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1 Introduction

Liquidity in financial markets, as measured by, e.g., bid-ask spread or price impact, varies signifi-

cantly over time and in a correlated manner across assets. A number of papers examine empirically

whether the aggregate component of liquidity is a priced risk factor: are the high expected returns

offered by some assets compensation for the assets’ underperformance during times of low liquid-

ity? This literature has found empirical support for the presence of priced liquidity factors across

a variety of markets.1 Yet, the theoretical foundations for such factors are limited. A theory must

address, in particular, why liquidity varies over time and in a correlated manner across assets, why

assets differ in their covariance with aggregate liquidity (i.e., their liquidity beta), and why that

covariance is linked to expected returns in the cross-section.

In this paper, we propose a dynamic equilibrium model that can address the above questions.

A set of agents, arbitrageurs, provide liquidity to other agents, hedgers, by accommodating their

needs to trade multiple risky assets. Because liquidity provision is risky, arbitrageurs provide more

liquidity when their wealth is high, which is when their risk aversion is low. Hence, liquidity varies

over time in response to changes in arbitrageur wealth, and this variation is common across assets.

Moreover, a priced liquidity factor arises naturally. Assets that covary highly with the portfolio

that hedgers sell to arbitrageurs offer high expected returns, so that arbitrageurs are willing to

hold them. The same assets suffer the most when arbitrageurs realize losses and liquidity dries up.

Indeed, following losses arbitrageurs become more risk-averse, and are eager to cut their riskier

positions, i.e., those covarying highly with their portfolio.

In addition to addressing liquidity risk, our model provides a broader framework for analyzing

the dynamics of arbitrage capital and its link with asset prices and risk-sharing. Arbitrageurs in our

model can be interpreted as financial traders, e.g., market makers or hedge funds trading stocks or

foreign exchange, or as insurers for aggregate risks, e.g., weather or earthquakes. Empirical research

has shown that the capital of these agents affects liquidity and asset prices.2 We provide closed-

1Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001), and Huberman and Halka (2001) find
that liquidity varies over time and in a correlated manner across assets. Amihud (2002) links time-variation in
aggregate liquidity to the returns of the aggregate stock market. Pastor and Stambaugh (2003) and Acharya and
Pedersen (2005) find that aggregate liquidity is a priced factor in the stock market. Sadka (2010) and Franzoni, Nowak,
and Phalippou (2012) find that liquidity is a priced factor for hedge-fund and private-equity returns, respectively.
For more references, see Vayanos and Wang (2013) who survey the theoretical and empirical literature on market
liquidity.

2For example, Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010) find that bid-ask spreads
quoted by specialists in the New York Stock Exchange widen when specialists experience losses. Jylha and Suominen
(2011) find that outflows from hedge funds that perform the carry trade predict poor performance of that trade, with
low interest-rate currencies appreciating and high-interest rate ones depreciating. Froot and O’Connell (1999) find
that following losses by catastrophe insurers, premia increase even for risks unrelated to the losses.
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form characterizations of these effects in a dynamic setting with a general number of risky assets.

Among other results, we show that because of the feedback effects between arbitrageur wealth

and asset prices, asset volatilities, correlations, and expected returns are hump-shaped functions of

wealth. We also show that when hedgers become more risk averse or asset cashflows become more

volatile, arbitrageurs can choose to provide less liquidity even though liquidity provision becomes

more profitable. We finally characterize the stationary distribution of arbitrageur wealth. When

hedger risk aversion or cashflow volatility are high, this distribution is bimodal, with large values

and values close to zero being more likely than intermediate ones.

In Section 2 we present the model. We assume a continuous-time infinite-horizon economy

with two sets of competitive agents: hedgers, who receive a risky income flow, and arbitrageurs,

who can absorb part of that risk in exchange for compensation. Hedgers have mean-variance utility

over instantaneous changes in wealth, and can be interpreted as overlapping generations living

over infinitesimal periods. Arbitrageurs are infinitely lived and have constant relative risk aversion

(CRRA) utility over intertemporal consumption. Arbitrageurs provide liquidity to hedgers by

taking the other side of their trades, as well as insurance by absorbing their risk. We assume that

the hedgers’ risk aversion and income variance are constant over time, implying a constant demand

for liquidity. The supply of liquidity is instead time-varying because of the wealth-dependent risk

aversion of arbitrageurs.

Agents can invest in a riskless linear technology, and in multiple risky assets whose prices are

endogenously determined in equilibrium. We consider two asset structures: short-lived assets, with

infinitesimal maturity, and long-lived assets, paying the infinite stream of the short-lived assets’

cashflows. The two structures yield the same equilibrium risk-sharing, Sharpe ratios (expected

returns per unit of risk exposure), and dynamics of arbitrageur wealth. Solving for equilibrium,

however, is simpler with short-lived assets. This is because investing in them involves only funda-

mental risk due to cashflows, while investing in long-lived assets involves also endogenous risk due

to changes in arbitrageur wealth.

In Section 3 we characterize equilibrium risk-sharing for general CRRA utility of arbitrageurs.

Equilibrium can be described by a single state variable, arbitrageur wealth. Wealth determines

the arbitrageurs’ effective risk aversion, which consists of two terms: one reflecting the myopic

demand, and one reflecting the demand for intertemporal hedging. Even though the optimization

of arbitrageurs is intertemporal, risk-sharing between them and hedgers follows a static optimal

rule, with effective risk aversion replacing myopic risk aversion.
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In Section 4 we derive closed-form solutions in two special cases of CRRA utility: logarithmic

utility, and risk-neutrality with non-negative consumption. Effective risk aversion is the inverse of

wealth in the logarithmic case, and an affine function of the cotangent of wealth in the risk-neutral

case. When wealth increases, effective risk aversion decreases. As a consequence, arbitrageurs hold

larger positions, and their profitability decreases.

Effective risk-aversion in the risk-neutral case is driven purely by the intertemporal hedging

demand. Arbitrageurs take into account that in states where their portfolio performs poorly other

arbitrageurs also perform poorly and hence liquidity provision becomes more profitable. To have

more wealth to provide liquidity in those states, arbitrageurs limit their investment in the risky

assets, hence behaving as risk-averse. This behavior becomes more pronounced when hedgers

become more risk averse or asset cashflows become more volatile. In both cases, arbitrageurs can

choose to provide less liquidity even though liquidity provision becomes more profitable.

The stationary distribution of arbitrageur wealth can be characterized by a single parameter,

which is increasing in hedger risk aversion and cashflow volatility. For small values of this parameter,

the stationary distribution is either concentrated at zero or has a density that is decreasing in wealth.

For larger values, the density becomes bimodal. The intuition for the bimodal shape is that when

hedging needs are strong, liquidity provision is more profitable. Therefore, arbitrageur wealth grows

fast, and large values of wealth can be more likely in steady state than small or intermediate values.

At the same time, while profitability (per unit of wealth) is highest when wealth is small, wealth

grows away from small values slowly in absolute terms. Therefore, small values of wealth are more

likely than intermediate values.

In Section 5 we determine the prices of long-lived assets and the effects of endogenous risk.

Endogenous risk renders the volatility of asset returns hump-shaped in arbitrageur wealth, and

lowest at the extremes of the wealth distribution. The reason is different for each extreme. When

wealth is small, shocks to wealth are small in absolute terms, and so is the price volatility that they

generate. When wealth is large, arbitrageurs provide perfect liquidity to hedgers and prices are not

sensitive to changes in wealth. Asset correlations and expected returns are similarly hump-shaped.

A counterintuitive implication is that expected returns can be higher when arbitrageur wealth

increases and risk-aversion decreases. In the same spirit, we show that expected returns can be

higher in the risk-neutral than in the logarithmic case, i.e., when arbitrageurs are less risk-averse.

In both cases, the higher expected returns are compensation for higher endogenous risk.

In Section 6 we explore the implications of our model for liquidity risk. We define illiquidity

based on the impact that hedgers have on prices, and show that it has a cross-sectional and a time-
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series dimension. In the cross-section, illiquidity is higher for assets with more volatile cashflows.

In the time-series, illiquidity increases following losses by arbitrageurs. Because arbitrageurs sell

a fraction of their portfolio following losses, assets that covary the most with that portfolio suffer

the most when illiquidity increases. These assets also offer the highest expected returns because

arbitrageurs are the marginal agents. Therefore, illiquidity is a priced risk factor, and an asset’s

expected return is proportional (with a negative coefficient) to the covariance between its return and

aggregate illiquidity. Other liquidity-related covariances used in empirical work, e.g., between an

asset’s illiquidity and aggregate illiquidity or return, are less informative about expected returns.

These covariances depend only on the volatility of the asset’s cashflows and do not incorporate

other determinants of the covariance with the arbitrageurs’ portfolio such as the supply coming

from hedgers.

In Section 7 we conclude the paper and sketch three main extensions: assets in positive rather

than zero net supply, stochastic demand for liquidity by hedgers, and infinitely-lived hedgers with

constant absolute risk aversion utility. While closed-form solutions are not possible in most of these

cases, our characterizations of prices and expected returns have the same general form, and our

results on liquidity risk remain the same.

To our knowledge, ours is the first paper to build an analytical tractable theory connecting

liquidity risk to the capital of liquidity providers both in the cross-section and in the time-series.

Still, our paper builds on a rich literature on liquidity and asset pricing.

A first group of related papers study the pricing of liquidity risk. In Holmstrom and Tirole

(2001), illiquidity is defined in terms of firms’ financial constraints. Firms avoid assets whose return

is low when constraints are severe, and these assets offer high expected returns in equilibrium. Our

result that arbitrageurs avoid assets whose return is low when liquidity provision becomes more

profitable has a similar flavor. The covariance between asset returns and illiquidity, however, is

endogenous in our model because prices depend on arbitrageur wealth. In Amihud (2002) and

Acharya and Pedersen (2005), illiquidity takes the form of exogenous time-varying transaction

costs. An increase in the costs of trading an asset raises the expected return that investors require

to hold it and lowers its price. A negative covariance between illiquidity and asset prices arises

also in our model but because of an entirely different mechanism: high illiquidity and low prices

are endogenous symptoms of low arbitrageur wealth. The endogenous variation in illiquidity is

also what drives the cross-sectional relationship between expected returns and liquidity-related

covariances. In contrast to Acharya and Pedersen (2005), we show that one of these covariances

explains expected returns perfectly, while the others do not.
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A second group of related papers link arbitrage capital to liquidity and asset prices. Some of

these papers emphasize margin constraints. In Gromb and Vayanos (2002), arbitrageurs intermedi-

ate trade between investors in segmented markets, and are subject to margin constraints. Because

of the constraints, the liquidity that arbitrageurs provide to investors increases in their wealth. In

Brunnermeier and Pedersen (2009), margin-constrained arbitrageurs intermediate trade in multiple

assets across time periods. Assets with more volatile cashflows are more sensitive to changes in ar-

bitrageur wealth. Garleanu and Pedersen (2011) introduce margin constraints in an infinite-horizon

setting with multiple assets. They show that assets with higher margin requirements earn higher

expected returns and are more sensitive to changes in the wealth of the margin-constrained agents.

This result is suggestive of a priced liquidity factor. In our model cross-sectional differences in

assets’ covariance with aggregate illiquidity arise because of differences in cashflow volatility and

hedger supply rather than in margin constraints.

Other papers assume constraints on equity capital, which may be implicit (as in our paper)

or explicit. In Xiong (2001) and Kyle and Xiong (2001), arbitrageurs with logarithmic utility over

consumption can trade with long-term traders and noise traders over an infinite horizon. The

liquidity that arbitrageurs can provide is increasing in their wealth, and asset volatilities are hump-

shaped. In He and Krishnamurthy (2013), arbitrageurs can raise capital from other investors to

invest in a risky asset over an infinite horizon, but this capital cannot exceed a fixed multiple of

their internal capital. When arbitrageur wealth decreases, the constraint binds, and asset volatility

and expected returns increase. In Brunnermeier and Sannikov (forthcoming), arbitrageurs are more

efficient holders of productive capital. The long-run stationary distribution of their wealth can have

a decreasing or a bimodal density. These papers mostly focus on the case of one risky asset (two

assets in Kyle and Xiong (2001)), and hence cannot address the pricing of liquidity risk in the

cross-section.

Finally, our paper is related to the literature on consumption-based asset pricing with hetero-

geneous agents, e.g., Dumas (1989), Wang (1996), Chan and Kogan (2002), Bhamra and Uppal

(2009), Garleanu and Panageas (2012), Basak and Pavlova (2013), Chabakauri (2013), Longstaff

and Wang (2013). In these papers, agents have CRRA-type utility and differ in their risk aver-

sion. As the wealth of the less risk-averse agents increases, Sharpe ratios decrease, and this causes

volatilities to be hump-shaped. In contrast to these papers, we assume that only one set of agents

has wealth-dependent risk aversion. This allows us to focus more sharply on the wealth effects of

liquidity providers. We also fix the riskless rate through the linear technology, while in these papers

the riskless rate is determined by aggregate consumption. Fixing the riskless rate simplifies our
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model and allows us to focus on price movements caused by changes in expected returns.

A methodological contribution relative to the above groups of papers is that we provide an an-

alytically tractable model with multiple assets, dynamics, heterogeneous agents, and wealth effects.

With a few exceptions, the dynamic models cited above compute the equilibrium by solving differ-

ential equations numerically. By contrast, we derive closed-form solutions, under both logarithmic

and risk-neutral preferences, and prove analytically each of our main results.3

2 Model

Time t is continuous and goes from zero to infinity. Uncertainty is described by the N -dimensional

Brownian motion Bt. There is a riskless technology, whose instantaneous return is constant over

time and equal to r. There are also risky assets, described later in this section.

There are two sets of agents, hedgers and arbitrageurs. Each set forms a continuum with

measure one. Hedgers choose asset positions at time t to maximize the mean-variance objective

Et(dvt)−
α

2
Vart(dvt), (2.1)

where dvt is the change in wealth between t and t + dt, and α is a risk-aversion coefficient. To

introduce hedging needs, we assume that hedgers receive a random endowment u>dDt at t + dt,

where u is a constant N × 1 vector,

dDt = D̄dt+ σ>dBt, (2.2)

D̄ is a constant N×1 vector, σ is a constant and invertible N×N matrix, and > denotes transpose.

This endowment is added to dvt. We set Σ ≡ σ>σ.

Since the hedgers’ risk-aversion coefficient α and endowment variance u>Σu are constant over

time, their demand for liquidity, derived in the next section, is also constant. We intentionally

simplify the model in this respect, so that we can focus on the supply of liquidity, which is time-

varying because of the wealth-dependent risk aversion of arbitrageurs.

One interpretation of the hedgers is as generations living over infinitesimal periods. The gener-

ation born at time t is endowed with initial wealth v̄, and receives the additional endowment u>dDt

3Closed-form solutions are also derived in Danielsson, Shin, and Zigrand (2012) and Gromb and Vayanos (2014).
In the former paper, risk-neutral arbitrageurs are subject to a VaR constraint and can trade with long-term traders
who submit exogenous demand functions. In the latter paper, arbitrageurs intermediate trade across segmented
markets and are subject to margin constraints. Their activity involves no risk because the different legs of their
trades cancel.
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at t + dt. It consumes all its wealth at t + dt and dies. (In a discrete-time version of our model,

each generation would be born in one period and die in the next.) If preferences over consumption

are described by the VNM utility u, this yields the objective (2.1) with the risk-aversion coefficient

α = −u′′(v̄)
u′(v̄) , which is constant over time.4

Arbitrageurs maximize expected utility of intertemporal consumption. We assume time-additive

utility and a constant coefficient of relative risk aversion (CRRA) γ ≥ 0. When γ 6= 1, the arbi-

trageurs’ objective at time t is

Et

(

∫ ∞

t

c
1−γ
s

1− γ
e−ρ(s−t)ds

)

, (2.3)

where cs is consumption at s ≥ t and ρ is a subjective discount rate. When γ = 1, the objective

becomes

Et

(∫ ∞

t

log(cs)e
−ρ(s−t)ds

)

. (2.4)

Implicit in the definition of the arbitrageurs’ objective for γ > 0, is that consumption is non-

negative. The objective for γ = 0 can be defined for negative consumption, but we impose non-

negativity as a constraint. Since negative consumption can be interpreted as a costly activity

that arbitrageurs undertake to repay a loan, the non-negativity constraint can be interpreted as a

collateral constraint: arbitrageurs cannot commit to engage in the costly activity, and can hence

walk away from a loan not backed by collateral.

In addition to the riskless asset, agents can trade N risky assets in zero net supply. These

assets are contingent claims with infinitesimal maturity. Establishing a position zt in the assets at

time t costs z>t πtdt, and pays off z>t dDt at time t + dt, where zt and πt are N × 1 vectors. Since

the assets are correlated with the hedgers’ risky endowments, they can be traded to share risk. We

assume that assets are short-lived because equilibrium prices are simpler to derive than under other

asset structures while risk-sharing is the same. In Section 5 we consider long-lived assets that pay

the infinite stream of the short-lived assets’ cashflows. We show that risk-sharing is the same in

equilibrium as under short-lived assets, and so are the dynamics of arbitrageur wealth.

We define the return of the risky assets between t and t + dt by dRt ≡ dDt − πtdt. Eq. (2.2)

4The assumption that hedgers maximize a mean-variance objective over instantaneous changes in wealth simplifies
our analysis and makes it possible to derive closed-form solutions. Our main results would remain the same under the
alternative assumption that hedgers maximize a constant absolute risk aversion (CARA) utility over intertemporal
consumption. We sketch this extension in Section 7.
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implies that the instantaneous expected return is

Et(dRt)

dt
= D̄ − πt, (2.5)

and the instantaneous covariance matrix is

Vart(dRt)

dt
=

Et(dRtdR
>
t )

dt
= σ>σ = Σ. (2.6)

Note that dRt is also a return in excess of the riskless asset since investing πtdt in the riskless asset

yields return rπt(dt)
2, which is negligible relative to dRt.

Our model can be given multiple interpretations. For example, it could represent the market

for insurance against aggregate risks, e.g., weather or earthquakes. Under this interpretation, assets

are insurance contracts and arbitrageurs are the insurers. Alternatively, the model could represent

futures markets for commodities or financial assets, with arbitrageurs being the speculators. The

model could also be interpreted more indirectly to represent stocks or bonds.

3 Equilibrium

We first solve the hedgers’ maximization problem. Consider a hedger who holds a position xt in

the risky assets at time t. The change in the hedger’s wealth between t and t+ dt is

dvt = rvtdt+ x>t (dDt − πtdt) + u>dDt. (3.1)

The first term in the right-hand side of (3.1) is the return from investing in the riskless asset, the

second term is the return from investing in the risky assets, and the third term is the endowment.

Substituting dDt from (2.2) into (3.1), and the result into (2.1), we find the hedger’s optimal asset

demand.

Proposition 3.1 The optimal policy of a hedger at time t is to hold a position

xt =
Σ−1(D̄ − πt)

α
− u (3.2)

in the risky assets.
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The hedger’s optimal demand for the risky assets consists of two components, which correspond

to the two terms in the right-hand side of (3.2). The first term is the demand in the absence of

the hedging motive. This demand consists of an investment in the tangent portfolio, scaled by

the hedger’s risk aversion coefficient α. The tangent portfolio is the inverse of the instantaneous

covariance matrix Σ of asset returns times the vector D̄ − πt of instantaneous expected returns.

The second term is the demand generated by the hedging motive. This demand consists of a

short position in the portfolio u, which characterizes the sensitivity of hedgers’ endowment to asset

returns. Selling short an asset n for which un is positive hedges endowment risk.

We next study the arbitrageurs’ maximization problem. Consider an arbitrageur who has

wealth wt at time t and holds a position yt in the risky assets. The arbitrageur’s budget constraint

is

dwt = rwtdt+ y>t (dDt − πtdt)− ctdt. (3.3)

The first term in the right-hand side of (3.3) is the return from investing in the riskless asset, the

second term is the return from investing in the risky assets, and the third term is consumption.

The arbitrageur’s value function depends not only on his own wealth wt, but also on the total

wealth of all arbitrageurs since the latter affects asset prices πt. In equilibrium own wealth and

total wealth coincide because all arbitrageurs hold the same portfolio and are in measure one. For

the purposes of optimization, however, we need to make the distinction. We reserve the notation

wt for total wealth and denote own wealth by ŵt. We likewise use (ct, yt) for total consumption

and position in the assets, and denote own consumption and position by (ĉt, ŷt). We conjecture

that the arbitrageur’s value function is

V (ŵt, wt) = q(wt)
ŵ

1−γ
t

1− γ
(3.4)

for γ 6= 1, and

V (ŵt, wt) =
1

ρ
log(ŵt) + q1(wt) (3.5)

for γ = 1, where q(wt) and q1(wt) are scalar functions of wt. We set q(wt) = 1
ρ
for γ = 1.

Substituting dDt from (2.2) into (3.3), and the result into the arbitrageur’s Bellman equation, we

find the arbitrageur’s optimal consumption and asset demand.
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Proposition 3.2 Given the value function (3.4) and (3.5), the optimal policy of an arbitrageur at

time t is to consume

ĉt = q(wt)
− 1

γ ŵt (3.6)

and hold a position

ŷt =
ŵt

γ

(

Σ−1(D̄ − πt) +
q′(wt)yt
q(wt)

)

(3.7)

in the risky assets.

The arbitrageur’s optimal consumption is proportional to his wealth ŵt, with the proportion-

ality coefficient q(wt)
− 1

γ being a function of total arbitrageur wealth wt. The arbitrageur’s optimal

demand for the risky assets consists of two components, as for the hedgers. The first component

is the demand in the absence of a hedging motive, and consists of an investment in the tangent

portfolio, scaled by the arbitrageur’s coefficient of absolute risk aversion γ
ŵt
. The second compo-

nent is the demand generated by intertemporal hedging (Merton (1973)). The arbitrageur hedges

against changes in his investment opportunity set, and does so by holding a portfolio with weights

proportional to the sensitivity of that set to asset returns. In our model the investment opportunity

set is fully characterized by total arbitrageur wealth, and the sensitivity of that variable to asset

returns is the average portfolio yt of all arbitrageurs. Hence, the arbitrageur’s hedging demand is

a scaled version of yt, as the second term in the right-hand side of (3.7) shows.

Since in equilibrium all arbitrageurs hold the same portfolio, both components of asset demand

consist of an investment in the tangent portfolio. Setting ŷt = yt and ŵt = wt in (3.7), we find that

the total asset demand of arbitrageurs is

yt =
Σ−1(D̄ − πt)

A(wt)
, (3.8)

where

A(wt) ≡
γ

wt
− q′(wt)

q(wt)
. (3.9)

Arbitrageurs’ investment in the tangent portfolio is thus scaled by the coefficient A(wt), which

measures effective risk aversion. Effective risk aversion is the sum of the static coefficient of absolute

risk aversion γ
wt
, and of the term − q′(wt)

q(wt)
which corresponds to the intertemporal hedging demand.
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Substituting the asset demand (3.2) of the hedgers and (3.8) of the arbitrageurs into the

market-clearing equation

xt + yt = 0, (3.10)

we find that asset prices πt are

πt = D̄ − αA(wt)

α+A(wt)
Σu. (3.11)

Substituting (3.11) back into (3.8), we find that the arbitrageurs’ position in the risky assets in

equilibrium is

yt =
α

α+A(wt)
u. (3.12)

Intuitively, hedgers want to sell the portfolio u to hedge their endowment. Arbitrageurs buy a frac-

tion of that portfolio, and the rest remains with the hedgers. The fraction bought by arbitrageurs

decreases in their effective risk aversion A(wt) and increases in the hedgers’ risk aversion α, ac-

cording to optimal risk-sharing. Expected asset returns are proportional to the covariance with

the portfolio u, which is the single pricing factor in our model. The risk premium of that factor

increases in the arbitrageurs’ effective risk aversion, and is hence time-varying. The arbitrageurs’

Sharpe ratio, defined as the expected return of their portfolio divided by the portfolio’s standard

deviation, also increases in their effective risk aversion. Using (3.11) and (3.12), we find that the

Sharpe ratio is

SRt ≡
y>t (D̄ − πt)
√

y>t Σyt

=
αA(wt)

α+A(wt)

√
u>Σu. (3.13)

Substituting the arbitrageurs’ optimal policy from Proposition (3.2) into the Bellman equation,

we can derive an ordinary differential equation (ODE) that the arbitrageurs’ value function must

satisfy.

Proposition 3.3 If (3.4) is the value function for γ 6= 1, then q(wt) must solve the ODE

ρq = γq
1− 1

γ +
(

r − q
− 1

γ

)

q′w+rq(1−γ)+
1

2

(

q′′ +
2q′γ

w
− 2q′2

q
+

q(1− γ)γ

w2

)

α2

(

α+ γ
w
− q′

q

)2u
>Σu.
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(3.14)

If (3.5) is the value function for γ = 1, then q1(wt) must solve the ODE

ρq1 = log(ρ) +
r − ρ

ρ
+ (r − ρ)q′1 +

1

2

(

q′′1 +
2q′1
w

+
1

ρw2

)

α2

(

α+ 1
w

)2u
>Σu. (3.15)

4 Closed-Form Solutions

We next characterize the equilibrium more fully in two special cases: arbitrageurs have logarithmic

preferences (γ = 1) and arbitrageurs are risk-neutral (γ = 0). A useful parameter in both cases is

z ≡ α2u>Σu

2(ρ− r)
. (4.1)

The parameter z is larger when hedgers are more risk averse (large α), or their endowment is riskier

(large u>Σu), or arbitrageurs are more patient (small ρ).

When γ = 1, (3.6) and q(wt) = 1
ρ
imply that arbitrageur consumption is equal to ρ times

wealth. Eq. (3.9) implies that arbitrageur effective risk-aversion A(wt) is

A(wt) =
1

wt
. (4.2)

Effective risk aversion is equal to the static coefficient of absolute risk aversion because the in-

tertemporal hedging demand is zero.

When γ = 0, (3.6) implies that arbitrageur consumption is equal to zero in the region q(wt) > 1

since 1
γ
= ∞. Moreover, q(wt) ≥ 1 since an arbitrageur can always consume his entire wealth ŵt

instantly and achieve utility ŵt. Therefore, there are two regions, one in which q(wt) > 1 and

arbitrageurs do not consume, and in which q(wt) = 1 and arbitrageurs consume instantly until

their total wealth wt reaches the other region. The two regions are separated by a threshold w̄ > 0:

for wt < w̄ arbitrageurs do not consume, and for wt > w̄ they consume instantly until wt decreases

to w̄. The marginal utility q(wt) of an arbitrageur’s wealth is high when the total wealth wt of

all arbitrageurs is low because liquidity provision is then more profitable. Arbitrageur effective

risk-aversion A(wt) is the solution to a first-order ODE derived from (3.14). Proposition 4.3 solves

this ODE in closed form in the limit when the riskless rate r goes to zero. For ease of exposition,
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we refer from now on to the r → 0 limit in the risk-neutral case as the “limit risk-neutral case.” In

subsequent sections we occasionally also take the r → 0 limit in the logarithmic case, and refer to

it as the “limit logarithmic case.”

Proposition 4.1 In the limit risk-neutral case (γ = 0, r → 0), arbitrageur effective risk aversion

is given by

A(wt) =
α

1 + z

(√
z cot

(

αwt√
z

)

− 1

)

(4.3)

for wt < w̄, and A(wt) = 0 for wt ≥ w̄, where the threshold w̄ is given by

cot

(

αw̄√
z

)

=
1√
z
. (4.4)

The marginal utility of arbitrageur wealth is given by

q(wt) = exp

{

z

1 + z

[

log sin

(

αw̄√
z

)

− log sin

(

αwt√
z

)

− α

1 + z
(w̄ − wt)

]}

(4.5)

for wt < w̄, and q(wt) = 1 for wt ≥ w̄.

Although arbitrageurs are risk-neutral, their effective risk aversion is positive in the region

wt < w̄. This is because of the intertemporal hedging demand. Intuitively, arbitrageurs take into

account that in states where their portfolio performs poorly, other arbitrageurs also perform poorly,

and hence liquidity provision becomes more profitable. To have more wealth to provide liquidity in

those states, arbitrageurs limit their investment in the risky assets, hence behaving as risk-averse.

Figure 1 plots arbitrageur effective risk aversion A(wt) as a function of wealth wt. To choose

values for α and u>Σu, we set hedgers’ initial wealth v̄ to one: this is without loss of generality

because we can redefine the numeraire. Since v̄ = 1, the parameter α = −u′′(v̄)
u′(v̄) coincides with

the hedgers’ relative risk aversion coefficient, and we set it to 2. Moreover, the parameter
√
u>Σu

coincides with the annualized standard deviation of the hedgers’ endowment as a function of their

initial wealth, and we set it to 15%. We set the arbitrageurs’ subjective discount rate ρ to 4%, and

the riskless rate r to 2%.

Figure 1 shows that in both the logarithmic and the risk-neutral cases, effective risk aversion

A(wt) is decreasing and convex in arbitrageur wealth, and converges to infinity when wealth goes
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Figure 1: Arbitrageur effective risk aversion as a function of wealth in the logarithmic
case (dashed line) and the risk-neutral case (solid line). Parameter values are α = 2,√
u>Σu = 15%, ρ = 4%, and r = 2%.

to zero. Moreover, effective risk aversion is smaller in the risk-neutral case than in the logarithmic

case. These properties hold for all parameter values in the logarithmic case since A(wt) =
1
wt
. They

also hold for all values of α, u>Σu, and ρ in the limit risk-neutral case (r → 0), as we show in the

proof of Proposition 4.1.

We next examine how changes in arbitrageur wealth affect expected asset returns and the ar-

bitrageurs’ positions and Sharpe ratio. When arbitrageurs are wealthier, they have lower effective

risk aversion, and absorb a larger fraction of the portfolio u that hedgers want to sell. Arbitrageur

positions are thus larger in absolute value: more positive for positive elements of u, which cor-

respond to assets that hedgers want to sell, and more negative for negative elements of u, which

correspond to assets that hedgers want to buy. Since arbitrageurs are less risk averse, they require

smaller compensation for providing liquidity to hedgers. Expected asset returns, which measure

this compensation, are thus smaller in absolute value. The same is true for the market prices of

the Brownian risks, i.e., the expected returns per unit of risk exposure, and for the arbitrageurs’

Sharpe ratio.

Proposition 4.2 In both the logarithmic (γ = 1) and the limit risk-neutral (γ = 0, r → 0) cases,

an increase in arbitrageur wealth wt:

(i) Raises the position of arbitrageurs in each asset in absolute value.

(ii) Lowers the expected return of each asset in absolute value.
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(iii) Lowers the market price of each Brownian risk in absolute value.

(iv) Lowers the arbitrageurs’ Sharpe ratio.

We next derive the stationary distribution of arbitrageur wealth. Using this distribution, we can

compute unconditional averages of endogenous variables, e.g., arbitrageurs’ positions and Sharpe

ratio.

Proposition 4.3 If z > 1, then the stationary distribution of arbitrageur wealth has density

d(wt) =
(αwt + 1)2w

− 1
z

t exp
(

− 1
2z

(

α2w2
t + 4αwt

))

∫∞
0 (αw + 1)2w− 1

z exp
(

− 1
2z (α

2w2 + 4αw)
)

dw
(4.6)

over the support (0,∞) in the logarithmic case (γ = 1), and density

d(wt) =

(

α+A(wt)
q(wt)

)2

∫ w̄

0

(

α+A(w)
q(w)

)2
dw

(4.7)

over the support (0, w̄) in the limit risk-neutral case (γ = 0, r → 0), where A(wt) and q(wt) are

given by (4.3) and (4.5), respectively. If 0 < z < 1, then wealth converges to zero in the long run,

in both cases. If in the logarithmic case z < 0, then wealth converges to infinity in the long run.

The stationary distribution has a non-degenerate density if the parameter z defined by (4.1) is

larger than one. This is the case when the hedgers’ risk aversion α and endowment variance u>Σu

are large, and the arbitrageurs’ subjective discount rate ρ is small but exceeds the riskless rate r.

To provide an intuition for Proposition 4.3, we recall the standard Merton (1971) portfolio

optimization problem in which an infinitely-lived investor with CRRA coefficient γ can invest in a

riskless asset with instantaneous return r and in N risky assets with instantaneous expected excess

return vector µ and covariance matrix Σ. The investor’s wealth converges to infinity in the long

run when

r +
1

2
µ>Σ−1µ > ρ, (4.8)

i.e., when the riskless rate plus one-half of the squared Sharpe ratio achieved from investing in

the risky assets exceeds the investor’s subjective discount rate ρ. When instead (4.8) holds in the
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opposite direction, wealth converges to zero. Intuitively, wealth converges to infinity when the

investor accumulates wealth at a rate that exceeds sufficiently the rate at which he consumes.

Our model differs from the Merton problem because the arbitrageurs’ Sharpe ratio is endoge-

nously determined in equilibrium and decreases in their wealth (Proposition 4.2). Using (3.13) to

substitute for the arbitrageurs’ Sharpe ratio, we can write (4.8) as

r +
1

2

(

αA(wt)

α+A(wt)

)2

u>Σu > ρ. (4.9)

Transposing the result from the Merton problem thus suggests that there are three possibilities for

the long-run dynamics. If (4.9) is satisfied for all values of wt, then wealth converges to infinity.

If (4.9) is violated for all values of wt, then wealth converges to zero. If, finally, (4.9) is violated

for large values but is satisfied for values close to zero, neither convergence occurs and wealth

has a non-degenerate stationary density. Intuitively, a density can exist because the dynamics of

arbitrageur wealth are self-correcting: when wealth becomes close to zero the Sharpe ratio increases

and (4.9) becomes satisfied, and when wealth becomes large the Sharpe ratio decreases and (4.9)

becomes violated.

When ρ < r, and so z < 0, (4.9) is satisfied for all values of wt. Therefore, wt converges to

infinity. When ρ > r, and so z > 0, (4.9) is violated for values of wt close to its upper bound

(infinity in the logarithmic case and w̄ in the risk-neutral case) because A(wt) is close to zero for

those values. Therefore, wt either converges to zero or has a non-degenerate stationary density.

Convergence to zero occurs if (4.9) is violated for wt close to zero because it is then violated for

all values of wt. Since A(wt) is close to infinity for wt close to zero, wt converges to zero exactly

when z < 1. Intuitively, wealth converges to zero when α and u>Σu are small because then

arbitrageurs earn low expected returns for providing liquidity to hedgers. When instead z > 1, wt

has a non-degenerate stationary density. Proposition 4.4 characterizes the shape of that density.

Proposition 4.4 Suppose that z > 1. The density d(wt) of the stationary distribution:

(i) Is decreasing in wt if z < 27
8 in the logarithmic case (γ = 1) and if z < 4 in the limit

risk-neutral case (γ = 0, r → 0).

(ii) Is bimodal in wt otherwise. That is, it is decreasing in wt for 0 < wt < w̄1, increasing in

wt for w̄1 < wt < w̄2, and again decreasing in wt for wt > w̄2. In the logarithmic case, the
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thresholds w̄1 < w̄2 are the two positive roots of

(αw)3 + 3(αw)2 + (3− 2z)αw + 1 = 0. (4.10)

In the limit risk-neutral case, they are given by

A(w̄1) ≡ α
z − 2 +

√

z(z − 4)

2
, (4.11)

A(w̄2) ≡ α
z − 2−

√

z(z − 4)

2
, (4.12)

where A(wt) is given by (4.3), and they satisfy 0 < w̄1 < w̄2 < w̄.

(iii) Shifts to the right in the monotone likelihood ratio sense when α or u>Σu increase, in both

the logarithmic and the limit risk-neutral cases.

The shape of the stationary density is fully determined by the parameter z. When z is not much

larger than one, the density is decreasing, and so values close to zero are more likely than larger

values. When instead z is sufficiently larger than one, the density becomes bimodal, with the two

maxima being zero and an interior point w̄2 of the support. Values close to these maxima are more

likely than intermediate values, meaning that the system spends more time at these values than in

the middle. The intuition is that when the hedgers’ risk aversion α and endowment variance u>Σu

are large, arbitrageurs earn high expected returns for providing liquidity, and their wealth grows

fast. Therefore, large values of wt are more likely in steady state than intermediate values. At the

same time, while expected returns are highest when wealth is small, wealth grows away from small

values slowly in absolute terms. Therefore, small values of wt are more likely than intermediate

values.

Figure 2 plots the stationary density in the logarithmic and risk-neutral cases. The solid lines

are drawn for the same parameter values as in Figure 1. The dashed lines are drawn for the same

values except that hedger risk aversion α is raised from 2 to 4. The solid lines are decreasing in

wealth, while the dashed lines are bimodal. These patterns are consistent with Proposition 4.4

since z is equal to 2.25 for the solid lines and to 9 for the dashed lines.

We next perform comparative statics with respect to the hedgers’ risk aversion α and en-

dowment variance u>Σu. We perform “conditional” comparative statics, where we compute how

changes in α and u>Σu affect endogenous variables, conditionally on a given level of arbitrageur

wealth. We also perform “unconditional” comparative statics, where we compute how changes
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Figure 2: Stationary density of arbitrageur wealth in the logarithmic case (right
panel) and the risk-neutral case (left panel). The solid lines are drawn for α = 2,√
u>Σu = 15%, ρ = 4%, and r = 2%. The dashed lines are drawn for the same values

except that α = 4.

in α and u>Σu affect unconditional averages of the endogenous variables under the stationary

distribution of wealth. The two types of comparative statics differ sharply.

We next derive the stationary distribution of arbitrageur wealth. Using this distribution, we can

compute unconditional averages of endogenous variables, e.g., arbitrageurs’ positions and Sharpe

ratio.

Proposition 4.5 Conditionally on a given level wt of arbitrageur wealth, the following comparative

statics hold:

(i) An increase in the hedgers’ risk aversion α raises the arbitrageurs’ Sharpe ratio. In the

logarithmic case (γ = 1), the position of arbitrageurs in each asset increases in absolute

value. In the limit risk-neutral case (γ = 0, r → 0), the position of arbitrageurs in each asset

decreases in absolute value, except when wt is below a threshold, which is negative if z < 1.

(ii) An increase in the variance u>Σu of hedgers’ endowment raises the arbitrageurs’ Sharpe ratio.

In the logarithmic case, arbitrageur positions do not change. In the limit risk-neutral case,

the position of arbitrageurs in each asset decreases in absolute value.

Result (i) of Proposition 4.5 concerns changes in hedger risk aversion. One would expect

that when hedgers become more risk averse, they transfer more risk to arbitrageurs. This result

holds in the logarithmic case, but the opposite result can hold in the risk-neutral case. This is

because an increase in hedger risk aversion can generate an even larger increase in arbitrageur
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effective risk aversion through an increase in the intertemporal hedging demand. Recall that risk-

neutral arbitrageurs behave as risk-averse because they seek to preserve wealth in states where other

arbitrageurs realize losses and liquidity provision becomes more profitable. When hedgers are more

risk averse, this effect becomes stronger because liquidity provision becomes more profitable for

each level of arbitrageur wealth and more sensitive to changes in wealth. The effect is not present

in the logarithmic case because effective risk aversion is equal to the static coefficient of absolute

risk aversion, which depends only on wealth. In both the logarithmic and the risk-neutral cases, an

increase in hedger risk aversion raises the Sharpe ratio of arbitrageurs because the expected return

on their portfolio increases.

Result (ii) of Proposition 4.5 concerns changes in the variance of hedgers’ endowment. In the

logarithmic case, such changes do not affect arbitrageur effective risk aversion and positions. In the

risk-neutral case, however, there is an effect, which parallels that of hedger risk aversion. When the

variance is high, e.g., because asset cashflows dDt are more volatile, liquidity provision becomes

more profitable. As a consequence, arbitrageurs have higher effective risk aversion and hold smaller

positions. In both the logarithmic and the risk-neutral cases, an increase in variance raises the

arbitrageurs’ Sharpe ratio.

The results of Proposition 4.5 can be related to findings of recent empirical papers that mea-

sure the demand or supply of different investor groups and its relationship with expected returns.

Examples are Hong and Yogo (2012) and Chen, Joslin, and Ni (2013) for derivatives markets, and

Buyuksahin and Robe (2010), Irwin and Sanders (2010), Tang and Xiong (2010), Hamilton and

Wu (2011) and Cheng, Kirilenko, and Xiong (2012) for commodity markets. These papers typ-

ically interpret shocks that reduce investor positions and increase expected returns as downward

shifts to supply that could result from tighter constraints of liquidity providers. Intuitively, when

providers become more constrained, they take smaller positions and require larger expected returns

as compensation. These effects can be derived within our model if we identify tighter constraints

with a reduction in arbitrageur wealth (Proposition 4.2). Proposition 4.5 suggests, however, that

the same effects can arise following upward shifts to demand. For example, Result (i) shows that

in the risk-neutral case an increase in hedgers’ risk aversion can lower arbitrageurs’ positions and

raise expected returns.

We next turn to unconditional comparative statics. Figure 3 plots the unconditional Sharpe

ratio of arbitrageurs as a function of α (left panel) and u>Σu (right panel). The results are in

sharp contrast to the conditional comparative statics. While an increase in α and u>Σu raises
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the Sharpe ratio conditionally on a given level of wealth (Proposition 4.5), it can lower it when

comparing unconditional averages. Intuitively, for larger values of α and u>Σu, arbitrageur wealth

grows faster, and its stationary density shifts to the right (Proposition 4.4). Therefore, while

the conditional Sharpe ratio increases, the unconditional one can decrease because high values of

wealth, which yield low Sharpe ratios, become more likely.
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Figure 3: The unconditional Sharpe ratio of arbitrageurs as a function of α (left panel) and u>Σu (right
panel), for the logarithmic case (dashed lines) and the risk-neutral case (solid lines). When α varies, the

remaining parameters are set to
√
u>Σu = 15%, ρ = 4%, and r = 2%. When u>Σu varies, the remaining

parameters are set to α = 2, ρ = 4%, and r = 2%. The left-most vertical bar is the threshold z = 1
beyond which the stationary distribution has a non-degenerate density. The vertical bars to the right are
the thresholds z = 27

8
and z = 4 beyond which the density becomes bimodal in the logarithmic and in the

limit risk-neutral cases, respectively.

5 Long-Lived Assets

In this section we replace the short-lived assets by N long-lived assets that pay the infinite stream

of the short-lived assets’ cashflows. We maintain the assumption of zero net supply, but sketch how

our analysis can be extended to positive supply in Section 7. We show that risk-sharing and the

dynamics of arbitrageur wealth remain the same as with short-lived assets. With long-lived assets,

however, we can study a richer set of issues, which include the time-variation in volatilities and

correlations, and the measurement and pricing of liquidity risk. These issues arise with long-lived

assets because their return is sensitive to changes in arbitrageur wealth and liquidity is related to

wealth.

Establishing a position Zt in the long-lived assets at time t costs Z>
t Stdt, and pays off Z>

t (dDt+

St+dt) at time t + dt, where Zt and St are N × 1 vectors. We conjecture that in equilibrium St
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follows the Ito process

dSt = µStdt+ σ>
StdBt, (5.1)

where µSt is a N × 1 vector and σSt is a N ×N matrix.

We define the return of the long-lived assets between t and t+dt, in excess of the riskless asset,

by dRt ≡ dSt + dDt − rStdt. Eqs. (2.2) and (5.1) imply that the instantaneous expected return is

Et(dRt)

dt
= µSt + D̄ − rSt, (5.2)

and the instantaneous covariance matrix is

Vart(dRt)

dt
= (σSt + σ)>(σSt + σ). (5.3)

5.1 Equilibrium

Eq. (3.1), which characterizes the change in a hedger’s wealth between t and t+ dt, is replaced by

dvt = rvtdt+X>
t (dSt + dDt − rStdt) + u>dDt, (5.4)

where Xt denotes the hedger’s position in the long-lived assets. Eq. (3.3), which characterizes the

change in an arbitrageur’s wealth over the same interval, is similarly replaced by

dwt = (rwt − ct)dt+ Y >
t (dSt + dDt − rStdt), (5.5)

where Yt denotes the arbitrageur’s position. Because the market is complete under long-lived assets,

as it is under short-lived assets, the two asset structures generate the same allocation of risk.

Lemma 5.1 An equilibrium (St,Xt, Yt) with long-lived assets can be constructed from an equilib-

rium (πt, xt, yt) with short-lived assets by:

(i) Choosing the price process St such that

(

σ>
)−1

(D̄ − πt) =
(

(σSt + σ)>
)−1

(µSt + D̄ − rSt). (5.6)

(ii) Choosing the asset positions Xt of hedgers and Yt of arbitrageurs such that

σxt = (σSt + σ)Xt, (5.7)

σyt = (σSt + σ)Yt. (5.8)
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In the equilibrium with long-lived assets the dynamics of arbitrageur wealth, the arbitrageurs’ Sharpe

ratio, and the exposures of hedgers and arbitrageurs to the Brownian shocks, are the same as in the

equilibrium with short-lived assets.

Eqs. (5.7) and (5.8) construct positions of hedgers and arbitrageurs in the long-lived assets so

that the exposures to the underlying Brownian shocks are the same as with short-lived assets. Eq.

(5.6) constructs a price process such that the market prices of the Brownian risks are also the same.

Given this price process, agents choose optimally the risk exposures in (5.7) and (5.8), and markets

clear.

The price St is a function of arbitrageur wealth wt only. Using Ito’s lemma to compute the

drift µSt and diffusion σSt of the price process as a function of the dynamics of wt, and substituting

into (5.6), we can determine S(wt) up to an ODE.

Proposition 5.1 The price of the long-lived assets is given by

S(wt) =
D̄ − αΣu

r
+ g(wt)Σu, (5.9)

where the scalar function g(wt) satisfies the ODE

(

r − q
− 1

γ

)

wg′ +
α2

2(α+A)2
u>Σug′′ − rg = − α2

α+A
. (5.10)

The price in (5.9) is the sum of two terms. The first term, D̄−αΣu
r

, is the price that would

prevail in the absence of arbitrageurs. Indeed, if hedgers were the only traders in a market with

short-lived assets, their demand (3.2) would equal the asset supply, which is zero. Solving for the

market-clearing price yields πt = D̄ − αΣu. Long-lived assets would trade at the present value of

the infinite stream of these prices discounted at the riskless rate r, which is D̄−αΣu
r

. The second

term, g(wt)Σu, measures the price impact of arbitrageurs. Since arbitrageurs buy a fraction of the

portfolio u that hedgers want to sell, they cause assets covarying positively with that portfolio to

become more expensive. Therefore, the function g(wt) should be positive, and equal to zero for

wt = 0. Moreover, since arbitrageurs have a larger impact the wealthier they are, g(wt) should be

increasing in wt, as we confirm in the special cases studied in Section 5.2.

Expected asset returns and the covariance matrix of returns are driven by the sensitivity of the

price to changes in arbitrageur wealth wt. Therefore, they are driven by the term g(wt)Σu and do
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not depend on D̄−αΣu
r

. In the proof of Proposition 5.1 we show that the instantaneous expected

return is

Et(dRt)

dt
=

αA(wt)

α+A(wt)

[

f(wt)u
>Σu+ 1

]

Σu, (5.11)

and the instantaneous covariance matrix is

Vart(dRt)

dt
= f(wt)

[

f(wt)u
>Σu+ 2

]

Σuu>Σ+ Σ, (5.12)

where

f(wt) ≡
αg′(wt)

α+A(wt)
. (5.13)

The covariance matrix (5.12) is the sum of a “fundamental” component Σ, driven purely by

shocks to assets’ underlying cashflows dDt, and an “endogenous” component f(wt)
[

f(wt)u
>Σu+ 2

]

Σuu>Σ,

introduced because cashflow shocks affect arbitrageur wealth wt which affects prices. Endogenous

risk is zero in the case of short-lived assets because their payoff dDt is not sensitive to changes in

wt. Changes in wt, however, affect the payoff dDt + St+dt of long-lived assets because they affect

the price St+dt. Therefore, endogenous risk arises with long-lived assets, and we show that it drives

the patterns of volatilities, correlations, and expected returns.

The effect of wt on prices is proportional to the covariance Σu with the portfolio u. Therefore,

the endogenous covariance between assets n and n′ is proportional to the product between the

elements n and n′ of the vector Σu. Expected returns are proportional to Σu, as in the case of

short-lived assets. The proportionality coefficient is different than in that case, however, because

it is influenced by the endogenous covariance.

5.2 Closed-Form Solutions

We next characterize the equilibrium more fully in the logarithmic case (γ = 1) and the risk-

neutral case (γ = 0). We compute the function g′(wt) that characterizes the sensitivity of the price

to changes in arbitrageur wealth in closed form in the limit when the riskless rate r goes to zero.

In that limit the price is not well defined since the constant term D̄−αΣu
r

converges to infinity. The

function g(wt) is well-defined, however, and so are expected asset returns and the covariance matrix
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of returns. Hence, as long as g(wt) is continuous with respect to r, our results are informative about

the properties of these quantities close to the limit, where the price is well defined.

Proposition 5.2 The function g′(wt) is given by

g′(wt) =
2w

1
z
t exp

(

1
2z

(

α2w2
t + 4αwt

))

u>Σu

∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw (5.14)

for wt ∈ (0,∞) in the limit logarithmic case (γ = 1, r → 0), and by

g′(wt) =
2z

(1 + z)u>Σu

[

log sin

(

αw̄√
z

)

− log sin

(

αwt√
z

)

+ α(w̄ − wt)

]

(5.15)

for wt ∈ (0, w̄) in the limit risk-neutral case (γ = 0, r → 0). In both cases g′(wt) > 0.

We next examine how changes in arbitrageur wealth affect expected asset returns, volatilities,

correlations, and arbitrageur positions.

Proposition 5.3 An increase in arbitrageur wealth wt has the following effects in both the limit

logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ = 0, r → 0) cases:

(i) A hump-shaped effect on the expected return of each asset, in absolute value, except when

z < 1
2 in the logarithmic case, where the effect is decreasing. The hump peaks at a value w̄a

that is common to all assets.

(ii) A hump-shaped effect on the volatility of the return of each asset. The hump peaks at a value

w̄b that is common to all assets and is larger than the corresponding value w̄a for expected

return.

(iii) The same hump-shaped effect as in Part (ii) on the covariance between the returns of each

asset pair (n, n′) if (Σu)n(Σu)n′ > 0, and the opposite, i.e., inverse hump-shaped effect, if

(Σu)n(Σu)n′ < 0.

(iv) The same hump-shaped effect as in Part (ii) on the correlation between the returns of each

asset pair (n, n′) if

(Σu)n(Σu)n′Σnn − (Σu)2nΣnn′

f(wt) [f(wt)u>Σu+ 2] (Σu)2n +Σnn
+

(Σu)n(Σu)n′Σn′n′ − (Σu)2n′Σnn′

f(wt) [f(wt)u>Σu+ 2] (Σu)2n′ +Σn′n′

> 0, (5.16)

and the opposite, i.e., inverse hump-shaped, effect if (5.16) holds in the opposite direction.
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(v) An increasing effect on the position of arbitrageurs in each asset, in absolute value.

Since the fundamental component Σ of the covariance matrix is independent of arbitrageur

wealth, the hump-shaped patterns of volatilities, covariances, and correlations are driven by the

endogenous component. The intuition for the hump shape in the case of volatilities can be seen by

computing the diffusion of the price process. Ito’s lemma implies that σSt = σwtS
′(wt)

>, i.e., price

volatility (diffusion) is equal to the volatility of arbitrageur wealth times the sensitivity of the price

to changes in wealth. The volatility of wealth is increasing in wealth, and converges to zero when

wealth goes to zero. Intuitively, when arbitrageurs are poor, they hold small positions and take

almost no risk. The sensitivity of price to changes in wealth is instead decreasing in wealth, and

converges to zero when wealth becomes large (close to infinity in the logarithmic case and to w̄ in

the risk-neutral case). Intuitively, when arbitrageurs are wealthy, they provide perfect liquidity to

hedgers, and changes to their wealth have no impact on price. Therefore, price volatility converges

to zero at both extremes of the wealth distribution, and this accounts for the hump-shaped pattern

of return volatilities.5

The intuition for the hump shape in the case of covariances is similar to that for volatilities.

Price movements caused by changes in arbitrageur wealth are small at the extremes of the wealth

distribution and larger in the middle. This yields a hump-shaped pattern for the covariance between

two assets n and n′, if the prices of these assets move in the same direction. Movements are in the

same direction when the term (n, n′) of the endogenous covariance matrix is positive. This term is

equal to (Σu)n(Σu)n′ , and is likely to be positive when the corresponding components of the vector

u have the same sign, i.e., arbitrageurs either buy both assets from the hedgers or sell both assets

to them. When, for example, both assets are bought by arbitrageurs, they both appreciate when

arbitrageur wealth go up, yielding a positive covariance.

The effect on correlations is more complicated than that on covariances because it includes

the effect on volatilities. Suppose that changes in arbitrageur wealth move the prices of assets n

and n′ in the same direction, and hence have a hump-shaped effect on their covariance. Because,

however, the effect on volatilities, which are in the denominator, is also hump-shaped, the overall

effect on the correlation can be inverse hump-shaped. Intuitively, arbitrageurs can cause assets to

become less correlated because the increase in volatilities that they cause can swamp the increase

5Price volatility converges to zero at the extremes of the wealth distribution because we are assuming for simplicity
i.i.d. cashflows dDt. Under i.i.d. cashflows, a cashflow shock does not have a direct effect on prices, i.e., does not
affect prices holding arbitrageur wealth constant. Return volatility remains positive even at the extremes of the
wealth distribution because a cashflow shock has a direct effect on returns. Under a persistent cashflow process, price
volatility would not converge to zero at the extremes, while also remaining hump-shaped.
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in covariance.

The hump-shaped pattern of expected returns derives from that of volatilities. Expected returns

per unit of risk exposure, i.e., the market prices of the Brownian risks, are the same as in the

equilibrium with short-term assets, and are hence decreasing in wealth (Proposition 4.2). But

because the volatility of long-term assets is hump-shaped in wealth, their expected returns are

generally also hump-shaped.

Figures 4 and 5 illustrate the behavior of assets’ Sharpe ratios, expected returns, volatilities,

and correlations as a function of arbitrageur wealth in the logarithmic and risk-neutral cases,

respectively. The figures are drawn for the same parameter values as in Figure 2.
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Figure 4: Assets’ Sharpe ratios, expected returns, volatilities, and correlations as a
function of arbitrageur wealth in the logarithmic case. The solid lines are drawn for

α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2 symmetric assets with independent

cashflows, and Σ11 = Σ12 = 10%. The dashed lines are drawn for the same values
except that α = 4.

Using Figures 4 and 5, we can compare the logarithmic and risk-neutral cases. The assets’

Sharpe ratios are higher in the logarithmic case, as one would expect since risk aversion is higher.

Expected returns, however, can be higher in the risk-neutral case (as the figures show more clearly

for α = 4). This effect derives from volatilities, whose endogenous component can be higher in the

risk-neutral case.
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Figure 5: Assets’ Sharpe ratios, expected returns, volatilities, and correlations as a
function of arbitrageur wealth in the risk-neutral case. The solid lines are drawn for

α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2 symmetric assets with independent

cashflows, and Σ11 = Σ12 = 10%. The dashed lines are drawn for the same values
except that α = 4.

6 Liquidity Risk

In this section we explore the implications of our model for liquidity risk. We assume long-lived

assets, as in the previous section. We define liquidity based on the impact that hedgers have on

prices. Consider an increase in the parameter un that characterizes hedgers’ willingness to sell asset

n. This triggers a decrease ∂Xnt

∂un
in the quantity of the asset held by the hedgers, and a decrease

∂Snt

∂un
in the asset price. Asset n has low liquidity if the price change per unit of quantity traded is

large. That is, the illiquidity of asset n is defined by

λnt ≡
r ∂Snt

∂un

∂Xnt

∂un

, (6.1)

where we multiply by r to ensure a well-behaved limit for our closed-form solutions. The measure

(6.1) is in the spirit of Kyle (1985) and Amihud (2002).

A drawback of the measure (6.1) in the context of our model is that un is constant over time,

and hence λnt cannot be computed by an empiricist. One interpretation of (6.1) is that there are

small shocks to un, which an empiricist can observe and use to compute λnt. In Section 7 we sketch

how our analysis can be extended to stochastic u and to additional measures of liquidity used
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in empirical work. An alternative interpretation of (6.1) is cross-sectional, as a price differential

between pairs of assets that are identical in cashflow variance and covariance with other assets, and

differ only in their respective components of u.

Proposition 6.1 Illiquidity λnt is equal to

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

(α− rg(wt)) Σnn. (6.2)

An increase in arbitrageur wealth wt lowers illiquidity in both the limit logarithmic (γ = 1, r → 0)

and the limit risk-neutral (γ = 0, r → 0) cases.

Proposition 6.1 identifies a time-series and a cross-sectional dimension of illiquidity. In the

time-series, illiquidity varies in response to changes in arbitrageur wealth, and is a decreasing

function of wealth. This variation is common across assets and corresponds to the two terms in

parentheses in (6.2). In the cross-section, illiquidity is higher for assets with more volatile cashflows.

The dependence of illiquidity on the asset index n is through the asset’s cashflow variance Σnn, the

last term in (6.2). The time-series and cross-sectional dimensions of illiquidity interact: assets with

more volatile cashflows have higher illiquidity for any given level of wealth, and the time-variation

of their illiquidity is more pronounced.

Using Proposition 6.1, we can compute the covariance between asset returns and aggregate

illiquidity. Since illiquidity varies over time because of arbitrageur wealth, and with an inverse

relationship, the covariance of the return vector with illiquidity is equal to the covariance with

wealth times a negative coefficient. Proposition 5.1 implies, in turn, that the covariance of the

return vector with wealth is proportional to Σu. This is the covariance between asset cashflows

and the cashflows of the portfolio u, which characterizes hedgers’ supply. The intuition for the

proportionality is that when arbitrageurs realize losses, they sell a fraction of u, and this lowers

asset prices according to the covariance with u. Therefore, the covariance between asset returns

and aggregate illiquidity Λt ≡
∑N

n=1 λnt

N
is

Covt(dΛt, dRt)

dt
= CΛ(wt)Σu, (6.3)

where CΛ(wt) is a negative coefficient. Assets that suffer the most when aggregate illiquidity

increases and arbitrageurs sell a fraction of the portfolio u, are those corresponding to large com-

ponents (Σu)n of Σu. They have volatile cashflows (high Σnn), or are in high supply by hedgers

(high un), or correlate highly with assets with those characteristics.
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Using Proposition 6.1, we can compute two additional liquidity-related covariances: the co-

variance between an asset’s illiquidity and aggregate illiquidity, and the covariance between an

asset’s illiquidity and aggregate return. We take the aggregate return to be that of the portfolio

u, which characterizes hedgers’ supply. Acharya and Pedersen (2005) show theoretically, within a

model with exogenous transaction costs, that both covariances are linked to expected returns in the

cross-section. In our model, the time-variation of an asset’s illiquidity is proportional to the asset’s

cashflow variance Σnn. Therefore, the covariances between the asset’s illiquidity on one hand, and

aggregate illiquidity or return on the other, are proportional to Σnn.

Corollary 6.1 In the cross-section of assets:

(i) The covariance between asset n’s return dRnt and aggregate illiquidity Λt is proportional to

the covariance (Σu)n between the asset’s cashflows and the cashflows of the hedger-supplied

portfolio u.

(ii) The covariance between asset n’s illiquidity λnt and aggregate illiquidity Λt is proportional to

the variance Σnn of the asset’s cashflows.

(iii) The covariance between asset n’s illiquidity λnt and aggregate return u>dRt is proportional

to the variance Σnn of the asset’s cashflows.

The proportionality coefficients are negative, positive, and negative, respectively, in both the limit

logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ = 0, r → 0) cases.

We next determine the link between liquidity-related covariances and expected returns. Recall

from (5.11) that the expected return of asset n is proportional to (Σu)n. This is exactly proportional

to the covariance between the asset’s return and aggregate illiquidity. Thus, aggregate illiquidity is

a priced risk factor that explains expected returns perfectly. Intuitively, expected returns are priced

from the portfolio of arbitrageurs, who are the marginal agents. Moreover, the covariance between

asset returns and aggregate illiquidity identifies perfectly the arbitrageurs’ portfolio. This is because

(i) changes in aggregate illiquidity are driven by arbitrageur wealth, and (ii) the portfolio of trades

that arbitrageurs perform when their wealth changes is proportional to their existing portfolio and

impacts returns proportionately to the covariance with that portfolio.

The covariances between an asset’s illiquidity on one hand, and aggregate illiquidity or returns

on the other, are less informative about expected returns. Indeed, these covariances are proportional
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to cashflow variance Σnn, which is only a component of (Σu)n. Thus, these covariances proxy for

the true pricing factor but imperfectly so.

Corollary 6.2 In the cross-section of assets, expected returns are proportional to the covariance

between returns and aggregate illiquidity. The proportionality coefficient is negative, in both the

limit logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ = 0, r → 0) cases.

The premium associated to the illiquidity risk factor is the expected return per unit of covari-

ance with the factor. We denote it by ΠΛ(wt):

Et(dRt)

dt
≡ ΠΛ(wt)

Covt(dΛt, dRt)

dt
. (6.4)

Eqs. (5.2) and (6.3) imply that ΠΛ(wt) is related to the common component CΛ(wt) of assets’

covariance with aggregate illiquidity through

ΠΛ(wt) =
αA(wt)

[

f(wt)u
>Σu+ 1

]

[α+A(wt)]CΛ(wt)
. (6.5)

The quantities ΠΛ(wt) and CΛ(wt) vary over time in response to changes in arbitrageur wealth.

When wealth is low, illiquidity is high and highly sensitive to changes in wealth. Because of this

effect, assets’ covariance with illiquidity is large and decreases when wealth increases. Conversely,

because the premium of the illiquidity risk factor is the expected return per unit of covariance,

it is low when wealth is low and increases when wealth increases. For large values of wealth, the

premium can decrease again because the decrease in expected returns can dominate the decrease

in covariance. Proposition 6.2 derives these results in the limit when r goes to zero, and Figure 6

illustrates them in a numerical example.

Proposition 6.2 In both the limit logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ =

0, r → 0) cases:

(i) The common component CΛ(wt) < 0 of assets’ covariance with aggregate illiquidity converges

to minus infinity when arbitrageur wealth wt goes to zero. It remains negative when wealth

reaches w̄ in the limit risk-neutral case, and converges to zero when wealth goes to infinity in

the limit logarithmic case.
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(ii) The premium ΠΛ(wt) < 0 of the illiquidity risk factor converges to zero when arbitrageur

wealth wt goes to zero. In the limit risk-neutral case, it is inverse-hump shaped in wealth

and reaches zero when wealth reaches w̄. In the limit logarithmic case, it converges to minus

infinity when wealth goes to infinity.
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Figure 6: Assets’ covariance with aggregate illiquidity (left panel) and premium of
illiquidity risk factor (right panel) as a function of arbitrageur wealth, in the logarith-
mic case (dashed lines) and the risk-neutral case (solid lines). The premium of the
illiquidity risk factor is the expected return per unit of covariance. Parameter values

are α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2 symmetric assets with independent

cashflows, and Σ11 = Σ12 = 10%.

7 Extensions and Concluding Remarks

We develop a dynamic model of liquidity provision, in which hedgers can trade multiple risky

assets with arbitrageurs. We compute the equilibrium in closed form when arbitrageurs’ utility over

consumption is logarithmic or risk-neutral with a non-negativity constraint. Our model provides

an explanation for why liquidity varies over time and is a priced risk factor: liquidity decreases

following losses by arbitrageurs, assets with volatile cashflows or in high supply by hedgers suffer

the most from low liquidity, and these assets offer the highest expected returns. Our model also

provides a broader framework for analyzing the dynamics of arbitrage capital and its link with

asset prices and risk-sharing. Among other results, we show that asset volatilities, correlations,

and expected returns are hump-shaped functions of arbitrageur wealth. We also show that when

hedgers become more risk averse or asset cashflows become more volatile, arbitrageurs can choose

to provide less liquidity even though liquidity provision becomes more profitable. Finally, we

characterize the stationary distribution of arbitrageur wealth, and show that it becomes bimodal

when hedging needs are strong.
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Our model can be extended in a number of directions. We sketch the main extensions in this

section, and analyze them more thoroughly in Kondor and Vayanos (2014). One extension is to

assume that the supply of long-lived assets is positive instead of zero. This assumption makes

the model more directly applicable to stocks and bonds, and to the empirical findings on priced

liquidity factors in those markets. Introducing positive supply preserves the basic structure of the

equilibrium, with arbitrageur wealth as the only state variable. Eqs. (5.9) and (5.11) for asset

prices and expected returns remain valid provided that we replace u by s+ u, where s denotes the

vector of assets’ positive supplies. Hence, only total supply s+ u matters for asset prices, and not

its breakdown into the supply u coming from hedgers and s coming from asset issuers. The results

on liquidity risk carry through unchanged: aggregate illiquidity is a priced risk factor and explains

expected returns perfectly. With positive supply, however, we lose the closed-form solutions and

must solve the ODEs numerically.

A second extension is to allow the supply u coming from hedgers to be stochastic. A stochastic

u gives our measure of illiquidity (6.1) stronger empirical content since that measure is based on

changes in u. It is possible to introduce stochastic u and yet preserve much of the tractability of

our model provided that we restrict the variance u>Σu of hedgers’ endowment to remain constant

over time. This is because the dynamics of arbitrageur wealth derived in Section 4 depend on the

N -dimensional vector u only through the one-dimensional statistic u>Σu. Restricting u>Σu to be

constant allows for hedger supply to, e.g., increase for some assets provided that it decreases for

others. In Kondor and Vayanos (2014) we present a parsimonious specification with stochastic u

and constant u>Σu, and confirm that the dynamics of arbitrageur wealth are identical to those

derived in Section 4. Eqs. (5.9) and (5.11) for asset prices and expected returns remain valid,

although the function g(wt) cannot be derived in closed form. The results on liquidity risk remain

the same. The extension of stochastic u can be combined with that of positive s; tractability is

preserved with the additional restriction that u>Σs remains constant over time.

With stochastic u, we can map our model more closely to empirical work on liquidity. We

compute two popular empirical measures of illiquidity: the ratio of absolute value of returns to

trading volume (Amihud (2002)), and return reversal conditional on volume (Campbell, Grossman,

andWang (1993); Pastor and Stambaugh (2003)). When u is stochastic, trading volume is generated

not only by changes in the supply of liquidity by arbitrageurs due to wealth effects, but also by

changes in the demand of liquidity by hedgers. The empirical measures of illiquidity reflect an

aggregate of the two trading motives. In Kondor and Vayanos (2014) we compute the two measures

and analyze their properties, e.g., the extent to which they reflect changes in the demand or supply
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of liquidity, their dependence on arbitrageur wealth, their correlation with each other, etc.

A third extension is to assume that hedgers derive utility from intertemporal consumption

rather than from instantaneous changes in wealth. We take their utility to be of the constant

absolute risk aversion (CARA) type: this rules out wealth effects of hedgers and allows us to focus

on those of arbitrageurs. The hedgers’ risk aversion reflects not only their myopic demand but

also a demand to hedge intertemporally changes in arbitrageur wealth. This yields an effective

risk aversion analogous to that of arbitrageurs. That risk aversion depends on arbitrageur wealth,

and can be characterized by an ODE which must be solved numerically. Our characterizations of

prices and expected returns remain the same, provided that we replace the hedgers’ risk aversion

coefficient α by their effective risk aversion. The results on liquidity risk also remain the same.
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APPENDIX—Proofs

Proof of Proposition 3.1: Substituting dDt from (2.2), we can write (3.1) as

dvt = rvtdt+ x>t (D̄ − πt)dt+ u>D̄dt+ (xt + u)>σ>dBt. (A.1)

Substituting dvt from (A.1) into (2.1), we can write the hedger’s maximization problem as

max
xt

{

x>t (D̄ − πt)−
α

2
(xt + u)>Σ(xt + u)

}

. (A.2)

The first-order condition is

D̄ − πt − αΣ(xt + u). (A.3)

Solving for xt, we find (3.2).

Proof of Proposition 3.2: The Bellman equation is

ρV = max
ĉt,ŷt

{

u(ĉt) + Vŵµŵt +
1

2
Vŵŵσ

>
ŵtσŵt + Vwµwt +

1

2
Vwwσ

>
wtσwt + Vŵwσ

>
ŵtσwt

}

, (A.4)

where u(ĉt) =
ĉ
1−γ
t

1−γ
for γ 6= 1 and u(ĉt) = log(ĉt) for γ = 1, (µŵt, σŵt) are the drift and diffusion

of the arbitrageur’s own wealth ŵt, and (µwt, σwt) are the drift and diffusion of the arbitrageurs’

total wealth. Substituting dDt from (2.2), we can write (3.3) as

dwt = (rwt − ct)dt+ y>t (D̄ − πt)dt+ y>t σ
>dBt. (A.5)

Eq. (A.5) written for own wealth implies that

µŵt = rŵt − ĉt + ŷ>t (D̄ − πt), (A.6)

σŵt = σŷt, (A.7)

and written for total wealth implies that

µwt = rwt − ct + y>t (D̄ − πt), (A.8)

σwt = σyt. (A.9)
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When γ 6= 1, we substitute (3.4) and (A.6)-(A.9) into (A.4) to write it as

ρq(wt)
ŵ

1−γ
t

1− γ
= max

ĉt,ŷt

{

ĉ
1−γ
t

1− γ
+ q(wt)ŵ

−γ
t

(

rŵt − ĉt + ŷ>t (D̄ − πt)
)

− 1

2
q(wt)γŵ

−γ−1
t ŷ>t Σŷt

+q′(wt)
ŵ

1−γ
t

1− γ

(

rwt − ct + y>t (D̄ − πt)
)

+
1

2
q′′(wt)

ŵ
1−γ
t

1− γ
y>t Σyt + q′(wt)ŵ

−γ
t ŷ>t Σyt

}

. (A.10)

The first-order conditions with respect to ĉt and ŷt are (3.6) and (3.7), respectively.

When γ = 1, we substitute (3.5), (A.6), (A.7), (A.8), and (A.9) into (A.4) to write it as

ρ

(

1

ρ
log(ŵt) + q1(wt)

)

= max
ĉt,ŷt

{

log(ĉt) +
1

ρŵt

(

rŵt − ĉt + ŷ>t (D̄ − πt)
)

− 1

2ρŵ2
t

ŷ>t Σŷt

+q′1(wt)
(

rwt − ct + y>t (D̄ − πt)
)

+
1

2
q′′1(wt)y

>
t Σyt

}

. (A.11)

The first-order conditions with respect to ĉt and ŷt are (3.6) and (3.7) for q(wt) =
1
ρ
.

Proof of Proposition 3.3: Since in equilibrium ĉt = ct and ŵt = wt, (3.6) implies that

ct = q(wt)
− 1

γwt. (A.12)

Substituting (3.11) and (3.12) into (3.7) and using the definition of A(wt) from (3.9), we find

ŷt =
αŵt

(α+A(wt))wt
u. (A.13)

When γ 6= 1, we substitute (3.6), (3.11), (3.12), (A.12), and (A.13) into (A.10). The terms in

ŵt cancel, and the resulting equation is

ρq(wt) =q(wt)
1− 1

γ +

(

q′(wt) +
q(wt)(1 − γ)

wt

)(

rwt − q(wt)
− 1

γwt +
α2A(wt)

(α+A(wt))2
u>Σu

)

+
1

2

(

q′′(wt)−
q(wt)γ(1− γ)

w2
t

+
2q′(wt)(1 − γ)

wt

)

α2

(α+A(wt))2
u>Σu. (A.14)

Using the definition of A(wt) and rearranging, we find (3.14).

When γ = 1, we substitute (3.6), (3.11), (3.12), (A.12), and (A.13) into (A.11), setting q(wt) =

1
ρ
. (Note that this value of q(wt) solves (3.14) for γ = 1.) The terms in ŵt cancel, and the resulting
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equation is

ρq1(wt) = log(ρ) +

(

q′1(wt) +
1

ρwt

)(

rwt − ρwt +
α2A(wt)

(α+A(wt))2
u>Σu

)

+
1

2

(

q′′1 (wt)−
1

ρw2
t

)

α2

(α+A(wt))2
u>Σu. (A.15)

Using the definition of A(wt) and rearranging, we find (3.15).

Lemma A.1 recalls some useful properties of the cotangent function.

Lemma A.1 The function x cot(x) is decreasing for x ∈ [0, π2 ]. Its asymptotic behavior for x close

to zero is

x cot(x) = 1− x2

3
+ o(x2). (A.16)

Proof: Differentiating x cot(x) with respect to x, we find

d

dx
[x cot(x)] = cot(x)− x

[

1 + cot2(x)
]

= cot(x)

[

1− x

sin(x) cos(x)

]

= cot(x)

[

1− 2x

sin(2x)

]

. (A.17)

The function x − sin(x) is equal to zero for x = 0, and its derivative 1 − cos(x) is positive for

x ∈ (0, π). Therefore, x > sin(x) for x ∈ (0, π). Since, in addition, sin(x) > 0 for x ∈ (0, π) and

cot(x) > 0 for x ∈ (0, π2 ), (A.17) is negative for x ∈ (0, π2 ) and so x cot(x) is decreasing. Using the

asymptotic behavior of sin(x) and cos(x) for x close to zero, we find

cot(x) =
cos(x)

sin(x)
=

1− x2

2 + o(x2)

x− x3

6 + o(x3)
=

1

x

(

1− x2

3
+ o(x2)

)

,

which implies (A.16).

Proof of Proposition 4.1: For γ = 0 and wt < w̄, (3.14) becomes

(ρ− r)q = rq′w +
1

2

(

q′′ − 2q′2

q

)

α2

(

α− q′

q

)2u
>Σu. (A.18)
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Dividing both sides by q(wt), and noting that A(wt) = − q′(wt)
q(wt)

for γ = 0, we can write (A.18) as

ρ− r = −rAw − 1

2

(

A′ +A2
) α2

(α+A)2
u>Σu. (A.19)

Eq. (A.19) is a first-order ODE in the function A(wt). It must be solved with the boundary

condition limwt→0A(wt) = ∞. This is because when wt goes to zero, arbitrageurs’ position yt in

the risky assets should go to zero so that wt remains non-negative, and yt is given by (3.12).

In the limit when r goes to zero, (A.19) becomes

ρ = −1

2

(

A′ +A2
) α2

(α+A)2
u>Σu

⇔ 1 = −
(

A′ +A2
) z

(α+A)2
(A.20)

⇔ − zA′

zA2 + (α+A)2
= 1

⇔ −
zA′

1+z
(

A+ α
1+z

)2
+ zα2

(1+z)2

= 1, (A.21)

where (A.20) follows from the definition of z. Setting

Â(wt) ≡
1 + z

α
√
z

(

A(wt) +
α

1 + z

)

,

we can write (A.21) as

− Â′

Â2 + 1
=

α√
z
. (A.22)

Eq. (A.22) integrates to

arccot
(

Â(wt)
)

− arccot
(

Â(0)
)

=
αwt√

z
. (A.23)

The boundary condition limwt→0A(wt) = ∞ implies limwt→0 Â(wt) = ∞ and hence

arccot
(

Â(0)
)

= 0.
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Substituting into (A.23), we find

Â(wt) = cot

(

αwt√
z

)

. (A.24)

Eq. (A.24) and the definition of Â(wt) imply that A(wt) is given by (4.3) for wt < w̄. Since

q(wt) = 1 for wt ≥ w̄, A(wt) = − q′(wt)
q(wt)

implies that A(wt) = 0 for wt ≥ w̄. Smooth-pasting implies

that A(wt) given by (4.3) must be equal to zero for wt = w̄. This yields (4.4).

To determine q(wt), we solve

q′

q
= −A (A.25)

with the boundary condition q(w̄) = 1. Eq. (A.25) integrates to

log q(wt)− log q(w̄) =

∫ w̄

wt

A(w)dw

⇒ log q(wt) =

∫ w̄

wt

A(w)dw, (A.26)

where the second step follows from the boundary condition. Substituting A(wt) from (4.3) into

(A.26) and integrating, we find (4.5).

We finally show that A(wt) is decreasing and convex, converges to ∞ when wt goes to zero,

and is smaller than 1
wt
. Since the right-hand side of (4.4) is positive, αw̄√

z
< π

2 . Since cot(x) is

decreasing for x ∈ (0, π2 ), (4.3) implies that A(wt) is decreasing for wt ∈ (0, w̄]. Differentiating (4.3)

with respect to wt yields

A′(wt) = − α2

1 + z

(

1 + cot2
(

αwt√
z

))

. (A.27)

Since cot(x) is positive and decreasing for x ∈ (0, π2 ), A
′(wt) is increasing for wt ∈ (0, w̄]. Therefore,

A(wt) is convex. Since cot(x) converges to∞ when x goes to zero, (4.3) implies that A(wt) converges

to ∞ when wt goes to zero. Since the function x cot(x) is decreasing, it is smaller than one, its

limit when x goes to zero (Lemma A.1). Therefore, (4.3) implies that

wtA(wt) =
αwt

1 + z

(√
z cot

(

αwt√
z

)

− 1

)

<
α
√
zwt

1 + z
cot

(

αwt√
z

)

<
z

1 + z
< 1,

38



and hence A(wt) <
1
wt
.

Proof of Proposition 4.2: In both the logarithmic and the limit risk-neutral cases, A(wt) is

decreasing in wt. Part (i) follows from this property, (2.5) and (3.11). Part (ii) follows from the

same property and (3.12). Part (iii) follows from the same property and because (3.11) implies

that the market prices of risk are given by

(

σ>
)−1

(D̄ − πt) =
αA(wt)

α+A(wt)
σu.

Part (iv) follows from the same property and (3.13).

Proof of Proposition 4.3: Substituting (3.11), (3.12), and (A.12) into (A.5) we can write the

dynamics of arbitrageur wealth wt as

dwt = µwtdt+ σ>
wtdBt, (A.28)

where

µwt ≡
(

r − q(wt)
− 1

γ

)

wt +
α2A(wt)

(α+A(wt))2
u>Σu, (A.29)

σwt ≡
α

α+A(wt)
σu. (A.30)

We first determine the stationary distribution in the limit risk-neutral case. Wealth evolves in

(0, w̄), with an upper reflecting barrier at w̄. Since the consumption rate q(wt)
− 1

γ is equal to zero

in (0, w̄) and r is equal to zero in the limit risk-neutral case, we can write the drift (A.29) as

µwt =
α2A(wt)

(α+A(wt))2
u>Σu. (A.31)

If the stationary distribution has density d(wt), then d(wt) satisfies the ODE

−(µwd)
′ +

1

2
(σT

wσwd)
′′ = 0 (A.32)

over (0, w̄), and the boundary condition

−µwd+
1

2
(σT

wσwd)
′ = 0 (A.33)
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at the reflecting barrier w̄. Integrating (A.32) using (A.33) yields the ODE

−µwd+
1

2
(σT

wσwd)
′ = 0. (A.34)

Setting D(wt) ≡ σT
wtσwtd(wt), we can write (A.34) as

D′

D
=

2µw

σT
wσw

. (A.35)

Eq. (A.35) integrates to

D(wt) = D(w̄) exp

(

−
∫ w̄

wt

2µw

σT
wσw

dw

)

,

yielding

d(wt) = D(w̄)
exp

(

−
∫ w̄

wt

2µw

σT
wσw

dw
)

σT
wtσwt

. (A.36)

We can determine the multiplicative constant D(w̄) by the requirement that d(wt) must integrate

to one, i.e.,

∫ w̄

0
d(wt)dwt = D(w̄)

∫ w̄

0

exp
(

−
∫ w̄

wt

2µw

σT
wσw

dw
)

σT
wtσwt

dwt = 1. (A.37)

Eq. (A.37) determines a positive D(w̄), and hence a positive d(wt), if the integral multiplying

D(w̄) is finite. If the integral is infinite, then (A.37) implies that D(w̄) = 0, and the stationary

distribution does not have a density but is concentrated at zero. The integral multiplying D(w̄) is

infinite when the integrand converges to infinity at a fast enough rate when wt goes to zero.

Substituting µwt and σwt from (A.31) and (A.30), respectively, into (A.36), we find

d(wt) =
D(w̄)

α2u>Σu
(α+A(wt))

2 exp

(

−2

∫ w̄

wt

A(w)dw

)

=
D(w̄)

α2u>Σu

(

α+A(wt)

q(wt)

)2

, (A.38)

where the second step follows from (A.26). Eqs. (A.37) and (A.38) imply (4.7). Eqs. (4.3) and

(4.5), and Lemma A.1, imply that when wt is close to zero,

(

α+A(wt)

q(wt)

)2

≈ Γ





1
wt

exp
(

− z
1+z

log(wt)
)





2

= Γ





w
z

1+z

t

wt





2

= Γw
− 2

1+z

t ,
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where Γ is a positive constant. Therefore, the integral multiplying D(w̄) in (A.37) is finite when

2

1 + z
< 1 ⇔ z > 1.

We next determine the stationary distribution in the logarithmic case. Wealth evolves in (0,∞).

Noting that ct = ρwt and A(wt) =
1
wt
, we can write the drift (A.29) and the diffusion (A.30) as

µwt ≡ (r − ρ)wt +
α2wt

(αwt + 1)2
u>Σu, (A.39)

σwt ≡
αwt

αwt + 1
σu, (A.40)

respectively. In the logarithmic case there is no reflecting barrier, but (A.34) still holds. Intuitively,

(A.34) holds for any reflecting barrier, and the effect of a reflecting barrier on the stationary

distribution converges to zero when the barrier goes to infinity. To compute the density d(wt) of

the stationary distribution, we thus need to integrate (A.35). Integrating between an arbitrary

value w̄0 and wt, we find

d(wt) = D(w̄0)
exp

(

−
∫ w̄0

wt

2µw

σT
wσw

dw
)

σT
wtσwt

. (A.41)

We can determine the multiplicative constant D(w̄0) by the requirement that d(wt) must integrate

to one, i.e.,

∫ ∞

0
d(wt)dwt = D(w̄0)

∫ ∞

0

exp
(

−
∫ w̄0

wt

2µw

σT
wσw

dw
)

σT
wtσwt

dwt = 1. (A.42)

Substituting µwt and σwt from (A.39) and (A.40) into (A.41), we find

d(wt) = D(w̄0)

exp

(

−
∫ w̄0

wt

(

−w(α+ 1
w )

2

z
+ 2

w

)

dw

)

α2u>Σu
(

α+ 1
wt

)2

= C(w̄0)
exp

(

−1
z

(

1
2α

2w2
t + 2αwt + log(wt)

)

+ 2 log(wt)
)

α2u>Σuw2
t

(αwt+1)2

=
C(w̄0)

α2u>Σu
(αwt + 1)2w

− 1
z

t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

, (A.43)
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where

C(w̄0) ≡ D(w̄0) exp

(

1

z

(

1

2
α2w̄2

0 + 2αw̄0 + log(w̄0)

)

− 2 log(w̄0)

)

.

Eqs. (A.42) and (A.43) imply (4.6). If z < 0, then the integral multiplying D(w̄0) is infinite because

of the behavior of the integrand when z goes to∞. If z > 0, then the integral can be infinite because

of the behavior of the integrand when wt is close to zero. Since

(αwt + 1)2w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

≈ w
− 1

z
t

when wt is close to zero, the integral multiplying D(w̄) in (A.42) is finite when z > 1.

Proof of Proposition 4.4: Eq. (4.6) implies that in the logarithmic case, the derivative of d(wt)

with respect to wt has the same sign as the derivative of

(αwt + 1)2w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

.

The latter derivative is

1

z
(αwt + 1)w

− 1
z
−1

t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

[2αzwt − (αwt + 1)− (αwt + 1)αwt(αwt + 2)]

and has the same sign as

−
[

(αwt)
3 + 3(αwt)

2 + (3− 2z)αwt + 1
]

.

The function

F (x) ≡ x3 + 3x2 + (3− 2z)x+ 1

is equal to 1 for x = 0, and its derivative with respect to x is

F ′(x) = 3x2 + 6x+ (3− 2z).

If z < 3
2 , then F ′(x) > 0 for all x > 0, and hence F (x) > 0 for all x > 0. If z > 3

2 , then F ′(x) has

the positive root

x′1 ≡ −1 +

√

2z

3
,
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and is negative for 0 < x < x′1 and positive for x > x′1. Therefore, if F (x′1) > 0 then F (x) > 0 for

all x > 0, and if F (x′1) < 0 then F (x) has two positive roots x1 < x′1 < x2 and is positive outside

the roots and negative inside. Since

F (x′1) =

(

−1 +

√

2z

3

)3

+3

(

−1 +

√

2z

3

)2

+(3− 2z)

(

−1 +

√

2z

3

)

+1 =
2z

3

(

3− 2

√

2z

3

)

,

F (x′1) is positive if

3− 2

√

2z

3
> 0 ≡ z <

27

8
,

and is negative if z > 27
8 . Therefore, if z < 27

8 then the derivative of d(wt) is negative, and if z > 27
8

then the derivative of d(wt) is negative for wt ∈ (0, w̄1) ∪ (w̄2,∞) and positive for wt ∈ (w̄1, w̄2),

where w̄i ≡ xi

α
for i = 1, 2. This proves Part (i).

Eq. (4.7) implies that in the limit risk-neutral case, the derivative of d(wt) with respect to wt

has the same sign as the derivative of α+A(wt)
q(wt)

. The latter derivative is

d

dwt

(

α+A(wt)

q(wt)

)

=
A′(wt)q(wt)− (α+A(wt))q

′(wt)

q(wt)2

=
A′(wt) +A(wt)(α+A(wt))

q(wt)

=
− (α+A(wt))2

z
+ αA(wt)

q(wt)
,

where the second step follows from (A.25) and the third from (A.20). Therefore, the derivative of

d(wt) with respect to wt has the same sign as

−
[

α2 +A(wt)
2 − (z − 2)αA(wt)

]

. (A.44)

The term in square brackets is a quadratic function of A(wt) and is always positive if

(z − 2)2 − 4 < 0 ⇔ z < 4.

Therefore, if z < 4, then the derivative of d(wt) is negative. If z > 4, then the quadratic function

has two positive roots, given by

z − 2±
√

z(z − 4)

2
,
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and is positive outside the roots and negative inside. We define the thresholds w̄1 and w̄2 such that

A(w̄1) is equal to the smaller root and A(w̄2) is equal to the larger root. Since A(wt) decreases from

infinity to zero when w increases from zero to w̄, the thresholds w̄1 and w̄2 are uniquely defined and

satisfy 0 < w̄1 < w̄2 < w̄. Moreover, the derivative of d(wt) is negative for wt ∈ (0, w̄1) ∪ (w̄2, w̄)

and positive for wt ∈ (w̄1, w̄2). This proves Part (ii).

The density d(wt) shifts to the right in the monotone likelihood ratio sense when a parameter

θ increases if

∂2 log (d(wt, θ))

∂θ∂wt
> 0. (A.45)

Using (4.6), we find that in the logarithmic case,

∂ log(d(wt))

∂wt
=

2α

αwt + 1
− 1

zwt
− 1

z

(

α2wt + 2α
)

. (A.46)

An increase in α (which also affects z) raises the right-hand side of (A.46). Therefore, d(wt) satisfies

(A.45) with respect to α. An increase in z also raises the right-hand side of (A.46). Therefore,

d(wt) satisfies (A.45) with respect to u>Σu. Using (4.7), we find that in the limit risk-neutral case,

∂ log(d(wt))

∂wt
=

2A′(wt)

α+A(wt)
− 2q′(wt)

q(wt)

=
2A′(wt)

α+A(wt)
+ 2A(wt), (A.47)

where the second step follows from (A.25). Eqs. (4.3) and (A.27) imply that

A′(wt)

α+A(wt)
= −

1 + cot2
(

αwt√
z

)

√
z
(

cot
(

αwt√
z

)

+
√
z
) . (A.48)

An increase in α (which also affects z) raises the right-hand side of (A.48). Since it also raises A(wt)

(Part (i) of Lemma 4.1), (A.47) implies that d(wt) satisfies (A.45) with respect to α. Differentiating

(A.48) with respect to
√
z, we find

∂

∂
√
z

(

A′(wt)

α+A(wt)

)

=

(

1 + cot2
(

αwt√
z

)) [(

2
√
z + cot

(

αwt√
z

))(

1− αwt√
z
cot
(

αwt√
z

))

+ αwt√
z

]

z
(

cot
(

αwt√
z

)

+
√
z
)2 .
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Since the function x cot(x) is smaller than one (Lemma A.1), the term in square brackets is positive.

Therefore, an increase in z raises the right-hand side of (A.48). Since it also raises A(wt) (Part (iii)

of Lemma 4.1), (A.47) implies that d(wt) satisfies (A.45) with respect to u>Σu. This proves Part

(iii).

Lemma A.2 shows some useful properties of A(wt).

Lemma A.2 Suppose that γ = r = 0.

(i) An increase in α raises A(wt).

(ii) An increase in α raises A(wt)
α

except when wt is below a threshold, which is negative if z < 1.

(iii) An increase in u>Σu
ρ

raises A(wt).

Proof: We first prove Part (i). Differentiating (4.3) with respect to α, and noting that α also

affects z, we find

∂A(wt)

∂α
=

2
√
z cot

(

αwt√
z

)

− 1

1 + z
−

2z
(√

z cot
(

αwt√
z

)

− 1
)

(1 + z)2

=
2
√
z cot

(

αwt√
z

)

+ z − 1

(1 + z)2
. (A.49)

(All partial derivatives with respect to α in this and subsequent proofs take into account the

dependence of z on α, instead of treating z as a constant.) Since cot(x) is decreasing for x ∈ (0, π2 ),

the numerator in (A.49) is larger than

2
√
z cot

(

αw̄√
z

)

+ z − 1 = 1 + z > 0,

where the first step follows from (4.4). Therefore, an increase in α raises A(wt).

We next prove Part (ii). Using (4.3), we find

∂
A(wt)

α

∂α
=

√
z(1− z) cot

(

αwt√
z

)

+ 2z

α(1 + z)2
. (A.50)

The numerator in (A.50) is positive for z < 1. For z > 1, the numerator is increasing in wt,

converges to −∞ when wt goes to zero, and is equal to 1 + z > 0 for wt = w̄ because of (4.4).
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Therefore, for z > 1, the numerator is negative for wt below a threshold w̄2 < w̄ and is positive for

wt > w̄2. The effect of α on A(wt)
α

is thus as in the lemma.

We finally prove Part (iii). Differentiating (4.3) with respect to u>Σu
ρ

is equivalent to differen-

tiating with respect to z holding α constant. We compute the derivative with respect to
√
z, which

has the same sign as that with respect to z. We find

∂A(wt)

∂
√
z

= α
(1 − z) cot

(

αwt√
z

)

+ 2
√
z + α(1+z)wt√

z

(

1 + cot2
(

αwt√
z

))

(1 + z)2
. (A.51)

We set ŵ ≡ αwt√
z
and write the numerator in (A.51) as

N(ŵ, z) ≡ (1− z) cot(ŵ) + 2
√
z + (1 + z)ŵ

(

1 + cot2(ŵ)
)

.

The function N(ŵ, z) is positive for z ≤ 1. Therefore, it is positive for all z > 0 if its derivative

with respect to z

∂N(ŵ, z)

∂z
= − cot(ŵ) +

1√
z
+ ŵ

(

1 + cot2(ŵ)
)

is positive. Eq. (A.16) implies that for ŵ close to zero,

∂N(ŵ, z)

∂z
= − 1

ŵ

(

1− ŵ2

3

)

+
1√
z
+ ŵ

(

1 +
1

ŵ2

(

1− ŵ2

3

)2
)

+ o(ŵ) =
1√
z
+ o(1) > 0.

Therefore, ∂N(ŵ,z)
∂z

is positive if its derivative with respect to ŵ

∂2N(ŵ, z)

∂ŵ∂z
= 2

(

1 + cot2(ŵ)
)

− 2ŵ cot(ŵ)
(

1 + cot2(ŵ)
)

= 2 (1− ŵ cot(ŵ))
(

1 + cot2(ŵ)
)

is positive. Since the function x cot(x) is decreasing, it is smaller than one, its limit when x goes

to zero (Lemma A.1). Therefore, ∂2N(ŵ,z)
∂ŵ∂z

is positive, and so is N(ŵ, z), implying that an increase

in z raises A(wt).

Proof of Proposition 4.5: The results for the logarithmic case follow from (3.12), (3.13), and

A(wt) =
1
wt
. We next prove the results for the limit risk-neutral case. The result for the Sharpe

ratio in Part (i) follows from (3.13) and because an increase in α raises αA(wt)
α+A(wt)

. The latter property
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follows from

∂

∂α

(

αA(wt)

α+A(wt)

)

=
A(wt)

2 + α2 ∂A(wt)
∂α

(α+A(wt))
2

and Part (i) of Lemma A.2. The result for arbitrageur positions in Part (i) follows from (3.12) and

Part (ii) of Lemma A.2. The result for the Sharpe ratio in Part (ii) follows from (3.13) and Part

(iii) of Lemma A.2. The result for arbitrageur positions in Part (ii) follows from (3.12) and Part

(iii) of Lemma A.2.

Proof of Lemma 5.1: Using (2.2) and (5.1), we can write (5.4) and (5.5) as

dvt = rvtdt+X>
t (µSt + D̄ − rSt)dt+

(

X>
t (σSt + σ)> + u>σ>

)

dBt, (A.52)

dwt = (rwt − ct)dt+ Y >
t (µSt + D̄ − rSt)dt+ Y >

t (σSt + σ)>dBt, (A.53)

respectively. If St, Xt, and Yt satisfy (5.6), (5.7), and (5.8), then (A.52) is identical to (A.1), and

(A.53) to (A.5). Therefore, if xt and yt maximize the objective of hedgers and of arbitrageurs,

respectively, given πt, then the same is true for Xt and Yt, given St. Moreover, if xt and yt satisfy

the market-clearing equation (3.10), then Xt and Yt satisfy the market-clearing equation

Xt + Yt = 0 (A.54)

because of (5.7) and (5.8). Since (A.52) is identical to (A.1), and (A.53) to (A.5), the dynamics of

arbitrageur wealth and the exposures of hedgers and arbitrageurs to the Brownian shocks are the

same in the equilibrium (St,Xt, Yt) as in (πt, xt, yt). The arbitrageurs’ Sharpe ratio is also the same

since its numerator is y>t (D̄ − πt) with short-lived assets and Y >
t (µSt + D̄ − rSt) with long-lived

assets, and its denominator is
√

y>t σ
>σyt with short-lived assets and

√

Y >
t (σSt + σ)>(σSt + σ)Yt

with long-lived assets.

Proof of Proposition 5.1: Setting St = S(wt) and combining Ito’s lemma with (5.1), we find

µSt = µwtS
′(wt) +

1

2
σ>
wtσwtS

′′(wt)

=
(

r − q(wt)
− 1

γ

)

wtS
′(wt) +

α2

(α+A(wt))2
u>Σu

(

A(wt)S
′(wt) +

1

2
S′′(wt)

)

, (A.55)

where the second step follows from (A.29), and

σSt = σwtS
′(wt)

>

=
α

α+A(wt)
σuS′(wt)

>, (A.56)
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where the second step follows from (A.30).

Multiplying (5.6) from the left by (σSt + σ)>, and using (3.11), we find

µSt + D̄ − rSt =
αA(wt)

α+A(wt)
(σSt + σ)>σu. (A.57)

Substituting (A.55) and (A.56) into (A.57), we find the ODE

(

r − q
− 1

γ

)

wS′ +
α2

2(α +A)2
u>ΣuS′′ + D̄ − rS =

αA

α+A
Σu. (A.58)

Assuming that S(wt) is given by (5.9) and substituting into (A.58), we find that g(wt) solves the

ODE (5.10).

Substituting µSt from (A.55) into (5.2), and using (5.9) and (5.10), we can write the instanta-

neous expected return as (5.11). Substituting σSt from (A.56) into (5.3), and using (5.9), we can

write the instantaneous covariance matrix as (5.12).

Proof of Proposition 5.2: We first compute g(wt) in the limit logarithmic case. Noting that

q(wt) =
1
ρ
and A(wt) =

1
wt
, and taking the limit when r goes to zero, we can write (5.10) as

− ρwg′ +
α2w2

2(αw + 1)2
u>Σug′′ = − α2w

αw + 1

⇔ −(αw + 1)2

zw
g′ + g′′ = −2(αw + 1)

u>Σuw
. (A.59)

Multiplying both sides of (A.59) by the integrating factor

exp

(

−
∫

(αw + 1)2

zw
dw

)

= w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

,

we find

[

g′w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)]′
= −2(αw + 1)

u>Σuw
w− 1

z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

. (A.60)

Integrating (A.60) once with the boundary condition that g′(wt) = 0 remains bounded when wt

goes to ∞, we find

g′(wt)w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

=
2

u>Σu

∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw,
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which yields (5.14).

We next compute g′(wt) in the limit risk-neutral case. Noting that q(wt)
− 1

γ is equal to zero in

(0, w̄), and taking the limit when r goes to zero, we can write (5.10) as

α2

2(α +A)2
u>Σug′′ = − α2

α+A

⇔ g′′ = −2(α+A)

u>Σu
. (A.61)

Integrating (A.61) once with the boundary condition g′(w̄) = 0, we find

g′(wt) =
2

u>Σu

∫ w̄

wt

(α+A(w))dw. (A.62)

The boundary condition is implied by smooth-pasting and because g(wt) is independent of wt for

wt ≥ w̄. Using (4.3) to compute the integral in (A.62), we find (5.15).

Proof of Proposition 5.3: We first show the results in the limit risk-neutral case. Eq. (5.11)

implies that Part (i) holds if the function

K(wt) ≡
αA(wt)

α+A(wt)

[

f(wt)u
>Σu+ 1

]

(A.63)

is increasing in wt for wt < w̄a and decreasing for wt > w̄a. The derivative of K(wt) with respect

to wt is

K ′(wt) =
α2

(α+A(wt))2

{

A′(wt)

[

(α−A(wt))g
′(wt)

α+A(wt)
u>Σu+ 1

]

+A(wt)g
′′(wt)u

>Σu

}

(A.64)

=
α2

(α+A(wt))2

{

A′(wt)

[

(α−A(wt))g
′(wt)

α+A(wt)
u>Σu+ 1

]

− 2A(wt)(α+A(wt))

}

,

(A.65)

where (A.64) follows from (5.13), and (A.65) because (A.62) implies that

g′′(wt) = −2(α+A(wt))

u>Σu
. (A.66)

Since A′(wt) < 0, the term A(wt) − α is positive when wt is below the threshold w̄c defined by

A(w̄c) = α and is negative when w > w̄c. Therefore, (A.65) implies that K ′(wt) < 0 for wt ≥ w̄c.
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For wt < w̄c, K
′(wt) has the same sign as

K1(wt) ≡ g′(wt)u
>Σu− α+A(wt)

A(wt)− α
+

2A(wt)(α+A(wt))
2

A′(wt)(A(wt)− α)

= g′(wt)u
>Σu− α+A(wt)

A(wt)− α
− 2A(wt)(α +A(wt))

2

(

A(wt)2 +
(α+A(wt))2

z

)

(A(wt)− α)
, (A.67)

where the second step follows from (A.20). The function K1(wt) converges to ∞ when wt goes to

zero because g′(wt) and A(wt) converge to ∞, and converges to −∞ when wt goes to w̄c from below.

If, therefore, K1(wt) is decreasing in wt, it is positive when wt is below a threshold w̄a ∈ (0, w̄c)

and is negative when wt > w̄a. The first term in (A.67) is decreasing in wt because (A.66) implies

that g′(wt) is decreasing. The second term is increasing in wt because A(wt) is decreasing in wt

and the function

x → α+ x

x− α

is decreasing in x for x ∈ (α,∞). Likewise, the third term is increasing in wt if the function

x → 2x(α+ x)2
(

x2 + (α+x)2

z

)

(x− α)

is decreasing in x for x ∈ (α,∞). The derivative of the latter function with respect to x has the

same sign as

[

(α+ x)2 + 2x(α+ x)
]

(

x2 +
(α+ x)2

z

)

(x− α)

− x(α+ x)2
[

2

(

x+
α+ x

z

)

(x− α) +

(

x2 +
(α+ x)2

z

)]

=α(α + x)

[

x2(α− 3x)− (α+ x)3

z

]

,

which is negative for x ∈ (α,∞). Therefore, K1(wt) is decreasing in wt, and so K(wt) is increasing

in wt for wt < w̄a and decreasing for wt > w̄a.

Eq. (5.12) implies that Parts (ii) and (iii) hold if f(wt) is increasing in wt for wt < w̄b and

decreasing for wt > w̄b. If, in particular, such a threshold w̄b exists, it is larger than the threshold w̄a

in Part (i) because K(wt) is the product of
αA(wt)
α+A(wt)

, which is decreasing in wt, times f(wt)u
>Σu+1.
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The derivative of f(wt) with respect to wt is

f ′(wt) =
α

(α +A(wt))2
[

−A′(wt)g
′(wt) + g′′(wt)(α+A(wt))

]

(A.68)

= − α

(α+A(wt))2

[

A′(wt)g
′(wt) +

2(α+A(wt))
2

u>Σu

]

, (A.69)

where (A.68) follows from the definition of f(wt), and (A.69) from (A.66). Since A′(wt) < 0, (A.69)

implies that f ′(wt) has the same sign as

H1(wt) ≡ g′(wt)u
>Σu+

2(α +A(wt))
2

A′(wt)

= g′(wt)u
>Σu− 2(α+A(wt))

2

A(wt)2 +
(α+A(wt))2

z

= g′(wt)u
>Σu− 2z

z
[

A(wt)
α+A(wt)

]2
+ 1

, (A.70)

where the second step follows from (A.20). The function H1(wt) converges to ∞ when wt goes to

zero because g′(wt) and A(wt) converge to ∞, and converges to −2z < 0 when wt goes to w̄ because

g′(wt) and A(wt) converge to zero. If, therefore, H1(wt) is decreasing in wt, it is positive when wt

is below a threshold w̄b and is negative when wt > w̄b. The first term in (A.70) is decreasing in

wt because g′(wt) is decreasing. The second term is increasing in wt because A(wt) is decreasing.

Therefore, H1(wt) is decreasing in wt, and so f(wt) is increasing in wt for wt < w̄b and decreasing

for wt > w̄b.

To show Part (iv), we use (5.12) to write the correlation as

Corrt(dRnt, dRn′t) =
f(wt)

[

f(wt)u
>Σu+ 2

]

(Σu)n(Σu)n′ +Σnn′

√

{f(wt) [f(wt)u>Σu+ 2] (Σu)2n +Σnn}
{

f(wt) [f(wt)u>Σu+ 2] (Σu)2n′ +Σn′n′

}

.

(A.71)

Differentiating (A.71) with respect to f(wt), we find that Corrt(dRnt, dRn′t) is increasing in f(wt)

if (5.16) holds and is decreasing in f(wt) if (5.16) holds in the opposite direction. Part (iv) then

follows from the behavior of f(wt) shown in the proof of Parts (ii) and (iii).
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To show Part (v), we use (5.9) and (A.56) to write (5.8) as

σyt = σ
(

I + f(wt)uu
>Σ
)

Yt

⇔ yt =
(

I + f(wt)uu
>Σ
)

Yt

⇔ Yt + f(wt)u
>ΣYtu =

α

α+A(wt)
u, (A.72)

where I is the N × N identity matrix, and the third step follows from (3.12). Eq. (A.72) implies

that Yt is collinear with u. Setting Yt = νu in (A.72), we find

α

α+A(wt)
= ν + f(wt)νu

>Σu ⇒ ν =
α

(α+A(wt))(1 + f(wt)u>Σu)
,

and so

Yt =
α

(α+A(wt))(1 + f(wt)u>Σu)
u =

α

α+A(wt) + αg′(wt)u>Σu
u. (A.73)

Part (v) follows from (A.73) and because A(wt) and g′(wt) are decreasing in wt.

We next show the results in the limit logarithmic case. We start by determining the asymptotic

behavior of g′(wt) for wt close to zero and wt close to ∞. For w close to zero, the integrand in

(5.14) is

w−1− 1
z + o

(

w−1− 1
z

)

.

Hence, for wt close to zero, the integral in (5.14) is

zw
− 1

z
t + o

(

w
− 1

z
t

)

,

and (5.14) implies that

lim
wt→0

g′(wt) =
2z

u>Σu
. (A.74)

To determine the asymptotic behavior for wt close to ∞, we set w = wt + x and write the integral
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in (5.14) as

∫ ∞

0

(

α+
1

wt + x

)

(wt + x)−
1
z exp

(

− 1

2z

(

α2(wt + x)2 + 4α(wt + x)
)

)

dx

= w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

×
∫ ∞

0

(

α+
1

wt + x

)

(1 +
x

wt
)−

1
z exp

(

− 1

2z

(

2α2wtx+ α2x2 + 4αx
)

)

dx. (A.75)

We can further write the integral in (A.75) as

∫ ∞

0
Q

(

x,
1

wt

)

exp(−Rwtx)dx, (A.76)

where

Q(x, y) ≡
(

α+
y

1 + xy

)

(1 + xy)−
1
z exp

(

− 1

2z

(

α2x2 + 4αx
)

)

,

R ≡ α2

z
.

Because of the term exp(−Rwtx), the behavior of the integral (A.76) for large wt is determined by

the behavior of the function Q(x, y) for (x, y) close to zero. We set

Q(x, y) = Q(0, 0) +
∂Q

∂x
(0, 0)x +

∂Q

∂y
(0, 0)y + Q̂(x, y), (A.77)

where Q̂(x, y) involves terms of order two and higher in (x, y). Substituting (A.77) into (A.76),

and integrating, we find

∫ ∞

0
Q

(

x,
1

wt

)

exp(−Rwtx)dx

= Q(0, 0)
1

Rwt
+

∂Q

∂x
(0, 0)

1

R2w2
t

+
∂Q

∂y
(0, 0)

1

Rw2
t

+

∫ ∞

0
Q̂

(

x,
1

wt

)

exp(−Rwtx)dx. (A.78)

Since

Q(0, 0) = α,

∂Q

∂x
(0, 0) = −2α2

z
,

∂Q

∂y
(0, 0) = 1,
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and the integral in Q̂ yields terms of order smaller than 1
w2

t
for large wt, (A.78) implies that

∫ ∞

0
Q

(

x,
1

wt

)

exp(−Rwtx)dx =
z

αwt
− z

α2w2
t

+ o

(

1

w2
t

)

. (A.79)

Substituting back into (A.75) and then back into (5.14), we find that for wt close to ∞,

g′(wt) =
2z

u>Σuαwt
− 2z

u>Σuα2w2
t

+ o

(

1

w2
t

)

. (A.80)

We next show that g′(wt) is decreasing in wt. Assume, by contradiction, that there exists w

such that g′′(w) ≥ 0. Since g′(wt) is positive and converges to zero when wt converges to ∞, there

exists w > w such that g′′(w) < 0. Therefore, the function g′′(wt) must cross the x-axis from above

in [w,w), i.e., there must exist ŵ ∈ [w,w) such that g′′(ŵ) = 0 and g′′′(ŵ) ≤ 0. Since g′(wt) satisfies

the ODE (A.59), it also satisfies

−α

z
g′ − αw + 1

z
g′′ +

d

dw

(

w

αw + 1

)

g′′ +
w

αw + 1
g′′′ = 0, (A.81)

which follows from (A.59) by multiplying both sides by w
αw+1 and differentiating with respect to

w. Eq. (A.81) cannot hold at ŵ because g′(ŵ) > 0, g′′(ŵ) = 0, and g′′′(ŵ) ≤ 0, a contradiction.

Therefore, g′′(wt) < 0 for all wt.

Part (v) follows from the arguments in the limit risk-neutral case and because the functions

A(wt) =
1
wt

and g′(wt) are positive and decreasing in wt. Part (i) also follows from the arguments

in that case if the function K(wt) defined by (A.63) is decreasing in wt in the case z < 1
2 , and is

increasing in wt for wt < w̄a and decreasing for wt > w̄a in the case z > 1
2 . Using A(wt) =

1
wt
, we

can write the derivative of K(wt) with respect to wt, given by (A.64), as

K ′(wt) =
α2

(αwt + 1)2

[

(1− αwt)g
′(wt)

αwt + 1
u>Σu− 1 + wtg

′′(wt)u
>Σu

]

(A.82)

=
α2

(αwt + 1)3

[(

1− αwt +
(αwt + 1)3

z

)

g′(wt)u
>Σu− (2αwt + 3)(αwt + 1)

]

,

(A.83)

where the second step follows by substituting g′′(wt) from (A.59). Eqs. (A.82) and g′(wt) < 0 imply
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that K ′(wt) < 0 for wt ≥ 1
α
. For wt <

1
α
, (5.14) and (A.83) imply that K ′(wt) has the same sign as

K2(wt) ≡ 2

∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw

− (2αwt + 3)(αwt + 1)w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

1− αwt +
(αwt+1)3

z

.

The derivative of K2(wt) with respect to wt is

K ′
2(wt) =− 2

(

α+
1

wt

)

w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

− w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

(

1− αwt +
(αwt+1)3

z

)2

×
[(

α(4αwt + 5)− (2αwt + 3)(αwt + 1)3

zwt

)(

1− αwt +
(αwt + 1)3

z

)

−α

(

−1 +
3(αwt + 1)2

z

)

(2αwt + 3)(αwt + 1)

]

,

and has the same sign as

K3(wt) ≡ −2(α2w2
t + 3αwt + 1)

(αwt + 1)3
+

4α2w2
t + 3αwt − 1

z
+

(αwt + 1)3

z2
.

The function K3(wt) is equal to

K3(0) = −2− 1

z
+

1

z2
=

(1− 2z)(1 + z)

z2

for wt = 0, and is increasing in wt because the function
α2w2

t+3αwt+1
(αwt+1)3 is decreasing in wt. The

function K2(wt) is equal to

K2(wt) = 2zw
− 1

z
t − 3z

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

=
(2z − 1)z

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

for wt close to zero. Moreover, K2

(

1
α

)

< 0 because the functions K ′(wt) and K2(wt) have the same

sign for wt ≤ 1
α
and (A.82) implies that K ′ ( 1

α

)

< 0.

• When z < 1
2 , K3(0) > 0 and K3(wt) increasing in wt imply that K3(wt) > 0. Therefore,

K2(wt) is increasing in wt. Since K2

(

1
α

)

< 0, K2(wt) is negative for wt < 1
α
. Therefore,

K(wt) is decreasing in wt for all wt ∈ (0,∞).
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• When z > 1
2 , K3(0) < 0 and K3(wt) increasing in wt imply that K3(wt) < 0 for wt ∈ (0, 1

α
)

except possibly in an interval ending at 1
α
. Therefore,K2(wt) is decreasing in wt for wt ∈ (0, 1

α
)

except possibly in an interval ending at 1
α
where it is increasing. Since K2(wt) is positive for

wt close to zero and K2

(

1
α

)

< 0, K2(wt) is positive when wt is below a threshold w̄a ∈ (0, 1
α
)

and negative when wt ∈ (w̄a,
1
α
). Therefore, K(wt) is increasing in wt for wt ∈ (0, w̄a) and

decreasing for wt ∈ (w̄a,∞).

Parts (ii), (iii), and (iv) follow from the arguments in the limit risk-neutral case if the function

f(wt) is increasing in wt for wt < w̄b and decreasing for wt > w̄b. Using A(wt) =
1
wt

and substituting

g′′(wt) from (A.59), we can write the derivative of f(wt) with respect to wt, given by (A.68), as

f ′(wt) =
α

(αwt + 1)2

[(

(αwt + 1)3

z
+ 1

)

g′(wt)−
2(αwt + 1)2

u>Σu

]

. (A.84)

Eqs. (5.14) and (A.84) imply that f ′(wt) has the same sign as

H2(wt) ≡
∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw−(αwt + 1)2w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

(αwt+1)3

z
+ 1

.

The derivative of H2(wt) with respect to wt is

H ′
2(wt) =−

(

α+
1

wt

)

w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

− w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

(

(αwt+1)3

z
+ 1
)2

×
[(

2α(αwt + 1)− (αwt + 1)4

zwt

)(

(αwt + 1)3

z
+ 1

)

− 3α(αwt + 1)4

z

]

,

and has the same sign as

H3(wt) ≡ − 2αwt + 1

(αwt + 1)3
+

αwt − 1

z
.

The function H3(wt) is negative for wt = 0 and converges to ∞ when wt goes to ∞. Moreover, it is

increasing in wt because the function 2αwt+1
(αwt+1)3

is decreasing in wt. Therefore, H3(wt) < 0 when wt

is below a threshold w̄d and H3(wt) > 0 when wt > w̄d. For wt close to zero, the function H2(wt)

is equal to

H2(wt) = zw
− 1

z
t − z

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

=
z2

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

,
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and hence is positive. Moreover, H2(wt) converges to zero when wt goes to ∞. Since H2(wt)

is decreasing in wt for wt < w̄d and increasing for wt > w̄d, it is positive when wt is below a

threshold w̄b < w̄d and negative when wt > w̄b. Therefore, f(wt) is increasing in wt for wt < w̄b

and decreasing for wt > w̄b.

Proof of Proposition 6.1: Using (5.9), (A.54), and (A.73) to compute the partial derivatives in

(6.1), we find (6.2). In the limit when r goes to zero, λnt converges to

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

αΣnn.

This expression is decreasing in wt because A(wt) is decreasing (shown in the proof of Proposition

4.1 for the limit risk-neutral case) and g(wt) is decreasing (shown in the proof of Proposition 5.3).

Proof of Corollary 6.1: We set

λnt =

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

(α− rg(wt)) Σnn ≡ L(wt)Σnn. (A.85)

Using (A.85) and Ito’s lemma, we find

Covt(dΛt, dRt) = L′(wt)
α
∑N

n′=1 Σn′n′

N
Covt(dwt, dRt), (A.86)

Covt(dΛt, dλnt) =
(

L′(wt)
)2 α

2Σnn

∑N
n′=1 Σn′n′

N
Vart(dwt), (A.87)

Covt(d(u
>dRt), dλnt) = L′(wt)αΣnnu

>Covt(dwt, dRt). (A.88)

The diffusion matrix of the return vector dRt is

(σSt + σ)> =

(

α

α+A(wt)
σuS′(wt)

> + σ

)>

=

(

αg′(wt)

α+A(wt)
σuu>Σ+ σ

)>
, (A.89)

where the first step follows from (A.56) and the second from (5.9). The covariance between wealth

and the return vector dRt is

Covt(dwt, dRt) = (σSt + σ)>σwt

=

(

αg′(wt)

α+A(wt)
σuu>Σ+ σ

)>
α

α+A(wt)
σu

=
α

α+A(wt)

[

f(wt)u
>Σu+ 1

]

Σu, (A.90)
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where the second step follows from (A.30) and (A.89). Part (i) of the corollary follows by substi-

tuting (A.90) into (A.86). The proportionality coefficient is

CΛ(wt) = L′(wt)
α2
∑N

n′=1 Σn′n′

N (α+A(wt))

[

f(wt)u
>Σu+ 1

]

, (A.91)

and is negative in the limit when r goes to zero because L(wt) is decreasing in wt. Part (ii) of the

corollary follows from (A.87). The proportionality coefficient is positive for any r. Part (i) of the

corollary follows by substituting (A.90) into (A.88). The proportionality coefficient is negative in

the limit when r goes to zero because L(wt) is decreasing in wt.

Proof of Corollary 6.2: The proportionality result follows from (5.11), (A.86), and (A.90). These

equations imply that the proportionality coefficient is

ΠΛ(wt) =
A(wt)

L′(wt)
α
∑N

n′=1 Σn′n′

N

. (A.92)

This coefficient is negative in the limit when r goes to zero because L(wt) is decreasing in wt.

Proof of Proposition 6.2: In the limit when r goes to zero, (A.85) implies that L(wt) converges

to

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

α.

Substituting into (A.91) and (A.92), we find

CΛ(wt) =

(

A′(wt)

α
+ g′′(wt)u

>Σu

)

α3
∑N

n′=1Σn′n′

N (α+A(wt))

[

f(wt)u
>Σu+ 1

]

, (A.93)

ΠΛ(wt) =
A(wt)

(

A′(wt)
α

+ g′′(wt)u>Σu
)

α2
∑N

n′=1
Σn′n′

N

. (A.94)

We first show the properties of CΛ(wt) and ΠΛ(wt) in the limit risk-neutral case. Using (5.13),

(A.20), (A.61), and (A.62), we can write (A.93) and (A.94) as

CΛ(wt) = −
[

A(wt)
2 + (α+A(wt))2

z

α
+ 2 (α+A(wt))

]

α3
∑N

n′=1 Σn′n′

N (α+A(wt))

[

2α
∫ w̄

wt
(α+A(w))dw

α+A(wt)
+ 1

]

,

(A.95)

ΠΛ(wt) = − A(wt)
[

A(wt)2+
(α+A(wt))

2

z

α
+ 2 (α+A(wt))

]

α2
∑N

n′=1
Σn′n′

N

. (A.96)
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When wt goes to zero, A(wt) converges to ∞. Therefore, (A.95) implies that CΛ(wt) converges to

−∞, and (A.96) implies that ΠΛ(wt) converges to zero. For wt = w̄, A(w̄) = 0. Therefore, (A.95)

implies that

CΛ(w̄) = −
(

1

z
+ 2

)

α3
∑N

n′=1 Σn′n′

N
< 0

and (A.96) implies that ΠΛ(w̄) = 0. To show the inverse hump shape of ΠΛ(wt), we write (A.96)

as

ΠΛ(wt) = − 1
[

A(wt)
α

(

1 + 1
z

)

+ 2
(

1 + 1
z

)

+ α
A(wt)

(

2 + 1
z

)

]

α2
∑N

n′=1 Σn′n′

N

. (A.97)

The term in square brackets in the denominator of (A.97) is an inverse hump-shaped function of

A(wt). Since A(wt) is decreasing in wt, Π
Λ(wt) is an inverse hump-shaped function of wt.

We next show the properties of CΛ(wt) and ΠΛ(wt) in the limit logarithmic case. Using

A(wt) =
1
wt
, (5.13), and (A.59), we can write (A.93) and (A.94) as

CΛ(wt) =

[

− 1

αw2
t

+
αwt + 1

wt

(

(αwt + 1)u>Σu

z
g′(wt)− 2

)]

α3
∑N

n′=1Σn′n′

N
(

α+ 1
wt

)

[

αg′(wt)

α+ 1
wt

u>Σu+ 1

]

,

(A.98)

ΠΛ(wt) =
1
wt

[

− 1
αw2

t
+ αwt+1

wt

(

(αwt+1)u>Σu
z

g′(wt)− 2
)]

α2
∑N

n′=1
Σn′n′

N

. (A.99)

When wt goes to zero, g′(wt) converges to the positive limit (A.74). Therefore, (A.98) implies that

CΛ(wt) converges to −∞, and (A.99) implies that ΠΛ(wt) converges to zero. When wt goes to ∞,

(A.80) implies that g′(wt) is of order
1
wt

and

(αwt + 1)u>Σu

z
g′(wt)− 2 = − 2

α2w2
t

+ o

(

1

w2
t

)

.

Therefore, (A.98) implies that CΛ(wt) converges to zero, and (A.99) implies that ΠΛ(wt) converges

to −∞.
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