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1 Introduction

Many have argued that current medical practice involves large amounts of wasteful spending, with

little cross-sectional correlation between regional health spending and quality of care (Wennberg,

Cooper, et al. 1996). But determining the best approach to lower costs and maintain quality depends

critically on the nature of the inefficiency: is the problem one of allocative inefficiency, i.e. spending

to the “flat of the curve,” or productive inefficiency, i.e. misuse of medical resources (Garber and

Skinner 2008)? And more fundamentally, does heterogeneity in medical spending imply inefficiency

of any sort or is this heterogeneity fully explicable by unobserved differences in patient populations?

In this paper, we develop an econometric framework for evaluating whether the wide variation

in the use of CT imaging across doctors is due to heterogeneity in patients’ benefits from testing

or heterogeneity in physicians’ practice styles (i.e. differences in behavior when treating identical

patients). We assume that doctors will order a CT scan to test for pulmonary embolism (PE) if the

expected benefits to the patient minus the cost of the test exceed a doctor-specific testing threshold.

This threshold is our patient invariant measure of physician practice style and we seek to recover it

for each doctor in our sample.

Identifying differences in physicians’ practice styles separately from patient heterogeneity typ-

ically requires either random assignment of patients to physicians or estimates of potentially het-

erogeneous returns to medical treatment for each patient. Prior research, including Chandra and

Staiger (2011) and Currie and MacLeod (2013), has argued that reliable estimates of treatment

effects can be obtained using detailed chart data to control for all patient characteristics observable

to doctors, but such data is typically only available in limited samples. This stumbling block makes

it difficult to investigate both the extent and the determinants of healthcare overuse or underuse.

A key insight of this paper is that the ex post value of a medical test, in this case chest CT scans,

is partially observable in insurance claims records based on whether the test results in the relevant

diagnosis. A doctor who performs many negative CT scans, which have little ex post value for

improving patient health, is likely to have a low testing threshold. Physicians with identical testing

thresholds may have different rates of negative tests if their patient population varies either in the ex

ante risk of pulmonary embolism or in the benefits of treatment conditional on a positive test. Our

model accounts for these forms of patient heterogeneity and shows how to recover physicians’ testing

thresholds. Using these estimated testing thresholds, we investigate the role of medical training,

malpractice environment, hospital characteristics and regional factors in shaping practice styles.

The model also allows identification of whether doctors are misweighting observable patient risk

factors in selecting which patients to test for PE. By comparing how observables predict physicians’

testing decisions to how those same observables predict rates of positive tests amongst tested pa-

tients, we can identify whether physicians are mistakenly assessing the risk of PE associated with

patient demographics and comorbid conditions.

Given additional calibration assumptions about the cost of the test, the benefits of treating PE

and the likelihood of false positives, the testing threshold tells us the degree of allocative inefficiency:

whether doctors are overtesting or undertesting from a social standpoint. For example, a negative

testing threshold implies that doctors test even if the costs of the test exceed the medical benefits

to the patient. The calibration also allow us to assess the degree of productive inefficiency from
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physician misweighting of patient risk factors. Can greater benefits be realized at the same cost by

more carefully choosing which patients to test?1

Our model builds on the framework of Chandra and Staiger (2011) who use a structural model

to estimate the medical returns to heart attack treatment and separately identify heterogeneity

in physician behavior from differences in patient population. Their framework relies on detailed

patient-specific estimated treatment effects. We adapt their model to the case of medical testing,

which allows us to investigate overuse in a national sample of claims data, and extend it to allow

for additional heterogeneity in the distribution of patient risk and to model physicians’ diagnostic

errors.

Previous research has identified important differences in practice style and skill across physicians.

Chandra and Staiger (2011) conclude that overuse of care explains a large amount of variation

in treatment for heart attacks across hospitals. Currie and MacLeod (2013) uncover substantial

heterogeneity in diagnostic skill across obstetricians; however, their framework does not identify

overuse or underuse of medical care nor do they evaluate whether doctors place the right relative

weights on observables. We consider a close relative of the Currie and Macleod model in Section 6.2

where we consider the role of diagnostic skill in the medical testing context. Molitor (2012) finds that

environmental factors explain much of the variation in physician’s rates of cardiac catheterization;

we build upon this insight by analyzing which environmental and physician-specific variables predict

variation in physicians’ practice styles.

We apply our model to analyze CT scans that test for pulmonary embolism (PE). PE is the

third most common cause of death from cardiovascular disease, behind heart attack and stroke

(Goldhaber and Bounameaux 2012), and CT scans are the most common tool for diagnosis of PE.

Despite the mortality risk from untreated PE, PE CT scans are commonly thought to be overused in

the emergency care setting given their substantial financial costs and medical risks. The American

College of Radiology targeted PE CT as a key part of the Choosing Wisely campaign aimed to

reduce overuse of medical services (American College of Radiology 2012).

We analyze 2.5 million emergency department visits drawn from a 20% sample of Medicare

claims data, 2000-2009. We observe whether each patient is tested with a chest CT, and whether

this test leads to diagnosis of pulmonary embolism. After accounting for differences in patients’

risk for PE, we uncover enormous heterogeneity in doctors’ testing thresholds. Less experienced

doctors and doctors in higher spending regions tend to have lower thresholds at which they deem

CT imaging worthwhile.

Applying calibration assumptions, we find in the context of our model that 90-99% of doctors

are overtesting in the sense that for their marginal patients, the costs of testing exceed the benefits.

We also use the model to conduct several welfare analyses. If all doctors tested only when the costs

exceeded the benefits in our model, the total benefits to patients from chest CTs would increase by

30% and the number of chest CT scans would fall by 40% in our preferred calibration. Our model

1We are defining allocative and productive inefficiency from the standpoint of production functions with spending
on CT scans as the input and patient health status as the output. With “overtesting”, one is testing to the flat of
the curve, where the marginal health returns to additional spending are very low; this is an allocative inefficiency.
With misweighting, a higher production function—producing greater health gains for a given level of spending—is
achievable if doctors would correctly weight observable risk factors; misweighting thus creates productive inefficiency.
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also suggests that doctors underweight the importance of certain risk factors, including recent prior

hospitalizations, obesity and a history of pulmonary disease, in deciding which patients to test.

Weighting these observables in the way our model suggests is optimal would increase patient welfare

by 275%, primarily by leading to additional testing and appropriate diagnosis of affected patients.

The paper is organized as follows. Section 2 provides some background on chest CT scans and

especially chest CT scans for pulmonary embolism, the test which is the focus of our analysis. Section

3 describes the data available to us and the assumptions needed to identify positive and negative

tests. Section 4 lays out our structural model of testing behavior and derives an equation relating

the indicator for positive and negative tests to doctors’ testing thresholds. Section 5 describes how

we estimate the model and reports some results. Section 6 conducts the various welfare analyses

described and section 7 concludes.

2 Background on PE CTs and Data

We study testing behavior in the context of chest CT scans performed in the emergency depart-

ment (ED) to detect pulmonary embolism. A pulmonary embolism occurs when a substance, most

commonly a blood clot that originates in a vein, travels through the bloodstream into an artery of

the lung and blocks blood flow through the lung. It is a serious and relatively common condition,

with an estimated 350,000 diagnosed cases of PE per year in the United States (Office of the Sur-

geon General 2008). Left untreated, the mortality rate from a pulmonary embolism depends on the

severity and has been estimated to be 2.5% within three months for a small PE (Lessler et al. 2010),

with most of the risk concentrated within the first hours after onset of symptoms (Rahimtoola and

Bergin 2005). Accurate diagnosis of PE is necessary for appropriate follow-up treatment; even high

risk patients are unlikely to be treated presumptively.

CT scans to test for PE have a number of attractive features for our purposes: they are a

frequently performed test; they introduce significant health risks and financial costs; a positive test

is almost always followed up with immediate treatment, observable in Medicare claims records; and

a negative test provides little information to the physician about alternative diagnoses or potential

treatments. We discuss each of these features in more detail below.

2.1 CT indications and guidelines

The symptoms of pulmonary embolism are both common and nonspecific: shortness of breath,

chest pain, or bloody cough. Hence, there is a broad population of patients who may be considered

for a PE evaluation. Practice guidelines recommend that physicians also consider several additional

factors before determining whether to pursue a workup for PE, including the following: age, elevated

heart rate, recent immobilization or surgery, history of deep vein thrombosis or PE, recent treatment

for cancer, coughing up blood, lower limb pain or swelling, and chances of an alternative diagnosis.

Because PE is an acute event with a sudden onset, the workup must be completed urgently and

knowing the results of previous CT scans is not a critical part of the evaluation of PE. Despite these

guidelines, many argue that PE CT scans are widely overused (Coco and O’Gurek 2012, Mamlouk

et al. 2010 and Costantino et al. 2008). Recent estimates by Venkatesh et al. (2012) suggest that
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one third of CT scans in a sample of 11 US emergency departments would have been avoidable if

physicians had followed National Quality Forum guidelines on CT usage. The nonspecific symptoms

of PE and significant mortality risk likely both contribute to overuse, particularly in the emergency

setting.

A CT angiogram is the standard diagnostic tool for pulmonary embolism. The average allowed

charge in the Medicare data is around $320 per PE CT when the bill is not covered by a capitation

payment. However, the emergency medicine physician with the responsibility of deciding whether

to order a CT scan typically receives no direct financial remuneration from the scan’s performance.

Payment goes to the radiologist for interpreting the scan and to the hospital for the technician and

capital investment required to perform the scan. The emergency department doctor has, at best,

a diffuse incentive to ensure the hospital’s financial health and reduce his malpractice risk, but he

receives no direct payments from Medicare or the hospital for ordering a scan.

There may be additional opportunity costs of scanning patient, if the hospital is capacity con-

strained in its allocation of time in the CT scanner or time spent awaiting a scan in an ED bed. If

present, opportunity costs would lead us to understate the true costs of performing a scan, and thus

understate the amount of over-testing in our data.

PE CT scans also come with small but important medical risks. There is an estimated 0.02%

chance of a severe reaction to the contrast, which then carries a 10.5% risk of death (Lessler et al.

2010). In addition, radiation exposure may increase downstream cancer risk, although the additional

lifetime cancer risk is minimal for the elderly Medicare population in this study. Lastly, false positive

CT scans may lead to additional unnecessary treatment with anticoagulants, which carry their own

financial costs and significant risk of bleeding.

2.2 Physician decision tree & value of a negative CT scan

The key simplifying assumption we make to evaluate the net benefits of testing is that a negative

test has no value. This assumption is not true in general for all tests: a negative test may rule

out one treatment thus justifying treatment for an alternative, or a negative test might prevent an

otherwise costly treatment. However, in our setting—CT scans for pulmonary embolism—a positive

test is followed by an inpatient admission and treatment with blood thinners while a negative test

does not suggest any further interventions or testing for related problems.

The flowchart depicted in Figure 1 shows a typical clinical pathway for a patient who may receive

a chest CT. The most common symptom that leads to the consideration of PE as a diagnosis is chest

pain. This is a nonspecific symptom that could also indicate a cardiac problem, pneumonia, or a

number of other conditions. Blood oxygen tests and an EKG are likely to be performed immediately

at the bedside, and if they suggest a cardiac problem, the patient will receive a more complete cardiac

workup.

If cardiac conditions are ruled out, the doctor may then be considering pneumonia, pleural

effusion, and pulmonary embolism as possible diagnoses. A chest x-ray and D-dimer blood test

would be the typical next steps. A chest x-ray is a low cost test with low levels of radiation exposure

and little medical risk; it is highly effective at diagnosing pneumonia and pleural effusion, which are

more common than PE. If the x-ray is negative, then the physician may become more concerned
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about risk of PE, since other more common conditions causing chest pain have been ruled out. A

chest x-ray is a commonplace and recommended antecedent to a CT scan; the popular Geneva risk

scoring system for evaluating whether patient’s PE risk necessitates a CT scan includes chest X-ray

findings among the seven risk factors used to calculate the score.

At this point, the physician may consider ordering a D-dimer, an inexpensive blood test that

provides further information about a patient’s risk of PE. A low-risk result on the D-dimer suggests

the patient does not have a PE and the physician may forego a CT scan. A positive D-dimer result

is not diagnostic of PE, but suggests an elevated probability of this condition. At this point, the

physician would consider ordering a CT scan. Over our study period, the popularity of the D-dimer

as an additional screening tool for PE was on the rise. Although we cannot observe the use of

the D-dimer in our data, variation in D-dimer utilization is one mechanism by which physician CT

ordering behavior may vary.

The physician will typically order a chest CT after ruling out these common causes of chest pain.

A chest CT with contrast is useful for diagnosing pulmonary embolism, but otherwise adds little

new information that may be helpful in diagnosing other possible acute conditions.2 A positive test

will typically lead to a hospital admission and treatment with blood thinners. Imaging is required

for diagnosing PE; even high risk patients have a relatively low probability of PE and PE treatment

is medically risky, so it is not a condition that would be treated presumptively without imaging.

A negative CT scan will leave the physician with a broad field of possible alternative diagnoses,

including a more subtle cardiac condition, sleep apnea, infection, or a false alarm, and the CT scan

result will not be helpful in distinguishing between these possibilities. Ruling out a chest CT has

only a modest impact on the posterior probabilities of the other conditions that may be causing

a patient’s symptoms, since the ex ante probability of PE is relatively low—even for higher risk

patients. For these reasons, the informational value of a negative test is low.

3 Data

We combine data from four sources: Medicare claims records, the American Hospital Association

annual survey, the American Medical Association Masterfile, and the Medicare Physician Identifica-

tion and the Eligibility Registry. Using a 20% sample of Medicare Part B claims from 2000 through

2009, we identify patients evaluated in an emergency department and observe whether they were

tested for PE, as well as whether any such test succeeded in detecting PE.

3.1 Medicare claims data

We begin by identifying all patients evaluated in the emergency department (ED), using physician-

submitted Medicare Part B claims for evaluation and management. 3 The physician submitting this

claim for evaluation and management is responsible for the patient’s emergency care; it would be his

2In Appendix C, we provide a detailed discussion of other conditions that can be diagnosed by chest CT and how
we empirically address these possibilities.

3In particular, we identify patients based on CPT codes for emergency department evaluation and management:
99281, 99282, 99283, 99284, 99285, and place of service 23 (i.e. hospital emergency department).
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decision whether or not to order testing for pulmonary embolis. Using physician identifiers, we track

the behavior of all doctors who routinely evaluate Medicare patients in the emergency department.

We identify which ED patients are tested for a PE using bills submitted by radiologists for

the interpretation of chest CTs with contrast, when the CT is performed within 1 day of the ED

visit.4 Note that while diagnosis of PE is the most common purpose of a chest CT performed in the

emergency care setting, there are a small handful of other indications, including pleural effusion,

chest and lung cancers, and traumas. For this reason, we exclude patients from the sample who are

coded with a diagnosis related to pleural effusion, chest or lung cancer, and trauma from the sample.

Because a chest x-ray is typically the more appropriate diagnostic tool for pneumonia (rather than

chest CT scan), and it is not uncommon to screen pneumonia patients for pulmonary embolism,

we do not exclude pneumonia diagnoses from our baseline sample. These sample restrictions and

alternative conditions are discussed in more detail in Appendix C.

Once we have identified CT scans in billing data, we then need to code the testing outcome, i.e.

whether or not the scan detected a pulmonary embolism. Patients with acute pulmonary embolism

are typically admitted to the hospital for monitoring and to begin a course of blood thinners or

placement of a venous filter to reduce clotting risk. From the sample of patients tested in the

emergency department with a chest CT, we identify positive tests on the basis of Medicare Part A

hospital claims that include a diagnosis code for pulmonary embolism among any of the diagnoses

associated with the hospital stay.

In addition to measuring whether patients were tested and the testing outcome, we also document

a number of characteristics that allow us to predict the patient’s propensity to be diagnosed with a

PE, including age, race, sex, and medical comorbodities. We augment the standard set of 30 medical

comorbidities (following Elixhauser et al. 1998) to include several measures that are specific to PE

risk.5 These include whether the patient was admitted to the hospital within the past year with a

diagnosis of pulmonary embolism, thoracic aortic dissection, abdominal aortic dissection, deep vein

thrombosis, and any cause admission to the hospital within 7 days or 30 days. Comorbidities are

defined using a one year history of inpatient Medicare claims.

We restrict our sample to hospitals that have billed Medicare for at least 50 CT scans between

2000-2009 in order to exclude institutions without reliable access to a scanner. We also exclude

physicians who order three or fewer CT scans over our period, since these doctors provide too little

information to accurately estimate physicians’ testing thresholds.

3.2 Validating our approach to claims data

We have validated this approach to identifying positive tests by using cross-referenced patient chart

and hospital billing data from two large academic medical centers. In particular, we may undercount

4We begin by identifying all bills for chest CTs on the basis of CPT codes 71260, 71270, and 71275.
5Conditions are defined using a 1-year inpatient medical history, based on Medicare Part A institutional claims.

These diagnoses include: coronary heart failure, valvular disease, pulmonary circulation disorder, peripheral vascular
disorder, hypertension, paralysis, other neurological disorders, chronic pulmonary disease, diabetes without chronic
complications, diabetes with chronic complications, hypothyroidism, renal failure, liver disease, chronic peptic ulcer,
HIV and AIDS, lymphoma, metastatic cancer, solid tumor without metastasis, rheumatoid arthritis, coagulation
deficiency, obesity, weight loss, fluid and electrolyte disorder, blood loss anemia, deficiency anemias, alcohol abuse,
drug abuse, psychoses, depression.
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positive tests in the Medicare claims data for two reasons: if patients with PE are not admitted to

the hospital; or if patients with PE are admitted but their inpatient bill does not include a diagnosis

of pulmonary embolism.

At the two academic medical centers, we found that 90% of patients who test positive for PE in

the emergency department were admitted within 1 day. Patients with very small PEs may occasion-

ally be discharged after brief observation and treated with blood thinning agents as outpatients if

the PE appeared small on the scan and the patient has no other complicating health conditions; this

likely accounts for most of the cases where a test is coded as positive on the basis of patient chart

data but no inpatient admission is recorded. Note that this suggests that we are undercounting

positive tests precisely for the patient group for whom the benefits of treatment are the lowest.

Amongst patients with positive PE CT scans recorded in chart data who are subsequently

admitted to the hospital, 87% have a diagnosis of pulmonary embolism recorded on the bill for their

inpatient hospital stay. PE may not be recorded on the bill for two main reasons: the patient may

have other medical conditions that are treated during the hospital stay and are reimbursed at a

higher rate, such that there is no billing incentive to include PE amongst the inpatient diagnoses;

or, the bill may simply be incorrectly coded. In total, 21% of patients diagnosed with PE in the

emergency department (ED) do not have an inpatient claim with a PE diagnosis.

Of patients with a negative PE CT scan recorded in their emergency department chart, 1.5%

have a diagnosis of pulmonary embolism recorded on the bill for an ensuing hospital stay. In the

claims data, we would mistakenly attribute this diagnosis to the ED workup. This error could occur

if the patient develops a PE later in his hospital course and receives a subsequent positive CT test,

a plausible mechanism given that the immobilization frequently associated with hospital stays is a

risk factor for PEs; alternatively, these PE diagnoses could indicate billing errors.

Taken together, these data suggest that of the 6% of CT tests that we code as positive in the

Medicare data, 20% of the patients had negative findings on their initial ED PE CT. Of the 94%

of tests we code as negative, 1.1% of the patients had positive ED PE CTs. The overall rate of

positive tests is almost exactly equal to what it would be if no such coding mistakes were made, since

these two types of coding errors offset each other. This suggests that the limitations of this coding

algorithm should not contribute to overstatements of the degree of over-testing in our Medicare

sample.

3.3 Physician, hospital, and regional data

After using the Medicare claims data to estimate the testing threshold used by each doctor and hos-

pital, we explore predictors of physicians’ practice styles by linking testing thresholds to physician,

hospital, and regional characteristics.

We draw physician data from two sources, the Medicare Physician Identification and Eligibility

Registry (MPIER) and the American Medical Association Masterfile (AMA data). The MPIER and

AMA both identify the medical school and graduation year for each physician, which we have linked

to the US News & World Report medical school rankings. We bin schools according to whether

they are typically ranked in the top 50 for either primary care or research rankings. In addition,

we observe the physician’s specialty choice, and present some results limited to emergency medicine
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specialists.

Hospital characteristics are drawn from the American Hospital Association Annual Survey. We

use these data to observe whether the physician typically practices at a for profit hospital or an

academic hospital, defined as a hospital with a board certified residency program. Lastly, we identify

the hospital referral region (HRRs) in which each patient is treated. HRRs are regional health care

markets defined by the Dartmouth atlas to reflect areas within which patients commonly travel to

receive tertiary care. There are 306 HRRs in total. Using data from the Dartmouth Atlas, we link

each HRR to measures of the overall intensity of treatment of Medicare patients, including spending

per beneficiary and measures of end of life care.

3.4 Summary Statistics

There are 2.5 million emergency department visit evaluations in our dataset, after making sample

exclusions. Of these patients evaluated in the ED, 3.5% of them are tested with a chest CT scan

with contrast. Amongst tested patients, 7% of them receive a positive test, i.e. are admitted to the

hospital within 24 hours with a diagnosis of pulmonary embolism.

Summary statistics are reported in Table 1, with results reported separately for patients who do

not receive a CT scan (column A), patients who receive a negative test (column B), and patients

with a positive test (column C). We observe the testing behavior of over 10,000 physicians, with an

average of over 200 ED patients per physician.

Patient demographics are similar across the untested and tested patient groups. The average age

is 78 years in the untested sample and slightly lower at 77 in the sample of patients with negative

or positive tests. Patients who test negative are more than twice as likely to have a history of

pulmonary embolism as untested patients; patients with positive tests are seven times more likely

to have a history of pulmonary embolism.

Patients with negative tests are evaluated by doctors with seven months less experience on

average than patients with positive tests. They are also more likely to have been treated in a

slightly higher spending region, with regional average per beneficiary spending 1% higher amongst

negative tested patients compared to postive tested patients. 40% of patients are evaluated by a

doctor who sees a plurality of his patients at an academic medical center, and 31% of patients are

evaluated by a physician who attended a top 50 ranked research medical school; these fractions do

not vary much across patient groups.

3.5 Reduced Form Evidence of Doctor Preference Heterogeneity

Before describing our model, we consider reduced form evidence of heterogeneity in doctors’ testing

behavior. In particular, we analyze the following regression:

Zid = td +Xid + µid (1)

where Zid is in indicator for whether patient i tested by doctor d received a positive CT scan; td is

a vector of doctor fixed effects; Xid are patient demographics and comorbidities; and µid is an error

term. The regression is run on the sample of patients who receive a chest CT.
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Higher fixed effects td correspond to a higher rate of positive tests amongst tested patients for

physician d conditional on the observable risk factors in his patient population. There is considerable

spread in the residual probability of a positive test; the standard deviation of this distribution is 10

percentage points.

Some of the variation in the fixed effects may be driven by the fact that we observe a limited

number of patients per doctor, so even if all doctors treated the same population of patients and

shared the same testing preferences, we may estimate differences in their testing behavior. Using

the empirical Bayes correction described in Appendix A to adjust for this sampling variation, we

estimate the true standard deviation of physician fixed effects to be 0.04. Given that 7% of patients

test positive, this is a substantial amount of variation across doctors in the fraction of positive tests

conditional on observables - a doctor one standard deviation above the mean would find 5 times as

many positive tests as a doctor one standard deviation below the mean.

This variation in rates of positive testing could be explained by a few factors. First, physicians

may vary in their practice styles, with some physicians choosing to test lower-risk patients than

others. Second, the patient population each physician treats may vary in its unobservable risk for

pulmonary embolism, generating differences in positive testing rates independent of differences in

physician practice style. Our model presented below and the estimation approach in the remainder

of the paper work to disentangle these mechanisms in order to isolate variation in practice style.

4 Model of Testing Behavior

We will now develop a model of physician’s testing decisions and test outcomes that allows us

to identify heterogeneity in testing behavior conditional on patient population even when there is

systematic unobservable variation in patient PE risk across doctors. With additional assumptions

about the costs of testing and the benefits of treatment conditional on a positive test, we can

determine which doctors are under- or overusing medical tests. In our framework, a doctor must

decide whether or not to test each patient he evaluates in the emergency department with a chest

CT, and the econometrician observes both whether each patient is tested and the outcome of each

performed test (positive or negative). This framework is adapted from Chandra and Staiger (2011)

(hereafter, CS).

In particular, the model separates out three reasons why one physician may test a higher fraction

of his patients conditional on patient observable risk factors.

1. Physician practice style: A physician may test more frequently because he has a lower net

benefit threshold for identical patients; e.g. because of financial incentives which impact the

physician’s objective function but not social welfare.6

6One could also interpret τd - the physician’s net benefit threshold - as the “value of knowing” that one does not
have a pulmonary embolism. In contrast to the case of Huntington’s disease (Oster, Shoulson, and Dorsey 2011), we
find it normatively unpersuasive to include this term as part of welfare because in most cases a pulmonary embolism
is ex ante very unlikely and because the rate of false negatives is sufficiently high that even after testing one has only
somewhat reduced that probability. While in isolation patients might express concern about any given condition once
it is made salient, they cannot consistently have a large willingness to pay to reduce slightly the probability of all
unlikely conditions.
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2. Patient PE risk : A physician may test more frequently because his patients have a higher risk

of PE, even after conditioning on observable patient risk factors.

3. Patient treatment benefit : A physician may test more frequently because his patients have a

greater benefit from treatment, should they turn out to be diagnosed with PE.

We develop a model of physician testing behavior that accounts for each of these three channels,

allowing us to distinguish a physician’s practice style (reason 1) from the risk and benefit features

of the population he treats.

The starting point for our model is the assumption that a doctor tests a patient if the perceived

net benefits of testing given all of the information available to him at the time exceed a doctor-

specific threshold value. Let Bid denote the net benefits if doctor d tests patient i and let τd denote

this threshold. Then we assume that doctors test if and only if Bid ≥ τd. If τd equals 0, then doctors

are behaving efficiently because they test only when the net benefits exceed 0. If τd > 0, doctors

are undertesting, i.e. there are some patients with positive net benefits who they decide not to test;

if τd < 0 then doctors are overtesting, i.e. there are some patients with negative net benefits whom

they test anyway.

The goal of the model will be to recover the threshold values τd based on the observed testing

decisions (whether or not an evaluated patient is given a chest CT) and the observed rate of negative

tests. We will show as in CS that the threshold variables τd can be recovered from a regression of

the net benefits of testing on doctor fixed effects conditioning on a flexible function of the propensity

to test. A key advantage of investigating the efficient use of medical testing as opposed to medical

treatment (as in CS) is that the doctor threshold parameters, τd, can be recovered without separately

estimating the net benefits of treatment for each patient. In order to recover the absolute magnitude

of τd, we will need to make assumptions about the magnitude of these net benefits although they

can in principle be allowed to vary flexibly with observables such as age and patient medical history.

4.1 Intuition

To motivate the full model, consider first a simplified case where we model only reason 1) for

potential heterogeneity in doctors’ testing behavior: doctors have varying testing thresholds. In

particular, assume for the moment that the net benefits of testing are equal to the probability of

a positive test, qid, and there is no heterogeneity in the benefits of treatment across patients who

tested positive.

Further assume that conditional on observable characteristics, all physicians evaluate patients

with the same distribution of PE risk. The probability of a positive test is given by qid = xidβ+ηid,

xid are observables and ηid are factors observable to the doctor but not to the econometrician and

are distributed i.i.d. across doctors and patients. For example, ηid might include symptoms reported

by the patient such as chest pain. Lastly, assume that the costs of testing are a known constant c.

Doctors will test if qid − c ≥ τd.
Under these simplifying assumptions, if doctor A tests a greater fraction of patients than doctor

B, conditional on observable patient characteristics, then we can immediately infer that doctor A

has a lower testing threshold. Specifically, we could estimate the equation P (test) = f(xidβ−τd−c)
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and immediately recover τd (up to a normalization), without needing to observe testing outcomes

(i.e. whether the patients tested positive for PE).

In this simplified model, the only reason why different physicians have different rates of testing

conditional on observable patient characteristics is that they have different testing thresholds—there

are no unobservable differences in patient risk across physicians. This assumption is unlikely to hold

because there is rich variation in patient risk across doctors which is difficult to observe in claims

data. For example, some doctors see more patients who report chest pain and are thus more likely

to have a pulmonary embolis conditional on observables. For this reason, we augment the model

by allowing the probability of a positive test to vary across doctors, conditional on observed patient

characteristics.

In particular, we assume that the probability of a positive test is given by:

qid = xidβ + αd + ηid (2)

where xid are observed patient characteristics, αd are doctor fixed effects, and ηid are factors observ-

able to the doctor but unobservable to the econometrician which impact the likelihood that a test

is positive. With the introduction of αd, we now allow patients’ risk for PE to vary systematically

across doctors. So far, we have modeled two of the three channels that may drive differences in

testing behavior: reason 1 (physician practice style) and reason 2 (heterogeneity in PE risk).

In this model, P (test) = f(xidβ+αd−τd−c), so the testing equation is only sufficient to identify

θd = αd − τd. If we only analyze the probability of testing, we cannot tell if a given doctor tests a

lot given observables because she is an overtester (small τd) or because she has a patient population

which is particularly predisposed to pulmonary embolism (large αd).

We can distinguish αd and τd if we also observe the number of positive tests for each doctor.

If a doctor tests more patients given observables because she has a large αd, i.e. a riskier patient

population, then she should also produce more positive tests. So we can separately identify αd and

τd by examining the frequency of positive tests conditional on the observed propensity to test.

For example, imagine that doctor A and doctor B have observably similar patients and both

test the same fraction of patients. The observed similarity in testing behavior might arise because

doctors have comparable testing preferences, i.e. the same testing threshold τd; in this case, both

doctors must also see patients with similar PE risk, i.e. similar αd’s. With identical thresholds τd

and patient risk αd, we would observe not only the same fraction of patients tested, but also the

same rates of positive test results amongst tested patients of both doctors.

Alternatively, it might be that doctor A has a lower testing threshold than doctor B (τA < τB)

but doctor A also has a patient population at lower risk for PE (i.e. αA < αb), so that on net,

doctor A has the same propensity to test as doctor B. In this latter case, we should observe fewer

positive tests for doctor A. As we shall see in equation 6 below, controlling for the propensity

to test, a doctor with fewer positive tests must have a lower threshold τd; only a doctor with a

lower testing threshold would test the same fraction of patients despite treating a lower risk patient

population. Thus, by using information on both testing behavior and testing outcomes, we can

separately identify heterogeneity in PE risk from heterogeneity in testing thresholds.
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4.2 Full Model with Rational Weighting

Let us now lay out a more complete version of the model which also allows for heterogeneity in patient

benefits of treatment (reason 3) and greater heterogeneity in unobserved patient characteristics

(allowing the variance to vary as well as the mean) . Recall our assumption that negative tests are

not ex post medically valuable; thus, the net benefits of testing are given by the doctor’s perceived

probability of a positive test (qid) times the net utility of treating a patient who has tested positive,

NUid, minus the cost of testing, c.7 Together, these assumptions imply that doctor d tests patient

i if and only if:

qidNUid − c ≥ τd (3)

Define θd = NUidαd − τd. Plugging our specification for the probability of a positive test from

equation 2 into the testing equation and dividing through by NUid yields the final form of the testing

equation:

xidβ +
θid − c
NUid

+ ηid ≥ 0 (4)

These assumptions yield a binary choice model of testing. We will assume below that cost c

is observable and that net utility of treatment NUid is either known or varies with observables

according to a linear function that we estimate. We consider several distributional assumptions

about the degree of heteroskedasticity in ηid which are described in Section 5.1.

We next show how the testing threshold parameters τd can be recovered from a regression of the

frequency of positive tests on doctor fixed effects controlling for the propensity estimated from the

testing equation. We denote this testing propensity by Iid ≡ xidβ + θid−c
NUid

. Note that net benefits

are given by Bid = qidNUid − c = NUidIid + τd + ηid. Thus,

E(Bid|Tid = 1) = τd +NUidIid +NUidgq(Iid) (5)

where gq(Iid) = E(ηid| − ηid ≤ Iid) is an (unknown) function of Iid. If we relax the homoskedacity

assumption described in the previous section and allow the distribution of η to vary across subsets

of the population denoted by q, the function g will also need to be separately estimated for each of

those subsets.

Let Zid be an indicator for whether a test was positive or negative. If doctors have rational

expectations, we must have E(qid|Tid = 1) = E(Zid|Tid = 1).8 Given these rational expectations

and equation 3, we can write the expected benefits as E(Bid|Tid = 1) = NUidE(Zid|Tid = 1) − c.
Plugging this into equation 5 and rearranging yields:

E(Zid|Tid = 1) =
τd + c

NUid
+ Iid + gq(Iid) (6)

This equation implies that we can recover the testing thresholds τd (relative to a normalization)

from a regression of the observed testing outcome (positive or negative) on doctor fixed effects,

controlling for the estimated propensity to test Iid.

7The model and estimation generalize to allow for observable patient-level heterogeneity in the cost of testing, but
we have calibrated the model with a constant cost c in our estimation

8In Section 4.3, we relax this assumption.
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In principal, the function gq(.) may include a constant which would mean that τd could only be

identified up to a normalization. In order to recover the absolute magnitude of τd, we can use the

fact that for marginal patients, the expected benefits of testing are exactly equal to the threshold

parameter τd.

Formally, note that ηid is bounded since qid ∈ [0, 1]. Thus, there exists a value I such that, for

Iid < I, patient i will never be tested. Further, if we observe a tested patient for whom Iid = I, we

know that ηid = η. In other words,

lim
I→I

gq(Iid) = lim
I→I

E(ηid|ηid ≥ −I) = −I (7)

From, equation 6, this implies that: E(Zid|Tid = 1) = τd+c
NUid

among patients with Iid = I. To

implement this constraint in the model, it is sufficient to normalize Iid within each group q so that

Iid + gq(Iid) = 0. We can do this by subtracting a (group q-specific) constant from Iid so that

mini∈qIid = 0 and omitting the constant from estimation of the polynomial Iid + gq(Iid). This

procedure estimates an arbitrary polynomial in Iid for each group with an intercept of 0 at the

group-specific minimum of Iid.

Figure 2 clarifies the intuition for the model and suggests a specification check we can use

to evaluate the impact of distributional assumptions about ηid. The figure shows a (fictional)

relationship between the propensity to test Iid and the net benefits of testing for several doctors.

For marginal patients with Iid close to the minimum value for their group (which is normalized to

0), net benefits are exactly equal to τd; the marginal patient reveals the threshold probability at

which doctors are willing to test. For the average patient tested, net benefits exceed τd and they

will exceed τd by more at higher propensities since a greater share of patients will be inframarginal

with net benefits far exceeding the threshold parameter τd.

For doctors within a group (i.e. for doctors with the same distribution of ηid), the polynomial

relating net benefits to Iid is the same for all doctors and only the y-intercept—τd—differs. Suppose

there is heteroskedasticity such that doctors in group 2 have a higher variance of ηid, and thus more

private information than doctors in group 1. In that case, the relationship between expected benefits

and the propensity to test will be less steeply sloped in group 2 because observable characteristics

will predict less of the variation in observed rates of positive tests.

Making appropriate distributional assumptions about ηid is thus necessary in order to use non-

marginal patients to help identify τd. This suggests a specification check. We can restrict to doctors

with marginal patients and identify the distribution of τd by looking only at those marginal patients.

Next, we can re-estimate τd for those same doctors using the full sample of patients. If the full sample

estimates are comparable to the estimates derived using only marginal patients, this suggests that

our results are not driven by the functional form assumptions about ηid which allow us to infer τd

using non-marginal patients and the shape of the function gq(.). We perform this specification check

in section 5.2 below.
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4.3 Full Model with Misweighting

The model above also assumes that the only “mistake” doctors can make is to test patients if the

costs exceed the benefits.9

In this section, we consider the additional possibility that doctors systematically misweight

observable risk factors in selecting which patients to test. If two patient risk factors predict an

equal increase in the probability that a physician orders a CT scan, then these two factors should

also predict an equal change in the probability of a positive test after controlling appropriately

for unobservables and heterogeneity in net benefits. We identify misweighting by investigating

deviations from this prediction—for example, by identifying risk factors that have a strong influence

on the probability of a positive test, but little impact on physicians’ testing choices. We formalize

this intuition below.

First, we relax our assumption that doctors have rational expectations, and assume that each

doctor’s belief about the probability of a positive test is given by:

q′id = xidβ
′ + α′d + ηid (8)

while the actual probability remains:

qid = xidβ + αd + ηid (9)

With this change, the derivation of the model in Section 4.2 continues to hold, except for the

rational expectations assumption. In particular, it is no longer the case that :

E(q′id|Tid = 1) = E(qid|Tid = 1) = E(Zid|Tid = 1) (10)

Instead we have:

E(Zid|Tid = 1) = E(q′id|Tid = 1) + xid(β − β′) + αd − α′d (11)

which yields the equation:

E(Zid|Tid = 1) =
τd + c

NUid
+ xid(β − β′) + αd − α′d + Iid + gq(Iid) (12)

While τd and α − αd are in principle separately identified provided δ 6= 0, in practice there is

insufficient variation to estimate both. To go further, we make the conservative assumption that

doctors misweight observables but are correct on average about the probability that their patients

will have PEs. In this case, Ed(q
′
id) = Ed(qid), which implies Ed(xid)β

′ + α′d = Ed(xid)β + αd.

Rearranging, we obtain, αd − α′d = Ed(xid)(β
′ − β). Plugging into equation 12, we obtain:

E(Zid|Tid = 1) =
τd + c

NUid
+ (xid − Ed(xid))(β − β′) + Iid + gq(Iid) (13)

This equation allows us to recover τd and β − β′. So we can test both whether doctors have

9Testing a patient with negative expected net benefits is an error from the perspective of maximizing social welfare,
but perhaps not from the perspective of the doctor if he has a different objective function.
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lower testing thresholds or test the wrong patients because they misweight patient characteristics.

Intuitively, non-zero coefficients on the (demeaned) x’s in equation 12 imply that the x’s still have ex-

planatory power in predicting positive tests even after conditioning on doctors’ decisions of whether

or not to test. Using this model we can simulate how welfare would change if doctors appropriately

weighted observables in deciding which patients to test.

To report our results, we proceed in two stages. First, we show the distribution of τd and

the extent of misweighting estimated in a “positive” model in which we assume that NUid = 1

and c = 0. This exercise corresponds closely to our reduced form results in that we are trying to

document the degree of heterogeneity in testing behavior; our new structural estimates have the

additional feature that they allow for doctor-specific unobservable heterogeneity in patient PE risk

and can identify misweighting. In this positive model, we take our estimated τd and regress them on

doctor, hospital and regional characteristics in order to investigate the determinants of heterogeneity

in testing behavior.

Second, we discuss calibration of NUid and c and present estimates of “normative” τd expressed

in dollar terms, the parameter that tells us whether doctors are under or overtesting. We use this

model to simulate how testing behavior would differ in a world with no overtesting and in a world

in which doctors optimally weighted patient characteristics.

5 Estimation and Calibration of the Structural Model

5.1 Estimation

Equation 4 defines a semiparametric binary choice model which we estimate using Klein and Spady’s

binary choice estimator (Klein and Spady (1993)). Let tid denote the indicator for whether patient

i was tested and let g denote the probability that patient i is tested given index X ′iβ. The log

likelihood is given by:

L(β, g) =
∑
i

[ti ln g(X ′iβ) + (1− ti)(1− ln g(X ′iβ))] (14)

The idea of the Klein-Spady estimator is to approximate g using a “leave-one-out” estimator

which predicts the probability of testing for a given patient giving more weight to patients with

nearby indices Iid = X ′idβ. Specifically, we substitute for g using:

ĝ−i,d =

∑
j 6=i k

(
(Xj−Xi)

′β
h

)
ti∑

j 6=i k
(

(Xj−Xi)′β
h

) (15)

We use a 4th-order Gaussian Kernel and empirically select for the smallest bandwidth such that

ĝ is a monotonic function of the index X ′iβ.

This method of estimation implicitly assumes that ηid in equation 4 are i.i.d. across patients and

doctors within quantiles. There are several reasons this assumption might be violated. One concern

is that a doctor who tests 5% of patients sees a fundamentally different population of patients from

a doctor who tests only 0.5% of patients; for these doctors not only does the average population PE
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risk αd differ, but also the distribution of unobserved (to the econometrician) PE risk ηid may differ.

Perhaps the doctor who tests 5% of patients sees many patients whose (unobservable) symptoms

are marginal for pulmonary embolism while the doctor who tests 0.5% of patients is more likely to

see patients with either no chance of a pulmonary embolism or a very high chance, corresponding

to a higher variance of ηid for the second doctor.

To deal with these concerns, we split the population of physicians into 10 deciles based on the

proportion of each physician’s patients tested. The testing model is estimated separately within

each of those deciles, so that the assumption of homoskedastic ηid is only imposed within deciles.

This way, we are comparing doctors who tested 5% of patients to doctors who tested 5.5%, but we

are not comparing doctors who tested 5% to doctors who tested 0.5%.

A further concern is that doctors may have different η distributions because they differ in their

ability to accurately diagnose a pulmonary embolism given the available data. We consider an

explicit model of this in Section 6.2 where we consider a parametric model in which ηid’s distribution

can be flexibly estimated for each doctor.

Given the propensity to test Iid from estimating equation 4, the next step is to estimate the net

benefit equation:

E(Zid|Tid = 1) =
τd + c

NUid
+ (xid − Ed(xid))(β − β′) + τd + hq(Iid) (16)

where hq(Iid) = Iid+gq(Iid). We estimate this equation by OLS using a cubic polynomial to estimate

each of the 10 hq(.) functions.

The distribution of estimated τ̂d has larger variance than the underlying distribution of true τd

due to estimation error. To correct for this, we construct “empirical Bayes” estimates of τd. More

precisely, we show in Appendix A how to recover the mean and variance of τd from the estimated

distribution of τ̂d; these moments are identified without any additional distributional assumption.

5.2 Estimates with NUid = 1 and c = 0

We start by estimating a simplified version of the model in which net benefits are set to a constant

value of one, NUid = 1, and there are assumed to be no costs of testing, c = 0. Under these

simplifying assumptions, estimation of the net benefit equation (equation 13) echos the reduced

form analysis in Section 3.5, where we regressed an indicator variable for a positive test on a vector

of patient characteristics. The main difference is that here we control for the propensity to test

recovered from estimation of the testing equation (equation 4). Assuming the model is correctly

specified, this allows us to control for systematic differences in patient mix (different values of αd)

across doctors. Assuming no heterogeneity in c or NUid, the estimated τd can be interpreted as the

structural cut-off probability of a positive test at which doctors would be willing to test a marginal

patient.

5.2.1 Distribution of τd and Misweighting

We begin by estimating the testing equation, equation 4. For each of the deciles defined above,

we estimate a separate testing equation. Figure 3 shows the relationship between the underlying
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estimated propensity to be tested, Iid and the observed probability of testing for a single group q

(the propensity to test is normalized separately within each group and cannot be compared across

groups).

As we might expect, this function is convex for large values: for most patients a single risk

factor is not worrying, but in the presence of several other warning signs the marginal impact on the

likelihood of testing increases. Note also that this function can be approximated well by a piecewise

linear function. In the parametric version of the model we consider below, the critical simplifying

assumption will be that this function must be piecewise linear (which corresponds to an underlying

uniform distribution of ηid).

Next we consider the results from estimation of the net benefit equation. Figure 4 gives a

graphical check of the estimation procedure. It is the empirical analogue of the illustrative figure

2. In blue, we plot the fraction of tests which are positive along the y-axis against the estimated

propensity to test (Iid) along the x-axis. We are plotting this relationship within a single decile of

physicians, i.e. within a single group where ηid is homoskedastic across doctors. As expected, we see

that the proportion of positive tests is increasing for patients with a higher predicted probability of

being tested. In other words, the observable characteristics that predict a high probability of being

tested also predict a higher probability of a positive test, amongst tested patients.

Note that the model’s predicted probability of a positive test given the estimated testing propen-

sity Iid (shown in red) is a good fit for the realized probability of a positive test (shown in blue). To

simplify the visual presentation of this graph and highlight the estimated mapping of testing propen-

sity to positive tests, we have averaged across doctors, each of whom has a different y-intercept τd

as illustrated in figure 2. If we were to graph each doctor separately, we would see a common poly-

nomial fit with varying intercepts across doctors corresponding to the estimated thresholds τd. We

conclude that the model of positive tests, which fits a single polynomial of the testing propensity

Iid plus doctor-specific intercepts, fits the observed data well as indicated by the close coincidence

of red and blue data points.

The distribution of estimated τ̂d combines both the true underlying variation in τd and estimation

error from the fact that each τd is imprecisely estimated. To correct for this, we consider empirical

Bayes estimates in order to recover moments of the true underlying distribution of τd. Our approach

is described in detail in Appendix A. Unlike more standard estimators (Kane and Staiger 2008),

our approach is robust to the fact that we observe only a small number of observations per doctor

and makes no distributional assumptions about either the true distribution of τd or the estimation

error. The true distribution cannot be nonparametrically identified, but we can recover moments of

that distribution. Here, we estimate the mean and the standard deviation.

The mean value of τd is .039 and and the standard deviation is 0.040.10 In other words, the

average doctor is willing to test a patient provided the doctor’s estimate of the probability of a

positive test exceeds 3.9%. Note that this includes tests which detect actual pulmonary embolisms

and false positives, so a 3.9% probability of a positive test is not the same as a 3.9% probability of

a pulmonary embolism.

10Note that of course this would not be consistent with a normal distribution since in this case τd > 0 for all doctors.
In our welfare exercises we assume a log-normal distribution.
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The standard deviation of τd recovered here, 0.04, is very close to the standard deviation of the

doctor fixed effects estimated in the reduced form specification, as reported in Section 3.5, also 0.04.

This does not mean that unobserved characteristics are unimportant in determining doctors’ testing

behavior; rather, any upward bias in the reduced form standard deviation due to the measured

standard deviation including heterogeneity from (uncontrolled for) unobserved characteristics is

apparently offset by downward bias generated by the correlation of these unobserved factors with

τd.

The standard deviation of the misweighting term (xid−Ed(xid))(β−β′) is in fact larger than the

standard deviation of τd: the average absolute value of the misweighting is .030 and the standard

deviation is .050. This is an extremely large effect: the average tested patient has a 7% probability

of having a pulmonary embolism and doctors misperceive that probability by an average of 3% due

to improperly weighting observables.

Table 2 breaks down further the sources of the misweighting. The first column shows the average

marginal effects in the structural model. The bias term reports our estimate of β − β′. We find

evidence of significant misweighting for 16 of the 37 variables considered in our testing model. Our

largest effect is for a history of pulmonary circulation disease; these patients are 28 percentage points

more likely to have a pulmonary embolism conditional on being tested (almost 6 times as likely),

but our model suggests that doctors are no more likely to test them than other patients.

Doctors also give insufficient weight to whether a patient was recently admitted to the hospital

in deciding whether to test them; overall, doctors are no more likely to test these patients although

they are about 10 percentage points more likely than other patients to have pulmonary embolisms.

We find a similar pattern for metastatic cancer, coagulation deficiency, obesity, and neurological

disorders. Doctors appear to give slightly too much weight to peripheral vascular disease in deciding

which patients to test.

In order to test the structural assumptions of our model, we next consider what values of τd

we would estimate using only marginal patients. The basic idea is as follows: using the propensity

from our testing equation, we can identify patients who are marginal in the sense that they are just

barely worth testing; these are patients with the lowest propensity conditional on being tested. For

doctors with marginal patients, we can directly compute τd by just observing the rate of positive

tests among marginal patients without needing to estimate equation 16.

To test whether the full model is correctly specified, we can restrict to doctors who have some

marginal patients and ask whether the mean values of τd estimated in the full model from equation

16 agree with the values computed directly from marginal patients. Specifically, we define marginal

patients as patients in the first quintile of the estimated propensity to test within each patient decile

(the propensities cannot be compared across deciles). This test finds very close agreement between

the marginal estimates and the full model estimates: the mean of the full model estimates among

doctors with marginal patients is 0.0426 and the mean of the direct estimates is 0.0419. The direct

estimate τd relies only on the assumption that we have succeeded in identifying patients who are

marginal given observables; the estimates in our full structural model require additionally that we

have correctly estimated the function which relates the probability of testing to the propensity to

test for non-marginal patients. This specification test provides some reassurance that that function
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is correctly specified.

The estimated values of τd are hard to interpret in isolation. Below we consider how far testing

deviates from the efficient benchmark given various assumptions about the cost of testing, the

likelihood of false positives, and the net utility conditional on finding a positive test. Additionally,

some of the measured heterogeneity in τd could reflect heterogeneity in the net utility conditional on

a positive test or heterogeneity across doctors within deciles in the distribution of η. We consider

versions of our model which allow for both of these forms of heterogeneity below.

5.2.2 Determinants of τd

We next consider regressions of the estimated τd on doctor, hospital and regional characteristics in

order to better understand the determinants of doctor practice style. Specifically, we regress τd on

variables capturing doctor experience (the number of years since the doctor graduated from medical

school), whether the medical school the doctor attended is ranked in the top 50 for research by US

News & World Report, whether the medical school is ranked in the top 50 for primary care, whether

the hospital where the scan was performed is a for profit hospital or an cademic hospital, regional

medical spending, and average income in the region where the hospital is located.

We consider OLS estimates as well as FGLS estimates which take into account the estimation

error in the dependent variable τd.
11 For each estimate, we consider models with and without hospital

fixed effects. Including hospital fixed effects to identify the impact of within-hospital variation in

physician characteristics obviates the concern that our model omits unobserved differences in the

cost of testing at the hospital level. For example, there may be variation in the opportunity cost of

testing, depending on whether the CT scan is used to capacity. This heterogeneity will be absorbed

into the hospital fixed effect.

We also consider models in which we estimate a separate threshold parameter τd for each doctor

in each year, allowing for time variation in doctor fixed effects. We then run a panel data regression

including both doctor and year fixed effects, allowing us to separate the impact of physician expe-

rience from cohort effects. These models are estimated on a more restrictive sample since we keep

only those doctor-year pairs for which there are at least 3 observed tests.

Table 3 reports the results. Our most consistently robust finding is that doctors in higher

spending regions have lower testing thresholds, i.e. they are more likely to test low risk patients.

A 10% increase in regional spending correlates with a 0.4 percentage point decline in the testing

thresholds. We also find some evidence that more experienced doctors have higher testing thresholds,

although only the across doctor variation is sufficiently precise to measure this effect. A 10-year

increase in doctor experience is associated with an 0.3-0.4 percentage point increase in the testing

threshold depending on the specification (recall that a larger threshold is associated with less testing).

Finally, we find some evidence in the cross-sectional specification that doctors practicing in academic

hospitals have higher testing thresholds, but this effect is not statistically significant at the 5% level.

11The FGLS estimates are based on Lewis and Linzer (2005), where the error term consists of both a homoskedastic
εid with unknown variance and a heteroskedastic component with known variance. The heteroskedastic component
arises from the estimation error in τd which is in turn recovered from estimation of equation 16.
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5.3 Estimates of τd with Calibrated NUid and c

In this section, we further calibrate the model estimated in the previous section so that we can

determine the dollar value of τ and therefore which doctors are overtesters and undertesters. This

requires making assumptions about the benefits of treatment conditional on finding a pulmonary

embolism, the financial and health costs of testing and treatment, and the likelihood of false positives.

5.3.1 Calibration of Parameters

We need to determine the values of c and NUid for each patient. An important cost of overtesting

comes from the fact that tests have both type I and type II errors, so overtesting leads to unnecessary

treatment which can have adverse consequences. CT scans, as with many other medical tests, can

generate both false positive and false negative results (Stein et al. 2006). In this section, we extend

the model to explicitly include false positives and negatives, and then describe our calibration.

Let s denote the sensitivity of the test (one minus the probability of a false negative) and fp

denote the probability of a false positive (one minus the specificity). Let PEid denote the event

that patient i actually has a PE. As before, Zid is an indicator which is 1 if a test is positive. MBid

denotes the medical benefits of treatment if the patient has a PE, Mc denotes the medical costs of

treatment and CTid denotes the financial cost of treatment. Then the net utility of a positive test

is given by:

NUid = P (PEid|Zid = 1)MBid −MCid − CTid (17)

The benefits of treatment are incurred only if the positive test result is a “true positive,”, i.e. the

patient actually has a PE. The medical risks and financial costs of treatment are incurred for any

treated patient regardless of whether he actually has a PE.

Applying Bayes’ Rule and the law of total probability we can rewrite this in terms of s and fp

as:

NUid =
s(qid − fp)
qid(s− fp)

MBid −MCid − CTid (18)

We can therefore write the net benefits of testing as:

Bid = qidNUid − c

=
s(qid − fp)

(s− fp)
MBid − qidMCid − qidCTid − c (19)

Let N̂U id = s
s−fpMBid −MCid − CTid and ĉid = c + s·fp

s−fpMBid. Then we can rewrite the net

benefits of testing as:

Bid = qidN̂U id − ĉid (20)

which is exactly the definition of net benefits in Section 4.

Conditional on whether or not testing and treatment are observed, false positives and false

negatives impact only marginal benefits. False positives and false negatives do not impact the costs

of testing, since those are paid if a test is done regardless of outcome, and similarly, they do not

affect the costs of treatment, which are paid if treatment is performed. On the other hand, the
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benefits of treatment accrue only if the patient actually has the underlying condition; a patient with

a false positive experiences no benefit from treatment. If there are more false positives, the marginal

benefits of any observed positive test will be smaller.

We calibrate these parameters using the values in Table 4, based on recent numbers from the

medical literature on pulmonary embolism. Note that our calibration of both the medical benefits

and the medical cost of treatment depend on an estimate of the value of a statistical life (VSL).

To the extent that we use a higher VSL, the cost of treatment and the cost of testing c will be

proportionately less important (and so testing will be more desirable). Below, we consider a variety

of different fixed values for the VSL. A value between $1 and $2 million would be consistent with

a $100,000 value of a statistical life year given the life expectancies observed in our data. In the

parametric version of the model, we allow the value of a statistical life to vary with observables such

as age.

5.3.2 Distribution of τd and misweighting with calibrated parameters

Table 5 shows the estimated values of τd given the parameter values assumed in the previous section

for different assumptions about the value of a statistical life and the rate of false positives. To

determine the percentage of doctors overtesting we need to make a distributional assumption beyond

the mean and variance estimated so far. First, note that τd is bounded below. As long as NUid

is positive (which it is for all values of the calibrated parameters), the minimum possible value

of τd is achieved when qid = fp so that all positive tests are false positives. At this value, Bid =

−fpMCid−fpCTid−c; there are no medical benefits of testing and the “net benefit” is given by the

medical costs of treatment for false positives, the financial costs of treatment for false positives and

the costs of testing. We assume that τd minus this minimum value is log-normally distributed with

the estimated mean and variance. Table 5 additionally reports the percentage of doctors overtesting

at each set of parameter values given this distributional assumption.

The table suggests that the degree of overtesting is extremely sensitive to our assumptions about

the rate of false positive tests and the value of a statistical life. The existing literature suggests a

false positive rate of 0.04 (Stein et al. 2006) which would imply, depending on the VSL, that 98-99%

of doctors are overtesting and that doctors test a patient even if the costs of testing exceed the

benefits by between $500 and $1000 on average.12 While we cannot directly observe which tests

in our data were false positives, this rate is high enough to be problematic because there are some

patients for whom, conditional on observables, the proportion of positive tests is less than 0.04. See

for example Figure 4 where the marginal patient has between a 2% and 4% likelihood of a positive

test. This would be a contradiction if the false positive rate were exactly 0.04 for all patients since

such a false positive rate would yield an observed fraction of positive tests of 4% even if no one had

pulmonary embolisms.

There are two ways of dealing with this problem. One is to assume that the true false positive

rate must be lower than documented in the medical literature, and in Table 5 we consider several

12Note that given our assumption of log normal distribution of τd thresholds, even when the mean of the distribution
if positive, as it is for low values of the false positive rate, we find in some cases that the majority of doctors still are
overtesters.
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different values. A second approach is to assume that the false positive rate varies across patients.

Thus, we also consider a model in which the average false positive rate is 0.04 but the false positive

rate within each decile of patients is bounded from above by the observed rate of positive tests

among marginal patients.13 The final column of Table 5 shows these results. The upshot is that it

is the average rate which is driving our results on the distribution of τd—as long as the average rate

of false positives exceeds 0.03, we find that a large majority of doctors are overtesting.

The second part of Table 5 shows the mean absolute deviation and standard deviation of the

misweighting term. This value is sensitive to the VSL but not to the false positive rate as we

would expect (the stakes of testing scale with the VSL while the false positive rate is–to a first

approximation—a location shifter for the distribution of net benefits). The absolute value of the

misweighting term is more than twice as large in magnitude as the mean value of τd at a false

positive rate of 0.03 and still more than 30% larger at a false positive rate of .04.

The welfare consequences of τ 6= 0 and the misweighting term depend on the number of patients

for whom doctors change their testing behavior. If all patients should clearly be tested or not tested,

the welfare impact of both will be minimal; if there are a large number of marginal patients, the

welfare impact will be larger. The next section takes this into account in order to determine the

magnitude of the welfare loss due to overtesting and misweighting. But first, we can perform a back

of the envelope calculation to assess their relative importance.

Assume for simplicity that the distribution of net benefits is uniform (this is a different uniformity

assumption than we make in the model below and is made here only to simplify). At a false positive

rate of 0.03, the average absolute value of misweighting is $650 and the average τ is -$250. Given

τ of -$250, every patient with net benefits between $0 and -$250 will be tested even though they

should not be, with an average welfare loss of $125 (given our simplifying uniformity assumption).

Suppose there are N such patients so that the total welfare loss from overtesting is $125N.

Now consider the welfare loss from misweighting. Assume for the moment that the average

absolute misweighting of $650 reflects a 50% chance of a misweighting of +$650 and a 50% chance

of -$650. Let’s consider patients in [0,$650].14 For these patients, there is a 50% chance that the

misweighting is -$650 leading to the wrong decision (no test when they should be tested). The

average welfare loss per patient is $325. The number of impacted patients is 2.6N (where N is the

number of patients in [0,250]). The total welfare loss from undertesting due to misallocation is thus:

1/2 · 325 · 2.6N ≈ 425N ; this is over three times the size of the welfare loss from overtesting due to

low thresholds τd.

Note that this calculation is conservative with respect to the relative benefits of misweighting:

the degree of misweighting has greater variance as well and the welfare loss is convex as a function

of the degree of misweighting. If the misweighting of -$650 is instead a 50% chance of 0 and a 50%

chance of $1300, the welfare loss from undertesting due to misweighting will double.

The next section performs this calculation in a more formal way accounting for the correct

13In deciles where this bound is not binding, we use the smallest constant consistent with an overall average of 0.04.
14For patients with negative net benefits the calculation is more complicated since misweighting sometimes offsets

overtesting due to low τd—the net effect of misweighting on welfare for these patients is negative but smaller than the
welfare loss from undertesting. The welfare loss from overtesting is bounded from below by the medical and financial
costs of testing, which contributes to the much lower welfare loss of misweighting from overtesting compared to the
welfare loss of misweighting driven by undertesting.
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underlying distribution of net benefits and the heterogeneity in both τd and the misweighting term.

It also determines the absolute welfare loss in each scenario by using the model to determine the

appropriate value of N .

6 Simulations and Welfare

In this section we perform several simulations to determine how welfare would change if doctors

behaved optimally from a social standpoint. We begin by simulating worlds with no overtesting or no

misweighting and using the model to compute the welfare gain, decomposing this gain into financial

and medical costs and benefits. This simulation will require we make parametric assumptions about

the distribution of ηd but these parametric assumptions also allow us more leeway to allow net

utility to vary with observables. Next, we consider a generalization of our testing model which

allows doctors to vary both in their threshold parameters τd and in their ability to determine which

patients should be tested given unobservables (which we model as heterogeneity in the variance of

ηid across doctors).

6.1 Welfare Cost of Overtesting and Misweighting

The model implies welfare loss whenever τd 6= 0. We focus on the case of overtesting (τd < 0) for

two reasons. First, overtesting is empirically the larger problem in our sample, with an estimated

95-99% of doctors overtesting, under our preferred calibration assumptions. Second, we find that

the welfare loss due to τd > 0 is highly dependent on the distribution we assume for τd (of which

we estimate only the mean and variance); for some distributions even a small number of doctors

undertesting can lead to large welfare losses from undertesting if the right-tail is sufficiently thick.

In order to simulate the impact of τd < 0 on testing behavior, we must first be more explicit

about the link between the net benefit equation (equation 6) and the testing equation (equation

13). Our estimates so far give τd in units either of the probability of a positive test (as in section

5.2.1) or in units of dollars, while the propensity in our testing equation is only semiparametrically

identified up to a location and scale transformation.15

To relate the testing equation to the net benefit equation, we will assume that the distribution

of ηid is uniform so that shape of the function gq(Iid) is known (an assumption we validate below).

Given this assumption, we can recover the scaling factor relating the propensities estimated in the

testing equation to the treatment equation (and thus, we can determine how changing τd would

impact testing behavior).

Let ηid ∼ U(−η, η) and assume that η is such that there are no observables for which doctors

always want to test regardless of ηid. We show in Appendix B that this implies:

E(Zid|Tid = 1) =
τd + c

NUid
+
λÎid

2
+ (xid − Ed(xid))(β − β′) (21)

Therefore, the scaling factor λ can be recovered from a regression of function hq(Iid) = NUid(Iid +

15In our setting, there is no obvious price to put into the testing equation in order to express it in dollar terms. The
fee c that is paid per test is paid to the radiologist rather than the diagnostician ordering the test.
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gq(Iid)) = λÎid
2 on the estimated propensity Îid. Using this scaling factor, we can determine how

the true propensity would change were τd set to 0. Note that the assumption that ηid is uniformly

distributed is empirically validated by Figure 3. When we estimate gq(Iid) in a completely flexible

way, we find that it appears piecewise linear, exactly what we expect if η is uniformly distributed.

With the additional power afforded by the assumption that ηid is uniform, we can also allow

NUid to vary across patients. Specifically, we allow that NUid = NU+xidδ. For example, age might

impact net utility through several avenues such as the safety of treatment with blood thinners as

well as the value of a statistical life.

Using this model, we compute separately the medical benefits of testing, the medical costs of

testing, the financial costs of testing and the net benefits of testing given the estimated τd and in

a hypothetical world where τd = 0 for different values of the false positive rate. These results are

shown in Table 6. As the false positive rate (and thus the degree of overtesting) increases, the

welfare benefits from eliminating overtesting also rise and the overall net benefits of testing fall. For

a false positive rate of 3% or 4%, the fraction of patients tested would drop by more than 40%. The

financial costs of testing would fall by a proportionate amount and there would be a small offsetting

decline in the medical benefits of testing because the patients not tested in the counterfactual world

have a very low probability of actually having a pulmonary embolism. The net benefits of testing

would increase by more than 30% with a false positive rate of .03 and more as the false positive rate

increases.

Table 7 simulates a world in which doctors weighted observables in the manner the model suggests

is optimal. Properly weighting observables leads a higher fraction of patients to be tested. But by

far the predominant factor is the increase in the number of pulmonary embolisms detected. The

medical benefits due to treatment of PE increase by more than 90% and net benefits increase by

275%. Undiagnosed PE is thought to be a major public health problem, with the Surgeon General

(2008) estimating that approximately half of PE cases are never diagnosed; analysis of autopsy

reports have found it to be a frequently missed mortality risk. By improving physician assessment

of patient PE risk, our model suggests that the rate of undiagnosed PE could fall substantially.

6.2 Heterogeneity in Doctor Discernment

The model so far has assumed that doctors who test a similar fraction of patients do not differ in

their ability to use unobservables to determine which patients should be tested. Specifically, we

have assumed that ηid is i.i.d. across doctors within each decile of overall testing behavior. We can

relax this assumption by considering a parametric version of our model in which the distribution of

ηid is allowed to vary across doctors.

We model variation in doctor discernment as heterogeneity in the variance of ηid across doctors.

Intuitively, some doctors may have no additional information beyond what is observable to the

econometrician. For these doctors, V ar(ηid) = 0. A higher variance of ηid implies that doctors

can do a better job of distinguishing between patients who look identical given observables. While

one doctor sees several patients with similar observables and assumes they all have a 4% chance of

testing positive, a second doctor realizes that some of the patients have a much lower chance while

others have a much higher chance (our model so far has allowed for private information but assumed
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that it is identically distributed across doctors).

The model now captures a key trade-off observed by Doyle, Ewer, and Wagner (2010). They find

in a natural experiment that physicians from more prestigious residency programs achieve similar

patient outcomes at 10-25% lower cost. One explanation for this phenomenon is that physicians

from less prestigious schools administer more wasteful care and could achieve the same outcomes at

lower cost if they cut back some services. In the language of our model, these physicians might be

overtesting in the sense that they have smaller τd. A second explanation is that these physicians just

need to use more medical resources to achieve the same quality of care. Perhaps these physicians

have the same τd as physicians from more prestigious medical schools but they need to test more to

achieve the same number of positive tests. In our model, this would appear as a lower variance of

ηid. We refer to this hypothesis as heterogeneity in doctor discernment.

The model we develop in this section allows us to disentangle these hypotheses with one im-

portant caveat. Differences in the distribution of ηid across doctors could reflect either differences

in doctor behavior for identical patients or differences in the distribution of patient unobservables.

Some doctors might see a patient pool where more information is available about whether or not

they are likely to have a pulmonary embolism, e.g. due to variation in access to an electronic medical

record. Because of this, we cannot necessarily interpret heterogeneity in the measured variance of

ηid across doctors as evidence of heterogeneity in doctor discernment. Nonetheless, to the extent

that differences in τd in the previous section were driven by differences in discernment or differences

in the distribution of patient unobservables available to the doctor, the model in this section sepa-

rately identifies these factors from heterogeneity in overtesting. This distinction is critical, because

it allows us to answer the question of whether welfare would actually improve if those doctors who

appear to overtest (in the sense of having fewer positive tests for a given propensity) tested less.

In order to implement this version of the model, we need to make new parametric assumptions

about the distribution of ηid. Formally, we assume that ηid ∼ U(−ηd, ηd) and assume that ηd is such

that there are no observables for which doctors always want to test regardless of ηid. We show in

Appendix B that this implies:

E(Zid|Tid = 1) =
τd + c

NUid
+
Iid + ηd

2
(22)

Immediately the identification problem from the model in the previous section is clear. The doc-

tor fixed effects that we estimated conditional on the propensity to test could reflect either actual

heterogeneity in τd (overtesting) or heterogeneity in the variance of ηid (differences in doctor dis-

cernment).

However, we can now solve this identification problem by directly estimating ηd for each doctor

from the testing equation. Intuitively, heteroskedasticity in ηd is identified by the fact that observ-

ables are less predictive of testing behavior for doctors with more private information. Given the

estimated testing propensities Îid and η̂d, we still need to recover a scaling factor to simulate the

impact of differences in τd on testing behavior so the net benefit equation we estimate is:

E(Zid|Tid = 1) =
τd + c

NUid
+
λ(Îid + η̂d)

2
(23)
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where now τd can be estimated simultaneously with the scaling factor λ in a least squares regression.

Note that this version of the model omits the misweighting term; while ηd, τd, λ and misweighting

are in principle separately identified, we find in practice that λ—and thus the implied τd are difficult

to estimate precisely once both η − d and the misweighting term are included.16

The model with heterogeneous ηd is quite similar to the model of cesarean section births stud-

ied by Currie and MacLeod (2013). In both cases, the relevance of unobservable factors to the

testing/treatment decision is identified based on the slope of the testing/treatment decision with

respect to observables. Two important differences are worth noting: first, Currie and MacLeod

(2013) argue in their setting that heterogeneity in ηd reflects diagnostic skill and not differences in

the patient population; we do not think this assumption is supportable in our setting and so we

cannot separately identify doctors with more diagnostic skill of this type. Second, in our setting

(testing, as opposed to treatment) a large ηd implies that a doctor knows with high precision whether

patients will have a pulmonary embolism—ηd reflects additional information which should be used

in deciding whether to test. In contrast, Currie and MacLeod (2013) interpret a large ηd as evidence

that doctors have a noisier signal of the true underlying patient benefit from intervention—the best

doctors respond only to the index of observables. The testing equation alone cannot tell us which

of these assumptions is right. However, the net benefit equation reveals that in our setting, ηd does

contain information relevant to forecasting whether tests will be positive because λ > 0 even after

controlling for observables in the net benefit equation (equation 22).

Table 8 shows the results of this analysis. We report the estimated mean and standard deviation

of τd for different values of the false positive rate and we compare these values to the homoskedastic

model estimated under the uniform and semiparametric assumptions. The upshot of this analysis

is that ignoring heterogeneity in doctor discretion causes us to slightly understate the degree of

overtesting—after allowing for heteroskedasticity in ηid, τd is $50-$150 smaller depending on the

specification. The results thus suggest that patient welfare would improve if doctors were more

reluctant to test marginal patients, and heterogeneity in testing thresholds was not primarily driven

by some doctors with poor discernment needing to test more to find the same number of pulmonary

embolisms.

7 Discussion & Conclusion

While it is commonly believed that the US health care system includes significant wasted resources

on services that have low medical returns and high costs, there is little consensus on how this waste

could be reduced. Wasteful spending is characterized both by overuse of medical care (allocative

inefficiency) and mistargeting of medical resources (productive inefficiency). This paper investigates

both forms of inefficiency, analyzing whether doctors efficiently select patients for medical testing

and whether they set optimal risk thresholds at which to test patients. We study these inefficiencies

in the context of emergency department CT scans to diagnose pulmonary embolism. Our results

suggest that CT scans for pulmonary embolism are used more widely than our model suggests would

16This is because the term Îid + η̂d has much higher variance than the corresponding Îid in the homoskedastic model.
If we do include the misweighting term in this regression, the coefficients on the misweighting terms are very similar
to those in the previous section but λ - and thus our estimates of τd - are extremely imprecise.
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be optimal, and that the highest risk patients are not necessarily the ones receiving these scans.

Controlling for relevant differences in the patient population, our model shows that there re-

mains enormous heterogeneity in the net benefit threshold at which doctors will test a patient. Less

experienced physicians and those practicing in high-spending regions (as measured by the Dart-

mouth Atlas) test more patients on average, holding fixed the patients’ risk of PE. After making

additional calibration assumptions regarding the benefits of treatment conditional on finding a pul-

monary embolism and the cost of testing, we estimate that 90-99% of doctors evaluating emergency

department patients are performing too many tests, i.e. they are testing patients for whom the

medical risks and financial costs of the test exceed the expected medical benefits of treatment. If

all doctors tested only when expected benefits exceed expected costs, 40-50% fewer chest CT scans

would be performed and the net benefit of CT tests for pulmonary embolism would increase by

20-35% assuming false positive rates estimated in the medical literature.

More surprisingly—despite the fact that we studied this test in part due to anecdotal evidence

of systematic overuse—we find that testing the wrong patients yields greater welfare loss than

testing too many patients. Doctors systematically underweight certain important predictors of PE

risk, including recent prior hospitalizations, obesity, and metastatic cancer. These mistakes occur

despite the fact that physicians are widely encouraged to use diagnostic scoring systems such as

the Wells or Geneva score to assess the risk of PE before deciding whether to order a CT scan.

The continued prevalence of risk assessment mistakes despite the popularity of these PE risk scoring

systems may reflect shortcomings in the scoring systems themselves (such as their failure to explicitly

consider obesity as a risk factor) or failures to make adequate use of these scores. These mistakes

in assessing patient PE risk lead to significant welfare losses from failing to test particular high risk

patients; these losses are an order of magnitude larger than the welfare loss from overtesting. While

physicians test many patients on the margin who should not be tested, they also fail to test patients

who, given their observable risk factors, stand to gain a great deal from being tested.

Our estimates are calculated on a 20% sample of patients enrolled in Medicare Parts A and

B, and the welfare numbers reported in the paper reflect potential gains to this sample only. To

understand the total national welfare loss associated with the inefficiencies we identify in this sample,

we do an informal scaling exercise. First, scaling the estimates up by a factor 5, we have estimates

that cover the entire population of traditional Medicare enrollees; this corresponds to a $25 million

loss from overuse of PE CT due to low testing thresholds, and a $211 million loss from misweighting

observable patient risk factors. These numbers would cover an estimated 43,000 diagnosed cases of

PE each year amongst traditional Medicare enrollees.

National estimates put total incidence of diagnosed PE in the United States at 350,000 per year

(Office of the Surgeon General 2008); about half of these occur amongst patients who are already

admitted to the hospital (for other reasons) or in a nursing home (Fagan 2010). Our estimates apply

only to the estimated 175,000 PEs that occur amongst outpatients, since we have not modeled the

decision to test admitted patients for PE. 17 Assuming that these welfare costs scale with the number

17If we assume our estimated rate of PE extends to Medicare Advantage enrollees, who account for 28% of total
Medicare patients, then our sample scales to 53,000 total diagnosed PEs occurring outside the hospital in all Medicare
patients. This would suggest that about roughly one third of the estimated 150,000 PEs occur in patients over the
age of 65, which is consistent with the existing literature’s estimates of PE incidence by age (Silverstein et al. 1998).
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of diagnosed PEs amongst outpatients to cover the entire population, we estimate $100 million lost

from overuse of PE CT, and $840 million lost from misweighting observable patient risk factors at

our preferred calibration parameters.

These findings suggest that both overuse and misuse of medical resources are important drivers

of high spending and low medical returns to care. By measuring physician-level preferences for

under- or over-testing, we are able to explore the training and environmental factors that contribute

to overuse. Future work could pair this framework for estimating the overuse of diagnostic testing

with experimental or quasi-experimental variation in physician’s training or practice environment;

together, these estimates could more directly inform policy by causally identifying how these changes

to a physician’s education or training affect the efficiency of the medical care delivered. Our find-

ings also underscore the fact that purely cost-focused health reform may be insufficient to achieve

efficiency in healthcare delivery—there are potentially large benefits to patients from physicians

making better use of the available information to target medical resources to those patients with

the highest returns.
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Table 1: Summary Statistics

Notes: Table reports means and standard deviations (in parenthesis). Data is from the Medicare claims
2000-2009, the American Hospital Association annual survey, the American Medical Association masterfile,
and the Dartmouth Atlas.
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Table 2: Coefficients from Testing Model and Estimated Doctor Bias

Average Misweighting Misweighting.SE
(1) (2) (3)

Age)65,69 ,0.0004 0.0026 0.0039
Age)70,74 ,0.0115 0.0165* 0.0068
Age)75,79 ,0.0032 0.0061 0.0041
Age)80,84 ,0.0041 0.0064 0.0043
Age)85,89 ,0.0068 0.0129** 0.0049
Age)90,94 ,0.0166 0.0163 0.0102
Black ,0.0078 0.0230** 0.0053
Asian 0.0037 ,0.0304* 0.0130
Hispanic ,0.0050 ,0.0112 0.0109
Female 0.0033 ,0.0069** 0.0024
Prior)hospital)visit)w/in)30d 0.0023 0.1122** 0.0067
Prior)hospital)visit)w/in)7d 0.0029 0.1055** 0.0091
History)of)pulmonary)embolism 0.0005 ,0.0095 0.0153
History)of)deep)vein)thrombosis 0.0088 0.0197 0.0124
Valvular)disease 0.0003 ,0.0386** 0.0040
Pulmonary)circulation)disease 0.0243 0.2756** 0.0107
Peripheral)vascular)disease 0.0088 ,0.0206** 0.0054
Paralysis ,0.0146 0.0089 0.0104
Other)nerological)conditions ,0.0079 0.0444** 0.0057
Diabetes)w/o)chronic)complications ,0.0051 ,0.0082* 0.0039
Diabetes)w/chronic)complications ,0.0144 ,0.0060 0.0102
Hypothyroidism 0.0039 0.0125** 0.0039
Liver)disease ,0.0031 ,0.0194 0.0128
Arthritis 0.0074 0.0002 0.0074
Coagulation)deficiency 0.0024 0.0520** 0.0074
Obesity 0.0152 0.0411** 0.0076
Weight)loss 0.0010 ,0.0013 0.0077
Fluid)&)electrolyte)disorders ,0.0036 ,0.0063 0.0033
Blood)loss)anemia ,0.0167 0.0280* 0.0114
Deficiency)anemias 0.0010 0.0151** 0.0040
Alcohol)Abuse 0.0031 ,0.0036 0.0098
Psychoses ,0.0080 0.0097 0.0100
Depression 0.0022 0.0061 0.0049
Hypertension 0.0089 0.0301 0.0040
Chronic)Pulmonary)Disease 0.0175 ,0.0250** 0.0067
Congestive)Heart)Failure ,0.0003 ,0.0140** 0.0036
Metastatic)cancer 0.0073 0.0823** 0.0087

Notes: Column 1 reports marginal effects from coefficient estimates of the testing equation (i.e. equation
4). Recall that equation 4 is estimated separately over each of 10 deciles of physician testing probabilities;
the marginal effects reported are the averages of the 10 separate estimates. Column 2 reports estimates of
physicians’ misweighting of these PE risk factors estimated from equation 13. Column 3 reports standard
errors on these misweighting terms. *significance at the 5% level; **significance at the 1% level.
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Table 3: Regressions of testing threshold on physician characteristics and practice environment

OLS FGLS OLS FGLS OLS FGLS
Independent'variables: (1) (2) (3) (4) (5) (6)

Top1501research1medical1school 0.0020 0.0022 0.0004 0.0008 0.0040 0.0044
(0.0035) (0.0032) (0.0043) (0.0037) (0.0097) (0.0079)

Top1501primary1care1medical1school B0.0033 B0.0025 0.0003 0.0006 B0.0070 B0.0067
(0.0035) (0.0033) (0.0043) (0.0038) (0.0100) (0.0082)

Academic1hospital 0.0047 0.0042 0.0056 0.0057492 B0.0064 B0.0061
(0.0025) (0.0023) (0.0030) (0.0027) (0.0061) (0.0053)

Log(HRR1avg1Medicare1spending) B0.0422** B0.0479** B0.0429** B0.04802** B0.0580* B0.0534*
(0.0103) (0.0096) (0.0125) (0.0113) (0.0282) (0.0235)

Doctor1experience1(years) 0.0004** 0.0004** 0.0003 0.0003* 0.0005 0.0005
(0.0001) (0.0001) (0.0002) (0.0002) (0.0004) (0.0003)

For1profit1hospital B0.0027 B0.0023 B0.0008 B0.0009 B0.0084 B0.0066
(0.0034) (0.0033) (0.0042) (0.0039) (0.0088) (0.0077)

Average1income1in1region1(in1$10k) 0.0012 0.0005 0.0027 0.0015 0.0020 0.0008
(0.0022) (0.0020) (0.0027) (0.0023) (0.0060) (0.0048)

#1of1Docs 6588 6588 6588 6588 7526 7526
#1of1Hospitals 2695 2695 2695 2695 2695 2695
Hospital1Fixed1Effects NO NO YES YES NO NO
Doc1&1Year1Fixed1Effects NO NO NO NO YES YES

PanelCross*Section

Notes: Each column reports results from a regression of estimated physician testing thresholds τd on charac-
teristics of the physicians’ training and practice environment. Even numbered columns report FGLS estimates
which account for estimation error in τd. Columns 3 and 4 include hospital fixed effects. Columns 1 through
4 are estimated on a sample of one observed tau threshold for each doctor in sample, where an observation is
a doctor. In columns 5 and 6, the observations are at the level of the physician-year, with τ allowed to vary
over time for each doctor. The inclusion of this panel variation in τ allows for the estimation of physician
and year fixed effects to allow identification of the effect of increasing physician experience, holding cohort
fixed. All regressions control for tort reform implementation. *significance at the 5% level; **significance at
the 1% level.

Table 4: Calibration Parameters

Parameter Value Definition Source
s 0.83 test(sensitivity Lesler(et(al.,(2009

MBid 0.025VSL medical(benefit(of(testing Lesler(et(al.,(2009
MCid 0.0017VSL medical(cost(of(testing Lesler(et(al.,(2009
cid $300 financial(cost(of(testing estimated(from(Medicare(claims
CT $2,800 financial(cost(of(PE(treatment estimated(from(Medicare(claims

Notes: Calibrated parameters of the model used in welfare simulations.
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Table 5: Distribution of τ and Extent of Misweighting given VSL and False Positive Rate

fp#=#0 fp#=#0.03 fp#=#0.04
Varies#with#
E(fp)#=#.04

(1) (2) (3) (4)
Value&of&a&statistical&life

$1(million E(tau) 500 4241 4501 4456
Std(tau) 812 849 862 837
%(Overtest 0.23 0.91 0.99 0.97

$2(million E(tau) 1411 472 4591 4502
Std(tau) 1736 1811 1837 1782
%(Overtest 0.05 0.83 0.99 0.96

$7(million E(tau) 5966 776 41042 4730
Std(tau) 6358 6619 6710 6510
%(Overtest 0.00 0.67 0.98 0.95

$1(million Abs(Misweight) 618 648 657 658
SD(Misweight) 1030 1077 1094 1096

$2(million Abs(Misweight) 1323 1379 1399 1402
SD(Misweight) 2203 2298 2331 2334

$7(million Abs(Misweight) 4843 5042 5111 5121
SD(Misweight) 8068 8398 8514 8525

False&Positive&Rate

A.#Description#of#Tau#Distribution

B.#Description#of#Misweighting

Notes: In Panel A, this table describes the distribution of physician testing thresholds τd measured in units of
dollars, after correcting for estimating error using an empirical Bayes technique described in Appendix A. We
report the mean and standard deviation of the τd distribution, as well as the fraction of physicians who are
overtesting, i.e. with negative testing thresholds. Panel B reports the average absolute value and standard
deviation of misweighting across patients in our sample. We report values under varying assumptions about
the rate of false positive CT scan results (in columns) and the value of a statistical life (in rows).
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Table 6: Patient welfare with observed testing thresholds vs. in simulations with no over-testing

Notes: We compare testing behavior and social welfare under the actual distribution of physician testing
thresholds τd (reported in odd numbered columns) to simulated behavior assuming all physicians have the
optimal testing threshold of τd = 0 (reported in even numbered columns). We report results under three
different assumptions about the rate of false positive CT scan results, described in the column headers. We
assume a value of a statistical life of $1 million throughout this table.

Table 7: Welfare Gains from Properly Weighting Observables

Observed No*Misweighting
%"of"Patients"Tested 3.68% 4.03%
#"of"Patients"Tested 57573 62988
Total"Financial"costs"of"testing"($"millions) 29 37
Total"medical"cost"of"testing"($"millions) 7 11
Total"medical"benefits"of"testing"($"millions) 60 114
Net"benefits"of"testing"($"millions) 24 66
Total"(financial"+"medical)"costs""per"test"($) 617 751
Total"benefits"per"test"($) 1035 1803
Net"benefits"per"test"($) 418 1052

Notes: We compare testing behavior and social welfare under the observed physician weighting of patient risk
factors to simulated behavior assuming that physicians make no mistakes in assessing relative patient PE risk
based on observable demographics and comorbidities. We assume a value of a statistical life of $1 million and
a false positive rate of 0.03 throughout this table.
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Table 8: Robustness of Tau Distribution to Heteroskedasticity in η

Notes: This table describes the distribution of physician testing thresholds τd measured in units of dollars,
after correcting for estimating error using an empirical Bayes technique described in Appendix A. Results are
reported from three different sets of modeling assumptions. First from the semiparametric model, assuming
the same distribution of ηid across doctors and allowing for physicians to misweight observables. Second,
we impose ηid distributed according to the uniform distribution and no longer allow for misweighting to
demonstrate that the τd distribution is not highly sensitive to allowing for misweighting. Lastly, we allow for
doctor-specific heteroskedasticity in ηid. For each scenario, we report the mean and standard deviation of the
τd distribution, as well as the fraction of physicians who are overtesting, i.e. with negative testing thresholds.
We report values under varying assumptions about the rate of false positive CT scan results (in columns).
We assume a value of a statistical life of $1 million throughout this table.
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Figure 1: Clinical Assessment of Patient with Potential Pulmonary Embolism
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Figure 2: Net Benefits vs. Propensity to Test (fictional)
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Figure 3: % of Patients who are tested vs. Propensity to Test

Notes: this figure show the relationship between the propensity to test

estimated semiparametrically in decile 7 and the fraction of patients tested.

The propensity is normalized so that it is zero in the 2nd percentile of all

patients and normalized relative to the coefficient on one of the age dummies

(in other words the location and scale of the propensity are arbitrary).  The

propensity is grouped into 50 cells and all cells with at least 500 patients are

included.
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Figure 4: % of Tests which are Positive vs. Propensity to Test

Notes: This figure plots the percentage of tests which are positive against the 
propensity to test among all tested patients in group 8 (of the 10 groups
defined based on deciles of the proportion of patients tested).  The blue points
show the average % of patients tested at the propensity while the red points
give the fit of the model, which consists of a common polynomial for all doctors
and doctor-specific intercepts which identify the threshold parameters.
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FOR ONLINE PUBLICATION

A Empirical Bayes Estimates of τd

In this section, we derive the estimating equation used to correct the variance of the estimated

doctor fixed effects τd for sampling variation.

Assume that we have an equation of the form:

Zid = τd + gq(Iid) + xidγ + εid (24)

This corresponds to equation 16 (where, in the normative model, we can replace Zid with NUidZid−
cid). Assume that we can estimate g using polynomials of I. Then we can rewrite this equation in

matrix form as:

Z = Dτ +Xβ + ε (25)

Let Mx = In −X(X ′X)−1X ′ where In is the identity matrix. Partialling out gives:

MxZ = MxDτ +Mxε (26)

Let S = MxD. Then our estimator of τ is given by:

τ̂ = τ + (S′S)−1S′Mxε (27)

For a vector x, define var(x) = E(xx′)− E(x)E(x′) and define vard(x) = E(x′x)− Ed(x)2 (the

scalar generated by taking the variance across the observations in the vector). Taking the “outer

product” variance of both sides gives:

var(τ̂) = var(τ) + (S′S)−1S′Mxvar(ε)MxS(S′S)−1 (28)

= var(τ) + (S′S)−1S′var(ε)S(S′S)−1 (29)

where the second line uses the fact that MxMx = Mx. Let S(i)′ denote the ith row of S. Assuming

var(ε) is a diagonal matrix, S0 = 1
N

∑N
i=1 e

2
iS

(i)S(i)′ →p
1
N

∑N
i=1 ε

2
iS

(i)S(i)′ = 1
N S
′var(ε)S. This is

asymptotically equivalent to:

var(τ) = var(τ̂)− (S′S)−1

(
N∑
i=1

e2
iS

(i)S(i)′

)
(S′S)−1 (30)

where ei are the residuals from equation 24. Finally, using the fact that vard(τ) = 1
Ndoc

tr(var(τ))

where Ndoc is the number of doctors in our sample, we have:

vard(τ) = vard(τ̂)− 1

Ndoc
tr

(
(S′S)−1

(
N∑
i=1

e2
iS

(i)S(i)′

)
(S′S)−1

)
(31)
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B Parametric Model: Uniform Distribution and Heterogeneity in

Net Benefits

Let ηid ∼ U(−ηd, ηd). Assume further that net benefits can be written as NUid = NU + x̃idδ where

xid are observables that we think impact the benefits of testing. As in the text, Iid ≡ xidβ + θid−c
NUid

.

Assume the distribution of ηid is such that Iid < ηd, so there is no testing propensity Iid at which

patients are always tested given observables (a constraint which is empirically satisfied in our data).

Then, E(ηid|ηid > −Iid) = ηd−Iid
2 . This implies that:

E(Zid|Tid = 1) =
τd + c

NUid
+
Iid + ηd

2
+ (xid − Ed(xid))(β − β′) (32)

We can recover ηd up to a normalization discussed below from the testing equation. Given our

distributional assumption:

P (test) = P (NUidxidβ + θd − c+NUidηid >= 0)

= P

(
ηid >= −

(
xidβ +

θd − c
NUid

))
= 1− P

(
ηid < −

(
xidβ +

θd − c
NUid

))
= 1−min

(
−(xidβ + θd−c

NUid
) + ηd

2ηd
, 1

)

= max

0,
1

2
+
xidβ + θd−c

NU+x̃idδ

2ηd

 (33)

In theory, ηd is identified for all doctors. In practice, for a very small number of doctors, the

estimated ηd would diverge to∞ because patients with larger xidβ are less likely to be tested. These

doctors are excluded from the final sample. The model with a separate ηd for each doctor is also

computationally intractable, so instead we optimize for each doctor over five separate values of ηd

which the model selects to maximize the likelihood function.

In the homoskedastic model reported in Section 6.1, ηd = ηq is a constant within each quantile

and we assume that δ = 0. To estimate that model, we recover τd using the semiparametric

procedure described in the text and use the uniform parametric assumption to recover the scaling

factor between the testing and treatment equations. The propensity Iid in equation 35, expressed

in dollars, is a linear transformation of the semiparametrically estimated propensity Îid in each

quantile; in other words, Iid = λq Îid + Kq. Recall from section 5.1 that Îid is normalized within

each quantile q so that min Îid = 0 among tested patients. In the model, the minimum value of Iid

consistent with testing is −ηq. Thus, −ηq = Kq. Plugging into equation 35 gives:

E(Zid|Tid = 1) =
τd + c

NUid
+
λq Îid

2
+ (xid − Ed(xid))(β − β′) (34)

Therefore, the scaling factor λq in each quantile can be recovered from a regression of the function
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hq(Iid) = NUid(Iid + gq(Iid)) =
λq Îid

2 on Îid, which is the approach taken in the text.

In the heteroskedastic model, Iid and all the ηd are identified only up to a normalization, but

the same approach can be used to estimate the scaling factor. Let Îid = xidβ̂ + θ̂d−c
NUid

and η̂d denote

the estimated η (given our normalization of β1 = 1). Then we have: Iid = λÎid and ηd = λη̂d (the

scaling constant is the same for each since the ratio of Iid and ηd is identified). This implies:

E(Zid|Tid = 1) =
τd + c

NU + x̃idδ
+
λ(Îid + η̂d)

2
+ (xid − Ed(xid))(β − β′) (35)

where now τd can be estimated simultaneously with the scaling factor λ in a constrained least squares

regression.

Intuitively, heteroskedasticity in ηd is identified by the fact that observables are less predictive

of testing behavior for doctors with more private information

Using this model, we can compute the welfare cost of overtesting as follows. Let t̂id(τd,∆β)

denote the probability that consumer i is tested by doctor d as a function of τd and ∆β = β − β′

and let Ẑid(τd,∆β) denote the probability of a positive test conditional on testing. To compute

t̂id(0,∆β), we use the fact that I(0,∆β) = I(τd,∆β) + τd
NUid

so Î(0,∆β) = Î(τd,∆β) + τd
λNUid

. Then

we have: Ẑid(0,∆β) = c
NUid

+
λq Îid(0,∆β)

2 +(xid−Ed(xid))(β−β′). Likewise, to compute t̂id(τd, 0) (the

propensity to test with no misweighting), we use the fact that I(τd, 0) = I(τd,∆β)+(xid−Ed(xid))∆β
so Î(τd, 0) = Î(τd,∆β) + (xid−Ed(xid))∆β

λ . Then we have: Ẑid(τd, 0) = τd+c
NUid

+
λq Îid(τd,0)

2 .

We define the following objects:

MB(τd,∆β) =
∑
i

P (testi) · P (PEid|test)MBid =
∑
i

t̂id(τd,∆β)
s(Ẑid(τd,∆β)− fp)

(s− fp)
MBid

MC(τd,∆β) =
∑
i

P (testi)P (Zid = 1|testi)MCid =
∑
i

t̂id(τd,∆β)Ẑid(τd,∆β)MCid

FC(τd,∆β) =
∑
i

P (testi)(c+ P (Zid = 1|testi)CTid) =
∑
i

t̂id(τd,∆β)(c+ Ẑid(τd,∆β)CTid)

NB(τd,∆β) = MB(τd,∆β)−MC(τd,∆β)− FC(τd,∆β) (36)

where MB denote the medical benefits of testing (derived in section 5.3.1, MC denotes the medical

costs of testing, FC denotes the financial costs of testing and NB denotes the net benefits of testing

as a function of these objects. We define the welfare cost of overtesting as NB(0,∆β)−NB(τ̂d,∆β)

and the welfare cost from misweighting as NB(τd, 0) − NB(τ̂d,∆β) where τ̂d is drawn from the

estimated empirical Bayes distribution.

C Testing for Multiple Conditions

An important caveat to our above analysis is that claims data is only sufficient to identify CPT

codes for “chest CT with contrast”; we cannot isolate CT scans that follow the PE testing protocol

specifically. Although tests for PE are the primary indication for chest CTs in the emergency

room setting, there are other possibilities. Because of this limitation, some of the tests we have

labeled as “negative” since the patient is not diagnosed with pulmonary embolism may be tests
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performed for a different indication. There are five main alternative indications for CT scans in

an emergency department setting: trauma, lung or chest cancers, aortic dissection, pleural effusion,

and pneumonia. We discuss our approach to each of these alternative diagnoses in turn.

We exclude from the estimation sample patients with diagnosis codes related to trauma (such as

fractures, injury, motor vehicle accidents), when these codes are associated with bills on the same day

as the patient’s emergency department evaluation. Chest CTs for these patients are likely aiming

to assess damage from a trauma rather than a pulmonary embolism. In a detailed sample of patient

records from chest CT scans performed in the emergency room of a large hospital, diagnosis codes

associated with the radiology bills readily distinguished traumas from other scanning indication.

Similarly, we exclude patients with a history of aortic aneurysm, aortic dissection, or other

arterial dissection, in order to eliminate patients for whom chest CTs may be intended to evaluate

for aortic dissection. Aortic dissections are extremely rare, with only approximately 9000 cases per

year in the United States, making it over 30 times less common than pulmonary embolism (Meszaros

et al. 2000).

It is unusual for a cancer diagnosis to be made for the first time in the ED, but patients with

worsening symptoms as a result of tumor growth or metastasis and occasional new diagnoses may

be seen. CT scanning is routinely used to diagnose and stage cancers. In our sample of detailed

ED chest CT records from the academic medical centerl, fewer than 1% of the scans were used

to diagnose or stage cancers. In the Medicare data, we exclude those patients with chest cancer

indicated on their visit to the emergency room or associated inpatient visit from our preferred

estimation sample.

Chest CTs can be used to guide a procedure to treat patients with pleural effusion, which is

typically first diagnosed with a chest X-ray. Because a chest CT is not commonly a diagnostic test

for pleural effusion but rather an input into the treatment of the disease, we can exclude patients

from the sample with diagnoses of pleural effusion. Since some patients are diagnosed with both

pleural effusion and pulmonary embolism, and in these patients the chest CT was likely serving a

diagnostic role, we do not exclude pleural effusion patients with a diagnosis of pulmonary embolism.

These sample restrictions will tend to overstate the rate of positive testing and bias us away from

finding evidence of over-testing, since we may be excluding some pleural effusion patients who are

being tested for pulmonary embolism but have a negative test result.

Together, these exclusions for patients with trauma, cancer, or pleural effusion remove 32% of

patients receiving chest CTs from our sample. Results presented above are qualitatively similar

when these patients are included.

Finally, chest CTs can be used to diagnose pneumonia. Pneumonia can also be reliably diagnosed

with cheaper and lower radiation technologies (David et al. 2012); the added value of a chest CT

with contrast in an ED setting for diagnosing these alternative conditions is very modest (Venkatesh

et al. 2013). Technically, the value of a chest CT scan for diagnosing a condition that could otherwise

be detected with an X-ray is bounded by the costs of the x-ray, which is about $30 in our sample.

Accounting for a $30 additional net benefit from diagnosing pneumonia whern indicated does not

substantively change our results about the welfare costs of overtesting.
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