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“[The White House] needed 18-to-34-year-old males, a demographic technically called
bros. Bros balance the risk pool, thereby keeping everyone’s rates low, since bros rarely
see the doctor because they’re protected from ever encountering other people’s germs
by their Axe body spray.” – Joel Stein, Time Magazine (November 11, 2013), on
his efforts to get his 24-year old male friend to enroll in a health exchange.

1 Introduction

The Patient Protection and Affordable Care Act (“ACA” for short) limits the degree to
which insurers can price discriminate based on age and preexisting conditions. Enrolling
healthier people, especially younger individuals, is, therefore, widely regarded as impor-
tant for avoiding high premiums. The government aims at enrolling 7 million individuals
in the ACA during the first year, of which 2.7 million are between the ages 18 and 35.

The ACA rollout, however, contains initial conditions that may have discouraged
healthy individuals from enrolling. First, there were issues with the main website at
launch, limiting its ability to enroll participants, to transmit information accurately to
insurers, and to securely store information.1 Second, to prevent adverse selection, the
ACA levies a fine (the “share responsibility penalty”) on individuals who do not enroll.
But the size of that fine is quite small in 2014, equal to the greater of $95 or 1% of in-
come, even though increasing in future years. Third, because some households on the
individual health insurance market lost their coverage, the government announced on
November 14, 2013 that it is allowing individual state insurance commissioners to extend
canceled policies by one year.

A potential counterbalancing effect is that fact that, if the initial enrollment deadline is
missed, subsequent enrollment is delayed until the next “open enrollment season” even
when a person gets sick. However, this effect in turn is weakened during the initial year of
the ACA implementation since open enrollment occurs twice in 2014, roughly six months
apart, in order to make its timing consistent with Medicare’s open enrollment season
in future years.2 Moreover, to fill even this short gap, a market for short-term policies
(lasting 364 days or less) may emerge and has the potential to create cost savings for

1Other usability issues that could have affected younger shoppers included the inability to compare
prices before entering user information. Many young shoppers with new employers also have to separately
submit payroll stubs, re-confirm their health exchange status at a later time, and then contact the insurer
to make payment. These process breaks may reduce conversions as well, especially for consumers who are
not strongly attached to the outcome.

2For 2014 only, there will effectively be two open enrollment periods, the first one from October 1 - March
31, 2014 and the second one from October 15 - December 7 to coincide with Medicare open enrollment. In
future years, enrollments will occur once per year, coinciding with the Medicare dates.
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young adults, even net of subsidies and fines (Feldstein, 2013; Anderson and Cowan,
2013).3

Of these three initial conditions, policymakers and media outlets originally focused
on the issues related to the website. As The Economist (November 23, 2013) put it:

Insurers have set their premiums on the assumption that lots of young, healthy
people would be compelled to buy their policies. But if it takes dozens of at-
tempts to sign up, the people who do so will be disproportionately the sick
and desperate. Insurers could be stuck with a far more expensive pool of cus-
tomers than they were expecting, and could have no choice but to raise prices
next year. That would make Obamacare even less attractive to the young “in-
vincibles” it needs to stay afloat. (p. 15)

Even if many younger people are willing to give an improved website another chance,
the small magnitude of the fine in 2014 may encourage many of them to simply pay it
rather than larger premiums. A survey conducted by the Harvard University Institute
of Politics (2013) finds that less than one third of uninsured Millennials (ages 18 - 29)
plan to enroll in an ACA policy. The Pew Research Center (2013) claims that one third of
all uninsured households, including older households, plan to not enroll. According to
Project 2017 (2013), the premiums for single individuals younger than age 40 are two to
nine times larger than the statutory fine in 2014, depending on income. In their estimates,
the premiums were calculated using the cheapest “bronze” level plan and include any
applicable premium subsidies provided by law.

Their calculations, if anything, are likely to understate the premium-to-fine ratio for
two reasons. First, in response to private insurers canceling policies that were not ACA
compliant, the government announced in December 2013 that it will grant a “hardship
exemption” from the fine in 2014 for anyone who saw their prior policies canceled and
who claim that the policies on the exchanges available to them are now “unaffordable.”
Second, as the ACA law is currently constructed, the fine can only be levied on individu-
als who make enough money to file taxes and are owed a refund (IRS 2013).4 In fact, about

3The ACA also provides exemptions for households enrolled in an existing “health care sharing min-
istry,” which allows its members with a common ethical or religious belief to pool health care costs; these
risk pools are typically cheaper than many insurance plans due to lower coverage provided.

4Unlike other tax debts, the ACA explicitly prohibits the IRS from enforcing the fine by garnishing wages
or confiscating property. Instead, the fine must be levied only against tax filers who are owed a refund (IRS
2013). While over 75% of filers were owed a refund in tax year 2012 (IRS 2013B), a sophisticated filer could
postpone payments, reducing their value in present value. While it is too early to know if the administrative
tax courts would allow the IRS to assess interest and penalties for postponed payments, such assessments
have historically been used in cases of illegal evasion rather than legal deferrals.
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52.4% of single filers do not make sufficient income to file taxes (Tax Policy Center 2011),
a percentage that increases for younger filers. We suspect that this feature of the ACA is
another initial condition that may change in the future.5

The potential importance of allowing individual state insurance commissioners to ex-
tend canceled policies by one year is unclear. But it has certainly raised concerns among
insurers that ACA compliant plans could fail to attract younger participants. For ex-
ample, Bloomberg (December 20, 2013) reports that “[i]nsurers said the exemptions may
keep younger, healthier people from buying new coverage through Obamacare, a demo-
graphic that is needed to bring balance to the new government-run insurance market-
places.”6 However, 12 states have already rejected the extension.7 Most other states are
allowing for the one-year extension, but, in a few cases, private insurers are refusing to
reissue the pre-ACA plans (Associated Press, 2013).

Interestingly, much of the public discussion about the role of initial conditions in the
ACA rollout has been based on the standard terminology from the textbook treatment of
adverse selection going back to Akerlof (1970). However, the textbook theory of insurance
unraveling is not specified in terms of initial conditions but as the equilibrium of a static
system of insurance cost and demand equations across risk types. Moreover, most of the
insurance literature has implicitly focused on either linear demand and cost curves (see
e.g. Cutler and Reber, 1998, and Einav and Finkelstein, 2011) or strategic insurers (Einav
et al., 2010), both of which give rise to a unique equilibrium that is reached no matter
which initial conditions we start from. That equilibrium emits a degree of risk pooling
ranging from full pooling to no pooling (“unraveling”), or something in-between (where
only some of the lower risk types drop out of the market), but there is not much role
for initial conditions in affecting the eventual outcome. In the context of the ACA, the
standard textbook model suggests that either the policy is destined to be “successful”
(i.e., it pools risk across many risk types) or it is destined to “fail” (it does not successfully
pool risk across many types). For example, Handel et al. (2013) analyze a model of the
ACA health exchanges with a unique equilibrium and conclude that it may eventually

5According to final rule issued by the Health and Human Services on February 22, 2013, student health
plans are also exempt from the key features of the ACA. Whether this feature is temporary or permanent
is unclear. However, given the rule making process, it appears that HHS has discretion within the ACA
to make this determination without additional Congressional approval. The HHS does not, however, have
the ability to change the tax filing provisions without Congressional approval.

6See also The Economist (November 23, 2013): “A bigger risk is that the “fix” harms the rest of Obamacare.
The insurance lobby points out that Mr Obama’s plan will dissuade healthy people from buying more
generous, costly coverage on the exchanges. This will leave insurers with a more sickly pool than they
expected. That could drive up prices for 2015.” (p. 31).

7These are California, Indiana, Massachusetts, Minnesota, Montana, New York, Rhode Island, Nevada,
Vermont, Virginia and Washington and West Virginia.
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involve limited degrees of risk pooling.
So is the media frenzy and the concern by policymakers about the ACA’s initial condi-

tions much to do about nothing? Or, is it indeed possible that the ACA’s initial conditions
could actually affect its eventual performance?

In this paper, we add simple dynamics to the textbook model of competitive insurance
markets under adverse selection building on Akerlof (1970), Wilson (1977, 1980) and the
recent work of Einav et al. (2010) and Einav and Finkelstein (2011), without assuming
a shape for cost and demand curves. We show that initial conditions can indeed matter
for the eventual outcome if (i) insurers are competitive price-takers, and if (ii) there exist
at least three competitive equilibria. In the case of exactly three equilibria, one equilib-
rium is unstable and other two are stable. The “good” stable equilibrium provides more
coverage at a lower price relative (in fact, is Pareto superior) to the “bad” stable equi-
librium. Using data on average costs from the Medical Expenditure Panel Survey, we
provide a simple calibration of insurance demand that suggests that the presence of three
competitive equilibria is consistent with moderate levels of risk aversion. The reason is
that medical expenditures tend to be fairly concentrated within the pre-Medicare popula-
tion, thereby producing multiple inflection points in the willingness to pay curve across
risk types. Multiple crossings with the average cost curve of insurance, therefore, may
emerge.

The construction of the fine itself plays a potentially important role in the presence of
multiple equilibria. The ACA uses an “absolute” fine, which, as noted earlier, is equal to
the greater of 1% of income or $95 in 2014, growing by pre-determined amounts over the
subsequent two years.8 In contrast, the Massachusetts health care reform law, enacted in
2006, levied a “relative” fine equal to 50% of the smallest yearly premium for qualified
plans available in the market.9 The “relative” fine, therefore, effectively grows with the
amount of adverse selection. We show that the relative fine increases the likelihood of
reaching the good equilibrium, even when the absolute and relative fines are normalized
to be equal in value at the point of the good equilibrium. Moreover, even if the bad
equilibrium is reached under the relative fine, its “badness” is strictly less than under the
absolute fine. Put differently, a re-construction of the fine toward a relative basis is more
likely to expand coverage (achieve the good equilibrium) while reducing the badness
of the worst outcome, all without costing non-insured consumers anything more in the
desired, good equilibrium with a high number of individuals covered at a low premium.

8In 2015, the fine grows to greater of 2% of income or $325; by 2015, it is the greater of 2.5% of income or
$695. Thereafter, the minimum dollar penalty grows with the general inflation level.

9This fine has since been updated to be consistent with the ACA requirements.
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However, if firms set premiums strategically in a Nash equilibrium and have common
knowledge (about the distribution of risk types and individual attributes like preferences,
loss amounts, and wealth), then the popular media concerns about the system unraveling
over time because of a bad first year are without merit: only a single equilibrium exists in
this case (see e.g. Einav et al., 2010) and the market converges to it independently from
initial conditions. In particular, if premiums were set at a high value, consistent with a
Pareto dominated equilibrium under price-taking, then a profitable deviation would exist
for any insurer that lowers its premium.

The required assumption of perfect information about the full set of fundamentals of
the market, though, may be quite strong in this context. Cutler and Reber (1998) and
Monheit et al. (2004), for instance, provide evidence of repeated marginal price changes
that suggest that insurers do not a priori know the entire shape of the demand and cost
curves in the market and locally adjust premiums in response to profits or losses they
experience. Experimenting with prices to find out about market fundamentals could be
quite expensive in this setting, especially if insurers are unable to quickly adjust prices
in response to pricing mistakes. In practice, prices are legally rigid in two ways. First,
premiums under the ACA can only be adjusted infrequently, typically to coincide with
the annual “open enrollment” period. Second, premium price increases must be justified
under existing laws in many states and, at the federal level, under new rules implemented
by the ACA itself.

In sum, we characterize situations in which initial conditions, like those discussed
above, could cause the health exchanges to converge to a bad equilibrium, even if they
are well designed relative to the good equilibrium. We provide some evidence for the
potential of multiple equilibria in this market. Changing the construction of the fine from
an absolute form to a relative basis widens the range of initial conditions under which
the good equilibrium eventually emerges while reducing the badness of the bad equi-
librium. However, equilibrium multiplicity may persist. Reducing the legal frictions to
price adjustments improves the chances that the good equilibrium emerges by incentiviz-
ing insurers to experiment with lower prices when the distribution of risk types and other
market fundamentals are not well known.

The rest of this paper is organized as follows. Section 2 presents a simple insurance
model within the price-taking setting; extensions of this model are presented in Ap-
pendix B. Section 3 generalizes this price-taking model to a dynamic setting and demon-
strates how initial conditions can matter when multiple equilibria exist. This section also
presents some quantitative evidence about the potential for multiple equilibria as well as
examples of pricing dynamics from some previous efforts by individual states to reform
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their health insurance systems. Section 4 discusses the important role of the construction
of the fine that is levied on consumers who do not purchase health insurance. Section 5
considers the setting where insurers set premiums strategically. Section 6 concludes.

2 Model with Price-Taking Insurers

For the sake of expositional simplicity, we start by considering a simple insurance model
that incorporates many of the key features highlighted in Akerlof (1970), Wilson (1977,
1980), Einav et al. (2010) and Einav and Finkelstein (2011). Our most parsimonious model
assumes a continuum of risk types, that risk is the only source of consumer heterogeneity,
and losses are binary. In Appendix B, we demonstrate that our key results extend to a
model setting with discrete risk types, richer forms of heterogeneity and multiple loss
sizes.

2.1 Consumers

A unit measure of consumers have wealth w > 0 and face a potential loss of size 0 < l < w
in the presence of limited liability. Consumers only differ in the probability π ∈ [0, 1]
of the loss occurring, which is distributed throughout the population by the continuous
cumulative distribution function H(π) with support [0, 1].10 Let the random variable
Π be H-distributed, and denote a realization of Π by π. Agents are risk-averse with a
concave Bernoulli utility function u(c) over consumption, so the expected utility of type
π is given by

πu(w − l) + (1 − π)u(w)

when there is no insurance.
We assume that individuals can choose from exactly two available insurance contracts

that differ exogenously in how much of the loss l they cover. Following Einav et al.
(2010), and without loss of generality, we normalize the low coverage contract to be no
insurance at a zero premium, and the high coverage contract to be full insurance at some
endogenous premium p. Abstracting from moral hazard, we take l and each individual’s
risk π as exogenous and, therefore, independent of the insurance choice. The demand for
insurance, therefore, is only a function of the price p.

10The full support assumption can be viewed as a limiting case where, as in Hendren (2012), even the
most extreme risk types, for whom the loss never or always occurs, exist with arbitrarily small but positive
density. Our substantive results do not depend on this assumption. Appendix B relaxes this and other
assumptions, as noted earlier.
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The assumption of fixed coverage levels places our analysis in the spirit of Akerlof
(1970) rather than Rothschild and Stiglitz (1976), who endogenize coverage levels as
well.11 As discussed in Einav et al. (2010) and Einav and Finkelstein (2011), this assump-
tion is a reasonable characterization of many insurance markets. It becomes an even more
appropriate assumption for the ACA health exchanges which place regulatory bounds on
minimum coverage, despite allowing for a range of plans that differ in copayments made
by consumers (see Handel et al., 2013, for a model of insurance markets with two fixed
(non-zero) coverage levels, covering 90% and 60% of an individual’s cost, respectively).

2.2 Insurers

There are many identical, risk-neutral insurers that maximize their respective expected
profits. In this section, we assume that insurers act as price-takers, as in Akerlof (1970).
In Section 5, we demonstrate how the results change when insurers set premiums strate-
gically in a model of Bertrand competition.

We assume throughout that an individual’s risk type π is private information, so in-
surers cannot offer different premiums to different individuals. Even if insurers could ob-
serve risk type, the ACA does not permit pricing based on pre-existing conditions. One
can, therefore, think of our analysis as applying to a set of individuals who are otherwise
identical in terms of characteristics that insurers are allowed to price, such as smoking
status.

2.3 Competitive Equilibria

The following definition of a competitive equilibrium is consistent with the informational
assumptions outlined above:

Definition 1. With unobservable risk types π, a competitive equilibrium is a premium p∗ and a
critical type π∗ such that

u(w− p∗) ≥ πu(w− l) + (1− π)u(w) ∀π ≥ π∗, (1)

u(w− p∗) < πu(w− l) + (1− π)u(w) ∀π < π∗ (2)

and
(1− H(π∗))p∗ =

∫ 1

π*
πdH(π)l. (3)

11See e.g. Netzer and Scheuer (2013) for a recent treatment.
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The first two conditions characterize consumers’ demand for insurance, given the
equilibrium premium p∗. At that premium, individuals of risk type π ≥ π∗ are just
indifferent or strictly prefer to buy insurance, whereas all other types π < π∗ prefer to
stay uninsured. The third condition then requires insurers to make zero profits at the pol-
icy premium p∗ on the pool of risk types who demand insurance when the premium is
p∗, which includes all types π ≥ π∗. In particular, the left-hand side of (3) equals the total
premium revenue collected from these agents while the right-hand side is equal to their
expected losses. This zero profit condition can be simply rewritten as p∗ = E[Π|Π ≥ π∗]l,
i.e. the equilibrium premium must equal the expected loss of the pool of insurance buyers
induced to buy the policy.

To characterize the set of competitive equilibria, a graphical representation following
Einav and Finkelstein (2011) is useful. For any critical buyer π ∈ [0, 1], the average cost of
insuring everyone with risk equal to or greater than π is

Γ(π) ≡ E[Π|Π ≥ π]l. (4)

Our assumptions ensure that Γ(π) is continuous, increasing in π, and satisfies Γ(0) =

E[Π]l and Γ(1) = l. In words, when π = 0 is the critical type, the average cost of the
entire population is just the unconditional expected loss. On the other hand, with critical
type π = 1, their losses are certain, and so their expected loss is simply l.

On the demand side, we can define the willingness to pay Ω(π) for insurance of each
type π implicitly by solving

u(w − Ω) ≡ πu(w − l) + (1 − π)u(w). (5)

Since the right-hand side is decreasing in π, there is a unique solution Ω(π) for each π,
which is also continuous, increasing in π, and satisfies Ω(0) = 0, Ω(1) = l.12 In words,
the lowest risk type π = 0 never experiences a loss and, therefore, has no willingness
to pay for insurance. In contrast, the highest risk type π = 1 experiences the loss l for
sure and is, therefore, willing to pay a premium up to l. We can also interpret Ω(π) as an
inverse demand curve: with a premium p = Ω(π), insurance will demanded by all types
higher than π (so that the inverse function Ω−1(p) identifies the marginal buyer when
the premium is p).

A competitive equilibrium, therefore, is any π∗ such that Γ(π∗) = Ω(π∗), so that the

12As is standard, we are assuming that the loss size l does not exceed available wealth w. As discussed
more below in our calibration exercise, in the presence of limited liability, it is possible for actual losses to
exceed wealth for some types, and so Ω(π) is only weakly increasing in π and Ω(1) < l.
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Figure 1: Unique Competitive Equilibrium with Complete Unraveling
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average cost and willingness to pay curves intersect. For the remainder of the paper, we
confine attention to the generic case where all intersections are proper intersections rather
than tangency points of the two curves. A simple illustration is provided in Figure 1. Ob-
viously, Γ(1) = Ω(1), so there always exists a competitive equilibrium where nobody
buys insurance except for the very highest risk types with π = 1, who are just indifferent
between buying or not buying when faced with the fair premium p∗ = l for this pool.
In the situation depicted in Figure 1, this outcome is, in fact, the only equilibrium, corre-
sponding to the case of complete unraveling emphasized in Akerlof (1970). Specifically,
for any π < 1, the average cost curve is above the demand curve, so insurers would make
losses at any premium p < l.

3 Equilibrium Multiplicity and Initial Conditions

Since most of the insurance literature has implicitly focused on either linear demand or
cost curves (see, e.g., Cutler and Reber, 1998, and Einav and Finkelstein, 2011) or strate-
gic insurers (see Section 5 and Einav et al., 2010), the possibility of multiple competitive
equilibria has not received much attention in this context. As a result, there is no real role
for the type of “initial conditions” discussed in Section 1.

Equilibrium multiplicity, however, can arise naturally in our framework because the
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Figure 2: Multiple Competitive Equilibria
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average cost and demand curves are upward sloping, but their shapes are otherwise unre-
stricted. A simple example is depicted in Figure 3. There are three competitive equilibria
in total, namely the one with unraveling located at π∗ = 1 as well as two additional
equilibria with critical buyers π∗

1 and π∗
2 .

As is well known in other contexts (see e.g. Mas-Colell et al., 1995, for a labor market
model with unobservable productivities), whenever there are multiple equilibria, they
are Pareto ranked: The equilibrium at π∗

1 is Pareto better than the equilibrium at π∗
2 ,

which is Pareto better than the equilibrium with complete unraveling at π∗ = 1. For
example, compare π∗

1 against π∗
2 . In the equilibrium at π∗

1 , all types π ≥ π∗
2 are better off

than in the equilibrium at π∗
2 because they pay a lower premium for their insurance (i.e.,

Γ(π∗
1) < Γ(π∗

2)). Moreover, the types π ∈ [π∗
1 , π∗

2) prefer to buy insurance at π∗
1 rather

than staying with their endowment, which would be their choice at π∗
2 . So, they are also

better off. The types π < π∗
1 are indifferent because they don’t buy insurance in either

case. Moreover, insurers earn zero profits in all equilibria.
Indeed, the “good” equilibrium π∗

1 — which offers the lowest premium and entices
the most consumers to buy insurance — Pareto dominates all the others.13 The other
equilibria arise because of a coordination failure: When only a few individuals purchase

13In fact, the good equilibrium is constrained Pareto efficient under the restriction to full insurance con-
tracts.
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insurance, they will be the highest risk types, and so the premium that breaks even for
this pool will also be high. At the same time, only the riskiest types find it worthwhile to
sign up for insurance because the premium is so high.

3.1 Introducing Dynamics

To study the circumstances under which initial conditions could affect which competi-
tive equilibrium is reached, a simple dynamic version of this static model is required.
The most straightforward way to introduce dynamics is to assume that, in each period,
premiums reflect the average cost of the pool of individuals who purchase insurance,
thereby allowing insurers to always break even. But, given this premium, consumers de-
cide whether to enroll for insurance the next period. Cutler and Reber (1998) and Monheit
et al. (2004) provide some evidence for this pattern of price and demand adjustments.

These dynamics can be conveniently illustrated graphically using the same type of
diagram as before. Recall that, for any critical type πt in period t, we can read the pre-
mium from the average cost curve by setting pt = Γ(πt). The consumers’ reaction in
t + 1, therefore, can then be read off the demand curve to obtain a new marginal buyer
πt+1 = Ω−1(pt), and so forth. This leads to the recursion πt+1 = Ω−1(Γ(πt)) for the
evolution of marginal buyers, as illustrated in Figure 3. It immediately implies that π

increases (i.e. there is unraveling where the premium increases and fewer consumers
sign up for insurance) whenever Γ(π) > Ω(π) while π falls otherwise (more consumers
demand insurance, so the premium falls).

We can see that, of the three competitive equilibria here, only two are stable, whereas
the intermediate one with the marginal buyer π∗

2 is unstable. Which competitive equilib-
rium is eventually reached depends on the initial value of π, as formalized in the follow-
ing proposition:

Proposition 1. (i) Initial conditions π ∈ [0, 1) matter for which competitive equilibrium is
reached only if there exist at least three competitive equilibria.
(ii) When there are exactly three equilibria with critical types π∗

1 < π∗
2 < 1, the intermediate

equilibrium with marginal buyer π∗
2 is generically unstable while the other two are stable.

(iii) In this case, π∗
2 is the critical threshold for initial conditions: for any initial π > π∗

2 , there
is unraveling to the “bad” stable equilibrium where π∗ = 1. For any π < π∗

2 , the “good” stable
equilibrium with critical type π∗

1 is reached.

Proof. See Appendix.

With three equilibria, unraveling occurs starting from initial conditions to the left of
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Figure 3: Dynamics and Equilibrium Stability
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π∗
1 and to the right of π∗

2 , whereas the dynamics imply falling premiums and more indi-
viduals enrolling otherwise. Evidence for such dynamics have been documented in states
which, before the ACA, which placed restrictions on adjusting premiums based on age
and preexisting conditions. Writing about the New Jersey Individual Health Coverage
Program (IHCP) started in 1993, Monheit et al. (2004) found dynamics similar to those
shown in Figure 3 for values of π > π∗

2 (or π < π∗
1 ). In particular, between the end of

1995 and the end of 2001, enrollment fell from 186,130 individuals to just 84,968, with pre-
miums rising by 200% to 300%. Three other states — Kentucky, New York and Vermont
— tried health care reforms with similar consequences (Cohn, 2012). Cutler and Reber
(1998) provide evidence for gradual unraveling of high coverage plans in a setting with
employer provided insurance.

As widely reported in the popular media reports, the three initial conditions described
in Section 1 would quite reasonably discourage lower-risk consumers from enrolling in
the health exchanges relative to higher-risk consumers. In the context of our model in this
section, we would expect consumers with large values of π to be the first to enroll, poten-
tially leading to being trapped in the bad stable equilibrium. Of course, by Proposition 1,
these mechanics only matter if multiple equilibria actually exist in the first place, a topic
to which we now turn.
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3.2 A Calibration based on the Medical Expenditure Panel Survey

To examine the potential for the type of multiple equilibria shown in Figure 3, we now
present a simple quantification of the model. This subsection provides calculations cor-
responding to our model developed above, where household types differ in their prob-
ability of an identical loss. Appendix B presents a calibration based on the case where
household types face the same loss probability across different loss amounts. The key
lessons are the same in both sets of calculations. Moreover, the generalization in Ap-
pendix B demonstrates that similar quantitative exercises could be performed allowing
for richer forms of heterogeneity.

Figure 4 shows the average cost curve as well as the willingness-to-pay curves at dif-
ferent levels of risk aversion. The horizontal axis corresponds to the top X% percent of
spenders, where X (the “rank”) is the shown value. The vertical axis is denominated in
dollars. The average cost curve (AC) is calculated from the Medical Expenditure Panel
Survey for the pre-Medicare population (ages 18 - 64) using data provided to us by Cohen
and Uberoi (2013). The average cost curve simply sorts medical spenders by percentile.14

For example, the mean health expenditure per person in the top 100% of the population
(i.e., the entire population mean) is equal to $3,844, increasing to $7,476 for population in
the top 50%, and climbing to $38,147 for population in the top 5%.

We calibrate the marginal willingness to pay for insurance for each of the shown per-
centiles as follows. First, we assume throughout a constant relative risk aversion utility
function u(c) = c1−α/(1 − α), where α is the level of risk aversion. Second, for this cali-
bration, the constant loss value l is derived from equation (4) by using the average cost of
the top 5% of the population from the MEPS and setting with π5% = 1 for them. Third,
given this fixed loss value, the (marginal) value of π is then calculated recursively (from
the top) at each value of X% by solving equation (4) for π.15 (Hence, the value of π in-
creases as the shown value of X% decreases.) Finally, for a given value of α, the demand
curve is then calculated by solving equation (5) for the value of Ω for each value of π, and
hence X%. The value of wealth w in equation (5) is initially set equal to the median net
worth found in the 2010 Survey of Consumer Finances (Board of Governors 2012) , which
assumes that the probability of a loss is independent of the household’s wealth.

Consider first the case of α = 3. Notice that the willingness-to-pay curve is always
smaller than the AC curve (i.e., Ω(π) < Γ(π)) except at the top rank (the smallest shown

14We are grateful to both of these authors for providing some additional data related to the pre-Medicare
(ages 18 - 64) population that are not shown in their paper.

15For instance, to compute the probability π10% of the loss for the top 10-5% of spenders, we solve
(0.5π10% + 0.5π5%)l = AC10%, where we take the average costs AC10% and l = AC5% from the MEPS
data and set π5% = 1. π20% is then obtained from solving (0.5π20% + 0.25π10% + 0.25π5%)l = AC20%.
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Figure 4: Willingness to Pay and Average Costs: Median Net Worth
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Source: Medical Expenditure Panel Survey (Cohen and Uberoi 2013).
Explanation: Wealth equals net worth (assets less liabilities), including net housing wealth.

value of X%) where both curves join. This outcome corresponds to the full unraveling
case shown previously in Figure 1. Intuitively, at this comparatively small level of risk
aversion, agents with a smaller loss probability π (located at larger values of X% on the
horizontal axis) are willing to forgo insurance, pushing up its average cost, thereby lead-
ing to unraveling as the value of X% gets smaller. Now, consider the case of α = 5. In this
case, the willingness-to-pay curve intersects the AC curve just once before again joining
the AC curve at the smallest value of X%. Since at the the good equilibrium (close to the
top 50% of spenders), the demand curve intersects the cost curve from below, we know
from Section 3 that it is stable, whereas the equilibrium at the top 5% is unstable. Starting
from any initial condition, the dynamics will bring the market to the stable equilibrium
located at the larger rank, with more than half of the population being covered, consistent
with a comparatively large level of risk aversion.
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Figure 5: Willingness to Pay with Median Liquid Assets
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Explanation: Wealth equals liquid assets only.

Finally, consider the in-between case where α = 4. Notice that the willingness-to-
pay and AC curves now intersect at three places, at the shown stable “good” and “bad”
equilibria and an unstable intermediate equilibrium. Notice that the sharply rising AC
curve as rank grows smaller plays a critical role in causing these multiple intersections.
More generally, multiple equilibria are more likely to be produced as losses become more
concentrated. Indeed, health costs are much more concentrated than most other types of
insurable losses. By Proposition 1, initial conditions matter here: if we start from a situa-
tion to the right of the unstable equilibrium (covering somewhere between the top 10 and
20% of the population in terms of spending), the dynamics converge to the worst equilib-
rium with only the top 5% covered. Otherwise, we eventually reach the best equilibrium
with the critical quantile between the top 20 and 25%.

To check the robustness of our results to various assumptions, Figure 5 repeats the
same calculations assuming that wealth w is now set equal to the median liquid assets
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reported in the 2010 Survey of Consumer Finances. (Hence, the AC curve remains un-
changed.) Liquid assets are a potentially more accurate measure of the relevant amount
of wealth when illiquid assets, mainly housing, cannot be legally confiscated to pay for
medical bills. Because the value of liquid assets is smaller than the median net worth, we
can consider relatively smaller values of α in our comparisons.

As before, notice that the smallest value of α, now set equal to 1, produces a willing-
ness-to-pay curve that is always below the AC curve, corresponding to the case of full
unraveling. The largest value of α, now set equal to 3, produces just one intersection (cor-
responding to an unstable equilibrium), as well as a stable corner equilibrium where ev-
eryone gets insurance (since the calibrated willingness to pay for insurance of the bottom
50% of spenders still exceeds the average cost of the entire population). The in-between
value of α, now set equal to 2, again produces three equilibria. While the willingness to
pay of the top 5% is less than their average cost, we can think of a bad equilibrium cor-
responding to full unraveling (covering even less than the top 5%). The reason why the
highest willingness to pay no longer also joins the AC curve at its highest point is due to
limited liability. The calibrated loss amount l now exceeds the wealth level w, and so the
maximum potential loss is capped at w.16 This demonstrates that the presence of limited
liability can enhance the likelihood of equilibrium multiplicity by reducing the slope of
the willingness-to-pay curve in the same neighborhood where the slope of the AC curve
is increasing.

By focusing on median wealth for all cost quantiles, our estimates, however, have
not accounted for the fact that both the size of wealth and the probability of loss tend
to increase in age. For additional robustness, Figure 6 shows the effect of assuming that
rank now grows linearly in age, where 18-year olds are now effectively located at the
100% mark on the horizontal axis while 64-year olds are located at the 5% mark. We
can now also use the median values of liquid assets at each age from the 2010 Survey of
Consumer Finances. Notice that allowing for this relationship has very little impact on
our results. Relative to Figure 5, the effects of limited liability are now absent because
older people tend to have both more assets and a higher probability of loss.

Appendix B presents additional estimates that relax the assumption that the size of
loss is fixed across different risk types. In particular, the probability of loss is now held
fixed across households, and a risk type is now defined in terms of the heterogenous
size of loss. As before, a low level of risk aversion α leads to unraveling. Moreover, the
in-between level of risk aversion produces multiple stable equilibria. However, unlike

16In the actual simulations, we cap the loss at w less $1,000. Not only does this threshold avoid “almost”
infinite marginal utility states, it roughly corresponds with Medicaid qualifications as well.
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Figure 6: Willingness to Pay with Median Liquid Assets and Risk Increasing by Age
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before, even large values of risk aversion now produce multiple stable equilibria. Overall,
therefore, the empirical evidence is consistent with the potential for multiple equilibria,
especially for moderate values of risk aversion and when loss sizes are not fixed.

Of course, we view these calibrations as merely a first step towards demonstrating
the possibility of multiple equilibria in insurance markets. In a more complete exercise,
which is beyond the scope of the current paper, the full MEPS data could be exploited to
obtain the entire average cost curve on a fine percentile grid, and the marginal willingness
to pay curve could be calibrated for each quantile using data on both wealth and medical
spending. Moreover, we have considered data from the entire population aged 18-65
rather than just the subset of individuals most likely to demand insurance in the ACA
health exchanges. Finally, our calculations have abstracted from the various fines and
subsidies in place, to which we turn in the next section.
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4 Mandate Enforcement through Fines

Given the previous experience in the states, the mandate — in reality, the associated fine
that gives the mandate its force — is widely viewed as critical to the success of the ACA.
Indeed, the mandate was the focus of the challenge to ACA heard by the Supreme Court
in National Federation of Independent Business v. Sebelius.17 Chandra et al. (2011) present
evidence that the phase-in of the mandate in the Massachusetts plan encouraged healthier
consumers to enroll.

In this section, we show that the actual form of the mandate, and not just its size per
se, plays an important role in the presence of equilibrium multiplicity. In addition to the
fine, the ACA also makes subsidies available to households with lower income.

We begin by demonstrating how the introduction of a fine f for not having insurance
as well as a subsidy s for having insurance can be captured in our graphical framework.
Of course, neither the fine nor the subsidy affects the average cost curve Γ(π). However,
it affects the construction of the willingness to pay for insurance, now denoted as Ω̂(π),
through the modified indifference condition

u(w − Ω̂ + s) = πu(w − f − l) + (1 − π)u(w − f ). (6)

Notice that the subsidy s and the fine f both shift up the inverse demand curve Ω̂(π), in
fact, in a parallel manner in the case of a subsidy. We now focus on the construction of
the fine f given its greater importance in the recent debate.

Unsurprisingly, a fine can give rise to better equilibria with more individuals insured.
In the example shown in Figure 1 where only the complete unraveling equilibrium exists,
shifting up the Ω̂-curve will induce the emergence of equilibria with a positive mass of
individuals getting coverage. In fact, this upward shift could induce multiple equilibria
where previously there was only one. For the example shown in Figure 3 with three
equilibria, Figure 7 illustrates how shifting up the Ω̂-curve can shrink the range of initial
values (π̂∗

2 , 1] for which unraveling to the bad stable equilibrium π∗
3 occurs. At the same

time, it also shifts both the good stable equilibrium π∗
1 and the bad stable equilibrium π∗

3

to the left and, hence, leads to a greater number of individuals being covered at a lower
premium.

Of course, we can always set the fine to be large enough such that there exists a unique
equilibrium where everyone buys insurance and there is no risk of unraveling. However,

17The mandate was upheld as a valid exercise of Congress’ power under the Taxing Clause. The case,
heard along with Florida v. Department of Health and Human Services, also considered the expansion of the
Medicaid system.
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Figure 7: Enforcement of a Mandate through a Fine f
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this outcome may be both inefficient and politically challenging. Indeed, the peculiar na-
ture of the fine’s construction under the ACA — namely, its assessment only on tax filers
who are owed a refund — reflects the sensitivity that Congress felt it faced in creating a
fine that causes too much hardship.

A more interesting question is whether there exist another fine mechanism that elimi-
nates the possibility of equilibrium multiplicity without imposing a higher fine in the best
equilibrium π∗

1 . As Figure 7 makes clear, it is actually not necessary to impose a higher fine
everywhere in order to eliminate the bad stable equilibria. A large fine value is only nec-
essary in situations where few individuals enroll for insurance, that is, where the critical
value of π∗ and, hence, the premium are both large.

In contrast to the absolute dollar fine — or a percentage of income, whichever is
greater — that exists under the ACA, a relative fine that is tied to the actual equilibrium
premium in the market achieves exactly this. As noted in Section 1, a relative fine was
part of Massachusetts health care reform law enacted in 2006. Using the dynamics devel-
oped in Section 3, suppose that in each period t, the fine that must be paid by uninsured
consumers is set equal to kpt, where k > 0 is some constant that can be interpreted as the
percentage of the current premium pt.18 Since pt = Γ(πt), the resulting willingness to
pay for insurance, now denoted as Ω̃(π), for each risk level π is then defined implicitly

18In the case of Massachusetts, the corresponding value of k would roughly equal 1/2.
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Figure 8: Relative versus absolute fine with kΓ(π̂∗
1) = f
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by
u(w − Ω̃) = πu(w − l − kΓ(π)) + (1 − π)u(w − kΓ(π)).19 (7)

The benefit of the relative fine is that the fine value — and, hence, consumers’ demand for
insurance — automatically increase as the market unravels towards a bad stable equilib-
rium. This outcome occurs even if we choose k such that kΓ(π̂∗

1) = f , so the relative and
the absolute fines take exactly the same value in the best equilibrium π̂∗

1 . These dynamics
are illustrated in Figure 8, which shows how the inverse demand curve under the relative
fine Ω̃(π) is a counter-clockwise rotation at point π̂∗

1 relative to the inverse demand curve
under the absolute fine Ω̂(π). Proposition 2 formalizes the advantages of a relative fine
compared to an absolute fine with this normalization.

Proposition 2. Let π̂∗
1 < 1 be the best equilibrium under an absolute fine f > 0, and set the

relative fine such that kΓ(π̂∗
1) = f (i.e., equal fine values at the best equilibrium). Then:

(i) for any number N ≥ 1 of equilibria, the worst equilibrium π̃∗
N under the relative fine is Pareto

better (more coverage at a lower price) than the worst equilibrium under the absolute fine π̂∗
N, i.e.

π̃∗
N ≤ π̂∗

N.
(ii) The best equilibrium under the absolute and relative fine are identical, i.e. π̂∗

1 = π̃∗
1 .

(iii) The interval of initial conditions [0, π̃1) from which we converge to the best equilibrium π̃∗
1

19Notice that, since Γ(π) is increasing, the right-hand side of (7) is still decreasing in π, and so Ω̃(π)
remains well-defined and increasing.
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under the relative fine is larger than the range of initial conditions [0, π̂1) from which we converge
to the best equilibrium π̂∗

1 = π̃∗
1 under the absolute fine, i.e. π̃1 ≥ π̂1.

Proof. See Appendix.

In sum, re-construction of the fine toward a relative basis is more likely to expand
coverage, by moving the market to the good stable equilibrium, without costing non-
insured consumers anything more in the good equilibrium. However, even if the bad
stable equilibrium does emerge (which may still be possible under a small enough relative
fine), its “badness” is also reduced (more coverage at a lower price).

It is also worth pointing out that, in the context of this model, introducing a fine for
non-participation (or other forms of enforcing a mandate) can never lead to a Pareto im-
provement. This is because there are always individuals with sufficiently low π who, in
any equilibrium without a fine, prefer to demand no insurance. With a fine in place, they
will either remain uninsured and pay the fine or, if the fine is high enough, buy insurance
at a premium that is higher than their original willingness to pay. In either case, they
will be worse off. Hence, a fine or mandate can increase coverage but not in a Pareto
improving way.20

Even when relaxing the assumption that π has full support on [0, 1] as in Appendix B,
a Pareto improvement from introducing a fine is possible only in the presence of multiple
equilibria, when the fine induces a shift from a bad equilibrium with low coverage to a
good equilibrium where in fact everyone gets covered, and everyone being covered is an
equilibrium even without the fine. Only this guarantees that nobody ends up paying the
fine and even the lowest risk types actually prefer buying insurance when everyone does
so, so they are better off compared to the bad equilibrium (see e.g. Figure 10 in Appendix
B). This again demonstrates the importance of explicitly accounting for equilibrium mul-
tiplicity, which turns out to crucially underlie standard arguments for Pareto improving
mandates or fines in the context of adverse selection.

5 Strategic Insurers

So far, we have focused on the notion of competitive equilibrium where insurers act as
price-takers, as in Akerlof (1970). A natural question, therefore, is whether equilibrium
multiplicity and, hence, the role of initial conditions also extend to situations in which
insurers strategically set premiums rather than taking them as given.

20This argument goes through unaffected when the revenue from the fine is returned lump-sum to all
individuals, or when the fine on non-participants is replaced by a subsidy for participation that is financed
by a lump-sum tax.
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Following Einav et al. (2010) in the insurance market setting and Mas-Colell et al.
(1995) in the labor market setting, suppose there are at least two insurers who set premi-
ums in a two-stage Bertrand game. In the first stage, insurers simultaneously announce
their premiums. In the second stage, individuals decide whether to purchase insurance
and, if so, from which insurer.21 Of course, each consumer’s risk level π is still private
information. But we now assume that there is common knowledge of the distribution
H(π), consumer wealth w, the loss amount l, and the form of utility u(c). Hence, the
shapes of Γ(π) (the average cost curve) and Ω(π) (the willingness to pay curve) are com-
mon knowledge as well.

Returning to the setting without any fines, the following proposition, which is easily
adapted from Mas-Colell et al. (1995) and Einav et al. (2010), shows that equilibrium
multiplicity disappears.

Proposition 3. With strategic insurers, the unique subgame perfect equilibrium outcome of the
above two-stage game involves the critical type

π∗
1 = min {π ∈ [0, 1] |Ω(π) = Γ(π)} .

In words, when insurers set premiums strategically, only the best competitive equilib-
rium (with the lowest premium and the most people covered) survives. This result holds
even if there are more than one competitive equilibrium, that is, multiple equilibria in the
price-taking model.

Intuitively, consider again the setting shown earlier in Figure 3 with exactly three com-
petitive equilibria. Figure 9 illustrates the mechanics when firms now behave strategi-
cally. Suppose we are in the intermediate equilibrium with critical type π∗

2 and premium
p∗2 . If all insurers set premium p∗2 , all types π ≥ π∗

2 demand insurance, and the average
cost of this pool is Γ(π∗

2) = p∗2 , and so all insurers make zero profits. Hence, this outcome
is a competitive equilibrium in the sense of Definition 1.22 But it also emits a profitable
deviation by any strategic insurer. In particular, suppose that an insurer deviates and sets
a premium p′2 < p∗2 . As drawn in Figure 9, this insurer will capture the entire market with
demand from all types π ≥ π′

2 and π′
2 < π∗

2 . Moreover, at π′
2, the average cost curve is

below the demand curve, so Γ(π′
2) < p′2. Hence, offering the premium p′2 will result in

21As usual, to break a tie (since actual currency denominations are technically a countable set to the penny
level), if multiple insurers announce exactly the same premium levels, individuals then randomize among
them with equal probabilities.

22As shown earlier, this particular equilibrium is unstable in the context of dynamics. But this fact is
immaterial for our argument here to show that this equilibrium does not survive under strategic premium
setting. The same argument can be made for any stable equilibrium that is worse than the best equilibrium.
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Figure 9: Equilibrium Uniqueness with Strategic Insurers
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strictly positive profits for the deviating insurer corresponding to the dashed area in Fig-
ure 9. The only competitive equilibrium from where there is no such profitable deviation
is the good equilibrium with marginal buyer π∗

1 and the lowest premium p∗1 .
Of course, if, alternatively, we started from the setting with just a single equilibrium

with full unraveling, as shown earlier in Figure 1, that unique equilibrium in the price-
taking setting remains the unique equilibrium in the strategic setting. Hence, assuming
that premiums are set strategically does not necessarily imply that many households ob-
tain insurance.

Strategic premium setting in a framework of Bertrand-like competition may seem like
the more relevant case than price-taking for insurance markets, since many insurers are
not atomistic and do actively set premiums taking into count their competitors’ and cus-
tomers’ responses to their actions. However, as e.g. Mas-Colell et al. (1995) emphasize
in the related setting of labor markets with adverse selection, the outcome in Proposition
3 relies on the rather strong assumption that firms have common knowledge about all
market fundamentals, including the entire shape of the demand and cost curves Ω and Γ.
In contrast, in the competitive equilibria with price-taking considered in Sections 2 to 4,
insurers only need to know the average cost of those who buy insurance at the going pre-
mium, but they do not need to know anything about the preferences or risk distribution
underlying this or away from the current situation.
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In the strategic setting, a mistaken attempt at a profitable deviation could lead to sub-
stantial losses. For instance, suppose we start from the worst equilibrium π∗ = 1 in
Figure 9. If an insurer deviates by offering a marginally lower premium p = l − ε, this
will lead to losses since Γ(π) > Ω(π) for π close to one. To make profits, a deviating
insurer would have to offer a discretely lower premium p < p∗2 < l, but also not too low,
since losses would be incurred again if p < p∗1 . This demonstrates that rather precise
knowledge on the side of insurers about market conditions potentially far away from the
current situation is required to make the argument underlying Proposition 3 work.

In the absence of perfect information about the market structure, insurers may have
to experiment with their pricing to find out about market fundamentals, or may prefer
local adjustments to premiums in a backward looking rather than strategic way, as docu-
mented in Cutler and Reber (1998).23 As noted in Section 1, transitory losses from pricing
mistakes or experimentation could be magnified by the fact that regulations prevent in-
surers from changing prices frequently or sharply increasing premiums. Once set, ACA
plan premiums are generally viewed as locked until the next open enrollment period
(Kaiser 2013) .

Moreover, under the McCarran-Ferguson Act of 1945, individual states typically regu-
late the business of insurance, and most states already require some steps before rates can
be increased (National Conference of State Legislatures 2013).24 However, because rules
vary between states, Title I (Subtitle A, Sec. 1003) of the ACA creates a more uniform
standard around rate increases. These rules include requiring states to collect premium
information and determine if plans should be excluded from the health exchange based
on unjustified premium increases.25 If an insurer requests a premium increase above 10%,
a more detailed explanation must be provided and posted on their and the HHS website.
The ACA also makes $250 million available to states to take action against insurers re-
questing unreasonable rate increases. According to the Centers for Medicare and Medi-
caid Services (2010) , “[t]his funding will help assure consumers in every state that any
premium increases requested by their insurance company, regardless of size, is justified.”

In sum, an insurer who strategically guessed a wrong price could be stuck with that
decision for a lengthy amount of time and then face resistance to large, corrective price
increases. As a result, the consumer-protection legislation intended to protect consumers

23See also the discussion in Section 3. Such behavior would effectively make them price-takers again.
24At least two dozen states require that the insurer receives prior approval from the state insurance com-

missioner or department before increasing health insurance premiums (National Conference of State Leg-
islatures 2013).

25For a few states — Alabama, Louisiana, Missouri, Oklahoma, Texas, and Wyoming — these determi-
nations will be made by the federal government since these states do not have effective review processes in
place.
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from large price increases could essentially force insurers into price-taking behavior that
includes the potential of getting stuck in the bad equilibrium with high prices. In the
absence of common knowledge, insurers may have more incentives to strategically seek
profitable deviations — thereby work toward the good equilibrium with lower prices —
if they could more easily experiment with price changes.

6 Conclusion

This paper introduces simple dynamics into a standard insurance model with adverse
selection and characterizes when the “initial conditions" of a new insurance market —
like a website failure at launch — could have permanent consequences. We show that
initial conditions can be material if (i) insurers are competitive price-takers, and if (ii)
there exist at least three competitive equilibria. In the case of exactly three equilibria,
one equilibrium is unstable while the other two are stable. A “good” stable equilibrium
is Pareto superior — by offering more coverage at a lower price — to a “bad” stable
equilibrium. We provide some suggestive empirical evidence that the presence of three
equilibria is indeed consistent with moderate levels of risk aversion. Multiple equilibria
are more likely to emerge when losses are very concentrated (as in the case of health care)
and in the presence of limited liability. Future work can provide a more detailed empirical
analysis using a wider range of data sets.

As is well known, the Affordable Care Act (ACA) levies a fine on non-participants in
order to try to prevent unraveling. Without the presence of multiple equilibria, a fine can-
not expand coverage in a Pareto improving manner, but it effectively redistributes from
low to high risk types. Equilibrium multiplicity is a necessary (but not sufficient) condi-
tion for a fine to achieve a Pareto improvement. The ACA’s fine, however, is constructed
as an absolute amount, equal to the greater of a fixed dollar amount or a fixed fraction of
income. In contrast, the 2006 Massachusetts plan, on which the ACA is modeled, levied
a fine on a relative basis, equal to a fraction of the equilibrium premium. The relative
fine, therefore, grows with the amount of adverse selection. We show that changing the
fine from an absolute to a relative amount — normalized to be equal in the desired, good
equilibrium — increases the range of initial conditions consistent with reaching the good
equilibrium, while also reducing the severity of the bad equilibrium, if it still exists.

If insurers price strategically, rather than acting like price takers, only the good equilib-
rium emerges. In particular, any attempt to price at the bad equilibrium emits profitable
deviations. However, strategic pricing also requires insurers to fully know the distribu-
tion of risk types and participant characteristics (preferences, loss amounts, and wealth).
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Incorrect deviations can be costly across a wide range of guesses: If an insurer reduces
prices too little, they will continue to be stuck with high-risk types who are now paying
below the fair rate required for zero profits. But if the firm reduces prices too much, it still
can lose money even if it favorably changes the risk pool. Existing evidence from previ-
ous health care reforms at the state level and from some employer-based plans suggest
that insurers instead update their prices more consistently with the price-taking model.
While there could be good reasons for limitations to the frequency of price changes and
the amount of increases, such as consumer protection, an unintended consequence could
be that they further discourage price discovery, thereby increasing the potential for reach-
ing a Pareto dominated equilibrium.
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A Appendix: Proofs

A.1 Proof of Proposition 1

(i). We show that initial conditions cannot matter when there are only one or two com-
petitive equilibria. If π∗ = 1 is the only equilibrium, we must have Γ(π) > Ω(π) for all
π < 1. Otherwise, by continuity of Γ and Ω and since Γ(0) = E[Π]l > Ω(0) = 0, there
would have to exist at least one intersection of Γ and Ω at some π < 1 and hence another
equilibrium. Since Γ(π) > Ω(π) for all π < 1, the dynamics imply unraveling to π∗ = 1
for any initial π and therefore initial conditions do not matter.
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If there are two equilibria with π∗ = 1 and some π∗
1 < 1, it must hold that Γ(π) >

Ω(π) for all π ∈ [0, π∗
1) and Γ(π) < Ω(π) for all π ∈ (π∗

1 , 1) by an analogous argument
as above. Hence, for any π ∈ [0, 1), we converge to the constrained efficient equilibrium
π∗

1 < 1. As a result, initial conditions again do not matter for the equilibrium that is
eventually reached except in the non-generic case where the initial π = 1.

(ii) and (iii). Note first that, for any number N of equilibria π∗
1 < ... < π∗

N−1 < 1,
the best equilibrium π∗

1 must be stable generically. This is because Γ(π) > Ω(π) for all
π ∈ [0, π∗

1) and, since there is a proper intersection of Γ and Ω generically, Γ(π) < Ω(π)

for all π ∈ (π∗
1 , π1) and π1 > π∗

1 sufficiently close to π∗
1 . With exactly 3 competitive

equilibria π∗
1 < π∗

2 < 1, this implies that in fact π1 = π∗
2 , and since again there is a proper

intersection of Γ and Ω at π∗
2 generically, Γ(π) > Ω(π) for all (π∗

2 , 1), as illustrated in
Figure 3. Hence, the intermediate equilibrium π∗

2 is unstable and the other two are stable.
Moreover, we converge to π∗

1 for any initial π < π∗
2 and to π∗ = 1 for any π > π∗

2 .

A.2 Proof of Proposition 2

Note first that, for any absolute fine f > 0, Ω̂(1) = l + f > Γ(1) = l, so for any number
N of equilibria, both the best equilibrium π̂∗

1 and the worst equilibrium π̂∗
N under f must

satisfy π̂∗
1 ≤ π̂∗

N < 1. We next observe that, comparing the definitions (6) and (7) and
using the normalization that kΓ(π̂∗

1) = f and the fact that Γ(π) is increasing in π, Ω̃(π) <

Ω̂(π) for all π < π̂∗
1 and Ω̃(π) > Ω̂(π) for all π > π̂∗

1 . We use this repeatedly to prove
claims (i) to (iii) in the proposition.

(i). Since Ω̂(1) > Γ(1) under f > 0, the worst equilibrium π̂∗
N < 1 must be such that

Ω̂(π) > Γ(π) for all π > π̂∗
N. Since π̂∗

N ≥ π̂∗
1 , the above result that Ω̃(π) > Ω̂(π) for all

π > π̂∗
1 a fortiori implies Ω̃(π) > Ω̂(π) > Γ(π) for all π > π̂∗

N. This immediately rules
out π̃∗

N > π̂∗
N.

(ii) and (iii). Note first that the best equilibrium π̂∗
1 is always such that Ω̂(π) < Γ(π)

for all π < π̂∗
1 . Moreover, since we observed that Ω̃(π) < Ω̂(π) for all π < π̂∗

1 , we also
have Ω̃(π) < Γ(π) for all π < π̂∗

1 ≤ π̃∗
1 . Hence, the range of initial values from which we

converge to the best equilibrium always takes the form of an interval with lower bound
zero and upper bound π1 ≥ π̂∗

1 . Since Ω̃(π) > Ω̂(π) for all π > π̂∗
1 and Ω̃(π̂∗

1) = Ω̂(π̂∗
1),

we also have π̃∗
1 = π̂∗

1 , as claimed in (ii).
Suppose first that the best equilibrium π̂∗

1 < 1 is the unique equilibrium under the
absolute fine f , so Ω̂(π) > Γ(π) for all π > π̂∗

1 and vice versa. Then by the above
observation that Ω̃(π) > Ω̂(π) for all π > π̂∗

1 and vice versa, this immediately implies
that π̃∗

1 = π̂∗
1 is also the unique equilibrium under the relative fine. It also implies that,
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in both cases, the best equilibrium is globally stable, so we converge to it for any initial
conditions and thus π̃1 = π̂1 = 1.

Otherwise, since the best equilibrium π̂∗
1 generically corresponds to a proper intersec-

tion of Ω̂(π) and Γ(π) and Ω̂(π) < Γ(π) for all π < π̂∗
1 , me must have Ω̂(π) > Γ(π)

for some interval (π̂∗
1 , π̂1) with π̂1 > π̂∗

1 . Hence, under the absolute fine, we converge to
π̂∗

1 for any initial π in the interval [0, π̂1). Then the above observation that Ω̃(π) > Ω̂(π)

for all π > π̂∗
1 immediately implies Ω̃(π) > Γ(π) for some interval (π̂∗

1 = π̃∗
1 , π̃1) with

π̃1 > π̂1. The range of initial values for π for which we converge to the best equilibrium
under the relative fine is therefore [0, π̃1) with π̃1 > π̂1.

B Appendix: Generalizing the Price-Taking Model

This Appendix generalizes the model of Section 2 to allow for the presence of discrete risk
types, a richer amount of heterogeneity between consumers and more general variation
in the size of losses.

B.1 Allowing for Discrete Risk Types

We now show multiple equilibria can emerge even when we relax the assumption that
the distribution of types H(π) is continuous with full support on [0, 1]. For example,
consider a case with three risk types, 0 < πL < πM < πH < 1, of low (L), medium (M)
and high (H) risk, respectively. Their willingness to pay for insurance Ω(π) is depicted
as black dots in Figure 10. The empty circles represent the average costs of insuring the
corresponding pools, and so Γ(πH) is the cost of only insuring the high risk type H,
Γ(πM) is the average cost of insuring both the medium M and high risk H types, and
Γ(πL) = E[Π]l is the average cost of insuring all three risk types.

We have chosen these values such that there are two competitive equilibria: one good
equilibrium in which everyone is insured at premium p1 = E[Π]l, and another bad equi-
librium in which only the high risk type is insured at a higher premium p2 = πH l > p1.26

There is no equilibrium where only the medium and high types πM and πH are insured,
because the average cost Γ(πM) for that pool is higher than the willingness to pay of the
medium type Ω(πM), so the medium risk type would not buy insurance at premium
Γ(πM) and the dynamics would unravel to the bad equilibrium.

26With discrete types, competitive equilibria involve points with Ω(π) ≥ Γ(π) rather than necessarily
Ω(π) = Γ(π). However, Definition 1 still applies. For instance, in the competitive equilibrium with pre-
mium p2, we have Ω(πL) < Ω(πM) < p2 < Ω(πH), so that only the highest type πH demands insurance.
Moreover, p2 = Γ(πH) = πH l, and insurers make zero profits.
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Figure 10: Equilibrium Multiplicity with Three Types
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Let us connect Figure 10 to the corresponding figures that we drew for the case of a
continuum of types in Sections 2 and 3. Filling up the space between the three discrete
types naturally leads to Figure 11. We see that, with continuous types and this pattern of
curves, there are in fact three equilibria: a stable bad equilibrium, where only types π ≥
π2 are insured (with πM < π2 < πH), an unstable interior equilibrium with critical type
π1 between πL and πH, and a stable corner equilibrium where everyone with π ≥ πL is
insured. Notice that Figure 11 is very similar to Figure 3 shown in Section 3. In particular,
for initial conditions to matter, the existence of an unstable equilibrium is still required,
and the average cost and willingness to pay curves need to intersect at least twice in
the interior. Moreover, the marginal buyer π1 in the unstable equilibrium represents the
critical value of initial conditions that determines whether the good or bad equilibrium is
reached eventually. The only difference between the discrete and the continuous cases is
that the highest risk type in the discrete case may lay within the support shown for the
continuous case.

B.2 Richer Forms of Consumer Heterogeneity and Multiple Loss Sizes

It is also straightforward to extend our analysis in Section 2 to allow for richer forms of
consumer heterogeneity and multiple sizes of losses. Let the population be indexed by
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Figure 11: Connection between continuous and discrete type model
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the continuous variable θ ∈ [0, 1] with distribution F(θ). Suppose there are S possible loss
levels ls(θ) indexed by s, which may differ across θ. The probability that type θ suffers a
loss of size s is denoted by πs(θ), where, of course, ∑S

s=1 πs(θ) = 1 ∀θ. The expected loss
for type θ is, therefore,

S

∑
s=1

πs(θ)ls(θ).

We can normalize the population type index θ so that the expected costs are increasing in
θ. In particular, let us take θ as the quantiles of the average cost distribution, so that

Γ(θ) =
∫ 1

θ

S

∑
s=1

πs(θ
′)ls(θ′)dF(θ′)

/
(1 − F(θ))

is the average cost of the most costly 1 − θ share of the population, and F(θ) = θ. Clearly,
Γ(θ) is still increasing in θ as before.

Correspondingly, we can capture the consumers’ willingness to pay for insurance for
those individuals who are located at the θ-quantile of the cost distribution. Formally, for
each quantile θ, let Ω(θ) be given by the highest value of Ω such that

u(w(θ)− Ω; θ) =
S

∑
s=1

πs(θ)u(w(θ)− ls(θ); θ).
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Figure 12: Willingness to Pay with Median Liquid Assets and Constant Loss Probability
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Source: Medical Expenditure Panel Survey (Cohen and Uberoi 2013).
Explanation: Wealth equals net worth (assets less liabilities), including net housing wealth.

Note that we can allow for both wealth levels w(θ) and preferences (notably risk-aversion)
u(c; θ) to vary across quantiles of the cost distribution; for instance, higher expected cost
individuals may on average be wealthier (since older) or more risk-averse (they see the
doctor more often).

As long as Ω(θ) remains increasing — and, hence, higher expected cost individuals on
average have a higher willingness to pay for insurance — our entire analysis from before
is maintained: a competitive equilibrium corresponds to a quantile θ where Γ(θ) = Ω(θ).
We can also employ the same graphical approach as before, the only difference being that
the π-axis turns into an θ-axis of quantiles of the cost distribution. At an equilibrium with
critical quantile θ∗, the share of the population purchasing insurance is given by 1 − θ∗,
and so 1 − θ can also be interpreted as quantity of insurance as in Einav et al. (2010).

Figure 12 shows the empirical evidence from the Medical Expenditure Survey Panel
and the Survey of Consumer finances where the probability of loss π is fixed (at 0.3) but
the size of loss ls(θ) is now allowed to vary across the types. As before, the horizontal
axis corresponds to the top X% percent of spenders, where X (the “rank”) is the shown
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value. Now, however, the variation in spending comes from differences in loss amounts
rather than probabilities. (Given the fixed value of π, a recursive algorithm parallel to
that discussed in the text is used to impute the losses across the different values of X%.)
As before, the relatively small value of α = 1 leads to unraveling. However, both the
in-between and large values of α lead to multiple stable equilibria. The driving force is,
again, limited liability. As X% gets small, the value of losses must grow in order to match
spending levels in the MEPS. As a result, the willingness to pay is capped for a wider
range of types at smaller values of X% corresponding to larger losses. Increasing the
level of risk aversion, therefore, has very little impact on the demand for insurance in this
range.
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