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1 Introduction

Many have argued that current medical practice involves large amounts of wasteful spending, with

little cross-sectional correlation between regional health spending and health outcomes (Wennberg

et al. 1996). But determining the best approach to lower costs and maintain quality depends

critically on the nature of the inefficiency: is the problem that physicians are spending to the

“flat of the curve” where marginal returns to treatment are low, or are physicians treating the

wrong patients (Garber and Skinner 2008)? And more fundamentally, does heterogeneity in medical

spending imply care patterns are inefficient or is this heterogeneity fully explicable by unobserved

differences in returns to treatment across patient populations?

In this paper, we develop an econometric framework for evaluating whether the wide variation

in the use of diagnostic testing across doctors is due to heterogeneity in patients’ benefits from

testing or heterogeneity in physicians’ practice styles (i.e. differences in behavior when treating

identical patients). The model also identifies whether physicians are weighting patient observable

risk factors to maximize the incidence of positive tests. Our model builds on classical econometric

selection models originally developed by Heckman (1979) and refined by Chandra and Staiger (2011).

We apply a novel instrumental variable identification strategy to study the behavior of physicians

who make repeated decisions selecting which patients will receive a diagnostic test. A similar

modeling approach and identification strategy could be applied to any setting meeting the criteria

of a standard selection model (where outcomes are only observed among the treated) and where we

observe repeated selection decisions by the same decisionmaker, including decisions of loan officers,

judges, hiring directors, and many others.

We apply our model to analyze CT scans that test for pulmonary embolism (PE). Estimation of

the model requires that we can observe test outcomes among patients selected for testing, as well as

the structural assumption that doctors will order a CT scan to test for PE if the patient’s ex ante risk

of PE exceeds a doctor-specific testing threshold. This threshold is our patient invariant measure

of physician practice style and we seek to recover it for each doctor in our sample. Identifying

differences in physicians’ practice styles separately from patient heterogeneity typically requires

either random assignment of patients to physicians or estimates of potentially heterogeneous causal

effects of medical treatment for each patient. Prior research, including Chandra and Staiger (2011)

and Currie and MacLeod (2013), has argued that reliable estimates of causal treatment effects can

be obtained using detailed chart data to control for all patient characteristics observable to doctors,

but such data is typically only available in limited samples. This stumbling block makes it difficult

to investigate both the extent and the determinants of healthcare overuse or misuse.

A key insight of this paper is that the ex post value of a diagnostic test, in this case chest CT

scans, is partially observable in insurance claims records based on whether the test results in the

relevant diagnosis. A doctor who performs many negative CT scans, which have little ex post value

for improving patient health, is likely to have a low testing threshold. Physicians with identical

testing thresholds may have different rates of negative tests if their patient population varies in

the ex ante risk of PE. Our model accounts for heterogeneity in patient PE risk and shows how to

recover physicians’ testing thresholds. Using these estimated testing thresholds, we investigate the
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role of medical training, malpractice environment, hospital characteristics and regional factors in

shaping practice styles.

The model also allows investigation of whether doctors are misweighting observable patient risk

factors in selecting which patients to test for PE. By comparing how observable risk factors predict

physicians’ testing decisions to how those same variables predict rates of positive tests amongst

tested patients, we can identify whether physicians are targeting CT scans to the patients with the

highest risk of PE based on demographics and comorbid conditions.

Previous research has identified important differences in practice style and skill across physicians.

Chandra and Staiger (2011) conclude that overuse of care explains a large amount of variation

in treatment for heart attacks across hospitals. Currie and MacLeod (2013) uncover substantial

heterogeneity in diagnostic skill across obstetricians. Finkelstein et al. (2014) find that roughly

half of the variation in medical spending across regions is driven by provider behavior (rather than

patient preferences or health risks), and Molitor (2012) reports that environmental factors explain

much of the variation in physician’s rates of cardiac catheterization.

We extend this prior literature by not only estimating heterogeneity in physician practice styles,

but also explicitly demonstrating that differences in practice style explain why physicians who use

more medical resources have lower average medical returns to utilization. We then estimate the

resulting welfare loss from the measured variation in practice styles. Further, to our knowledge, this

is the first paper to test for physicians’ systematic underweighting and overweighting of patient risk

factors and to assess how failure to target medical resources to the patients with the highest expected

returns may impact realized health benefits and total welfare. It introduces a new dimension to the

existing literature on practice styles by highlighting an additional mechanism by which physician

decisions may influence returns to testing or treatment.

PE is the third most common cause of death from cardiovascular disease, behind heart attack

and stroke (Goldhaber and Bounameaux 2012), and CT scans are the primary tool for diagnosis of

PE. Yet given the financial costs and medical risks of testing, PE CT scans are commonly thought

to be overused in emergency care. The American College of Radiology targeted PE CT as a key

part of the Choosing Wisely campaign aimed to reduce overuse of medical services. Despite the

concern about overuse, the Office of the Surgeon General (2008) estimates that approximately half

of PE cases are undiagnosed, based on analysis of autopsy reports. The simultaneous concern in the

medical community about overuse and missed diagnoses raises the question of whether diagnostic

testing for PE is currently being targeted to maximize PE detection.

We analyze 1.9 million emergency department visits drawn from a 20% sample of Medicare

claims data, 2000-2009. We observe whether each patient is tested with a chest CT, and whether

this test leads to diagnosis of PE. We present reduced form evidence of a sharply negative relationship

between physician testing rates and test yields: those physicians who test most have the lowest rate

of positive tests. We apply a structural model to show that this pattern is explained by enormous

heterogeneity in doctors’ testing thresholds; doctors who test more move further down the net

benefit curve and test patients who are less likely to test positive. Less experienced doctors and

doctors in higher spending regions tend to have lower risk thresholds at which they deem CT imaging

worthwhile.
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Further, physicians fail to target the test to the highest risk patients. Recognized risk factors,

some of which are included in popular PE risk scores, continue to receive too little weight in physi-

cians’ testing decisions. Black patients are tested less often than other patients despite their higher

risk of PE. Finally, physicians overtest patients who have been previously diagnosed with one of

several conditions which have similar clinical symptoms to PE: rather than infer the patient is hav-

ing a recurrent episode of their existing condition, the physician may order a PE CT despite the

low predicted risk.

Applying calibration assumptions about the cost of testing, the benefits of treating PE and the

likelihood of false positives, we compare our estimated distribution of physician testing thresholds

to the calibrated socially optimal threshold. This comparison tells us the degree of allocative in-

efficiency: whether doctors are overtesting or undertesting from a social standpoint.1 Under our

preferred calibration assumptions, 84% of doctors are overtesting in the sense that for their marginal

patients, the costs of testing exceed the benefits. In a simulation where no doctors overtested, the

total social benefits from chest CTs would increase by 60% and the number of chest CT scans

would fall by 50%. The calibration also allows us to assess the degree of productive inefficiency

from physician misweighting of patient risk factors. Weighting observable comorbidities to maxi-

mize test yields would increasethe net benefits of testing by more than 300%, primarily by leading

to additional testing and appropriate diagnosis of affected patients.

The paper is organized as follows. Section 2 provides some background on chest CT scans for

PE. Section 3 describes the data and uses reduced form evidence to motivate the structural model.

Section 4 lays out our structural model of testing behavior and describes our estimation strategy.

Section 5 reports results from estimating our structural model. Section 6 probes the robustness

of these results to alternative modeling approaches that relax or vary key identifying assumptions.

Section 7 conducts simulations to uncover the welfare implications of our findings, and Section 8

concludes.

2 Background on PE CTs

We study testing behavior in the context of chest CT scans performed in the emergency department

(ED) to detect PE. A PE occurs when a substance, most commonly a blood clot that originates in a

vein, travels through the bloodstream into an artery of the lung and blocks blood flow through the

lung. It is a serious and relatively common condition, with an estimated 350,000 diagnosed cases of

PE per year in the United States (Office of the Surgeon General 2008). Left untreated, the mortality

rate from a PE depends on the severity and has been estimated to be 2.5% within three months for

a small PE (Lessler et al. 2010), with most of the risk concentrated within the first hours after onset

of symptoms (Rahimtoola and Bergin 2005). Accurate diagnosis of PE is necessary for appropriate

follow-up treatment; even high risk patients are unlikely to be treated presumptively.

1We are defining allocative and productive inefficiency from the standpoint of production functions with spending
on CT scans as the input and patient health status as the output. With “overtesting”, one is testing to the flat of
the curve, where the marginal health returns to additional spending are very low; this is an allocative inefficiency.
With misweighting, a higher production function—producing greater health gains for a given level of spending—is
achievable if doctors would correctly weight observable risk factors; misweighting thus creates productive inefficiency.
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CT scans to test for PE have a number of attractive features for our purposes: they are a

frequently performed test; they introduce significant health risks and financial costs; a positive test

is almost always followed up with immediate treatment, observable in Medicare claims records; and

a negative test provides little information to the physician about alternative diagnoses or potential

treatments. We discuss each of these features in more detail in Appendix B, explaining how the

clinical context supports our modeling assumptions.

The symptoms of PE are both common and nonspecific: shortness of breath, chest pain, or

bloody cough. Hence, there is a broad population of patients who may be considered for a PE

evaluation. Practice guidelines recommend that physicians also consider several additional risk

factors before determining whether to pursue a workup for PE.2 Because PE is an acute event with

a sudden onset, the workup must be completed urgently and knowing the results of previous CT

scans is not a critical part of the evaluation of PE.

Many argue that PE CT scans are widely overused (Coco and O’Gurek 2012, Mamlouk et al.

2010 and Costantino et al. 2008). Recent estimates by Venkatesh et al. (2012) suggest that one third

of CT scans in a sample of 11 US emergency departments would have been avoidable if physicians

had followed National Quality Forum guidelines on CT usage. The nonspecific symptoms of PE

and significant mortality risk likely both contribute to overuse, particularly in the emergency care

setting.

A CT angiogram is the standard diagnostic tool for PE. The average allowed charge in the

Medicare data is around $320 per PE CT when the bill is not covered by a capitation payment.

Payment goes to the radiologist for interpreting the scan and to the hospital for the technician and

capital investment required to perform the scan. The emergency department doctor responsible for

ordering the test has, at most, a diffuse incentive to ensure the hospital’s financial health and reduce

his malpractice risk, but he receives no direct payments from Medicare or the hospital for ordering

a scan.

PE CT scans also come with small but important medical risks. The most significant risk arises

from false positive CT scans which lead to additional unnecessary treatment with anticoagulants,

incurring financial costs and creating significant risk of bleeding. In addition, there is an estimated

0.02% chance of a severe reaction to the contrast, which then carries a 10.5% risk of death (Lessler

et al. 2010), although this cost is small relative to the billed financial costs of a CT scan. Finally

radiation exposure may increase downstream cancer risk, although the additional lifetime cancer

risk is minimal for the elderly Medicare population in this study.

The key simplifying assumption we make to evaluate the net benefits of testing is that a negative

test has no value. This assumption is not true in general for all tests: a negative test may rule out

one treatment thus justifying treatment for an alternative, or a negative test might prevent an

otherwise costly treatment. However, in our setting—CT scans for PE—a positive test is followed

by an inpatient admission and treatment with blood thinners while a negative test does not suggest

any further interventions or testing for related problems.

2Popular practice guidelines use the following factors to calculate a risk score: age, elevated heart rate, recent
immobilization or surgery, history of deep vein thrombosis or PE, recent treatment for cancer, coughing up blood,
lower limb pain or swelling, and chances of an alternative diagnosis.
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3 Data

We combine data from five sources: Medicare claims records, the American Hospital Association

annual survey, the American Medical Association Masterfile, the Medicare Physician Identification

and the Eligibility Registry, and the Avraham Database of State Tort Law Reforms. Using a 20%

sample of Medicare Part B claims from 2000 through 2009, we identify patients evaluated in an

emergency department and observe whether they were tested for PE, as well as whether any such

test succeeded in detecting PE.

3.1 Medicare claims data

We begin by identifying all patients evaluated in the emergency department (ED), using physician-

submitted Medicare Part B claims for evaluation and management.3 The physician submitting

this claim for evaluation and management is responsible for the patient’s emergency care; it is his

decision whether or not to order testing for PE. Using physician identifiers, we track the behavior

of all doctors who routinely evaluate Medicare patients in the ED.

We identify which ED patients are tested for a PE using bills submitted by radiologists for the

interpretation of chest CTs with contrast, when the CT is performed within 1 day of the ED visit.4

We restrict our sample to physicians who order at least seven CT scans between 2000-2009, since

very low-volume doctors provide too little information to accurately estimate physicians’ testing

thresholds.5

While diagnosis of PE is the most common purpose of a chest CT performed in the emergency

care setting, there are a small handful of other, less common indications, including pleural effusion,

chest and lung cancers, traumas, and aortic dissection. For this reason, we exclude patients from

the sample who are coded with a diagnosis related to trauma, pleural effusion, chest or lung cancer,

or patients with a history of aortic aneurysm, aortic dissection, or other arterial dissection. We also

exclude patients with a history of renal failure, since these patients are likely ineligible for a CT scan

with contrast, due to risks of the contrast agent. These sample restrictions are designed to limit the

sample to patients who may be eligible for a chest CT scan and for whom the scan is highly likely

to have been ordered to detect PE; these assumptions are discussed in more detail in Appendix C.

Once we have identified relevant CT scans in billing data, we then need to code the test outcome,

i.e. whether or not the scan detected a PE. Patients with acute PE are typically admitted to the

hospital for monitoring and to begin a course of blood thinners or place a venous filter to reduce

clotting risk. From the sample of patients tested in the emergency department with a chest CT, we

identify positive tests on the basis of Medicare Part A hospital claims that include a diagnosis code

for PE among any of the diagnoses associated with the hospital stay.

We have validated this approach to identifying positive tests by using cross-referenced patient

chart and hospital billing data from two large academic medical centers. The evidence from these

3In particular, we identify patients based on CPT codes for emergency department evaluation and management:
99281, 99282, 99283, 99284, 99285, and place of service 23 (i.e. hospital emergency department).

4We begin by identifying all bills for chest CTs on the basis of CPT codes 71260, 71270, and 71275.
5Note this restriction suggests the sample may be selected towards physicians who have lower testing thresholds.

Unfortunately, some such restriction is required for the model to be estimable and to ensure that all in-sample
physicians have routine access to a CT scanner.
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centers suggests that we are unlikely to understate physicians’ testing thresholds due to undercount-

ing of positive test results. More detail on this data validation exercise is presented in Appendix

D.

In addition to measuring whether patients were tested and the testing outcome, we also document

a number of characteristics that allow us to predict the patient’s propensity to be diagnosed with a

PE, including age, race, sex, and medical comorbidities. We code comorbidities from both Medicare’s

Chronic Condition Warehouse and from the Elixhauser et al. (1998) definitions; while these sets of

conditions overlap, the Chronic ConditionWarehouse utilizes outpatient claims to code comorbidities

whereas the Elixhauser comorbidities are based only on inpatient medical history, so they typically

encode different levels of disease severity. We augment these standard sets of medical comorbidities

to include several measures that are specific to PE risk: whether the patient was previously admitted

to the hospital with a diagnosis of PE, thoracic aortic dissection, abdominal aortic dissection, or

deep vein thrombosis, and any cause admission to the hospital or surgical hospital admission within

7 days or 30 days.

3.2 Physician, hospital, and regional data

After using the Medicare claims data to estimate the testing threshold applied by each doctor, we

explore predictors of physicians’ practice styles by linking testing thresholds to physician, hospital,

and regional characteristics.

We draw physician data from two sources, the Medicare Physician Identification and Eligibility

Registry (MPIER) and the American Medical Association Masterfile (AMA data). The MPIER and

AMA both identify the medical school and graduation year for each physician, which we have linked

to the US News & World Report medical school rankings. We bin schools according to whether

they are typically ranked in the top 50 for either primary care or research rankings.

Hospital characteristics are drawn from the American Hospital Association annual survey. We

use these data to observe whether the physician typically practices at a for profit hospital or an

academic hospital, defined as a hospital with a board certified residency program.

Using provider zip codes, we identify the hospital referral region (HRR) in which each patient

is treated. HRRs are regional health care markets defined by the Dartmouth Atlas to reflect areas

within which patients commonly travel to receive tertiary care. There are 306 HRRs in total. Using

data from the Dartmouth Atlas, we link each HRR to the average spending per Medicare beneficiary

to capture a broad measure of regional care intensity.

Finally, data on state malpractice environment is from Avraham (2011) Database of State Tort

Law Reforms. Following prior work by Currie and MacLeod (2006) and Avraham et al. (2012),

we focus on two key measures of malpractice law: whether a state has enacted malpractice damage

caps on award amounts, and joint and several liability reform.

3.3 Summary statistics

There are 1.9 million emergency department visit evaluations in our dataset, after making the sample

exclusions noted above. Of these patients evaluated in the ED, 3.8% of them are tested with a chest
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CT scan with contrast. Amongst tested patients, 6.9% of them receive a positive test, i.e. are

admitted to the hospital within 24 hours with a diagnosis of PE.

Summary statistics are reported in Table 1, with results reported separately for patients who do

not receive a CT scan (column A), patients who receive a negative test (column B), and patients

with a positive test (column C). We observe the testing behavior of over 6600 physicians, with an

average of 284 ED patients per physician.

Patient demographics are similar across the untested and tested patient groups. The average

age is 78 years in the untested sample and slightly lower (77 years) in the sample of patients with

negative or positive tests. Patients who test negative are more than twice as likely to have a history

of PE as untested patients; patients with positive tests are five times more likely to have a history

of PE than untested patients.

We note a few modest differences in physician background and practice environment across

patient groups. Patients with negative tests are evaluated by doctors with five months less experience

on average than patients with positive tests, and were treated in regions with 1% higher Medicare

spending per beneficiary, compared to patients with positive tests. Among tested patients, those

with positive tests were 1 percentage point more likely to have been evaluated by a doctor trained

at a top tier medical school. In the structural model, we will decompose to what extent these

differences may be driven by differential sorting of high risk patients and to what extent they reflect

differences in physician practice styles.

3.4 Reduced form evidence of heterogeneity in doctor testing behavior

Before describing our model, we consider reduced form evidence of heterogeneity in doctors’ testing

behavior. We first divide doctors in our sample into 10 deciles according to the average fraction of

patients tested. We observe average testing rates that range from 1.7% of ED patients in the lowest

physician decile to 8.2% of ED patients in the highest physician decile. We want to know whether

this variation reflects differences in doctor behavior for patients with similar PE risk, or differences

in patient PE risk for physicians with similar testing practices.

We can separate these hypotheses by comparing rates of positive tests conditional on testing

behavior. If doctors who test more do so because their patients are at higher risk of PE, we should

expect that doctors with higher testing rates will also have a higher fraction of positive tests among

tested patients.6 Alternatively, if doctors who test more do so because they are the type that tests

more for any given level of patient risk, then we expect to find that physicians who test more also

have a lower fraction of positive tests among tested patients. In the latter case, physicians could

differ in the threshold probability at which they think testing is worthwhile, and physicians who

test more are moving further down the expected benefits curve.

To illustrate this point, we have sketched a stylized picture of the testing decision in Figure 1.

Patients are sorted along the x-axis according to their risk of PE, qid, from highest risk to lowest

risk. The x-axis corresponds to the cumulative fraction of patients, and the y-axis corresponds

6In particular, both doctors would have similar test yields among marginal tested patients, but the doctor who
tests more would have a higher test yield among the higher risk inframarginal patients. We formalize the points in
this section in the context of our structural model in section 4.
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to the marginal patient’s PE risk qid, so that each point (x, y) along the plotted curve shows the

fraction of patients x for whom qid ≥ y. For example, at point (TA = 2/3, τA = 1/2) in Panel A,

the graph indicates that 2/3 of patients have a risk of PE that equals or exceeds 1/2. (We use this

unrealistically high risk for illustrative purposes.)

In Panel A, we consider two doctors with the same patient distribution of PE risk, but with

different testing thresholds. Doctor A tests every patient whose personal PE risk qid exceeds Doctor

A’s testing threshold τA, and likewise Doctor B tests all patients for whom qid > τB. Because

Doctor B’s threshold is lower than Doctor A’s, i.e. τB < τA, Doctor B tests a greater fraction of

patients, TB > TA. Doctor B’s tested patients have a lower average PE risk than Doctor A’s tested

patients, so Doctor B’s test yield ZB—i.e. the fraction of positive tests among tested patients—is

lower than Doctor A’s test yield ZA, as can be seen in the graph. In this panel, there is a downward

sloping relationship between the fraction of patients each doctor tests and his average test yield.

In Panel B, we consider an alternate scenario which could also explain why Doctor B continues

to test a greater fraction of his patients than Doctor A, i.e. why TB > TA. In this example, doctor

A and Doctor B have the same testing threshold, so τ ′B = τ ′A. Given the same expected patient PE

risk, Doctors A and B would arrive at the same testing decision. However, the two doctors now face

different distributions of patient PE risk. For any given probability of a positive test, Doctor B sees

(weakly) more patients with qid exceeding the common threshold for testing. In other words, Doctor

B’s patient population is higher risk than Doctor A’s. As can be seen in the graph, Doctor B’s test

yield ZB′

will be higher than Doctor A’s test yield ZA′

, even though both doctors have the same

testing threshold, since more of the mass in Doctor B’s distribution of patient risk is concentrated

at higher risk levels. In contrast with Panel A, there is now an upward sloping relationship between

the fraction of patients each doctor has tested and his average test yield.

Now turning to our observed Medicare data, we use a simple binned scatterplot to explore

whether variation in risk for PE or variation in testing behavior can explain the differences in

physicians’ testing propensities. We begin by binning physicians into deciles according to the fraction

of patients they test; next we calculate the fraction of tested patients for whom PE was detected

within each decile. This relationship between fraction tested and average test yield is plotted in

Figure 2. The graph displays a generally downward sloping relationship between average testing

probability along the x-axis and fraction of tested patients with detected PE along the y-axis.

Doctors who test a greater fraction of their patients are less likely to find positive test outcomes

among tested patients. This figure suggests that differences in testing thresholds across doctors may

be an important determinant of observed heterogeneity in testing behavior. It appears that doctors

who are more likely to test their patients compared to their peers are also testing more low-risk

patients.

Our structural model formalizes the intuition described above. It is designed to disentangle

(observable and unobservable) differences in patient PE risk from differences in physician testing

thresholds and evaluate the contribution of each to observed variation in testing behavior, following

the intuition of this simple empirical exercise. We discuss the structural model in more detail in

Section 4 below.
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3.5 Reduced form evidence of misweighting patient PE risk factors

In addition to considering heterogeneity in physicians’ testing thresholds, we also investigate whether

physicians are successfully identifying observable risk factors associated with the highest probability

of positive tests and testing patients with those characteristics. Determining which patients should

be tested requires complex, subtle judgments about clinical risk on the basis of many factors. In

our data, we capture some of the most common and relevant comorbidities by analyzing patients’

claims histories. Guided by the structural analysis that follows, we motivate our exploration of

misweighting PE risk with a few simple examples.

Consider a comparison of patients with a history of prostate cancer to those with no such

history. Patients with a history of prostate cancer are no more likely to be tested for PE than

patients without that condition; in fact, testing rates are slightly lower among prostate cancer

patients (3.7%) compared to the rest of the population (3.8%). However, it turns out that among

tested individuals, prostate cancer patients are over 50% more likely to be diagnosed with PE than

patients with no such history.

A PE risk score popularly used to guide physicians on whether to order diagnostic testing includes

treatment for cancer malignancy among its 7 risk criteria (Wells et al. 1995; Wells et al. 1998; Wells

et al. 2000). And yet, although cancer is a recognized clinical risk factor for PE, a relationship

supported by our data, it appears that patients with a history of prostate cancer are no more likely

to be tested than the average ED patient. This provides the first suggestive evidence that physicians

may not be properly accounting for the increased PE risk associated with prostate cancer, and thus

may be under-testing prostate cancer patients relative to the rest of the population.

In Table 2, we highlight the basic summary statistics for eight of the clinical factors that show

significant evidence of misweighting in the structural model that follows. Similar to the case of

prostate cancer, we find that black patients are less likely to be tested than non-black patients,

even though among tested patients, the rate of positive tests is much higher for black patients. A

reverse pattern holds for patients with ischemic heart disease, atrial fibrilation or chronic obstructive

pulmonary disease (COPD); they are tested at similar or higher rates than patients without those

conditions, despite the fact that tested patients with these conditions are approximately 30% less

likely to have a PE detected.

For other conditions, physicians respond in the right direction but overweight or underweight

that condition relative to what would maximize the incidence of positive tests. The model implies

that, everything else held equal (including other patient characteristics and physician thresholds),

two comorbidities which have the same marginal impact on testing behavior should also have the

same marginal impact on the conditional likelihood of a positive test. Our model identifies a few

factors which appear to have a disproportionate impact on the likelihood of a positive test given

their impact on testing behavior: a past history of PE, deep vein thrombosis, or a recent hospital

admission are associated with 20 to 90 percent higher rates of testing but are 140 to 200 percent

more likely to have a PE detected, a disproportionate increase relative to other factors in our model

with a similar impact on testing behavior.

This simple exploration of misweighting relies on the presumption that patients with and without

a particular risk factor don’t differ in their other comorbidities and are sorting to ED physicians with
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similar testing thresholds. In the structural model, we formalize this analysis, explicitly modeling

differences in testing rates that may be driven by physician’s testing thresholds or other PE risk

factors.

4 Model of testing behavior

4.1 Theory

Our structural model allows us to decompose the observed variation in physician testing rates into

variation due to patient PE risk and variation due to doctor preferences, even if patient PE risk varies

across doctors and is not fully captured by observable comorbidities. This approach to modeling

physician preferences is based upon classical selection models developed by Heckman (1979) and

Heckman and MaCurdy (1980) and subsequently refined and applied to a healthcare setting by

Chandra and Staiger (2011).

Direct estimation of the selection model developed by Chandra and Staiger (2011) requires

observing the individual-specific return to treatment for all treated individuals, a difficult object to

recover in most empirical settings; we adapt the model to cover diagnostic testing, where test results

(positive or negative) can proxy for the impact of treatment on the treated.7 Further, we extend the

Chandra and Staiger (2011) model to allow for the possibility that physicians are not appropriately

weighting observable risk factors to select patients for testing with the highest expected PE risk.

To understand variation in physician testing decisions, we begin by studying the link between a

physician’s decision to test a patient and the outcome of the test among tested patients. Assume

that the suitability of a patient for testing is determined entirely by the ex ante likelihood of a

positive test. We define qid to be the conditional probability of a positive test for patient i evaluated

by doctor d, given all the information available to the doctor:

qid = xidβ + αd + ηid (1)

where xid are observed patient characteristics, αd are doctor fixed effects, and ηid are factors observ-

able to the doctor but unobservable to the econometrician which impact the likelihood that a test

is positive. Note that the inclusion of physician fixed effects αd allows the population risk of PE to

vary across doctors in ways that are not captured by the included patient covariates. Following the

typical structure of Heckman selection models, we begin by assuming that ηid is independently and

identically distributed across doctors; we refer to this as the “ignorability assumption” following the

prior literature. (We explore relaxing the ignorability assumption in Section 6.) Further assume

that ηid is bounded with full support.

Following Chandra and Staiger (2011), we make the structural modeling assumption that physi-

cians apply the same decision rule to each patient. Suppose that physicians test if and only if the

probability of a positive test qid exceeds a physician-specific threshold τd. That is, they test if and

7Given our assumption that negative test results do not improve patient health ex post, the testing outcome can
proxy for the impact of treatment on the treated, as long as the benefits of treating a detected PE are constant across
patients. The clinical basis for this assumption is discussed at greater length in Appendix B.
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only if:

Testid = 1 ↔ qid = xidβ + αd + ηid > τd (2)

which implies that:

Pr(Testid = 1) = f(xidβ + αd − τd) (3)

where the functional form of f(xidβ + αd − τd) = Pr(ηid > −(xidβ + αd − τd)) depends on the

distribution of ηid. Our goal is to recover the parameters β, αd and τd. Separately identifying

the two sets of physician fixed effects, αd and τd, will allow us to decompose variation in observed

testing rates into variation due to differences in patient PE risk (xidβ + αd) and differences due to

physician thresholds for testing (τd). From equation 3 alone, αd and τd are not separately identified;

to separate them, we will need to use data on test outcomes.

By estimating equation 3, we can calculate the predicted conditional probability that a patient

is tested, which will be a nonlinear function of the testing propensity index Iid = xidβ+αd− τd. Let

Zid denote a binary variable for tested patients indicating whether the test is positive or negative.

If every patient were tested, we would observe Zid for the entire sample and could recover β and

αd by estimating the linear probability model implied by equation 1 using OLS. (Of course, if every

patient were tested, there would be no variation in doctor testing thresholds.) In practice, we only

observe whether a test is positive or negative for those patients whom doctors choose to test, so

there is a selection problem; this is the standard selection problem originally studied by Heckman

(1979).

Formally, we model testing outcomes as follows:

E(qid|Testid = 1) = E(Zid|qid > τd) = xidβ + αd + E(ηid|qid > τd)

= xidβ + αd + h(xidβ + αd − τd)

= τd + λ(Iid) (4)

where h(xidβ + αd − τd) ≡ E(ηid|qid > τd) = E(ηid|ηid > −Iid) and λ(Iid) ≡ Iid + h(Iid). Because

we only observe whether a test is positive conditional on patients being tested, a regression of the

indicator for a positive test Zid on xid and doctor fixed effects would produce biased estimates of β

and αd unless we properly control for the selection correction. Equation 4 is the primary equation

of interest, and equation 2 governs selection into that sample.

The binned scatterplot of testing rates and test yields described in section 3.4 can provide

some intuition for understanding this model. Variation in testing propensities Iid could be driven by

differences in patient PE risk, either through differences in observed comorbidities xid or unobserved

population risk αd. Alternatively, differences in testing propensities could be explained by differences

in physician testing thresholds τd. If all variation across doctors in testing behavior were driven by

patient PE risk, then we would typically find that physicians with higher average testing propensities

have higher test yields.8 On the other hand, variation in physician testing thresholds τd will lead

to a downward sloping relationship between testing propensities Iid and test yields E(Zid|qid > τd),

8This is satisfied as long as E(ηid + Iid|ηid + Iid > 0) is upward sloping in the function Iid. This restriction holds
for many general distributions of ηid, including, for example, under distributions meeting the restriction that ηid is
symmetric and mean 0, or if the density of ηid is non-decreasing.
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as can be seen from equation 4 above.9 This derivation formalizes the intuitive argument made in

section 3.4, which interpreted the observed downward sloping relationship between doctors’ average

fraction of patients tested and test yield as evidence of variation in testing thresholds.

4.2 Misweighting of patient risk

A key difference between our model and Chandra and Staiger (2011) is that we extend the model laid

out above to allow for the possibility that doctors misweight observable characteristics in deciding

which patients to test. We previously assumed that the coefficients β attached to patient observables

when doctors decide which patients to test reflect the true relationship between those characteristics

and the likelihood of a positive test. This need not be the case. Doctors may under- or over-weight

the importance of different risk factors, so that testing is not necessarily targeted at the highest risk

patients. Assume that each doctor’s belief about the probability of a positive test is given by:

q′id = xidβ
′ + α′

d + ηid (5)

while the actual probability remains:

qid = xidβ + αd + ηid (6)

We define the new testing propensity I ′id = xidβ
′ + α′

d − τd to reflect the observed propensity given

physician beliefs about β′ and α′
d.

With this change, we can rewrite the test outcomes equation:

E(Zid|Testid = 1) = E(qid|q
′
id > τd)

= E(q′id|q
′
id > τd) + xid(β − β′) + αd − α′

d

= τd + xid(β − β′) + αd − α′
d + λ(I ′id) (7)

The model with misweighting now has three different doctor fixed effects, τd, α
′
d, and αd. As a

result, to separately identify τd based on equation 7 we will require one additional assumption: we

assume that doctors may misweight observable risk factors but are correct on average about the

probability that their tested patients will have PEs. This assumption can be written as:

Ed(q
′
id|Testid = 1) = Ed(qid|Testid = 1) (8)

where Ed denotes the conditional expectation for doctor d. Note that this implies that doctors’

beliefs about α′
d must offset misweighting in each doctor’s patient population so that doctors have

correct expectations about the overall rate of positive tests among their tested patients. Then an

analogous derivation to equation 4 gives:

E(Zid|Testid = 1) = τd + (xid − Ed(xid|Testid = 1))(β − β′) + λ(I ′id) (9)

9Note that Iid will increase as τd falls. Increases in Iid will cause E(ηid|ηid > −Iid) to fall and the test yield among
tested patients E(Zid|qid > τd) will decrease in turn.
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This is identical to equation 4, except now the (demeaned) observables xid directly enter the

test outcomes equation, even after conditioning on the propensity to test. In other words, the

model implies that if observables xid continue to have explanatory power after conditioning on

the propensity Iid, then physicians are not weighting those observables in the manner that would

maximize the incidence of positive tests.

4.3 Identification

As is typical for Heckman selection models, λ(·) can in principal be identified using functional form

restrictions, but more desirable identification is only feasible with exclusion restrictions.

In the simpler form of the model without misweighting, as presented by Chandra and Staiger

(2011) and outlined in Section 4.1, identification may come from the fact that xid only enters the

test outcome equation, equation 4, via λ(Iid). In that model, xid are excluded from directly entering

the test outcomes equation and we can think of them as instrumental variables which aid in the

estimation of λ(·), parallel to the standard instrumental variables identification in Heckman selection

models (e.g. Mulligan and Rubinstein 2008; Chandra and Staiger 2011). This restriction is no longer

valid if physicians incorrectly assess the PE risk associated with some observable comorbidities

and demographics xid. In the model with misweighting, equation 9 above shows that xid directly

enters the test outcomes equation with coefficients that are not known from estimating the equation

governing selection into testing.

In order to generalize the model to the case where doctors fail to appropriately weight observable

risk factors in deciding whom to test, we consider a new set of exclusion restrictions. We exploit the

fact that τd can be directly estimated for physicians testing patients we can identify as marginal.10

Marginal tested patients are those with the lowest observed values of the testing propensity I ′id
who are still tested. We estimate the average probability of a positive test among these marginal

tested patients. For these patients who are “just barely worth testing,” the observed probability of

a positive test reveals the threshold at which doctors are willing to test.

Formally, since ηid is bounded with full support, there exists some value of the propensity in the

testing equation I such that patients are only tested for I ′id > I. For those marginal tested patients

with I ′id → I, we know the realization of ηid is just barely sufficient to tip these patients across the

testing threshold, so that h(I) = E(ηid|q
′
id = τd) = −I. Since λ(Iid) = Iid + h(Iid), it follows that

λ(I) = 0 for these marginal tested patients.

Let QQd denote the average rate of positive tests Zid among tested marginal patients for doctor

d; taking the expectation of equation 9 yields:

QQd = τd + (Em,d(xid|Testid = 1)− Ed(xid|Testid = 1))(β − β′) (10)

In the equation above, Em,d(xid|Testid = 1) denotes the expectation of xid only among doctor d’s

tested marginal patients m. The likelihood of a positive test for those tested patients with the lowest

testing propensities is given by the physician’s threshold τd plus an adjustment for the fact that the

actual likelihood of a positive test for these patients differs from physician’s beliefs because β 6= β′.

10More precisely, τd is known modulo a misweighting adjustment we spell out below.
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This provides an exclusion restriction—after subtracting the average yield among marginal patients

from both sides, doctor fixed effects are excluded for physicians with tested marginal patients in

equation 9. A more detailed derivation of this result is in Appendix E.

Intuitively, suppose that by studying marginally tested patients, we uncover multiple physicians

with identical thresholds τd; these doctors may still differ in their patients’ risk of PE αd and thus

in the propensity to test for identical observables. This variation in α′
d across doctors known to

have identical testing thresholds can then identify the function λ(·) when we estimate the testing

outcomes equation (cf. equation 9); in other words, we can estimate the slope of the selection term

by asking to what extent doctors with higher testing propensities also tend to have more positive

tests, when comparing doctors with similar thresholds who treat patients with similar observables.

This identification argument naturally raises the question: why not simply estimate τd directly

for all doctors using only tested marginal patients, without estimating equation 9? If we observed a

large number of patients for each doctor in our sample, this approach would be feasible (although it

still would not identify misweighting). Unfortunately, since many doctors only test a small number

of in-sample patients, we cannot recover τd for most doctors using this method. Instead, we can think

of the doctor fixed effects for physicians who test marginal patients as excluded from estimation of

equation 9 (since their coefficient τd is known); the variation in those known fixed effects aids in

identifying λ(·), parallel to the role of instrumental variables in standard Heckman selection models,

and in turn allows us to recover τd for doctors with non-marginal patients.

In addition to the validity of the exclusion restrictions, the other crucial identifying restriction

under this estimation approach is the ignorability assumption: ηid is i.i.d. across doctors and

patients. The ignorability assumption implies that the function λ(·) is the same for different doctors

and patients. If this assumption were violated and ηid were distributed differently across doctors,

the function λ(·) could be doctor-specific. In Section 6.2, we consider one such model and show that

it does not materially impact our results.

The identification of misweighting also relies on the ignorability assumption, i.e. the assumption

that the error term ηid is i.i.d. The ignorability assumption implies that if doctors were optimally

assessing PE risk, any two conditions with the same β′ weight in the testing equation should induce

the same change in the fraction of positive tests amongst tested patients, holding all other comor-

bidities and testing thresholds constant. If two conditions with the same β′ weight in the testing

equation lead to different changes in the fraction of positive tests, then we identify misweighting; we

conclude the risk factor that induces the larger increase in positive tests is underweighted relative to

the other factor. The slope of the function λ(·) with respect to α′
d pins down how xid should impact

test outcomes Zid given β′—so we can in principle identify misweighting even with just a single x

variable. This strategy echoes the logic of the reduced form evidence on misweighting presented in

section 3.5, but the additional structure allows us to make more detailed comparisons of weighting

and risk across conditions, after accounting for differences in patient risk and testing thresholds

across doctors.

Empirically, the ignorability assumption may be undermined if the distribution of unobserved

patient PE risk differs across conditions. For example, if fewer patients with the risk factor that

appears to be under-weighted present to the ED with the relevant PE symptoms (e.g. chest pain,
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shortness of breath, elevated heart rate), then it may be that physicians are already testing every

patient in the relevant at-risk population. This assumption is directly analogous to the standard

exogeneity assumption used in virtually all structural models; e.g. just as discrete choice models

assume that observed product characteristics are independent of the error term, our misweight-

ing model is identified by assuming that observed characteristics are not systematically related to

unobserved determinants of PE risk.

4.4 Estimation of the structural model

Let us now specify precisely how we estimate the structural model outlined in the previous sections.

Define θ′d = α′
d − τd. Plugging our specification for the probability of a positive test from equation

5 into the testing equation 2 yields the final form of the testing equation:

Testid = 1 ↔ xidβ
′ + θ′d + ηid ≥ 0 (11)

These assumptions yield a binary choice model of testing. In our baseline specification, we assume

that ηid is i.i.d. across doctors and patients with a parametric distribution we describe below. Thus,

patients’ ex ante risk distributions may have different means (xidβ + αd) but are assumed to be

otherwise identically distributed.

Specifically, we assume that each ηid is drawn from a two parameter distribution which is a

mixture of a Bernoulli and a uniform distribution. With probability 1− p, ηid ∼ U [−η, η] and with

probability p, ηid ∼ U [v−η, v+η]. Intuitively, this distribution captures the idea that most patients

are not candidates for a CT scan. A small fraction of patients p present with symptoms of PE such

as chest pain and given those symptoms, there is a range of ex ante risks parameterized by η.11 We

assume that patients are never tested unless they receive the shock v (i.e. unless they present with

PE symptoms). In Appendix E, we show that this implies:

Pr(Testid = 1) = max

{
0,

p

2
+

p(I ′id + v)

2η

}
(12)

where I ′id = xidβ
′ + θ′d. Estimation of this equation by non-linear least squares allows us to recover

β̂′ = β′ p
2η and θ̂′ = p

2 +
p(θ′d+v)

2η which we use to construct an estimate of the testing propensity

Ĩ ′id = p
2 +

p(I′
id
+v)

2η .

Following the steps outlined in the previous section, the testing threshold parameters τd can be

recovered from a regression of test outcomes (i.e. positive or negative for detecting PE) on doctor

fixed effects, controlling for the propensity I ′id estimated from the testing equation. Note that under

the parametric assumptions we have made so far, E(ηid|ηid > −I ′id) =
η−I′

id
+v

2 . As shown in more

11Methodologically, we use this mixture distribution rather than simply assuming a uniform for two reasons: firstly,
because if we assume that p = 1 (the uniform case), the estimated variance of η is so large that it implies qid < 0
in some cases, which is inconsistent since qid is a probability. Secondly, since testing is a low probability event, a
uniform distribution would imply that more precise information (a higher variance of ηid) leads doctors to test more
everything else held equal; the mixture distribution allows for the possibility that more precise information leads to
less testing. This second point is especially relevant in the heteroskedastic model considered in the robustness section
where the variance of ηid is allowed to vary across doctors.
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detail in Appendix E, this implies that:

E(Zid|Testid = 1) = τd + (xid − Ed(xid|Testid = 1))(β − β′) +
ηĨ ′id
p

(13)

As discussed in section 4.3, we avoid relying on functional form identification for the coefficient

on Ĩ ′id by imposing the additional restriction that τd can be estimated directly for doctors with

tested marginal patients based on the observed average rate of positive tests among those marginal

patients, Q̂Qd. We define marginal patients as patients in the first decile of Ĩ ′id among tested

patients; this definition is conservative from the standpoint of detecting overtesting since more

restrictive definitions (e.g. the first percentile) will tend to lead to lower estimated thresholds.

Imposing the formally correct version of this constraint yields our estimating equation:

Yid = (1−Md)τd +
ηĨ ′id
p

+Xid(β − β′) + ǫid (14)

where Yid = Zid for doctors with no tested marginal patients and Yid = Zid − Q̂Qd for doctors

with marginal patients, Md is an indicator for whether a doctor has marginal patients, Xid =

(xid−Em,d(xid)) for doctors with marginal patients and (xid−Ed(xid)) for doctors with no marginal

patients.

Least squares estimation of equation 14 will allow us to recover the constant η
p and doctor fixed

effects τd for non-marginal patients which, when combined with our estimates for marginal patients

from Q̂Qd, can be used to recover the full distribution of estimated τ̂d.

The distribution of τ̂d combines both the true underlying variation in τd and estimation error

from the fact that each τd is imprecisely estimated. To correct for estimation error, we apply an

“empirical Bayes” technique to recover moments of the true underlying distribution of τd. Our

approach is described in detail in Appendix F.12 Unlike more standard estimators (such as Kane

and Staiger 2008), this technique is robust to the fact that we observe only a small number of

observations per doctor and makes no distributional assumptions about either the true distribution

of τd or the estimation error. The true distribution cannot be nonparametrically identified, but we

can recover moments of that distribution; we report the mean and standard deviation. Simulation

results do require us to recover a posterior estimate of τd for each doctor, and for these exercises we

impose a further assumption that τd is log-normally distributed as described in Appendix F.

5 Results

In this section, we report results of the estimation strategy described in section 4.4 above. First, we

describe the recovered distribution of physician testing thresholds and explore how differences in test

yields across physicians depend on differences in testing thresholds. Next, we test how physicians’

training and practice environment are related to practice styles. Then, we report results on which

risk factors are under- and over-weighted in physicians’ risk assessments relative to the weighting

12We use quotation marks since our procedure is not a traditional empirical Bayes appraoch: we do not derive our
estimator as the posterior of any specific distribution.
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that would maximize detection of positive tests and consider possible clinical explanations for these

patterns. Finally, we simulate how misweighting affects physicians’ test yields.

5.1 Distribution of physician testing thresholds and relationship to test yields

After estimating the model laid out in Section 4 and applying the empirical Bayes adjustment,

we find the mean value of τd is 0.056 and and the standard deviation is 0.054.13 In other words,

the average doctor is willing to test a patient provided the doctor’s estimate of the probability of

a positive test exceeds 5.6%. Note that this positive test rate includes tests which detect actual

PEs and false positives. The standard deviation of 0.054 suggests that there is a large amount of

heterogeneity across doctors in their testing thresholds, with some doctors testing almost all patients

displaying the relevant symptoms, and other doctors testing only patients with very substantial PE

risk. Considering that the overall test yield in our sample is only 6.9%, it is likely that this variation

in testing thresholds may affect testing decisions for many patients.

To quantify the role that heterogeneity in testing thresholds plays in the observed patterns

of testing behavior and test yields, we return to the graph of physician testing rates and test

yields. Now, rather than binning physicians by the average fraction of patients tested as we did in

Figure 2, we bin physicians by the structural analogue: the average estimated testing propensity
ˆ̃I ′id across their patients. Recall the observation from the reduced form analysis in section 3.4 that

physicians with the highest average testing rates also had the lowest test yields. This downward

sloping relationship is what we would expect to find if heterogeneity in τd were the primary driver

of observed variation in testing rates across doctors.

We can explore this hypothesis more formally by using our model to simulate what the rela-

tionship between average physician testing propensities and positive test rates would have been

if all doctors had the same testing threshold. We simulate testing decisions and test outcomes

under a counterfactual where τd is held constant across doctors, at the estimated average value

E(τd) = 0.056. Details of this simulation are provided in Appendix G.

Results of this exercise are pictured in Figure 3. The solid black line depicts the downward

sloping relationship between physicians’ average testing propensities and their test yields in our

observed data. As we suggested earlier, if all doctors had the same testing threshold, the remaining

variation in doctors’ average testing propensities would be driven by differences in patient risk of

PE. As a result, the relationship between doctors’ average testing propensities and their test yields

would become upward sloping over most of the domain. The dashed line with the “x” markers

display the results of this simulation in Figure 3. Now the doctors with higher testing rates are

those with the highest risk patients; these doctors test the greatest fraction of their patients and

experience the highest test yields, as evidenced by the upward slope in the simulated plot.14

13Note that of course this would not be consistent with a normal distribution since in this case τd > 0 for all doctors
or they would test every patient. In our welfare exercises we assume a log-normal distribution.

14If we graphed testing propensities vs. simulated rates of positive tests at the individual patient level, fixing
τd = E(τd), our model implies that the resulting relationship would be monotonic. Because we are aggregating to the
physician level in the figure, this relationship also depends on the variance in testing propensities for a given physician;
the slight non-monotonicity at the lowest deciles arises because doctors with the lowest average testing propensities
have more heterogeneous patients (driven by variation in observed comorbidities xid) than those in adjacent deciles.
At these low average testing propensities, higher variance in Iid is associated with more positive tests amongst tested

18



5.2 Determinants of physician testing thresholds

We next consider regressions of the estimated testing thresholds τ̂d on doctor, hospital and regional

characteristics to explore the determinants of practice style. Specifically, we regress τ̂d on variables

capturing doctor experience (the number of years since the doctor graduated from medical school),

whether the medical school the doctor attended is ranked in the top 50 for research or primary

care by US News & World Report, whether the hospital where the physician practices is a for profit

hospital or an academic hospital, regional medical spending, the state tort environment, and average

income in the region.

We consider OLS estimates as well as FGLS estimates which take into account the estimation

error in the dependent variable τd.
15 For each specification, we consider models with and without

hospital fixed effects. Including hospital fixed effects to identify the impact of within-hospital vari-

ation in physician characteristics obviates the concern that our model omits unobserved differences

in the cost of testing at the hospital level. For example, there may be variation in the opportunity

cost of testing, depending on whether the CT scan is used to capacity. This heterogeneity will be

absorbed into the hospital fixed effect.

Table 3 reports the results. We find that doctors in higher spending regions have lower testing

thresholds, i.e. they are more likely to test low risk patients. A 10% increase in regional spending,

as reported by the Dartmouth Atlas, is associated with a 0.4 percentage point decline in testing

thresholds, significant at the 1% level. This finding provides empirical support for the hypothesis

that high spending regions are providing lower marginal value, “flat of the curve” medical care.

We also find evidence that more experienced doctors have higher testing thresholds: a 10-year

increase in doctor experience is associated with 0.7 percentage point higher testing thresholds,

significant at the 1% level. This relationship persists after controlling for hospital fixed effects,

suggesting that even within the same institution, more experienced doctors are less likely to test low-

risk patients. Unfortunately, we do not observe enough testing decisions per physician to estimate the

model with year-specific testing thresholds for each physician, and as a result we cannot disentangle

cohort and experience effects.

Many factors predicted to influence care quality, such as the quality of the physician’s training,

the financial structure of the hospital (for profit or otherwise), its status as an academic institu-

tion, and the income of the patients served have no significant relationship to testing thresholds.

Estimates relating physician’s medical school rank to testing thresholds are imprecisely estimated,

with the upper bound of the 95% confidence interval at a 1.2 percentage point higher threshold for

those attending a top 50 research institution. Point estimates suggest slightly higher thresholds for

academic hospitals and lower thresholds among for-profit hospitals, but the 95% confidence intervals

bound the differences in average thresholds to less than one percentage point.

Finally, exploiting cross-sectional variation in enactment of tort reform, including joint and

several liability and malpractice damage caps, we find no consistent relationship between the mal-

practice environment and testing thresholds. The FGLS estimates point to a significant, negative

patients due to the convexity of the relationship between Iid and positive testing rates at the individual level.
15The FGLS estimates are based on Lewis and Linzer (2005), where the error term consists of both a homoskedastic

ǫid with unknown variance and a heteroskedastic component with known variance. The heteroskedastic component
arises from the estimation error in τ̂d which is in turn recovered from estimation of equation 14.
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relationship between testing thresholds and malpractice damage caps, which would be the opposite

prediction of theory suggesting physicians are more likely to test low-risk patients in states with

damage caps. The coefficient is much smaller in magnitude and no longer statistically significant in

the OLS specification. Our lack of power to estimate year-specific testing thresholds precludes us

from undertaking a difference-in-differences analysis of malpractice law.

Given the large estimated variation in τd, with a standard deviation of 0.054 after adjusting

for statistical noise, observed factors can explain only a small fraction of the estimated variation

in physician practice style. This observation implies that policy responses targeted at reducing

testing rates in specific hospital types (e.g. for profit hospitals) or policies aimed at raising the

qualifications of emergency department doctors are unlikely to lead to substantial reductions in

testing variation. Instead, focusing on policies which target the decision-making process rather than

physician credentials or practice environment may have greater scope for reducing heterogeneity in

practice style. This parallels the finding in the teacher fixed effects literature that there is substantial

variation in teacher productivity not explained by teacher credentials or other observable factors

(Jackson et al. 2014).

5.3 Identifying misweighted comorbidities

Next, we explore physicians’ misweighting of observable PE risk factors. As outlined in section 4.2,

we focus on measuring aggregate misweighting: factors which appear to be systemically under- or

over-weighted in physicians’ assessments of patient PE risk. The model implies that physicians are

overweighting a given risk factor if they are substantially more likely to test a patient with that

factor (holding constant other observable patient characteristics), but this variable does not yield

a commensurate increase in the rate of positive tests among tested patients. The evidence of both

under- and over-weighting suggests that physicians could perform the same total number of tests,

but detect more PE cases, if they improved targeting of the tests by applying different weights to

many important risk factors.

Results are reported in Table 4 and Appendix Table A.1. For each risk factor in our model,

column 1 reports the marginal effect of this variable on testing probability based on the coefficient

β′ from the testing equation (cf. equation 5). Column 2 reports the estimated error in physicians’

assessment of the PE risk associated with each comorbidity, implied by how the weights attached to

each comorbidity in their testing decisions compare to the conditional influence of each comorbidity

on test outcomes (cf. equation 13). Finally, columns 3 and 4 report the standard error and t-statistic

on estimated misweighting, respectively. Variables are sorted by their t-statistic in this table.

Given our nonlinear model, the reported marginal effects in column 1 hold for all patients for

whom Ĩ ′id > 0, which is true for the average patient in our data. (Marginal effects are zero for

patients with negative values of Ĩ ′id.) All included risk factors are binary variables; variables with

the most misweighting will have the largest absolute value of misweighting reported in column 2. We

report robust standard errors that don’t account for estimation error in the testing propensity index

Ĩ ′id, although this adjustment would be very small given the large sample of patients identifying Ĩ ′id.

We find evidence of substantial under- and over-weighting of key risk factors, relative to the

weights that would maximize test yields. Comparing physician’s implied prediction of PE risk for
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each patient with the estimated actual risk, we find that physicians appear to be misestimating

a patient’s probability of a positive test by 2.3 percentage points on average, accounting for all

comorbidities and averaging the absolute value of each patient’s aggregate misweighting to include

both under- and over-estimates. This degree of misestimation has the potential to affect testing

decisions for many patients.

The strongest evidence of underweighting comes from physicians’ implicit estimate of the PE risk

associated with a recent inpatient admission history. While immobilization is a commonly known

risk factor for PE, popular risk scores highlight the role of recent surgery but do not broadly include

other types of hospitalization. Perhaps as a result, we see evidence that physicians have adequately

increased testing rates for patients with a recent surgical history, but do not place sufficient weight

on recent hospital admissions that did not include a surgical procedure. The marginal effect reports

that physicians are 0.9 percentage points less likely to test a patient with a prior inpatient admission

within the past 30 days, implying that doctors have underestimated these patients’ PE risk by 11

percentage points after account for the role of other observed comorbidities.

In addition, several specific cancer diagnoses, and a history of PE or the related condition deep

vein thrombosis also show evidence of substantial underweighting, suggesting that physicians are

failing to adequately consider these risks when assessing a patient for PE.16 For all but one of these

conditions (metastatic cancer), physicians are indeed more likely to test patients with the observed

condition, holding constant other patient risk factors, but the response is not adequate given the

large influence of this preexisting condition on the current risk for PE. This pattern is occurring

despite the fact that both cancer treatment and history of PE or deep vein thrombosis are two of the

seven risk factors in a popular PE risk-scoring algorithm known as the Wells score. This suggests

that physicians are continuing to under-respond to these critical risk factors despite their recognized

role in PE risk.17

A few other risk factors also show evidence of significant underweighting, including rheumatoid

arthritis, obesity and paralysis, all of which are known risk factors for PE documented in the medical

literature, although not explicitly included in popular risk scoring algorithms. A complete list of

underweighted risk factors is reported in the top panel of Table 4.

Turning to demographic variables, we find evidence that black patients are under-tested. They

are less likely to be tested for PE than non-black patients, despite the fact that they are at higher

risk of PE. Given the structure of our model, these differences in testing patterns of black and

white patients cannot be explained by differential sorting to physicians, since we have controlled for

differences in physicians’ testing thresholds. This finding provides new empirical support for the

concern about racial disparities and possible provider prejudice in medical treatment (cf. Nelson

2002). The result stands in contrast to results from Chandra and Staiger (2010) that applied a

related analytic framework to a different clinical setting and found that while blacks receive less

treatment for heart attacks, differences were fully explained by their lower benefits from treatment.

16Prostate cancer, metastatic cancer, endometrial cancer and colorectal cancer all have significant underweighting.
17Whether the underweighting of these risk factors is driven by failure to adhere to Wells’ score criteria or whether the

Wells score inadequately weights these risks is not something we can directly assess in our data. Complete calculation
of the Wells’ score would require information that is difficult to observe in claims data or even retrospective study of
patient charts. For example, the most highly weighted factor in the score is the physician’s clinical opinion that PE
is the most likely diagnosis, or equally likely to the other possible diagnosis.
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In the setting of testing for PE, differences in test yields do not explain disparities in testing rates.

Notably, these disparities are arising among patients who all have Medicare insurance coverage,

although they may differ in their subscription to wrap-around private insurance, and all of whom

have arrived at the emergency room for evaluation by a physician with access to a CT scanner.

A number of different factors show evidence of overweighting: these are conditions where test

yields are predicted to improve if physicians became less likely to test patients with these particular

conditions. Several of these overweighted conditions, including the three with the most significant

evidence of overweighting (i.e. atrial fibrillation, chronic obstructive pulmonary disease, and ischemic

heart disease), have chest pain and difficulty breathing as hallmark symptoms; these are also key

clinical symptoms of PE. Patients who visit the ED with an exacerbation of another previously

diagnosed condition could be suspected of having PE due to similar symptoms and thus may be

tested at a higher rate even though our data suggests they are not at higher risk of PE, holding

constant their other risk factors. Given that these other conditions must have been diagnosed prior

to the ED visit in order to be included on our comorbidity list, physicians should be aware of them

at the time they are evaluating the patient for PE. Of course, failure to take an appropriate medical

history or limited access to patients’ prior health records could hinder evaluation and contribute to

the observed overweighting of these conditions.

Taken together, these results suggest that misassessments of the clinical risk associated with pre-

existing comorbidities may lead to substantially diminished test yields. It is possible that physicians

could detect more PE cases while performing a similar number of tests, by adjusting the targeting.

An alternative explanation for these patterns of apparent misweighting would be that the value

of detecting PE differs for patients with these varying risk factors. For example, if the value of

detecting PE were substantially lower in patients with a recent hospital admission or a cancer

diagnosis, that could explain the apparent underweighting. Conversely, if the value of detecting PE

were higher for patients with ischemic heart disease, COPD or atrial fibrillation, then that could

also help rationalize the observed testing behavior. We find no obvious link between these conditions

and the value of PE detection. In fact, our results on age-related risk suggests that physicians are

undertesting younger patients, for whom the value of PE detection should be particularly high, since

they have a longer life expectancy and accordingly higher value of statistical life.

5.4 The impact of misweighting on test yields

We now return to the graph that displays the relationship between physicians’ average testing

propensities and test yields to see how misweighting impacts this relationship. Recall that the graph

is downward sloping in our observed data: much of the variation in average testing propensities is

driven by differences in physician testing thresholds, and doctors with lower testing thresholds have

lower test yields among tested patients. In section 5.1, we found that if there were no variation

in physician testing thresholds, then the relationship between average testing propensities and test

yields would become upward sloping, since variation in testing propensities would now be solely

driven by differences in patient PE risk.

In this section, we consider the role of misweighting in determining the relationship between

testing propensities and yield. We simulate the counterfactual relationship between physicians’
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average testing propensities and test yields that would be observed if there were no heterogeneity in

testing thresholds and no misweighting of observable risk factors. Eliminating misweighting should

increase the test yield for all values of the testing propensity index by improving the targeting of

PE CT tests. Details of the simulation exercise are described in Appendix G.

Results of this simulation are pictured in Figure 3 and plotted with the dashed line with triangle

markers. We see that for every decile of physicians’ average testing propensity, the predicted test

yield is higher in the simulation with no misweighting than was observed in both our actual data

or the simulation that only eliminated threshold variation. We predict more detected positive tests

if physicians attached appropriate weights to observable risk factors, and the increase is largest

at lower testing propensities. (We quantify the precise increase in test yields and their welfare

consequences in section 7.3.) Inframarginal patients are likely to be tested even with misweighting,

but the set of marginal patients changes—some patients who are less likely to test positive are no

longer tested and others who were previously not tested but have a higher likelihood of testing

positive are now tested. This exercise suggests that misweighting is a substantial contributor to low

test yields, and attention to better targeting of testing resources is warranted, rather than focusing

solely on reducing variation in testing rates.

6 Robustness

The results discussed in the previous sections depend on a number of modeling assumptions. The

critical identifying assumption can be framed in terms of the specification ηid term, the factors

influencing testing choices that are observable to the doctor but unobservable to the econometrician.

In our baseline specification, we assume that ηid is i.i.d. across patients and doctors and follows a

specific parametric distribution. In the robustness checks described below, we test the sensitivity

of our results to these assumptions. Specifically, we consider the robustness of our results to the

set of included covariates (which essentially tests robustness with respect to a particular form of

heteroskedasticity); we estimate a version of our model where the variance of ηid is allowed to vary

flexibly across doctors; and we estimate a semiparametric model where ηid is once again assumed

to be homoskedastic but now with an arbitrary distribution.

6.1 Stability of results to inclusion of alternate patient controls

In the spirit of Altonji et al. (2008), we explore the sensitivity of our results to the set of included

variables to assess potential bias from unobservable risk factors. The rationale for this exercise is

that omitting the variables xomit
id from the baseline specification could generate heteroskedasticity,

if the resulting error term η′id = ηid + xomit
id β is not i.i.d. across doctors and patients. If this

heteroskedasticity substantially changes our estimates of the distribution of τd or the degree of

misweighting for the remaining variables, this might suggest that including additional unobserved

variables would change our estimates further.

The model outlined above included four main classes of patient level risk factors: PE specific

risk factors, chronic condition warehouse comorbidities, Elixhauser comorbidities, and patient de-

mographic variables. Because some variation in comorbidities is required to appropriately identify
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this model, we retain the PE specific risk factors and the chronic condition warehouse comoribidi-

ties throughout, and test the stability of our findings to excluding the Elixhauser comorbidity set

and the vector of demographic variables.18 Results from this exercise are reported in Table 5; the

empirical Bayes correction has been applied before reporting the mean and standard deviation of

physician’s testing thresholds.

The mean estimated value of physician’s testing thresholds ranges between 5.6% and 6.6%, and

shows evidence of substantial dispersion in all models. The standard deviation of τd ranges between

3.9% and 5.4%, depending on the set of included patient risk factors.

Dropping covariates does appear to increase the value of the estimated mean τd although the

range of values across specifications is only around 1/4 of the estimated across-doctor standard

deviation. If including additional covariates would cause estimates of τd to decrease, this suggests

that our results may be conservative with respect to the amount of overtesting. Controlling for

the full set of risk factors also appears to increase the variance in estimated testing thresholds,

providing suggestive evidence that the observed variation in thresholds is not driven by the exclusion

of unobserved risk factors from the model. In all of these cases, variation in testing thresholds is

sufficient to imply large differences in testing probabilities for identical patients depending on which

doctor they visit.

All specifications also predict substantial misweighting of included risk factors. The average

absolute value of misweighting in physicians’ assessment of PE risk ranges from 0.020 to 0.023

percentage points. Perhaps unsurprisingly, the full model which includes all available risk factors

as candidate sources of misweighting recovers the largest predicted amount of misweighting. In all

cases, misweighting is sufficiently large that it has the potential to change testing decisions for many

marginal patients.

In results reported in Appendix Table A.2, we find that the specific misweighted factors identified

in Table 4 and discussed in section 5.3 continue to show evidence of misweighting of similar direction

and magnitude, even as we vary the set of other included comorbidities. For example, the PE risk

associated with recent hospital admissions and history of PE or deep vein thrombosis appears

significantly underweighted in all specifications; black patients also show evidence of being under-

tested in both specifications that include demographic variables. Similarly, a consistent set of

conditions shows evidence of overweighting across specifications, including ischemic heart disease,

chronic obstructive pulmonary disease and atrial fibrillation. These findings are not sensitive to the

choice of other included covariates.

6.2 Estimation with physician-specific heteroskedasticity

Even if our results are not sensitive to dropping some covariates, we might worry that PE risk

factors we cannot observe from insurance claims vary systematically across doctors. Differences

across doctors in the variance of ηid could arise for at least three reasons. First, doctors may differ

in their skill at assessing risk factors unobservable to the econometrician. A doctor with more

diagnostic skill may have a higher variance in ηid across his patients, since he is more discerning in

18Recall that we rely on comorbidities to identify the marginal tested patients, and then calculate test outcomes
among that group for high-volume doctors to implement our instrumental variables strategy.
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his judgement of which patients should be tested on the basis of clinical presentation and symptoms.

Second, doctors may differ in the variance of latent PE risk present in their patient population. A

doctor with a more heterogeneous patient population may have a higher variance in ηid across his

patients. Finally, doctors may simply make “errors” that lead them to deviate from typical practice

patterns; a doctor who frequently deviates from his peers’ practice patterns in assessing PE risk

may have have a higher variance in ηid. The model we develop in this section allows us to isolate

differences in physician testing thresholds that are unrelated to possible differences in the variance

of ηid across physicians.

Recall the assumption we made in Section 4.4 that ηid followed a mixture of a Bernoulli and

uniform distribution. We maintain the basic shape of the distribution but now allow both the

Bernoulli probability and the variance of the uniform distribution to vary across doctors, so that

ηid ∼ U(−ηd, ηd) with probability 1− pd and ηid ∼ U [v − ηd, v + ηd] with probability pd.

Following the derivation in Appendix E, the more flexible distributional assumption implies the

testing equation takes this form:

Pr(Testid = 1) = max

{
0,

pd
2

+
pd(I

′
id + v)

2ηd

}
(15)

From the testing equation above, we can see that heteroskedasticity in ηid is identified by the fact

that observables are less predictive of testing behavior for doctors with a high variance in ηid, i.e.

a smaller value of pd
ηd
. As described in the appendix, the testing equation can be used to estimate

C pd
2ηd

, where C is an unknown scaling constant. For computational tractability given the demands of

this more flexible estimation strategy, we randomly exclude half of the physicians from our sample

to reduce sample size, and drop the Elixhauser comorbidities and demographic risk factors from our

list of included covariates.

With the introduction of heteroskedasticity, the conditional probability of a positive test is given

by:

E(qid|Testid = 1) = τd +
C

2

Ĩ ′id
η̂d

+ (xid − Ed(xid))(β − β′) (16)

where η̂d = C pd
2ηd

are the variances estimated in the testing equation. Further details of the estima-

tion strategy are provided in Appendix E.

Table 5 reports the results of this analysis in panel 4, which can be compared to results from

the baseline model with the same excluded comorbidity set, as reported in panel 3. The mean value

of τd is 7.0% in the model allowing for heteroskedasticity compared to 6.6% in the baseline model

with the same covariates; allowing for heteroskedasticity slightly raises our estimate of the average

testing threshold. Estimates of the standard deviation of τd are are also higher at 5.1 percentage

points in the heteroskedastic model compared to 3.9 percentage points in the homoskedastic model.

Thus, the cross-physician variation in testing behavior is not explained by differences in the variance

of ηid across doctors. This provides reassuring evidence that the assumption of homoskedasticity in

the baseline model was not leading us to overstate differences across physicians in testing thresholds.

Finally, the degree of misweighting remains very similar to the original estimates, with the average
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absolute value of misweighting estimated at 0.021 in the heteroskedastic model compared to 0.020

in the baseline model.

As described earlier, one potential driver of heteroskedasticity across physicians could be “mis-

takes” physicians make that lead them to deviate from typical practice patterns in ways that do

not improve patient outcomes. This idea of physician diagnostic errors is central to the model of

cesarean section births studied by Currie and MacLeod (2013). Currie and MacLeod (2013) begin

with a normative model of the returns to performing a cesarean section and argue that physicians

who deviate more from the predicted optimal treatment choice according to that model have worse

diagnostic skill—i.e. the best doctors respond only to the index of observables. They corroborate

this interpretation by demonstrating that outcomes are indeed worse for physicians who deviate

more frequently from the model’s recommendations.

In contrast, our model suggests that physicians do have private information about PE risk. The

scaling factor C is positive, which suggests that at least in this context, physicians with higher vari-

ance ηid are not making random mistakes when they deviate from the predicted testing behavior—

rather, they are selecting patients on unobservables in order to increase their test yields.

The other two potential drivers of heteroskedasticity identified previously—differences in physi-

cian ability to assess PE risk based on clinical symptoms or differences in the latent distribution

of population PE risk—remain as potential explanations for the observed heteroskedasticity. We

cannot directly distinguish these hypotheses.

The role of physician diagnostic judgment in driving testing behavior and outcomes was pre-

viously explored by Doyle, Ewer, and Wagner (2010). In a natural experiment, they find that

physicians from more prestigious residency programs achieve similar patient outcomes at 10-25%

lower cost compared to their less skilled peers. One potential explanation for this phenomenon is

that physicians from less prestigious schools prefer to administer more low-value care and could

achieve the same outcomes at lower cost if they cut back some services. In the language of our

model, these less skilled physicians might have lower testing thresholds, i.e. smaller τd. A second

explanation is that these less skilled physicians just need to use more medical resources to achieve

the same quality of care, because they are less accurate in their assessments of ex ante patient

risk. In the language of our model, this decreased diagnostic accuracy would correspond to a lower

variance of ηid, since these less skilled physicians would be failing to incorporate clinical information

about patient risk to improve test targeting. Our results suggest that the heterogeneity in measured

τd across physicians persists even after allowing for heterogeneous variance of ηid acoss doctors. This

finding raises the possibility that cost variance across physicians is driven in part by lower marginal

value services provided by doctors with lower expected benefit thresholds.

6.3 Estimation of a semiparametric selection model

Next we test whether our results are sensitive to the shape of the distribution assumed for the

unobserved component of their PE risk, ηid. We previously imposed a strict distributional assump-

tion, requiring ηid to be distributed according to a mixture of Bernoulli and Uniform distributions.

Now, we relax this assumption by estimating Equation 11 as a semiparametric binary choice model,

using the Klein and Spady (1993) binary choice estimator. This robustness exercise will ensure
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that differences in testing thresholds observed in the previous sections are not driven solely by the

strong distributional assumptions which restricted the functional form of the testing equation and

the shape of the selection correction function λ(·). To implement the semiparametric model, we re-

turn to our original, strong version of the ignorability assumption that ηid is i.i.d. across physicians

and patients.

Estimation of the semiparametric model proceeds as follows. Let g denote the probability that

patient i is tested given index I ′id = xidβ
′ + θ′d. The log likelihood is given by:

L(β, g) =
∑

i

[Testid ln g(xidβ
′ + θ′d) + (1− Testid)(1− ln g(xidβ

′ + θ′d))] (17)

The idea of the Klein-Spady estimator is to approximate g using a “leave-one-out” estimator

which predicts the probability of testing for a particular patient, giving more weight to patients with

nearby indices I ′id. Specifically, we substitute for g using the following function:

ĝ−i,d =

∑
j 6=i k

(
I′
jd
−I′

id

h

)
Testj

∑
j 6=i k

(
I′
jd
−I′

id

h

) (18)

We use a 4th-order Gaussian Kernel, k(·), and empirically select for the smallest bandwidth h such

that ĝ is a monotonic function of the index I ′id.

Given the propensity to test index I ′id from estimating equation 11 by the Klein-Spady procedure,

the next step is to estimate the testing outcome equation. Echoing the derivation in Section 4.2,

the probability of a positive test among tested patients is given by:

E(Zid|Testid = 1) = τd + (xid − Ed(xid|Testid = 1))(β − β′) + λ(I ′id) (19)

where λ(I ′id) = I ′id+h(I ′id). Because we no longer assume a particular distribution of ηid, we now fit

the function λ(·) flexibly, reporting results with λ(·) as a linear function and as a cubic polynomial,

and estimate the net benefit equation by OLS.

Note that the Klein-spady estimator only recovers I ′id up to a location and scale normalization.

The scale normalization is embedded in the function λ(·). We impose the appropriate location

normalization so that at the smallest value of I ′id among tested patients, I, we have λ(I) = 0 as

shown in Section 4.3.19

Results of the semiparametric estimation are reported in Table 5, panels 5 and 6. This semipara-

metric estimation approach estimates the mean value of τd at 6.7% (linear) or 6.6% (cubic), similar

to the parametric model estimate of 6.6% in the sample with identical comorbidities. We continue

to find a large amount of cross-doctor dispersion in estimated testing thresholds. The standard

deviation of τd is 5.4% across doctors, compared to 3.9% in the parametric model with the same

covariates (but interestingly nearly identical to the parametric model with the full set of covariates

included). Our assessment of misweighting continues to be highly consistent across models, with

19This normalization can be implemented by omitting the constant term from the polynomial λ(·) and subtracting
a constant I from Î ′id; thus the resulting polynomial λ(I ′id − I) will equal 0 for I ′id = I. To avoid sensitivity to
outliers, we normalize I ′id so that λ(I) = 0 for I ′id in the 10th percentile amongst tested patients, which agrees with
our definition of marginal patients in Section 4.3.
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an average absolute value of the error due to misweighting at 2.1% in the semiparametric model,

compared to 2.0% in the parametric model.

Taken together, these robustness checks, including varying the set of included covariates, allowing

for physician-specific heteroskedasticity, and estimating a semiparametric selection model, all suggest

that our findings on the dispersion in testing thresholds and amount of misweighting are very stable

across alternative modeling assumptions. We find substantial variance in testing thresholds of similar

magnitude in all specifications, suggesting that much of the observed variation in testing behavior

may be driven by differences in practice styles. Further, doctors are mis-assessing patient PE risk

by similar amounts in percentage point terms across all models.

7 Welfare cost of overtesting and misweighting

We now turn to the welfare implications of the models estimated in the previous sections. In order to

assess the welfare cost of overtesting and misweighting, we will need to make additional assumptions

about the costs of testing and the dollar-equivalent benefits of detecting and treating a PE. Given

these assumptions, we can evaluate whether the observed variation in testing thresholds reflects

overuse and compare the welfare cost of overuse to the welfare cost of misweighting. Applying the

structure and estimates of our baseline estimation procedure, we perform simulations to determine

how welfare would change if doctors behaved optimally from a social standpoint. We begin by sim-

ulating worlds with no overtesting but maintaining the observed patterns of misweighting; next, we

simulate a world with no misweighting but maintain the observed distribution of testing thresholds.

In each case, we decompose the sources of estimated welfare gains into financial costs, medical costs

and medical benefits.

This section proceeds first by describing the calibration of the optimal testing threshold τ∗, then

exploring the welfare implications of the measured variation in physician testing thresholds, and

finally estimating the welfare costs of misweighting the PE risk associated with patient comorbidities.

All of the calibrations in this section are implemented in our baseline model as outlined and reported

in Sections 4 and 5.

7.1 Calibration of parameters

In order to proceed with welfare calculations, we make several additional assumptions about the

costs of testing and the benefits of a positive test. We assess these costs and benefits from a social

standpoint; e.g. if some physicians test more due to reimbursement incentives, this would appear

in our model as measured heterogeneity in τd that deviates from the social optimum we compute

below.

If physicians are behaving optimally, they should test a patient if and only if: NUqid − c > 0

where NU represents the net utility of detecting a positive test, c represents the cost of the test

and as above, qid denotes the likelihood of a positive test. This yields a socially optimal testing

threshold τ∗ = c
NU such that physicians should test only if qid > τ∗.

If there were no false positive or false negative tests, the net utility would correspond to the net

medical benefits of treating PE minus any financial costs of treatment. However, CT scans, like
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many other medical tests, can generate both false positive and false negative results (Stein et al.

2006). It turns out that an important cost of overtesting is a consequence of type I and type II

errors: overtesting leads to unneeded treatment which can have adverse consequences. Patients with

false positive test results receive medical treatment as if they truly had a PE; this treatment will

incur medical risks and financial costs without conferring any medical benefit on the patient, since

they do not truly have the condition being treated.

Let fp denote the likelihood of a false positive, s the sensitivity of the test (one minus the

probability of a false negative), MB the medical benefits of treating a PE, MC the medical costs

and CT the financial costs of treatment. In Appendix H, we show that allowing for false positives

and false negatives results in a model which is isomorphic to the one above with NU replaced by

N̂U = s
s−fpMB −MC − CT and c replaced by ĉ = c+ s·fp

s−fpMB.

Table 6 reports the values of the parameters that we use to compute τ∗ = ĉ
N̂U

. Parameters

specifying test sensitivity and specificity, the medical benefits of testing, and the medical costs of

testing are drawn from the existing medical literature. Note that our calibration of both the medical

benefits and the medical cost of treatment depend on an estimate of the value of a statistical life

(VSL); following Murphy and Topel (2006) we assume a VSL of $1 million.20 We estimate the

financial cost of testing and the financial cost of PE treatment directly from our Medicare claims

data. Appendix Table A.4, which we discuss below, explores the sensitivity of our welfare findings

to these calibration parameters.

One parameter of this calibration turns out to be of particular importance and remains a source

of uncertainty in the medical literature: the rate of false positive tests. To our knowledge, the

single piece of medical evidence on chest CT scans’ false positive rate derives from a comparison

of CT imaging results to older diagnostic methods, VQ scanning and ultrasonography; the authors

estimate the false positive rate at 4% (Stein et al. 2006). We report results with a false positive rate

of 4% as our preferred welfare calibration, but also show the welfare implications of assuming a 3%

or 0% false positive rate. Lower false positive rates boost the net utility associated with treating a

positive test, and thus provide more conservative estimates of the costs of overtesting.

Table 7 reports the optimal testing threshold τ∗ under these calibration assumptions. With

a false positive rate of 4%, we find physicians should optimally test all patients with an ex ante

likelihood of a positive test greater than or equal to 6.2%. The optimal threshold decreases to 5.0%

at a false positive rate of 3%; at the (unlikely) extreme of no false positive test results, the optimal

threshold falls to 1.5%.

7.2 Welfare impact of eliminating overtesting

The model implies welfare loss whenever a physician’s testing threshold τd does not equal the optimal

value τ∗. We focus on the welfare consequences of overtesting, where τd is below this calibrated

optimum, for two reasons. First, overtesting is empirically the larger problem in our sample, with an

estimated 84% of doctors overtesting under our preferred calibration assumptions. Second, unlike

the overtesting case, we find that the welfare loss due to under-testing is highly dependent on the

20The choice of a lower VSL estimate in this context is driven by the fact that we are studying an elderly population,
with an average age of around 77.
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distribution we assume for τd when applying an empirical Bayes technique to recover the posterior

distribution of τd. Previously, we were agnostic about the distribution of τd and recovered only

the posterior mean and variance, but for welfare calculations, a specific distributional assumption

is required. For some distributions of τd, even a small number of doctors under-testing can lead to

large welfare losses if the right tail of the τd distribution is sufficiently thick.

To determine the percentage of doctors overtesting we need to extend our empirical Bayes

analysis to recover a posterior estimate of τd for each physician; proceeding requires an assumption

about the shape of the underlying τd distribution. First, note that τd is bounded below at the false

positive rate. We assume that τd minus the false positive rate is log-normally distributed with the

posterior mean and variance of the τd distribution as previously calculated. Table 7 reports the

percentage of doctors overtesting at each false positive rate, given this distributional assumption.

Our initial estimates of τd are in units of the probability of a positive test. For example, in our

baseline specification, we find that the average doctor tests a patient if the probability of a positive

test exceeds 5.6%. We want to know: how would testing behavior change for each physician if all

physicians with testing thresholds below τ∗ = 6.2% instead adopted a threshold of 6.2%? If we

observed qid for each patient, this would be a simple matter of counting the number of inframarginal

patients. But qid is not observed—instead, we know the probability of a positive test as a function of

the propensity to test. Our model allows us to determine how changes in τd impact the propensity

to test using the scaling factor η
p , the estimated coefficient on the selection term in equation 14.

Equation 14 also allows us to compute how the probability of a positive test conditional on testing

changes for each observation. More details are provided in Appendix H.

Combined with our assumptions about costs and net utility, we compute separately the realized

medical benefits of testing, the medical costs of testing, the financial costs of testing and the net

benefits of testing given the estimated τ̂d as well as a counterfactual where τd = τ∗ for all doctors

with τ̂d < τ∗. These results are shown in Table 7, under a series of different assumptions about the

false positive rate.

At a false positive rate of 4% (the estimate in the medical literature), we estimate that 84% of

the physicians in our sample are overtesting on the margin, i.e. they apply a testing threshold that

is lower than the 6.2% threshold probability of a positive test the calibration suggests is optimal.

At a false positive rate of 3%, the proportion of doctors overtesting falls to 67.2%. To illustrate the

importance of the false positive rate in assessing welfare, note that if there were no false positive

tests, the optimal testing threshold τ∗ drops substantially to 1.5% and only 10% of physicians are

overtesting on the margin, i.e. have a testing threshold lower than 1.5%.

At a false positive rate of 3% or 4%, eliminating overtesting would decrease the total number of

patients tested by more than 30% or 50%, respectively. Why such large effects? Recall that with a

false positive rate of 4%, the minimum possible perceived probability (qid) of a positive test is 4%.

The median physician in our sample has a τd which is less than .05 (much less than the mean, since

the distribution is bounded from below by .04). Increasing τd to 0.062 thus greatly increases the

range of probabilities qid which would not be tested for many physicians.

In these scenarios, the financial and medical costs of testing would fall by an amount proportional

to the decline in tested patients. There would be a small offsetting decline in the medical benefits
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of testing because the patients not tested in the counterfactual world have a very low probability

of truly having a PE. Eliminating overtesting leads to a 12.5% increase in net benefits at a false

positive rate of 3% and a more than 60% increase in net benefits at a false positive rate of 4%;

the increase in net benefits per test is of course much larger. This exercise illustrates both the

large welfare implications of overuse of medical testing and the sensitivity of this result to the false

positive rate. As detailed in Table 7, most of the net benefit increase comes from eliminating the

financial costs associated with testing low-probability patients for PE and unneeded treatment of

patients with false positive test results.

Given the widespread incidence of overtesting under our preferred calibration, it is worth con-

sidering a few possible explanations. As we illustrate in Table 7, the estimated overtesting behavior

of a majority of doctors in our sample could be explained if they were behaving as if there were no

false positive test results. Similarly, if physicians ignored the financial costs associated with testing

and treating PE, this could also explain much of the overtesting behavior. However, the only way

to rationalize the entire estimated posterior distribution of physician testing patterns would be to

allow physicians to vary substantially in their assessment of financial costs or the false positive rate.

One could also interpret variation in τd as variation in the patients’ “value of knowing” that

they do not have a PE. In contrast to the case of Huntington’s disease (Oster, Shoulson, and Dorsey

2011), the value of knowing seems an unlikely driver of testing decisions in this context, since in

most cases a PE has a very low ex ante probability and the rate of false negatives is sufficiently

high that even after testing one has only somewhat reduced that probability. Further, Finkelstein

et al. (2014) find that variation in patient demand (i.e. both patient preferences and medical needs)

explains only 14% of the regional variation in spending on imaging, suggesting a very limited role

for patient preferences in explaining variation in imaging decisions.

Finally, the socially optimal testing threshold depends on the cost of scanning a patient, which we

estimate directly from the Medicare claims data. The $300 financial cost of testing is calculated based

on the allowed charges which compensate for the technician’s time to run the scan, the radiologist’s

time to interpret the scan and capital depreciation. If some of this reimbursement is intended as

compensation for the high fixed costs of owning a CT scanner, then we may be overstating the social

cost of testing. We believe this concern is mitigated by calculating costs directly from the Medicare

data, where reimbursement for CT scans remains much below the estimated fees paid by insured

consumers (cf. Healthcare Blue Book which estimates the typical fee at $517 to $577 depending

on the precise billing code). In addition, there may be opportunity costs of scanning a patient not

accounted for in our calibration if the hospital is capacity constrained in its allocation of time in the

CT scanner or time spent awaiting a scan in an ED bed. If present, opportunity costs would lead

us to understate the true costs of performing a scan, and thus understate the amount of overtesting

in our data.

Panel A of Table A.4 explores how our results on the net welfare cost of overtesting vary with

the calibrated parameters. The results do not vary much with the calibration of test sensitivity.

Changing either the VSL or the cost of the test shifts the optimal testing threshold τ∗ and thus the

welfare benefits. For example, with a VSL of $500,000 rather than $1 million, the optimal threshold

increases from 6.2% to 14.3%. Due to this dramatic increase in τ∗, simulations with no physicians
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overtesting involve more dramatic declines in the fraction of patients tested, and the net benefits of

eliminating overtesting almost double vis-a-vis the baseline calibration results. If the VSL is $1.5

million rather than $1 million, the number of patients tested in a world with no overtesting increases

by 50%, and the net benefits of eliminating overtesting likewise fall. Similarly, if the cost of the test

is $0 (i.e. if there is zero marginal social cost of running a CT scan), the optimal threshold τ∗ falls

to 4.8%, there is substantially less overtesting and the overtesting that does occur has much lower

social cost (only the costs from overtreatment of false positive tests). If the cost of the test is $500

(comparable to the fees paid to private insurers per CT scan) rather than $300, the net benefits of

eliminating overtesting almost double.

7.3 Welfare impact of eliminating misweighting of patient risk factors

Table 8 reports results from a simulation in which doctors select patients for testing by weighting

observable comorbidities in the manner the model suggests would maximize detection of positive

tests. In other words, we simulate physician behavior if they were to use the true weights β rather

than the observed weights β′ to assess PE risk. In this simulation, we maintain the distribution of

physician testing thresholds at their baseline values, so we allow for the observed patterns of under-

and overtesting. We report results at our preferred calibration of the false positive rate, 4%; the

welfare consequences of eliminating misweighting would be even larger at lower false positive rates.

Structurally, this exercise is very similar to the exercise where we simulate alternative values of

τd. Our initial estimates tell us the degree of misweighting in units of the probability of a positive

test. We want to determine how the propensity to test would differ if physicians did not misweight;

the scaling factor η
p allows us to translate the estimated degree of misweighting into the same units

as the testing propensity and calculate the testing propensity and expected test outcomes if there

were no misweighting. We demonstrate this explicitly in Appendix H.

We find that properly weighting observables to improve PE detection would lead the fraction of

patients tested to increase from 3.8% to 4.3%, by moving some patients just over their estimated

physician’s testing threshold. But by far the predominant welfare impact comes from the predicted

increase in the rate of PE detection. The medical benefits due to treatment of PE nearly double and

the net benefits of testing more than triple. The total welfare loss from misweighting ($35.9 million

in our sample) is more than 4 times as large as the welfare loss from overtesting ($8.1 million) even

in the model with the highest rate of false positives.

To investigate whether a small number of risk factors account for most of the observed costs of

misweighting, we conduct an exercise where we correct the weights applied to each variable, one at

a time. Results from this exercise with more detailed notes are reported in Appendix Table A.3.

First, it is worth noting that in this simulated second-best world where physicians do not all share

the optimal testing threshold τ∗ and where other factors are misweighted, correcting misweighting

of a single risk factor in isolation can sometimes worsen total welfare; certain misweighting errors

offset some of the costs associated with overtesting. However, in most cases, correcting a single

variable’s weight weakly improves estimated welfare.

Correcting the weighting on 30-day inpatient admissions accounts for approximately 20% of the

total potential gains from eliminating misweighting. Expanding the list to include the 5 highest-
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impact covariates (30-day admission history, 1-week admission history, 1-year surgical history,

chronic obstructive pulmonary disease, and ischemic heart disease) accounts for roughly 60% of

the total potential gains. These covariates are both substantially misweighted and common enough

to induce large welfare consequences.

Intuitively, given our estimates of misweighting in Section 5.3, it is not surprising that the welfare

loss from misweighting substantially exceeds the welfare losses from overtesting. Several factors com-

bine to make misweighting a more serious problem. Physicians behave as if they are misestimating a

patient’s PE risk by 2.3 percentage points on average by failing to weight observable characteristics

to maximize detection of positive tests. By comparison, the average difference between τd and τ∗ for

physicians who are overtesting is only 1.7 percentage points in the calibration with a false positive

rate of 4%. The welfare cost of misweighting errors or suboptimal values of τd increases with the

square of the deviation—as the bias grows, both the number of patients impacted and the average

severity of the error among those patients increases. Further, the welfare costs of overtesting are

bounded. The worst outcome of overtesting is that a patient is tested with no chance of having a PE

and incurs the cost of the test (a few hundred dollars) plus the potential financial costs and medical

risk of treatment if they receive a false positive test result. The potential costs of misweighting are

substantially greater since you might fail to treat a patient with a substantial risk of death.

Panel B of Table A.4 explores how our results on the net welfare cost of misweighting vary

with the calibrated parameters. The positive impact of misweighting on testing behavior does not

depend on the calibration (unlike the case of overtesting, since the calibration determines which

physicians overtest). The welfare cost of misweighting is not too sensitive to the false positive rate,

the sensitivity of the test or the cost of the test, but it is sensitive to the VSL. Misweighting creates

more welfare loss from undertesting than overtesting: the welfare costs of overtesting are bounded

by the financial costs of the test plus the costs of treating false positive test results, while the costs

of undertesting in the worst case is the 2.5% chance of mortality from a missed PE. These latter

costs are roughly proportional to the VSL.

Undiagnosed PE is thought to be a major public health problem, with the Office of the Sur-

geon General (2008) estimating that approximately half of PE cases are never diagnosed; analysis

of autopsy reports have found it to be a frequently missed mortality risk. By improving physician

assessment of patient PE risk, our model suggests that the rate of undiagnosed PE could fall sub-

stantially. Although there is policy attention in the medical community on the risks associated with

the perceived overuse of PE CT, this evidence suggests that there may be even larger gains possible

from improving the targeting of CT scans.

7.4 National scale of welfare estimates

Our welfare calculations are based on a 20% sample of patients enrolled in Medicare Parts A and

B over a 10-year period, and the numbers reported in Tables 7 and 8 reflect potential gains to

this sample only. To understand the annual welfare loss for Medicare patients associated with

the inefficiencies we identify in this sample, we do an informal scaling exercise. We first scale the

estimates up by a factor of 5 to account for the entire population of Medicare fee for service enrollees,

then adjust to account for the 28% of Medicare patients who enroll in a Medicare Advantage plan,
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and finally divide by 10 to calculate annual estimates. We recover a $5.5 million annual welfare loss

from overuse of PE CT due to low testing thresholds, and a $25 million annual loss from misweighting

observable patient risk factors, for emergency department CT scans among elderly patients. More

speculatively, if we further scale the number of diagnosed PEs in our sample to represent total

national incidence of 350,000 PE cases per year (Office of the Surgeon General 2008), we estimate

$560 million in annual welfare loss from overtesting and $2.5 billion in annual welfare loss from

misweighting. This final scaling requires extrapolating our results to the many PEs diagnosed in

settings other than the emergency department and among the non-elderly population. Yet even

these final scaled welfare gains from the efficient application of PE CT may represent only a small

fraction of the total welfare benefit available from more efficient diagnostic testing and treatment

decisions across a variety of medical conditions.

8 Conclusion

While it is commonly believed that the US health care system spends significant resources on services

that have low medical returns and high costs, there is little consensus on how this waste could be

reduced. Wasteful spending is characterized both by overuse of medical care (allocative inefficiency)

and mistargeting of medical resources (productive inefficiency). This paper investigates both forms

of inefficiency, analyzing whether doctors efficiently select patients for medical testing and how

physicians vary in the risk thresholds at which they test patients. We study these inefficiencies in

the context of emergency department CT scans to diagnose pulmonary embolism (PE). We document

both widespread variation in physician use of CT scans for PE unexplained by differences in patient

risk, and also systemic failure to target medical testing to the highest risk patients.

Estimating the model to study physicians’ CT scanning decisions in a national sample of Medi-

care claims, we find substantial variation in physician’s use of diagnostic scans on low-risk patients.

This variation generates a negative relationship between testing propensities and test yield across

physicians, since physicians who test more also test lower risk patients on average. Investigating

the role of training and practice environment in explaining practice styles, we find that physicians

practicing in high-spending Dartmouth Atlas regions and those with less experience are more likely

to scan low-risk patients. Other factors, such as hospital ownership or quality of medical school

training are not significantly related to testing behavior. Taken as a whole, observable characteris-

tics can explain only a small fraction of the total variation in testing thresholds. Applying further

calibration assumptions suggests that 84% of physicians in our sample are overtesting on the margin

by applying a risk threshold that is lower than the calibrated optimum.

We also find that doctors do not weight observable patient risk factors in a way that would

maximize test yields. Physicians systematically underweight certain important predictors of PE

risk, including recent prior hospitalizations and metastatic cancer. These apparent errors occur

despite the fact that physicians are widely encouraged to use diagnostic scoring systems such as the

Wells or Geneva score to assess the risk of PE before deciding whether to order a CT scan. The

continued prevalence of risk assessment mistakes despite the popularity of these PE risk scoring

systems may reflect shortcomings in the scoring systems themselves or failures to make adequate
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use of these scores. (The data used in this project cannot disentangle these possibilities.) Other

preexisting conditions that have similar clinical symptoms to PE are over-weighted in the testing

decision. Together, these mistakes in assessing patient PE risk lead to significant welfare losses from

failing to target the test to the highest risk patients according to our welfare simulations.

The model developed in this paper could be applied to a variety of empirical contexts—it is

applicable whenever economic actors make repeated decisions about whom to “treat, ”as long as

we observe outcomes for “treated” cases and can assume the actor is applying the same decision

threshold in each case. For example, the model could be used to evaluate the decisions of loan

officers to extend credit, hiring directors who select among potential job applicants, admissions

officers attempting to predict which students will perform most highly, or juvenile court judges who

must assess which children will benefit from detention. Positively, one could investigate the degree

to which observed heterogeneity in treatment rates is due to decision-maker discretion. Normatively,

many of these organizations have specific objectives they seek to optimize (e.g. reducing default

on loans or recidivism among parolees) and one could use the model developed here to investigate

whether observed selection patterns are successfully optimizing these outcomes.

Our findings suggest that both overuse and misuse of medical resources are important drivers of

high spending and low medical returns to care. By measuring physician-level preferences for testing,

we are able to explore the training and environmental factors that contribute to overuse. Future

work could pair this framework for estimating the overuse of diagnostic testing with experimental

or quasi-experimental variation in physician’s training or practice environment; together, these

estimates could more directly inform policy by causally identifying how these changes to a physician’s

education or training affect the efficiency of the medical care delivered. Given more detailed patient-

level data, our model could be used to formulate optimal guidelines and risk scores, overcoming the

selection problems that may lead to biased estimates of risk under popular existing methodologies.

Our findings underscore the fact that purely cost-focused health reform may be insufficient to achieve

efficiency in healthcare delivery—there are potentially large benefits to patients from physicians

making better use of the available information to target medical resources to those patients with

the highest returns.

References

Altonji, J. G., T. E. Elder, and C. R. Taber (2008). Using selection on observed variables to assess

bias from unobservables when evaluating swan-ganz catheterization. The American Economic

Review 98 (2), pp. 345–350.

Avraham, R. (2011). Database of state tort law reforms (dstlr 4th). U of Texas Law, Law and

Econ Research Paper (184).

Avraham, R., L. S. Dafny, and M. M. Schanzenbach (2012). The impact of tort reform on

employer-sponsored health insurance premiums. Journal of Law, Economics, and Organiza-

tion 28 (4), 657–686.

Chandra, A. and D. Staiger (2011). Expertise, Overuse and Underuse in Healthcare. Working

Paper .

35



Chandra, A. and D. O. Staiger (2010, September). Identifying provider prejudice in healthcare.

Working Paper 16382, National Bureau of Economic Research.

Coco, A. S. and D. T. O’Gurek (2012, January-February). Increased emergency department com-

puted tomography use for common chest symptoms without clear patient benefits. Journal of

the American Board of Family Medicine 25 (1), 33–41.

Costantino, M. M., G. Randall, M. Gosselin, M. Brandt, K. Spinning, and C. D. Vegas (2008,

August). Ct angiography in the evaluation of acute pulmonary embolus. American Journal of

Roentgenology 191 (2), 471–474.

Currie, J. and W. B. MacLeod (2006). First do no harm?: Tort reform and birth outcomes.

Technical report, National Bureau of Economic Research.

Currie, J. and W. B. MacLeod (2013). Diagnosis and unnecessary procedure use: Evidence from

c-section. Technical report, National Bureau of Economic Research.

David, S., P. Beddy, J. Babar, and A. Devaraj (2012, Feb). Evolution of ct pulmonary angiography:

referral patterns and diagnostic yield in 2009 compared with 2006. Acta Radiologica 53 (1),

36–43.

Doyle, J. J., S. M. Ewer, and T. H. Wagner (2010). Returns to physician human capital: Evidence

from patients randomized to physician teams. Journal of health economics 29 (6), 866–882.

Elixhauser, A., C. Steiner, D. Harris, and R. Coffey (1998). Comorbidity measures for use with

administrative data. Medical Care 36 (1), 8–27.

Finkelstein, A., M. Gentzkow, and H. Williams (2014). Sources of geographic variation in health

care: Evidence from patient migration. Technical report, National Bureau of Economic Re-

search.

Garber, A. M. and J. Skinner (2008). Is american health care uniquely inefficient? Technical

report, National Bureau of Economic Research.

Goldhaber, S. Z. and H. Bounameaux (2012). Pulmonary embolism and deep vein thrombosis.

The Lancet 379 (9828), 1835–1846.

Heckman, J. and T. MaCurdy (1980). A life cycle model of female labour supply. The Review of

Economic Studies 47 (1), 47–74.

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica 47 (1), pp.

153–161.

Jackson, C. K., J. E. Rockoff, and D. O. Staiger (2014). Teacher effects and teacher-related

policies. Annual Review of Economics 6 (1), 801–825.

Kane, T. J. and D. O. Staiger (2008). Estimating teacher impacts on student achievement: An

experimental evaluation. Technical report, National Bureau of Economic Research.

Klein, R. and R. Spady (1993). An efficient semiparametric estimator for binary response models.

Econometrica: Journal of the Econometric Society , 387–421.

36



Lessler, A. L., J. A. Isserman, R. Agarwal, H. I. Palevsky, and J. M. Pines (2010, April). Testing

low-risk patients for suspected pulmonary embolism: A decision analysis. Annals of Emergency

Medicine 55 (4), 316–326.

Lewis, J. B. and D. A. Linzer (2005). Estimating regression models in which the dependent

variable is based on estimates. Political Analysis 13 (4), 345–364.

Mamlouk, M. D., E. vanSonnenberg, R. Gosalia, D. Drachman, D. Gridley, J. G. Zamora, G. Ca-

sola, and S. Ornstein (2010, August). Pulmonary embolism at ct angiography: Implications

for appropriateness, cost, and radiation exposure in 2003 patients. Radiology 256, 625–632.

Meszaros, I., J. Morocz, J. Szlavi, J. Schmidt, L. Tornoci, L. Nagy, and L. Szep (2000, May).

Epidemiology and clinicopathology of aortic dissection. Chest 117 (5), 1271–1278.

Molitor, D. (2012). The evolution of physician practice styles evidence from cardiologist migration.

Technical report, MIT working paper.

Mulligan, C. B. and Y. Rubinstein (2008). Selection, investment, and women’s relative wages over

time. The Quarterly Journal of Economics 123 (3), 1061–1110.

Murphy, K. M. and R. H. Topel (2006). The value of health and longevity. Journal of Political

Economy 114 (5), 871–904.

Nelson, A. (2002). Unequal treatment: confronting racial and ethnic disparities in health care.

Journal of the National Medical Association 94 (8), 666.

Office of the Surgeon General (2008). The surgeon general’s call to action to prevent deep vein

thrombosis and pulmonary embolism.

Oster, E., I. Shoulson, and E. Dorsey (2011). Optimal expectations and limited medical testing:

evidence from huntington disease. Technical report, National Bureau of Economic Research.

Rahimtoola, A. and J. D. Bergin (2005, February). Acute pulmonary embolism: An update on

diagnosis and management. Current Problems in Cardiology 30, 61–114.

Stein, P. D., S. E. Fowler, L. R. Goodman, A. Gottschalk, C. A. Hales, R. D. Hull, J. Kenneth

V. Leeper, J. John Popovich, D. A. Quinn, T. A. Sos, H. D. Sostman, V. F. Tapson, T. W.

Wakefield, J. G. Weg, and P. K. Woodard (2006, June 1). Multidetector computed tomography

for acute pulmonary embolism. New England Journal of Medicine 354 (22), 2317–27.

Venkatesh, A., J. A. Kline, and C. Kabrhel (2013, Jan. 28). Computed tomography in the

emergency department setting–reply. Journal of the American Medical Association Internal

Medicine 173 (2), 167–168.

Venkatesh, A. K., J. A. Kline, D. M. Courtney, C. A. C. Jr, M. C. Plewa, K. E. Nordenholz,

C. L. Moore, P. B. Richman, H. A. Smithline, D. M. Beam, and C. Kabrhel (2012, July

9). Evaluation of pulmonary embolism in the emergency department and consistency with a

national quality measure: Quantifying the opportunity for improvement. Archives of Internal

Medicine 172 (13), 1028–1032.

Wells, P. S., D. R. Anderson, M. Rodger, J. S. Ginsberg, C. Kearon, M. Gent, A. Turpie, J. Bor-

manis, J. Weitz, M. Chamberlain, D. Bowie, D. Barnes, and J. Hirsh (2000). Derivation of a

37



simple clinical model to categorize patients probability of pulmonary embolism-increasing the

models utility with the simplired d-dimer. Thrombosis and Haemostasis 83 (3), 416–420.

Wells, P. S., J. S. Ginsberg, D. R. Anderson, C. Kearon, M. Gent, A. G. Turpie, J. Borma-

nis, J. Weitz, M. Chamberlain, D. Bowie, D. Barnes, and J. Hirsh (1998). Use of a clinical

model for safe management of patients with suspected pulmonary embolism. Annals of internal

medicine 129 (12), 997–1005.

Wells, P. S., J. Hirsh, D. R. Anderson, A. W. A. Lensing, G. Foster, C. Kearon, J. Weitz,

R. D’Ovidio, A. Cogo, P. Prandoni, A. Girolami, and J. S. Ginsberg (1995). Accuracy of

clinical assessment of deep-vein thrombosis. The Lancet 345 (8961), 1326–1330.

Wennberg, J., M. Cooper, et al. (1996). The Dartmouth atlas of health care in the United States.

Chicago, IL: American Hospital Association.

38



Figure 1: Stylized relationship between testing thresholds, testing rates, and test yields
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Notes: Figure illustrates the theoretic relationship between testing thresholds, test yields and fraction of
patients tested for two hypothetical doctors, A and B. Patients are sorted along the x-axis according to their
risk of PE, qid, from highest risk to lowest risk. Each point (x, y) along the plotted curve shows the fraction
of patients x for whom qid ≥ y. For example, at point (TA = 2/3, τA = 1/2) in Panel A, the graph indicates
that 2/3 of patients have a risk of PE that equals or exceeds 1/2. τA denotes doctor A’s testing threshold, TA

denotes the fraction of patients tested by doctor A, ZA denotes doctor A’s test yield (among tested patients),
and likewise for doctor B. In Panel A, both doctors face patient populations with the same distribution of
PE risk. In Panel B, Doctor B’s patients are higher risk, i.e. for any given probability of a positive test q, a
greater fraction of doctor B’s patients meet or exceed that threshold compared to doctor A.
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Figure 2: Binned scatterplot of physician test yield by fraction of patients tested
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Notes: Figure displays a binned scatterplot based on our sample of Medicare claims data. Physicians are
binned into deciles according to the fraction of patients they test (along the x-axis). The y-axis indicates rate
of positive test results among tested patients within each physician decile.

Figure 3: Binned scatterplot of physician test yield by testing propensity index:
Estimation results and simulations
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Notes: Figure displays a binned scatterplot based on our estimation and simulation results; physicians are
binned into deciles based on the average estimated value of the testing propensity index Ĩ ′

id
. The solid black

line with circle markers plots the relationship between physicians’ actual test yields and physicians’ average Ĩ ′
id
.

The dashed line with X markers displays the simulated relationship between testing propensities and test yields
under a counterfactual with no variation in physician testing thresholds, and instead all physicians assigned the
average testing threshold E(τd). The line with triangle markers displays the simulated relationship between
testing propensities and test yields if there were no variation in physician testing thresholds and there were
no misweighting of observable risk factors.
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Table 1: Summary statistics

A. Untested 
patients

B. Patients with 
negative tests

C. Patients with 
positive tests

Patient characteristics

Age 77.6 76.8 76.9

Female 0.586 0.602 0.600

Black 0.082 0.066 0.083

History of PE 0.003 0.006 0.017

Doctor, hospital and region characteristics

Doctor experience 16.5 16.4 16.8

(8.3) (8.4) (8.5)

Top 50 research med. school 0.28 0.29 0.30

Top 50 primary med. school 0.26 0.27 0.28

Academic hospital 0.33 0.34 0.356

For profit hospital 0.12 0.13 0.120

HRR avg spending (in $) 8,198 8,173 8,089

(959) (972) (936)

Average income in region 22,771 23,005 23,039

(5521) (5490) (5710)

Joint and several liability 0.69 0.70 0.692

Malpractice damage caps 0.70 0.76 0.747

Number of observations 1,819,015 66,677 4,968

Notes: Table reports means and standard deviations (in parentheses). Data is from the Medicare claims
2000-2009, the American Hospital Association annual survey, the American Medical Association Masterfile,
the Dartmouth Atlas, and the Avraham Database of State Tort Law Reform.

Table 2: Summary statistics illustrating potential misweighting of risk factors

A. Fraction tested B. Test yield

Selected candidates for under-weighting

Prostate cancer (CCW) 0.0370 0.1019

No prostate cancer (CCW) 0.0380 0.0677

Black 0.0313 0.0851

Non-black 0.0385 0.0682

History of PE 0.0726 0.1881

No history of PE 0.0378 0.0686

History of deep vein thrombosis 0.0507 0.1656

No history of deep vein thrombosis 0.0378 0.0685

Prior hospital visit within 30 days 0.0465 0.1976

No prior hospital visit within 30 days 0.0377 0.0656

Selected candidates for over-weighting

Chronic obstructive pulmonary disease (CCW) 0.0466 0.0524

No chronic obstructive pulmonary disease (CCW) 0.0360 0.0742

Atrial fibrillation 0.0742 0.0520

No atrial fibrillation 0.0388 0.0713

Ischemic heart disease 0.0376 0.0566

No ischemic heart disease 0.0382 0.0786

Notes: Table reports summary statistics for selected comorbidities to motivate the examination of misweight-
ing. Variables are selected on the Column A reports average rates of testing for patients with and without
the listed conditions. Column B reports average rate of positive tests among tested patients with and without
the listed conditions. Data is from the Medicare claims 2000-2009.
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Table 3: Regressions of testing threshold on physician characteristics and practice environment

OLS FGLS OLS FGLS

Independent variables: (1) (2) (3) (4)

Doctor experience 0.0007*** 0.0007*** 0.0007*** 0.0008***

(0.0001) (0.0001) (0.0002) (0.0001)

Top 50 research medical school 0.0047 0.0050 0.0053 0.0032

(0.0038) (0.0031) (0.0047) (0.0037)

Top 50 primary care medical school -0.0062 -0.0042 -0.0077 -0.0030

(0.0039) (0.0032) (0.0048) (0.0037)

Academic hospital 0.0006 0.0007

(0.0026) (0.0022)

For profit hospital -0.0004 -0.0018

(0.0041) (0.0032)

Log(HRR average Medicare spending) -0.0391*** -0.0474***

(0.0109) (0.0093)

Average income in region (in $10k) 0.0000 0.0000

(0.0025) (0.0019)

Joint and several liability 0.0001 0.0003

(0.0027) (0.0023)

Malpractice damage caps -0.0029 -0.0053**

(0.0028) (0.0023)

Hospital Fixed Effects No No Yes Yes

Dependent variable: Physician testing threshold τd

Notes: Each column reports results from a regression of estimated physician testing thresholds τd on charac-
teristics of the physician’s training and practice environment. Even numbered columns report FGLS estimates
which account for estimation error in τd. Columns 3 and 4 include hospital fixed effects. An observation is an
individual doctor; there are 6636 observations. * significant at the 10% level **significance at the 5% level;
***significance at the 1% level.
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Table 4: Part 1: Coefficients from testing model and estimated misweighting in PE risk assessment

β from testing 
equation

Misweighting 
amount

Std error of 
misweighting

T statistic of 
misweighting

!"# !$# !%# !&#

Underweighted risk factors

Prior hospital visit w/in 30 days -0.0094 0.1070 0.0121 8.8430

Prior hospital visit w/in 7 days -0.0041 0.1128 0.0130 8.6769

Prostate cancer (CCW) 0.0014 0.0298 0.0048 6.2083

Cancer metastisis (Elixhauser) -0.0155 0.0726 0.0128 5.6719

History of deep vein thrombosis 0.0092 0.0571 0.0114 5.0088

History of pulmonary embolism 0.0315 0.0666 0.0145 4.5931

Rhumatoid arthritis, osteoarthritis (CCW) 0.0053 0.0091 0.0024 3.7917

Endometrial cancer (CCW) -0.0011 0.0547 0.0153 3.5752

Obesity (Elixhauser) 0.0095 0.0218 0.0076 2.8684

Paralysis (Elixhauser) -0.0026 0.0331 0.0117 2.8291

Other neurological conditions (Elixhauser) -0.0043 0.0194 0.0075 2.5867

Any prior admission history 0.0028 0.0102 0.0041 2.4878

Alzheimer's disease (CCW) -0.0023 0.0152 0.0064 2.3750

Colorectal cancer (CCW) -0.0012 0.0136 0.0067 2.0299

Overweighted risk factors

Ischemic heart disease (CCW) 0.0007 -0.0226 0.0023 -9.8261

Chronic obstructive pulmonary disease (CCW) 0.0132 -0.0182 0.0036 -5.0556

Atrial fibrillation (CCW) -0.0066 -0.0156 0.0036 -4.3333

Depression (Elixhauser) 0.0033 -0.0208 0.0069 -3.0145

Peripheral vascular disease (Elixhauser) -0.0013 -0.0214 0.0071 -3.0141

Diabetes (CCW) -0.0055 -0.0087 0.0029 -3.0000

Osteoperosis (CCW) 0.0024 -0.0087 0.0033 -2.6364

Deficiency anemias (Elixhauser) -0.0004 -0.0142 0.0056 -2.5357

Asthma (CCW) 0.0043 -0.0088 0.0040 -2.2000

Chronic pulmonary disease (Elixhauser) -0.0042 -0.0094 0.0048 -1.9583

Demographic factors

Black -0.0074 0.0257 0.0044 5.8409

Asian 0.0005 -0.0386 0.0118 -3.2712

Hispanic -0.0056 -0.0168 0.0097 -1.7320

Female 0.0014 0.0000 0.0024 0.0000

Age 65-69 -0.0012 0.0119 0.0037 3.2162

Age 70-74 -0.0089 0.0129 0.0052 2.4808

Age 75-79 -0.0024 0.0140 0.0038 3.6842

Age 80-84 -0.0033 0.0166 0.0039 4.2564

Age 85-89 -0.0043 0.0208 0.0042 4.9524

Age 90-94 -0.0127 0.0132 0.0078 1.6923

Notes: This table is continued in Appendix Table A.1, which reports results for the remaining comorbidities
which show no significant evidence of under- or over-weighting. Column 1 reports marginal effects from
coefficient estimates of the testing equation (i.e. equation 2); for example, patients who were admitted to
the hospital within 30 days are 0.94 percentage points less likely to be tested, after controlling for included
PE risk factors and physicians’ testing thresholds. Column 2 reports estimates of physicians’ misweighting
of these PE risk factors estimated from equation 14; for example, physicians’ observed testing patterns
suggest they are underestimating the PE risk associated with a prior hospital visit in the past 30 days by
10.7 percentage points. Column 3 reports standard errors on these misweighting terms. Column 4 reports
t-statistics. Variables are sorted by statistical significance, with the exception of demographic risk factors.
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Table 5: Distribution of testing thresholds and misweighting under alternative estimation strategies

Baseline parametric 
model, all comorbidities

Parametric model, 
Elixhauser 

comorbidities excluded

Parametric model, 
Elixhauser 

comorbidities and 
demographics excluded

(1) (2) (3)

Mean of τd 0.0563 0.0623 0.0662

Standard Deviation of τd 0.0540 0.0396 0.0394

Average absolute value of misweighting 0.0226 0.0214 0.0200

Standard deviation of misweight 0.0347 0.0336 0.0329

Number of observations 1,890,660 1,890,660 1,890,660

Heteroskedastic 
parametric model

Semiparametric model, 
linear polynomial

Semiparametric model, 
cubic polynomial

(4) (5) (6)

Mean of τd 0.0703 0.0672 0.0661

Standard Deviation of τd 0.0514 0.0539 0.0541

Average absolute value of misweighting 0.0212 0.0207 0.0208

Standard deviation of misweight 0.0361 0.0357 0.0364

Number of observations 861,707 861,707 861,707

Notes: Panel 1 reports the estimated posterior mean and standard deviation of physician testing thresholds τd
from our baseline parametric model, after applying the Bayesian shrinkage described in Appendix F. Recall
that τd is the threshold probability of a positive test at which a physician determines it is worthwhile to test
a patient. The average absolute value of misweighting calculates the absolute value of the difference between
physicians’ assessment of the patient’s PE probability and the estimated risk associated with the patient’s co-
morbidities, and then averages this value across all patients. The standard deviation of misweighting describes
how the amount of misweighting varies across patients. Panel 2 reports results from the parametric model
that excludes all Elixhauser comorbidities. Panel 3 reports results from the parametric model that excludes
both Elixhauser comorbidities and demographic variables. Panel 4 reports results from the heteroskedastic
model described in Section 6.2, which allows the variance of ηid to differ across physicians. Panels 5 and 6
report results from the semiparametric model described in Section 6.3, where Panel 5 fits the function λ(·)
with a linear function and Panel 6 applies a cubic polynomial. Models estimated in Panels 4, 5, and 6 exclude
Elixhauser comorbidities and demographic variables and are estimated on a random subsample of half of the
physicians for computational tractability.

Table 6: Calibration Parameters

Definition Value Parameter Source

test sensitivity 0.83 s Stein et al., 2006

baseline false positive rate 0.04 fp Stein et al., 2006

value of a statistical life $1,000,000 VSL Murphy and Topel, 2006

medical benefit of treating PE 0.025VSL MB Lessler et al., 2009

medical cost of treating PE 0.0017VSL MC Lessler et al., 2009

financial cost of testing $300 c estimated from Medicare claims

financial cost of PE treatment $2,800 CT estimated from Medicare claims

Notes: Calibrated parameters of the model applied in welfare simulations reported in Section 7.
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Table 7: Patient welfare with observed testing thresholds vs. in simulations with no overtesting

Actual Simulation Actual Simulation Actual Simulation
(1) (2) (3) (4) (5) (6)

Description of simulation results:

Fraction of doctors over-testing 83.7% 0% 67.2% 0% 10.4% 0%

Percent of patients tested 3.8% 1.9% 3.8% 2.6% 3.8% 3.7%

Number of patients tested 71,314 35,140 71,314 49,390 71,314 70,497

Test yield among tested patients 7.0% 9.0% 7.0% 8.3% 7.0% 7.1%

Welfare analysis:

Total financial costs of testing ($ millions) 35.6 19.5 35.6 26.4 35.6 35.3

Total medical cost of testing ($ millions) 8.5 5.4 8.5 6.9 8.5 8.5

Total medical benefits of testing ($ millions) 57.5 46.3 74.6 67.6 125.0 124.8

Net benefits of testing ($ millions) 13.5 21.4 30.4 34.2 80.9 81.0

Total (financial + medical) costs  per test ($) 618.9 709.1 618.9 675.3 618.9 621.2

Total benefits per test ($) 806.9 1318.7 1045.5 1368.3 1752.8 1770.5

Net benefits per test ($) 188.1 609.6 426.7 693.0 1134.0 1149.3

False positive rate of 
4 percent

False positive rate of 
3 percent

False positive rate of 
0 percent

τ*=0.015τ*=0.050τ*=0.062

Notes: We compare testing behavior and social welfare under the estimated posterior distribution of physician
testing thresholds τd (in odd numbered columns) to simulated behavior assuming all physicians with thresholds
below the calibrated optimum are reassigned to the optimal testing threshold of τd = τ∗ (in even numbered
columns). The simulated results do not correct for misweighting. We report results under three different
assumptions about the rate of false positive test results, described in the column headers.

Table 8: Patient welfare with observed misweighting vs. in simulations with no misweighting

Actual No misweighting

(1) (2)

Description of simulation results:

Percent of patients tested 3.8% 4.3%

Number of patients tested 71314 81410

Test yield among tested patients 7.0% 9.2%

Number of positive tests detected 5019 7526

Welfare analysis:

Total financial costs of testing ($ millions) 35.6 45.2

Total medical cost of testing ($ millions) 8.5 12.4

Total medical benefits of testing ($ millions) 57.5 106.8

Net benefits of testing ($ millions) 13.5 49.1

Total (financial + medical) costs  per test ($) 618.9 707.8

Total benefits per test ($) 806.9 1311.3

Net benefits per test ($) 188.1 603.5

False positive rate of 4%

Notes: We compare testing behavior and social welfare under the observed physician weighting of patient
risk factors (in column 1) to simulated behavior assuming that physicians target testing to patients with
the highest expected probability of a positive test based on observable demographics and comorbidities (in
column 2). The simulated results in Panel B allow τd to follow the estimated posterior distribution (i.e.
without correcting for overtesting).
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Table A.1: Coefficients from testing model and estimated misweighting in PE risk assessment (con-
tinued)

β from testing 
equation

Misweighting 
amount

Std error of 
misweighting

T statistic of 
misweighting

!"# !$# !%# !&#

Other comorbidities

History of hip fracture (CCW) -0.0035 0.0192 0.0116 1.6552

Alzheimer's related dementias (CCW) -0.0060 0.0077 0.0047 1.6383

Anemia (CCW) -0.0023 0.0038 0.0024 1.5833

Depression (CCW) -0.0008 0.0042 0.0031 1.3548

Hypertension (CCW) 0.0008 0.0033 0.0025 1.3200

Solid tumor w/o metastisis (Elixhauser) -0.0066 0.0145 0.0112 1.2946

Benign prostatic hyperplasia (CCW) -0.0014 0.0046 0.0038 1.2105

Hypothyroidism (Elixhauser) -0.0009 0.0068 0.0060 1.1333

Liver disease (Elixhauser) -0.0066 0.0219 0.0195 1.1231

Prior surgery within 1 year 0.0136 0.0239 0.0215 1.1116

Blood loss anemia (Elixhauser) -0.0044 0.0126 0.0118 1.0678

Breast cancer (CCW) 0.0066 0.0046 0.0049 0.9388

Stroke / Transient ischemic attack (CCW) -0.0099 0.0035 0.0046 0.7609

Chronic kidney disease (CCW) -0.0091 0.0024 0.0042 0.5714

Psychoses (Elixhauser) -0.0057 0.0046 0.0126 0.3651

Congestive heart failure (Elixhauser) -0.0022 0.0018 0.0056 0.3214

Congestive heart failure (CCW) -0.0006 0.0008 0.0028 0.2857

Drug abuse (Elixhauser) 0.0059 0.0060 0.0304 0.1974

Alcohol abuse (Elixhauser) 0.0008 0.0020 0.0149 0.1342

Pulmonary circulation disease (Elixhauser) -0.0035 0.0009 0.0107 0.0841

Acute myocardial infarction (CCW) -0.0058 0.0002 0.0090 0.0222

Lymphoma (Elixhauser) -0.0174 -0.0005 0.0220 -0.0227

Coagulation deficiency (Elixhauser) -0.0001 -0.0006 0.0109 -0.0550

Weight loss (Elixhauser) -0.0054 -0.0021 0.0119 -0.1765

Prior surgery within 30 days 0.0151 -0.0047 0.0191 -0.2461

Arthritis (Elixhauser) 0.0044 -0.0032 0.0096 -0.3333

Fluid & electrolyte disorders (Elixhasuer) -0.0013 -0.0022 0.0047 -0.4681

Acquired hypothyroidism (CCW) 0.0022 -0.0020 0.0035 -0.5714

Hyperlipidemia (CCW) 0.0054 -0.0017 0.0024 -0.7083

Hypertension (Elixhauser) 0.0012 -0.0051 0.0040 -1.2750

Diabetes w/chronic complications (Elixhauser) -0.0080 -0.0176 0.0115 -1.5304

Glaucoma (CCW) -0.0003 -0.0047 0.0029 -1.6207

Diabetes w/o chronic complications (Elixhauser) -0.0023 -0.0085 0.0051 -1.6667

Lung cancer (CCW) -0.0142 -0.0198 0.0113 -1.7522

Cataracts (CCW) -0.0010 -0.0037 0.0021 -1.7619

Valvular disease (Elixhauser) -0.0031 -0.0116 0.0060 -1.9333

Notes: Table continued from Table 4, which reported coefficients on all comorbidities with significant evidence
of misweighting as well as key demographic variables. Column 1 reports marginal effects from coefficient
estimates of the testing equation (i.e. equation 2); for example, patients who were admitted to the hospital
within 30 days are 0.94 percentage points less likely to be tested, after controlling for included PE risk factors
and physicians’ testing thresholds. Column 2 reports estimates of physicians’ misweighting of these PE
risk factors estimated from equation 14; for example, physicians’ observed testing patterns suggest they are
underestimating the PE risk associated with a prior hospital visit in the past 30 days by 10.7 percentage points.
Column 3 reports standard errors on these misweighting terms. Column 4 reports t-statistics. Variables are
sorted by statistical significance.
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Table A.2: Part 1: Assessment of misweighting with varying included covariates

Misweighting 

amount

Standard 

error

Misweighting 

amount

Standard 

error

Misweighting 

amount

Standard 

error

!"# !$# !%# !&# !'# !(#

Underweighted risk factors

Prior hospital visit w/in 30 days 0.1070 0.0121 0.1025 0.0125 0.1045 0.0125

Prior hospital visit w/in 7 days 0.1128 0.0130 0.1091 0.0133 0.1105 0.0133

Prostate cancer (CCW) 0.0298 0.0048 0.0311 0.0048 0.0318 0.0046

Cancer metastisis (Elixhauser) 0.0726 0.0128 0.0843 0.0134 0.0892 0.0134

History of deep vein thrombosis 0.0571 0.0114 0.0560 0.0113 0.0570 0.0113

History of pulmonary embolism 0.0666 0.0145 0.0800 0.0142 0.0827 0.0141

Rhumatoid arthritis, osteoarthritis (CCW) 0.0091 0.0024 0.0097 0.0025 0.0108 0.0024

Endometrial cancer (CCW) 0.0547 0.0153 0.0438 0.0154 0.0405 0.0153

Obesity (Elixhauser) 0.0218 0.0076

Paralysis (Elixhauser) 0.0331 0.0117

Other neurological conditions (Elixhauser) 0.0194 0.0075

Any prior admission history 0.0102 0.0041 0.0033 0.0029 0.0028 0.0029

Alzheimer's disease (CCW) 0.0152 0.0064 0.0158 0.0065 -0.0036 0.0092

Colorectal cancer (CCW) 0.0136 0.0067 0.0166 0.0067 0.0163 0.0067

Overweighted risk factors

Ischemic heart disease (CCW) -0.0226 0.0023 -0.0233 0.0023 -0.0226 0.0023

Chronic obstructive pulmonary disease (CCW) -0.0182 0.0036 -0.0158 0.0037 -0.0159 0.0037

Atrial fibrillation (CCW) -0.0156 0.0036 -0.0172 0.0036 -0.0175 0.0036

Depression (Elixhauser) -0.0208 0.0069

Peripheral vascular disease (Elixhauser) -0.0214 0.0071

Diabetes (CCW) -0.0087 0.0029 -0.0115 0.0028 -0.0105 0.0028

Osteoperosis (CCW) -0.0087 0.0033 -0.0079 0.0033 -0.0075 0.0032

Deficiency anemias (Elixhauser) -0.0142 0.0056

Asthma (CCW) -0.0088 0.0040 -0.0086 0.0040 -0.0072 0.0040

Chronic pulmonary disease (Elixhauser) -0.0094 0.0048

Demographic factors

Black 0.0257 0.0044 0.0189 0.0045

Asian -0.0386 0.0118 -0.0392 0.0118

Hispanic -0.0168 0.0097 -0.0142 0.0100

Female 0.0000 0.0024 0.0000 0.0024

Age 65-69 0.0119 0.0037 0.0103 0.0037

Age 70-74 0.0129 0.0052 0.0092 0.0053

Age 75-79 0.0140 0.0038 0.0122 0.0038

Age 80-84 0.0166 0.0039 0.0133 0.0039

Age 85-89 0.0208 0.0042 0.0181 0.0042

Age 90-94 0.0132 0.0078 0.0075 0.0081

!""#$%&%'()*)+),-
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Notes: Table continued on next page. Column 1 reports estimates of physicians’ misweighting of these PE
risk factors estimated from equation 14 under the baseline specification with full set of included covariates.
Column 2 reports standard errors on these misweighting terms. (Columns 1 and 2 replicate results reported
in Table 4 for purposes of comparison.) Columns 3 and 4 also report misweighting terms and standard errors,
now from the model that excludes the Elixhauser comorbidity set. Columns 5 and 6 report results from the
model that excludes both Elixhauser comoribidites and demographic factors.
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Table A2 Part 2: Assessment of misweighting with varying included covariates

Misweighting 

amount

Standard 

error

Misweighting 

amount

Standard 

error

Misweighting 

amount

Standard 

error

(1) (2) (3) (4) (5) (6)

Other comorbidities

History of hip fracture (CCW) 0.0192 0.0116 0.0025 0.0118 0.0042 0.0117

Alzheimer's related dementias (CCW) 0.0077 0.0047 0.0070 0.0048 0.0070 0.0049

Anemia (CCW) 0.0038 0.0024 0.0014 0.0024 0.0024 0.0024

Depression (CCW) 0.0042 0.0031 -0.0006 0.0029 -0.0010 0.0029

Hypertension (CCW) 0.0033 0.0025 0.0042 0.0024 0.0052 0.0024

Solid tumor w/o metastisis (Elixhauser) 0.0145 0.0112

Benign prostatic hyperplasia (CCW) 0.0046 0.0038 0.0062 0.0038 0.0070 0.0035

Hypothyroidism (Elixhauser) 0.0068 0.0060

Liver disease (Elixhauser) 0.0219 0.0195

Prior surgery within 1 year 0.0239 0.0215 0.0352 0.0217 0.0293 0.0218

Blood loss anemia (Elixhauser) 0.0126 0.0118

Breast cancer (CCW) 0.0046 0.0049 0.0089 0.0049 0.0095 0.0049

Stroke / Transient ischemic attack (CCW) 0.0035 0.0046 0.0027 0.0047 0.0050 0.0047

Chronic kidney disease (CCW) 0.0024 0.0042 0.0031 0.0044 0.0014 0.0044

Psychoses (Elixhauser) 0.0046 0.0126

Congestive heart failure (Elixhauser) 0.0018 0.0056 -0.0053 0.0056 -0.0055 0.0056

Congestive heart failure (CCW) 0.0008 0.0028 0.0007 0.0028 0.0020 0.0028

Drug abuse (Elixhauser) 0.0060 0.0304

Alcohol abuse (Elixhauser) 0.0020 0.0149

Pulmonary circulation disease (Elixhauser) 0.0009 0.0107

Acute myocardial infarction (CCW) 0.0002 0.0090 -0.0026 0.0092 0.0153 0.0066

Lymphoma (Elixhauser) -0.0005 0.0220

Coagulation deficiency (Elixhauser) -0.0006 0.0109

Weight loss (Elixhauser) -0.0021 0.0119

Prior surgery within 30 days -0.0047 0.0191 -0.0066 0.0192 -0.0031 0.0192

Arthritis (Elixhauser) -0.0032 0.0096

Fluid & electrolyte disorders (Elixhasuer) -0.0022 0.0047

Acquired hypothyroidism (CCW) -0.0020 0.0035 0.0007 0.0030 0.0013 0.0030

Hyperlipidemia (CCW) -0.0017 0.0024 -0.0005 0.0025 -0.0013 0.0025

Hypertension (CCW) -0.0051 0.0040

Diabetes w/complications (Elixhauser) -0.0176 0.0115

Glaucoma (CCW) -0.0047 0.0029 -0.0043 0.0029 -0.0023 0.0029

Diabetes w/o complications (Elixhauser) -0.0085 0.0051

Lung cancer (CCW) -0.0198 0.0113 -0.0219 0.0117 -0.0266 0.0116

Cataracts (CCW) -0.0037 0.0021 -0.0029 0.0021 -0.0017 0.0020

Valvular disease (Elixhauser) -0.0116 0.0060

All comorbidities
Excluding Elixhauser 

comorbidities

Excluding Elixhauser 

comorbidities and 

demographics

Notes: Table continued from previous page. Column 1 reports estimates of physicians’ misweighting of these
PE risk factors estimated from equation 14 under the baseline specification with full set of included covariates.
Column 2 reports standard errors on these misweighting terms. (Columns 1 and 2 replicate results reported
in Table 4 for purposes of comparison.) Columns 3 and 4 also report misweighting terms and standard errors,
now from the model that excludes the Elixhauser comorbidity set. Columns 5 and 6 report results from the
model that excludes both Elixhauser comorbidities and demographic factors.
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Table A.3: Part 1: Assessing the costs of misweighting by variable

Net Benefits Change in net benefits

Original 13.279

Age 65-69 12.323 -0.956

Age 70-74 12.078 -0.245

Age 75-79 11.580 -0.498

Age 80-84 11.988 0.408

Age 85-89 13.560 1.572

Age 90-94 13.695 0.135

Black 15.486 1.791

Asian 15.707 0.221

Hispanic 15.802 0.095

Acute myocardial infarction (CCW) 15.802 0.000

Alzheimer's disease (CCW) 16.712 0.910

Chronic obstructive pulmonary disease (CCW) 18.879 2.167

Congestive heart failure (CCW) 18.815 -0.064

History of hip fracture (CCW) 18.980 0.165

Anemia (CCW) 19.164 0.184

Asthma (CCW) 19.343 0.179

Hyperlipidemia (CCW) 19.516 0.173

Benign prostatic hyperplasia (CCW) 19.591 0.075

Hypertension (CCW) 19.432 -0.159

Acquired hypothyroidism (CCW) 19.426 -0.006

Alzheimer's related dementias (CCW) 19.644 0.218

Atrial fibrillation (CCW) 20.498 0.854

Cataracts (CCW) 20.625 0.127

Chronic kidney disease (CCW) 20.611 -0.014

Diabetes (CCW) 21.392 0.781

Glaucoma (CCW) 21.484 0.092

Ischemic heart disease (CCW) 23.516 2.032

Depression (CCW) 23.616 0.100

Osteoperosis (CCW) 23.677 0.061

Rhumatoid arthritis, osteoarthritis (CCW) 24.503 0.826

Stroke / Transient ischemic attack (CCW) 24.603 0.100

Breast cancer (CCW) 24.664 0.061

Colorectal cancer (CCW) 25.079 0.415

Prostate cancer (CCW) 26.588 1.509

Lung cancer (CCW) 26.541 -0.047

Endometrial cancer (CCW) 27.117 0.576

Notes: This table is continued on the next page. This table reports results of a series of simulation exercises
where we test the welfare impact of correcting for physician misweighting of observed risk factors, one variable
at a time. This exercise allows us to assess which specific risk factors are the biggest contributors to the welfare
costs associated with misweighting. We proceed in the order listed in the table and show how the total net
benefits of testing (in $ millions) change from their observed value of 13.279 to the final value 49.132 in
the absence of any misweighting, by correcting one additional variable in each row. Note that because we
continue to allow physician thresholds to vary and do not correct for all risk factors at once, correcting a
single additional risk factor occasionally leads to a small decline in net benefits. The results of this exercise
may be sensitive to the order in which risk factors are corrected.
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Table A3 Part 2: Assessing the costs of misweighting by variable

Net Benefits Change in net benefits

Prior surgery within 30 days 26.311 -0.806

Prior surgery within 1 year 30.794 4.483

Any prior admission history 32.632 1.838

Valvular disease (Elixhauser) 32.534 -0.098

Pulmonary circulation disease (Elixhauser) 32.546 0.012

Peripheral vascular disease (Elixhauser) 32.496 -0.050

Paralysis (Elixhauser) 32.927 0.431

Other neurological conditions (Elixhauser) 33.271 0.344

Diabetes w/o chronic complications (Elixhauser) 33.100 -0.171

Diabetes w/chronic complications (Elixhauser) 33.058 -0.042

Hypothyroidism (Elixhauser) 33.195 0.137

Liver disease (Elixhauser) 33.287 0.092

Lymphoma (Elixhauser) 33.286 -0.001

Solid tumor w/o metastisis (Elixhauser) 33.518 0.232

Arthritis (Elixhauser) 33.509 -0.009

Coagulation deficiency (Elixhauser) 33.504 -0.005

Obesity (Elixhauser) 33.840 0.336

Weight loss (Elixhauser) 33.825 -0.015

Fluid & electrolyte disorders (Elixhasuer) 33.770 -0.055

Blood loss anemia (Elixhauser) 33.866 0.096

Deficiency anemias (Elixhauser) 33.668 -0.198

Alcohol abuse (Elixhauser) 33.673 0.005

Drug abuse (Elixhauser) 33.675 0.002

Psychoses (Elixhauser) 33.687 0.012

Depression (Elixhauser) 33.706 0.019

Hypertension (Elixhauser) 33.176 -0.530

History of deep vein thrombosis 34.174 0.998

History of pulmonary embolism 35.186 1.012

Prior hospital visit w/in 30 days 43.135 7.949

Prior hospital visit w/in 7 days 47.871 4.736

Female 47.871 0.000

Chronic pulmonary disease (Elixhauser) 47.903 0.032

Congestive heart failure (Elixhauser) 47.914 0.011

Cancer metastisis (Elixhauser) 49.132 1.218

Notes: This table is continued from the previous page. This table reports results of a series of simulation
exercises where we test the welfare impact of correcting for physician misweighting of observed risk factors,
one variable at a time. This exercise allows us to assess which specific risk factors are the biggest contributors
to the welfare costs associated with misweighting. We proceed in the order listed in the table and show how
the total net benefits of testing (in $ millions) change from their observed value of 13.279 to the final value
49.132 in the absence of any misweighting. Note that because we continue to allow physician thresholds to
vary and do not correct for all risk factors at once, correcting a single additional risk factor occasionally leads
to a small decline in net benefits. The results of this exercise may also be sensitive to the order in which risk
factors are corrected.
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Table A.4: Sensitivity of welfare simulations to calibration parameters

Percent tested Test yield
Change in net 

benefits

False positive rate

0.00 0.037 0.071 0.093

0.03 0.026 0.083 3.802

0.04 0.019 0.090 8.144

Value of a statistical life

$500,000 0.005 0.137 15.748

$1,000,000 0.019 0.090 8.144

$1,500,000 0.025 0.081 5.249

Test sensitivity

0.75 0.019 0.090 8.080

0.83 0.019 0.090 8.144

0.90 0.018 0.090 8.191

Financial cost of testing

$0 0.033 0.075 0.725

$300 0.019 0.090 8.144

$500 0.012 0.104 16.872

Percent tested Test yield
Change in net 

benefits

False positive rate

0.00 0.043 0.090 44.134

0.03 0.043 0.090 38.094

0.04 0.043 0.090 35.853

Value of a statistical life

$500,000 0.043 0.090 13.184

$1,000,000 0.043 0.090 35.853

$1,500,000 0.043 0.090 58.522

Test sensitivity

0.75 0.043 0.090 36.120

0.83 0.043 0.090 35.853

0.90 0.043 0.090 35.660

Financial cost of testing

$0 0.043 0.090 38.882

$300 0.043 0.090 35.853

$500 0.043 0.090 33.834

A. Counterfactual with no overtesting

B. Counterfactual with no misweighting

Notes: This table supplements Tables 7 and 8 and displays the simulated welfare benefits of changing physician
practice patterns under a range of calibration parameters. Each row represents a separate simulation exercise;
bold rows indicate the baseline parameter values used for our main welfare analysis. The changes in net
benefits (column 3) are reported in millions of dollars, compared to welfare under observed testing thresholds
and misweighting. In any given row, all parameters aside from the one in question are kept constant at
the values listed in Table 6. Panel A displays testing behavior and the improvement in social welfare under
simulations assuming all physicians with thresholds below the calibrated optimum are reassigned to the
optimal testing threshold of τd = τ∗ (but maintaining the observed degree of misweighting). Panel B displays
testing behavior and the improvement in social welfare under simulations assuming that physicians target
testing to patients with the highest expected probability of a positive test based on observable demographics
and comorbidities (but maintaining the observed degree of overtesting).
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B Physician decision tree & value of a negative CT scan

The flowchart depicted in Appendix Figure B.1 below shows a typical clinical pathway for a patient

who may receive a chest CT to test for PE. The most common symptom that leads to the consid-

eration of PE as a diagnosis is chest pain; this is a nonspecific symptom that could also indicate

a cardiac problem, pneumonia, or a number of other conditions. Blood oxygen tests and an EKG

are likely to be performed immediately at the bedside, and if they suggest a cardiac problem, the

patient will receive a more complete cardiac workup.

If cardiac conditions are ruled out, the doctor may then be considering pneumonia, pleural

effusion, and pulmonary embolism as possible diagnoses. A chest x-ray and D-dimer blood test

would be the typical next steps. A chest x-ray is a low cost test with low levels of radiation

exposure and little medical risk; it is highly effective at diagnosing pneumonia and pleural effusion,

which are more common than PE. If the x-ray is negative, then the physician may become more

concerned about the risk of PE, since other more common conditions causing chest pain have been

ruled out. A chest x-ray is a commonplace and recommended antecedent to a CT scan; the popular

Geneva risk scoring system for evaluating whether patient’s PE risk necessitates a CT scan includes

chest X-ray findings among the seven risk factors used to calculate the score.

At this point, the physician may consider ordering a D-dimer, an inexpensive blood test that

provides further information about a patient’s risk of PE. A low-risk result on the D-dimer suggests

the patient does not have a PE and the physician may forego a CT scan. A positive D-dimer result

is not diagnostic of PE, but suggests an elevated probability of this condition. At this point, the

physician would consider ordering a CT scan. Over our study period, the popularity of the D-dimer

as an additional screening tool for PE was on the rise. Although we cannot observe the use of

the D-dimer in our data, variation in D-dimer utilization is one mechanism by which physician CT

ordering behavior may vary.

The physician will typically order a chest CT after ruling out these common causes of chest pain.

A chest CT with contrast is useful for diagnosing pulmonary embolism, but otherwise adds little

new information that may aid diagnosis of other possible acute conditions.21 A positive test will

typically lead to a hospital admission and treatment with blood thinners. Imaging is required for

diagnosing PE; even high risk patients have a relatively low probability of PE and PE treatment is

medically risky, so it is not a condition that would be treated presumptively without imaging.

A negative CT scan will leave the physician with a broad field of possible alternative diagnoses,

including a more subtle cardiac condition, sleep apnea, infection, or a false alarm, and the CT scan

result will not be helpful in distinguishing between these possibilities. Ruling out a chest CT has

only a modest impact on the posterior probabilities of the other conditions that may be causing

a patient’s symptoms, since the ex ante probability of PE is relatively low—even for higher risk

patients. For these reasons, the informational value of a negative test is low.

21In Appendix C, we provide a detailed discussion of other conditions that can be diagnosed by chest CT and how
we empirically address these possibilities.
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Figure B.1: Clinical Assessment of Patient with Potential Pulmonary Embolism
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C Testing for Multiple Conditions

An important caveat to our above analysis is that claims data is only sufficient to identify CPT

codes for “chest CT with contrast”; we cannot isolate CT scans that follow the PE testing protocol

specifically. Although tests for PE are the primary indication for chest CTs in the emergency

room setting, there are other possibilities. Because of this limitation, some of the tests we have

labeled as “negative” since the patient is not diagnosed with pulmonary embolism may be tests

performed for a different indication. There are five main alternative indications for CT scans in

an emergency department setting: trauma, lung or chest cancers, aortic dissection, pleural effusion,

and pneumonia. We discuss our approach to each of these alternative diagnoses in turn.

We exclude from the estimation sample patients with diagnosis codes related to trauma (such as

fractures, injury, motor vehicle accidents), when these codes are associated with bills on the same day

as the patient’s emergency department evaluation. Chest CTs for these patients are likely aiming

to assess damage from a trauma rather than a pulmonary embolism. In a detailed sample of patient

records from chest CT scans performed in the emergency room of a large hospital, diagnosis codes

associated with the radiology bills readily distinguished traumas from other scanning indications.

Similarly, we exclude patients with a history of aortic aneurysm, aortic dissection, or other

arterial dissection, in order to eliminate patients for whom chest CTs may be intended to evaluate

for aortic dissection. Aortic dissections are extremely rare, with only approximately 9000 cases per

year in the United States, making it over 30 times less common than pulmonary embolism (Meszaros

et al. 2000).

It is unusual for a cancer diagnosis to be made for the first time in the ED, but patients with

worsening symptoms as a result of tumor growth or metastasis and occasional new diagnoses may

be seen. CT scanning is routinely used to diagnose and stage cancers. In our sample of detailed ED

chest CT records from the academic medical center, fewer than 1% of the scans were used to diagnose

or stage cancers. In the Medicare data, we exclude those patients with chest cancer indicated on

their visit to the emergency room or associated inpatient visit from our preferred estimation sample.

Chest CTs can be used to guide a procedure to treat patients with pleural effusion, which is

typically first diagnosed with a chest X-ray. Because a chest CT is not commonly a diagnostic test

for pleural effusion but rather an input into the treatment of the disease, we can exclude patients

from the sample with diagnoses of pleural effusion. Since some patients are diagnosed with both

pleural effusion and pulmonary embolism, and in these patients the chest CT was likely serving a

diagnostic role, we do not exclude pleural effusion patients with a diagnosis of pulmonary embolism.

These sample restrictions will tend to overstate the rate of positive testing and bias us away from

finding evidence of overtesting, since we may be excluding some pleural effusion patients who are

being tested for pulmonary embolism but have a negative test result.

Together, these exclusions for patients with trauma, cancer, or pleural effusion remove 32% of

patients receiving chest CTs from our sample. Results presented in the paper are qualitatively

similar when these patients are included.

Finally, chest CTs can be used to diagnose pneumonia. Pneumonia can also be reliably diagnosed

with cheaper and lower radiation technologies (David et al. 2012); the added value of a chest CT
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with contrast in an ED setting for diagnosing these alternative conditions is very modest (Venkatesh

et al. 2013). Technically, the value of a chest CT scan for diagnosing a condition that could otherwise

be detected with an X-ray is bounded by the costs of the X-ray, which is about $30 in our sample.

Accounting for a $30 additional net benefit from diagnosing pneumonia when indicated does not

substantively change our results about the welfare costs of overtesting.

D Validating our approach to coding test results in claims data

We identify positive tests on the basis of Medicare Part A hospital claims that include a diagnosis

code for PE among any of the diagnoses associated with the hospital stay; we assume all other

CT scans failed to detect PE. We have validated our approach to identifying positive tests by using

cross-referenced patient chart and hospital billing data from two large academic medical centers. The

evidence from these centers suggest that we are unlikely to understate physicians’ testing thresholds

due to undercounting of positive test results. In particular, we may undercount positive tests in the

Medicare claims data for two reasons: if patients with PE are not admitted to the hospital; or if

patients with PE are admitted but their inpatient bill does not include a diagnosis of pulmonary

embolism.

At the two academic medical centers, we found that 90% of patients who test positive for PE in

the emergency department were admitted within 1 day. Patients with very small PEs may occasion-

ally be discharged after brief observation and treated with blood thinning agents as outpatients if

the PE appeared small on the scan and the patient has no other complicating health conditions; this

likely accounts for most of the cases where a test is coded as positive on the basis of patient chart

data but no inpatient admission is recorded. Note that this suggests that we are undercounting

positive tests precisely for the patient group for whom the benefits of treatment are the lowest.

Among patients with positive PE CT scans recorded in chart data who are subsequently admitted

to the hospital, 87% have a diagnosis of pulmonary embolism recorded on the bill for their inpatient

hospital stay. PE may not be recorded on the bill for two main reasons: the patient may have

other medical conditions that are treated during the hospital stay and are reimbursed at a higher

rate, such that there is no billing incentive to include PE among the inpatient diagnoses; or, the

bill may simply be incorrectly coded. In total, 21% of patients diagnosed with PE in the emergency

department (ED) do not have an inpatient claim with a PE diagnosis.

Of patients with a negative PE CT scan recorded in their emergency department chart, 1.5%

have a diagnosis of pulmonary embolism recorded on the bill for an ensuing hospital stay. In the

claims data, we would mistakenly attribute this diagnosis to the ED workup. This error could occur

if the patient develops a PE later in his hospital course and receives a subsequent positive CT test,

a plausible mechanism given that the immobilization frequently associated with hospital stays is a

risk factor for PEs; alternatively, these PE diagnosis codes could indicate billing errors.

Taken together, these data suggest that of the 6% of CT tests that we code as positive in the

Medicare data, 20% of the patients had negative findings on their initial ED PE CT. Of the 94%

of tests we code as negative, 1.1% of the patients had positive ED PE CTs. The overall rate of

positive tests is almost exactly equal to what it would be if no such coding mistakes were made, since
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these two types of coding errors offset each other. This suggests that the limitations of this coding

algorithm should not contribute to overstatements of the degree of overtesting in our Medicare

sample.

E Derivation and estimation of structural model

In this section, we describe the derivation and estimation of our structural model in more detail.

This section is meant to complement the discussion in Section 4, by filling in additional algebraic

steps needed to complete the estimation. We begin by outlining our parametric assumptions and

describe the testing equation. Second, we derive the test outcome equation which is used to estimate

the distribution of τd, the degree of misweighting, and a scaling factor which relates the testing and

test outcome equations.

Recall our assumption that doctor d’s ex ante belief about the probability of a positive test

for patient i is given by q′id = xidβ
′ + α′

d + ηid. Although our baseline model assumes that ηid is

independently and identically distributed across doctors and patients, in Section 6.2 we extend the

model to allow for physician-specific heteroskedasticity. The motivation and results of this extension

are discussed in more detail in that section. Because the heteroskedastic estimation procedure

is a straightforward generalization of our baseline model, we use notation below that allows for

heteroskedasticity and thus covers both the baseline model and its heteroskedastic extension.

We assume that the distribution of ηid follows a particular functional form, which is a mixture of

a Uniform and a Bernoulli distribution; in particular, ηid ∼ U(−ηd, ηd) with probability 1− pd and

ηid ∼ U [v−ηd, v+ηd] with probability pd. The baseline model in the text assumes homoskedasticity,

so that pd = p and ηd = η and we note below how this affects the estimation procedure.

Assume that doctors test a patient if and only if the patient’s perceived probability of a positive

test exceeds a physician-specific threshold, i.e. q′id > τd. Let I ′id ≡ xidβ
′ + θ′d where θ′d = α′

d − τd.

Also as in the text, qid = xidβ + αd + ηid gives the actual ex ante likelihood of a positive test. Let

Iid ≡ xidβ+ θd denote the unprimed version of the propensity to test (i.e. the testing propensity we

would observe if physicians correctly weighted observable comorbidities to maximize test yields).

Pr(Testid = 1) = Pr(q′id > τd)

= Pr(I ′id + ηid > 0)

= 1− Pr(ηid < −I ′id) (20)

Assume the distribution of ηid is such that I ′id + v < ηd for all I ′id and ηd so there is no testing

propensity I ′id at which patients are always tested regardless of the value of ηid. Assume further that

patients are never tested if the v shock is not realized. For example, the v shock could represent

symptoms that would lead the physician to suspect PE, such as chest pain and shortness of breath.

Then, given our distributional assumptions: Pr(ηid < −I ′id) = 1 − pd + pd · min
{
1,

ηd−(I′
id
+v)

2ηd

}
.

Thus:
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Pr(Testid = 1) = p

[
1−min

{
1,

1

2
−

I ′id + v

2ηd

}]

= max

{
0,

pd
2

+
pd(I

′
id + v)

2ηd

}
(21)

We estimate this equation by non-linear least squares. In the heteroskedastic model, we recover:

β′ (up to a scaling normalization), η̂d = C pd
2ηd

(where the value of the constant C depends on

the normalization of β), and θ̂′d = pd
2 +

pdθ
′

d
+v

2ηd
. Intuitively, heteroskedasticity in ηd is identified

by the fact that observables are less predictive of testing behavior for doctors with more private

information. In the homoskedastic model where pd = p and ηd = η, this simplifies so that we are

estimating β̂′ = pβ′

2η and θ̂′d = p
2 +

p(θ′
d
+v)

2η .

In either the homoskedastic or heteroskedastic case, we can use the predicted values from estima-

tion of equation 21 to construct an estimate of Ĩ ′id = pd
2 +

pd(I
′

id
+v)

2ηd
. Estimating the heteroskedastic

model requires an additional sample restriction at this stage. In theory, ηd is identified for all

doctors. In practice, for a very small number of doctors, the estimated ηd would diverge to ∞

because patients with larger xidβ
′ are less likely to be tested, due to random variation in a limited

per-doctor sample. These doctors are excluded from the final sample for estimation when we turn

to the heteroskedastic model.

Returning to the testing outcomes equation, our distributional assumptions imply that: E(ηid|ηid >

−I ′id) =
ηd−(I′

id
+v)

2 . Thus:

E(qid|Testid = 1) = τd + Iid + E(ηid|ηid > −I ′id)

= τd + Iid +
ηd − (I ′id + v)

2

= τd + (Iid − I ′id) +
ηd + I ′id + v

2

= τd +
ηd + I ′id + v

2
+ xid(β − β′) + (α− α′)

= τd +
ηd + I ′id + v

2
+ (xid − Ed(xid))(β − β′) (22)

where the last line follows from the assumption that Ed(qid|Testid = 1) = Ed(q
′
id|Testid = 1) so

that doctors have overall unbiased beliefs about the average likelihood of a positive test across all

their tested patients. From our definition of Ĩ ′id above, it follows that
ηd+I′

id
+v

2 = ηdĨ′id
pd

and so:

E(Zid|Testid = 1) = E(qid|Tid = 1)

= τd +
ηdĨ ′id
pd

+ (xid − Ed(xid))(β − β′) (23)

where Ĩ ′id is the propensity estimated from the testing equation, and Zid is the realized testing

outcome (1 for a positive test, 0 for a negative test).

We can estimate this model by non-linear least squares but we need an additional exclusion
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restriction so that the coefficient on Ĩ ′id is identified by more than just functional form. As discussed

in Section 4.3, this restriction is that we effectively know τd for high volume doctors who test

marginal patients—i.e. patients who are very unlikely to be tested based on observables but are

nonetheless tested—because we observe test outcomes among those patients. In practice, we also

need to be careful about the misweighting term. If we average observed test outcomes Zid among

tested marginal patients (i.e. patients with Ĩ ′id = 0) for doctors who have such patients, then for

each of those doctors we obtain an estimate of:

QQd = τd + (Em,d(xid)− Ed(xid))(β − β′) (24)

where Em,d(xid) gives the mean of xid among only tested marginal patients for a given doctor. For

doctors with marginal patients, we have:

E(Zid|Testid = 1)−QQd =
ηdĨ ′id
pd

+ (xid − Em,d(xid))(β − β′) (25)

Because we observe only a small number of marginal patients for each doctor, we can construct:

Q̂Qd = QQd + ed, a noisy estimate of QQd. Thus, let Yid = Zid for doctors with no marginal

tested patients and Yid = Zid − Q̂Qd for doctors with marginal tested patients. Further, let Xid =

(xid − Em,d(xid)) for doctors with marginal tested patients and Xid = (xid − Ed(xid)) for doctors

with no marginal tested patients. Finally, let Md denote an indicator for whether a doctor has

marginal tested patients. This gives the estimating equation:

Yid = (1−Md)τd +
ηdĨ ′id
pd

+Xid(β − β′) + ǫid (26)

where ǫid = Mded + uid includes both the noise in the estimation of QQd and the prediction error

in Zid = E(qid|Testid = 1) + uid. This model can be estimated by least squares.

In the homoskedastic case, ηd
pd

is a constant which we recover from least squares estimation of

equation 26. In the heteroskedastic model, we estimated η̂d = C pd
2ηd

in the testing equation, so the

2nd term in equation 26 is replaced by Ĩ′id
η̂d

and the recovered coefficient tells us C
2 , which is sufficient

given η̂d to recover pd
ηd
.

Following this procedure, we estimate the model and analyze the results described in Section 5.

This model is also the basis of the welfare exercises reported in Section 7.

F “Empirical Bayes” Estimates of τd

In this section, we describe how we compute the distribution of the underlying τd from the observed

distribution of τ̂d which includes both the underlying true variation and sampling error. We call this

an “empirical Bayes” estimate because of the intuition that we are recovering the true underlying

distribution of τd from noisy estimates, but our specific model does not recover a posterior mean

estimate of the parameter for each doctor. Results of this procedure are reported in Table 5.

(Note that the welfare results reported in Section 7 require more restrictive assumptions of the

empirical Bayes procedure and do recover a posterior estimate of τd for each doctor. These additional
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restrictions are described below and in Section 7.2.)

In order to form our estimate of the true distribution of τd, we will proceed as follows:

1. Estimate the mean and variance of this distribution for doctors with no marginal tested pa-

tients.

2. Estimate the mean and variance of this distribution for doctors who do have marginal tested

patients.

3. Apply the law of total variance to compute the mean and variance of the mixture distribution

which combines the distributions for doctors with and without marginal tested patients.

4. Make a parametric assumption so that the mean and variance uniquely pin down the posterior

distribution. (Required only for welfare simulations reported in Section 7.2.)

We start with our estimating equation from Appendix E, equation 26, reproduced below.

Yid = (1−Md)τd +
ηdĨ ′id
pd

+Xid(β − β′) + ǫid (27)

We can rewrite this equation in matrix form as:

Y = Dτnm +Xβ + ǫ (28)

where D includes the doctor fixed effects for all doctors who lack marginal tested patients (as indi-

cated by the nm subscript) and Xβ includes the constant terms, the Ĩ ′id terms and the misweighting

terms.

Our goal econometrically will be to relate the observed across doctor variance of τnm (which

includes estimation error) with the underlying true variance of τnm.

Let Mx = In −X(X ′X)−1X ′ where In is the identity matrix. Partialing out gives:

MxY = MxDτnm +Mxǫ (29)

Let S = MxD. Then our estimator of τ is given by:

τ̂nm = τnm + (S′S)−1S′Mxǫ (30)

For a vector x, define var(x) = E(xx′)−E(x)E(x′). Define vard(x) = E(x′x)−Ed(x)
2, i.e. the

scalar generated by taking the variance across the observations in the vector. Taking the “outer

product” variance of both sides of equation 30 gives:

var(τ̂nm) = var(τnm) + (S′S)−1S′Mxvar(ǫ)MxS(S
′S)−1

= var(τnm) + (S′S)−1S′var(ǫ)S(S′S)−1 (31)

where the second line uses the fact that MxMx = Mx. Let S
(i)′ denote the ith row of S. Assuming

var(ǫ) is a diagonal matrix, S0 = 1
N

∑N
i=1 e

2
iS

(i)S(i)′ →p
1
N

∑N
i=1 ǫ

2
iS

(i)S(i)′ = 1
N S′var(ǫ)S. This is
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asymptotically equivalent to:

var(τnm) = var(τ̂nm)− (S′S)−1

(
N∑

i=1

e2iS
(i)S(i)′

)
(S′S)−1 (32)

where ei are the residuals from equation 28. Finally, using the fact that vard(τnm) = 1
Ndoc

tr(var(τnm))

where Ndoc is the number of doctors with no marginal tested patients (i.e. the docs for whom we

are currently estimating τd), we have:

vard(τnm) = vard(τ̂nm)−
1

Ndoc
tr

(
(S′S)−1

(
N∑

i=1

e2iS
(i)S(i)′

)
(S′S)−1

)
(33)

This equation allows us to recover vard(τ), the variance of τd for doctors who lack marginal

tested patients. In order to recover τd for doctors who do have marginal tested patients, we use the

fact from equation 23 that:

E(Zid|Testid = 1)− (xid − Ed(xid))(β − β′) = τd (34)

if we restrict to marginal tested patients of those doctors (meaning that Ĩ ′id = 0). This equation

can be written as a special case of equation 28, with Yid = Zid − (xid −Ed(xid))(β − β′). Note that

D now denotes the matrix of doctor fixed effects for doctors with marginal tested patients, Nmarg

denotes the number of doctors with marginal tested patients, and X = 0. This simplification means

that S = D and we have:

vard(τmarg) = vard(τ̂marg)−
1

Nmarg
tr

(
(D′D)−1

(
N∑

i=1

e2iD
(i)D(i)′

)
(D′D)−1

)
(35)

where in this case the residuals are computed from estimation of equation 34 by OLS on the sample

of physicians with marginal tested patients and only those marginal tested patients included in the

estimation.

To combine these distributions into a single distribution of τd, we note that τd is a random

variable whose mean and variance are µm = E(τmarg) and σ2
m = V ard(τmarg) with probability

Pm (the fraction of doctors who have some marginal tested patients) and µnm = E(τnm) and

σ2
nm = V ard(τnm) respectively with probability 1− Pm. This implies:

E(τ) = Pmµm + (1− Pm)µnm

vard(τ) = Pmσ2
m + (1− Pm)σ2

nm + Pmµ2
m + (1− Pm)µ2

nm − (Pmµm + (1− Pm)µnm)2 (36)

where the second equation follows from the law of total variance.

For simulations and welfare analyses, we further assume that τd+M is log-normally distributed

with mean E(τ), variance vard(τ) and minimum possible value M = fp. fp is the value we would

estimate for patients in equation 26 if there were no PE incidence so that the only positive tests were

false positives (implying E(Zid|Testid = 1) = fp, the rate of false positives). In order to recover an

estimate of τd for each doctor, we redraw values of τ from the simulated distribution, order them
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from least to greatest, and assign each doctor a τ from the simulated distribution which matches

that doctor’s rank among estimated τd.

G Simulations of testing behavior and test yields

This section describes how we apply our structural model to simulate the relationships plotted

in Figure 3 and discussed in sections 5.1 and 5.4. The first exercise illustrates the hypothetical

relationship between average physician testing propensities and positive test rates, if all doctors

were to have the same testing threshold. We simulate testing decisions and test outcomes under a

counterfactual where τd is held constant across doctors, at the estimated average value E(τd) = 0.056.

To calculate the new values of the testing propensities under this counterfactual where τd = E(τd)

for all doctors, we start by considering the estimated testing propensity: Ĩ ′id = p
2 +

p(xidβ
′+θ′

d
+v)

2η . To

simulate the testing propensity under the counterfactual where testing thresholds are held constant

at their mean, Ĩ
′τd=E(τd)
id , we need to add our estimate of (τ̂d − E(τd))

p
2η back to original estimate

of Ĩ ′id.

Because the estimated τ̂d are noisy and overstate the true variance in the distribution, we calcu-

late a posterior, shrunk estimate of each τd before proceeding with this counterfactual exercise. At

this stage, we need to make a distributional assumption about physician testing thresholds τd. We

assume they follow a log-normal distribution with mean and variance determined by the empirical

Bayes estimates described above, and the same relative rank as in the raw estimated distribution

(i.e. the doctor with the 20th largest estimated τ̂d will also have the 20th largest posterior τd).

Plugging in our new, simulated estimates of Ĩ
′τd=E(τd)
id and setting τd = E(τd), we calculate

E(Zid|Testid = 1) for each patient following equation 13 and use these estimates to simulate average

test yields. Results of this simulation exercise are reported in Section 5.1 and pictured in Figure 3.

The second simulation exercise considers the role of misweighting in determining the relationship

between testing propensities and test yield. We simulate the counterfactual relationship between

physicians’ average testing propensities and test yields that would be observed if there were no

heterogeneity in testing thresholds and no misweighting of observable risk factors. Eliminating

misweighting should increase the test yield for all values of the testing propensity by improving the

targeting of PE CT tests to the highest risk patients.

First we simulate how testing propensities Ĩ
′τd=E(τd)
id would change if there were also no mis-

weighting of patient risk factors. In particular, we add a correction factor (x − E(x)) β−β′

2(η/p) to

Ĩ
′τd=E(τd)
id to calculate new simulated testing propensities Ĩsimid under the counterfactual with no

misweighting. Based on these new values of Ĩsimid , we calculate the expected test yield according

to the formula E(Zsim
id |Testid = 1) = E(τd) +

η
p Ĩ

sim
id (from equation 13). Results of this simulation

exercise are reported in Section 5.4 and pictured in Figure 3.

H Computing the welfare costs of overtesting and misweighting

In order to calculate the welfare costs of overtesting and misweighting, we must first understand

how false positive and false negative test results will affect the costs and benefits of testing, and the
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calibrated optimal physician testing threshold. We begin by calculating the net utility of treatment,

given that there are both false positive and false negative test results. Let PEid denote the event

that patient i truly has a PE. As before, Zid is an indicator which is 1 if a test is positive. MB

denotes the medical benefits of treatment if the patient has a PE, MC denotes the medical costs of

treatment and CT denotes the financial cost of treatment. Then the net utility of a positive test is

given by:

NUid = Pr(PEid|Zid = 1)MB −MC − CT (37)

The medical benefits of treatment accrue only if the positive test result is a “true positive,” i.e. the

patient actually has a PE. If there are more false positives, the medical benefits of any observed

positive test will be smaller. In contrast, the medical risks and financial costs of treatment are

incurred for any treated patient regardless of whether he actually has a PE.

Let s denote the sensitivity of the test (one minus the probability of a false negative) and fp

denote the probability of a false positive. Applying Bayes’ Rule and the law of total probability, we

can rewrite net utility as:

NUid =
s(qid − fp)

qid(s− fp)
MB −MC − CT (38)

Given the net utility associated with treating a patient with a positive test, the net benefits

of testing also depend on the probability of a positive test, qid and the costs of testing c. We can

therefore write the net benefits of testing as:

Bid = qidNUid − c

=
s(qid − fp)

(s− fp)
MB − qidMC − qidCT − c (39)

Let N̂U = s
s−fpMB −MC −CT and ĉ = c+ s·fp

s−fpMB. Then we can rewrite the net benefits of

testing as:

Bid = qidN̂U − ĉ (40)

The optimal testing threshold τ∗ will be the threshold at which the expected net benefits of testing

are zero, or τ∗N̂U = ĉ.

Once we have recovered the optimal testing threshold, we can apply the structural model de-

scribed in Section 4 and Appendix E, to compute the welfare cost of overtesting as follows. Let

t̂id(τd,∆β) denote the probability that consumer i is tested by doctor d as a function of τd and the

vector of weighting errors physicians make in assessing PE risk. The vector of misweighting errors

is labeled as ∆β = β − β′. Let Ẑid(τd,∆β) denote the probability of a positive test conditional on

testing.

To compute testing behavior under the counterfactual where all doctors utilize the optimal

testing threshold τ∗, we estimate t̂id(τ
∗,∆β) using the fact that I(τ∗,∆β) = I(τd,∆β) + (τd − τ∗)

which implies Ĩ ′(τ∗,∆β) = Ĩ ′(τd,∆β) + p(τd−τ∗)
2η . Having adjusted the testing propensities, we

can now calculate the expected probability of a positive test Ẑid(τ
∗,∆β) = ηĨ′id(τ

∗,∆β)
p + (xid −

Ed(xid))(β − β′).
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Welfare simulations to evaluate the costs of misweighting parallel the derivation above. In

particular, to compute the propensity to test with no misweighting, t̂id(τd, 0), we use the fact that

I(τd, 0) = I(τd,∆β)+(xid−Ed(xid))∆β which implies Ĩ ′(τd, 0) = Ĩ ′(τd,∆β)+ p(xid−Ed(xid))∆β
2η . Given

this adjustment to the testing propensities, we can calculate expected test outcomes according to

the following formula: Ẑid(τd, 0) = τd +
ηĨ′id(τd,0)

p .

To complete the welfare calculations, we must apply assumptions about the expected medical

benefits, medical costs and financial costs associated with treatment of positive tests. Following the

notation above, we have:

MB(τd,∆β) =
∑

i

Pr(Testi = 1) · Pr(PEid|Testi = 1)MBid (41)

=
∑

i

t̂id(τd,∆β)
s(Ẑid(τd,∆β)− fp)

(s− fp)
MBid

MC(τd,∆β) =
∑

i

Pr(Testi = 1)Pr(Zid = 1|Testi = 1)MCid (42)

=
∑

i

t̂id(τd,∆β)Ẑid(τd,∆β)MCid

FC(τd,∆β) =
∑

i

Pr(Testi = 1)(c+ P (Zid = 1|Testi = 1)CTid) (43)

=
∑

i

t̂id(τd,∆β)(c+ Ẑid(τd,∆β)CTid)

NB(τd,∆β) = MB(τd,∆β)−MC(τd,∆β)− FC(τd,∆β) (44)

where MB denote the medical benefits of testing (derived in Section 7.1), MC denotes the medical

costs of testing, FC denotes the financial costs of testing and NB denotes the net benefits of

testing as a function of these objects. The test sensitivity is given by s, and fp is the false positive

rate. We define the welfare cost of overtesting as NB(τ∗,∆β) − NB(τ̂d,∆β) and the welfare cost

from misweighting as NB(τ̂d, 0) − NB(τ̂d,∆β) where τ̂d is drawn from the estimated underlying

distribution of τd which we recover using the methods outlined in Appendix F above.
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