. This is consistent with the

or falling throughout.

3. This is consistent with the

or rising throughout.

Path does not cross Path crosses

in — 0 locus1 in — 0 locus

in >m
max

(Tfl

'Thiax

m—O locus)

UI <max

(in below
max

m—O locus)

Real balances rise monotonically Real balances fall,

(FIgure lOa) then rise2, or,

oscillate and then

rise (Figure lOb)

Real balances fall inonotonica].ly Real balances rise,

(Figure lOc) and then fall3, or,

oscillate and then
fall (Figure lOd)

1. This is consistent with the

negatively sloped.

in — 0 being either positively or

in — 0 locus rising and then falling,

in — 0 locus falling and then rising,
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