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1 Introduction

Asset pricing theorists have long been concerned with explaining stock market expected

returns, typically measured over monthly, quarterly or annual horizons. This is important

because empirical evidence suggests that variation in the stock market price-dividend ratio

is driven almost entirely by expected excess return variation (i.e., forecastable movements

in equity premia).1 Far less attention has been given to understanding the real (adjusted

for inflation) level of the stock market, i.e., stock price variation, or the cumulation of

returns over many decades. The profession spends a lot of time debating which risk factors

drive expected excess returns, but little time investigating why real stock market wealth has

evolved to its current level compared to 30 years ago. To understand the latter, it is necessary

to probe beyond the role of stationary risk factors and short-run expected returns, to study

the primitive economic shocks from which all stock market (and risk factor) fluctuations

originate.

To see why, consider that some economic shocks may have tiny innovations but permanent

or near-permanent effects on cash flows. Under rational expectations, permanent cash flow

shocks have no influence on the price-dividend ratio (they are incorporated immediately

into both prices in the numerator and dividends in the denominator), but they can have a

dramatic influence on real stock market wealth as the decades accumulate. Such shocks are

the sources of stochastic trends in stock prices that are by definition impossible to predict

and not reflected in expected returns. On the other hand, fluctuations in expected returns

may be associated with movements in risk premia and can persistently shift the real value of

the stock market around its long-term trend. But because these fluctuations are transitory,

their impact eventually dies out. Stock market wealth evolves over time in response to the

cumulation of both transitory expected return and permanent cash flow shocks. The crucial

unanswered questions are, what are the economic sources of these shocks? And what have

been their relative roles in evolution of the stock market over time?

The objective of this paper is to address these questions. We begin by identifying three

mutually orthogonal observable economic shocks that explain the vast majority (over 85%)

of quarterly fluctuations in real stock market wealth since the early 1950s. Econometrically,

these shocks are measured as specific orthogonal movements in consumption, labor income,

and asset wealth (net worth), identified from a cointegrated vector autoregression (VAR)

and extracted using a standard recursive identification procedure. We investigate how these

1Expected dividend growth and expected short-term interest rates play little role empirically in price-
dividend ratio variation (Campbell (1991); Cochrane (1991); Cochrane (2005); Cochrane (2008)).
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shocks have affected stock market wealth over time, with special attention paid to their

relative importance over short versus long time horizons.

We then address the question of what these observable VAR shocks represent economi-

cally. Providing an economic interpretation of the shocks requires a theoretical framework.

To do so, this paper develops a general equilibrium model of two types of households: share-

holders and workers. Economic fluctuations in the model originate from three mutually

orthogonal primitive shocks that differentially affect each type: a permanent total factor

productivity (TFP) shock that governs the state of factor neutral technological progress and

propels aggregate (shareholder plus worker) consumption, a near-permanent factor shares

shock that reallocates the rewards from production between shareholders and workers with-

out affecting the size of those rewards, and an exogenous shock to shareholder risk aversion

that moves the stochastic discount factor pricing assets independently of stock market funda-

mentals or real variables such as consumption and labor income. The modifier “exogenous”

in reference to shareholder risk aversion refers to the independence in the model of such

shocks from stock market fundamentals (dividends or earnings), consumption, and labor in-

come. We argue that this exogeneity is essential for explaining time-variation in the reward

for bearing stock market risk, a point we come back to below.

The model is then employed to show that the mutually orthogonal VAR innovations that

explain almost all stock market variation are the observable empirical counterparts to the

latent primitive shocks in the theoretical framework. Specifically, we show that, if the model

generated the data, the total factor productivity shock would be revealed as a consumption

shock in the VAR, namely a movement in log consumption, ct, that contemporaneously

affects both log labor income, yt, and log asset wealth, at, where all three move in the same

direction. The factors share shock would be revealed as a labor income shock that moves at in

the opposite direction of yt but is restricted to have no contemporaneous impact on ct. And

the risk aversion shock would be revealed as a wealth shock that moves at but is restricted

to have no contemporaneous impact on either ct or yt. We show that the dynamic responses

to these mutually orthogonal VAR innovations produced from model generated data are

remarkably similar to those produced from historical data. We refer to the three mutually

orthogonal VAR innovations (consumption, labor income and wealth) interchangeably as

productivity or TFP, factors share, and risk aversion innovations, respectively.

How have these shocks affected stock market wealth over time? We find that the vast

majority of short- and medium-term stock market fluctuations in historical data are driven

by risk aversion shocks, revealed as movements in wealth that are orthogonal to consumption

2



and labor income, both contemporaneously (an identifying assumption), and at all subse-

quent horizons (a result). Although transitory, these shocks are quite persistent with a half

life of over four years. On a quarterly basis, they explain approximately 75% of variation

in the log difference of stock market wealth, but their contribution declines as the horizon

extends. These facts are well explained by the model, in which the orthogonal wealth shocks

originate from exogenous shifts in investors’willingness to bear risk.

At longer horizons, the relative importance of the shocks changes. The factors share shock

explains a negligible fraction of variation in the stock market over shorter time horizons, but

because its innovations are nearly permanent, it plays an increasingly important role as the

time horizon extends. A spectral decomposition of variance by frequency shows that this

shock explains virtually none of the variation in the real level of the stock market over cycles

of a quarter or two, but it explains roughly 40% over cycles two to three decades long.

These facts are well explained by the model economy, which is subject to small but highly

persistent innovations that shift the allocation of rewards between shareholders and workers

independently from the magnitude of those rewards.

By contrast, productivity shocks, revealed as consumption shocks empirically, play a small

role in the stochastic fluctuations of the stock market at all horizons, once a deterministic

trend is removed. The model is consistent with this finding. Given capital’s smaller role in

the production process, most gains and losses from total factor productivity shocks accrue to

workers, so their effect on stock market wealth is smaller than that of the other two shocks.

As an example of the magnitude of these forces for the long-run evolution of the stock

market, we decompose the percent change since 1980 in the deterministically detrended

real value of stock market wealth that is attributable to each shock. The period since

1980 is an interesting one to consider, in which the cumulative effect of the factor shares

shock persistently redistributed rewards away from workers and toward shareholders. (The

opposite occurs from the mid 1960s to mid 1980s.) After removing a deterministic trend, we

find that the cumulative effects of the factors share shocks have resulted in a 65% increase in

real stock market wealth since 1980, an amount equal to 110% of the total increase in stock

market wealth over this period. Indeed, without these shocks, today’s stock market would

be roughly 10% lower than it was in 1980. This finding underscores the extent to which the

long-term value of the stock market has been profoundly altered by forces that reallocate

the rewards of production, rather than raise or lower all of them.

Our calculations imply that an additional 38% of the increase in the detrended real value

of the stock market since 1980, or a rise of 22%, is attributable to the cumulative effects
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of risk aversion shocks, which were on average lower in the last 30 years than earlier in the

post-war period. By contrast, the cumulative effects of TFP shocks have made a negative

contribution to change in stock market wealth since 1980, once a deterministic trend is

removed. The importance of the TFP shock is uncharacteristically large over this period,

a direct consequence of the string of unusually large negative draws for consumption in

the Great Recession years from 2007-2009. These shocks account for -38% of the increase

since 1980. Together, the three mutually orthogonal economic shocks we identify explain

almost all of the increase in deterministically detrended real stock market wealth since 1980.

(Specifically, they account for 110% of the increase, with the remaining -10% accounted for

by a residual.)

Finally, our findings speak to the question of why the stock market is predictable. The

exogenous risk aversion shocks in the model are associated with forecastable changes in ex-

cess stock market returns, consistent with the model implication that they drive changes

in equity risk premia over time. We show that this is also true in the data. In particular,

the predictive content for long horizon excess stock market returns of common stock market

forecasting variables is found to be virtually subsumed by the information in lags of the

exogenous risk aversion/wealth shock at all but very long horizons (where both variables

have independent forecasting power). At the same time, the exogenous risk aversion shocks

we identify are contemporaneously unrelated to consumption, labor income, dividends, earn-

ings, consumption volatility, or broad-based macroeconomic uncertainty, and none of these

variables forecast equity premia. These findings are hard to reconcile with models in which

time-varying risk premia arise from habits (which vary with innovations in consumption),

stochastic consumption volatility, or uncertainty. On the other hand, these features of the

data may be well captured by models with time-varying ambiguety aversion, which, much

like our time-varying risk aversion framework, are capable of generating predictable variation

in excess returns that is disconnected with real activity (e.g., Bianchi, Ilut, and Schneider

(2013)). We view time-varying ambiguety and risk aversion as members of the same broad

class of models where fluctuations in the reward for bearing risk occur independently of

economic risks.

This empirical part of this paper builds on Lettau and Ludvigson (2013). That paper

provided empirical evidence in a purely statistical model, studying (a rotation of) the three

VAR innovations described here and their relationship to different components of household

wealth, consumption and labor income. The main contribution of this paper is to provide an

economic interpretation of these innovations and a detailed investigation of their implications
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for the stock market. Our model is also related to the work of several recent papers that have

emphasized the weak empirical correlation between stock market behavior and innovations to

consumption growth or its second moments (Duffee (2005), Albuquerque, Eichenbaum, and

Rebelo (2012), Lettau and Ludvigson (2013)). And there is an important earlier literature

in asset pricing that identified and distinguished cash-flow from discount rate “shocks”(e.g.,

Campbell (1991); Cochrane (1991)). This work was central to our understanding of how

innovations in stock returns are related to forecastable movements in returns as compared

to dividend growth, but it is silent on the underlying economic mechanisms that drive these

forecastable changes. It is precisely these primitive economic shocks that are the subject of

this paper.

The rest of this paper is organized as follows. The next section describes the econometric

procedure and data used to identify the three mutually uncorrelated empirical shocks from

a VAR on consumption, labor income, and asset wealth. Section 3 describes the theoretical

model that we use to interpret these shocks. Section 4 presents our findings, which are of two

forms. The first are results on the performance of the model, including summary statistics

for standard asset pricing implications. This section also demonstrates that the mutually

orthogonal VAR innovations described in Section 3 are the observable empirical counterparts

to the latent primitive shocks in the model. The second set of results studies the relative

role of the observable shocks in historical stock market fluctuations, with special attention

paid to how these roles depend on the time horizon over which one measures a change in

stock market wealth. Here we compare the role of each shock in the dynamic responses

and variance decompositions of stock market wealth when estimated from historical data

with the same statistics when estimated from model-generated data and show that they

are remarkably similar along a number of dimensions discussed below. The final subsection

investigates the question of why stock returns are predictable. We show that the exogenous

risk aversion shocks we identify largely explain why long-horizon excess stock market returns

are predictable by common forecasting variables such as the log price-dividend ratio or the

consumption-wealth variable cayt. Section 6 briefly discusses the link between the factors

share shock and economic inequality. Section 7 concludes.

2 Econometric Analysis: Three Mutually Orthogonal Shocks

This section describes the empirical analysis used to identify three mutually orthogonal

observable shocks from data on aggregate consumption, labor income and household wealth.
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2.1 Data

Many empirical details of the estimation that follows are covered in Lettau and Ludvigson

(2013). Here we outline the main elements and refer the reader to that paper for more

information.2

We consider a cointegrated vector of variables in the data, denoted xt = (ct, yt, at)
′,

where ct is log of real, per capita aggregate consumption, yt is log of real, per-capita labor

income, and at is log of real, per-capita asset wealth. Throughout this paper we use lower

case letters to denote log variables, e.g., ln (At) ≡ at. Lettau and Ludvigson (2013) provide

updated evidence of a cointegrating relation among these variables, which can be motivated

by considering the long-run implications of a standard household budget constraint (see

Lettau and Ludvigson (2001)).

The Appendix contains a detailed description of the data used in this study. The log

of asset wealth, at, is a measure of real, per capita household net worth, which includes all

financial wealth, housing wealth, and consumer durables. It is compiled from the flow of

funds accounts by the Board of Governors of the Federal Reserve.

We study the implications of the empirical shocks identified from the system (ct, yt, at)
′

and subsequently relate these shocks to stock market wealth. We denote the log of stock

market wealth st. Stock market wealth is a component of total asset wealth. Corporate

equity was 23% of total asset wealth in 2010, and 29% of net worth. For comparison, we

will often also study the implications of these same shocks for the Center for Research in

Securities Prices (CRSP) value-weighted stock price index. We denote the log of the CRSP

value-weighted stock price index pt.

We use the log of real, per capita, expenditures on nondurables and services (excluding

shoes and clothing), as a measure of ct. From the household’s budget constraint, an internally

consistent cointegrating relation among ct, yt, and at, may then be obtained if we assume

that the log of (unobservable) real total flow consumption is cointegrated with the log of real

nondurables and services expenditures (Lettau and Ludvigson (2010)). The log of after-tax

labor income, yt, is also measured in real, per capita terms. Lettau and Ludvigson (2013)

presents empirical evidence supportive of a single cointegrating relationships between ct, at,

and yt in the post-war data used in the study.3 Our data are quarterly and span the first

2That paper showed how the innovations we study here can be econometrically identified as disturbances
distinguished by whether their effects are permanent or transitory. An additional rotation of innovations was
required for this interpretation, but the shocks obtained there are perfectly correlated with those obtained
here and discussed below.

3The data provide no evidence of a second linearly independent cointegrating relation (there can be at
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quarter of 1952 to the third quarter of 2012.

2.2 Empirical Implementation

Before explaining the details of the estimation, we discuss a practical distinction between

the data and the model. The model developed below is intended to focus on the implications

of the empirical shocks for stock market wealth. As such, it has one form of risky capital

(equity) and a risk-free bond in zero net supply. It follows that, in the model, all wealth is

stock market wealth, which is the same as total wealth, which is the same as net worth. In

historical data, total wealth contains non-equity forms of wealth, so total wealth and stock

market wealth are two different variables. As noted above, stock market wealth accounts for

about 23% of total wealth in 2010. In the data we distinguish the two by denoting log of

asset wealth (net worth) by at and log of stock market wealth by st. In the model, at = st.

In constructing the empirical VAR innovations discussed next, we use system of variables

that contains consumption, labor income and total asset wealth at, and then subsequently

relate these innovations to stock market wealth. We do not construct these innovations

by restricting analysis to how consumption and labor income move only with stock market

wealth. We do this for two reasons. First, a (factor neutral) TFP shock should affect the

value of all productive capital, so a system that identifies such a shock from the data should

include total wealth. If TFP shocks affect non-stock wealth but these components are omitted

from the system, this could lead to spurious estimates of productivity and its dynamics,

which would also contaminate estimates of the factors share and risk aversion shocks that

are presumed orthogonal to the TFP shock. Second, consumption and labor income are

cointegrated with total wealth, as expected from theory (Lettau and Ludvigson (2001)), but

there is no implication that these variables should be (or are) cointegrated with stock market

wealth by itself, a component of total wealth. It is important to control empirically for these

long-run relationships by imposing the restrictions implied by cointegration in a VAR for

which wealth shares a common trend with consumption and labor income. When this is

done, it will then be an empirical matter how closely the identified VAR shocks are related

most two). In particular, bivariate log ratios of these variables appear to contain trends in our sample.
Economic models often imply that bivariate log ratios (e.g., yt − at) are stationary, and the model below
assumes as much. In finite samples, it is impossible to distinguish a highly persistent but stationary series
from a non-stationary one. For the empirical system, we follow the advice of Campbell and Perron (1991)
and empirically model only the single, trivariate cointegrating relation for which we find direct statistical
evidence of in our sample. For the model, we set parameter values that imply the log ratio yt − at is
stationary but deviations from the common trend in yt and at are so persistent one could not reject a unit
root in samples of the size we currently face, consistent with the data.

7



to stock market wealth, which is the subject of an extensive investigation below. Notice

that there is no implication that the shocks identified from the ct. yt, at empirical system

should explain all or even most of the variation in stock market wealth st. Although st can

be related to these shocks, there will be an unexplained residual that in principal could be

quite important, as we explain below.

Identification of the three mutually orthogonal empirical disturbances is achieved in sev-

eral steps. First, we assume all of the series contained in xt are first order integrated, or

I(1), an assumption confirmed by unit root tests, available upon request. The cointegrat-

ing coeffi cient on consumption is normalized to one, and we denote the single cointegrating

vector for xt = [ct, at, yt]
′ as α = (1,−αa,−αy)′. The cointegrating parameters αa and αy

are estimated using dynamic least squares, which generates “superconsistent”estimates of

αa and αy (Stock and Watson, 1993).4 We estimate α̂ = (1,−0.18,−0.70)′. The Newey and

West (1987) corrected t-statistics for these estimates are 20 and 56, respectively.

Second, a cointegrated VAR (or vector error correction mechanism—VECM) representa-

tion of xt is estimated taking the form

∆xt = υ + γα̂′xt−1 + Γ(L)∆xt−1 + ut, (1)

where ∆xt is the vector of log first differences, (∆ct,∆at,∆yt)
′, υ, and γ ≡ (γc, γa, γy)

′ are

(3×1) vectors, Γ(L) is a finite order distributed lag operator, and α̂ ≡ (1,−α̂a,−α̂y)′ is the
(3×1) vector of previously estimated cointegrating coeffi cients.5 The term α̂′xt−1 gives last

period’s equilibrium error, or cointegrating residual, a variable we denote with cayt ≡ α̂′xt−1.

The coeffi cients γ are the vector of “adjustment”coeffi cients that tells us which variables

subsequently adjust to restore the common trend when a deviation occurs. Throughout this

paper, we use “hats”to denote the estimated values of parameters.

The results of estimating a first-order specification of (1) are presented in Lettau and

Ludvigson (2013). An important result is that, although consumption and labor income are

somewhat predictable by lagged consumption and wealth growth, they are not predictable

by the cointegrating residual α̂′xt−1. Estimates of γc and γy are economically small and

insignificantly different from zero. By contrast, the cointegrating error cayt is an economically

large and statistically significant determinant of next quarter’s wealth growth: γa is estimated

4We use eight leads and lags of the first differences of ∆yt and ∆at in the dynamic least squares regression.
Monte Carlo simulation evidence in both Ng and Perron (1997) and our own suggested that the DLS
procedure can be made more precise with larger lag lengths.

5Standard errors do not need to be adjusted to account for the use of the “generated regressor,”α′xt in
(1) because estimates of the cointegrating parameters converge to their true values at rate T , rather than at
the usual rate

√
T (Stock (1987)) .
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to be 0.20, with a t-statistic equal to 2.3.6 Thus, only wealth exhibits error-correction

behavior. Wealth is mean reverting and adapts over long-horizons to match the smoothness

in consumption and labor income.

Third, the individual series involved in the cointegrating relation can be represented as

a reduced-form multivariate Wold representation:

∆xt = δ + Ω(L)ut, (2)

where ut is an n×1 vector of innovations, and where Ω(L) ≡ I+Ω1L+Ω2L+Ω3L+ · · ·. The
parameters α and γ, both of rank r, satisfy α′Ω(1) = 0 and Ω(1)γ = 0 (Engle and Granger,

1987). The “reduced form”disturbances ut are not necessarily mutually uncorrelated. To

identify shocks that are mutually uncorrelated, we employ a recursive orthogonalization.

Specifically, letH be a lower triangular matrix that accomplishes the Cholesky decomposition

of Cov(ut), and define a set of orthogonal structural disturbances e such that

e≡H−1ut.

Also define

C(L)≡ Ω(L)H.

Then we may re-write the decomposition of ∆xt = (∆ct,∆yt,∆at)
′ as

∆xt=δ+C(L)et, (3)

which now yields a vector of mutually uncorrelated innovations et in consumption, labor

income, and asset wealth. We refer to the mutually orthogonal et shocks as “structural”

disturbances, but the specific economic interpretation of these shocks must wait for the model

presented below. Denote the individual consumption, labor income and wealth disturbances

as ec,t, ey,t, and ea,t. Note that these shocks are i.i.d.

The ordering of variables will matter for this orthogonalization. We choose a particular

ordering, and thus a particular orthogonalization so that these will reveal the effects of the

primitive shocks in the model described next. Specifically, we restrict ∆c to be first, ∆y to

be second, and ∆a to be last in ∆xt, as written above. As we show below in the model,

with these restrictions, the TFP shock will be revealed as a consumption shock, ec,t, the

6We also find that the four -quarter lagged value of the cointegrating error strongly predicts asset growth.
This shows that the forecasting power of the cointegrating residual for future asset growth cannot be at-
tributable to interpolation procedures used to convert annual survey data to a quarterly housing service flow
estimate, part of the services component of ct.
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factors share shock orthogonal to this will be revealed by the labor income shock, ey,t, and

the exogenous risk aversion shock will be revealed by the wealth shock, ea,t.7

2.3 Relating Structural Disturbances to Stock Market Fluctuations

The econometric procedure just described is applied to the system of ∆ct, ∆yt, and ∆at.

Ultimately our goal is to study the role each shock has played in the dynamic behavior of

stock market wealth over time. To relate stock market wealth to the structural disturbances

ec,t, ey,t, and ea,t, we estimate empirical relationships taking the form

∆st = κ0 + κc (L) ec,t + κy (L) ey,t + κa (L) ea,t + ηt, (4)

where st represents the log level of the stock market wealth, κc (L) , κy (L) , and κa (L)

are polynomial lag operators, and ηt is a residual that represents the component of stock

wealth that is unexplained by the structural empirical disturbances ec,t, ey,t, and ea,t. For

comparison, we compute the same type of relationship for the CRSP value-weighted stock

price index, replacing stock market wealth st with pt on the left-hand-side:

∆pt = λ0 + λc (L) ec,t + λy (L) ey,t + λa (L) ea,t + ξt. (5)

Since ec,t, ey,t and ea,t are mutually uncorrelated and i.i.d., we estimate these equations

separately by OLS with L = 16 quarters.

2.4 Decomposition of Levels

We will want to study the role that each shock has played in the evolution of the levels

of stock market wealth over time. To do so, we decompose the log levels into components

driven by each structural disturbance. Let us rewrite the decomposition of growth rates for

stock market wealth (4) as

∆st = κ0 + κc (L) ec,t + κy (L) ey,t + κa (L) ea,t + ηt

≡ κ0 + ∆sct + ∆syt + ∆sat + ηt, (6)

7Lettau and Ludvigson (2013) showed how the innovations we study here can be given an additional
interpretation, namely as disturbances distinguished by whether their effects have permanent or transitory
effects on the variables in the system. An additional rotation of innovations was required for this interpre-
tation, but the shocks obtained there are perfectly correlated with the et obtained here. What this shows is
that the permanent and transitory shocks in the ∆xt = (∆ct,∆yt,∆at)

′ system are associated with specific
orthogonal movements in consumption, labor income and wealth that readily be related to the latent model
primitive shocks, as below.
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where ∆sct ≡ κc (L) ec,t, and analogously for the other terms. The effect on the log levels of

stock wealth of each disturbance is obtained by summing up the effects on the log differences,

so that the log level of stock wealth may be decomposed into the following components:

st = s0 + κ0t+
t∑

k=1

∆sk

= s0 + κ0t+

t∑
k=1

∆sck +

t∑
k=1

∆syk +
t∑

k=1

∆sak +

t∑
k=1

ηk

≡ s0 + κ0t+ sct + syt + sat +

t∑
k=1

ηk, (7)

where s0 is the initial level of stock market wealth, sct , s
y
t , and s

a
t , are the components of the

level attributable to the (cumulation of) the consumption shock, the labor income shock, and

the wealth shock, respectively. The final sum
∑t

k=1 ηk is the component of st attributable to

the unexplained residual. Note that γ0t is the deterministic trend in stock market wealth,

which in the model below is attributable to steady state technological progress. For the level

decomposition reported below, we remove this trend and normalize the initial observation

s0 to zero in the quarter before the start of our sample. Expressions analogous to (6) and

(7) are also computed for the log stock price index pt.

This completes our description of the empirical shocks. The next section presents the

theoretical model.

3 The Model

3.1 Production and Technology

Suppose that aggregate output Yt is given by a constant returns to scale process:

Yt = AtNα
t K

1−α
t , (8)

where At is a factor neutral total factor productivity (TFP) shock, and Nt and Kt are inputs

of labor and capital, respectively. We further assume that labor supply is fixed and that there

is no capital accumulation, so that both Nt and Kt are constant over time and normalized

to unity.

The economy is populated by two types of representative households, each of whom

consume an endowment stream. The first type, “shareholders,”own a claim to shares of the

dividend income stream (equity) generated from aggregate output Yt. There is no saving
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and no new shares are issued. Shareholders consume the dividend stream. The second type,

“workers,”own no assets, inelastically supply labor to produce Yt, and consume their labor
income every period. Dividends, Dt, are equal to output minus a wage bill

Dt = Yt −WtNt, (9)

where Wt is the wage rate paid to workers. With labor supply fixed at Nt = 1, log labor

income, which equals ln (WtNt) = ln (Wt), is alternatively denoted yt, to be consistent with

the notation above. The total number of shares is normalized to unity.

The wage rate Wt is given by marginal product of labor, multiplied by a time-varying

function f (Zt):

Wt =
[
αAtNα−1

t Kα−1
t

]
f (Zt) (10)

= αAtf (Zt) .

The random variable Zt over which the function is defined is referred to as a factors share

shock. Although not modeled explicitly as such, f (Zt) could be interpreted as the time-

varying bargaining parameter resulting from some underlying wage-bargaining problem that

creates deviations from competitive equilibrium. At a more basic level, it is a reduced-form

way of capturing shifts in the allocation of rewards from production between shareholders

and workers that could occur for any reason (see the conclusion for more discussion). We

specify f (Zt) to be a logistic function

f (Zt) =
1

1 + exp (−Zt)
+ ψ,

where ψ is a constant parameter. The calibration we choose implies that the real wage is

equal to its competitive value on average, but can be shifted away from this value by a

multiplicative scale factor f (Zt) that is bounded above and below. The logistic function

insures that the level labor income is never negative.

With this specification for wages, dividends are given by

Dt = Yt − αAtf (Zt) (11)

= At (1− αf (Zt)) ,

and log dividends, dt take the form

dt = at + ln (1− αf (Zt)) ,
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where at ≡ lnAt. Notice that log dividends are a non-linear function of the factors share
shock.

Aggregate consumption, Ct, is the sum of shareholder consumption (total dividends) and

worker consumption (total labor income):

Ct = Dt +Wt = Yt −Wt +Wt = At.

Aggregate (shareholder plus worker) consumption is determined solely by the TFP shock.

The log difference in the TFP shock, ∆at, is assumed to follow a first-order autoregressive

(AR(1)) stochastic process given by

∆at − µa = φa (∆at−1 − µa) + σaεa,t, εa,t ∼ i.i.d. (0, 1) . (12)

The factors share shock Zt is assumed to follow a mean-zero AR(1) processes:

Zt = φzZt−1 + σzεz,t, εz,t ∼ i.i.d. (0, 1) . (13)

Note that in a non-stochastic steady state, Zt is identically zero, f (Zt) = 1, and dividends

are proportional to productivity: Dt = At (1− α). The above specification implies that the

economy grows non-stochastically in steady state at the gross rate of At, given by 1 + µa,

the deterministic rate of technological progress.

3.2 Shareholder Preferences

Worker preferences play no role in asset pricing since they hold no assets. Shareholder

preferences determine the pricing of equity. We assume that the economy is populated by

a large number of identical shareholders. Let Cs
it denote the consumption of an individual

stockholder indexed by i at time t. Let βt be a time-varying subjective discount factor,

discussed below. Identical shareholders maximize the function

U = E
∞∑
t=0

t∏
k=0

βku (Cs
it) (14)

with

u (Cs
it) =

(Cs
it)

1−xt−1

1− xt−1

, (15)

and where β0 = 1.

An important aspect of these preferences is that the parameter xt is not constant but

instead varies stochastically over time. It is interpreted as a risk aversion shifter, as discussed
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further below. Shareholder preferences are also subject to an externality in the subjective

discount factor βt, which is assumed to vary over time in a manner dependent on aggregate

shareholder consumption (which in equilibrium equal dividends) as follows:

βt ≡
exp (−rf )

Et

[
D
−xt
t+1

D
−xt−1
t

] , (16)

where rf is a parameter. We discuss this parametrization for βt below. In equilibrium,

identical individuals choose the same level of consumption, equal to per capita aggregate

dividends Dt. We therefore drop the i subscript and simply denote the consumption of

a representative shareholder Cs
t = Dt from now on. Notice that aggregate shareholder

consumption, given by Dt, is taken as given by individual shareholders and is therefore not

internalized in the individual optimization problem.

With these preferences, the intertemporal marginal rate of substitution in stockholder

consumption is the stochastic discount factor (SDF) given by:

Mt+1 =
exp (−rf )

(
D.
t+1

D.
t

)−xt
Et

[(
D.
t+1

D.
t

)−xt] . (17)

This can be written

Mt+1 = βt

(
D.
t+1

)−xt
(D.

t)
xt−1 =

exp (−rf )
(D.

t+1)
−xt

(D.
t)
−xt−1

Et

[
(D.

t+1)
−xt

(D.
t)
−xt−1

] . (18)

Multiplying the numerator and denominator of (18) by (D.
t)
xt−xt−1 gives

Mt+1 = exp [−rf − lnEt exp (−xt∆dt+1)− xt∆dt+1] . (19)

We specify the stochastic risk-aversion variable xt so that it is always non-negative and

bounded from above. Specifically, let xt be specified as a logistic function of a stochastic

variable x̃ that itself can take unbounded values:

xt =
θ

1 + exp (−x̃t)
,

x̃t − µx̃ = φx̃ (x̃t−1 − µx̃) + σx̃εx̃,t, εx̃,t ∼ i.i.d. (0, 1) . (20)

In the above, θ is a parameter that controls the maximum value of xt, which is a nonlinear

function of shocks to a stationary first-order autoregressive stochastic process with mean µx̃,

innovation variance σ2
x̃, and autoregressive parameter 0 < φx̃ < 1.
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3.3 Pricing the Dividend Claim

We use the dividend claim to model the stock market claim. Let Pt denote the ex-dividend

price of a claim to the dividend stream measured at the end of time t. The gross return from

the end of period t to the end of t+ 1 is defined

Rt+1 =
Pt+1 +Dt+1

Pt
. (21)

The return on a risk-free asset whose value is known with certainty at time t is given by

Rf,t+1 ≡ (Et [Mt+1])−1 .

We denote the log return on equity as ln (Rt+1) ≡ rt+1, and the log excess return ln (Rt+1/Rf,t+1) ≡
rext+1.

From the shareholder’s first-order condition for optimal consumption choice, the price-

dividend ratio satisfies

Pt
Dt

(st) = Et

[
Mt+1

(
Pt+1

Dt+1

(st+1) + 1

)
Dt+1

Dt

]
(22)

= Et exp

(
mt+1 + ∆dt+1 + ln

(
Pt+1

Dt+1

(st+1) + 1

))
, (23)

where st is a vector of state variables, st ≡ (∆at, Zt, xt)
′ . Even with all shocks normally

distributed, there is no closed-form solution to the functional equation (23), due to two

sources of nonlinearities on the right-hand-side of (23). First, dividend growth is non-linear

in the Zt shock. Second, the term ln
(
Pt+1
Dt+1

(st+1) + 1
)
is itself a non-linear function of the

shocks. We therefore solve the Pt
Dt

(st) function numerically on an n × n × n dimensional

grid of values for the state variables, replacing the continuous time processes with a discrete

Markov approximation following the approach in Rouwenhorst (1995). Further details are

given in the Appendix.

3.4 The Risk-free Rate, the Sharpe Ratio and Risk Aversion

It is well known that empirical measures of the risk-free interest rate are extremely stable,

with a standard deviation one-tenth (or less) the size of that for an aggregate stock market

index return or its premium over a risk-free interest rate. The specification for the subjective

time discount factor in (16) is essential for obtaining a stable risk-free rate alone with a

volatile equity premium. If instead the subjective time discount factor were itself a constant
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(as is common), shocks to xt and dividend growth would generate counterfactual volatility in

the risk-free rate. For simplicity, we calibrate the subjective time-discount factor βt so that

the risk-free rate is constant. Specifically, the externality involving the term 1/Et

[
D
−xt
t+1

D
−xt−1
t

]
is

a compensating factor in the stochastic discount factor that renders the risk-free rate constant

even in the face of large shocks to the price of risk. While this compensating factor may seem

unusual, it is in fact a generalization of a familiar compensating Jensen’s term that appears

in many lognormal models of the stochastic discount factor (e.g., Campbell and Cochrane

(1999)) and (Lettau and Wachter (2007)).8 The generalization given here holds for any

distribution of shocks, not just lognormal. This specification can be understood intuitively

by noting that shocks to xt generate changes in risk aversion and a desire for precautionary

savings that would (absent offsetting movements in the subjective rate of time-preference

for saving) produce counterfactually large movements in the risk-free rate. Specifying the

variation in βt as a function of aggregate shareholder consumption, rather than individual

shareholder consumption, greatly simplifies the implications for risk aversion in the model,

as discussed below.

From (19) we have

EtMt+1 = Et [exp (−rf ) exp (− lnEt exp (−xt∆dt+1)) exp (−xt∆ ln dt+1)]

=
exp (−rf )Et exp (−xt∆ ln dt+1)

exp (lnEt exp (−xt∆dt+1))
= exp (−rf ) .

Denoting the gross risk-free rate Rf ≡ exp (rf ), it follows that

Et [Mt+1]−1 = exp (rf ) = Rf =>

− lnEt [Mt+1] = rf .

Thus the log risk-free rate is equal to the constant parameter rf .

Define the price of risk as
√
Vart (Mt+1)/Et (Mt+1) . This variable is equal to the largest

possible Sharpe ratio Et
(
Rex
t+1

)
/ .

√
Vart

(
Rex
t+1

)
on an asset with excess return Rex

t+1 (Hansen

and Jagannathan (1991)). Given (19), the maximal Sharpe ratio can be shown to equal√
Vart [Mt+1]

Et [Mt+1]
=

√
Vart [exp (−xt∆dt+1)]

Et exp (−xt∆dt+1)
. (24)

8Specifically, in the lognormal model of Lettau and Wachter (2007), the stochastic discount factor takes
the form

Mt+1 = exp

{
−rf − 1

2
x2t − xtεd,t+1

}
and the compensating factor is the Jensen’s term 1

2x
2
t .
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Because of the nonlinearities in this model, there is no simple analytical expression for (24)

as a function of the underlying state variables st. Nevertheless, (24) shows that the price of

risk will vary with innovations in risk aversion xt that multiply shocks to dividend growth.

The computation of risk-aversion in the full stochastic model is quite complicated nu-

merically. However, it is straightforward to calculate risk aversion along a non-stochastic

balanced growth path. Define the coeffi cient of relative risk aversion RRAt as

RRAt =
−AtEtV ′′ (At+1)

EtV ′ (At+1)
, (25)

where V (At+1) is the representative shareholder’s value function associated with optimal

consumption choice, and At is this shareholder’s asset wealth. Following the derivation

in Swanson (2012), we show in the Appendix that risk aversion along the non-stochastic

balanced growth path, RRA, is equal to

RRA =
−Cs.

t u
′′ (Cs.

t+1

)
u′
(
Cs
t+1

) = E (xt) / (1 + µa) ,

where E (xt) is the unconditional mean of xt and 1 + µa is the non-stochastic gross growth

rate of the economy driven by steady state technological progress At.9 This shows that risk
aversion in the model is a function of the process xt, with its steady state value given by the

mean of this process. We refer to xt as a risk aversion shock. Because its innovations are

assumed to be uncorrelated with the productivity and factors share shocks, we refer to this

as an exogenous risk aversion shock.

3.5 Calibration

This section discusses the calibration of the model. We begin with a discussion of the

calibration of the primitive shocks.

Calibrating the parameters of the stochastic processes for the primitive shocks in the

model is complicated by the fact that they are all shocks to latent variables. This is most

obvious for risk aversion, for which we have no direct empirical measure, but it is also true

of the TFP and factors share shock processes. It is true that estimates of TFP for the

United States exist, with those by Fernald (2009) especially sophisticated. But since the

consumption shock in the model is driven entirely by TFP whereas consumption in the data

is imperfectly correlated with estimates of TFP, it is axiomatic that the latter cannot be

9The 1 + µa term in the expression for risk aversion is a nuisance term that arises because of balanced
growth and the beginning of period timing assumption for assets.
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capturing precisely the same parameter specified in the model as TFP.10 One immediate

difference is that the TFP shock in the model is orthogonal to the factors share shock, but

the Fernald estimate is significantly negatively correlated with a Bureau of Labor Statistics

(BLS) labor share measure. For this same reason, the BLS labor share measure is unlikely to

be a good proxy for our factor shares shock, which is orthogonal to TFP. The BLS labor share

variable also suffers from other potential problems as a measure of factors shares. It is total

worker compensation relative to gross domestic product (GDP), rather than total income.

Recent research suggests that GDP may be significantly mismeasured and a poor proxy

for the income side of the national accounts (see Aruoba, Diebold, Nalewaik, Schorfheide,

and Song (2013)). These observations highlight the extent to which estimates of TFP or

labor’s share are not direct observations on the primitive shocks in the model, but are instead

estimates based on modeling assumptions that are likely to differ in important ways from

those here. We take the approach of choosing parameters of the model so as to match key

empirical moments of asset pricing data.

Table 1 presents a list of all parameters and their calibrated values. The parameter α,

the exponent on labor in the production function, is set to 0.667, a value that is standard in

real business cycle modeling. The constant value for the quarterly log risk-free rate is set to

match the mean of the quarterly log 3-month Treasury bill rate. We set φa = 0 so that the

log level of TFP, at, follows a unit root stochastic process with drift. The mean and standard

deviation of productivity ∆at is set to roughly match the mean and standard deviation of

the quarterly log difference of consumption in the data. The factor share shock Zt is set to

be very persistent, with φz = 0.995, to match the extreme persistence of the empirical labor

income shock found in the data. The parameter ψ in f (Zt) is set to ψ = 0.5 so f (Zt) lies in

the interval [0.5, 1.5] with mean E [f (Zt)] = 1. This value, along with the calibration of the

volatility of Zt, allow the model to roughly match the volatility of dividend growth. Finally,

the parameters of the risk-aversion process σx̃, φx̃, and E (xt), are set to roughly match the

volatility, persistence, and mean of the equity premium. This requires E (xt) = 32, implying

a steady state coeffi cient of relative risk aversion close to 32, a value that is in between

the high values of some calibrated habit-based asset pricing models (e.g., Campbell and

Cochrane (1999)) and the lower values obtained in models with long-run consumption risk

(Campbell (2003), Bansal and Yaron (2004)).

10In fact, the Fernald measure has the same long-term tendencies as our structural consumption shock
(see Lettau and Ludvigson (2013)), but there are important differences at short horizons.
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4 Results

4.1 Model Summary Statistics

Table 2 presents summary asset pricing statistics of the model and compares them to those in

post-war data. The average annual excess return on equity in the model exactly matches that

in the data, equal to 5.1%, and the model standard deviation closely matches the annualized

standard deviation of this return, which is 18.5% in the data and 17.9% in the model. By

construction, the model exactly matches the mean risk-free rate. The model also does a

good job of matching the evidence the volatility of dividend growth is much higher than that

of consumption growth; the annual standard deviation of log dividend growth is 13.3% in

the data and 15% in the model. Because dividends are subject to the factors share shock,

they are more volatile than aggregate consumption. The model also matches the mean and

standard deviation of the log price-dividend ratio. The model correctly predicts that labor

income growth is more volatile than consumption growth, but puts the standard deviation

too high: 6% annually compared to 2% in the data. The somewhat higher volatility of labor

income shocks is required to match the evidence presented below on the relative role of the

factors share shock in stock market fluctuations over longer periods of time.

We investigate the model’s implications for the dynamic relationship between the log

price dividend ratio, pt − dt, and future long horizon excess equity returns,
∑h

j=0 r
ex
t+j+1,

consumption growth,
∑h

j=0 ∆c.t+j+1, and dividend growth,
∑h

j=0 ∆d.t+j+1. Table 3 reports

regression results of one through five year log excess equity returns on the lagged price-

dividend ratio, as well as one through five year log differences in consumption growth or

dividend growth on the lagged price-dividend ratio. The columns on the right present results

from our model; the columns on the left present the corresponding results from historical

data. The model results are averages across 1000 simulations of length 238 quarters, the

same length as our quarterly historical data.

Table 3 shows that the log price-dividend ratio predicts future excess returns with sta-

tistically significant negative coeffi cients in the model, while the coeffi cients for consumption

growth are statistically indistinguishable from zero at all horizons and those for dividend

growth are indistinguishable from zero for all but the 5 year horizon. Persistent but station-

ary variation in risk aversion in the model generates forecastable variation in equity premia

but there is no forecastability of consumption or dividend growth. These implications of the

model are consistent with the data: the price-dividend ratio exhibits long-horizon predictive

power for equity premia, but not consumption growth or dividend growth, as shown in the
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left-most columns of Table 3. Moreover, the adjusted R-squared statistics for forecasting ex-

cess returns are comparable between model and data: they range from 0.138 to 0.237 in the

model for one to five year horizons, and from 0.068 to 0.188 in the data. Thus the model is

consistent with the well known “excess volatility”property of stock market returns, namely

that fluctuations in stock market valuation ratios are informative about future equity risk

premia, but not about future fundamentals on the stock market (i.e., dividend or earnings

growth, LeRoy and Porter (1981), Shiller (1981)), or future consumption growth (Lettau

and Ludvigson (2001); Lettau and Ludvigson (2004)).

4.2 Comparing the Model Primitive Shocks to the Model VAR shocks

We next investigate the connection in the model between the observable VAR shocks and the

latent primitive shocks. To do so, we take model simulated data, compute the VAR shocks

and compare them to the primitive shocks. It should be emphasized that we do not claim

to uncover mutually uncorrelated VAR shocks (ec,t, ey,t, ea,t) that exactly equal the primitive

shocks (εa,t, εz,t, εx̃,t), respectively. Exact equality is impossible because the endogenous

variables in the model are nonlinear functions of the primitive shocks, while the VAR imposes

a linear relation between these variables and the VAR shocks. We will show, however, that

the VAR shocks are an extremely close approximation of the theoretical primitive shocks

in the model considered here, and are for all practical purposes the observable empirical

counterparts to the primitive shocks. The purpose of this exercise is to show that, if the

model generated the data, the observable VAR shocks would (to a very close approximation),

reveal the latent primitive shocks.

Figure 1 shows two sets of cumulative dynamic responses of ∆ct, ∆at, and ∆yt. The

left column shows the cumulative responses of these variables to the three primitive shocks

in the model. The top panel shows the responses of these variables to the TFP shock, the

middle panel shows the responses to the factors share shock, and the bottom panel shows the

responses to the risk aversion shock. These responses are calculated by applying, for each

shock one at a time, an increase at time t = 0 and a zero value at all subsequent periods, and

then simulating forward using the solved policy functions with the other two shocks set to

zero in every period. The right column uses model simulated data to calculate the mutually

orthogonal VAR innovations (3) that we estimate on historical data and shows responses to

one standard deviation increases in each structural et shock. The top right panel shows the

responses of consumption, labor income and wealth to a consumption shock, ec,t, the middle

right panel shows the responses to a labor income shock, ey,t, and the bottom right panel

20



shows the responses to a wealth shock, ea,t.11

The key result shown in Figure 1 is that the dynamic responses of aggregate consumption,

labor earnings, and asset wealth to the VAR innovations in the right column are virtually

identical to the theoretical responses of the same variables to the productivity, factors share,

and risk aversion shocks, respectively, in the left column. The small deviations that do exist

from perfect correlation for some responses are attributable to small numerical errors and to

nonlinearities in the model not captured by the linear VAR, as discussed above. But these

deviations are small. The responses of ∆ct, ∆yt and ∆at to the consumption shock, ec,t,

are all perfectly correlated with the responses of these variables to the TFP shock εa,t; the

response of ∆ct to the labor income shock ey,t is perfectly correlated with the response of ∆ct

to the factors share shock εz,t, and the responses of∆ct, ∆yt, and∆at to the wealth shock ea,t
are all perfectly correlated with the responses of ∆ct, ∆yt, and ∆at to the risk aversion shock

εx̃,t. The responses of ∆yt and ∆at to the labor income shock ey,t have correlations equal to

0.991 and 0.956, respectively, with the responses of these variables to the factors share shock

εz,t. Separately we verify, from a long simulation of the model, that the correlation between

the consumption shock ec,t and the productivity shock εa,t is unity, the correlation between

labor income shock ey,t and first difference of the factors share shifter ∆ ln f (Zt) is unity, and

the correlation between the wealth shock ea,t and the innovation in ∆at attributable only to

risk aversion shocks εx̃,t is 0.97.12 These findings underscore the close connection between

the latent primitive shocks in the model and the observable VAR shocks. The properties of

these model-based VAR responses may be compared to those using historical data and are

discussed in the next section.

4.3 The Role of the Empirical Shocks in Quarterly Stock Market Fluctuations

We now study the role of the empirical shocks for historical stock market data. In each

investigation, we compare the outcomes for stock market wealth using historical data with

those using model-simulated data. We begin by studying the dynamic responses to shocks.

11Since we compare the model-based VAR responses to the in-population theoretical responses to primitive
shocks, we rid the VAR responses of small sample estimation biases by computing them from a single
simulation of the model with very long length (238,000 quarters). The size of the primitive shocks are
normalized so that they are the same as the empirical shocks in the right column.
12The innovation in ∆at attributable to risk aversion shocks is computed as ∆at − E [∆at|st−1, Zt,∆at] .
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4.3.1 Impulse Responses

Figure 2 again shows two sets of cumulative dynamic responses of ∆ct, ∆at, and ∆yt. The

left column uses model simulated data to calculate model-based responses to the mutually

orthogonal VAR innovations (3). These are the same responses that are shown in the right

panel of Figure 1, except that the responses in Figure 2 are averages across 1000 samples

of size 238 quarters, rather than over one very long sample. The right column of Figure 2

shows the cumulative dynamic responses of ∆ct, ∆at, and ∆yt in historical data to the VAR

innovations (3) estimated from historical data. In each column, the top panel shows the

responses of consumption, labor income and wealth to an ec shock, the middle right panel

shows the responses to an ey shock, and the bottom right panel shows the responses to an

ea shock.

Figure 2 shows that the cumulative dynamic responses ∆ct, ∆at, and ∆yt to the observ-

able VAR shocks are remarkably similar across model and data. These in turn are reasonably

comparable to the responses of ∆ct, ∆at, and ∆yt to the model primitive shocks in Figure

1. In each case, a positive innovation in the consumption ec shock leads to an immediate

increase in ct, at, and yt, both in the data and the model. From Figure 1, it is clear that

this shock in the model reveals the effects of the total factor productivity shock. The model

responses of c, y, and a, to the consumption shock lie on top of each other because the levels

of these variables are all proportional to TFP, so the log responses are the same. Moreover,

in the model the TFP shock is the innovation to a random walk, so all three variables move

immediately to a new, permanently higher level. In the data, this adjustment is not ex-

actly immediate but it is relatively quick: full adjustment of consumption occurs within 3

quarters or less, very close to what one would expect from a random walk shock. Cochrane

(1994) makes the same observation when studying a bivariate cointegrated VAR for con-

sumption and GNP and argues that consumption is suffi ciently close to a random walk so

as to effectively define the stochastic trend in GNP.

The second rows of Figure 2 displays the dynamic responses of ct, at, and yt to the labor

income shock ey,t, which Figure 1 shows reveals the effects of the factors share shock in the

model. In the data, the response of consumption to this shock is economically negligible.

This is true by construction on impact as a result of our identifying assumption. But it is

also true in all subsequent periods, an important result that is not part of our identifying

assumption. Instead, this shock affects asset wealth and labor income, driving at and yt in

opposite directions. A positive value for this shock raises asset wealth at and lowers labor

income yt, both of which are moved to new long-run levels. The effect on labor earnings is
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large and immediate: labor income jumps to a new lower level within the quarter. Below we

present evidence that changes in at resulting from this shock are driven by the stock market.

The model dynamic responses in the left column show the same basic patterns: the ey,t shock

is one that has no affect on consumption at any horizon, but drives a near-permanent wedge

between asset values and labor income.13 Lettau and Ludvigson (2013) show that this factor

shares shock has almost no effect on housing wealth or non-stock market financial wealth,

so that it is effectively a shock to shareholder wealth.

One puzzling aspect of the data impulse responses exhibited by Figure 2 is that stock

market wealth responds sluggishly to the factors share shock, suggesting that the information

revealed in the innovation is incorporated only slowly into stock prices. This could reflect

a composition effect outside of our model, if for example an increasing fraction of firms

going public over the sample employ labor saving technologies. Future research is needed to

formally investigate the reasons for this.14

The third row of Figure 2 shows the effects of a positive wealth shock, ea,t, which is

driven by a decline in risk aversion in the model. In both the data and the model, this

shock leads to a sharp increase in asset wealth, but has no impact on consumption and labor

earnings at any future horizon. The zero responses of ct and yt on impact are the result

of our identifying assumptions, but the finding that this shock has no subsequent influence

on consumption or labor income at any future horizon is a result. The Appendix describes

a bootstrap procedure for computing error bands, and shows that these zero responses are

within 90% error bands. By contrast, the effect of this risk aversion shock on at is strongly

significant over periods from a quarter to many years. Although transitory, the degree of

persistence of this shock is quite high. Its influence on at has a half-life of over 4 years in

13The model responses in Figure 2 were obtained in the same way as the data responses, namely from a
cointegrated VAR that imposes cointegration among ct, at, and yt but does not impose a second linearly
independent cointegrating relation between yt and at. The model shocks to yt − at are very persistent
(inheriting the persistence of the Zt shock), but ultimately stationary. This degree of persistence implies
that we cannot reject a unit root for yt−at in either the model or the data in samples of the size we currently
have. Thus the model is consistent with the data in this respect. Given the extreme persistence of yt − at,
we follow the advice of Campbell and Perron (1991) to not impose stationarity for yt − at in the estimated
cointegrated VAR for either the model or the data.
14The left column of Figure 2 shows that, even in the model, there is slight sluggish response of stock

market wealth to the factors share shock, although it is far less pronounced than in the data. Interestingly,
this is a finite sample effect: the responses in Figure 2 for the model are averages over 1000 simulations of
size 238 quarters (the same size as our historical dataset). In many samples of this size, the response appears
sluggish, even though the population response displays no sluggishness. This can be seen via a comparison
of Figure 2 with the same response in Figure 1, which, unlike the response in Figure 2, is computed from
one very long simulation of the model, rather than from averages over many short ones. The response of at
to a y shock in Figure 1 displays no sluggishness (middle row, right column).
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historical data.

This result in central to understanding why the risk aversion shock must be modeled

as exogenous to consumption and labor earnings: the large transitory movements in wealth

captured by the ea,t shock (and which we show below drive forecastable variation in equity

risk premia) are unrelated to consumption and labor income at all horizons. The response

of at to this shock in the model is of the same pattern, but less persistent than in the data.

As in the data, the model-based responses in the left column to the ea,t shock are driven by

the risk aversion shock and have big affects on at but no affect on ct or yt.

Figure 2 showed dynamic responses of asset wealth at. Figure 3 shows the cumulative

dynamic responses of stock market wealth ∆st in historical data to a one-standard devia-

tion innovation in each VAR disturbance, along with 90% error bands computed from the

bootstrap procedure described in the Appendix. The responses are constructed using the

OLS estimates of (4) for stock wealth or (5) for CRSP stock price ∆pt. It is clear that the

responses of stock wealth or stock price to the wealth and labor income shock mimic those

of asset wealth to these same shocks, indicating that they are primarily shocks to share-

holder wealth, not other forms of wealth. This is consistent with the evidence in Lettau

and Ludvigson (2013) which finds that other forms of wealth are not closely related to these

wealth shocks. To avoid clutter, the responses for the CRSP stock price ∆pt using (5) are

not reported, but we confirm that they are very similar to those for stock wealth.

4.3.2 Variance Decompositions

The impulse responses tell us about the dynamic effects of each shock on stock market

wealth, but are less informative about the quantitative importance of each shock. Using (4),

we characterize the relative quantitative importance of each empirical disturbance, as well as

that of the residual, for quarterly stock market wealth using a variance decomposition. Table

4 displays the fraction of the unconditional variance in the log difference of stock market

wealth that is attributable to each empirical shock. The variance decompositions in the data

are also computed for the log difference in the CRSP value-weighted stock price index using

(5). The model-based variance decompositions are computed by estimating (4) on simulated

data and reporting average statistics over 1000 simulations of size 238 quarters.

Table 4 shows that the wealth shock ea explains the largest fraction of quarterly stock

wealth growth ∆st and accounts for 76% of its quarterly volatility (75% of the quarterly

variation in ∆pt). The two other shocks account for very small amounts, 4% and 6% for

the labor income and consumption shocks, respectively. Note that the residual explains only

24



13% of quarterly stock market fluctuations, showing that the vast majority of quarterly stock

market fluctuations are explained by these three shocks.

The model is broadly comparable with the data along these lines: the vast bulk of quar-

terly fluctuations in stock wealth in the model are attributable to the wealth/risk aversion

shock, with much smaller roles for the consumption/TFP and labor income/factors share

shocks. The model gets the role of the labor income shock almost exactly right, but some-

what overstates the role of the wealth shock and understates the role of the consumption

shock. It is important to bear in mind that, by construction, there is no “residual” in the

model version of equation (4), since the productivity, factors share, and risk aversion shocks

explain 100% of the variability in stock market wealth in the model. Since there is no residual

in the model but there is in the data, the variance decomposition in the model must differ

from the data somewhere. It is encouraging that the residual accounts for less than 15% of

total variation in stock market wealth in the data, implying that the model implications for

the sources of stock market fluctuations are reasonably correct.

4.4 Short- Versus Long-Term Determinants of Stock Market Wealth

Above we examined the role of each shock for quarterly stock market growth. A key question

this paper seeks to address is how the sources of stock market fluctuation might vary by the

time frame over which a change in stock market wealth is measured. This section examines

the short- versus long-term determinants of stock market wealth in two ways.

4.4.1 Frequency Decomposition

One way to examine how the stock wealth is affected at different time horizons is to decom-

pose the variance of the stock wealth by frequency, using a spectral decomposition. This

decomposition tells us what proportion of sample variance in ∆st is attributable to cycles of

different lengths. We estimate the population spectrum for the deterministically detrended

log difference in stock wealth ∆st − κ0 or stock price ∆pt − λ0 using (4) or (5). Noting that

∆st − κ0 in (6) is a function of three components, ∆sct , ∆syt , ∆sat , plus an i.i.d. residual ηt,

and using the fact that the spectrum of the sum is the sum of the spectra, we estimate the

fraction of the total variance in stock market wealth that is attributable to each component

at cycles of different lengths, in quarters. This is computed as the estimated spectrum for

the component, e.g., ∆sct , divided by the estimated spectrum for ∆st − κ0. The Appendix

provides additional details. This decomposition is potentially quite informative about rela-
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tive importance of different sources of variation for the long-run evolution of stock market

wealth.

Figure 4 exhibits these decompositions for the model (top panel), and for the data using

stock market wealth (middle panel) or stock price (bottom panel). The horizontal axis shows

the length of the cycle in quarters. The vertical axis gives the frequency decomposition of

variance. Consider the line marked “a” in the middle panel for historical stock market

wealth. This line shows that, for short cycles (i.e., periods of a few quarters), the fraction

of variance in stock wealth that is attributable to the exogenous risk aversion/wealth shock

is very high, close to 80%. The high frequency, short-horizon variability of the stock market

in post-war data is dominated by exogenous shocks to investors’willingness to bear risk.

As these cycles become longer, the fraction of variance in stock wealth explained by this

shock declines and asymptotes to roughly 40%. Thus the lower frequency, longer horizon

variability of the stock market is less dominated by such shocks.

Next consider the line marked “y”in the middle panel of Figure 4. This line shows that,

for short cycles of a few quarters, the fraction of variance in stock wealth that is attributable

to the factors share/labor income shock is very low, close to zero. Thus the high frequency,

short horizon, variability of the stock market in post-war data is virtually unrelated to these

factors share shocks. But because these innovations are nearly permanent, they play an

increasingly important role as the time horizon extends. Figure 4 shows that as the cycle

become longer, the fraction of variance in stock wealth explained by the factors share shock

steadily rises and asymptotes to roughly 40%, equal in importance to the risk aversion shock

at long horizons. Thus the lower frequency, long horizon, variability of the stock market is

quite significantly effected by the factors share shock, even though these shocks play virtually

not role in quarterly or even annual stock market fluctuations.

Finally in this middle panel, consider the line marked “c.”This line shows that, no matter

what the length of the cycle, the fraction of variance in stock wealth that is attributable to

the TFP/consumption shock is very low, close to zero. The line marked “residual”shows the

contribution of component of stock market fluctuations that is unexplained by these three

mutually orthogonal innovations. This residual explains less than 20% of the variability in

the stock market at all frequencies, and asymptotes to around 10% as the horizon extends.

There are no important differences in these results if we instead use stock price in place of

stock market wealth (bottom panel).

The model captures this frequency decomposition well. The top panel of Figure 4 shows

model-based orthogonal wealth shocks that originate from exogenous shifts in investors’
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willingness to bear risk explain almost all of the variation in stock market fluctuations over

short horizons and less as the horizon extends, consistent with the data. The model-based

labor income/factors share shock explains a negligible fraction of variation in the stock

market over shorter time horizons, but is equal in importance to the risk aversion shock as

the time horizon extends. Indeed these two shocks each explain about 45% of the variation

in the stock market over cycles three decades long, a fraction comparable to the 40% found in

the data for these shocks. And the model provides an explanation for why the productivity

shocks plays such a small role in the stochastic fluctuations of the stock market at all horizons:

Given capital’s smaller role in the production process, most gains and losses from total factor

productivity shocks accrue to workers, so these shocks are less important for stock market

wealth than are the other two sources of variation.

4.4.2 The Level of the Stock Market in the Post-War Period

A second way we investigate the short- versus long-run determinants of stock market wealth

is to study the role each shock has played in driving stock market wealth at specific points

in out sample. This can be accomplished by examining the levels decomposition of stock

market wealth (7) over time. Figure 5 plots the levels decomposition for stock wealth (left

column) and stock price (right column) over our sample. The top panels of each column

shows the sum of all components, which equals the log level of the variable (stock wealth

or stock price) after removing the deterministic trend. The panels below the top panel

show to the component attributable to the cumulation of the consumption/TFP shocks, the

labor/factors share shock, the wealth/risk aversion shock, and the residual. Each component

(and the sum) is normalized so that its value in 1952:Q1 (one period prior to the beginning

of our sample) is zero.

It is immediately clear from Figure 5 that the TFP component contributes relatively little

to the variation in stock market wealth consistently throughout the sample. This component

does take a noticeable drop at the end of the sample during and after the recession of 2007-

2009, but it is still quite modest compared to the variation in other components. The bottom

panel shows that the variation attributable to the unexplained residual is also reasonably

small. Instead, the big movers of stock market wealth are the factors share shock and the

risk aversion shock. Figure 5 shows that the low frequency movements in the level of stock

market wealth are dominated by the cumulative swings in the factor shares component, while

shorter-lived peaks and troughs in the stock market have coincided with spikes up or down

in the risk aversion component.
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The large role of the factors share shock in driving stock market wealth over horizons of

many years is particularly striking in this decomposition. Let us consider the last 25 years

as an example. The third panel of Figure 5 shows that the cumulative effect of the factors

share shock has persistently boosted stock market wealth over this time. From the dynamic

responses in Figure 2, it’s clear that these very shocks also persistently lowered the level of

labor earnings over this period.15 By contrast, from the mid 1960s to the mid 1980s, the

cumulative effect of this shock persistently boosted labor earnings and lowered stock market

wealth. The large low frequency swings in the stock market over the sample are exactly

mirrored in the low frequency swings of the factors share component.

As an example of the quantitative importance of such shocks over long-horizons, we use

this levels decomposition to calculate the percentage change since 1980 in the deterministi-

cally detrended real value of stock market wealth that is attributable to each shock. This

is trivial to compute once we have (7), because the change in the total value of the stock

market on the left-hand-side of is the sum of three structural components and a residual on

the right-hand-side, all of which are orthogonal to one another. As mentioned, the period

since 1980 is an interesting one to study, given the large cumulative effects of the factor

shares shock on stock market wealth and labor earnings over this time. The decomposition

(7) implies that the cumulative affects of the factors share shock, which persistently boosted

stock market wealth at the expense of labor earnings over this period, have resulted in a

65% increase in the deterministically detrended real value of the stock market since 1980,

an amount that exceeds 100% of the total increase. (Precisely, these shocks account for

110.5% of the increase.) Indeed, without these shocks, today’s stock market would be about

10% lower than it was in 1980. The result provides a timely example of how small but

near-permanent shocks to cash-flows can dramatically affect real stock market wealth over

long time horizons. It also underscores the extent to which the long-term value of the stock

market has been far more influenced by forces that redistribute the rewards of production,

rather than by forces that raise or lower the total amount of rewards.

The levels decomposition implies that an additional 38% of the increase in stock market

wealth since 1980, or a rise of 22%, is attributable to the cumulative effects of risk aversion

shocks, which tended to be lower in the last 30 years than in earlier in the post-war period.

By contrast, the cumulative affects of TFP shocks have made a negative contribution to

change in stock market wealth since 1980, once a deterministic trend is removed. Although

15Lettau and Ludvigson (2013) study the implications of this shock for labor income and show that there
is a stark inverse relationship over time between labor earnings and the stock market that is the result of
the cumulative reallocative outcomes of the factor shares shock.

28



the role of this shock is in general quite modest, over this particular period it is non-trivial

because its contribution was close to an all-time high (in our sample) in 1980 and close to

an all-time low at the end of the sample. This latter observation is a direct consequence

of the string of large negative draws for the consumption/productivity shock in the Great

Recession years from 2007-2009. Our calculations imply that the stock market would be

22% higher today compared to 1980 had these productivity shocks been zero. These shocks

accounted for -38% of the total increase since 1980. The residual accounts for the remaining

-10.5% of the increase.

The findings are very similar if we instead study the real CRSP value-weighted stock

price index plotted in the right-hand column of Figure 5. The decomposition implies that

103% of the increase in the deterministically detrended CRSP price index since 1980, or a

rise of 59%, is attributable to the cumulative effects of the factors share shock; 34%, or a

rise of 19%, is attributable to the cumulative effects of the risk aversion shock, and -22%,

or a rise of -12.6%, is attributable to the cumulative effects of the productivity shock. The

residual accounts for the remaining -14.5% of the increase.

We close this section by briefly investigating the relationship between the mutually or-

thogonal VAR innovations and earnings on the Standard & Poor (S&P) 500 stock market

index. To do so, we estimate an empirical relationship analogous to (4), but instead of

putting the log difference in stock wealth on the left-hand-side, we put log earnings changes

on the left-hand-side. Quarterly S&P earnings are known to be noisy.16 We therefore use

long-term earnings growth (four year log changes in real per capita earnings) rather than

quarterly log changes.

Figure 6 shows the dynamic response (not cumulated) of the four-year (16 quarter) log

difference in real per capita earnings to the et shocks. The response of earnings to a con-

sumption/TFP shock is positive after a couple of quarters but much smaller than that the

response to a factors share shock. A positive factors share shock (one that shifts rewards

toward shareholders) leads to a much larger jump in long-run earnings that persists for many

quarters. One aspect of these results that is not explained by the model is that there is a

temporary response of earnings to the wealth/risk aversion shock: it is small but positive

and grows over time before falling back again. This result is reminiscent of empirical find-

ings showing that expected stock market returns and expected dividend growth rates are

16S&P earnings fluctuate with time-variation in the application of accounting principles that affect the
definition of some receipts and expenses and the timing with which some receipts and expenses are recorded
(e.g., Petrick (2001)). These fluctuations may be strategic and therefore correlated with the economy or
stock prices.
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correlated (Lettau and Ludvigson (2005)). The model proposed above has no mechanism

for capturing this.

4.5 Why is the Stock Market Predictable?

We now turn to the subject of stock market predictability. A large and well known body

of evidence finds that excess stock returns are forecastable over longer horizons, suggesting

that the reward for bearing risk changes over time.17 But what type of primitive innovation

might be responsible for this predictability? Several theories have been put forth to explain

this forecastability, including habit formation (Campbell and Cochrane (1999)), or stochastic

consumption volatility (Bansal and Yaron (2004)). So far, however, no direct evidence has

been found that these mechanisms actually generate the observed predictability. This section

provides evidence on this question and shows that the empirical wealth shocks/exogenous risk

aversion shocks we identify explain most of the forecastable variation in excess stock market

returns found in historical data and associated with common predictor variables such as the

price-dividend ratio or the consumption-wealth variable cayt (Lettau and Ludvigson (2001)).

The results are presented in Table 5, with the top half showing results from historical data,

and the bottom half showing results from the model.

Table 5 has several panels. The left panel reports regression results of one through five

year log excess equity returns on the lagged price-dividend ratio alone. Moving rightward,

the next panel reports regression results of one through five year log excess equity returns

on lagged cayt alone. We will also discuss the predictability of equity premia by measures of

stochastic consumption volatility and uncertainty—the next panel reports regression results

of log excess returns on one measure of stochastic consumption volatility. The panel to

the right of this one, headed “ea only,” reports regression results of one through five year

log excess equity returns on multiple lags of the i.i.d. wealth/risk aversion innovations ea,t,

alone. The table reports the sum of the coeffi cients on all lags. The next two columns show

results when returns are predicted either by the component of the price-dividend ratio that

is unrelated to the wealth shocks, ûpd,t, or by the component of cayt that is driven only by

the wealth shocks. We motivate these regressions further below.

Several points bear noting. First, as previously shown in Table 3, the log price-dividend

ratio predicts future excess returns with statistically significant negative coeffi cients and

adjusted R-squared statistics ranging from 7% at a one year horizon to 19% at a five year

17For extensive reviews of this evidence see Campbell, Lo, and MacKinlay (1997), Cochrane (2005), Lettau
and Van Nieuwerburgh (2008), and Lettau and Ludvigson (2010).
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horizon. Similarly, Table 5 shows that cayt predicts future excess returns with statistically

significant positive coeffi cients in the model and adjusted R-squared statistics ranging from

7% at a one year horizon to 25% at a five year horizon.

Second, the third panel to the right in Table 5 shows that time-varying consumption

volatility has no predictive power for equity premia at any horizon. Consumption volatility

is measured as the conditional (on time t information) expectation of the squared innovation

in consumption growth one quarter ahead.18 These results are robust to using additional

lags of the stochastic volatility measure, to using first differences of the stochastic volatility

measure, to using GARCH measures of consumption growth volatility, and to using mea-

sures of stochastic consumption growth volatility looking out over horizons greater than one

quarter. In addition, broad-based measures of macroeconomic uncertainty developed in Ju-

rado, Ludvigson, and Ng (2013) also exhibit no forecasting power for equity premia at any

horizon. (These results are omitted to conserve space but are available upon request.) And

none of these measures display any significant relationship with the empirical wealth shocks

ea,t or their lags. These results provide no evidence that stock return predictability is driven

by time-varying second moments of consumption growth or broad-based macroeconomic

uncertainty.

Third, by comparison with pd or cay, lags of the ea,t wealth shocks exhibit greater fore-

casting power than either of these variables at every horizon except the five-year horizon.

The adjusted R-squared statistics range from 14% at a one year horizon to 31% at a 3 year

horizon before falling back to 18% at a 5 year horizon. A Wald test strongly rejects the

hypothesis that the coeffi cients on the lags of these shocks are jointly zero. Note that a

positive innovation for the wealth shock increases asset wealth, so the negative coeffi cients

in this forecasting regression imply that increases in wealth holding fixed consumption and

labor income are transitory and therefore forecast lower returns in the future.

Fourth, the predictive content for long horizon excess stock market returns contained in

the price-dividend ratio and cayt is virtually subsumed by the information in lags of the

wealth shocks at all but very long horizons, while at the longest horizons both variables

have independent forecasting power. This can be seen in the two far right panels of Table

5. Denote the fitted residuals from regressions of the price-dividend ratio on the current

and lagged values of the ea,t shock as ûpd,t. These residuals give the component of pd that

is not attributable to the wealth shocks. Moreover, denote the component of cayt that

18A stochastic volatility model is used to estimate Et
(

[∆ lnCt+h − Et [∆ lnCt+h]]
2
)
, for different horizons

h. This estimate is taken from Jurado, Ludvigson, and Ng (2013).

31



is driven only by the wealth shocks as caya,t.19 The next to last column shows that, at all

horizons except the five year, the pd residual components ûpd,t have no statistically significant

forecasting power for equity premia. This shows that all of the predictive power of the price-

dividend ratio over these horizons is related to the wealth shocks. Moreover, the adjusted

R-square statistics for the regressions on ûpd,t are small and much smaller than the than

those for the regressions using pdt itself. Even though the fitted residual components are

statistically significant at the 5 year horizon, the R-square statistics are much smaller than

those regressions for which the wealth shocks are used as predictor variables. There is no

horizon at which the wealth shocks are not strongly statistically marginally significant. This

indicates that the wealth shocks are still explaining the bulk of predictive power at the 5

year horizon even though the residual components have some predictive power at the this

horizon. The results from the model are remarkably similar along this dimension.

A similar conclusion can be drawn from examining the forecasting regressions using caya,t
(last column, Table 5). These regressions show that the component of cayt that is driven

solely by the orthogonal wealth shocks, ea,t, is entirely responsible for the forecasting power

of cayt over all horizons except the 5 year. This can be observed by noting that the adjusted

R2 statistic is if anything higher when using caya,t rather than cayt as a predictor variable

to forecast equity premia.

Finally, it should also be noted that the wealth/risk aversion shocks we identify are

contemporaneously unrelated to stock market dividend growth in our sample: the correlation

between ea,t and ∆dt is 0.06. The contemporaneous correlation with earnings growth is only

slightly higher, 0.127. These results provide little evidence that the wealth/risk aversion

shocks we identify that are, by construction, uncorrelated with consumption instead originate

from shocks to measures of fundamental stock market value such as dividends or earnings.

In summary, the predictive content of common forecasting variables for long horizon

excess stock market returns is largely subsumed by the information in a shock to asset

values that is orthogonal to consumption and labor income and only very weakly related to

stock market fundamentals. Taken together, these results mean that the observable wealth

shocks we identify largely explain why common predictor variables forecast excess returns.

Changes in the reward for bearing stock market risk must be understood as attributable to

sources that are largely unrelated to movements in economic fundamentals alone, including

19This is computed by inserting εt≡Het into (1), using the initial values of xt and ∆xt in the sample
along with the estimated parameter values, and rolling forward (1) to obtain components of ct, at, and yt,
attributable to each element of et. These may then be combined with the estimated cointegrating vector α,
to obtain components of cayt attributable to each shock.
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aggregate consumption, labor income, measures of uncertainty or stochastic consumption

volatility, dividend growth, or earnings growth. These findings are hard to reconcile with

models in which time-varying risk premia arise from habits in consumption or stochastic

consumption volatility.

5 Economic Inequality

The causes and consequences of the upward trend in economic inequality over the last 30

years are hottly debated (see for example, Heathcote, Perri, and Violante (2010)). The model

above has strong implications for this debate and indicates that fluctuations in economic

inequality should be closely related to movements in the factors share shock. Figure 7

provides suggestive evidence that the cummulative effects of the factors share shock since

1980 may be associated with the observed rise in consumption inequality over this period.

Figure 7 plots the consumption Gini coeffi cient from Heathcote, Perri, and Violante (2010),

which uses data from the Consumer Expenditure Survey (CEX) over the period 1980 to

2006. Along with this series, we plot the cummulated factors share shock from the empirical

VAR, and the model-implied consumption Gini obtained by feeding the observed sequence

of factors share shocks from 1980 to 2006 into the model. (The Appendix gives the mapping

between the consumption Gini and the cummulated factors share shocks in the model.) In

the model, the consumption Gini is almost perfectly correlated with the cummulated factors

share shocks, both of which rise over the 1980-2006 period as rewards shifted away from

workers and toward shareholders.20 This is not surprising since, in the model, all inequality

is between group inequality across shareholders and workers, which is driven by the factors

share shock. But there is also a striking low frequency correlation shown in Figure 7 between

the rise in consumption inequality in the CEX data and the observed cummulated factors

share shock, suggesting that the shift in rewards away from workers and toward shareholders

over the last thirty years could be a driving force behind the rise in consumption inequality.

6 Conclusion

No comprehension of stock market behavior can be complete without understanding the

origins of its fluctuations. Surprisingly little research has been devoted to this question. As

20This calculation makes the (empirically relevant) assumption that equity holders’ share of aggregate
consumption is greater than their share in the population so that a shift in rewards toward shareholders
increases rather than decreases consumption inequality.
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a consequence, we have only a dimly lit view of why the real value of stock market wealth

has evolved to its current level compared to five, or ten, or thirty years ago.

The starting point of this paper is to demonstrate that three mutually orthogonal eco-

nomic shocks that we measure empirically explain the vast majority of fluctuations in real

stock market wealth since the early 1950s. We then propose a model to interpret these

shocks and show that they are the observable empirical counterparts to three latent primi-

tive shocks: a total factor productivity shock that benefits both workers and shareholders, a

factors share shock that shifts the rewards of production between workers and shareholders

without affecting the size of those rewards, and an exogenous risk-aversion shock that shifts

the stochastic discount factor pricing equities but is unrelated to aggregate consumption,

labor earnings, or measures of fundamental value in the stock market.

Once we remove deterministic growth attributable to technological progress, the model

implies that there are two big drivers of stock market wealth over time. One is a discount

rate shock driven by fluctuations in investors’willingness to bear risk that is unrelated to

real economic activity, including consumption, labor income, stock market dividends and

earnings.21 The other is a cash-flow innovation that redistributes the rewards of production

between shareholders and workers with no change aggregate consumption. The exogenous

discount rate shock dominates stock market volatility over periods of several quarters and

a few years, while the factors share shock plays an increasingly important role as the time

horizon extend into decades. Technological progress that raises aggregate consumption and

benefits both workers and shareholders plays a small role in historical stock market fluctua-

tions at all horizons.

A particularly striking example of the long-run implications of these economic shocks

is provided by examining the period since 1980, a period in which the cumulative effect

of the factor shares shock persistently rewarded shareholders at the expense of workers.

After removing a deterministic trend, we find that factors share shocks have resulted in a

65% increase in real stock market wealth since 1980, an amount that exceeds 100% of the

increase in stock market wealth over this period. Indeed, without these shocks, today’s stock

market would be about 10% lower than it was in 1980. This finding underscores the potential

for small but near-permanent shocks to dramatically affect equity values over long periods of

time. It also implies that the type of shocks responsible for big historical movements in stock

21One real variable that in the data is related to the wealth shock is investment (Lettau and Ludvigson
(2013)). But this is theoretically consistent with a discount rate shock, which should affect the present
discounted value of marginal profits and therefore the optimal rate of investment (e.g., Abel (1983); Cochrane
(1996)).
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market wealth are not those that raise or lower aggregate rewards, but are instead those that

redistribute a given level of rewards between workers and shareholders. Loosely speaking,

this can be understood by noting that a unit increase in total factor productivity raises

shareholder income by the fraction one minus the labor share, while a dollar transferred

from workers raises shareholder income by 100% of the amount transferred.

Our final results pertain to the question of why equity premia are forecastable over time.

We find that most of the predictive content contained in common forecasting variables such

as the price-dividend ratio or cayt for future equity premia is subsumed by the information

in lags of the empirical wealth shocks we identify. The predictability of excess stock mar-

ket returns must therefore be understood as originating from a shock to the discount rate

that is not sparked by a movement in consumption, labor income, stock market earnings or

dividends, measures of stochastic consumption volatility, or broad-based macroeconomic un-

certainty. These facts are well explained by the model presented above, in which shareholders

exhibit changes in their willingness to bear risk that is largely unrelated to the underlying

economic fundamentals represented by these variables. These conclusions echo those recently

drawn from completely different data (stock market index options), whereby risk price vari-

ation responsible for time-varying equity premia is found to be largely unrelated to, and

unidentifiable from, the stochastic evolution of risks in the economy (Andersen, Fusari, and

Todorov (2013)).

The model presented here is deliberately stylized on the quantity side of the economy,

abstracting from capital accumulation and fluctuations in employment. We have taken

this approach in order to embed our analysis into an empirically plausible stock market

environment. But there is growing evidence of important changes in the labor market over

the last 30 years that have coincided with sharp declines in labor’s share of output. These

include the permanent disappearance of “middle skill” occupations not accompanied by a

commensurate rise in employment elsewhere (Acemoglu (1999); Autor, Katz, and Kearney

(2006); Jaimovich and Siu (2013)). Notably, the disappearance of these jobs does is not

associated with a decline in output but instead reflects progress in technologies that more

cheaply substitute for labor (Autor, Levy, and Murnane (2003)). Although the model we

have explored here does not have an explicit role for changes in the composition and level

of employment, we consider the factors share shifter a reduced-form way of capturing the

implications of such phenomena for stock market behavior. Our findings imply that these

forces for redistribution between shareholders and workers—whatever their cause—have had

a profound effect on stock market wealth over longer periods of time and have been an
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especially important driver in the last thirty years.
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Appendix

Data Description

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expen-

diture on nondurables and services, excluding shoes and clothing. The quarterly data are

seasonally adjusted at annual rates, in billions of chain-weighted 2005 dollars. The com-

ponents are chain-weighted together, and this series is scaled up so that the sample mean

matches the sample mean of total personal consumption expenditures. Our source is the

U.S. Department of Commerce, Bureau of Economic Analysis.

LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’income

with IVA and CCADJ + rental income + personal dividends + personal interest income)]

times personal current taxes, where IVA is inventory valuation and CCADJ is capital con-

sumption adjustments. The quarterly data are in current dollars. Our source is the Bureau

of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table below.

Stock market wealth includes direct household holdings, mutual fund holdings, holdings

of private and public pension plans, personal trusts, and insurance companies. Nonstock

wealth includes tangible/real estate wealth, nonstock financial assets (all deposits, open

market paper, U.S. Treasuries and Agency securities, municipal securities, corporate and

foreign bonds and mortgages), and also includes ownership of privately traded companies

in noncorporate equity, and other. Subtracted off are liabilities, including mortgage loans

and loans made under home equity lines of credit and secured by junior liens, installment

consumer debt and other. Wealth is measured at the end of the period. A timing convention

for wealth is needed because the level of consumption is a flow during the quarter rather

than a point-in-time estimate as is wealth (consumption data are time-averaged). If we
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think of a given quarter’s consumption data as measuring spending at the beginning of the

quarter, then wealth for the quarter should be measured at the beginning of the period.

If we think of the consumption data as measuring spending at the end of the quarter,

then wealth for the quarter should be measured at the end of the period. None of our

main findings discussed below (estimates of the cointegrating parameters, error-correction

specification, or permanent-transitory decomposition) are sensitive to this timing convention.

Given our finding that most of the variation in wealth is not associated with consumption,

this timing convention is conservative in that the use of end-of-period wealth produces a

higher contemporaneous correlation between consumption growth and wealth growth. Our

source is the Board of Governors of the Federal Reserve System. A complete description of

these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

STOCK PRICE

The stock price is measured as the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE.

PRICE DEFLATOR

The nominal after-tax labor income and wealth data are deflated by the personal con-

sumption expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one

would like a measure of the price deflator for total flow consumption here. Since this variable

is unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau

of Economic Analysis.

Risk Aversion Along a Balanced Growth Path

The budget constraint for the representative shareholder can be written

At = θt (Pt +Dt) +Bt (26)

Cs
t +Bt+1qt + θt+1Pt ≤ At, (27)

where At are period t assets, θt are shares held in equity, Pt is the ex-dividend price of these

shares, Bt is the beginning of period value of bonds held, and qt = 1/ (1 +Rf ) is the risk-free

rate paid on bonds. Along the non-stochastic balanced growth path, the equity return is

equal to the risk-free bond rate. Rewrite (26) as

At+1 = Ptθt+1

(
Pt+1 +Dt+1

Pt

)
+Bt+1

= Ptθt+1Rt+1 +Bt+1 =>

Ptθt+1 =
At+1

Rt+1

− Bt+1

Rt+1

. (28)
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Plugging (28) into (27) and evaluating (27) at the equilibrium value of equality, we obtain

At = Cs
t +Bt+1qt +

At+1

Rt+1

− Bt+1

Rt+1

= Cs
t +

At+1

Rt+1

= Cs
t +

At+1

Rf

where the last equality follows because qt = 1/Rf = 1/Rt+1 along the equilibrium balanced

growth path. Thus we have a beginning of period assets:

At+1 = Rf (At − Cs
t )

or solving forward

At =
∞∑
i=0

(
1

Rf

)i
Cs
t+i. (29)

The value function is defined

V (At) = max
Cst
{u (Cs

t ) + βtEtV (At+1)}

or using (27)

V (At) = max
Bt+1,θt+1

{u (At −Bt+1qt + θt+1Pt) + βtEtV (At+1)} .

Following the derivation in Swanson (2012), the coeffi cient of relative risk aversion RRAt is

RRAt =
−AtEtV ′′ (At+1)

EtV ′ (At+1)
. (30)

It can be shown (see below) that

V ′ (At+1) = u′
(
Cs
t+1

)
⇒ (31)

V ′′ (At+1) = u′′
(
Cs
t+1

) ∂Cs∗
t+1

∂At+1

, (32)

where the notation “*”denotes the shareholder’s optimal choice of Cs
t+1.

Swanson (2012) derives a relative risk aversion coeffi cient for dynamic models at a non-

stochastic steady state or along a balanced growth path. We use G = 1 + µa to denote

steady state growth. Along a balanced growth path where for z ∈ {A,Cs, D,C, Y } we have
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zt+k = Gkzt,where G ∈ (0, Rf ) we have the following derivation in this setting. Note that

the steady state value of βt ≡
exp(−rf)

Et

[
D
−xt
t+1

D
−xt−1
t

] is given by

β =
exp (−rf )

Gx
,

where the mean of xt is denoted x. Using the first order condition for optimal consumption

choice in steady state:

u′ (Cs∗
t ) = βRfu

′′ (Cs∗
t+1

)
=>

u′′ (Cs∗
t )

∂Cs
t

∂At
= βRfu

′′ (Cs∗
t+1

) ∂Cs∗
t+1

∂At
=>

−x (Cs
t )
−x−1 ∂C

s∗
t

∂At
=

exp (−rf )
Gx

Rf

[
−x (GCs∗

t )−x−1
] ∂Cs∗

t+1

∂At
=>

∂Cs∗
t

∂At
= G−1∂C

s∗
t+1

∂At
. (33)

Applying the same transformation to the first order condition at time t+ 1 we have

u′′
(
Cs∗
t+1

) ∂Cs
t+1

∂At
= βRfu

′′ (Cs∗
t+2

) ∂Cs∗
t+2

∂At
=>

∂Cs∗
t+1

∂At
= G−1∂C

s∗
t+2

∂At
(34)

and combining (33) and (34) we obtain

∂Cs∗
t

∂At
= G−2∂C

s∗
t+2

∂At
=>

∂Cs∗
t+2

∂At
= G2∂C

s∗
t

∂At
,

and iterating obtain
∂Cs∗

t+i

∂At
= Gi∂C

s∗
t

∂At
.

Now differentiate (29) evaluated along the balanced growth path with respect to At:

1 =
∞∑
i=0

(
1

Rf

)i ∂Cs∗
t+i

∂At

1 =
∂Cs∗

t

∂At

[
1 +

G

Rf

+

(
G

Rf

)2

+

(
G

Rf

)3

+ · · ·
]

=
∂Cs∗

t

∂At

(
Rf

Rf −G

)
,
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implying
∂Cs∗

t

At
=
Rf −G
Rf

. (35)

Assets At along a non-stochastic balanced growth path are

At ≡
∞∑
i=0

(
1

Rf

)i
Cs∗
t+i

=
∞∑
i=0

(
G

Rf

)i
Cs∗
t

=
RfC

s∗
t

(Rf −G)
. (36)

Plugging (31), (32), (35), and (36) into (30), we obtain a value for risk aversion along a

balanced growth path equal to

RRAt =
−Cs

t u
′′ (Cs

t+1

)
u′
(
Cs
t+1

) = x/G.

Derivation of (31). First-order condition for Bt+1:

−u′ (Cs
t ) qt + βtV

′ (At+1)
∂At+1

∂Bt+1︸ ︷︷ ︸
=1 from (26)

= 0. (37)

First-order condition for θt+1:

−u′ (Cs
t )Pt + βtV

′ (At+1) (Pt+1 +Dt+1) = 0. (38)

Differentiate the value function

V (At) = max
Bt+1,θt+1

{u (At −Bt+1qt + θt+1Pt) + βtEtV (At+1)}

with respect to At, keeping in mind

Cs
t = At −Bt+1qt + θt+1Pt

and

At+1 = θt+1 (Pt+1 +Dt+1) +Bt+1.

We have

V ′ (At) = u′ (Cs
t ) +

−u′ (Cs
t ) qt + βtV

′ (At+1)
∂At+1

∂Bt+1︸ ︷︷ ︸
=1

 ∂Bt+1

∂At

+ [−u′ (Cs
t )Pt + βtV

′ (At+1) (Pt+1 +Dt+1)]
∂θt+1

∂At
.
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Evaluating at the optimum using (37) and (38), the terms in brackets are zero, leaving

V ′ (At) = u′ (Cs
t ) .

Numerical Solution

The price-dividend ratio satisfies

Pt
Dt

(st) = Et

[
Mt+1

(
Pt+1

Dt+1

(st+1) + 1

)
Dt+1

Dt

]
= Et exp

(
mt+1 + ∆dt+1 + ln

(
Pt+1

Dt+1

(st+1) + 1

))
,

where st is a vector of state variables, st ≡ (∆ ln at, Zt, xt)
′ . We therefore solve the function

numerically on an n × n × n dimensional grid of values for the state variables, replacing

the continuous time processes with a discrete Markov approximation following the approach

in Rouwenhorst (1995). The continuous function Pt
Dt

(st) is then replaced by the n × n × n
functions Pt

Dt
(i, j, k) , i, j, k = 1, ..., N, each representing the price-dividend ratio in state

∆ ln ai, Zj, and xk, where the functions are defined recursively by

P

D
(i, j, k) =

n∑
l=1

n∑
m=1

n∑
n=1

πi,lπk,nπj,m exp

(
m (l,m, n) + ∆d (l,m, n) + ln

(
P

D
(l,m, n) + 1

))
,

where m (l,m, n) refers to the values mt+1can take on in each of the states, and analogously

for the other terms. We set N = 50.

Estimating Population Spectrum for the Level of Stock Market Wealth

Here we discuss the level decomposition of variance based on a spectral decomposition. The

reference for this procedure is Hamilton (1994), chapter 6. The procedure may be summa-

rized as follows. First, we estimate (4) and plug the estimated parameters into formulas

for the population spectrum for each component in (6) ∆sct , ∆syt , ∆sat , and i.i.d. residual

ηt. Since ∆st − κ0 = ∆sct + ∆syt + ∆sat + ηt, the sum of the estimated spectra for each

component gives the estimated spectrum for ∆st − κ0, denoted S∆s (ω) as a function of

cycles of frequency ω. Notice that we remove the deterministic trend from the log level

of stock market wealth by subtracting κ0 from ∆st on the right-hand-side. Thus we have

S∆s (ω) = S∆sc (ω)+S∆sy (ω)+S∆sa (ω)+Sη (ω), where these right hand terms are the spec-

tra for the individual components of ∆st − κ0. Roughly speaking, the proportion of sample

variance in ∆st − κ0 attributable to cycles with frequency near ω is given by S∆s (ω) 4π/T ,
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where T is the sample size. The fraction of the variance in the ∆st − κ0 at cycles with

frequency near ω that is attributable to the consumption shock is

S∆sc (ω)

S∆s (ω)
, (39)

and fraction of the variance in the ∆st−κ0 at cycles with frequency ω that is attributable to

the other components are defined analogously. Recalling that, if the frequency of the cycle

is ω, the period of the cycle is 2π/ω. Thus we plot (39), which is a function of frequencies

ωj = 2πj/T , against periods 2π/ωj = T/j (here in units of quarters), where T is the sample

size.

Bootstrap Procedure for Error Bands

Confidence intervals for parameters of interest are generated from a bootstrap following

Gonzalo and Ng (2001). The procedure is as follows. First, the cointegrating vector is

estimated, and conditional on this estimate, the remaining parameters of the VECM and

subsequent regressions are estimated. The fitted residuals from the system

∆xt = ν̂ + γ̂α̂′xt−1 + Γ̂(L)∆xt−1 + Ĥet

∆st = κ̂0 + κ̂c(L)ec,t + κ̂y(L)ey,t + κ̂a(L)ea,t + ηt,
(40)

denoted (êc,t, êy,t, êa,t, η̂t) are obtained and a new sample of data is constructed (conditional

on our initial observations x−1,x0 and s0,) using the initial VECM and stock wealth OLS

parameter estimates by random sampling of (êc,t, êy,t, êa,t, η̂t) with replacement. Denote the

new randomly sampled (via block bootstrap) values for the residuals (ẽc,t, ẽy,t, ẽa,t, η̃t) for

t = 1, . . . , T . The new bootstrapped sample of observable data, (x̃t, s̃t), is constructed from

∆x̃t = ν̂ + γ̂α̂′xt−1 + Γ̂(L)∆xt−1 + Ĥẽt

∆s̃t = κ̂0 + κ̂c(L)ẽc,t + κ̂y(L)ẽy,t + κ̂a(L)ẽa,t + η̃t.

Given this new sample of data, all parameters in (40) (as well as the cointegrating coeffi cients)

are re-estimated, and the impulse responses, variance decompositions, and other statistics

of interest stored. This is repeated 5,000 times. The empirical 90% confidence intervals

are evaluated from these 5,000 samples of the bootstrapped parameters. The bands for the

impulse responses in Figure 2 are reported in Figure A.1. The bands are reasonably tight for

most responses except for the response of at to a labor income shock ey,t. However, Figure

3 shows that the response of stock wealth st (rather than net worth) to an ey,t shock is
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estimated much more precisely, reflecting the fact that the factors share shock affects the

stock wealth component of net worth almost exclusively, but shows little relation to other

forms of wealth included in net worth.

Consumption Gini

We explain how the model-implied consumption Gini coeffi cient is computed over the same

sample period as in the empirical consumption Gini series of Heathcote, Perri, and Violante

(2010). In the model, inequality is entirely attributable to the division of consumption

between shareholders and workers (agents in each group are identical, so there is no within-

group inequality). The level of inequality in the model is measured, as in the data, using

the Gini coeffi cient for consumption. To calculate inequality in the model, we assume that

the fraction of shareholders is smaller than their share of aggregate consumption, so that

shareholders consume a disproportionately large fraction of aggregate consumption. This

assumption ensures that a shift of income away from workers toward shareholders (i.e., a

positive εz shock) has the effect of increasing consumption inequality. The share of aggregate

consumption that acrues to workers is αf (Zt). If we denote q to be the fraction of the

population in the shareholder group, then we assume q < 1− αf(z) for all z.

Under these assumptions, the Gini coeffi cient takes the simple form

G = 1− q − αf(z). (41)

To see this, it is helpful to consider Figure A.2, which shows the consumption distribution

in the model. The Gini coeffi cient is defined to be the ratio A/(A+B), where A and B are

the areas of the relevant labeled areas in Figure A.2. The area B is the sum of the areas of

a triangle with base 1− q and height αf(z), a rectangle with base q and height αf(z), and

a triangle with base q and height 1− αf(z). Basic geometry then implies that

B =
1

2
(q + αf(z)).

A+B is a triangle with base 1 and height 1, so A+B = 1/2. Combining results, we obtain

that

A =
1

2
(1− q − αf(z)).

Since G = A/(A+B), this completes the derivation of (41).

Given this form for the Gini coeffi cient, it is clear that in the model, the Gini coeffi cient

can be determined up to the constant q given values for f(z). In the model, the ey shock is
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nearly perfectly correlated with ∆ ln f(Zt), so that

∆ ln f(Zt) ' b1ey,t (42)

for some constant b1. The constant is estimated by running the relevant regression using

long time series simulated from the model.

Using our estimates êy,t from the empirical VAR, we can now construct an implied series

for the Gini coeffi cient in the model. Note from (41), we have

ln f (Zt) = ln f (Z0) + b1

t∑
i=1

ey,i. (43)

The consumption gini data from Heathcote, Perri, and Violante (2010) are annual and run

from 1980 to 2006. We therefore set t = 1 to 1980 and normalize ln f (Z0) to zero. We take

the average quarterly value of ey,t within a year as the annual observation for ey,t. Iterating

forward on (43) and applying the exponential function to the left-hand-side yields an implied

series for f(zt). Finally, plugging this value into (41) yields a model-implied series for G.
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Table 1: Parameter List and Calibration

No. Parameter Description Calibration

1 α exponent on labor in production function 0.667

2 ψ constant term in f(Zt) 0.5

3 rf log risk-free rate 0.0038

3 θ maximum value xt 500

4 ā mean (quarterly) ∆at 0.0057

5 ¯f(Z) mean f(Zt) 1

6 E(xt) mean E(xt) process 32.4

7 φa autocorrelation ∆at 0

8 φz autocorrelation zt 0.995

9 φx̃ autocorrelation x̃t 0.85

10 σa standard deviation εa,t 0.0091

11 σz standard deviation εz,t 0.145

12 σx̃ standard deviation εx̃,t 6.01



Table 2: Simulated and Data Moments

Variable Data Mean Data St. Dev. Model Mean Model St. Dev.

∆ct 0.018 0.014 0.023 0.018

∆yt 0.021 0.018 0.023 0.060

∆dt 0.020 0.133 0.023 0.151

ret 0.065 0.190 0.066 0.179

rft 0.015 0.022 0.015 0.000

rext 0.051 0.185 0.051 0.179

pt − dt 3.548 0.376 3.287 0.358

Notes: ∆ct is log differences of real consumption. ∆dt is log differences of dividends obtained from CRSP,

where the dividend series is extracted as the difference between the cum-dividend and ex-dividend value-

weighted returns. Data for ret are the cum-dividend value-weighted returns from CRSP. Data for rft are the

constant-maturity 1-year rate on treasury bills from FRED. rext is the difference between the ret and rft . Data

for pt − dt is obtained from the CRSP data. The variables ∆dt, r
f
t , ret , and rext are adjusted for inflation

by subtracting the log difference of realized CPI (all urban consumers) obtained from FRED. All variables

are at annual frequency. For all variables except pt − dt, annual observations are obtained by summing over

monthly or quarterly variables. Annualization for pt − dt is performed by annualizing dividends using the

method just described, and then dividing the final price of the year by the annualized dividend. Coefficients

that are statistically significant at 5% level appear in bold. The sample is 1953:4 - 2012:9.
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Table 4: Variance Decomposition of Quarterly Log difference in Stock Wealth

c Shock y Shock a Shock Residual

Model 0.014 0.039 0.947 0.000

(0.002, 0.054) (0.010, 0.108) (0.861, 0.983)

Data (Stock Wealth) 0.062 0.044 0.759 0.134

(0.042, 0.135) (0.024, 0.101) (0.690, 0.815)

Data (Stock Price) 0.060 0.042 0.743 0.155

(0.043, 0.129) (0.025, 0.101) (0.678, 0.803)

Notes: See Table 2. This table reports a variance decomposition of the quarterly log difference in stock
market wealth using the OLS regressions of the log difference in stock wealth on contemporaneous and
lagged mutually orthogonal VAR innovations. The numbers reported represent the fraction of the h = ∞
step-ahead forecast error in the log difference of stock wealth that is attributable to the shock named in the
column heading. The last column reports the share of the variance that is attributable to the residual of the
regressions. Model results are calculated as averages over 1,000 simulations of 238 observations each. The
numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples
using the procedure described in the Appendix. For model results, the numbers in parentheses are the 5th
and 95th percentiles of the relevant statistic over the 1,000 simulations. The historical sample spans the
period 1952:Q2 - 2012:Q4.
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û
p
d

ca
y a

h
p
d
t

R̄
2

ca
y t

R̄
2

e
a
,t

R̄
2
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Figure 1: Model-Based Responses: Primitive vs. VAR Shocks
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Notes: The left column plots the model impulse responses to the primitive shock named in the sub-graph
title. The right column plots the impulse responses implied by the model to the orthogonalized VAR shocks
using data simulated from the model (right column). Impulse responses to primitive shocks are obtained
by applying a single shock at t = 0, and simulating the model forward with all other shocks set to zero.
Impulse responses to the VAR shocks are obtained by simulating the model over one very long sample (equal
to 238,000 observations), estimating a cointegrated VAR, inverting to Wold representation and computing
the responses to orthogonalized c, y, and a shocks with that ordering in the VAR. The size of the shocks are
normalized so that the initial response of a variable to its own shock in the right panel is the same as the
response of that variable to the corresponding primitive shock in the left panel.



Figure 2: VAR Impulse Responses (Model vs. Data)
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Notes: The figure plots impulse response functions to the VAR shocks in both the model (left column)
and data (right column). true structural shocks to the orthogonalized shocks obtained from the VECM
regression using data simulated from the model (left column), and actual data (right column). In both cases,
impulse responses are obtained by estimating a cointegrated VAR, inverting to Wold representation and
computing the responses to orthogonalized c, y, and a shocks with that ordering in the VAR. Model results
are calculated as averages over 1,000 simulations of 238 observations each. The historical sample spans the
period 1952:Q2 - 2012:Q4.



Figure 3: Stock Market Impulse Responses
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Notes: The figure plots impulse responses of stock wealth to the shocks obtained from the VECM regression.
Dotted lines are 90% error bands obtained using the bootstrap procedure described in the Appendix. The
historical sample spans the period 1952:Q2 - 2012:Q4.



Figure 4: Decomposition of Spectrum (Model vs. Data)
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Notes: The figure shows the decomposition of spectra at different frequencies into components driven by
each of the orthogonalized shocks of the consumption, labor income and wealth VAR. Results for the model
are computed from averages over 1,000 simulations of 238 observations. Results from historical data appear
in the two bottom panels. The historical sample spans the period 1952:Q2 - 2012:Q4.



Figure 5: Level Decomposition (Data)
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Notes: See Table 2. The figure shows the decomposition of the log level of stock wealth into components
driven by the orthogonalized c, y, and a shocks obtained from the VECM regression. A deterministic trend
is removed from the log level of stock wealth by removing the mean in log differences before cumulating.
The components plus the residual sum to the log level of detrended stock wealth and detrended stock price
in the left and right panels, respectively. Each component and the sum are normalized so that the value in
1952:Q1 is zero. The sample spans the period 1952:Q2 - 2012:Q4.



Figure 6: Earnings Impulse Responses
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Notes: The figure plots the responses of 16Q real per-capita S&P 500 earnings growth to contemporaneous
and lagged values of the shocks obtained from the VECM regression. The IRFs are computed as the
coefficients A, B, and C from the earnings regression

15∑
j=0

∆ ln(EAt−15+j) = α0 +A(L)ec,t +B(L)ey,t + C(L)ea,t + νt.

Each lag polynomial includes sixteen terms total (one contemporaneous and fifteen lag terms). EAt is the
four quarter moving average of real reported S&P earnings obtained from the website of Robert Shiller. The
sample spans the period 1952:Q2 - 2012:Q4.



Figure 7: Gini Coefficient and Cumulated ey Shock
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Student Version of MATLABNotes: The consumption Gini (data) series is the Gini coefficient of inequality for nondurable consumption
(source: Heathcote, Perri and Violante (2010)). The cumulated y shock series is the running total of all
the ey shocks to date:

∑t
j=1 ej . The implied consumption Gini (model) series uses the model to calculate

the implied Gini coefficient for consumption based on the observed sequence of y shocks (see appendix for
details). All series are presented at annual frequency. For the cumulated y shock and model-implied Gini
series, annual observations are averages over the calendar year. All three series are normalized to have zero
mean and unit standard deviation in the sample.



A Additional Figures

Figure A.1: VAR Impulse Responses with Error Bands
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Notes: The figure plots impulse response functions to the VAR shocks obtained from the VECM regression
using data. Impulse responses are obtained by estimating a cointegrated VAR, inverting to Wold represen-
tation and computing the responses to orthogonalized c, y, and a shocks with that ordering in the VAR. The
dotted lines are 90% error bands obtained using the bootstrap procedure described in the Appendix. The
historical sample spans the period 1952:Q2 - 2012:Q4.



Figure A.2: Model Gini Coefficient
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Notes: This diagram plots the distribution of consumption in the model. q is the proportion of shareholders.
The Gini coefficient of consumption is defined by G = A/(A + B), where A and B are the areas of the
relevant regions.


