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1 Introduction

We develop a theory of endogenous uncertainty and business cycles. The theory combines two

forces: higher uncertainty about economic fundamentals deters investment, and uncertainty evolves

endogenously because agents learn from the actions of others. The unique rational expectation

equilibrium of the economy features uncertainty traps: self reinforcing episodes of high uncertainty

and low economic activity that cause recessions to persist. Because of uncertainty traps, short-lived

shocks can generate long-lasting recessions, and low activity may persist even after fundamentals

have recovered. Thus, the theory rationalizes features of U.S. macroeconomic activity that are

not easily explained by standard business cycle models, such as the slow recovery of output after

recessions despite typically faster improvements in measured productivity.

We first build a model that only includes the essential features that give rise to uncertainty

traps, and then embed them into a standard real business cycle model. In the model, firms decide

whether to undertake an irreversible investment whose return depends on an imperfectly observed

fundamental that evolves randomly according to a persistent process. Firms are heterogeneous in

the cost of undertaking this investment and hold common beliefs about the fundamental. Beliefs

are regularly updated with new information, and, in particular, firms learn by observing the return

on the investment of other producers. We define uncertainty as the variance of these beliefs.

This environment naturally produces an interaction between beliefs and economic activity.

Firms are more likely to invest if their beliefs about the fundamental have higher mean, but also if

they have smaller variance (lower uncertainty). At the same time, the laws of motion for the mean

and variance of beliefs depend on the investment rate. When few firms invest, little information is

released, so uncertainty rises.

The key feature of the model is that this interaction between information and investment leads to

uncertainty traps, formally defined as the coexistence of multiple stationary points in the dynamics

of uncertainty and economic activity. The economy will converge to either a high regime (with high

economic activity and low uncertainty) if the current level of uncertainty is sufficiently low, or to a

low regime (with low activity and high uncertainty) if the current level of uncertainty is sufficiently

high. As a result of this multiplicity, the economy exhibits strong non-linearities in its response to

shocks: it quickly recovers after small temporary shocks, but it may shift into a low-activity regime

after a large temporary shock. Once it has fallen in the low regime, only a large enough positive

shock can push the economy back to the high-activity regime.

An important feature of the model is that, despite the presence of uncertainty traps, there is a

unique recursive competitive equilibrium. That is, multiplicity of stationary points does not mean

multiplicity of equilibria. Therefore, unlike in other macro models with complementarities, there

is no room in our model for multiple equilibria or sunspots.1

The model features an inefficiently low level of investment because agents do not internalize the

effect of their actions on common information. This inefficiency naturally creates room for welfare-

1For recent examples of business cycle models with multiple equilibria see Farmer (2013), Kaplan and Menzio
(2013), Benhabib et al. (2015) and Schaal and Taschereau-Dumouchel (2015).
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enhancing policy interventions. We study the problem of a constrained planner that is subject to

the same informational constraints as private agents. The socially constrained-efficient allocation

can be implemented with state-dependent subsidies. For example, it could be desirable to subsidize

investment in times of high uncertainty and low activity. But, surprisingly, the optimal policy does

not necessarily eliminate the uncertainty traps. Therefore, while policy interventions are desirable,

they do not eliminate the non-linearities generated by the complementarity between uncertainty

and economic activity.

After characterizing the baseline model, we embed the mechanism into a standard model of

business cycles. We explore numerically the ability of the uncertainty trap mechanism to generate

deep and persistent recessions for various parameter values. For that, we compare our baseline

model, in which uncertainty fluctuates endogenously, with an economy in which the information

flow is fixed. We find that the mechanism make recessions substantially deeper and longer relative

to a framework with fixed uncertainty.

We also highlight how the model can explain certain features of the data that the standard

RBC framework cannot replicate. First, uncertainty traps make output growth more persistent

than TFP growth, as seen in the data. Second, evidence from a VAR shows that US output takes

longer to recover after larger declines in productivity. This non-linearity is also present in impulse

response functions generated from the model, but absent in the RBC model. Third, while the RBC

model generates almost symmetric time series, the uncertainty trap mechanism generates negative

skewness in output, as we observe in the data.

The theory is motivated by an empirical literature that investigates the impact of uncertainty

on economic activity using VARs, as in Bloom (2009) and Bachmann et al. (2013), or using in-

strumental variables, as in Carlsson (2007), and finds that increases in uncertainty impedes eco-

nomic activity. It also relates to the uncertainty-driven business cycle literature that analyzes

the effect of uncertainty through real option effects as in Bloom (2009), Bloom et al. (2012),

Bachmann and Bayer (2013), and Schaal (2015), and through financial frictions as in Arellano et al.

(2012) and Gilchrist et al. (2014).2

Our theory adopts the concept of Bayesian uncertainty : in our model, agents use Bayes’ rule to

form beliefs about variables of interest (the fundamentals of the economy), and we define uncertainty

as the variance of the probability distribution that describes these beliefs. The uncertainty-driven

business cycle literature, instead, identifies uncertainty with time-varying volatility in various ex-

ogenous aggregate or idiosyncratic variables. These notions are related, but not identical. First,

while time-varying volatility gives rise to Bayesian uncertainty, the latter is more general as it al-

lows for additional channels, such as learning, to affect uncertainty. Second, measures of Bayesian

uncertainty that capture subjective beliefs are countercyclical, like those used in the uncertainty-

driven business cycle literature. Third, Bayesian uncertainty preserves the channel by which real

option effects impact the economy, as they do with time-varying volatility. Thus, this more general

2Another literature studying time-varying risk is the literature on rare disasters (Barro, 2006) and time-varying
disaster risk as in Gabaix (2012), Gourio (2012), and surveyed in Barro and Ursúa (2012).
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and flexible concept, together with social learning, allows us to endogenize uncertainty, key to gen-

erating persistence in our model, while retaining the desirable properties of time-varying volatility.3

Finally, as high-volatility events are short-lived in the data, models that focus on exogenous volatil-

ity shocks are hard to reconcile with the persistence of recessions. Bayesian uncertainty offers a

promising alternative since some measures of subjective uncertainty display additional persistence.4

Our analysis also relates to a theoretical macroeconomic literature that studies environments

characterized by learning from market outcomes such as Rob (1991), Caplin and Leahy (1993),

Zeira (1994), Veldkamp (2005), Ordoñez (2009) and Amador and Weill (2010). Closely related to

our paper is the analysis of Van Nieuwerburgh and Veldkamp (2006). They focus on explaining

business-cycle asymmetries in an RBC model with incomplete information in which agents receive

signals with procyclical precision about the economy’s fundamental. During recessions, agents

discount new information more heavily and the mean of their beliefs is slow to recover. Since the

fundamental follows a two-state Markov process, beliefs are fully described by a single sufficient

statistic, so that the mean and variance of beliefs are tied together. As a result, uncertainty

does not provide an independent propagation mechanism and uncertainty traps do not arise. In

contrast, our approach builds on a standard model of irreversible investment under uncertainty as

in Dixit and Pindyck (1994) and Stokey (2008), and is able to disentangle the effects of mean vs.

variance. The interaction between the option value of waiting due to irreversibilities and endogenous

countercylical uncertainty is unique to our model, and essential to generate uncertainty traps.5

This paper is also related to the literature on fads and herding in the tradition of Banerjee

(1992), Bikhchandani et al. (1992), Chamley and Gale (1994) and Chamley (2004). Articles in that

tradition consider economies with an unknown fixed fundamental and study a one-shot evolution

towards a stable state, whereas we study the full cyclical dynamics of an economy that fluctuates

between regimes.

The dynamics generated by the model, with endogenous fluctuations between regimes, is remi-

niscent of the literature on static coordination games such as Morris and Shin (1998, 1999) and the

dynamic coordination games literature as Angeletos et al. (2007) and Chamley (1999). These pa-

pers study games in which a complementarity in payoffs leads to multiple equilibria under complete

information. The introduction of strategic uncertainty through noisy observation of the fundamen-

tal leads to a departure from common knowledge that eliminates the multiplicity. In contrast, the

complete-information version of our model does not feature multiplicity, and complementarity only

arises under incomplete information through social learning. Uniqueness does not obtain through

strategic uncertainty, but by limiting the strength of the complementarities.

The paper is structured as follows. Section 2 presents the baseline model and the definition of

the recursive equilibrium. Section 3 characterizes the partial-equilibrium investment decision of an

3Some recent papers discuss alternative channels that give rise to endogenous volatility over the business cycle.
See Bachmann and Moscarini (2011) and D’Erasmo and Boedo (2011).

4See Appendix A for measures of uncertainty and additional discussion.
5Lang and Nakamura (1990) also consider environments in which economic activity increases the precision of

information. Straub and Ulbricht (2014) propose a similar mechanism based on financial frictions.

4



individual firm and demonstrates the uniqueness of the equilibrium. Section 4 shows the existence

of uncertainty traps, examines the non-linearities that they generate, and discusses the planner’s

problem. Section 5 describes the extended model and shows how uncertainty traps influence the

response of the economy to various shocks. It also compares the dynamic properties of our model

to an RBC model and the data. Section 6 concludes. Proofs can be found in the appendix.

2 Baseline Model

We begin by presenting a stylized model that only features the necessary ingredients to generate

uncertainty traps. The intuitions from this simple model as well as the laws of motion governing the

dynamics of uncertainty carry through to the extended model that we use for numerical analysis.

2.1 Population and Technology

Time is discrete. There is a fixed number of firms N , chosen large enough that firms behave

competitively. Each firm j ∈
{
1, . . . , N

}
holds a single investment opportunity that produces

output xj which is the sum of two components: a persistent common component θ, which denotes

the economy’s fundamental, as well as an idiosyncratic transitory component εxj ,

xj = θ + εxj .

The common component follows an autoregressive process, so that the next period’s fundamental

is

θ′ = ρθθ + εθ, (1)

where 0 < ρθ < 1. The innovations
(

εθ, εxj

)

are normally distributed and independent over time

and across firms,6

εθ ∼ N
(
0,
(
1− ρ2θ

)
σ2
θ

)
and εxj ∼ N

(
0, γ−1

x

)
.

To produce, a firm must pay a fixed cost f , drawn each period from the continuous cumulative

distribution F with mean f̄ and standard deviation σf . Once production has taken place, the firm

exits the economy and is immediately replaced by a new firm holding an investment opportunity.

This assumption ensures that the mass of firms in the economy remains constant.7

Upon investment, the firm receives the payoff xj . Firms have constant absolute risk-aversion,8

u (xj) =
1

a

(
1− e−axj

)
,

6Idiosyncratic productivity εx is assumed to be i.i.d. for simplicity, but the theory could also accommodate
persistence in this component.

7This assumption is made for tractability and is relaxed in the numerical exercise of Section 5.
8Agents can be thought of as entrepreneurs. Risk aversion simplifies the proof of Proposition 1 in the next section.

It helps us establish, in particular, the convenient property that the equilibrium number of investing firms decreases
with uncertainty everywhere, but is not crucial for the results. In the numerical section, we show that the mechanism
carries through with risk neutrality.
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where a > 0 is the coefficient of absolute risk aversion.

2.2 Timing and Information

At the beginning of each period, firms decide whether to invest or not without knowing their

return on investment xj . This decision therefore depends on their beliefs about the unobserved

fundamental θ. As time unfolds, they learn about θ in various ways. First, they learn from a public

signal Y observed at the end of each period,

Y = θ + εy (2)

where εy ∼ iid N (0, γ−1
y ). This signal captures the information released by statistical agencies or

the media. Second, they learn by observing investment returns in the economy. Social learning

takes place through this channel: when firm j invests, its return xj is observed by all the other

firms. 9 Since θ cannot be distinguished from the idiosyncratic term εxj , production xj acts as a

noisy signal about the fundamental. Because of the normality assumption, a sufficient statistic for

the information provided by all the firms’ individual output is the public signal

X ≡
1

N

∑

j∈I

xj = θ + εXN , (3)

where N ∈
{
1, . . . , N

}
is the endogenous number of firms that invest, I is the set of such firms,

and

εXN ≡
1

N

∑

j∈I

εxj ∼ N
(

0, (Nγx)
−1
)

.

Importantly, the precision Nγx of this signal increases with the number of investing firms N .

The timing of events is summarized in Figure 1.

N firms decide to invest
based on beliefs and

investment costs

Production takes place;
Public signals X and Y

are observed

Beliefs are updated

...

t+1t

Figure 1: Timing of events

9In the context of our model, social learning aims at capturing the idea that firms learn from each other about
various common components that affect their revenues — aggregate vs idiosyncratic productivities, but also demand,
regulations, etc. Firms can also learn about demand conditions for broad product categories. For instance, observing
that Firm A invests massively in a new phone might reveal to a competitor that Firm A has done a market study that
reveals strong consumer demand for smartphones. Social learning has been found to influence economic decisions
in various contexts. Foster and Rosenzweig (1995) estimate a model of the adoption of high-yielding seeds in India
and find it consistent with social learning. Guiso and Schivardi (2007) find that peer-learning effects matter for the
behavior of Italian industrial firms. Bikhchandani et al. (1998) survey the empirical social learning literature.
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2.3 Beliefs

Under the assumption of a common initial prior, and because all information is public, beliefs are

common across firms. In particular, there is no cross-sectional dispersion in beliefs. The normality

assumptions about the signals and the fundamental imply that beliefs are also normally distributed

θ | I ∼ N
(
µ, γ−1

)
,

where I is the information set at the beginning of the period. The mean of the distribution µ

captures the optimism of agents about the state of the economy, while γ represents the precision of

their beliefs about the fundamental. Precision γ is inversely related to the amount of uncertainty:

as γ increases, the variance of beliefs decreases: uncertainty declines.

Firms start the period with beliefs (µ, γ) and use all the information available to update their

beliefs according to Bayes’ rule. By the end of the period, they have observed the public signals X

and Y . Therefore, beliefs about next period’s fundamental θ′ are normally distributed with mean

and precision equal to

µ′ = ρθ
γµ+ γyY +NγxX

γ + γy +Nγx
, (4)

γ′ =

(
ρ2θ

γ + γy +Nγx
+
(
1− ρ2θ

)
σ2
θ

)−1

≡ Γ (N, γ) . (5)

These standard updating rules have straightforward interpretations: the mean of future beliefs

µ′ is a precision-weighted average of the present belief µ and the new signals, Y and X, whereas

γ′ depends on the precision of current beliefs, the precision of the signals and the variance of the

shock to θ. Importantly, the precision of future beliefs does not depend on the realization of the

public signals, but only on N and γ. The higher is N , the more precise is the public signal X, and

the lower is uncertainty in the next period.10 We use Γ (N, γ) in (5) to denote the law of motion

of the precision of information.

2.4 Firm Problem

We now describe the problem of a firm. In each period, given fixed cost f and beliefs about the

fundamental, a firm can either wait or invest. It solves the Bellman equation

V (µ, γ, f) = max
{
V W (µ, γ) , V I (µ, γ)− f

}
, (6)

10In our current formulation, increasing the total number of firms would lead to a higher flow of information,
suggesting that larger economies are at an informational advantage. In practice, however, a larger economy is
more complex — combining many shocks, industries, products — and learning about its state may be more difficult.
Additionally, other factors that influence firms’ decisions are local (natural disasters, local demand conditions, changes
in regional institutions, etc) and the social learning about these factors might be limited to regional firms. In this
case, increasing the country’s size would not necessarily convey more information about these local factors.
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where V W (µ, γ) is the value of waiting and V I (µ, γ) is the value of investing after incurring the

investment cost f . Specifically, they do not internalize the impact of their decisions on aggregate

information.

If a firm waits, it starts the next period with updated beliefs (µ′, γ′) about the fundamental

and a new draw of the fixed cost f ′. Therefore, the value of waiting is

V W (µ, γ) = βEµ′,γ′

[
ˆ

V
(
µ′, γ′, f ′

)
dF
(
f ′
)
| µ, γ

]

. (7)

In turn, when a firm invests it receives output x and exits. Therefore,

V I (µ, γ) = E [u (x) | µ, γ] = E

[
1

a

(
1− e−ax

)
| µ, γ

]

. (8)

The firm’s optimal investment decision takes the form of a cutoff rule fc (µ, γ) such that a firm

invests if and only if f ≤ fc (µ, γ). The cutoff is defined by the following indifference condition

fc (µ, γ) = V I (µ, γ)− V W (µ, γ) . (9)

2.5 Law of Motion for the Number of Investing Firms N

We now aggregate the individual decisions of the firms. As the investment decision follows the

cutoff rule fc (µ, γ), the process for the number of investing firms N satisfies

N
(

µ, γ, {fj}1≤j≤N

)

=

N∑

j=1

1I (fj ≤ fc (µ, γ)) . (10)

Since investment depends on a random fixed cost, the number of investing firms is a random

variable that depends on the realization of the shocks {fj}1≤j≤N . As these costs are i.i.d., the

ex-ante probability of investment is identical across firms. Therefore, the ex-ante distribution of

N , as perceived by firms, is binomial,

N | µ, γ ∼ Bin
(
N, p (µ, γ)

)
, (11)

where p (µ, γ) captures the perceived probability of investment for other firms. In equilibrium,

firms’ expectations must be consistent with the actual probability of investing:

p (µ, γ) = F (fc (µ, γ)) . (12)

Note that N is only a function of the beliefs (µ, γ) and the individual shocks {fj}1≤j≤N . Since

these shocks are independent from the fundamental θ and investment decisions are made before

the observation of {xj}j∈I , there is nothing to learn from the non-investment of firms, nor from the

realization of N itself.
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2.6 Recursive Competitive Equilibrium

We define a recursive rational-expectation equilibrium as follows.

Definition 1. A recursive competitive equilibrium consists of a cutoff rule fc (µ, γ), value functions

V (µ, γ, f), V W (µ, γ), V I (µ, γ), a perceived ex-ante investment probability p (µ, γ), laws of motions

for aggregate beliefs {µ′, γ′}, and a number of investing firms N
(

µ, γ, {fj}1≤j≤N

)

, such that

1. The value function V (µ, γ, f) solves (6), with V W (µ, γ) and V I (µ, γ) defined according to

(7) and (8), yielding the cutoff rule fc (µ, γ) in (9);

2. The aggregate beliefs (µ, γ) evolve according to (4) and (5), where N is given by (11);

3. The ex-ante investment probability p (µ, γ) and the cutoff rule fc (µ, γ) satisfy (12) and

4. The number N
(

µ, γ, {fj}1≤j≤N

)

of investing firms is given by (10).

3 Equilibrium Characterization

We first characterize the optimal investment decision of a firm. We provide conditions such

that, due to the the irreversibility of investment, firms are less likely to invest when uncertainty is

high. Then, we prove the existence and uniqueness of the recursive equilibrium and characterize

its key properties.

3.1 Investment Rule Given the Evolution of Beliefs

The optimal investment rule fc (µ, γ) depends on how beliefs evolve. We begin by establishing

two simple lemmas about the dynamics of aggregate beliefs.

Evolution of the Mean of Beliefs

Using (4), we can characterize the stochastic process for the mean of beliefs as follows.

Lemma 1. For a given N , mean beliefs µ follow an autoregressive process with time-varying volatil-

ity s,

µ
′

= ρθµ+ s (N, γ) ε,

where s (N, γ) = ρθ

(
1
γ − 1

γ+γy+Nγx

) 1
2
and ε ∼ N (0, 1).

The mean of beliefs captures the optimism of agents about the fundamental and evolves stochas-

tically due to the the arrival of new information. It inherits the autoregressive property of the

fundamental, and its volatility s (N, γ) is time-varying because the amount of information that

firms collect over time is endogenous. The volatility is decreasing with γ and increasing with N .

In times of low uncertainty (γ high) agents place more weight on their current information and less

on new signals, making the mean of beliefs more stable. In contrast, in times of high activity (N

high) more information is released, making beliefs more likely to fluctuate.
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Evolution of Uncertainty

The precision of beliefs γ captures the (inverse of) uncertainty about the fundamental and its

dynamics play a key role for the existence of uncertainty traps. Its law of motion satisfies the

following properties.

Lemma 2. The precision of next-period beliefs γ′ increases with N and γ. For a given number

of investing firms N , the law of motion for the precision of beliefs γ′ = Γ (N, γ) admits a unique

stable stationary point in γ.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

γ
′

γ

γ

γ

N = 0

N = 1

N = 2

Γ
(
N(µ, γ), γ

)

Figure 2: Example of dynamics for beliefs precision γ when N = 2

The thin solid curves on Figure 2 depict Γ (N, γ) for different constant values of N when N = 2.

An increase in the level of activity raises the next period precision of information γ′ for each level

of γ in the current period. Since N is between 0 and N , the support of the ergodic distribution

of γ must lie between the two bounds γ and γ defined by γ ≡ Γ(0, γ) and γ̄ ≡ Γ(N, γ). In other

words, γ is the stationary level of precision when no firm invests, while γ is the one reached when

all firms invest.

In equilibrium, N varies with µ and γ. Suppose, as an example, that N is a deterministic and

increasing step function of γ, and let us keep µ fixed for the moment. Figure 2 illustrates how the

feedback from uncertainty to investment opens up the possibility of multiple stationary points in

the dynamics of the precision of beliefs, and therefore uncertainty. In this example, the function

γ′ = Γ (N (µ, γ) , γ), depicted by the solid curve, has three fixed points. We formally establish, in

part 4, that this type of multiplicity is a generic feature of the equilibrium.
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Optimal Timing of Investment

With the laws of motion for aggregate beliefs at hand we can characterize the individual invest-

ment decision as a function of beliefs. Naturally, a more optimistic firm (higher µ) is more likely to

invest. In turn, uncertainty (lower γ) may reduce the returns to investment for two reasons. First,

risk averse firms dislike uncertain payoffs. Second, since investment is costly and irreversible, there

is an option value of waiting: in the face of uncertainty, firms prefer to delay investment to gather

additional information and avoid downside risk.

The next proposition formally establishes the validity of these intuitions. Specifically, it provides

a partial-equilibrium characterization of the optimal investment behavior of a firm who, consistently

with (11), perceives N as following a binomial distribution Bin
(
N, p (µ, γ)

)
for some sufficiently

smooth function p (µ, γ) ∈ P, as defined in the Appendix.

Proposition 1. Under Assumption 1 stated in Appendix G, given a random number of investing

firms N ∼ Bin
(
N, p (µ, γ)

)
for some p (µ, γ) ∈ P, and for γx sufficiently low, there exists a

unique solution V (µ, γ, f) to the firm’s Bellman equation and the resulting cutoff fc (µ, γ) is strictly

increasing in µ and γ.

The properties satisfied by the optimal investment rule are typical of optimal stopping time

models of investment but, in our context, they are not straightforward to establish because of the

endogeneity of information. As expected, investment is strictly increasing in µ. Establishing the last

property, crucial to our mechanism, that the probability of investment decreases with uncertainty,

is more challenging. On the one hand, uncertainty directly discourages investment through risk

aversion and real option effects. The latter is guaranteed by Assumption 1, which is satisfied if the

persistence of the fundamental is high enough and its volatility is sufficiently low. This ensures that

the fundamental does not vary too much over time, so that firms may have an incentive to wait.

On the other hand, these effects may be offset by an opposing effect through social learning: if the

number of investing firms N declines with uncertainty, less information is released and the option

to delay investment in order to collect more information becomes less attractive. With γx small,

the amount of information that transits through the social learning channel remains small enough

that the latter effect is negligible and the option value of waiting dominates. In particular, enough

information can be gathered from the public signal Y despite the fluctuations in social learning,

ensuring that the option to wait always remains attractive to firms.

3.2 Existence and Uniqueness

We have described in Lemmas 1 and 2 how beliefs depend on the number of investing firms, and,

in Proposition 1, how firms’ investment decisions are affected by beliefs. In the latter, firms make

their decisions taking the aggregate investment probability p as given. We now close the equilibrium

by requiring that the perceived investment behavior of firms, summarized by N ∼ Bin
(
N, p (µ, γ)

)
,

is consistent with their actual investment decisions: p (µ, γ) = F (fc (µ, γ)) . The next proposition

shows that such a general equilibrium exists and is unique.

11



Proposition 2. Under the same conditions as Proposition 1 and some regularity conditions stated

in the Appendix, a recursive equilibrium exists and is unique. The equilibrium expected fraction of

firms investing p(µ, γ) is increasing in the mean of beliefs µ and the precision γ.

Showing uniqueness of the fixed point p (µ, γ) = F (fc (µ, γ)) is challenging due to the ambiguous

feedback from uncertainty to investment discussed in the previous section. Formally, this leads to

a failure in the monotonicity of the mapping from the perceived investment probability p(µ, γ)

to the investment probability of each firm, which prevents us from using Blackwell’s sufficient

conditions. Fortunately, we can explicitly show that the main fixed point problem is a contraction

when γx is low. This assumption ensures that the complementarity between information and

economic activity is not strong enough to support multiple equilibria. Uniqueness of equilibrium

is an attractive feature as it leads to unambiguous predictions and makes the model amenable to

quantitative work. Despite uniqueness of the equilibrium, the model features interesting non-linear

dynamics and multiple regimes, as we show in part 4.

Figure 3 illustrates how the investment probability varies as a function of beliefs (µ, γ). The

partial equilibrium results from Proposition 1 carry through to the general equilibrium: the number

of investing firms increases as they become more optimistic about the fundamental (µ high) or less

uncertain (γ high).

p(µ, γ)

1

0

γ
µ

p(µ, γ)

Figure 3: Example of aggregate investment probability

4 Uncertainty Traps

We now examine the interaction between firms’ behavior in the face of uncertainty and social

learning. This interaction leads to episodes of self-sustaining uncertainty and low activity, which

we call uncertainty traps. We provide sufficient conditions on the parameters that guarantee the
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existence of such traps and discuss the type of aggregate dynamics that they imply. We find that the

response of the economy to shocks is highly non-linear: it quickly recovers after small shocks, but

large, short-lived shocks may plunge the economy into long-lasting recessions. We also characterize

the constrained planner’s problem and discuss its policy implications.

4.1 Definition and Existence

We assume at this point that the total number of firms N is large enough, so that

n (µ, γ) ≡
N (µ, γ)

N
≃ p(µ, γ). (13)

With this assumption, we can treat the fraction of investing firms n as a deterministic function of

beliefs, ignoring fluctuations due to the finiteness in the number of firms. The model’s equations

remain the same except that we must substitute N (µ, γ) with n (µ, γ).11 We are now ready to

define an uncertainty trap.

Definition 2. There is an uncertainty trap if there are at least two locally stable fixed points in

the dynamics of beliefs precision γ′ = Γ (n (µ, γ) , γ) for some nonempty set µ ∈ M .

The definition of an uncertainty trap captures the situation depicted in Figure 2: for a given

mean of beliefs, the economy may find itself in distinct fixed points of the dynamics of uncertainty.

We refer to these stationary points as regimes.

Note that multiplicity of regimes does not imply multiple equilibria. This distinction is impor-

tant because it highlights that the model is not subject to indeterminacy. While multiple values

of γ may satisfy the equation γ = Γ (n (µ, γ) , γ) for a given µ, the regime that prevails at any

given time is unambiguously determined by the history of past aggregate shocks, summarized by

the current beliefs (µ, γ). The definition also emphasizes the notion of stability, which is required

for the type of self-enforcing dynamics that we propose. Notice, however, that we only require local

stability along the dimension γ while µ keeps evolving according to its law of motion.

The following proposition formally establishes that uncertainty traps exist for a range of mean

of beliefs µ under some condition on the dispersion of investment costs.

Proposition 3. Under the conditions of Proposition 2 and for σf small enough, there exists a non-

empty interval M = [µl, µh] such that, for all µ ∈ (µl, µh), the economy features an uncertainty

trap with at least two regimes γl (µ) < γh (µ). Regime γl is characterized by high uncertainty and

low investment while regime γh is characterized by low uncertainty and high investment.

Figure 4 presents examples for the law of motion of γ when the investment costs f are nor-

mally distributed. The solid curves represent the function γ
′
= Γ(n(µ, γ), γ) evaluated at five

different values of µ, with the thick solid curve corresponding to an intermediate value of µ. In all

11To prevent uncertainty from vanishing completely as N → ∞, we assume that the precision of firms’ individual
signals decreases with N : γx

(
N
)
= γx/N . The details of the limit and the corresponding economy are explained in

Appendix F.
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Figure 4: Dynamics of precision γ′ = Γ (n (µ, γ) , γ) for different values of µ

cases, for small precision γ, uncertainty is high and firms do not invest. As a result, they do not

learn from observing aggregate activity and the precision of beliefs γ′ remains low. As precision

increases, uncertainty decreases and firms become sufficiently confident about the fundamental to

start investing. As that happens, uncertainty decreases further.

In our example, the thick curve intersects the 45◦ line three times. The second intersection

corresponds to an unstable regime, but the other two are locally stable. We denote these regimes

by γl and γh. In regime γl, uncertainty is high and investment is low, while the opposite is true in

regime γh.

Proposition 3 shows that this situation is a generic feature of the equilibrium when the disper-

sion of investment costs σf is small. This condition ensures that the feedback of investment on

information is strong enough to sustain distinct stationary points.

4.2 Dynamics: Non-linearity and Persistence

We now describe the full dynamics of the economy by taking into account the evolution of µ

in response to the arrival of new information. Figure 4 shows that, as long as µ stays between the

values µl and µh, defined in Proposition 3, the two regimes γl (µ) and γh (µ) preserve their stability.

As a result, uncertainty and the fraction of active firms n are relatively unaffected by changes in

µ. In contrast, for values of µ above µh, a large enough fraction of firms invest, so the dynamics

of beliefs only admits the high-activity regime as a stationary point. Similarly, for values below

µl, the economy only admits the low-activity regime. Therefore, sufficiently large shocks to µ can

make one regime unstable and trigger a regime switch.
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Figure 5: Persistent effects of temporary shocks

The economy displays non-linear dynamics: it reacts very differently to large shocks in compar-

ison to small ones. Figure 5 shows various simulations to illustrate this feature using the example

from Figure 4. The top panel presents three different series of shocks to the mean of beliefs µ. The

three series start from the high-activity/low-uncertainty regime. At t = 5, the economy is hit by a

negative shock to µ, due to a bad realization of either the public signals or the fundamental. The

mean of beliefs then returns to its initial value at t = 10. Across the three series, the magnitude of

the shock is different.

The middle and bottom panels show the response of beliefs precision γ and the fraction of

investing firms n. The solid gray line represents a small temporary shock, such that µ remains

within [µl, µh]. Despite the negative shocks to the mean of beliefs, all firms keep investing and

the precision of beliefs is unaffected. When the economy is hit by a temporary shock of medium

size (dashed line), some firms stop investing, leading to a gradual increase in uncertainty. As

uncertainty rises, investment falls further and the economy starts to drift towards the low regime.

However, when the mean of beliefs recovers, the precision of information and the number of active

firms quickly return to the high-activity regime. In contrast, when the economy is hit by a large

temporary shock (dotted line), the number of firms delaying investment is large enough to produce

a self-sustaining increase in uncertainty. The economy quickly shifts to the low-activity regime and

remains there even after the mean of beliefs recovers.

We now show how the economy escapes from the trap in which it fell in Figure 5. Figure 6

shows the effect of positive shocks when the economy starts from the low regime. The economy

receives positive signals that lead to a temporary increase in mean beliefs between periods 20 and 25,
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Figure 6: Escaping an uncertainty trap

possibly because of a recovery in the fundamental. When the temporary increase in average beliefs

is not sufficiently strong, the recovery is interrupted as µ returns to its initial value. However,

when the temporary increase is sufficiently large, the economy reverts back to the high-activity

regime. Once again, temporary shocks of sufficient magnitude to the fundamental may lead to

nearly permanent effects on the economy.

4.3 Additional Remarks

A number of additional lessons can be drawn from these simulations. First, in this frame-

work, uncertainty is a by-product of recessions. This result echoes the empirical findings of

Bachmann et al. (2013) who show that uncertainty is partly caused by recessions and conclude,

by that, that it is of secondary importance for the business cycle. We show, however, that un-

certainty may still have a large impact on the economy by affecting the persistence and depth of

recessions, even if it is not what triggers them.

Second, as in models with learning in the spirit of Van Nieuwerburgh and Veldkamp (2006),

this theory provides an explanation for asymmetries in business cycles. In good times, since agents

receive a large flow of information, they react faster to shocks than in bad times.

Third, our economy may feature high uncertainty without volatility. For instance, in the low

regime, agents are highly uncertain about the fundamental but the volatility of economic aggregates

is low. Therefore, according to our theory, subjective uncertainty may affect economic fluctuations

even if no volatility is observed in the data. This distinguishes our approach from the existing

uncertainty-driven business cycle literature in the spirit of Bloom (2009). In particular, direct
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measures of subjective uncertainty rather than measures of volatility are important to capture the

full amount of uncertainty in the economy.

Finally, a recent literature (Bachmann et al., 2013; Orlik and Veldkamp, 2013) uses survey data

to derive measures of uncertainty based on ex-ante forecast errors. Our model highlights a potential

difficulty about this approach, as uncertainty about fundamentals differs from uncertainty about

endogenous variables, such as output or investment. For example, when the economy is trapped

in the low activity regime, firms know that all firms are uncertain, and therefore that output and

investment are likely to be low. As a result, their forecasts about economic aggregates are accurate

even though their uncertainty about the fundamental is high. As implied by the model, forecast

errors about variables like output may possibly be a bad proxy for uncertainty about fundamentals.

4.4 Policy Implications

The economy is subject to an information externality: in the decentralized equilibrium, firms

invest less often than they should because they do not internalize the release of information to

the rest of the economy caused by their investment. In Proposition 4, we solve the problem of

a constrained planner subject to the same information technology as agents in the economy and

show that the decentralized economy is constrained inefficient and that a simple policy instrument

such as an investment subsidy that depends on current beliefs (µ, γ) is sufficient to restore con-

strained efficiency. Despite internalizing information flows, the constrained optimum still features

uncertainty traps.

Proposition 4. The recursive competitive equilibrium is constrained inefficient. The efficient allo-

cation can be implemented with positive investment subsidies τ (µ, γ) and a uniform tax. However,

when γx and σf are small, the efficient allocation is still subject to uncertainty traps.

The subsidy that implements the optimal allocation takes a simple form to align social and

private incentives. As shown in the proof of the proposition, it is simply the sum of the social value

of releasing an additional signal to the economy and the private value of delaying investment.

The optimal policy being a subsidy, proposition 4 implies that firms are more likely to invest

in the efficient allocation than in the laissez-faire economy. However, uncertainty traps can still

arise in the efficient allocation. This may be surprising if one believes that the role of the planner

is always to push the economy towards the high regime.12 As it turns out, if the planner does not

have more information than individual agents, it is still optimal to wait when uncertainty is high

enough. Hence, there still exists a sufficiently strong complementarity between information and

the level of activity in the constrained-efficient allocation to generate uncertainty traps. However,

while uncertainty traps remain present in the efficient allocation, they are less persistent than in

the laissez-faire economy because firms have stronger incentives to invest.

12In contrast to models with multiple equilibria, γ is a predetermined state variable that summarizes past infor-
mation, not a forward-looking variable that the planner can pick to select equilibria.
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5 Extended Model and Numerical Exercise

We now extend the model to incorporate standard features of business cycle models. The

purpose of this exercise is to explore numerically the ability of the uncertainty trap mechanism

to generate deep and persistent recessions in a more general context. To do so, we enrich the

baseline theory along several dimensions. First, we introduce infinitely-lived firms that produce

every period using a Cobb-Douglas production function that combines labor and capital as inputs.

They also accumulate capital over time by investing through intensive and extensive margins.

Second, a representative household maximizes utility over consumption streams and supplies labor

inelastically.

5.1 Extended model

Preferences and Technology

A representative household maximizes utility over consumption with preferences

E

∞∑

t=0

βtU (Ct) , U
′ > 0, U ′′

6 0,

where Ct is aggregate consumption and 0 < β < 1 is the discount factor. It is endowed with one

unit of labor every period supplied inelastically.

There is a single consumption good produced by a unit measure of firms indexed by j ∈ [0, 1].

Firm j operates a Cobb-Douglas technology and produces output

(A+ Y ) kαj l
1−α
j ,

using lj units of labor and kj units of capital, where

Y = θ + εy

θ′ = ρθθ + εθ

with εθ ∼ iid N
(
0,
(
1− ρ2θ

)
σ2
θ

)
and εy ∼ iid N

(
0, γ−1

y

)
, and where A > 0 is the unconditional

mean of total factor productivity.13 As in the baseline model, the stochastic process θ is the fun-

damental of the economy. While Y corresponded to the public information provided by statistical

agencies and the media in the baseline model, it now captures the information provided by eco-

nomic aggregates like output. This specification is convenient as it guarantees that Y enters the

laws of motion of beliefs in the same way as before and, at the same time, ensures that it contains

all the information that diffuses through prices and other aggregates.

13Our specification of a multiplicative TFP ensures that the variance of Y does not affect expected output directly.
We make sure that productivity never becomes negative in our numerical exercise.
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Investment

In the baseline model, firms face a simple binary decision: to invest or not. To introduce

irreversibilities in a more realistic way, we use a common device in the investment literature

(Khan and Thomas, 2008) and model two different types of investment: i) normal investments,

which corresponds to routine maintenance and small repairs of the current capital stock, ii) large

investments, which we interpret as large purchases of plants and equipment, or the introduction of

new products. All investments are subject to a convex variable cost c (ij), with c′ > 0 and c′′ > 0,

and where ij is the investment rate. In addition to this variable cost, large investments incur an

i.i.d fixed cost fj > 0, drawn from the continuous cumulative distribution F with mean f and

standard deviation σf . Normal investments, on the other hand, do not require the payment of any

additional cost, but are constrained to remain “small”, i.e., within some bounds ij ∈
[
i, i
]
. To

obtain aggregation, all costs are proportional to the stock of capital owned by the firm. Therefore,

firm j must pay a total cost of c(ij)kj , with an additional cost of fjkj if the investment is large, to

increase its capital stock to

k′j = (1− δ + ij) kj.

To introduce a significant option value of waiting, we assume that large investments can only

be made if firms hold an investment opportunity. Investment opportunities arrive stochastically:

a firm without an opportunity receives one with probability q at the end of the period and keeps

it until exercised.14 Only one investment opportunity can be held at a time. We use the dummy

variable qj to indicate whether a firm has an investment opportunity (qj = 1) or not (qj = 0).

Timing and Information

As in the baseline model, agents learn from two sources of information. First, observing aggre-

gate output reveals the public signal Y , which summarizes all the information contained in prices

and aggregate variables. Second, agents learn from a social learning channel. Normal investments,

i.e., the replacement of light bulbs, do not bring in new information. However, because businesses

often engage in substantial market research in preparation for large investments, we assume that if

firm j undertakes a large investment, it releases a signal xj = θ + εxj , where εxj ∼ N
(

0, (γxkj)
−1
)

.

The individual signals {xj} are observed by everyone and their precision is proportional to the

capital stock of the firm. We make this assumption for two reasons: first, it allows aggregation of

the economy; second, it also seems realistic to assume that investment by large businesses reveal

more information than investment by small mom-and-pop stores.

The timing of events is as follows:

1. All firms share the same prior distribution over the fundamental θ | I ∼ N
(
µ, γ−1

)
.

2. Firms that hold an investment opportunity draw their fixed cost fj and decide whether to

make a large investment or not.

14In Section 5.4, we allow for investment opportunities to be destroyed randomly.
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3. All firms choose their investment rate ij .

4. Firms choose labor lj and production takes place.

5. Aggregate productivity Y and individual signals {xj} are publicly observed.

6. Firms that do not hold an investment opportunity receive one with probability q.

7. Agents update their beliefs for the next period.

Value functions

We now define the problem faced by firms. Thanks to the linearity in individual capital stock

kj , the model admits aggregation: individual value functions are linear in kj and the aggregate

state space of the economy is (µ, γ,K,Q) where K =
´

kjdj is the aggregate capital stock and

Q =
´

qjkjdj is the stock of capital held by firms with an investment opportunity.

The value of a firm without an investment opportunity is

V0 (µ, γ,K,Q, k) = max
ic0∈[i,i],l0

E

{

p (A+ Y ) kαl1−α
0 − wl0 − pc (ic0) k

+ β

[

q

ˆ

V1

(
µ′, γ′,K ′, Q′, k′, f ′

)
dF
(
f ′
)
+ (1− q)V0

(
µ′, γ′,K ′, Q′, k′

)
] ∣
∣
∣
∣
µ, γ

}

,

(14)

where k′ = (1− δ + ic0) k, p denotes the price of the consumption good, and w is the wage. Firms

without an opportunity simply produce, pay wages and choose their normal or “constrained” in-

vestment rate ic0 ∈
[
i, i
]
. In the following period, they receive an investment opportunity with

probability q or remain at the value V0. The value of a firm with an investment opportunity is

V1 (µ, γ,K,Q, k, f) = max
l1

E

{

p (A+ Y ) kαl1−α
1 − wl1

∣
∣
∣
∣
µ, γ

}

+max
{
V W
1 (µ, γ,K,Q, k) , V I

1 (µ, γ,K,Q, k) − E [p] fk
}
, (15)

where V W
1 is the value of waiting, i.e., undertaking a normal investment and holding on to the

investment opportunity for the next period, and V I
1 is the value of acting, i.e., doing a large,

unconstrained investment. The value of waiting is

V W
1 (µ, γ,K,Q, k) = max

ic1∈[i,i]
E

{

−pc (ic1) k + β

ˆ

V1

(
µ′, γ′,K ′, Q′, k′, f ′

)
dF
(
f ′
)
∣
∣
∣
∣
µ, γ

}

, (16)
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where k′ = (1− δ + ic1) k. The value of acting is

V I
1 (µ, γ,K,Q, k) = max

i1
E

{

−pc (i1) k

+ β

[

q

ˆ

V1

(
µ′, γ′,K ′, Q′, k′, f ′

)
dF
(
f ′
)
+ (1− q)V0

(
µ′, γ′,K ′, Q′, k′

)
] ∣
∣
∣
∣
µ, γ

}

, (17)

where k′ = (1− δ + i1) k.

Taking the first-order condition on labor, we find that a firm’s labor demand is proportional

to its stock of capital and identical across firms. We define the labor demand per unit of capital

l (µ, γ,K,Q). Substituting the optimal labor demand in the value functions and using the fact

that the value functions (14)-(17) define contractions in the space of value functions, it is easy

to show that the value functions are linear in k. In particular, the investment rates ic0, i
c
1 and

i1 are independent of a firm’s individual capital stock. The decision to undertake a large invest-

ment takes the form of a cutoff fc (µ, γ,K,Q) in terms of the firm’s individual fixed cost, which

implies that firms with a fixed cost f 6 fc (µ, γ,K,Q) choose a large investment while firm with

f > fc (µ, γ,K,Q) prefer to hold on to their investment opportunity until the next period. We

define n (µ, γ,K,Q) = F (fc (µ, γ,K,Q)) as the fraction of firms with investment opportunities that

undertake large investments.

The aggregate capital stock follows the law of motion

K ′ = (K −Q) (1− δ + ic0) +Q (1− δ + ni1 + (1− n) ic1) . (18)

The first term corresponds to the evolution of the capital stock for firms without an investment

opportunity (they hold K−Q units of capital), and the second term captures the evolution of firms

with an opportunity. A fraction n of them undertakes a large investment while the rest chooses a

constrained normal investment ic1.

The stock of capital held by firms with an investment opportunity evolves according to the

equation

Q′ = (1− δ + ic0) q (K −Q) + (1− δ + ic1) (1− n)Q+ (1− δ + i1) qnQ. (19)

The first term captures the inflow of capital from firms without an opportunity (capital K − Q)

that receive an investment opportunity (fraction q), the second term is the capital of firms with

opportunities that decide to wait and hold on to their opportunities (fraction 1−n of the capital Q)

and the third term denotes the inflow from firms with an investment opportunity that undertake

a large investment (fraction n of capital Q) and are lucky enough to receive a new opportunity

immediately (fraction q).

As in the baseline model, the information that diffuses through social learning can be aggregated

into a single aggregate signal X, which now is a capital-weighted average of all individual signals

{xj}j∈[0,1],

X =

´

njqjkjxjdj
´

njqjkjdj
= θ + εX , εX ∼ N

(

0, (nQγx)
−1
)

,
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where nQγx is the precision of the social learning channel. The laws of motion for information

become

µ′ = ρθ
γµ+ γyY + nQγxX

γ + γy + nQγx
, (20)

γ′ =

(
ρ2θ

γ + γy + nQγx
+
(
1− ρ2θ

)
σ2
θ

)−1

, (21)

which correspond to the laws of motion governing beliefs in the baseline case, now adjusted for the

new precision of X.

We are now ready to define a competitive equilibrium for this economy.

Definition 3. A recursive competitive equilibrium is a collection of value functions V0 (µ, γ,K,Q, k),

V1 (µ, γ,K,Q, k, f), V W
1 (µ, γ,K,Q, k) and V I

1 (µ, γ,K,Q, k) for firms with individual policy func-

tions l (µ, γ,K,Q), ic0 (µ, γ,K,Q), ic1 (µ, γ,K,Q), i1 (µ, γ,K,Q), n (µ, γ,K,Q) and fc (µ, γ,K,Q); a

policy function for the representative household C (µ, γ,K,Q,X, Y ); and prices p (µ, γ,K,Q,X, Y )

and w (µ, γ,K,Q) such that

1. The value functions and associated policy functions solve the Bellman equations (14)-(17)

under laws of motion (18), (19), (20) and (21);

2. The household solves its problem: p (µ, γ,K,Q,X, Y ) = U ′ (C (µ, γ,K,Q,X, Y ));

3. The labor market clears:

1 = l (µ, γ,K,Q)K;

4. The goods market clears:

(A+ Y )Kα = C (µ, γ,K,Q,X, Y )− c (ic0) (K −Q)− c (ic1) (1− n)Q

−

(

nc (i1) +

ˆ fc(µ,γ,K,Q)

fdF (f)

)

Q.

Because of the irreversibility in investment, which arises when q < 1, and the binarity of the

investment decision, the extended model retains the key features which led to uncertainty traps in

the baseline model. In particular, the precision of the information obtained through social learning,

nQγx, increases linearly with the fraction of investing firms, n. The option value of waiting is present

because firms receive opportunities infrequently: when faced with an increase in uncertainty, they

are reluctant to use a valuable investment opportunity and prefer to delay investment.

5.2 Simulations

Parameterization

We parameterize the model with the values shown in Table 1. Details on the data sources can

be found in Appendix E. The time period is one month. The discount rate β is chosen to match an
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annual value of 0.95. The share α of capital in production is set to 0.4 to broadly match the average

capital income share in postwar US. We calibrate the fundamental process to match key features of

aggregate US TFP: an annual autocorrelation of 0.876 and a long-run standard deviation to 0.03.

In our benchmark calibration, we assume that the household has risk-neutral preferences. Under

this assumption, we can evaluate the impact of real option effects alone. We relax this assumption

in the sensitivity analysis of section 5.4.

We use a quadratic function c(i) = i + φi2 for the variable cost of investment. To parame-

terize our investment-related parameters q, φ, i, i, f , and σf , we target firm-level moments from

Compustat. First, we identify large investments with investment peaks in the data. We define

an investment peak as a quarterly investment rate greater than 10%. Conditioning on having an

investment peak, the median investment rate in Compustat is 18%. The capital-weighted fraction

of firms in Compustat undergoing an investment peak (nQ/K in our model) is 2.8% on average

in a quarter. We choose the parameters φ and f to match these two targets. The mean duration

between investment peaks is 7 quarters in the data and the median is 14 quarters. We thus set

the monthly probability q to 0.1 × 1
3 to match an average duration of 10 quarters to receive an

investment opportunity. We set i to 0 and choose i to match the average quarterly investment rate

of 2.33% for firms not undergoing an investment peak.15 In steady state, a yearly depreciation rate

δ of 10.6% is consistent with our targets.16 Finally, we study in our benchmark calibration a case

with almost no heterogeneity in fixed costs and set σf = 0.001× f . Section 5.4 provides sensitivity

analysis on this parameter.

We are only left with the information parameters γy and γx to calibrate. Unfortunately, they

lack obvious empirical counterparts, but we can use the Survey of Professional Forecasters (SPF) to

obtain an order of magnitude. The SPF includes probability forecasts constructed from individual

forecasters’ expected distribution of output growth at different horizons, as well as “mean proba-

bility forecasts” which correspond to the average distribution of beliefs across forecasters. Focusing

on a one-year horizon, the average standard deviation in the mean probability forecast is 1.3% for

the period 1992-2015, with a maximum of 1.53% reached in the third quarter of 2009. Given ρθ

and σθ, we set γy = 100 so that the maximum one-year-ahead standard deviation in beliefs about

θ roughly corresponds to 1.5%.17 We set γx so that the average precision from the social learning

channel is a multiple of γy. In our benchmark calibration, we choose a multiple of 10, so that

nQγx = 10× γy, and perform sensitivity analysis on this parameter in section 5.4.

15In our simulations, all firms making a normal investment end up choosing i = i in our simulations.
16Using the law of motion for capital and using the fact that ic0 = ic1 = i in our simulations, the following

relationship is satisfied in steady state, δ− ī = nQ

K
(i1 − ī), which implies a value δ = 2.77% at the quarterly level, or

10.6% annually for i = 0.0233, i1 = 0.18 and nQ/K = 0.028.
17At annual frequency, assuming that all the uncertainty is due to TFP (= 1 + θ), the variance of TFP growth is

Vart (log (1 + θt+12)− log (1 + θt)) ≃ Vart (θt+12 − θt) =
(
1− ρ24θ

)
σ2
θ +

(
1− ρ12θ

)2 1

γt
.

For γy = 100, the lower bound on γ is γ = 2817.9 and the maximal one-year ahead standard deviation of TFP growth
is 1.59%.
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Parameter Value

Time period month
Total factor productivity A = 1

Discount factor β = (0.95) 1/12

Persistence of fundamental ρθ = (0.876)1/12

Long-run standard deviation of fundamental σθ = 0.03
Share of capital in production α = 0.4

Probability of receiving an investment opportunity q = 0.1/3

Fixed cost of investment f = 0.1

Standard deviation of fixed costs σf = 0.001 × f
Variable cost of investment φ = 3.3

Lower bound on constrained investments i = 0
Upper bound on constrained investments i = 0.0233/3

Depreciation rate 1− δ = (1− 0.0277)1/3

Precision of public signal γy = 100
Precision of individual signals γx = 807

Table 1: Parameter values for the numerical simulations

Benchmark Simulations

We first examine the properties of the policy function. Figure 7 presents the fraction of investing

firms as a function of the mean of beliefs µ for three levels of uncertainty. As in the benchmark

model, firms are more likely to invest when µ is high and uncertainty is low, which is where the

real option effects appear.18

Figure 7: Investment decision n(µ, γ,K,Q) for K and Q constant at their steady-state level.

18As a result, the model is able to replicate the procyclicality of the cross-sectional dispersion of investment rates
documented by Bachmann and Bayer (2014)
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Notes: The solid curves show the evolution of the economy according to the full model, while the dashed curves show the

evolution of a control economy in which the flow of public information is fixed at the steady-state level of the full model.

Figure 8: Evolution of the economy after a one-period 5% negative shock to µ.
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We now investigate the strength of the uncertainty traps mechanism through a series of sim-

ulations. Since primitive shocks only affect the policy functions through their effects on beliefs,

we examine directly the impact of shocks to beliefs. We consider the evolution of an economy

hit by a negative 5% shock to the mean of beliefs µ resulting from bad realizations of the sig-

nals. The impulse response functions are represented by the solid curves in Figure 8. The dashed

curves represent the response of a control economy with fixed information flow and no endogenous

uncertainty.19 Comparing the two economies allows us to quantify the impact of the endogenous

uncertainty channel.

Let us consider the full model first. On impact, firms believe that productivity is low. The

expected return from adding capital becomes lower than its cost, and firms cut back on large

investments. As a result, fewer private signals are released and the precision of beliefs starts

falling, as seen in Panel (c). Once the shock is over, agents start to receive signals suggesting that

the fundamental is actually better than what they believed. Firms update their beliefs accordingly

and, as shown in Panel (b), the mean of their beliefs starts to recover. The recovery in output

is, however, delayed by the high uncertainty. Once the stock of capital has sufficiently declined

and a large enough stock of opportunities has been accumulated, firms resume investing in large

projects. This triggers an important release of information, µ recovers quickly, and uncertainty

declines sharply, further raising investment.

In comparison, the recession is less severe in the fixed-information-flow economy. In this case,

uncertainty does not rise after the initial shock. Thus, as the mean of beliefs µ recovers, firms

resume investing earlier and the downturn is shorter. We see a drop in output of about 1% in the

control economy, while production shrinks by 2% in the full model. The trough of the recession

also happens 15 months later in the full model.

5.3 Comparison with the RBC Model and Data

This section compares the propagation properties of our model to a standard RBC model and

provides empirical evidence supporting some of its key features.20

Persistence

We first evaluate the performance of the model regarding the persistence of output in relation to

TFP. As has been noted before, the RBC model features weak internal propagation mechanisms and

lacks persistence. Cogley and Nason (1995) make this point by comparing the autocorrelograms

of output growth in the data and in an RBC model. We repeat their exercise in Figure 10 of

Appendix B.1. Panel (a) shows the autocorrelograms of output and TFP growth in US data. The

figure shows that output growth is more persistent than TFP growth. Panel (b) displays the same

19More precisely, in the control economy we keep the precision of the aggregate signal X constant at its steady-state
value, so that the precisions of beliefs γ coincide in the steady states of the two economies.

20The RBC model that we use is the standard neoclassical growth model without adjustment costs, parametrized
as in Appendix B.
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autocorrelograms computed on data generated by a standard RBC model and by our full model

with endogenous uncertainty. Along the findings of Cogley and Nason (1995), we find that the

autocorrelogram of output growth in the RBC model mirrors that of TFP growth, implying that

the RBC model adds little to no propagation to the exogenous shock process that is fed into the

model. In our full model, however, the endogenous uncertainty generates substantial additional

persistence in output growth, which is more aligned with the data.

Non-linearity

A key implication of the model is that the economy responds differently to shocks of different

magnitudes. In particular, small TFP shocks are followed by mild recessions from which the

economy recovers quickly, while large TFP shocks may trigger more protracted recessions.

To first illustrate how this prediction differs from a standard RBC model, Figure 11 in the

Appendix displays the response of GDP in our model and in an RBC model to negative aggregate

productivity shocks of different magnitudes. Interestingly, the duration of the downturn varies

significantly with the size of the shock in our model, while it remains invariant in the RBC model.

To provide a more accurate account of this feature, Table 2 reports the half-life, defined as the

time that the economy spends with a level of GDP below 50% of its peak-to-trough fall, for each of

the different shocks displayed in Figure 11. Due to its approximate log-linearity, the RBC model

displays a constant duration for all the shocks. Our model, on the other hand, displays larger

duration for larger shocks.

Shock ∆θ Model RBC

−0.1% 27 31
−0.5% 33 31
−2% 45 31

Notes: The duration displayed corresponds to the time spent
by GDP below 50% of its peak-to-trough decline in quarters.

Table 2: Non-linearity in recession duration

We investigate the presence of this type of non-linearity in the data in the simplest possible way.

Figure 12 in the Appendix shows the recovery paths for US GDP in the eight NBER recessions

between 1960 and 2014. The blue curves are the 4 recessions with the larger peak-through falls

in TFP; a quick look at the data suggests that these are the recessions where the recovery takes

longer overall. To verify that this is the case, we estimate a bivariate VAR of TFP and GDP on

2 two subsamples of US data: one corresponding to the recessions and recoveries with large TFP

declines, and another corresponding to small TFP declines. To identify a TFP shock, we order

TFP first allowing for TFP only to have a contemporaneous impact on GDP. Figure 13 in Appendix

B.2 reports the impulse responses to a minus one standard deviation shock to TFP in both VARs.

GDP in the large-recession VAR falls more than the initial decline in TFP and takes longer to

recover. In the case of the small-recession VAR, the response of GDP tracks closely the evolution

27



of TFP, displaying little persistence. The half-life of GDP is more than twice as large for large

than for small recessions (26 quarters for large recessions and only 11for small recessions). These

results suggest that the response of the economy to TFP shocks is non-linear and that large TFP

shocks generate deeper, more protracted recessions as our model predicts.

Asymmetry

Finally, the additional persistence and non-linearities generated by the uncertainty trap mech-

anism lead to substantial negative skewness in the ergodic distribution of log output. A long

simulation of the full model yields a skewness of -0.30 for log output while, in the data, the corre-

sponding number is -1.10.21 In comparison, the RBC model generates a skewness of -0.02 in our

simulations.

5.4 Sensitivity Analysis

Appendix C shows impulse response functions for different parameterizations of the information

parameters. Figure 14 displays the response of output after a negative 5% shock to µ for three

different values of γx: 250, 807 (benchmark) and 2500. Lower values of γx tend to make the

downturn more protracted as beliefs take longer to catch up. The overall impact is, however,

moderate. On the other hand, changes in γy have a large impact on the economy. Figure 15

presents the response of output for different values of γy: 100 (benchmark), 1000 and 5000. Larger

values of γy limit the effect of endogenous uncertainty by reducing the overall level of uncertainty

in the economy and therefore lowering the incentives to wait.22

Appendix C also provides a sensitivity analysis on the standard deviation of the distribution

of fixed costs f . As can be seen in Figure 16, higher values of σf lead to shallower recessions and

faster recoveries. When σf is large, f becomes the main determinant of investment and firms care

less about θ: they simply wait for a good draw of f before making a large investment. Adding

some autocorrelation to the f process would help make uncertainty matter even when σf is large.

For realism, we also consider an economy in which the firms endowed with an investment oppor-

tunity may loose it with probability q. In this case, the option value is reduced as firms anticipate

that unused opportunities might disappear. Appendix C.3 shows impulse response functions for

shocks hitting economies with various q. We find that if q is not too large the economy reacts

similarly to our benchmark calibration.

Finally, we consider in Appendix C.4 the impact of the uncertainty traps mechanism in an

economy with a risk-averse household and variable labor supply. The mechanism still generates

21We simulate the benchmark model for 100,000 periods before computing the skewness. The extended model
with risk-aversion and variable labor, which we introduce in section 5.4, generates similar negative skewness.

22In our current setup, precision γy is directly related to the volatility in aggregate productivity. Since the standard
deviation in the level of TFP in the US ranges from only 2% to 3%, the precision parameter γy cannot be too low.
This may possibly limit the impact of the uncertainty trap mechanism. However, its importance can be restored
if agents are uncertain about fundamentals that fluctuate more in the data. Hence, natural extensions for a full
quantitative analysis would be to allow for uncertainty on the growth rate of TFP or on sector-specific productivity
in a multi-sector economy, both of which display high volatility in the data.

28



persistence and amplification, but less so than in the risk-neutral case. Under risk aversion, house-

holds save more as uncertainty rises, pushing the interest rate down and increasing investment. This

limits the impact of uncertainty on investment and, as a result, the uncertainty trap mechanism is

weaker in that context.23

5.5 Further Applications

To allow for comparison with the uncertainty shock literature, we consider shocks to the preci-

sion of beliefs. Appendix D.1 provides the details of the exercise. Figure 19 in the appendix shows

the impulse response functions of output, the fraction of firms undertaking large investments, and

the precision of beliefs when the standard deviation of beliefs increase by 60% while keeping the

mean constant.24 Output drops by 0.75% in the full model and by 0.25% in the fixed-information

economy. In both economies, γ recovers according to equation (21), but the recovery is faster in

the control economy because the information flow is fixed. Thus, not only TFP shocks but also

exogenous uncertainty shocks get propagated and amplified in our model as they slow down the

learning process.

To evaluate the importance of the information externality, we solve the planner’s problem and

compare the efficient allocation to the competitive equilibrium. The response of the economy to a

5% shock to µ can be found in Appendix D.2. The economy recovers more quickly from this shock

in the planner’s allocation. In this case, as the recession worsens, the planner gathers information

about the fundamental by letting some firms invest. Because of the decline in uncertainty, waiting

becomes less attractive and the economy starts to recover. This suggests that policy interventions

can have a sizable welfare impact in our environment.

6 Conclusion

We develop a theory of endogenous uncertainty and business cycles that combines two forces:

higher uncertainty about economic fundamentals deters investment, and uncertainty evolves en-

dogenously because agents learn from the actions of others. The interaction between investment

and uncertainty leads to uncertainty traps: episodes in which high uncertainty leads firms to delay

investment, further raising uncertainty. In the unique equilibrium of the model, the economy fluc-

tuates between a high-activity/low-uncertainty regime and a low-activity/high-uncertainty regime

and is subject to strong non-linear dynamics in which large shocks can have near permanent effects.

To explore the robustness of this mechanism, we embed it into a business cycle model. Uncer-

tainty traps survive in that context and we find that recessions may become substantially deeper

and longer relative to a framework with fixed exogenous uncertainty. The model improves on the

RBC framework by generating i) increased persistence in output growth, ii) non-linear response

23We also use this extended model to perform a wedge decomposition and find that a negative shock to θ manifests
itself mostly in a negative labor wedge on impact, followed by a mild deterioration in the investment wedge.

24This shock to γ corresponds to a movement from its steady-state to its lower bound.
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to shocks, and iii) negative skewness in aggregates. Furthermore, our simulations suggest that

optimal policy interventions could lead to faster recoveries.

We believe that the novel channel proposed in this paper is important for several reasons.

First, the emphasis on subjective uncertainty — and beliefs about fundamentals in particular —

implies that not only exogenous volatility shocks, but also other sources of uncertainty, matter for

the economy. Thus, we view recent empirical work using survey data on forecasts or consumer

and business expectations as an important step towards a more complete understanding of the

role of uncertainty in business cycles. Second, we believe that our framework may be useful as

a theoretical benchmark for empirical and quantitative studies seeking to estimate the direct and

feedback effects of uncertainty on economic activity. Despite the multiplicity of regimes and strong

non-linearities, the model features a single competitive equilibrium, which makes it amenable to

applied work. Third, we have shown that allowing uncertainty to fluctuate endogenously may lead

to a significant propagation and amplification mechanism. The type of non-linearities and the

multiplicity in regimes that we obtain may be of broader interest for business cycle modeling in

general and could also shed light on some particularly large historical downturns.

For the sake of clarity, we have exposited the mechanism in a purposely simple framework, but

a number of generalizations may be worth investigating. In particular, it would be interesting to

understand how uncertainty traps interact with frictions that could magnify their impact, such as

financial frictions, demand externalities or belief heterogeneity. A full quantitative evaluation of

the model is also needed. We leave these questions to future research.
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Barro, R. J. and J. F. Ursúa (2012): “Rare Macroeconomic Disasters,” Annual Review of

Economics, 4, 83–109.

Benhabib, J., P. Wang, and Y. Wen (2015): “Sentiments and Aggregate Demand Fluctua-

tions,” Econometrica, 83, 549–585.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1992): “A theory of fads, fashion, custom,

and cultural change as informational cascades,” Journal of political Economy, 992–1026.

——— (1998): “Learning from the Behavior of Others: Conformity, Fads, and Informational Cas-

cades,” The Journal of Economic Perspectives, 12, pp. 151–170.

Bloom, N. (2009): “The Impact of Uncertainty Shocks,” Econometrica, 77, 623–685.

Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. Terry (2012): “Re-

ally Uncertain Business Cycles,” Nber working paper no.18245, NBER.

31



Caplin, A. and J. Leahy (1993): “Sectoral shocks, learning, and aggregate fluctuations,” The

Review of Economic Studies, 60, 777–794.

Carlsson, M. (2007): “Investment and Uncertainty: A Theory-based Empirical Approach,” Ox-

ford Bulletin of Economics and Statistics, 69, 603–617.

Chamley, C. (1999): “Coordinating regime switches,” The Quarterly Journal of Economics, 114,

869–905.

——— (2004): “Delays and equilibria with large and small information in social learning,” European

Economic Review, 48, 477 – 501.

Chamley, C. and D. Gale (1994): “Information revelation and strategic delay in a model of

investment,” Econometrica: Journal of the Econometric Society, 1065–1085.

Cogley, T. and J. M. Nason (1995): “Output Dynamics in Real-Business-Cycle Models,” The

American Economic Review, 85, pp. 492–511.

D’Erasmo, P. N. and H. J. M. Boedo (2011): “Intangibles and endogenous firm volatility over

the business cycle,” manuscript, University of Virginia.

Dixit, A. K. and R. S. Pindyck (1994): Investment under uncertainty, Princeton university

press.

Farmer, R. (2013): “Animal Spirits, Financial Crises and Persistent Unemployment,” Economic

Journal, 123, 317–340.

Fernald, J. G. (2014): “A Quarterly, Utilization-Adjusted Series on Total Factor Productivity,”

Manuscript, Federal Reserve Bank of San Francisco.

Foster, A. D. and M. R. Rosenzweig (1995): “Learning by Doing and Learning from Others:

Human Capital and Technical Change in Agriculture,” Journal of Political Economy, 103, pp.

1176–1209.

Gabaix, X. (2012): “Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in

Macro-Finance*,” The Quarterly journal of economics, 127, 645–700.
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A Uncertainty and Business Cycles

As mentioned in the introduction, we adopt the general concept of Bayesian uncertainty, which,

besides encompassing time-varying volatility, allows for other sources of uncertainty. Our model

focuses, in particular, on a specific source of uncertainty, namely subjective uncertainty about

aggregate TFP, which arises because of incomplete information and learning. The objective of this

section is to provide measures that capture this subjective aspect of uncertainty and compare them

to proxies already used in the literature.

Measures of uncertainty

To capture the subjective aspect of uncertainty, Figure 9 proposes measures derived from asset

prices or based on forecasting data and surveys.

We begin with two measures commonly used in the literature. Panel (a) presents the VXO

from the Chicago Board Options Exchange.25 It provides an index of the market expectations for

stock market volatility over the next 30-day period and is constructed as the implied volatility

from option prices. To the extent that aggregate TFP affects firm revenues, the type of uncertainty

that we consider should be priced in options. The VXO thus captures part of our uncertainty, but

is, however, an imperfect measure as it only includes uncertainty within the next 30 days, while

investment decisions are likely to pay off further in the future. The VXO also reflects unrelated

movements in volatility and risk premia. Panel (b) shows the uncertainty measure proposed by

Jurado et al. (2015). To construct this measure, the authors estimate a factor-augmented forecast-

ing model with time-varying volatility, and compute the volatility of the unforecastable component

of the future value of a macroeconomic series. The data presented here is an average of uncertainty

about the 12-month ahead value of a large number of macroeconomic series. Being a measure

of ex-ante forecast error, this series captures the notion of Bayesian uncertainty. However, being

derived from a factor model with time-varying volatility, it only reflects our notion of subjective

uncertainty to the extent that this type of uncertainty may permeate to volatility in decisions.

Because of the imperfect nature of the series presented above, we now offer measures that

attempt to isolate more accurately the uncertainty featured in our model. Panel (c) displays

data from the Survey of Professional Forecasters (SPF). In this survey, each forecaster reports the

distribution of output growth they anticipate at different horizons. The probability distribution

is then averaged across forecasters under the label “mean probability forecasts”. We compute the

standard deviation of this average distribution over time as a measure of uncertainty about one-year

ahead real output growth (in percentage). With the minor caveat that it represents uncertainty in

aggregate output growth instead of TFP, this series arguably provides the best empirical counterpart

to the uncertainty featured in our model, as it reflects uncertainty in subjective beliefs about

aggregates shared across agents. Finally, the Michigan Survey of Consumers proposes a number

25The VXO is an index similar to the VIX, except that it is based on the S&P100 instead of the S&P500. Its
main advantage is to cover the period 1986-2015 while the VIX only started in 1990.
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Figure 9: Various measures of uncertainty

of measures that reflect uncertainty as perceived by US households. Specifically, Panel (d) shows

the fraction of respondents who answer “uncertain future” as a reason for why it is bad time to

buy major household goods. Being based on a subjective assessment of uncertainty by individuals,

this series is harder to interpret in a quantitative sense. It may, however, best capture the concept

of uncertainty as perceived by individuals and might be the best predictor of consumption and

investment decisions.

Shaded periods in Figure 9 are NBER recessions. All the presented series are countercyclical

and increase during recessions. Interestingly, the two measures that best capture the notion of

subjective uncertainty, in Panels (c) and (d), tend to display higher persistence. The measure from

the Michigan Survey, in particular, has declined slowly since the 2007-2009 recession and, as of

2015:Q1, has not fully recovered to its pre-recession level.

Table 3 below presents various statistics about these series. The first row reports average

uncertainty over recession quarters relative to average uncertainty during expansion quarters (i.e.,

non-recession) using various measures of uncertainty; the second and third rows report, respectively,
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VXO Jurado et al. (2015) SPF Michigan Survey

H1 H3 H12 GNP GDP Goods Cars

All Recessions 1.56 1.25 1.22 1.12 1.10 1.06 1.95 1.69
Mild Recessions 1.37 1.06 1.05 1.01 1.06 1.05 1.61 1.65
Deep Recession 1.75 1.38 1.34 1.20 1.11 1.06 2.18 1.72

Notes: This table reports the ratio of average uncertainty during recession quarters over non-recession quarters. Recession
quarters follow the NBER definition. Recessions are classified as mild or deep according to whether the peak-through fall in
TFP is above or below the the median peak-through fall in TFP across all recessions for which uncertainty data is available.
According to this definition, mild recessions are those starting in 1960:Q2, 1969:Q4, 1990:Q3, and 2001:Q1, while deep recessions
are those starting in 1973:Q4, 1980:Q1, 1981:Q3, and 2007:Q4. The VXO measure is available over 1986Q1-2014Q2. The H1
(1-month), H3 (3-month) and H12 (one-year) ahead forecast error measures are available from 1960:Q3-2014:Q4. The SPF-
GNP measure is available from 1981:Q3-1991:Q4, and the SPF-GDP measure is available from 1992:Q1-2015:Q1. The Michigan
Survey measures are available from 1960:Q1-2015:Q1 and include the responses to why it is not a good time to buy either cars
or large household goods. See the explanation of Figure 9 for a description of each measure.

Table 3: Average uncertainty in recessions relative to expansions

average uncertainty during mild and deep recessions relative to expansion quarters. We see that

these measures of subjective uncertainty are higher during recessions, and that uncertainty is on

average larger during deep recessions than during mild recessions.

Comparison with cross-sectional measures

Since the uncertainty-driven business cycle literature often considers time-varying idiosyncratic

volatility as a source of uncertainty, measures of cross-sectional dispersion are frequently used as

a proxy. Among the most widely used measures is the cross-sectional dispersion of sales growth

rates (Bloom, 2009), but other measures of cross-sectional dispersion have also been shown to be

countercylical: output and productivity (Kehrig, 2011), prices (Vavra, 2014), employment growth

(Bachmann and Bayer, 2014), and business forecasts (Bachmann et al., 2013).

Since we focus on aggregate uncertainty and because agents in our model share common beliefs,

our model produces little variation in the cross-section, with the exception of the dispersion of

investment rates which are procyclical in our model as in the data (Bachmann and Bayer, 2014).

Consequently, these cross-sectional measures are in general inadequate to capture the type of un-

certainty that we consider. In fact, this lack of variation in the cross-section is an important point

of our argument, as we show that uncertainty may matter and impede economic recovery even

when cross-sectional measures have returned to normal.

B Comparison with an RBC Model and Data

In this section, we compare some predictions of our extended framework to a standard RBC

model and provide some empirical evidence for some key features of our mechanism. The tables

and figures of this section are discussed in the body of the text.

The RBC model that we use is the standard neoclassical growth model without adjustment
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costs and with preferences given by

E

∞∑

t=0

βt

[

log (Ct)−
L1+ν
t

1 + ν

]

,

with ν = 0.25 for a Frisch elasticity of 4. Other parameters, including the stochastic process

governing the dynamics of aggregate productivity θ, are the same as in our benchmark calibration.

Table 4 lists the parameters.

Parameter Value

Time period month
Total factor productivity A = 1

Discount factor β = (0.95) 1/12

Persistence of fundamental ρθ = (0.876)1/12

Long-run standard deviation of fundamental σθ = 0.03
Share of capital in production α = 0.4

Depreciation rate δ = 1− (0.894)1/12

Disutility of labor ν = 0.25

Table 4: Parameter values for the RBC model

B.1 Persistence

Figure 10 shows the autocorrelogram of output growth and TFP growth in the data, in the full

model and in the RBC model.26

B.2 Non-linearity

This section contains impulse response functions from the model and the RBC framework

together with impulse responses from VARs estimated on the US data. Figure 11 shows the

impulse responses of output to shocks to productivity θ in the benchmark model and an RBC

model. Figure 12 shows the path of GDP centered at the peak of each recession. Blue curves

correspond to high-TFP fall recessions, while brown lines correspond to low-TFP fall recessions.

Figure 13 shows the impulse responses from the two VARs described in section 5.3.

26Panel (b) is similar when we use the version of the full model with risk-aversion and variable labor.
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Notes: (a) GDP is the detrended (linear) log of the seasonally adjusted Bureau of Economic Analysis real GDP from 1960:Q1
to 2014:Q2. TFP is from Fernald (2014), linearly detrended and seasonally adjusted by removing quarterly dummies; (b) TFP
is drawn from the calibrated process, which is the same in both models. The full model is the benchmark model simulated with
θ shocks only to allow comparison with the RBC model. The RBC model is calibrated as in Appendix B.

Figure 10: Autocorrelogram of output and TFP

Notes: (a) Impulse responses of output to shocks in θ in the benchmark model (b) Impulse responses of output to shocks in θ
in an RBC model calibrated as in Appendix B

Figure 11: Impulse responses in the benchmark model and the RBC model
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Notes: The blue curves represent NBER recessions with TFP declines above median (in absolute value) over the period 1960-
2014, while the brown curves present recessions with TFP declines below median. The curves display the detrended (linear)
log of real GDP for each recession, centered at the preceding peak.

Figure 12: NBER recessions over 1960-2014 classified according to TFP falls

Notes: Impulse responses to a minus one-standard deviation TFP shock (3.02% on impact) in a bivariate VAR of TFP and
output with TFP ordered first. The data is in logs and detrended using a linear trend over 1960-2014. It includes the 8
NBER recessions over the period 1960-2014. Each recession is included from its peak plus five additional years. Panel (a)
reports the response of the VAR estimated for the 4 recessions with large TFP declines: 1973Q4-1975Q1, 1980Q1-1980Q3,
1981Q3-1982Q4 and 2007Q4-2009Q2. Panel (b) reports the response of the VAR estimated for the 4 recessions with small TFP
declines: 1960Q2-1961Q1, 1969Q4-1970Q4, 1990Q3-1991Q1 and 2001Q1-2001Q4. The error bands are computed by bootstrap
and correspond to +/- 1 standard deviation around the point estimates.

Figure 13: Impulse response from the estimated VAR
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C Sensitivity Analysis

This appendix shows how economies with different parameters respond to the main shock of

Section 5. In all cases, the parameters are as in table 1 except if stated otherwise. The figures of

this section are discussed in the body of the text.

C.1 Precision of signals

Figure 14 and 15 show the response of output to a 5% negative shock to µ when γx and γy vary.

Figure 14: Impact of a -5% shock to µ with various precisions of the individual signal γx

Figure 15: Impact of a -5% shock to µ with various precisions of the public signal γy

C.2 Dispersion of fixed costs

Figure 16 shows the response of output to a 5% negative shock to µ when σf varies.

Figure 16: Impact of a -5% shock to µ with various dispersions of fixed costs σf
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C.3 Destruction of investment opportunities

We extend the benchmark model to allow for the destruction of investment opportunities. We

assume that a firm with an opportunity loses it with probability q every period. Equation 16, the

value of a firm with an opportunity that decides to wait, therefore becomes

V W
1 (µ, γ,K,Q, k) = max

ic1∈[i,i]
E

{

−pc (ic1) k + β

(
(
1− q

)
ˆ

V1

(
µ′, γ′,K ′, Q′, k′, f ′

)
dF
(
f ′
)
)

+ qV0 (µ, γ,K,Q, k)

∣
∣
∣
∣
µ, γ

}

Similarly, we need to adjust the laws of motion of Q to

Q′ = (1− δ + ic0) q (K −Q) + (1− δ + ic1) (1− n)Q
(
1− q

)
+ (1− δ + i1) qnQ.

To evaluate the impact of the destruction of opportunities on our quantitative result, we solve the

competitive equilibrium for various values of q and plot the response of output to a µ shock in each

equilibrium. As we can see in Figure 17, q needs to reach very high levels to substantially affect

the impulse response.

Figure 17: Impact of a -5% shock to µ with various probabilities of opportunity destruction q

C.4 Risk aversion and variable labor

Figure 18 shows the response of the economy to a 5% negative shock to µ when the household

is endowed with log preferences and a preference for leisure. The preferences of the household are

E

∞∑

t=0

βt

[

log (Ct)−
L1+ν
t

1 + ν

]

and we set ν = 0.25 for a Frisch elasticity of 4. As we can see in Figure 18, the uncertainty traps

mechanism still generates a longer downturn.
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Notes: Impact of a -5% shock to µ on an economy with risk aversion and variable labor. The solid curves show the evolution

of the economy according to the full model while the dashed curves show the evolution of a control economy in which the flow

of public information is fixed at its steady-state level.

Figure 18: Impact of a shock in an economy with risk-aversion and variable labor
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D Further Applications

D.1 Uncertainty shocks

Figure 19 displays the impact of an uncertainty shocks on the economy. We model these shocks

as exogenous zero-probability events that raise uncertainty and that agents do not anticipate.

Notes: Evolution of the economy after an exogenous 60% increase in the standard deviation of the prior. The solid curve

shows the evolution of the full model while the dashed curve shows the evolution of a control economy in which the flow of

public information is fixed at its steady-state level.

Figure 19: Impact of an exogenous uncertainty shock
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D.2 Social planner

Figure 20 shows the response of the economy to a 5% negative shock to µ in the competitive

equilibrium and in the planner’s allocation.

Notes: Impact of a -5% shock to µ. The solid curves shows the evolution of the competitive equilibrium while the dashed

curves show the evolution of the planner’s allocation.

Figure 20: Impact of a shock in the competitive equilibrium and the planner’s allocation
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E Data Appendix

This section details the different data sources that we use for the measurement of uncertainty

and for the calibration.

• Our series for Total Factor Productivity in the US is the quarterly Business Sector TFP,

adjusted for labor quality from Fernald (2014) over the period 1947:Q2-2013:Q2, seasonally

adjusted using quarterly dummies.

• We use the quarterly Real GDP series from the Bureau of Economic Analysis over the period

1960:Q1-2014:Q2 in constant prices, seasonally adjusted.

• We use the quarterly series from Compustat over the period 1975:Q1-2011:Q4. We define

capital as the variable “Property, Plant and Equipment - Total (Gross) - Quarterly” (PPE).

We drop all firms outside of manufacturing and only keep firms with observations throughout

the entire sample. Investment is defined as the change in PPE between two quarters.

• We use the mean probability forecasts from the Survey of Professional Forecasters (PRGDP)

which provides the mean responses for the probability that annual-average over annual-

average percent change in real GDP falls in particular bins. The time series are at quarterly

frequency and cover the period 1992:Q1-2015:Q1. We also use the real GNP series over the

period 1981:Q3-1991:Q4 in Table 3.

• We use the uncertainty series H1, H3 and H12 constructed by Jurado et al. (2015) over the

period 1960:Q3-2014:Q4.

• We use the VXO time series from the Chicago Board Options Exchange over the period

1986:Q1-2014:Q2 averaged over monthly periods.

• We use the Michigan Survey of Consumers over the period 1960:Q1-2015:Q1 and construct

series with the number of respondents answering “Uncertain Future” as the main reason why

it is a bad time to purchase big household goods.
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F Limit economy when N → ∞ (ONLINE APPENDIX)

In the baseline model introduced in part 2, firms face the same ex-ante probability of investing.

Yet, the aggregate number of investing firms N is random because of the finiteness in the number

of firms. This sample risk is of no relevance in respect to the uncertainty trap mechanism that we

propose. We thus take the limit N → ∞ in part 4, so that the fraction of investing firms becomes

a deterministic function of the state variables (µ, γ). This section exposes in detail how this limit

is to be taken and how the limit economy is defined.

The only potential difficulty that we face as N → ∞ is that the social learning channel could

become fully revealing. To be more precise, if we kept the precision of each individual signal γx

constant, a law of large number would apply and XN ≡ 1
N

∑N
j=1 xj → θ. The fundamental θ would

be revealed for sure and no uncertainty would remain in the economy.

Instead, we assume that γx
(
N
)
evolves with N in the following manner,

γx
(
N
)
= γx/N. (22)

This assumption captures the idea that the information gathered by each agent is proportional to

its size. Possible microfoundations may include: i) the amount of information is proportional to

the market size of the firm, its number of clients, etc; ii) agents use similar sources of information

and information is correlated, implying that the precision of information brought by each agent

decreases with N .

Specification (22) displays the great advantage that the Bayesian updating rules for beliefs

do not depend on N . In particular, the learning dynamics follow the same rule as in the finite

N case, thus ensuring that the intuition behind uncertainty traps remains the same. We define

n (µ, γ) = N (µ, γ) /N the fraction of investing firm. The law of motion for beliefs satisfy

µ′ = ρθ
γµ+ γyY +Nγx

(
N
)
X

γ + γy +Nγx
(
N
) = ρθ

γµ+ γyY + nγxX

γ + γy + nγx
, (23)

γ′ =

(

ρ2θ
γ + γy +Nγx

(
N
) +

1− ρ2θ
γθ

)−1

=

(
ρ2θ

γ + γy + nγx
+

1− ρ2θ
γθ

)−1

, (24)

where X = 1
N

∑N
j=1 xn ∼ θ +N

(

0, (nγx)
−1
)

. The number of investing firms is now deterministic

as

n =
N

N
=

1

N

N∑

j=1

1I (fj ≤ fc (µ, γ)) −→a.s
p (µ, γ) = F (fc (µ, γ)) ,

by a law of large number since the investment costs {fj}j≥1 are i.i.d and distributed according to

F .

We may now define an equilibrium for the limit economy:

Definition 4. A recursive equilibrium of the limit economy consists of a policy function fc (µ, γ),
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value functions V (µ, γ, f), V W (µ, γ), V I (µ, γ), laws of motions for aggregate beliefs {µ′, γ′}, and

a fraction of investing firms n (µ, γ) , such that

1. The value function V (µ, γ, f) solves (6), with V W (µ, γ) and V I (µ, γ) defined according to

(7) and (8), with the corresponding cutoff rule fc (µ, γ);

2. The aggregate beliefs (µ, γ) evolve according to (23) and (24);

3. The number n (µ, γ) of firms that invest is given by n (µ, γ) = F (fc (µ, γ)).

Since the limit economy is in many aspects simpler than the economy considered in part 2, all

the lemmas and propositions derived in appendix G extend to this new environment. Given the

similarity in the arguments, the proofs are omitted.

G Proofs (ONLINE APPENDIX)

G.1 Assumptions and Definitions

It is useful for the propositions and definitions below to define the following mapping which

sums over the distribution of investment costs:

Definition 5. Let S be the mapping such that

[S (G)] (µ, γ) =

ˆ

G (µ, γ, f) dF (f) ,

where G : R3 −→ R and S (G) : R2 −→ R.

Definition 6. Define the following bounds and set:

1. Let γ be the unique strictly positive solution of

γ =

(
ρ2θ

γ + γy +Nγx
+
(
1− ρ2θ

)
σ2
θ

)−1

= Γ
(
N, γ

)
, (25)

and γ the unique strictly positive solution of

γ =

(
ρ2θ

γ + γy
+
(
1− ρ2θ

)
σ2
θ

)−1

= Γ
(
0, γ
)
, (26)

2. Let S = [µ, µ]×
[
γ, γ

]
, where µ and µ are some arbitrary but large bounds on µ.

We define the set P in which the probability p (µ, γ) = F (fc (µ, γ)) that a firm invests will lie:

Definition 7. Let P be the set of twice-differentiable functions p : (µ, γ) ∈ S −→ R such that

p has bounded first and second derivatives: ∀ (µ, γ) ∈ S, |pµ (µ, γ)| ≤ pµ , |pγ (µ, γ)| ≤ pγ , and

|pxy (µ, γ)| ≤ pxy for (x, y) ∈ {µ, γ}2.
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We also define the set G in which the firm’s surplus of waiting compared to investing will lie:

Definition 8. Let G be the set of continuous functions G of (µ, γ, f) ∈ S ×
[
f, f

]
−→ R such that

1. G is bounded by G,

2. G is weakly decreasing and convex in µ,

3. G is weakly decreasing in γ,

4. G is Lipschitz continuous of constant 1 in f , and

5. G is such that [S (G)] (µ, γ) is twice-differentiable with bounded first and second derivatives:

∀ (µ, γ) ,
∣
∣ ∂
∂x [S (G)] (µ, γ)

∣
∣ ≤ Gx and

∣
∣
∣

∂
∂xy [S (G)] (µ, γ)

∣
∣
∣ ≤ Gxy for (x, y) ∈ {µ, γ}2.

We define the mapping T that corresponds to the waiting decision of a firm in partial equilibrium,

taking a probability of investment for other firms p ∈ P as given:

Definition 9. For a given probability of investment p ∈ P, define the mapping T p : G ∈ G −→ G

[T pG] (µ, γ, f) = max {Cp (G (µ, γ, f)) , 0} ,

where Cp (G) is the value in the continuation region, defined by:

[Cp (G)] (µ, γ, f) =
1

a
e−aµ+ a2

2 (
1
γ
+ 1

γx
)
(

1− βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2
θ)σ

2
θ

)

−
1

a
(1− β) + f − βωf + βEp {[S (G)] (µ+ s (N, γ) ε,Γ (N, γ))} .

In the recursive equilibrium from 1, the probability that each firm invests satisfies p (µ, γ) =

F (fc (µ, γ)). Therefore, we define the following mapping:

Definition 10. Let M be the mapping from p : P −→ P such that, for all µ, γ ∈ S,

(Mp) (µ, γ) = F (fp
c (µ, γ))

where fp
c (µ, γ) is defined by

fp
c (µ, γ) = −

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

)

+
1

a
(1− β) + βωf − βEp

{
[S (Gp)]

(
µ′, γ′

)}
,

where Gp is the unique fixed point of the mapping

Gp = T pGp.
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Assumption 1. The parameters and bounds are chosen so that

1 > βea(1−ρθ)µ−
a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ .

This assumption is a necessary condition to guarantee that the real option channel is active.

The first two terms in the exponential require that the mean reversion in µ and γ is small enough

not to dominate the wait-and-see effects. A persistence in the fundamental ρθ sufficiently close to

1 ensures that these terms are small. The last term requires that the variance in the fundamental

σ2
θ is not too large to prevent risk aversion to eliminate the option value of waiting.

Assumption 2. F is a continuous, twice differentiable cumulative distribution function with

bounded first and second derivatives. F has bounded support
[
f, f

]
, mean ωf and standard de-

viation σf .

These regularity conditions on the cumulative distribution of investment costs guarantee that

the equilibrium number of investing firms N (µ, γ) ∼ Bin
(
N,F (fc (µ, γ))

)
is well-behaved.

G.2 Two Useful Lemmas

Lemma 1. For a given N , mean beliefs µ follow an AR(1) process with time-varying volatility s,

µ
′

= ρθµ+ s (N, γ) ε,

where s (N, γ) = ρθ

(
1
γ − 1

γ+γy+Nγx

) 1
2
and ε ∼ N (0, 1).

Proof. We use (4), (3) and (2) to compute the mean and the variance of the next period mean

beliefs µ′ given current-period information, (µ, γ), and a given realization of N :

E
[
µ′|µ, γ,N

]
= ρθµ,

V
[
µ′|µ, γ,N

]
= ρ2θ

(
1

γ
−

1

γ + γy +Nγx

)

.

Being the sum of normally distributed variables, µ′ is also normally distributed and can therefore

be expressed by µ
′

= ρθµ+ ρθ

(
1
γ − 1

γ+γy+Nγx

) 1
2
ε with ε ∼ N (0, 1).

Lemma 2. The precision of next-period beliefs, γ′, increases with N and γ. For a given N , there

exists a unique positive fixed point in the law of motion for the precision of beliefs γ′ = Γ (N, γ).

Proof. The fact that γ′ increases with N and γ follows by inspection of (5). Given N , uniqueness

of a positive fixed point follows from noting that the all fixed points γ must satisfy:

0 = γ2 + γ (γy +Nγx)−
1

σ2
θ

(γy +Nγx) .
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Because the quadratic function of γ on the right-hand side is negative at γ = 0, it necessarily has

a unique positive root.

G.3 Propositions

We start in Proposition 1 by demonstrating that the individual firm problem is well defined

for a given p (µ, γ) and characterize its properties. Then we show that there is a unique p (µ, γ) in

Proposition 2.

Proposition 1. For sufficiently low volatility and high persistence of the fundamental process such

that Assumption 1 is satisfied , given a random number of investing firms N ∼ Bin
(
N, p (µ, γ)

)

for some p ∈ P, and for γx sufficiently low, there exists a unique solution to the firm’s problem and

the resulting cutoff fc (µ, γ) is strictly increasing in µ and γ.

Proof. First, we demonstrate that the difference between the value of waiting and investing is

uniquely determined. Then, we characterize properties of that difference that guarantee the exis-

tence of the cutoff and its properties.

To proceed it is useful to define some notation. Note that the distributions of µ′ and γ′ defined

in (4) and (5) depend on the random variable N with binomial distribution given by (11). In

particular, the probability that N firms invest when the total number of firms in the economy is

N and the individual probability of investing is p is

πN
N (p) =

(
N

N

)

pN (1− p)N−N . (27)

Since πN
N (p) is a polynomial in p of degree N , it is bounded on [0, 1]. Denote π its upper bound,

as well as πp (πpp) the upper bound of its first (second) derivative.

For a given value function V , we define the surplus of waiting G (µ, γ, f) ≡ V (µ, γ, f) −
[
V I (µ, γ)− f

]
. In particular, using the definition of V from (6), G must satisfy the recursive

relation

G (µ, γ, f) = max
{
βE
[
G
(
µ′, γ′, f ′

)
+ V I

(
µ′, γ′

)
− f ′

]
−
(
V I (µ, γ)− f

)
, 0
}
.

Substituting the stopping value V I (µ, γ) = 1
a

(

1− e
−aµ+ a2

2

(
1
γ
+ 1

γx

))

, using (1) and (5) and some

manipulations give

G (µ, γ, f) = max {Cp (G (µ, γ, f)) , 0} , (28)

where Cp is the value in the continuation region, defined by:
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[Cp (G)] (µ, γ, f) =
1

a
e−aµ+a2

2 (
1
γ
+ 1

γx
)
[

1− βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2
θ)σ2

θ

]

−
1

a
(1− β) + f − βωf + βEp,f [G (µ+ s (N, γ) ε,Γ (N, γ) , f ′)] . (29)

In other words, G is a fixed point of the mapping T p from Definition 9.27 The expectation in the

last term is with respect to the shock ε to average beliefs, the number of investing firms N and the

fixed cost f ’. Notice for future reference that the term Ep,f [G (µ+ s (N, γ) ε,Γ (N, γ) , f ′)] is equal

to Ep {[S (G)] (µ+ s (N, γ) ε,Γ (N, γ))}. It depends on the individual probability of investing, p:

Ep {[S (G)] (µ+ sε,Γ)} =

N∑

N=1

πN
N (p) gN (µ, γ) , (30)

where

gN (µ, γ) ≡

ˆ

[S (G)] (µ+ s (N, γ) ε,Γ (N, γ)) dΦ (ε) (31)

where Φ (ε) is the CDF of a standard normal, and where Γ = Γ (N, γ).

Note that T p trivially satisfies the Blackwell conditions for a contraction so that, if it is a well

defined mapping from G to G, it admits a unique fixed point. To prove uniqueness of T p it remains

to show that it is indeed a well defined mapping from G to G, i.e. that if G is an element of the set

G defined in (8) then so is T pG. We do so next:

1. T pG is bounded and continuous: continuity follows easily from the definition of the

mapping T p as it is the maximum of two continuous functions. Boundedness follows from

the fact that we can bound Cp (G) as follows:

|[Cp (G)] (µ, γ, f)| ≤
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1 + βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

)

+
1− β

a
+ f + βωf + βG.

Thus, T pG is bounded as long as G is chosen large enough that

G ≥ (1− β)−1

(
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1 + βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

)

+
1− β

a
+ f + βωf

)

.

27Note that G is defined for µ over the interval
[
µ, µ

]
but the expectation for µ′ is computed using a normal

distribution with unbounded support. Therefore, for the expectation term in the second line of (29), we extend the
definition of G to values of µ not in

[
µ, µ

]
by assuming that the bounds are absorbing, i.e., that ∀µ > µ, G (µ, γ, f) =

G (µ, γ, f) and ∀µ < µ, G (µ, γ, f) = G
(
µ, γ, f

)
. This assumption guarantees the validity of our proofs. In numerical

simulations, the bounds can be chosen to be sufficiently large so as to have no impact on the results.
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2. T pG is decreasing with µ: within the continuation region,

∂

∂µ
[Cp (G)] (µ, γ, f) = −ae

−aµ+ a2

2

(
1
γ
+ 1

γx

) [

1− βea(1−ρθ)µ−
a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

+e
−aµ+ a2

2

(
1
γ
+ 1

γx

) [

−a (1− ρθ) βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

+βEp

[
∂

∂µ
S (G)

]

+ β
∂p

∂µ

∂

∂p
Ep {[S (G)] (µ+ sε,Γ)} . (32)

We must prove that this expression is negative. The first term is negative and bounded away

from 0 since

−ae
−aµ+ a2

2

(
1
γ
+ 1

γx

) [

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

6 −ae
−aµ+ a2

2

(
1
γ
+ 1

γx

) [

1− βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

]

< 0

The second term is always negative. The third term, ∂
∂µS (G), is also negative because G ∈ G.

To conclude, we show that the last term is O(γx) and therefore negligible compared to the

first term, so that ∂
∂µ [Cp (G)] < 0 when γx is small. For that, note first that from Definition

7 the term ∂p
∂µ is bounded above by some constant pµ. Therefore, it remains to show that

∂
∂pEp {[S (G)] (µ+ sε,Γ)} = O (γx). For that, let ΠN

N (p) =
∑N

n=1 π
N
n (p), and sum by parts

in (30) to write:

Ep {[S (G)] (µ+ sε,Γ)} = gN (µ, γ)−
N−1∑

N=1

ΠN
N (p) · (gN+1 − gN ) (µ, γ) , (33)

which implies:

∂

∂p
Ep {[S (G)] (µ+ sε,Γ)} = −

N−1∑

N=1

[
∂

∂p
ΠN

N (p)

]

· (gN+1 − gN ) (µ, γ) . (34)

Note in addition that

|(gN+1 − gN) (µ, γ)| =

ˆ

[S (G) (µ+ s (N + 1, γ) ε,Γ (N + 1, γ))

−S (G) (µ+ s (N, γ) ε,Γ (N, γ))] dΦ(ε)

≤ Gµ |(s (N + 1, γ)− s (N, γ))|+Gγ |Γ (N + 1, γ)− Γ (N, γ)| ,

where the last line follows from the fact that G has bounded derivatives. From the expressions

for s and Γ obtained in lemmas (1) and (2) and using the concavity of s, we note that the

52



terms in absolute value on the second inequality are O (γx),

|s (N + 1, γ)− s (N, γ)|

≤ sN (N, γ) =
ρθ
2

(
1

γ
−

1

γ + γy +Nγx

)
−

1
2 γx

(γ + γy +Nγx)
2

≤
ρθ
2

(
γy

γ (γ + γy)

)
−

1
2 γx
(
γ + γy

)2 ≡ Bsγx = O (γx) ,

|Γ (N + 1, γ)− Γ (N, γ)|

=
ρ2θγx/σ

4
θ

[ρ2θ/σ
2
θ + (1− ρ2θ) (γ + γy +Nγx)] [ρ2θ/σ

2
θ + (1− ρ2θ) (γ + γy + (N + 1) γx)]

6 ρ2θ
γ2

(
γ + γy

)2 γx ≡ BΓγx = O (γx) ,

implies that

|(gN+1 − gN ) (µ, γ)| = O (γx) (35)

and therefore
∣
∣
∣
∂
∂pEp {[S (G)] (µ+ sε,Γ)}

∣
∣
∣ = O (γx), where we have used the fact that

∣
∣
∣
∣

∂

∂p
ΠN

N (p)

∣
∣
∣
∣
≤ Nπp.

3. T pG is decreasing in γ: This follows from the same argument as the one developed above

to show that T pG is decreasing in µ. Following these arguments, we have that

∂

∂γ
[Cp (G)] (µ, γ, f)

6 −
a

2

1

γ2
e
−aµ+ a2

2

(
1
γ
+ 1

γx

) [

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

−β
1

a

a2

2

1− ρ2θ
γ2

e
−aµ+ a2

2

(
1
γ
+ 1

γx

)

ea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

+βEp

[
∂

∂γ
S (G)

]

︸ ︷︷ ︸

≤0

+ β
∂

∂p
Ep {[S (G)] (µ+ sε,Γ)}

︸ ︷︷ ︸

O(γx)

∂p

∂γ
︸︷︷︸

≤pγ

,

where the first term is strictly negative, bounded away from 0,

−
a

2

1

γ2
e
−aµ+ a2

2

(
1
γ
+ 1

γx

) [

1− βea(1−ρθ)µ−
a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

6 −
a

2γ2 e
−aµ+ a2

2
1
γ

[

1− βea(1−ρθ)µ−
a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

so that, for γx small enough, the derivative is strictly negative and bounded away from 0.
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4. T pG is Lipschitz in f of constant 1: Choosing f1 < f2 then from (28) this is trivially

satisfied because

|T pG (µ, γ, f2)− T pG (µ, γ, f1)| ≤ |Cp (G (µ, γ, f2))− Cp (G (µ, γ, f1))|

= |f2 − f1| .

5. T pG is convex in µ: From (32), the second derivative of the continuation value with respect
to µ is:

∂2

∂µ2
Cp (G) = a2e

−aµ+a2

2

(

1
γ
+ 1

γx

)

[

1− βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

]

︸ ︷︷ ︸

≥a2e
−aµ+a2

2
1
γ






1−βe

a(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2
θ)σ2

θ






>0

+βa2 (1− ρ2θ
)
e
−aρθµ+

a2

2

(

ρ2
θ
γ

+(1−ρ2θ)σ
2
θ+

1
γx

)

︸ ︷︷ ︸

>0

+βEp

[
∂2

∂µ2
S (G)

]

︸ ︷︷ ︸

≥0

+ β
∂p

∂µ
︸︷︷︸

≤pµ

∂2

∂p∂µ
Ep {[S (G)] (µ+ sε,Γ)}

︸ ︷︷ ︸

O(γx)

+β
∂2p

∂µ2

︸︷︷︸

≤pµµ

∂2

∂p2
Ep {[S (G)] (µ+ sε,Γ)} ,

︸ ︷︷ ︸

O(γx)

where ∂2

∂p2
Ep {[S (G)] (µ+ sε,Γ)} = O (γx) follows from (34) and the fact that Π′′

N (p) is a

polynomial of degree N − 2 in p and is therefore bounded on [0, 1]. To see that

∂2

∂p∂µ
Ep

[
G
(
µ+ sε,Γ, f ′

)]
= O (γx) ,

note from (33) that

∂

∂µ
Ep {[S (G)] (µ+ sε,Γ)} =

∂gN
∂µ

−
N−1∑

N=1

ΠN
N (p) ·

(
∂gN+1

∂µ
−

∂gN
∂µ

)

(µ, γ) ,

which, taking derivative with respect to p and using (31), gives

∂2

∂p∂µ
Ep {[S (G)] (µ+ sε,Γ)} = −

N−1∑

N=1

∂ΠN
N (p)

∂p
·

(
∂gN+1

∂µ
−

∂gN
∂µ

)

(µ, γ)

Following the same arguments as before, we obtain that

∣
∣
∣
∣

∂gN+1

∂µ
−

∂gN
∂µ

∣
∣
∣
∣

≤ Gµµ |(s (N + 1, γ) − s (N, γ))|

+Gµγ |Γ (N + 1, γ)− Γ (N, γ)| = O (γx) ,
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which completes the proof.

6. [S (T pG)] (µ, γ) is twice-differentiable with bounded first and second derivatives:

Notice, first, that since G ∈ G, then Cp (G) is twice-differentiable in (µ, γ) and linear in f :

Cp (G) =
1

a

[

e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

)]

−
1

a
(1− β) + f − βωf + βEp {[S (G)] (µ+ sε,Γ (N, γ))} .

We show below that investment takes the form of a cutoff rule fp
c (µ, γ) that satisfies f

p
c (µ, γ) =

f − [Cp (G)] (µ, γ, f). Hence, fp
c (µ, γ) is twice-differentiable in (µ, γ) and independent of f .

Therefore,

[S (T pG)] (µ, γ) ≡

ˆ

[T pG] (µ, γ, f) dF (f)

=

ˆ

max {[Cp (G)] (µ, γ, f) , 0} dF (f)

=

ˆ ∞

fp
c (µ,γ)

[Cp (G)] (µ, γ, f) dF (f) .

Since Cp (G) and fp
c are twice-differentiable in (µ, γ), so is S (T pG). To finish the proof,

it only remains to show that the first and second derivatives of S (T pG) are bounded. For

(x, y) = {µ, γ} ,

∂

∂x
S (T pG) =

ˆ fp
c (µ,γ)

−∞

∂

∂x
[Cp (G)] (µ, γ, f) dF (f) .

According to previous results and after some manipulations,

∣
∣
∣
∣

∂

∂µ
[Cp (G)] (µ, γ, f)

∣
∣
∣
∣

≤ ae
−aµ+ a2

2

(
1
γ
+ 1

γx

)
[

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

+a (1− ρθ) e
−aρθµ+

a2

2

(
ρ2θ
γ
+ a2

2 (1−ρ2θ)σ
2
θ+

1
γx

)

+βGµ + βpµπpN
2
γx
(
BsGµ +BΓGγ

)
,

∣
∣
∣
∣

∂

∂γ
[Cp (G)] (µ, γ, f)

∣
∣
∣
∣

≤
a

2

1

γ2
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)
[

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

]

+β
a

2

1− ρ2θ
γ2

e
−aρθµ+

a2

2

(
ρ2
θ
γ
+ a2

2 (1−ρ2θ)σ
2
θ+

1
γx

)

+βGγ + βpγπpN
2
γx
(
BsGµ +BΓGγ

)
.
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Boundedness of the derivatives is guaranteed if

X (γx) + βA (γx)

[

Gµ

Gγ

]

≤

[

Gµ

Gγ

]

⇔ X (γx) ≤ (I − βA (γx))

[

Gµ

Gγ

]

where

A (γx) =

[

1 + pµπpN
2
γxBs pγπpN

2
γxBΓ

pµπpN
2
γxBΓ 1 + pγπpN

2
γxBΓ

]

and

X (γx) =










ae
−aµ+ a2

2

(

1
γ
+ 1

γx

)(

1− βe
a(1−ρθ)µ− a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

)

+ a (1− ρθ) e
−aρθµ+

a2

2

(

ρ2
θ
γ

+a2

2 (1−ρ2θ)σ
2
θ+

1
γx

)

a
2

1
γ2 e

−aµ+ a2

2

(

1
γ
+ 1

γx

)(

1− βe
a(1−ρθ)µ−a2

2

1−ρ2
θ

γ
+a2

2 (1−ρ2θ)σ
2
θ

)

+ β a
2

1−ρ2θ
γ2 e

−aρθµ+
a2

2

(

ρ2
θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ+

1
γx

)










.

Note that the matrix I − βA (γx) satisfies I − βA (γx) −→
γx→0

(1− β) I. Thus, with γx small

enough, the following is satisfied

[I − βA (γx)]

[

Gµ

Gγ

]

≥
1

2
(1− β)

[

Gµ

Gγ

]

.

We can then choose positive bounds
{
Gµ, Gγ

}
such that

[

Gµ

Gγ

]

≥ 2 (1− β)−1X (γx) ≥ 0,

which guarantees the boundedness of the first derivatives. Regarding the second derivatives,

manipulations of a similar nature as above yield bounds
{
Gµµ, Gµγ , Gγγ

}
for the second

derivatives of S (G) as long as γx is small enough.

It remains to show existence and monotonicity of fc (µ, γ) . A firm invests if and only if

[Cp (G)] (µ, γ, f) =
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

)

−
1

a
(1− β) + f − βωf + βEp {[S (G)] (µ+ sε,Γ (N, γ))} ≤ 0,

i.e., when its fixed cost satisfies

f ≤ −
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a(1−ρθ)µ−

a2

2

1−ρ2θ
γ

+ a2

2 (1−ρ2θ)σ
2
θ

)

+
1

a
(1− β) + βωf + βEp {[S (G)] (µ+ sε,Γ (N, γ))} (36)

≡ fp
c (µ, γ)

Notice, furthermore, that fp
c (µ, γ) = f − Cp (G (µ, γ, f)). Thus, the threshold inherits a number
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of properties from the continuation value. In particular, fc (µ, γ) is strictly increasing in µ and γ,

and strictly concave in µ for γx small enough.

Proposition 2. Under assumptions 1 and 2 and for γx small enough, a recursive equilibrium exists

and is unique. The equilibrium p(µ, γ) is increasing in the mean of beliefs µ and the precision γ.

Proof. Proving uniqueness of the recursive equilibrium is equivalent to showing that there is a

unique fixed point p∗ (µ, γ) ∈ P such that Mp∗ = p∗ for the mapping M in Definition 10.

We establish first thatM is a well-defined mapping from P to P. This follows from the definition

of fp
c (µ, γ), which inherits the properties of Cp. In particular, it is twice-differentiable with bounded

first and second derivatives. Under assumption 2, Mp = F (fp
c ) preserves these properties and it is

possible to find bounds on the first and second derivatives of p that are preserved by the mapping

using a similar argument as the one developed in proposition (1).

Next, we show that M defines a contraction from P to P.28 For p1, p2 ∈ P, by the mean value

theorem, the mapping M satisfies

|(Mp2 −Mp1) (µ, γ)| = |F (fp2
c (µ, γ))− F (fp1

c (µ, γ))|

=
∣
∣
∣F ′
(

f̃
)

(fp2
c (µ, γ)− fp1

c (µ, γ))
∣
∣
∣

for some f̃ ∈ [fp1
c (µ, γ) , fp2

c (µ, γ)]. Therefore, if

|fp2
c (µ, γ)− fp1

c (µ, γ)| ≤ Aγx ‖ p2 − p1 ‖ (37)

for some constant A, we reach

|(Mp2 −Mp1) (µ, γ)| ≤ Aγx ‖ F ′
(

f̃
)

‖ · ‖ p2 − p1 ‖, (38)

implying that the mapping M is continuous as long as F ′ is bounded, which is guaranteed by

assumption 2. We can then choose γx such that Aγx ‖ F ′
(

f̃
)

‖< 1 and use (38) to guarantee that

M is indeed a contraction. By the contraction mapping theorem, this implies that the equilibrium

exists and is unique for γx sufficiently small.
Therefore, to prove existence and uniqueness it remains to establish that (37) holds for some

constant A. From the definition of fp
c (µ, γ), the left-hand side of (37) can be expressed as:

|fp2
c (µ, γ) − fp1

c (µ, γ)|

= β |Ep2 {[S (Gp2 )] (µ+ s (N, γ) ε,Γ (N, γ))} − Ep1 {[S (Gp1 )] (µ+ s (N, γ) ε,Γ (N, γ))}|

≤ β |Ep2 {[S (Gp2 )] (µ+ s (N, γ) ε,Γ (N, γ))− [S (Gp1 )] (µ+ s (N, γ) ε,Γ (N, γ))}| (39)

+β |Ep2 {[S (Gp1)] (µ+ s (N, γ) ε,Γ (N, γ))} − Ep1 {[S (Gp1)] (µ + s (N, γ) ε,Γ (N, γ))}| (40)

To prove that (37) holds we will control each term in this expression. We start with the term in

28We cannot prove that M satisfies monotonicity and therefore we cannot apply the Blackwell conditions. Instead,
we directly show that M satisfies the definition of a contraction.
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(40). For any G ∈ G, we can use (36) to write

∣
∣
∣
∣
∣

Ep2 {[S (G)] (µ+ s (N, γ) ε,Γ (N, γ))}

−Ep1 {[S (G)] (µ+ s (N, γ) ε,Γ (N, γ))}

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

N−1∑

N=1

[

ΠN
N (p2)− ΠN

N (p1)
]

· (gN+1 − gN) (µ, γ)

∣
∣
∣
∣
∣
∣

≤ γx
[
BsGµ +BΓGγ

]
N−1∑

N=1

∣
∣
∣Π

N
N (p2)− ΠN

N (p1)
∣
∣
∣

≤ Bγx ‖ p2 − p1 ‖ (41)

where B is some constant. The second line follows from the results established in Proposition 1,

and the third line follows from noting that ΠN
N (p) is a polynomial in p of degree N and therefore

continuous on the compact set [0, 1]. In particular, we can control the term by ‖ ΠN
N (p2) −

ΠN
N (p1) ‖≤‖ ∂

∂pΠ
N
N ‖‖ p2 − p1 ‖.

To conclude, we move to the term in (39). For that, we need to evaluate the norm of ‖

Gp2 −Gp1 ‖. We first consider the term [T p2 (G)− T p1 (G)] (µ, γ, f), starting from some common

function G ∈ G. Assuming w.l.o.g. that

[T p2 (G)] (µ, γ, f) ≥ [T p1 (G)] (µ, γ, f) ,

from the definition of T p it follows that only the next scenarios are possible:

1. [T p2 (G)] (µ, γ, f) = [T p1 (G)] (µ, γ, f) = 0;

2. [T p2 (G)] (µ, γ, f) = [Cp2 (G)] (µ, γ, f), in which case (41) implies

|[T p2 (G)− T p1 (G)] (µ, γ, f)|

≤ β
{
Ep2

{
[S (G)]

(
µ′, γ′

)}
− Ep1

{
[S (G)]

(
µ′, γ′

)}}

≤ βBγx ‖ p2 − p1 ‖ .

Following similar arguments, we can recursively show that, for k > 1,

‖ (T p2)k G− (T p1)k G ‖≤ β
1− βk

1− β
Bγx ‖ p2 − p1 ‖

Since, from Proposition 1, the operator T p is a contraction, we have in the limit that:

‖ Gp2 −Gp1 ‖≤
β

1− β
Bγx ‖ p2 − p1 ‖, (42)

implying

|Ep2 {[S (Gp2)] (µ+ s (N, γ) ε,Γ (N, γ))− [S (Gp1)] (µ+ s (N, γ) ε,Γ (N, γ))}|

≤
β

1− β
Bγx ‖ p2 − p1 ‖ (43)
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Combining (41) with (39) and (40) implies

|fp2

c (µ, γ)− fp1

c (µ, γ)| ≤
1

1− β
Bγx ‖ p2 − p1 ‖

so that (37) indeed holds, implying uniqueness.

Showing that the expected number of investing firms is increasing in the mean of beliefs µ and

in precision γ is equivalent to showing the threshold fp∗
c (µ, γ) is strictly increasing in µ and γ. This

immediately follows from the properties of the continuation value Cp demonstrated in the proof of

the previous proposition.

Proposition 3. Under the conditions of Proposition 2 and for σf small enough, there exists a

non-empty interval [µl, µh] such that, for all µ ∈ (µl, µh), the economy features an uncertainty trap

with at least two regimes γl (µ) < γh (µ). Regime γl is characterized by high uncertainty and low

investment while regime γh is characterized by low uncertainty and high investment.

Proof. In the limit case where the number of firms is large enough that the approximation n =

N/N = F (fc) is valid, we can define the function

ϕn
µ (γ) = Γ (n (µ, γ) , γ)− γ

=

(
ρ2θ

γ + γy + n (µ, γ) γx
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ

where Γ is the law of motion for γ defined in (5). By continuity of n = F (fc (µ, γ)) , the function

ϕn
µ (γ) is continuous in γ. From the definition of

{
γ, γ

}
in (25) and (26), we have that ϕn

µ

(
γ
)
≥

0 ≥ ϕn
µ (γ).

Consider a distribution of fixed investment costs F 1 with mean ωf and standard deviation 1

that satisfies Assumption 2. Let

F σf

(f) = F 1

[(

σf
)−1 (

f − ωf
)

+ ωf

]

be a mean-preserving, rescaled version of that distribution with standard deviation σf . We are

going to show that when σf is low, there exists a range [µl, µh] such that for any µ∗ ∈ (µl, µh), we

can always find two points γ1 < γ2 with γ1, γ2 ∈
(
γ, γ

)
such that ϕn

µ∗ (γ1) < 0 and ϕn
µ∗ (γ2) > 0.

This will imply, by the Intermediate Value Theorem, that there exist two values γ∗l < γ∗h with

γ ≤ γ∗l < γ1 and γ2 < γ∗h ≤ γ such that ϕn
µ (γ

∗
l ) = ϕn

µ (γ
∗
h) = 0, i.e. two distinct stationary points

in the dynamics of precision γ.

An important step in this proof is established in lemma 3 from Appendix H, where we prove

that as σf goes to 0 the cutoff fσf

c corresponding to the variance σf of the fixed-cost distribu-

tion converges uniformly towards some limit f0
c and that the number of investing firms converges

pointwise to the limit n0 (µ, γ) = 1I
(
ωf ≤ f0

c (µ, γ)
)
.

We must first find a range of values for µ in which we are guaranteed to have multiple stationary

59



points for γ. We are going to use the fact that fσf

c is strictly increasing in µ and γ at a bounded rate.

In what follows, we denote Gσf
the general equilibrium surplus of investing for a given dispersion

of costs σf , i.e., T p(σf )Gσf
= Gσf

where Mσf [
p
(
σf
)]

= p
(
σf
)
. Recall the definition:

fσf

c (µ, γ) = −
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βea(1−ρθ)µ−
a2

2

1−ρ2
θ

γ
+ a2

2 (1−ρ2θ)σ
2
θ

)

+(1− β)
1

a
+ βωf − βE

{[

Sσf
(

Gσf
)] (

µ′, γ′
)}

.

Since Gσf
has bounded derivatives, we can find upper and lower bounds for the derivatives of fσf

c

in µ and γ that are strictly positive, as we did in proposition 1 for γx low enough. Denote these

bounds fµ, fµ
and fγ , fγ

. The derivatives are:

0 < f
µ

≤
∂

∂µ
fσf

c (µ, γ) ≤ fµ

0 < f
γ

≤
∂

∂γ
fσf

c (µ, γ) ≤ fγ

Since f0
c is the uniform limit of continuous functions, it is continuous. The limit f0

c may not be

differentiable, but it is bi-Lipschitz continuous with Lipschitz constants
(

f
µ
, fµ

)

and
(

f
γ
, fγ

)

. We

know therefore that for the bounds
[
µ, µ

]
chosen wide enough, we can find a µ ∈

[
µ, µ

]
low enough

such that f0
c (µ, γ) < ωf (remember that ωf is the mean of the fixed cost distribution), and that

for some µ ∈
[
µ, µ

]
high enough, f0

c (µ, γ) > ωf . By the Intermediate Value theorem, we know that

there exists a point µl at which f0
c (µl, γ) = ωf . Since f0

c is strictly increasing in γ, we have that

f0
c

(
µl, γ

)
< ωf . Using the fact that f0

c is bi-Lipschitz continuous, we have the following inequality:

f0
c

(
µ, γ

)
≤ f0

c

(
µl, γ

)
+ fµ · (µ− µl) .

Define µh = µl +
ωf−fc(µl,γ)

fµ

> µl. Then, for any µ ∈ (µl, µh):

f0
c

(
µ, γ

)
≤ f0

c

(
µl, γ

)
+ fµ · (µ− µl) < ωf < f0

c (µ, γ) .

We will now show that the interval (µl, µh) is a range of values for µ in which we are guaranteed to

have two steady-states. Pick any µ∗ ∈ (µl, µh). Then f0
c

(
µ∗, γ

)
< ωf (meaning that n0

(
µ∗, γ

)
= 0)

and f0
c (µ

∗, γ) > ωf (meaning n0 (µ∗, γ) = 1). By continuity of f0
c , we can pick (γ1, γ2) with

γ < γ1 < γ2 < γ, such that f0
c (µ

∗, γ1) < ωf and f0
c (µ

∗, γ2) > ωf . Therefore, n0 (µ∗, γ1) = 0 and
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n0 (µ∗, γ2) = 1. We have:

ϕn0

µ∗ (γ1) =

(
ρ2θ

γ1 + γy + n0 (µ∗, γ1) γx
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ1

=

(
ρ2θ

γ1 + γy
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ1

<

(
ρ2θ

γ + γy
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ = 0

ϕn0

µ∗ (γ2) =

(
ρ2θ

γ2 + γy + n0 (µ∗, γ2) γx
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ2

=

(
ρ2θ

γ2 + γy + γx
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ2

>

(
ρ2θ

γ + γy + γx
+
(
1− ρ2θ

)
σ2
θ

)−1

− γ = 0.

Since nσf
(µ, γ) −→

σf→0
n0 (µ, γ), for σf small enough, we will have: ϕnσf

µ∗ (γ1) < 0 and ϕnσf

µ∗ (γ2) > 0,

which implies that there exists at least two locally stable steady-states γ∗l and γ∗h

(

ϕnσf

µ∗ (γ∗l ) = ϕnσf

µ∗ (γ∗h) = 0
)

with γ ≤γ∗l < γ1 and γ2 < γ∗h ≤ γ (one can pick at least 2 locally stable steady-states because ϕnσf

µ∗

must cross the x -axis from above at least twice).

Proposition 4. The recursive competitive equilibrium is constrained inefficient and the efficient

allocation can be implemented with positive investment subsidies τ (µ, γ) and a uniform tax. In

turn, when γx and σf are small, the efficient allocation is still subject to uncertainty traps.

Proof. 1. In the limit case where the number of firms is large enough that the approximation

n = N/N = F (fc) is valid, we can write the constrained planner’s decision as a choice over the

optimal cutoff f eff
c ∈ R ∪ {−∞,∞} under which firms should invest:

W (µ, γ) = max
feff
c

ˆ feff
c

−∞

(

E [u (θ + εx) | µ, γ]− f̃
)

dF
(

f̃
)

+βE
[
W
(
µ′, γ′

)]

s.t µ′ = ρθ
γµ+ γyY + nγxX

γ + γy + nγx

γ′ =

(
ρ2θ

γ + γy + nγx
+
(
1− ρ2θ

)
σ2
θ

)−1

n = F
(

f eff
c

)

with θ′ = ρθθ + εθ, εθ ∼ N
(
0,
(
1− ρ2θ

)
σ2
θ

)
, Y = θ + εy, εy ∼ N

(
0, γ−1

y

)
and X = θ + εX , εX ∼
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N
(

0, (nγx)
−1
)

. The first order condition with respect to the cutoff is

F ′
(

f eff
c

)(

E [u (θ + εx) | µ, γ]− f eff
c + β

d

dn
E [W (ρθµ+ s (n, γ) ε,Γ (n, γ))]

)

= 0,

where ε is a unit normal, so that we can derive an expression for the efficient cutoff:

f eff
c (µ, γ) = E [u (θ + εx) | µ, γ] + β

d

dn
E [W (ρθµ+ s (n, γ) ε,Γ (n, γ))] .

We show that this optimal cutoff is implementable using beliefs-dependent investment subsidies

τ (µ, γ) and a uniform tax T (µ, γ) levied on all firms at the beginning of the period. Let us write

the problem of firms facing these policy instruments:

V τ (µ, γ, f) = max
{
E [u (θ + εx) | µ, γ]− f + τ (µ, γ) , βE

[
V τ
(
µ′, γ′, f ′

)]}
− T (µ, γ)

which yields the individual cutoff rule fc:

f τ
c (µ, γ) = E [u (θ + εx) | µ, γ] + τ (µ, γ)− βE

[
V τ
(
µ′, γ′, f ′

)]
.

Requiring that the government’s budget constraint balances implies

τ (µ, γ)F (f τ
c (µ, γ)) = T (µ, γ) .

To implement the efficient allocation, we must identify the two cutoffs

f τ
c (µ, γ) = f eff

c (µ, γ)

⇔ τ (µ, γ) = β
d

dn
E [W (ρθµ+ s (n, γ) ε,Γ (n, γ))]

︸ ︷︷ ︸

information externality

+ βE
[
V τ
(
µ′, γ′, f ′

)]
.

︸ ︷︷ ︸

option value of waiting

(44)

Expression (44) is a functional equation in τ because V τ depends implicitly on τ . To show that

this functional equation has a solution, we define the following mapping T on the set of continuous

and bounded functions to itself such that

[T (V )] (µ, γ, f) = max
{
E [u (θ + εx) | µ, γ]− f + τ (µ, γ) , βE

[
V
(
µ′, γ′, f ′

)]}

−T (µ, γ)

s.t. τ (µ, γ) = β
d

dn
E
[
W
(
µ′, γ′

)]
+ βE

[
V
(
µ′, γ′, f ′

)]

T (µ, γ) = neff (µ, γ) τ (µ, γ)

µ′ = ρθµ+ s
(

neff (µ, γ) , γ
)

ε

γ′ = Γ
(

neff (µ, γ) , γ
)

.
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By standard arguments, this mapping defines a contraction. The maximization yields the following

decision: invest if and only if

f ≤ E [u (θ + εx) | µ, γ] + τ (µ, γ)− βE
[
V
(
µ′, γ′, f ′

)]

≤ E [u (θ + εx) | µ, γ] + β
d

dn
E
[
W
(
µ′, γ′

)]
,

which coincides with the efficient cutoff f eff
c . Thus, denoting V ∗ the only fixed point of this map-

ping, the investment subsidy τ (µ, γ) = β d
dnEneff [W (µ′, γ′)] + βEneff [S (V ∗) (µ′, γ′)] is a solution

to the functional equation (44). It implements the efficient cutoff rule and balances the government

budget by construction. An explicit expression for the optimal subsidy can be derived by noticing

that V ∗ satisfies

[S (V ∗)] (µ, γ) = F
(

f eff
c (µ, γ)

)(

E [u (θ + εx) | µ, γ]− E

[

f | f ≤ f eff
c (µ, γ)

])

+
(

1− F
(

f eff
c (µ, γ)

))

βE
[
S (V ∗)

(
µ′, γ′

)]
,

which can be computed from primitives once f eff
c is known.

We have shown that the efficient allocation can be implemented by transfers to investing firms.

To complete the proof, we show that these transfers are positive and non-zero in non-trivial cases.

More precisely, rewrite the mapping satisfied by these transfers:

τ (µ, γ) = β
d

dn
E
[
W
(
µ′, γ′

)]

︸ ︷︷ ︸

≡A(µ,γ)

+ βE
{
[S (V ∗)]

(
µ′, γ′

)}

︸ ︷︷ ︸

≡B(µ,γ)

.

As long as the efficient allocation is not trivial, i.e. that there exists some (µ, γ, f) at which firms

invest (which is guaranteed since f has an unbounded support), term B (µ, γ) is strictly positive

for some (µ, γ).

We now prove that A is non-negative. The effect of an increase of n in E [W (µ′, γ′)] is propor-

tional to that of an exogenous arrival of information. The following discussion thus focuses on the

impact on welfare of an exogenous arrival of information. It is useful for our purpose to rewrite the

planner’s problem in a sequential way. A strategy for the planner is a collection of cutoff functions

{f0, f1, . . . , ft, . . .} such that for each date t, ft maps the set of all past histories of signals up to

time t, {Ys,Xs}
t
s=0, to the real line. Pick some date t0. We are going to show that the exogenous

arrival of a signal S of precision γS at date t0 allows the planner to do at least as well as without

it, because it can ignore it. Denote Ft the information set {Ys,Xs}
t
s=0 of the planner at each date

without the exogenous signal, and FS
t the information set

{
Ys,X

S
s

}t

s=0
of the planner when the

arrival of the exogenous signal is known and anticipated. Let {fc,t} be any strategy considered

by the planner without the exogenous signal. Construct the following strategy for the case with
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exogenous arrival of information:

∀t < t0, fS
c,t

(
{Ys,Xs}

t
s=0

)
= fc,t

(
{Ys,Xs}

t
s=0

)
,

∀t ≥ t0, fS
c,t

(
{Ys,Xs}

t
s=0 , S

)
= fc,t

(
{Ys,Xs}

t
s=0

)
,

so that the two strategies and the information sets Ft and FS
t coincide up to time t0 − 1. After

date t0, strategy fS
c deliberately ignores the new information. Therefore, by the law of iterated

expectations, the two strategies have the same ex-ante payoffs. Welfare can only be increased with

the arrival of new information, hence term A (µ, γ) is non-negative.

We conclude that the symmetric, efficient allocation can be implemented with positive trans-

fers. In non-trivial cases, these transfers are strictly positive, which implies that the decentralized

economy without transfers is inefficient.

2. The proof that the efficient allocation is subject to uncertainty traps follows closely that of

the decentralized case. Thus, we only state the major steps of the proof:

• The optimal cutoff for the planner is defined by:

f eff
c (µ, γ) = E [u (θ + εx) | µ, γ] + β

d

dN
E [W (ρθµ+ s (N, γ) ε,Γ (N, γ))] .

The first step of the proof is to show that d
dNE [W (ρθµ+ s (N, γ) ε,Γ (N, γ))] is a O (γx), so

that for γx low enough f eff
c is strictly increasing in µ and γ with derivatives that can be

bounded away from 0;

• In a second step, show that when σf → 0, then f eff,σf

c converges uniformly to some limit

f eff,0
c that is bi-Lipschitz continuous, strictly increasing in µ and γ with derivatives bounded

away from 0. Thus, we have the pointwise limit:

∀ (µ, γ) , neff,σf

(µ, γ) → neff,0 (µ, γ) = 1I
(

ωf ≤ f eff,0
c (µ, γ)

)

;

• Conclude identically to proposition 3 that for σf sufficiently small there are at least two

locally stable steady-states in the dynamics of γ.

H Additional Lemmas (ONLINE APPENDIX)

This online appendix contains the proofs of the two technical lemmas 3 and 4.

First, we prove the technical lemma that establishes the continuity of the cutoff fσf

c in σf .

Lemma 3. As σf → 0, the equilibrium cutoff value fσf

c converges uniformly towards some limit

f0
c :

sup
(µ,γ)∈S

∣
∣
∣fσf

c (µ, γ)− f0
c (µ, γ)

∣
∣
∣ −→
σf→0

0
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and the fraction of investing firms converges pointwise to the following limit:

∀ (µ, γ) , nσf

(µ, γ) = F σf
(

fσf

c (µ, γ)
)

−→
σf→0

n0 (µ, γ) ≡ 1I
(

ωf ≤ f0
c (µ, γ)

)

.

Proof. This proof is similar to the argument developed in proposition 2. Since n = p = F (fc (µ, γ)),

we use n and p interchangeably from now on and abuse notation in saying that M is a mapping

for n : N −→ N . Pick two different variances for the fixed cost σf
1 and σf

2 . The notation T n,σf
i

denotes the mapping T for the value function G when n is the aggregate number of investing firms

perceived by agents and the fixed costs are distributed according to F σf
i .

Outline of the proof: Starting with the same initial aggregate law n, we compare the objects

f
n,σf

1
c and f

n,σf
2

c after the first iteration of the mappings Mσf
1 and Mσf

2 . In a second step, we estab-

lish a recursive relationship to compare the same objects after an arbitrary number of iterations.

We then conclude that the limits of both contractions nσf
i = lim

k→∞

(

Mσf
i

)k
n produce equilibrium

cutoffs that are close in the following sense:

‖ f
nσ

f
2 ,σf

2
c − f

nσ
f
1 ,σf

1
c ‖≤ A

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

for some strictly positive constant A, which suffices to establish the result.

Step 1. Start with some functions G and N , identical for both mappings. Denote G
n,σf

i

k ≡
(

T n,σf
i

)k
G. Let me prove by recursion that:

∣
∣
∣
∣

(

G
n,σf

2
k −G

n,σf
1

k

)

(µ, γ, f)

∣
∣
∣
∣
≤ β

1− βk

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

This is trivially true for k = 0. Assume it is true for until k ≥ 0, then:

∣
∣
∣
∣

(

G
n,σ

f
2

k+1 −G
n,σ

f
1

k+1

)

(µ, γ, f)

∣
∣
∣
∣

≤ β

∣
∣
∣
∣
E

{[

Sσ
f
2

(

G
n,σ

f
2

k

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))

}

− E

{[

Sσ
f
1

(

G
N,σ

f
1

n

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))

}∣
∣
∣
∣

≤ β

∣
∣
∣
∣
E

{[

Sσ
f
2

(

G
n,σ

f
2

k

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))

}

− E

{[

Sσ
f
1

(

G
N,σ

f
2

n

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))

}∣
∣
∣
∣

+β

∣
∣
∣
∣
E

{[

Sσ
f
1

(

G
n,σ

f
2

k

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))

}

− E

{[

Sσ
f
1

(

G
n,σ

f
1

k

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))

}∣
∣
∣
∣

≤ β

∣
∣
∣
∣

ˆ

(

G
n,σ

f
2

k

(

ρθµ+ s (n, γ) ε,Γ (n, γ) , ωf + σf
2υ
)

−G
n,σ

f
2

k

(

ρθµ+ s (n, γ) ε,Γ (n, γ) , ωf + σf
1υ
))

dΦ(ε) dF 1
(

υ + ωf
)
∣
∣
∣
∣
+ β × β

1− βk

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

≤ β

ˆ ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ |υ|dF

1
(

ωf + υ
)

+ β2 1− βk

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ (Lipschitz of constant 1 in f)

≤ β
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+ β2 1− βk

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ = β

1− βk+1

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣
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which proves the recursion. Taking the limit Gn,σf
i = lim

k→∞

(

T n,σf
i

)k
G:

‖ Gn,σf
2 −Gn,σf

1 ‖≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ . (45)

Turning to the equilibrium cutoff rule and using the same argument:

∣
∣
∣
∣
f
n,σ

f
2

c (µ, γ)− f
n,σ

f
1

c (µ, γ)

∣
∣
∣
∣

= β
∣
∣
∣E
{[

Sσ
f
2

(

Gn,σ
f
2

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))
}

−E
{[

Sσ
f
1

(

Gn,σ
f
1

)]

(ρθµ+ s (n, γ) ε,Γ (n, γ))
}∣
∣
∣

≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ (46)

Let us now consider the number of investing firms n. Denote n
σ
f
i

k ≡
(

Mσ
f
i

)k

n, starting from the same

arbitrary initial n.

∣
∣
∣
∣

(

n
σ
f
2

1 − n
σ
f
1

1

)

(µ, γ)

∣
∣
∣
∣
≤

∣
∣
∣
∣
F σ

f
2

(

f
n,σ

f
2

c (µ, γ)

)

− F σ
f
1

(

f
n,σ

f
1

c (µ, γ)

)∣
∣
∣
∣

≤

∣
∣
∣
∣
F σ

f
2

(

f
n,σ

f
2

c (µ, γ)

)

− F σ
f
2

(

f
n,σ

f
1

c (µ, γ)

)

+ F σ
f
2

(

f
n,σ

f
1

c (µ, γ)

)

− F σ
f
1

(

f
n,σ

f
1

c (µ, γ)

)∣
∣
∣
∣

where we see that nσf
2 may not always be close to nσf

1 under the sup norm. The problem is that

the above expression could be close to 1 for a few of points if σf
i is low and f

n,σf
2

c 6= f
n,σf

1
c . However,

we now show that this is not a problem as they will be close on average. The only thing we need

for the final result is pointwise convergence for nσf
as σf → 0.

Step 2. We will now establish a recursive relationship to compare the two objects f
n
σ
f
1

k
,σf

1
c and

f
n
σ
f
2

k
,σf

2
c . Assume that after k iterations of the mapping M, we have two different functions n

σf
2

k and

n
σf
1

k and that

∀ (µ, γ) ,

∣
∣
∣
∣
∣
f
n
σ
f
2

k
,σf

2
c (µ, γ)− f

n
σ
f
1

k
,σf

1
c (µ, γ)

∣
∣
∣
∣
∣
≤ Ak

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Let us study the following term:

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
2 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
2 −Gn

σ
f
2

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
1 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
1 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

(47)

where we have controlled the first term by the same argument as in (45). We need to study the

second term:
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∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
1 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(

lim
m→∞

(

T n
σ
f
2

k+1
,σ

f
1

)m

G− lim
m→∞

(

T n
σ
f
1

k+1
,σ

f
1

)m

G

)

(µ, γ, f)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(

lim
m→∞

G
n
σ
f
2

k+1
,σ

f
1

m − lim
m→∞

G
n
σ
f
1

k+1
,σ

f
1

m

)

(µ, γ, f)

∣
∣
∣
∣
∣
.

Starting with the first iteration:

∣
∣
∣
∣
∣

(

G
n
σ
f
2

k+1
,σ

f
1

1 −G
n
σ
f
1

k+1
,σ

f
1

1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣

ˆ

[

G

(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

−G

(

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

)

, f ′

)]

dΦ (ε) dF σ
f
1

(
f ′
)
∣
∣
∣
∣

≤ β

∣
∣
∣
∣

ˆ

[

G

(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

−G

(

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)]

dΦ(ε) dF σ
f
1

(
f ′
)

+

ˆ

[

G

(

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

−G

(

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

)

, f ′

)]

dΦ (ε) dF σ
f
1

(
f ′
)
∣
∣
∣
∣

≤ β

[
ˆ

Gµ |ε|

∣
∣
∣
∣
s

(

n
σ
f
2

k+1, γ

)

− s

(

n
σ
f
1

k+1, γ

)∣
∣
∣
∣
dΦ(ε) dF σ

f
1

(
f ′
)

+

ˆ

Gγ

∣
∣
∣
∣
Γ

(

n
σ
f
2

k+1, γ

)

− Γ

(

n
σ
f
1

k+1, γ

)∣
∣
∣
∣
dΦ(ε) dF σ

f
1

(
f ′
)
]

≤ β

[

Gµ

∣
∣
∣
∣
s

(

n
σ
f
2

k+1, γ

)

− s

(

n
σ
f
1

k+1, γ

)∣
∣
∣
∣
+Gγ

∣
∣
∣
∣
Γ

(

n
σ
f
2

k+1, γ

)

− Γ

(

n
σ
f
1

k+1, γ

)∣
∣
∣
∣

]

≤ βγx
(
GµBs +GγBΓ

)
∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣

≤ βCγx

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣

where C = BsGµ + BΓGγ is a constant similar to the one we used in proposition 2. We now
establish recursively that for m ≥ 2:

∣
∣
∣
∣
∣

(

G
n
σ
f
2

k+1
,σ

f
1

m −G
n
σ
f
1

k+1
,σ

f
1

m

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤ βCγx

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣

+β2 1− βm−1

1− β
Cγx

(

AkD + Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

where constants C and D are those coming from lemma 4 below. Assuming the relationship is true
until m ≥ 2, we have:
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∣
∣
∣
∣
∣
∣



G
n
σ
f
2

k+1
,σ

f
1

m+1 −G
n
σ
f
1

k+1
,σ

f
1

m+1



 (µ, γ, f)

∣
∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
∣

E



G
n
σ
f
2

k+1
,σ

f
1

m −G
n
σ
f
1

k+1
,σ

f
1

m




(
µ′, γ′, f ′

)

∣
∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
∣

ˆ



G
n
σ
f
2

k+1
,σ

f
1

m

(

ρθµ + s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

−G
n
σ
f
1

k+1
,σ

f
1

m

(

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

)

, f ′

)


 dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
∣

ˆ



G
n
σ
f
2

k+1
,σ

f
1

m

(

ρθµ + s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

−G
n
σ
f
1

k+1
,σ

f
1

m

(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)


 dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

+β

∣
∣
∣
∣
∣
∣

ˆ



G
n
σ
f
1

k+1
,σ

f
1

m

(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

−G
n
σ
f
1

k+1
,σ

f
1

m

(

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

)

, f ′

)


 dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

≤ β

ˆ

∣
∣
∣
∣
∣
∣



G
n
σ
f
2

k+1
,σ

f
1

m −G
n
σ
f
1

k+1
,σ

f
1

m





(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

)

, f ′

)

dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

+β

ˆ

∣
∣
∣
∣
∣
∣
∣
∣

∂s

∂n
ε
∂G

n
σ
f
1

k+1
,σ

f
1

m

∂µ
+

∂Γ

∂n

∂G
n
σ
f
1

k+1
,σ

f
1

m

∂γ

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣ dΦ (ε) dFσ

f
1

(
f ′
)

≤ β

(

βCγx

ˆ

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

))∣
∣
∣
∣
dΦ (ε)

+β2 1− βm−1

1− β
Cγx

(

AkD +Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)

+βCγx

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣

Using lemma 4, we can control the term:

ˆ

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)(

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

))∣
∣
∣
∣
dΦ(ε) ≤

(

AkD + Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Therefore:
∣
∣
∣
∣
∣

(

G
n
σ
f
2

k+1
,σ

f
1

m+1 −G
n
σ
f
1

k+1
,σ

f
1

m+1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤ βCγx

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣
+ β2 1− βm

1− β
Cγx

(

AkD + Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

which establishes the recursion. Taking the limit as m → ∞:

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
1 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤ βCγx

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣
+

β2

1− β
Cγx

(

AkD + Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ . (48)
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We see that G may not converge pointwise. However, the expectation of G will, which is what we
need for our final result. Going back to equation (47):

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
2 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
2 −Gn

σ
f
2

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(

Gn
σ
f
2

k+1
,σ

f
1 −Gn

σ
f
1

k+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+ βCγx

∣
∣
∣
∣

(

n
σ
f
2

k+1 − n
σ
f
1

k+1

)

(µ, γ)

∣
∣
∣
∣
+

β2

1− β
Cγx

(

AkD + Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

where we have used equations (45) and (48). Let us turn to the cutoff value:

∣
∣
∣
∣
∣
∣

f
n
σ
f
2

k+1
,σ

f
2

c (µ, γ)− f
n
σ
f
1

k+1
,σ

f
1

c (µ, γ)

∣
∣
∣
∣
∣
∣

= β

[

E

{[

Sσ
f
2

(

G
n
σ
f
2

k+1
,σ

f
2

)](

ρθµ+ s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

))}

−E

{[

Sσ
f
1

(

G
n
σ
f
1

k+1
,σ

f
1

)](

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

))}]

≤ β

∣
∣
∣
∣
∣
E

{[

Sσ
f
2

(

G
n
σ
f
2

k+1
,σ

f
2

)](

ρθµ + s

(

n
σ
f
2

k+1, γ

)

ε,Γ

(

n
σ
f
2

k+1, γ

))}

−E

{[

Sσ
f
2

(

G
n
σ
f
1

k+1
,σ

f
1

)](

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

))}∣∣
∣
∣
∣

+β

∣
∣
∣
∣
∣
E

{[

Sσ
f
2

(

G
n
σ
f
1

k+1
,σ

f
1

)](

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

))}

−E

{[

Sσ
f
1

(

G
n
σ
f
1

k+1
,σ

f
1

)](

ρθµ+ s

(

n
σ
f
1

k+1, γ

)

ε,Γ

(

n
σ
f
1

k+1, γ

))}∣∣
∣
∣
∣

≤ β

(
β

1− β
+ βCγx

(

AkD + Eσf
1σ

f
2

)

+
β2

1− β
Cγx

(

AkD +Eσf
1σ

f
2

)) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

+β
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

≤ β

(
1

1− β
+

β

1− β
Cγx

(

AkD +Eσf
1σ

f
2

)) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

≤

[
β

1− β

(

1 + βγxCEσf
1σ

f
2

)

+
β2

1− β
γxCDAk

]

︸ ︷︷ ︸

≡Ak+1

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

This expression defines a recursive relationship:

Ak+1 =
β

1− β

(

1 + βγxCEσf
1σ

f
2

)

+
β2

1− β
γxCDAk

which converges to a unique limit A as long as β2

1−βγxCD < 1 which is true if γx is chosen sufficiently

small. Taking the limit as k → ∞, we have:

∣
∣
∣
∣
∣
f
nσ

f
2 ,σf

2
c (µ, γ)− f

nσ
f
1 ,σf

1
c (µ, γ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

f
lim
k→∞

n
σ
f
2

k ,σf
2

c (µ, γ)− f
lim
k→∞

n
σ
f
1

k ,σf
1

c (µ, γ)

∣
∣
∣
∣
∣
∣

≤ A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .
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This tells us that as σf → 0, the equilibrium cutoff converges uniformly to some limit:

∀ (µ, γ) , fnσf
,σf

c (µ, γ) → f0
c (µ, γ) .

Turning to the equilibrium entry schedule, n converges pointwise towards the limit:

∀ (µ, γ) , nσf

(µ, γ) = F σf

(

fnσf
,σf

c (µ, γ)

)

−→
σf→0

n0 (µ, γ) = 1I
(

ωf ≤ f0
c (µ, γ)

)

.

Lemma 4. Suppose two functions f1 and f2 are such that sup |f2 (µ, γ)− f1 (µ, γ)| ≤ A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

for some strictly positive constant A. Assume also that both fi’s are continuously differentiable and

that ∂fi
∂µ > f

µ
. Then, for ni = F σf

i (fi), there exists two strictly positive constants D and E such

that for i = 1, 2:

ˆ

∣
∣
(
n2 − n1

) (
ρθµ+ s

(
ni, γ

)
ε,Γ

(
ni, γ

))∣
∣ dΦ (ε) ≤

(

AD + Eσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Proof. Abusing notation slightly with the convention s ≡ s

(

n
σf
i

1 , γ

)

and γ
′

≡ Γ

(

n
σf
i

1 , γ

)

:

ˆ ∣
∣
∣
(
n2 − n1)

(

ρθµ+ s
(

ni, γ
)

ε,Γ
(

ni, γ
))∣
∣
∣ dΦ(ε)

=

ˆ ∣
∣
∣F

σ
f
2

(
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(

ρθµ+ sε, γ
′
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− F σ
f
1

(

f1
(
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′
))∣
∣
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ˆ ∣
∣
∣F

σ
f
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(
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(
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′
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f
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(
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(
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′
))∣
∣
∣ dΦ(ε)

︸ ︷︷ ︸

≡A1
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ˆ ∣
∣
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σ
f
2

(
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′
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f
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′
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∣
∣ dΦ(ε)
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≡A2

Let us take care of the first term:
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ˆ ∣
∣
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′
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′
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∣
∣ dΦ(ε)
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f
2

(
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(
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′
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∣
∣
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∣
∣
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f
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(
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(

ρθµ+ sε, γ
′
)
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∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)]

dΦ(ε)

using equation (46). f2 is a continuously differentiable, strictly increasing function of µ, so we can
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proceed to the change of variable x = f2

(

µ+ sε, γ
′
)

:

A1 ≤
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∣
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)] Φ
′ (

(f2)
−1 (x)
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)
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∣
∣
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)
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∣
∣
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1

∣
∣
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]

dF σ
f
2 (mean value theorem)
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∣
∣
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∣
∣
∣
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1

∣
∣
∣

where we have used the fact the PDF of a unit normal is bounded, s ≡ s

(

n
σf
i

1 , γ

)

is uniformly

bounded from below and away from 0, and the derivative of f2 is strictly positive, uniformly

bounded away from 0 for γx small enough. Notice that the upper bound we derived is uniform: it

does not depend on µ, γ, γx, etc. Let us control the second term A2:

A2 =

ˆ ∣
∣
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2

(
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1
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(
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′
))∣
∣
∣ dΦ(ε)

≤

ˆ ∣
∣
∣F

σ
f
2 (x)− F σ

f
1 (x)

∣
∣
∣ dϕ (x) (change of variable x = f1

(
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)

)

≤

ˆ

∣
∣
∣
∣
∣
Φ

(

x− ωf

σf
2

)

− Φ

(

x− ωf

σf
1

)∣
∣
∣
∣
∣
dϕ (x) (change of variable x = σf

1σ
f
2 x̃+ ωf )

≤

ˆ ∣
∣
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(

σf
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)

− Φ
(

σf
2 x̃
)∣
∣
∣σ

f
1σ

f
2dϕ

(

σf
1σ

f
2 x̃+ ωf

)

≤

[
ˆ ∣
∣
∣Φ

′

(x̂) x̃
∣
∣
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(

σf
1σ

f
2 x̃+ ωf

)]

σf
1σ

f
2

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ ≡ Dσf

1σ
f
2

∣
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∣
∣
∣ ,

which concludes the proof of the lemma.
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