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1 Introduction
Technology is typically formalized as a combination of different inputs to produce output. By this
notion, there is a wealth of ‘production recipes’ that vary substantially across sectors. Even within
sectors, these recipes are not fixed a-priori. Instead, inventors of new products can pick from a
large pool of potentially suitable inputs.1 What determines which inputs are initially considered
and eventually adopted in the production of new or improved goods? Why are some inputs much
more prominent than others?2 The process of link formation is a defining element of technological
progress; it also determines the network structure of an economy. A growing literature stresses
the importance of input-output linkages for macroeconomic outcomes. By propagating shocks,
prominently linked sectors can create aggregate fluctuations (Acemoglu, Carvalho, Ozdaglar, and
Tahbaz-Salehi, 2012). Intersectoral linkages can also amplify idiosyncratic sectoral distortions
into large aggregate productivity differences (Ciccone, 2002; Jones, 2013). It is therefore key to
understand the evolution of the input-output structure and, in particular, why some sectors play a
disproportionate role as input providers.

In this paper we study the evolution of input output networks and show that the existing net-
work structure is crucial in determining the formation of new input linkages and therefore the
evolution of the input-output network over time. We begin by building a model of network forma-
tion at the variety level, where producers search for potentially useful inputs within their network
neighborhood. The model predicts that initially closer network proximity implies higher likeli-
hood of input adoption. Additionally, the model delivers a power law in the number of varieties
supplied. We show that both these predictions continue to hold when varieties are aggregated into
sectors based on input similarity – the standard rule for sectoral classification. The sector-level
aggregation allows us to test these predictions in US input-output tables. We show that the initial
network structure in 1967 predicts the formation of new linkages in the following four decades.
In particular, sectors are more likely to adopt inputs to which they are already more closely (but
indirectly) connected via their existent suppliers.

Our variety level model is motivated by the fact that input-output tables ultimately reflect trans-
actions between individual producers. We represent the network by taking product varieties as
nodes and input purchases as directed edges. Every period, a new variety emerges exogenously.
It then forms input linkages following three steps, where the first two build on the central mecha-
nism of dynamic network formation models (Vázquez, 2003; Jackson and Rogers, 2007; Chaney,

1Steve Jobs famously had the first iPhone’s screen changed from plastic to hardened glass only four weeks before
mass production began in 2007.

2The number of sectors that source inputs from a given supplier follows a power law (Carvalho, 2010). Kelly,
Lustig, and Van Nieuwerburgh (2013) report evidence on the distribution of supply linkages at the firm level.
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2013). First, a new variety draws a set of essential input suppliers (or ‘network parents’) at random.
Second, the new variety producer identifies further potential inputs by a local search mechanism,
following the linkages of its essential suppliers. In other words, the search is directed towards the
technological neighborhood of essential inputs. Third, the new variety producer decides which
inputs to adopt among those identified in the second step. This decision is driven by a trade-off
between benefits from a larger set of input varieties (à la Romer, 1990) and variety-specific cus-
tomization costs for each adopted input. As a result, a finite optimal number of inputs is adopted
from the network neighborhood of essential inputs. Products with more pre-existing forward link-
ages are more likely to be in the neighborhood of any (randomly drawn) essential inputs. Thus,
they have a higher probability of being adopted by a new variety. In this way, already central nodes
tend to build more forward linkages and thus become ever more central. Similar to the social net-
work literature, our directed search mechanism gives rise to superstar varieties as reflected by a
power law distribution.

We then explore the sector-level implications of such a mechanism. To define sectors in the
model, we build on the rules by which new commodities are assigned to sectors in actual input-
output tables. This classification is based on essential inputs used. For example, a new variety
that draws tires, an engine, and a body will be assigned to the motor vehicles sector. We show
that, based on this definition, the model predicts i) the power law distribution of forward linkages
aggregates up to the sector-level and ii) new input linkages across sectors are more likely to emerge
within the proximity of existent input supply relations. Thus, even if the underlying network
formation is happening at the variety level, we can make use of sectoral input-output data to
examine the mechanism at work.

To test the predictions of our model, we use U.S. input-output tables at the 4-digit level be-
tween 1967 and 2002. Based on the observed intersectoral linkages in manufacturing, we compute
a standard measure of network distance between any sector pair.3 We find that sectors are substan-
tially more likely to adopt inputs that are initially closer in their input-output network. This finding
holds both in a panel setting where the input-output network evolves over time, and also in a cross-
sectional analysis showing that closer network proximity in 1967 reduces the time to adoption.
Our results are robust to a host of controls such as fixed effects for adopting and input-producing
sectors. They are also economically significant: a one-standard deviation (std) decrease in net-

3Technically, network distance is the shortest path from a producer j to input i. Practically, this can reflect several
dimensions. First, technological distance in the sense that production processes are more or less similar. For example,
engines are technologically closer to vehicles than processed food. Second, spatial distance to the extent that industries
that trade inputs intensively tend to coagglomerate, and third, it can reflect idea flows and R&D spillovers (Ellison,
Glaeser, and Kerr, 2010). For example, sectors that trade more intensively also have more intensive cross-citation
patterns.
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work distance raises the adoption probability in any given benchmark year (5-year periods) by one
third. In addition, we show that rapid technological progress in input-producing sectors makes
their adoption more likely. Because technological progress may be driven by adoption, we use
total factor productivity (TFP) growth prior to our sample period (1958-67) to predict subsequent
productivity growth. These results confirm our findings.

We follow a long line of research studying input adoption and diffusion. Starting from the
seminal work by Griliches (1957), a large and diverse literature has studied the diffusion of tech-
nology. A macro strand of this literature has focused on how particular technologies – such as
electricity or semi-conductors – are progressively adopted by an expanding range of sectors. This
gives rise to General Purpose Technologies (GPT) that mark historical eras and are seen as engines
of growth (Helpman and Trajtenberg, 1998; Jovanovic and Rousseau, 2005). As in this literature,
we are interested in understanding how a particular technology can emerge as an input supplier to
many other technologies.4 Our results imply two factors that raise the odds for new technologies
to become GPTs: first, a relatively central position in the network. This condition is met if the new
input is used by other prominent technologies. For example, in 1967 semiconductors were used
as an input to electronic components – a prominent technology that in turn was used by a large
number of other sectors. The second condition is rapid technological progress, so that the price of
the new input falls, which makes its adoption more attractive. Intuitively, a central position in the
network helps a new input to be ‘visible’ to potential adopters, and falling prices make eventual
adoption more likely.

Our paper is also related to a micro strand of the literature that focuses on the role of social
networks in the adoption of particular technologies (c.f. Young, 2003; Conley and Udry, 2010;
Banerjee, Chandrasekhar, Duflo, and Jackson, 2013). We share the view that the adoption of tech-
nologies is mediated through a network. However, rather than focusing on the role of local social
interactions, we study the importance of distance in the technological network more broadly.5

Our focus on input-output networks is also motivated by an emerging literature (Carvalho,
2010; Acemoglu et al., 2012; Bigio and La’O, 2013) emphasizing the role of the network struc-
ture of intersectoral linkages in propagating idiosyncratic shocks throughout the economy and

4Interestingly, while Helpman and Trajtenberg (1998) rationalize the staggered diffusion of a GPT in terms of
asymmetric adoption costs, they also conjecture that the order of adoption could be the result of "linkages between
adopting sectors" and thus, that "technological proximity" may be an important factor in explaining diffusion patterns
of GPTs. Our key mechanism formalizes this notion of "technological proximity" by placing technologies in a network
and emphasizing network proximity as a key driver of adoption.

5Of course, distance in the input-output network may also reflect less frequent social interaction. For example, a
tire producer is more likely to interact with people from the automotive industry than with pharmaceutical staff. Our
argument exploits the variation across sector pairs, whereas the micro literature on social networks examines the role
of local social interactions for the adoption of a given technology.
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generating aggregate fluctuations.6 This literature invariably takes the input-output network as an
exogenously given restriction on sectoral production technologies – or who sources inputs from
whom – in order to study the impact of network structure on the strength of the shock propagation
mechanism. Finally, our work builds on a literature of dynamic network formation models (Jack-
son and Rogers, 2007; Chaney, 2013). As in these papers, our network evolution process stresses
the fact that existing links can be used to find new links: goods producers probe their existing set
of input suppliers to find other potentially useful varieties for their own production process. In
this context, our paper is also closely related to Oberfield (2012). While Oberfield also studies the
formation of production networks over time, he does not exploit the underlying network structure
to explain link formation. Instead, his mechanism has producers randomly searching for the lowest
cost input supplier, while we emphasize the role of networks in the search for potential inputs.

Relative to the existing literature we make several contributions. First, relative to the literature
on input adoption and input diffusion, we are the first to exploit the role of the input-output network
structure in shaping the future path of input adoption, both theoretically and empirically. Second,
relative to the literature on input-output networks and aggregate fluctuations, we endogenize the
formation of input-output linkages. We thus provide a deeper understanding of asymmetries across
input suppliers – a crucial precondition for the emergence of aggregate fluctuations. Third we show
that the network search mechanism from the literature on dynamic network formation can also shed
light on processes of input adoption and the evolution of technology. Fourth, we provide strong
empirical support for our network based mechanism of input adoption. Finally, our theoretical and
empirical findings have important implications for the rise of General Purpose Technologies – we
show that both network centrality and rapid technological progress are necessary conditions in this
process.

The paper is organized as follows. Section 2 uses the diffusion of semiconductors as a case
study to illustrate our mechanism. Section 3 describes our model of input adoption, starting at
product variety level and then aggregating these into sectors. Section 4 introduces our measure of
network distance and describes our data. In Section 5 we present empirical results lending strong
support to the predictions of our model. Section 6 concludes.

2 The Diffusion of Semiconductors
The diffusion of semiconductors, a key general purpose input, provides a telling illustration of
input adoption in a network. Figure 1 provides a network representation of the US input-output

6This work in turn builds on an older literature that emphasizes the role of input-output linkages for co-movement
across sectors (c.f. Long and Plosser, 1983; Horvath, 1998; Conley and Dupor, 2003). See also Foerster, Sarte, and
Watson (2011) and di Giovanni, Levchenko, and Mejean (2012) for empirical evidence supporting these mechanisms.
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table in 1967. Each 4-digit SIC sector is represented by a node, and edges between these nodes
depict input flows across sectors. The solid black node on the left hand side of the graph corre-
sponds to semi-conductors. The red nodes mark sectors that directly sourced semiconductors as
an input in 1967 – only a handful of technologies incorporated semiconductors. Finally, the red
arrows point to indirect users of semiconductors, i.e., sectors that sourced inputs which in turn used
semiconductors.

Given this starting point, Figures 2-4 show the path of diffusion of semiconductors across
sectors over the subsequent 15 years.7 Blue dots in Figure 2 represent sectors that adopted semi-
conductors in 1972, as per the detailed input output tables of that year. Note that the new adopters
also add new indirect paths to semi-conductors, as indicated by the blue lines in Figure 2. Cyan
and green dots in Figures 3 and 4 correspond to sectors that adopted semiconductors by 1977 and
1982, respectively. As before, lines in the respective color represent newly formed indirect links.
We ask whether these indirect linkages to semi-conductors are informative about the likelihood of
subsequent direct adoption of semiconductors as an input.

[Insert Figures 1-4 here]

The pattern emerging from these Figures is striking. Every single one of the seven adopters
in 1972 previously had an indirect connection to semiconductors via one other intermediate input.
In the terminology of networks, all second-round adopters of semiconductors were two edges
away (i.e., distance 2) from semiconductors. Similarly, four out of the five sectors that adopted
semiconductors by 1977 sourced inputs from either the 1972 or the 1967 adopters. By 1982, the
number of sectors using semiconductors as an input had more than trebled relative to 1967, setting
the stage for the generalized adoption that would ensue in the 1990s and 2000s. Summarizing, the
large majority (14 out of 17) of newly adopting sectors in this early 15 year period of diffusion of
semiconductors were either distance 2 or 3 from semiconductors in 1967. In contrast, the typical
1967 network distance from semiconductors to a randomly selected sector in the economy was
5. That is, early adoption of semiconductors was strongly correlated with being in the network
proximity of semiconductors early on.

It is instructive to focus on one of these paths of adoption to better understand the role on link-
ages across sectors in the diffusion of semiconductors. One of the earliest uses of semiconductors
was in the invention and production of integrated circuits or chips, classified into the Electronic
Components sector, one of our 1967 nodes in the network. While early computers sourced transis-
tors from the Electronic Components sectors, the Computer and Office Equipment sector did not

7Note that throughout we hold the 1967 network fixed. That is, all colored edges refer to input linkages observed
in 1967.
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adopt semiconductors until new computer varieties made use of the newly developed integrated
circuits. The world’s first personal computer – the ‘Kenbak-1’ produced in 1970 – was the first
computer device to source integrated circuits as an input (from the Electronic Components sector)
and, alongside it, semiconductors. Computers and Office Equipment sector thus appears in our net-
work as one of the 1972 second round adopting sectors. Downstream of the Computers and Office
Equipment sector we find the Scales and Balances sector, an adopter of semiconductors in 1977.
This sector sourced early computer varieties in the late 1960s to store and perform calculations
on weighing measurements. Throughout the 1970s the introduction of newer, smaller computer
equipment varieties – itself made possible by the adoption of integrated circuits – opened the way
for the large scale production of industrial and retail digital scales which themselves incorporated
semiconductors directly as an input.

3 A model of input diffusion in a network of technologies
In this section we present a simple model of dynamic input diffusion across a network of intercon-
nected product varieties. New varieties emerge exogenously every time period. Interconnections
across varieties reflect input needs, i.e., each variety is produced by incorporating other, already ex-
istent, varieties as intermediate inputs. These input linkages across varieties give rise to a network
that evolves over time, as new varieties are introduced and new links are formed.

Building on the dynamic network formation models of Jackson and Rogers (2007) and Chaney
(2013), we begin by modeling how the set of feasible inputs available to each new variety is
defined. Following this literature, our network evolution process stresses the fact that existing
links can be used to find new links. In our context, this means that a new variety is first assigned
a set of ‘essential’ inputs and can then probe the network neighborhood of this set to find other
varieties that can be of potential use as inputs.

Given this set of potential inputs available to each new variety, we proceed to endogenize the
input adoption decision. We assume that input adoption is costly. Specifically, in order for a new
variety to adopt an input, it must be customized at a cost that is specific to each variety-input pair.
In the model, new variety producers face a trade-off between this customization cost and a love of
variety effect accruing to adopting additional inputs. The solution to this tradeoff determines the
total number of inputs that each new variety adopts.

Finally, in order to derive testable predictions that can be taken to sectoral input-output data, we
explore the sector level implications of the variety level model. We classify varieties into sectors
based on a principle of similarity of inputs that is also used in the construction of input-output
tables. As a result, sectors are composed of varieties that share similar production processes, i.e.,
varieties that process similar input bundles. Based on this definition we can show that the key
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variety level mechanism – a new variety is more likely to adopt inputs in its network neighborhood
– is still present after aggregation to the sectoral level. That is, among all pairs of sectors that are
only indirectly linked to a given sector at a given point in time, those that are closer (in a network
proximity sense) are more likely to be adopted as input providers subsequently.

3.1 Variety Level Model

Given a finite number of product varieties, t, we define a variety-level input-output matrix as a
weighted directed network, represented by a t × t matrix where each entry vij ≥ 0 denotes the
flow of input variety i into variety j’s production process. We say that j uses input i if vij > 0.
Correspondingly, we define the unweighted directed network as the binary t × t matrix where
each entry bij ∈ {0, 1} denotes whether product variety j uses input variety i. To characterize the
evolution of the variety-level network, we focus on bij , i.e., the formation of links.8

This production network evolves over time as new varieties arrive sequentially in the economy.
In particular, at each time t a new variety is added to the economy.9 Each new product variety
initially draws a finite set Kt of necessary or ‘essential’ inputs; let mK denote the number of
input varieties in this set (for simplicity ignoring the subscript t). These draws occur uniformly at
random across all existing varieties. Essential inputs can be thought of as defining features of the
new variety. For example, if t is a car its set Kt will include a body, an engine, wheels, etc. There
can be different varieties (or versions) of each essential input, but not all are necessarily used. In
our example, the car producer may consider several different engine options.

In a second step, the new variety can adopt further inputs from the neighborhood of its essential
suppliers. This reflects a stage of refinement of variety t by adding features beyond the essential
ones. In the car example, the producer may look for options to make the body lighter. We assume
that the corresponding search for inputs will be directed to the technological proximity (network
neighborhood) of existing car body producers. For example, the BMW i3 has an ultra-light carbon
fiber body – a material that has previously been used in Formula 1 cars. Similar to the first step, the
second round search may also deliver a spectrum of potential inputs, and only a subset of these will
eventually be adopted. Thus, the network search can be viewed as the producer of a new variety
searching for which production techniques are technologically feasible, i.e., supported by existing
input varieties.

To formalize the process of input search in the supplier network, let Nt denote the set of input
varieties that producer t identifies as useful from its network search. This search follows the links

8Below, we show that under price symmetry, vij ≥ 0 is proportional to bij .
9We use the index t to denote the new variety in each respective period. Thus, the index t refers to both the latest

new variety that has been introduced, and the time period when this happened. Since varieties can be both inputs and
output in our model, we use the notation ‘input varieties’ vs. ‘output/product varieties’ for clarity.
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of t’s essential input suppliers in the set Kt. The number of varieties in the set Nt is denoted by
mN . One interpretation of this setup is that the network neighborhood of essential inputs defines
which further varieties are technologically close to t and can therefore be of potential use in its
production process. Alternatively, the setup can be interpreted as a local search process by which
the developers of the new variety learn about other useful technologies via the personal interaction
with their essential input suppliers.

We use this setup to study the probability with which a new variety t adopts a given input i.
In the theory of network formation, this is related to the evolution of the outdegree of variety i.10

The outdegree of each variety, douti (t), is heterogeneous across i and over time t. For an existing
variety with outdegree douti (t) at time t, the expected growth rate of its outdegree is given by:

∂douti (t)

∂t
= pK

mK

t
+ pN

mKdouti (t)

t

mN

mK(pKmK + pNmN)
(1)

This expression can be decomposed into two parts. The first term in (1) gives the contribution
of random adoptions of variety i as an essential input. Recall that each newly introduced variety
selects mK essential inputs uniformly at random from the set of all existing varieties (t). Hence
mK/t gives the probability that variety i is selected as a possible essential input. Whether or not
the new product t ends up sourcing variety i is determined by an adoption decision that we model
below in Section 3.2. For now, we take the adoption probability pK as given and symmetric across
all mK essential inputs.

The second term in (1) relates to the networked adoption of inputs. It gives the probability
that variety i is adopted by the new variety t indirectly, i.e., via the linkages of t’s essential inputs.
To interpret this term, notice that A ≡ mKdouti (t)/t is the expected number of randomly drawn
essential inputs that in turn use variety i as an input; in other words, A is the expected number
of indirect links that lead from product variety t via its essential inputs k to input variety i.11

Next, B ≡ mN/[mK(pKmK + pNmN)] is the probability of any given variety in t’s network
neighborhood to actually be ‘drawn’ by t, i.e., to be examined more closely as a potential input.
To see this, note that the new variety t initially draws mK essential inputs. In turn, in expectation
each of these sources inputs from pNmN + pKmK varieties.12 Thus, mK(pKmK + pNmN) gives
the total number of input links of t’s essential input suppliers. In other words, it is the size of the

10The outdegree of i gives the number of varieties to which i supplies, i.e., the number of varieties j ∈ {1, .., N}
that use variety i as an input. In contrast, the indegree of i is the number of inputs that i itself uses.

11To see this, note that the probability that a randomly drawn essential variety k itself sources inputs from variety i
is douti (t)/t, i.e., the number of varieties that i supplies to, divided by the overall number of varieties in the economy
in period t. In addition, mK is the number of such random draws of essential inputs.

12This expression also corresponds to the expected indegree, which is the same across varieties in our setup. As for
pK , we take pN as given for now and model the adoption decision in Section 3.2.
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network neighborhood that t searches for potential input varieties. Since t draws mN (potential)
inputs from this network, B is the probability of an input from the network to be drawn. Note that
the same input i can show up several times in t’s network neighborhood – via different essential
inputs. In our car examples, both body and wheels (essential inputs) may use aluminum (network
input). This is reflected in the multiplication A ·B – the (expected) number of links in t’s network
neighborhood leading to i, times the probability of any such link to be considered by t as a potential
input. Finally, pN is the probability that an input that has been selected by t as a potential input
will actually be adopted.13 Altogether, the second term in equation (1) thus captures the odds of
i being adopted by the new variety t via indirect linkage routes. Importantly, if i already features
as an input of a large number of varieties (high douti (t)), then it is more likely that the new variety
also adopts it. This is the core of our mechanism.

Given our setup above, we can characterize the distribution of outdegrees at any time t by
means of a mean-field approximation of (1), as in Jackson and Rogers (2007). The mean field
approximation is derived by taking a continuous time version of the law of motion in equation (1)
where all actions happen deterministically at a rate proportional to the expected change. To do this,
let r ≡ pKmK

pNmN
be the ratio of essential inputs to the number of network inputs. In addition, denote

by m = pNmN + pKmK the expected number of inputs adopted by variety t. Then, the following
proposition is immediate from Theorem 1 in Jackson and Rogers (2007):

Proposition 1. In the mean-field approximation of equation (1), the variety outdegree distribution
has a cumulative distribution function given by Ft(dout) = 1−

(
rm

dout+rm

)1+r at any time t.

The proof follows immediately from Jackson and Rogers (2007) and is omitted here.14 For
large dout relative to rm, this approximates a scale free distribution with a tail parameter given by
1 + r = m

pNmN
. That is, as the number of network inputs grows large relative to the number of

essential inputs, the outdegree distribution of varieties approaches a power law.

13A simple numerical example can provide further illustration: suppose that producer t draws mK = 5 essential
inputs, and that the average indegree is 10. Then the size of t’s network neighborhood is 50, i.e., there are 50 links
leading to further input varieties via t’s essential input suppliers. Assume that t decides to closely examine 10 of these
input varieties. Then the chance of any input variety from the network neighborhood to be drawn is B = 0.2. Next,
suppose that input i is extremely prominent, being used by 10% of all varieties. Then douti (t)/t = 0.1, and A = 5 ·0.1
is the expected number of indirect links from t to i, given that t draws 5 essential inputs. Consequently, the chance of
i to be drawn by t for closer examination is A · B = 0.1. Finally, if t actually adopts half of these potential network
inputs, then i has a 5% chance of being adopted by t.

14The quality of this mean field approximation can be checked against simulations of the original law of motion. As
Jackson and Rogers (2007) show, the mean field result above accords well with simulated distributions of the actual
process.

9



3.2 Input Adoption Decision

In the following, we describe the input adoption decision in detail. A new variety producer t

decides which inputs to adopt from the set of essential inputs, Kt, and from the set Nt of potentially
useful inputs that were identified during the network search stage. The adoption decision is driven
by a trade-off between two forces. On the one hand, a producer benefits from a larger set of input
varieties, as in standard endogenous growth models in the spirit of Romer (1990). On the other
hand, there is a variety-specific customization cost for each adopted input. To model the input
adoption decision, we introduce a production function that uses other varieties as intermediates
together with labor. Thus, the underlying production structure is a network of linkages across
varieties. We focus on a partial equilibrium analysis and illustrate the tradeoff that governs the
adoption decision in the symmetric case.

Variety Production

We begin by clarifying notation. We use k to denote elements of the set of essential inputs Kt,
and n for network inputs in Nt. Note that both these sets represent potentially used inputs. Let
K̂t ⊆ Kt and N̂t ⊆ Nt be the subsets of essential and network inputs, respectively, that are actually
adopted. In the following, we model the decision of a new variety producer t who decides which
inputs to adopt.

Each product variety t uses other varieties as intermediate inputs. Their quantities are denoted
by xtk and xtn for essential and network inputs, respectively. For illustration, we keep the sets of
essential and network inputs separate in the production function, by assuming that they enter two
different composites. Inputs of each category enter production as substitutes with elasticity ε > 1,
so that the corresponding composites are given by:

XK
t =




∑

k∈K̂t

x
ε−1
ε

tk





ε
ε−1

and XN
t =




∑

n∈N̂t

x
ε−1
ε

tn





ε
ε−1

(2)

In order to adopt an input, it must be customized at a cost that is specific to each product-input
pair. For example, customizing a light sensor for a car is different from customizing a light sensor
for an outdoor lamp, and both in turn are different from customizing a rear view camera for a car.
We denote this product-input specific customization cost by ct,k and ct,n for essential and network
inputs, respectively. Importantly, we assume that the customization cost is negligible for essential
inputs, so that ct,k = 0, ∀k ∈ Kt. This reflects our interpretation that a variety’s essential inputs
are fundamental parts whose integration is standardized, such as wheels or an engine for a car.15

15We build on this notion below when aggregating varieties into sectors.
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Because the input composites in (2) feature returns to the number of varieties, the optimal decision
for the producer of t is to adopt all essential inputs k ∈ Kt.16

On the other hand, adopting network inputs is subject to the customization cost ct,n > 0, ∀n ∈
Nt. These are calculated as ct,n = b · rt,n, where b > 0 and rt,n is uniformly distributed over the
unit interval. The total cost of adopting a subset N̂t of these inputs is given by

Ct =
∑

n∈N̂t

ct,n (3)

We assume that the customization cost is paid in units of t’s output, yt, in every period of pro-
duction.17 This ensures that our results are not driven by scale effects.18 We can now specify
the variety production function. The two input composites XK

t and XN
t enter in a Cobb-Douglas

fashion, in combination with labor, lt.19 For a given (annualized) input customization cost Ct, the
output of variety t is given by:

yt =
At

1 + Ct

(
XK

t

)α (
XN

t

)β
l1−α−β
t (4)

where At is the productivity draw of producer t. Note that Ct < 1 must hold, and that Ct can be
interpreted similar to a tax on output, used to cover the initial adoption cost.20

Optimization and Input Adoption

A variety producer t solves the cost minimization problem associated with (4), by choosing the set
of network inputs N̂t, as well as the quantity of each input. We begin by analyzing the latter. For
given sets Kt and N̂t, the optimal choice of input quantity xik and xin in the two aggregates in (2)

16To see this, note that in the symmetric case, XK
t = K̂

1
ε−1

t ·
(
K̂tx̄Kt

)
, where x̄Kt is the quantity used of each

essential input. Thus, the more essential inputs are adopted (higher K̂t), the larger is XK
t , for any given total amount

of essential inputs used (K̂tx̄Kt).
17Thus, Ct can be thought of as annualized customization cost, paid in units of output.
18In contrast, if C was a fixed cost, higher demand for a given variety would also lead it to adopt more inputs. This

would render the basic structure of our model untractable. In addition to ensuring tractability, this setup is also in line
with our technological interpretation that once a variety has chosen its inputs, these are stable over time – that is, a
variety is defined by its input use.

19Thus, the two input composites are gross complements. This assumption does not affect our qualitative results –
we could alternatively assume that the two composites are substitutes, or we could include all inputs in one aggregator.
The advantage of our formulation is that we can separate essential inputs and network inputs in a straightforward
fashion.

20The optimization problem described below ensures this condition as long as at least one network input n has an
associated customization cost ct,n < 1.
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yields the corresponding price indexes21

ΦK
t =

(
∑

k∈Kt

φ
1

1−ε

k

) 1
1−ε

and ΦN
t =




∑

n∈N̂t

φ
1

1−ε
n





1
1−ε

(5)

where φk and φn are the prices of essential and network inputs, respectively. Labor lt is also chosen
optimally, taking the wage w as given. The marginal cost of producing variety t is then

MCt =
1 + Ct

At

(
ΦK

t

α

)α(
ΦN

t

β

)β (
w

1− α− β

)1−α−β

(6)

This expression holds for a given set of adopted network inputs N̂ . Next, we obtain the optimal
set of network inputs, by collecting the terms in (6) that depend on this choice, Ct and ΦN

t , and
substituting from (3) and (5):

N̂∗
t = argmin

N̂t⊆Nt








1 +
∑

n∈N̂t

ct,n








∑

n∈N̂t

φ
1

1−ε
n





β
1−ε





(7)

If the set Nt has many elements, this is a complex combinatorial problem that must be solved
numerically. Note that for each potential input variety n in t’s network neighborhood, a lower price
φn makes adoption more likely. Thus, technological progress in variety production can raise the
rate of adoption, by lowering the input price. We will test this prediction in our empirical analysis.
In the following, we illustrate the adoption decision by focusing on the simplified symmetric case.

Symmetry and Illustration of the Adoption Decision

To simplify the analysis, we use the fact that our model implies – in expectation – symmetry across
varieties. First, let each variety have the same technology draw At = A and assume that demand
is such that the price of each variety is a constant markup over its marginal cost.22 In addition,
in expectation each variety uses the same number of essential inputs, mK , and it draws the same
number of potentially useful network inputs, mN . What remains to be shown for the symmetric
equilibrium is that each variety also adopts – in expectation – the same number of network inputs.

Adoption costs are also symmetric in expectations, but their realizations vary across the input
varieties in Nt. We can thus rank the mN network inputs in Nt by their adoption costs, such that

21We use the notation Kt rather than K̂t to underline that all essential inputs are adopted.
22This follows if we assume that all varieties are aggregated into a final good with elasticity of substitution ε. Then

both final and intermediate demand for all varieties imply the profit-maximizing markup ε/(ε− 1).
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ct,1 < ct,2 < ... < ct,mN . Because customization costs are uniformly distributed, the ordered
draws n = 1, ...,mN will lie (in expectation) on the line ct,n = b · n

mN
. Let m̂N ≤ mN denote

the number of adopted inputs (i.e., the size of the set N̂t). Then the total cost of customization is
given by

∑m̂N

n=1 ct,n = b
mN

m̂N (m̂N+1)
2 , which is increasing and convex in m̂N . In expectation, this

customization cost function is the same for each new variety t. Consequently, each new variety
is expected to adopt the same number of inputs from its network environment. In other words,
the indegree is the same for all varieties. Thus, in expectation our model features a symmetric
equilibrium with all new varieties facing the same marginal cost in (6) and therefore charging the
same price. Note, however, that variety producers use different sets of inputs. Thus, the outdegree
may be asymmetric – some varieties are more popular suppliers than others. Nevertheless, the total
demand for an input affects neither its pricing nor its own adoption of inputs. Consequently, in our
setup, symmetry of prices is compatible with asymmetry in the number of forward linkages.

Under symmetry of prices (φn = φ, ∀n), and given the above ranking of customization costs,
(7) simplifies to:

m̂∗
N = argmin

m̂N≤mN

{(
1

m̂N

) β
ε−1

+
b

2mN

m̂N(m̂N + 1)

(m̂N)
β

ε−1

}
φβ (8)

The first expression in (8) is decreasing in m̂N , while the second expression is increasing if β <

2(ε−1).23 This delivers the U-shape shown in Figure 5. To illustrate the intuition for this functional
form, the ranking of network inputs by their (randomly drawn) customization costs is crucial.
When few inputs are adopted (low m̂N ), customization costs of these low-ranked inputs are small,
and therefore the input variety effect à la Romer (1990) dominates. For higher m̂N , customization
costs for each additional adopted input are larger, outweighing the input variety effect. Thus,
production costs become increasing in m̂N . The optimal number of adopted network inputs, m̂∗

N ,
corresponds to the minimum of the U-shaped curve given by (8).

[Insert Figure 5 here]

Note that our analysis in the symmetric case endogenizes the probability pN of adopting net-
work inputs, which we took as given in (1). Each new variety draws mN network inputs, and
according to (8), it will adopt m̂∗

N of these. The likelihood of adoption is thus a-priori the same
for any network input in the set Nt, and it is given by pN = m̂∗

N/mN . Finally, because of price
symmetry, a variety producer j uses the same amount of each input variety i, conditional on this

23For example, suppose that the overall expenditure share for intermediate inputs is 0.5, and that half of these are
network inputs. Then ε > 1.125 will ensure that the second expression in (8) is decreasing in m̂N . As a comparison,
the average elasticity of substitution reported by Broda and Weinstein (2006) is 4.
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input being used (bij = 1). Thus, the corresponding value of the input purchase, vij , is propor-
tional to the binary variable bij . This becomes important below when we aggregate our model
to the sector level: our variety level predictions are derived for the unweighted directed network
(based on binary bij), while input-output data deliver a weighted (value-based) network. Due to
the proportionality, variety-level predictions hold at the sector level.

3.3 Sector Level Implications

The model of networked input adoption laid out above is defined at the variety level. Yet, data on
variety level input-output networks are not available. The closest data counterparts with a wide
coverage are for sector-level input-output networks. Thus, in order to render the underlying model
of network formation testable, we now explore its sectoral implications.

Aggregation of Varieties into Sectors

We start by defining how varieties are assigned to sectors in the context of our model. We employ
a principle of similarity of inputs. As a result, sectors are composed of varieties that share similar
production processes, i.e., varieties that rely on similar input bundles. This input-based approach
is also a guiding principle of actual sectoral classification systems like NAICS.24 To capture this
notion, we define a binary baseline vector µsj that defines a sector sj based on its inputs. This
can be thought of as a blueprint for the typical inputs used by varieties in sector sj . For example,
the car sector may be represented by a baseline vector µsj with unit entries in ‘glass windows’,
‘engine’, and ‘wheels’. The vector µsj can be thought of as the classification scheme for new
varieties. Each variety is then classified into the sector whose µsj has the maximum overlap with
the variety’s list of essential inputs.25 In other words, a variety’s essential inputs are compared to
the typical inputs used by all sectors in the economy, and it is then classified into the most similar
one. The following definition formalizes this principle:

Definition 1. (Definition of a Sector): At time t, a sectoral classification system is a partition of
the set of existent varieties into J sectors. Each sector sj , with j = 1, ..., J , is defined by a t-
dimensional binary vector, µsj , with a total of x ones and t−x zeros, with unit entries in the vector
being elected at random. Each existent variety is assigned to a sector by finding the sector sj that

24For example, the Bureau of Labor Statistics provides a detailed explanation of this production-based principle:
"Industries are classified on the basis of their production or supply function – establishments using similar raw material
inputs, capital equipment, and labor are classified in the same industry" (Murphy, 1998, p.44). This refers to the more
recent NAICS system. The previous SIC classification system used information on inputs employed but also took into
account the uses/demand for the good produced.

25This notion of overlap can be made formal by use of the Hamming distance between two binary vectors of the
same length. This distance gives the number of elements by which the two binary vectors differ. Thus, we classify
a given variety into the sector sj whose baseline vector µsj has the minimum Hamming distance to this variety’s
essential inputs.
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maximizes the overlap between that variety’s binary vector of essential inputs and the vector µsj .
Any new variety introduced at time t+ 1 is classified into a sector in the same way.

Note also that we are allowing for overlap among sectors, in that different sectors can share
some elements across their baseline vectors. For example, ‘tires’ can be represented in both the
bicycle and car sectors. Note that this definition induces a sectoral input-output network of dimen-
sion J × J , where nodes are now sectors and directed edges, asisj , represent intersectoral input
flows from sector si to sector sj . According to our definition, these directed edges reflect varieties
which have been classified into sector sj and source inputs from varieties classified into sector si.26

Sector-Level Predictions

We now turn to the evolution of the sector-level input-output network over time. At the variety
level, the key mechanism of network formation relied on a notion of network proximity: a new
variety is more likely to adopt inputs in its network neighborhood, as defined by the set of varieties
that supply inputs to the new variety’s essential inputs. We now show that such a mechanism is still
present under aggregation at the sectoral level. To see this, we first define a sector-level measure
of network proximity for any ordered pair of sectors for which there is no input supply relation at
time t. This definition exploits variety-level input flows from sector si to sector sj

Definition 2. (Sector-level Network Proximity): Take any ordered pair of sectors (sj ,si) such that
aij = 0 at time t. The network proximity of (sj, si) is defined as n(sj ,si) ≡ µ′

sjνsi where νsi is a
t×1 vector, where each entry νsi(v) gives the number of varieties from sector si that are sourced as
inputs by variety v, for v = 1, .., t. We say that sector sj is closer to si than j′ if n(sj ,si) > n(sj′ ,si).

This definition states that sector si is closer to sj if varieties from si are used more frequently
as inputs by varieties that define sector sj . That is, n(sj ,si) gives the number of varieties in sector
si that are sourced as inputs by varieties which appear in the baseline vector of sector sj.27 Next,
we use this definition to aggregate varieties to the sector level. A new variety t will be classified
into the sector sj whose baseline vector is most similar to t’s essential inputs. The sector-level
network proximity n(sj ,si) then tells us how closely we should expect t to be connected to inputs
from each sector si. Intuitively, if t is classified into j, it must have a relatively large number
of essential inputs that are also present in sj’s baseline vector µsj . Thus, t must also have many

26For a fixed number of sectors J , as t becomes large, eventually all sector pairs will exhibit non-zero flows asisj .
We study sector-level adoption, meaning that asisj goes from zero to positive. We thus implicitly assume that the time
t input-output network is sparse, i.e., that many asisj ’s are zero. In addition, note that economies with zero asisj can
be maintained even for large t if the sectoral classification system is expanded by raising J .

27Note that this proximity definition need not be symmetric, i.e., generically n(sj ,si) *= n(si,sj), as is standard for
network distance metrics in the context of directed graphs.
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input links in common with the varieties in µsj . This is the proximity dimension that n(sj ,si) ≡
µ′
sjνsi exploits. Given this definition, the following Proposition shows that the network proximity

mechanism underlying the variety level model is still present when we aggregate varieties into
sectors.

Proposition 2. Take any two sectors sj and sj′ that previously did not source inputs from sector
si, i.e., aij = aij′ = 0 at t− 1. Then if at time t− 1 sector sj is closer to si (i.e., n(sj ,si) > n(sj′ ,si)),
sj will be more likely to adopt an input from si at t.

We provide a formal proof in the appendix. Here, we briefly describe the intuition. First note
that any new input linkages at period t must be due to the new variety t; all pre-existing varieties do
not change their linkage structure. Whether t links sj and si depends on (i) whether t is classified
as an element of sector sj , and (ii) whether it then sources input(s) from sector si. The proof links
both steps by following the classification scheme for sectors described above: The new variety t

randomly draws a set of essential inputs. It is then classified into the sector sj that has the closest
overlap with these essential inputs. Thus, the fact that t is sorted into sector sj tells us that it
shares (in expectation) more essential inputs with varieties in sj than with varieties in any other
sector sj′ . This is criterion (i). Criterion (ii) then incorporates new link formation via the network
neighborhood of t’s essential inputs. If many of these link to sector si, t is more likely to source
from si.28 Finally, combining (i) and (ii), if t is classified into a sector sj that has many indirect
input linkages to si, t is expected to itself have such indirect linkages to si; and these in turn raise
the probability that t directly adopts inputs from si. Summing up, since a-priory t is equally likely
to ‘fall’ into any sector, the sector sj closest to si (among those that are not yet directly linked to
si) is most likely to establish a new link to si.

Having established that the key network proximity mechanism holds at the sectoral level, we
now characterize the size distribution of links. In particular, we are interested in understanding
whether our variety level model, when aggregated to the sectoral level, can generate the fat tailed
behavior of sectoral outdegrees emphasized in Acemoglu et al. (2012).

To do this, first note that the induced sectoral level network consists of weighted links across
sectors, reflecting the number of existing varieties at time t that are both: (i) classified in the
same sector sj and (ii) source as inputs varieties from a given sector si. Thus, sector-level input
flows asisj are given by asisj ≡

∑
i∈si
∑

j∈sj vij , where vij denotes the sales of input variety i to

28More generally, the new variety t can form links to inputs in sector si directly – drawing i ∈ si as an essential
input – or indirectly, via its network of essential inputs. Regarding the former, this initial draw is symmetric across all
existing inputs. Thus, it does not differentially affect link-formation across sectors. The proof therefore focuses on the
adoption via the network of essential inputs.
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product variety j. In turn, this implies that sector si’s total sales, i.e., its (weighted) outdegree, are
doutsi ≡

∑J
j=1 asisj . Having established this notation we can move on to the following proposition:

Proposition 3. If the variety-level outdegree distribution at time t is power law distributed, so is
the distribution of sectoral outdegrees.

In the following, we provide a sketch of the proof; for a formal proof see the Appendix. The
proof of Proposition 3 relies on the fact that the sum of a finite number of power law distributed
random variables is itself a power law random variable. It follows two steps. First, we show that
for a large number of varieties t relative to the number of sectors s, each sector at time t contains
the same number of varieties in expectations. We then sum across the number of varieties in each
sector to prove that the sectoral outdegree distribution is power law distributed.

First, from the proof of Proposition 2 recall that, ex-ante, the probability of any new variety
t being classified into a given sector is the same across sectors. This follows immediately from
the joint assumption that both the ideal varieties defining sectors and the set of essential inputs are
drawn uniformly at random from the set of existing varieties. Now note that, if this is the case,
the expected number of varieties classified into any given sector at time t is also the same across
sectors, and it is given by t

J , where J is the total number of sectors. If t is much larger than J , the
law of large numbers implies that the actual number of varieties classified in each sector at time t

is the same across sectors.
Second, under the assumption of price symmetry, the sectoral (weighted) outdegree is propor-

tional to the number of varieties to which a given sector si supplies inputs at time t, where the
constant of proportionality is given by the price φ.29 Given the observation that for t >> J , the
number of varieties in any sector is given by t

J , a sector’s outdegree is simply given by the sum
of the variety level outdegree across t

J varieties. Thus, under the assumption that at time t the
variety level outdegree distribution is power law distributed, a sector’s weighted outdegree is given
by the (finite) sum of t

J power law distributed variables. Since power law variables are stable upon
aggregation, it is then immediate that a sector’s outdegree is itself power law distributed with the
same tail exponent as the variety-level outdegree distribution (for a formal proof see Jessen and
Mikosch, 2006, Lemma 3.1).

29The weighted outdegree refers to values of input flows, while our variety-level prediction are based on binary
(unweighted) input links. Because of price symmetry, product variety j spends the same amount for each input variety
i that it uses (see the discussion at the end of Section 3.2). Thus, the overall value of input varieties sold (outdegree)
or used (indegree) by a sector is proportional to the underlying number of input varieties.
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4 Empirical Framework and Data
In this section, we take the model’s predictions to the data. While the core mechanism works at
the variety level, our aggregation results in Proposition 3 allow us to employ sector level data.
We use US input-output benchmark tables between 1967 and 2002 (at the 4 digit level) and track
input adoption over time. We then ask whether initial network proximity – measured by existing
input linkages – predicts subsequent input adoption. We proceed as follows: we first introduce our
measure of network proximity. Second, we describe our data and discuss the definition of adoption
in the context of input-output tables. Finally, we present empirical results analyzing both the time
to adoption after 1967 and the likelihood of adoption in any given benchmark year. Throughout
this section, we use j to denote the input-using (adopting) sector, and i for the input-producing
sector.

4.1 Network Proximity

When aggregated to the sectoral level, our model predicts that sector j is the more likely to adopt
input i the more closely j is already related to i via indirect network connections. In the following,
we use a standard measure of network distance that captures this notion. It builds on the hypothesis
that sectors trading inputs more intensively are ‘closer’ in the technology landscape.30 Crucially,
the distance measure can also be calculated if there is no direct path linking two sectors – in this
case we compute the shortest path via intermediate steps.

Formally, we define a direct-requirements input-output matrix Γ where each element Γij rep-
resents the cost share of input i in the total intermediate input expenditures of sector j. If Γij is
non-zero, we define the distance from j to i as dij = 1

Γij
. Thus, the more important input i is in the

production of j, the closer is dij to 1 (the minimum possible distance between two sectors). The
case Γij > 0 holds if a direct connection between i and j exists, i.e., if j has already adopted i.
However, since we study adoption, the relevant starting point is Γij = 0.

Provided that j indirectly sources inputs from i – via its network of suppliers – we define the
distance dij as the sum of the distances along the shortest path that connects i and j. For example,
if j uses input k, which in turn sources inputs from i, then dij = dik + dkj .31 If there exist more

30Note that our model makes two simplifying assumptions. First, local search occurs only at the level of two degrees
of separation (i.e., across direct neighbors of ‘parents’). Second, the model emphasizes the number of (indirect) routes,
abstracting from the intensity of linkages. In the data, however, adoptions can occur between sectors that are initially
more than two nodes apart. Also, the intensity of linkages (input shares) is not symmetric in the data. Our empirical
measure of distance captures both these features.

31See, for example, Ahuja, Magnanti, and Orlin (1993) or Jackson (2008) for a review of distance and shortest path
measures in networks. Also note that, in principle, the distance measure can also be calculated in the opposite direction
– looking for the shortest path from inputs i to sector j, dji. Our use of dij reflects the notion of distance implied
by our model, where the new variety t purchases essential inputs k. The extent to which the latter are connected to i
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than one such paths linking j and i, then dij is the minimum distance path, i.e. the directed path
between the two nodes such that the sum of the weights of its constituent edges is minimized. This
shortest path algorithm yields distances between any two sectors in the economy.

4.2 Data and Main Variables

In the following, we describe our dataset and the derivation of our main variables. We use y to
denote the time dimension, in order to avoid confusion with the variety index t above.

Input-Output Data

We calculate the measure of network distance dij , using the input-output the Bureau of Economic
Analysis (BEA) Benchmark Input-Output Use Tables. The BEA provides U.S. input-output (I-O)
data at the 4-digit SIC level in 5-year periods (benchmark years) between 1967 and 2002. Follow-
ing Carvalho (2010) and Acemoglu et al. (2012), we view the input-output matrix as a network
of input-flows, where each sector is a node, and each input-supply relationship is a (weighted)
directed edge linking two nodes.

For some sectors, the level of aggregation or coverage changes over time. We account for this
by aggregating sectors, and match the resulting I-O panel to the Annual Survey of Manufacturing
(ASM) 1987 SIC classification.32 In 1997, the BEA changed the I-O classification from SIC to
NAICS. While the Census Bureau provides a correspondence, the match is imperfect for many
sectors at the 4-digit level. To make sectors comparable beyond the last SIC-based I-O table in
1992, we employ the following procedure: (i) if several NAICS sectors match a single SIC sector,
the former are aggregated; (ii) if several SIC sectors were merged into one NAICS sector in 1997,
industry-commodity specific shares from the 1992 I-O table are used to disaggregate NAICS into
the corresponding SIC components.33 The switch to NAICS also reclassified products into new
sectors, and the correspondence assigns these in part to existing SIC sectors. This creates events
that look like adoption in 1997.34 To avoid that this affects our results, we exclude new linkages
formed in 1997 in our baseline analysis. Nevertheless, our robustness analysis shows that most
results go through even if we add the noisy 1997 data.

Overall, our approach to making sectors comparable yields a coherent set of 358 sectors for
all I-O benchmark years between 1967 and 2002. For each sector-input pair, we calculate our

determines the likelihood of t adopting i.
32For a detailed description of this methodology see Voigtländer (2013). One example are paper mills (SIC 2621)

and paperboard mills (SIC 2631). Both are reported separately in the I-O data before 1987, but aggregated to one
sector thereafter. We treat these data as one sector, ‘paper and paperboard mills’ over the full sample period.

33The original NAICS-SIC correspondence is available at http://www.census.gov/epcd/www/naicstab.htm. The ex-
tended correspondence that includes industry-commodity specific weights is available upon request from the authors.

34The 2002 I-O data, on the other hand, are directly comparable with their 1997 counterpart, so that we can compute
adoption events in this year.
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central explanatory variable: network distance in 1967, d67ij . To identify the minimum distance
path between i-j pairs, we use a standard Dijkstra’s shortest path algorithm (see for example Ahuja
et al., 1993).

Input Adoption and Time to Adopt

We define input adoption as an event in a given year y, where a sector j begins to use an input i.
We say that j has adopted i in y if it has not used the input prior to year y, and begins to purchase
a positive amount of the input in y. Formally, the indicator variable for adoption in year y is thus
defined as:

Aij(y) =





1, if Γij(y) > 0 and Γij(y′) = 0, ∀y′ < y

0, otherwise
(9)

Note that this definition yields Aij(y) = 0 in the cases of pre-existing links and when an input
connection between i and j existed in the past but disappears in y (broken links).

We compute two definitions of adoption, a broad (Abr
ij ) and a narrow one (Anar

ij ), using 5-year
intervals corresponding to IO benchmark years. Abr

ij requires that i has not been used in y − 5,
and is used in y. Therefore, the broad definition potentially also captures cases where inputs are
adopted and then dropped again.35 Many of these short-term adoption events are probably noise,
but some may also reflect actual attempts to integrate new inputs. The narrow definition excludes
such events, requiring that i be used for at least 10 years after adoption, i.e., in y + 5 and y + 10.
This comes at the cost of ‘losing’ adoptions during the last two benchmark years in our sample.
We use the broad definition as our main measure and document the robustness of our results using
the narrow measure.

Next, we define the time that it takes a given sector to adopt an input:

Tij = yAdopt − 1967 , (10)

where yAdopt is the year in which sector j adopted input i; formally, Aij(yAdopt) = 1. Note that this
measure is only defined if i) there was no input link between i and j in 1967 (Γij(1967) = 0), and
ii) adoption occurred before the end of our sample in 2002. Altogether, there are 128,164 i-j pairs
in our dataset. Out of these, 16,684, have Γij > 0 in 1967, which leaves 111,480 possible adoption
events. During the subsequent four decades until 2002, we observe 21,161 adoptions in our broad
measure and 8,783 in the narrow one.36

35However, multiple adoption events are excluded by our definition of Aij(y) = 0.
36As discussed above, this excludes 1997 to avoid that adoption events reflect the change from SIC to NAICS in

that year.
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Sectoral Characteristics

We use sector-level data from the NBER-CES Manufacturing Industry Database, which provides
total factor productivity (TFP), output price deflators, wages, value of shipments, and capital stock
at the 4-digit SIC level over the period 1958-2005. These data are collected from various years
of the Annual Survey of Manufactures (ASM).37 We use these data to derive control variables for
input producing and adopting sectors. Most importantly, we calculate changes in TFP for input
producing sectors, +TFPi. We use this to test the prediction that sectors with rapid productivity
growth are more likely to be adopted. Since this variable may be endogenous to adoption, we also
compute the changes in TFP before 1967, starting from the earliest year for which data is available,
1958. This variable, +TFP 58−67, strongly predicts TFP growth after 1967.

5 Empirical Results
In this section, we test our model’s main prediction that closer network proximity raises the likeli-
hood of subsequent input adoption. We approach this question in two ways. First, we use a panel
approach to show that the probability of adoption of input i by sector j in year y depends on tech-
nological distance dij at y − 5 (i.e., in the previous I-O benchmark year). Second, we show that in
the cross-section of sectoral i-j pairs, adoption tends to happen earlier for smaller initial network
distance d67ij . We also show that, in line with our model, more rapid technological progress in an
input producing sector raises the odds of adoption.

5.1 Panel Estimation: Probability of Adoption

Does closer network proximity raise the likelihood of input adoption? In the following, we exam-
ine this question in the context of a panel in 5-year intervals between 1967 and 2002. For each I-O
benchmark year y, we compute our distance measures dij(y) as described in section 4.2. For all
i-j pairs that were not directly connected in any year prior to y, we ask whether the probability of
adopting in year y depends on our lagged network distance measure dij(y − 5):

Prob (Aij(y) = 1) = g (ln dij(y − 5), Xi, Xj) , (11)

where Xi (Xj) are additional controls for the input-producing (adopting) sector, such as changes in
total factor productivity or fixed effects. We use log distance to avoid that outliers affect our results
disproportionately. The dependent variable in each regression is the indicator Aij(y) as defined
in (9).38 We estimate different functional forms g(·). Given the binary nature of the dependent

37See Bartelsman and Grey (1996) for a documentation.
38Note that this definition excludes all (directed) i-j pairs with input flows prior to y. This also implies that upon

input adoption in y, the corresponding i-j pair is excluded from the sample in all years y′ > y.
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variable, our main specification is the probit model. We also estimate a linear probability model
and a hazard model, finding very similar results.

Main Results

We begin by reporting results for our baseline specification – the Probit model – in columns 1 and
2 of Table 1. The coefficient on network distance is highly significant and negative; thus, lower
initial network distance makes adoption more likely. In order to interpret the magnitude of coef-
ficients, we also report standardized coefficients in square brackets for our two main explanatory
variables: network distance and TFP in input producing sectors. They show how a one standard
deviation increase in the respective explanatory variable affects the probability of adoption. With a
standardized coefficient of -2.34 percentage points, the effect of network distance is economically
significant.39 The coefficient remains unchanged in column 2, which controls for TFP growth over
the previous five years in both the input-producing (i) and adopting sector (j). The coefficient on
+TFPi is positive and highly significant, but the magnitude is markedly smaller – with a standard-
ized effect of 0.07 percentage points for an average i-j pair. The differences in magnitude suggests
that network proximity proximity is the quantitatively more important driver of pair-specific input
adoption. Finally, sectors j that see more rapid TFP growth (+TFPj) are less likely to adopt
new inputs. This is compatible with Helpman and Trajtenberg (1994), who argue that the actual
productivity benefits from a change in production methods may materialize later, so that periods
of technology adoption are associated with a temporary slowdown in productivity. However, the
effect is quantitatively minuscule, with a standardized coefficient of 0.05 percentage points (not
reported in the table).40

In columns 3 and 4 in Table 1 we show that our results also hold in a simple linear probability
model (OLS). According to the estimate in column 3, a one std increase of dij(y − 5) raises
the probability of adoption throughout the following five years by 1.45 percentage points. The
coefficient remains unchanged in column 4, which controls for TFP growth over the previous five
years. TFP changes in input producing and adopting sectors have the same sign and significance
as in the Probit model, and both remain quantitatively small.

[Insert Table 1 here]

In columns 5 and 6 we estimate a proportional hazard model. The hazard ratio for distance
(0.595) implies that as dij(y − 5) increases by one unit, the rate of adoption in any given period

39The marginal effect implied by the Probit coefficient in column 1 is -0.0147, and the standard deviation of network
distance is 1.60.

40Our model does not predict a sign for the coefficient on TFP growth in the adopting sector, +TFPj . Empirically,
the coefficient is not robust and changes signs in the specifications below. For example, in the Hazard regressions,
higher +TFPj is associated with faster adoption.
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decreases by 40.5%. Alternatively, a one std increase in dij(y − 5) reduces the adoption rate
by 56.4%. The corresponding standardized relative hazard coefficient is -4.2 percentage points,
implying that over the sample period, a one standard deviation increase in network distance is
associated with a -4.2 pp. lower probability of adoption. TFP growth in both input producing
and adopting sectors have hazard ratios above 1, indicating that TFP growth is associated with
faster adoption. While this confirms the Probit and OLS results for input producing sectors, it
contradicts them for TFP growth in adopting sectors. However, the magnitude of both effects
remains small, with standardized coefficients in the range of 0.1%. In sum, the hazard model
confirms the economically and statistically significant (negative) effect of network distance on the
odds of input adoption, as well as the quantitatively small positive effect of TFP growth in input
producing sectors.

Additional controls, sector fixed effects, and robustness

In Table 2 we present alternative specifications and include additional controls, using Probit re-
gressions. Columns 1-3 use our broad measure of input adoption; columns 4-6 use the narrow one,
which requires new i-j links to persist for 15 years in order to be counted as adoption. In addition
to the broad/narrow categories, the measures of network distance also vary in two additional di-
mensions: first, columns 2 and 4 exclude input links that are formed between 4-digit sectors within
the same 2-digit industry. This reduces the number of adoption events by 8%.41 Thus, most input
adoptions occur across 2-digit sectors. Second, columns 3 and 6 use network distance measured
at the beginning of the sample period, in 1967. All regressions in Table 2 control for the level
of TFP and employment in adopting (j) and input-producing (i) sectors. Controlling for sector
size (employment) captures an important potential confounding factor – that larger sectors may be
mechanically more connected and more likely to adopt.

[Insert Table 2 here]

We find that neither the additional controls nor the variations in the network distance measure
changes our results. Throughout the specifications, network distance has a strong negative effect on
adoption probabilities. For lagged distance, this effect is very similar in magnitude to the results
in Table 1 – a one std decline in dij(y − 5) raises the odds of adoption in y by 1.9 percentage
points. When using distance in 1967 (columns 3 and 6), a one std reduction in d67ij (0.65) raises the
probability of adoption by approximately 1.2 percentage points. The somewhat smaller estimate
is probably due to the fact that d67ij becomes an increasingly more imprecise measure towards the

41For the broad (narrow) measure, we count 21,161 (8,783) input adoption events in our sample (excluding 1997),
and this number declines to 19,498 (8,111) when excluding adoption events within 2-digit industries.
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end of our sample period. In line with our model, inputs that are produced more efficiently (higher
TFPi) are more likely to be adopted. In our baseline specification (col 1), a one std increase in
TFPi raises adoption probability by 0.6 percentage points.42 On the other hand, the coefficients
on efficiency of the adopting sector have ambiguous signs and are mostly insignificant. Finally,
sector size (measured by employment) is associated with both higher probability of adopting and
being adopted.

Is the observed effect of network distance on the adoption rate merely driven by unobserved
sectoral characteristics? For example, more ‘dynamic’ sectors may be more central in the input-
output network and also adopt new inputs more frequently. In Table 3 we address this issue by
including fixed effects for input-producing and input-using sectors, in addition to benchmark year
dummies. Both significance and magnitude of the coefficient on network distance are unchanged.
The same is true for the coefficient on TFP in input producing sectors (TFPi).43 In the presence
of fixed effects, the positive coefficient on TFPi means that adoption of an input is more likely
in periods when its TFP is high, relative to its own average and relative to the average across all
other sectors in the same year. In other words, adoption is more likely in periods when the input-
producing sector performs particularly well. As before, TFP in adopting sectors shows now clear
relationship with the likelihood of input adoption. Finally, the relationship between input adoption
and employment is now ambiguous for input producing sectors (i), and less robust than above for
adopting sectors (j).

[Insert Table 3 here]

5.2 Cross-Sectional Estimation: Time to Adoption

In the following, we analyze how initial network distance in 1967 affects the time that it takes until
a sector j adopts an input i, Tij . This is conditional on adoption being observed by the end of our
sample period in 2002. We run the following regression:

Tij = β · d67ij + γ ·+Efficiencyi + δi + ηj + εij , (12)

42This confirms our previous finding that network proximity is the dominant effect. The difference in magnitudes is
even more striking for the narrow definition of adoption: the results in col 4 imply that a one std decrease in dij(y−5)
(increase in TFPi) raises the odds of adoption by 1.8 (0.2) percentage points. Short-run changes in TFP (+5TFPi)
do not have a clear additional impact on adoption – the corresponding coefficient signs are ambiguous. And even for
the narrow definition of adoption, where the coefficients are positive and significant, the magnitude is small (with a
one std increase in +5TFPi leading to a rise in adoption probability by 0.3 p.p.).

43The implied marginal effects are also very similar to those documented above: a one std decrease in dij(y − 5)
(increase in TFPi) raises the odds of adoption by 1.9 (0.5) percentage points
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where d67ij is network distance in 1967, and +Efficiencyi denotes the (average annual) change
in efficiency in the input producing sector.44 To proxy for efficiency, we use TFP changes and
changes in input prices between 1967 and the year of adoption, as well as pre-1967 TFP changes
in the input producing sectors. Finally, δi and δj are input producing and adopting sector fixed
effects, respectively.

Table 4 reports the results, using OLS regressions. We use fixed effects for input adopting
sectors (δj) throughout, capturing the large degree of heterogeneity across sectors. As for input
producing sector fixed effects, there is a tradeoff. On the one hand, some sectors are more central
in the network than others, which we expect to raise their likelihood of being adopted. Using fixed
effects δi will absorb this variation, which may attenuate our results. On the other hand, there are
many other potential sector-specific features that may confound our results; including δi controls
for those that are time-invariant. In practice, our results are robust to either specification: col 1 does
not include δi, while all other specifications in Table 4 do. The coefficient on network distance is
actually stronger when including δi, which is probably due to the substantially improved fit of
the regression (the R2 increases from 0.19 in col 1 to 0.73 in col 2). Columns 3 and 4 show that
our results are also robust to excluding adoptions that occurred in 1972, as well as to including
1997 (when the IO tables shifted from SIC to NAICS). Finally, excluding adoptions that occurred
within 2-digit industries (col 5) and using the narrow definition of adoption (col 6) also yields
similar estimates.

In terms of magnitude, a one std decrease in d67ij reduces the time to adopt by 2.14 years, while
a one std increase in +TFPi(1967−yadopt) reduces time to adopt by 2.30 years. In contrast to our
results for adoption probabilities in 5-year intervals, the cross-sectional results on time to adopt
exploit long-term changes in TFP. These turn out to be a quantitatively meaningful predictor. To
put the estimates in context, the average time to adopt (conditional on adoption occurring prior
to 2002) in our sample is 16.7 years. Thus, both network distance and TFP growth in i have
standardized effects of approximately 15% reduction in adoption time.

[Insert Table 4 here]

Table 5 provides additional results for time to adoption. In col 1 we control for the change in
input prices between 1967 and the year of adoption. As expected, the less prices rise (or the faster
they decline), the shorter is the time to adoption. The standardized effect is 4.0 years, which is
stronger than the one for TFP changes. Next, in col 2 we use TFP growth prior to 1967. Focusing
on historical efficiency growth in i addresses the possibility of reverse causality, i.e., that firms

44By using average annual changes, we avoid that later adoption is mechanically associated with higher efficiency
gains.
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in sector i may anticipate the adoption of i and thus innovate, rather the other way around. The
coefficient on +TFPi(1958 − 67) is highly significant but muted, with a standardized effect of
-0.27 years. To obtain a coefficient estimate that can be more readily compared with our baseline
results, and at the same time address the possibility of reverse causality, we employ a 2-stage least
square approach. We use pre-1967 TFP growth to predict TFP growth between 1967 and the year
of adoption.45 The first stage has very strong predictive power, with an F-statistic above 800. The
second stage results are shown in col 3: output from sectors that see faster TFP growth is adopted
significantly faster by other sectors, with a standardized coefficient of -3.9.

[Insert Table 5 here]

In columns 4-6 we add input producer fixed effects. Col 4 shows the results for input price
changes, and col 5 also adds TFP changes.46 Both are highly significant and have the expected
sign. The input price effect is quantitatively stronger, with a standardized coefficient of 5.40,
as compared to -2.70 for TFP. This is in line with our model, where input cost is a first-order
determined of adoption. Finally, in col 6 shows that the input price effect also holds for our
narrow definition of adoption. Throughout all specifications in Table 5, network distance in 1967
is strongly associated with a shorter time to adoption, with a standardized effect of approximately
2 years.

6 Conclusion
Input-output linkages have important effects on macroeconomic outcomes. By connecting oth-
erwise independent sectors, these linkages propagate sectoral shocks; if some sectors are promi-
nently linked in the network, idiosyncratic shocks can create aggregate fluctuations (Acemoglu
et al., 2012). Intersectoral linkages can also rationalize large productivity differences across coun-
tries by amplifying idiosyncratic sectoral distortions (Ciccone, 2002; Jones, 2013). While typically
observed at the sectoral level, input-output linkages reflect the flow of products between individ-
ual producers, and thus ultimately the underlying technology at the product level. Studying the
evolution of the input-output structure is therefore at the heart of technological progress.

We study the mechanism of input link formation both theoretically and empirically. We model
the evolution of links at the product variety level in a two-step process, where potentially useful
inputs are first identified, and then some of them are adopted. Each variety is characterized by
a set of essential inputs, and these are in turn connected to additional products via input-output

45Note that this approach is only feasible if we do not use input producer fixed effects δi.
46Price and TFP changes are strongly negatively correlated, with a coefficient of -1.61 (standard error 0.036) after

including fixed effects δi and δj .
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linkages. We refer to this as the network neighborhood of a new variety. In a first step, a new
variety producer identifies potential inputs from its network neighborhood. In the second step,
actual adoption is driven by a tradeoff between returns to a larger input portfolio à la Romer (1990),
and input-specific customization costs. Modeling both the essential inputs and customization costs
as random draws, we can build on models of social networks in the spirit of Jackson and Rogers
(2007) to study the evolution of links across varieties. We then show that aggregation of varieties
into sectors – based on actual rules applied in the construction of U.S. input-output tables – delivers
two important predictions. First, the distribution of the sector-level outdegree (forward linkages)
follows a power law. Second, input adoption is more likely across pairs of sectors that are initially
closer in the input-output network. While the power law is a well-documented feature of the input-
output network (Acemoglu et al., 2012), we provide novel evidence for the second prediction of
our model.

We use detailed US I-O tables at the 4-digit level between 1967 and 2002 to construct a mea-
sure of network distance. We provide strong evidence that closer network proximity raises the
likelihood of subsequent input adoption. This effect is economically important, with a one-std in-
crease in network distance lowering adoption probability by about one third. One obvious concern
is that network proximity merely reflects the fact that input-output linkages are clustered around
the diagonal, i.e., that sectors tend to use their own output, or output of sectors with similar clas-
sification codes. To alleviate this concern, we show that our results are equally strong when we
restrict attention to the formation of links outside of 2-digit sectors – i.e., far away from the di-
agonal. We also shed light on the role of adoption costs of inputs. As a proxy, we use the TFP
growth of input-producing sectors. This reflects the idea that faster growth in a sector is typically
associated with product innovation. In line with our model’s prediction, we show that more rapid
technological progress in an input-producing sector raises the probability of its adoption.

Our theoretical and empirical results have important implications for the emergence of central
nodes – or General Purpose Technologies – in the input-output network. New products that are
used by centrally positioned sectors are themselves more likely to evolve into central positions.
This feature differentiates our contribution from previous models on the rise of GPTs, where new
technologies are a-priori designated to become GPTs (c.f. Helpman and Trajtenberg, 1998). In
contrast, in our framework, only a fraction of new varieties develop into central positions. We
abstract from scale effects in order to focus on the network dimension of our model. However,
this extension may provide interesting implications for economic growth: since product demand
is a major driver of innovation in endogenous growth models, input adoption will foster growth
by raising the effective market size. This feedback mechanism may accelerate the evolution of
central technologies, by raising their attractiveness as inputs. The same mechanism may be a
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driver of structural change, by creating asymmetries in productivity growth across sectors (Ngai
and Pissarides, 2007).
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APPENDIX

Proof of Proposition 2

Proof. We first derive the probability that the next variety to be classified into any sector sj sources
as an input – indirectly, through its essential inputs – a given individual variety from sector si.
Recall from Definition 1 that µsj is the baseline vector that defines sector sj . For example, for
a car these may be wheels, an engine, and a body. We will refer to an "ideal variety for sector
sj" as a variety that uses exactly the essential inputs in µsj . Next, let isj(≤ x) be the number of
positive entries in vector µsj which in turn use variety i as an input.47 Additionally, let ksj be the
expected overlap between the next variety to be classified into sector sj and the vector µsj , i.e., the
expected number of varieties that t has in common with the "ideal variety" for sector sj . Then the
probability that the new variety in sector sj sources from i via its parents is:

pN

(
ksj

isj
xm

+
(
mK − ksj

) douti (t)

t

)
mN

mKm
(13)

where m = pKmK + pNmN is the expected indegree for each variety (i.e., the expected number
of inputs). Since t draws mK essential inputs, there are overall mKm inputs in its network neigh-
borhood. Given that t draws mN varieties from this network, the term mN

mKm gives the probability
that it sources any given input via its network of essential inputs. Next, the term in parentheses
in (13) gives the probability that a given essential input sources from variety i. This breaks down
into two parts. The first term in the parentheses accounts for the possibility that i may be in the
network neighborhood of those essential inputs that classify t into sector sj (i.e., inputs in the set
µsj ). The term gives the probability that t will source from i, conditional on t being classified into
sector sj and sharing, in expectation, ksj essential inputs with the ideal variety defining sector sj .
The term

isj
xm gives the probability of drawing i as a network input via these ideal varieties. In

expectation, the new variety will have ksj such draws. The second term accounts for the fact that t
may also adopt input i via essential inputs that are not in the set µsj , i.e., are not used to classify t

as belonging to sj . This term gives the probability of drawing i as an input via the network, given
that mK − ksj essential inputs are expected to be drawn uniformly at random from the population.
Finally, pN is the probability that input i is actually adopted by the new variety given that it has
been discovered via its essential parents.

Now, according to our definition, each sector is a partition of the set of existent varieties. Hence,
the probability that sector sj starts sourcing from sector si at t, conditional on not having done so
till t − 1 is the probability that the new variety t selects as a network input any given variety in

47In other words, isj (≤ x) is the number of links that lead from the essential varieties defining sector j to variety i.
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sector si. This is obtained by summing the above expression over all varieties classified in sector
si:

∑

i′∈si

pN

(
ksj

i′sj
xm

+
(
mK − ksj

) douti′ (t)

t

)
mN

mKm

= pN

(
ksj
∑

i′∈si

i′sj
xm

+
(
mK − ksj

)∑

i′∈si

douti′ (t)

t

)
mN

mKm

Finally, note that ksj = k for all sectors j, i.e., the expected overlap of the new variety t with any
sector’s ‘ideal’ list is the same across all sectors. This is immediate from the joint assumption that
both ideal varieties defining a sector and the set of essential parents drawn by the new variety are
selected uniformly at random from the set of t− 1 existing varieties. Hence, the expression above
simplifies to:

pN

(
k
∑

i′∈si

i′sj
xm

+ (mK − k)
∑

i′∈si

douti′ (t)

t

)
mN

mKm

For any two sectors, j and j′, this expression will only differ in the term
∑

i′∈si
i′sj
xm . Hence if

∑
i′∈si i

′
sj >

∑
i′∈si i

′
sj′

, then j is more likely to adopt a variety in sector i than j′. Now
∑

i′∈si i
′
sj =

µ′
sjνsi ≡ n(sj ,si). Thus, if sj is closer to si than sj′ at time t− 1, then j is more likely to adopt from

i at time t, as claimed in the proposition.

Proof of Proposition 3

TBD – see sketch in the text.
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m̂Nm̂∗

N

Figure 5: Optimal choice of network input adoption

Notes: The figure illustrates the optimal choice of input adoption. The x-axis shows the number of adopted network
inputs, m̂N . These are ranked by their customization cost as explained in Section 3.2. The y-axis shows the term from
equation (8) that is proportional to marginal production cost, and that an input adopter seeks to minimize. For small
m̂N , the input variety effect à la Romer (1990) dominates, so that production costs are decreasing if more inputs are
adopted. For higher m̂N , customization costs for each additional adopted input are also high, outweighing the input
variety effect. Thus, production cost become increasing in m̂N . The optimal number of adopted network inputs is
denoted by m̂∗

N .
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TABLES

Table 1: Panel on input adoption: Baseline results

Dep. Var.: Dummy for adoption of input i by sector j in year y

(1) (2) (3) (4) (5) (6)
Estimation Probit Probit OLS OLS Hazard Hazard

Distance dij(y − 5) -0.188∗∗∗ -0.188∗∗∗ -0.009∗∗∗ -0.003∗∗∗ -0..595∗∗∗ -0.595∗∗∗

(0.003) (0.003) (0.000) (0.000) (0.004) (0.004)
[-2.34%] [-2.34%] [-1.45%] [-1.45%] [-4.14%] [-4.20%]

+5TFPi 0.113∗∗∗ 0.010∗∗∗ 1.506∗∗∗

(0.044) (0.001) (0.128)
[0.07%] [0.12%] [0.16%]

+5TFPj -0.095∗∗ 0.005∗∗∗ 1.208∗∗

(0.042) (0.001) (0.0985)
Observations 577,498 577,498 577,498 564,327 577,498 577,498

Notes: The dependent variable is a dummy that takes on value 1 if sector j adopted input i in a given year y between
1972 and 2002. Adoption is defined in Section 4.2; we use the broad definition throughout in this table. The table
excludes adoptions occurring in 1997 because of the transition from SIC to NAICS classification in that year. The
main explanatory variable is network distance of input i from sector j in the previous I-O benchmark year (i.e., with a
5-year lag), as described in Section 4.1. +TFP denotes the change in total factor productivity over the previous five
years in i and j.
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Table 2: Additional panel results on input adoption

Dep. Var.: Dummy for adoption of input i by sector j in year y

(1) (2) (3) (4) (5) (6)
Links excluded‡ 2-digit 2-digit

Broad definition of adoption Narrow definition of adoption
Distance dij(y − 5) -0.161∗∗∗ -0.158∗∗∗ -0.281∗∗∗ -0.276∗∗∗

(0.003) (0.004) (0.007) (0.007)
[-1.87%] [-1.79%] [-1.75%] [-1.68%]

Distance in 1967, d67ij -0.318∗∗∗ -0.396∗∗∗

(0.007) (0.009)
[-1.22%] [-0.92%]

TFPi 0.228∗∗∗ 0.225∗∗∗ 0.013 0.141∗∗∗ 0.131∗∗∗ 0.050∗

(0.021) (0.021) (0.023) (0.025) (0.026) (0.028)
[0.25%] [0.24%] [0.01%] [0.08%] [0.07%] [0.03%]

TFPj -0.040∗ -0.040∗ -0.011 0.011 0.009 0.031
(0.021) (0.022) (0.025) (0.029) (0.030) (0.031)

+5TFPi -0.100∗∗ -0.068 0.129∗∗ 1.073∗∗∗ 1.179∗∗∗ 1.315∗∗∗

(0.045) (0.047) (0.053) (0.067) (0.067) (0.066)
+5TFPj -0.033 -0.037 0.006 0.054 0.087 0.063

(0.046) (0.048) (0.056) (0.072) (0.076) (0.084)
ln(emp)i 0.123∗∗∗ 0.130∗∗∗ 0.071∗∗∗ 0.176∗∗∗ 0.187∗∗∗ 0.136∗∗∗

(0.003) (0.003) (0.004) (0.005) (0.005) (0.005)
ln(emp)j 0.088∗∗∗ 0.092∗∗∗ 0.075∗∗∗ 0.158∗∗∗ 0.163∗∗∗ 0.175∗∗∗

(0.003) (0.003) (0.003) (0.004) (0.004) (0.005)
Year FE ! ! ! ! ! !
Observations 570,369 539,235 463,007 478,207 452,139 397,647

Notes: All regressions are estimated by Probit. The dependent variable is a dummy that takes on value 1 if sector j
adopts input i in a given year y between 1972 and 2002. Both i and j are observed at the 4-digit SIC level, and the
panel extends over the period 1967-2002 in 5-year intervals. Adoption is defined in Section 4.2; columns 1-3 use the
broad measure, and columns 4-6 use the narrow measure. The latter requires new i-j links to remain intact for at least
15 years in order to qualify as adoption. The table excludes adoptions occurring in 1997 because of the transition
from SIC to NAICS classification in that year. The main explanatory variable is network distance of input i from
sector j in the previous I-O benchmark year (i.e., with a 5-year lag), as described in Section 4.1. Columns 3 and 6
use the distance measured in 1967. +5TFP denotes the change in total factor productivity in the 5 years prior to
each benchmark year (y), and TFP is the level in year y. The number of employees in the sector is denoted by emp.
Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in
[square brackets] are standardized coefficients, reflecting the change in adoption probability (over a 5-year interval)
due to a one standard deviation increase in the explanatory variable.
‡ Columns 2 and 5 exclude all i-j pairs that belong to the same 2-digit industry.
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Table 3: Robustness checks – panel estimation

Dep. Var.: Dummy for adoption of input i by sector j; Probit estimation

(1) (2) (3) (4) (5) (6) (7) (8)
Years excluded 1997 none 1972,97 1972,97 1997 none 1972,97 1972,97
Links excluded‡ 2-digit 2-digit

Broad definition of adoption Narrow definition of adoption
PANEL A: All input relationships

Distance dij(y − 5) -0.197∗∗∗ -0.137∗∗∗ -0.146∗∗∗ -0.139∗∗∗ -0.367∗∗∗ -0.367∗∗∗ -0.356∗∗∗ -0.352∗∗∗

(0.010) (0.006) (0.011) (0.012) (0.020) (0.020) (0.030) (0.033)
[-1.55%] [-1.53%] [-1.04%] [-0.95%] [-1.21%] [-1.21%] [-1.03%] [-1.02%]

TFPi 0.220∗∗∗ 0.256∗∗∗ 0.352∗∗∗ 0.378∗∗∗ 0.099∗ 0.099∗ 0.238∗∗∗ 0.218∗∗∗

(0.032) (0.028) (0.043) (0.046) (0.057) (0.057) (0.074) (0.078)
[0.19%] [0.30%] [0.24%] [0.25%] [0.04%] [0.04%] [0.07%] [0.07%]

TFPj -0.016 -0.087∗∗∗ 0.032 0.009 0.009 0.009 0.017 -0.011
(0.030) (0.026) (0.037) (0.039) (0.057) (0.057) (0.073) (0.079)

ln(emp)i -0.021 0.005 -0.040∗∗ -0.051∗∗ 0.002 0.002 -0.257∗∗∗ -0.257∗∗∗

(0.015) (0.013) (0.020) (0.021) (0.036) (0.036) (0.051) (0.055)
ln(emp)j 0.029∗∗ 0.038∗∗∗ 0.012 0.027 0.203∗∗∗ 0.203∗∗∗ 0.166∗∗∗ 0.203∗∗∗

(0.014) (0.012) (0.017) (0.018) (0.033) (0.033) (0.044) (0.047)
Using Sector FE ! ! ! ! ! ! ! !
Producing Sector FE ! ! ! ! ! ! ! !
Year FE ! ! ! ! ! ! ! !
Observations 532,473 632,767 436,327 390,061 380,820 380,820 280,898 242,966

PANEL B: Adoption only if at least $1mio input purchase
Distance dij(y − 5) -0.170∗∗∗ -0.139∗∗∗ -0.176∗∗∗ -0.165∗∗∗ -0.231∗∗∗ -0.231∗∗∗ -0.302∗∗∗ -0.304∗∗∗

(0.010) (0.009) (0.013) (0.013) (0.021) (0.021) (0.029) (0.032)
[-0.96%] [-0.94%] [-1.03%] [-0.91%] [-0.62%] [-0.62%] [-0.85%] [-0.83%]

TFPi 0.132∗∗∗ 0.225∗∗∗ 0.133∗∗∗ 0.148∗∗∗ 0.096 0.096 0.002 -0.059
(0.039) (0.036) (0.048) (0.052) (0.060) (0.060) (0.076) (0.081)
[0.09%] [0.17%] [0.08%] [0.08%] [0.03%] [0.03%] [0.00%] [-0.02%]

Controls as in Panel A ! ! ! ! ! ! ! !
Observations 584,212 681,129 475,629 433,647 398,289 398,289 293,198 253,236

Notes: The dependent variable is a dummy that takes on value 1 if sector j adopts input i in a given year y (in 5-year in-
tervals between 1967 and 2002). Adoption is defined in Section 4.2; columns 1-4 use the broad measure, and columns
5-8 use the narrow measure. The latter requires new i-j pairs to be present for at least 15 years in order to qualify
as adoption. Columns 2 and 6 include all benchmark years, including 1997, when the I-O classification switched
from SIC to NAICS. The main explanatory variable is network distance of input i from sector j in the previous I-O
benchmark year (i.e., with a 5-year lag), as described in Section 4.1. Standard errors in parentheses, clustered at the
adopting sector (j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients,
reflecting the change in adoption probability (over a 5-year interval) due to a one standard deviation increase in the
explanatory variable.
† Column 5 excludes all i-j pairs that belong to the same 2-digit industry.
‡ Columns 4 and 8 exclude all i-j pairs that belong to the same 2-digit industry.
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Table 4: Time to adoption: Baseline results

Dep. Var.: Time to adoption of input i by sector j after 1967

(1) (2) (3) (4) (5) (6)
Years excluded 1997 1997 1972,97 none 1997 1997
Other remarks 2-digit† narrow‡

Distance dij in 1967 0.937∗∗∗ 3.112∗∗∗ 1.778∗∗∗ 3.104∗∗∗ 3.222∗∗∗ 1.228∗∗∗

(0.196) (0.341) (0.360) (0.311) (0.354) (0.290)
[0.64] [2.14] [1.15] [2.04] [2.22] [0.72]

+TFPi(1967− yadopt) -96.925∗∗∗ -364.787∗∗∗ -331.477∗∗∗ -281.502∗∗∗ -363.733∗∗∗ -146.929∗∗∗

(3.919) (13.186) (26.434) (11.861) (13.695) (12.575)
[-1.78] [-6.70] [-3.95] [-4.37] [-6.72] [-3.06]

Using Sector FE Yes Yes Yes Yes Yes Yes
Producing Sector FE No Yes Yes Yes Yes Yes

R2 0.19 0.73 0.72 0.67 0.73 0.66
Observations 14,849 14,849 8,604 24,312 13,930 6,421

Notes: The dependent variable is the log of years to adoption of input i by sector j after 1967, conditional on this
adoption having happened between 1972 and 2002; see equation (10). For a description of network distance dij see
Section 4.1. +TFPi(1967− yadopt) is the average annual change in TFP in the input producing sector between 1967
and the year of adoption by j. Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, **
p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients, reflecting the change in the dependent
variable due to a one standard deviation increase in the explanatory variable.
† Column 5 excludes all i-j pairs that belong to the same 2-digit industry.
‡ The narrow definition of adoption requires new i-j pairs to be present for at least 15 years in order to qualify as
adoption.
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Table 5: Time to adoption: Additional results

Dep. Var.: Time to adoption of input i by sector j after 1967

(1) (2) (3) (4) (5) (6)
Remarks 2SLS† narrow‡

Distance dij in 1967 1.620∗∗∗ 0.968∗∗∗ 0.976∗∗∗ 3.464∗∗∗ 3.148∗∗∗ 0.889∗∗∗

(0.181) (0.212) (0.182) (0.323) (0.327) (0.229)
[1.11] [0.66] [0.67] [2.37] [2.17] [0.52]

+TFPi(1967− yadopt) -211.401∗∗∗ -147.042∗∗∗

(24.137) (14.199)
[-3.88] [-2.70]

+Pi(1967− yadopt) 99.765∗∗∗ 157.734∗∗∗ 134.913∗∗∗ 130.989∗∗∗

(3.029) (4.282) (4.760) (2.740)
[4.13] [6.52] [5.40] [5.31]

+TFPi(1958− 67) -18.341∗∗∗

(6.189)
[-0.28]

Using Sector FE Yes Yes Yes Yes Yes Yes

Producing Sector FE No No No Yes Yes Yes

R2 0.26 0.17 0.16 0.76 0.77 0.82
Observations 15,072 15,072 14,849 15,072 14,849 6,456

Notes: The dependent variable is the log of years to adoption of input i by sector j after 1967, conditional on this
adoption having happened between 1972 and 2002; see equation (10). For a description of network distance dij see
Section 4.1. +TFPi(1967− yadopt) is the average annual change in TFP in the input producing sector between 1967
and the year of adoption by j; +Pi(1967−yadopt) is the same measure for the price index of i, and +TFPi(1958−67)
is the average annual TFP change between 1958 and 1967 in i. Standard errors in parentheses, clustered at the adopting
sector (j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients, reflecting
the change in the dependent variable due to a one standard deviation increase in the explanatory variable.
† Two stage least square regression uses historical TFP growth in input-producing sectors (+TFPi 1958-67) as in
instrument for TFP growth after 1967 (+TFPi since ’67). The first stage has an F-statistic of 807.
‡ The narrow definition of adoption requires new i-j pairs to be present for at least 15 years in order to qualify as
adoption.
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