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1 Introduction

There is a long tradition in economic history that places coal at the centre of the In-
dustrial Revolution. For many economic historians trained in history departments, the
Industrial Revolution was a switch towards coal, above all else. This paper will focus on
two claims that have been made for coal, one temporal and one spatial. Focusing on vari-
ation over time, it was argued that harnessing coal explained a large share of subsequent
economic growth (what we will refer to as the growth hypothesis). Focusing on variation
across space, it was argued that the location of industry was strongly influenced by the
location of coalfields (what we will refer to as the location hypothesis).1

In contrast, several economic historians trained in economics departments have
been more circumspect about the importance of coal. In some instances, they have
been downright sceptical, especially about the location hypothesis, but in some cases
about the growth hypothesis also. Both sides have used various data to support their
claims, and cliometricians have used back of the envelope calculations to try to measure
the importance of coal. However, systematic econometric studies of coal’s importance
during the Industrial Revolution have been surprisingly scarce. Careful quantification
would thus seem essential in order to distinguish between the two positions.

This paper provides an econometric test of both the location and growth hypotheses
in a pan-European context. More precisely, it tests (and quantifies) the latter, based on
an identification strategy that relies on (and tests) the former. Because of our interest
in the location of economic activity, we need fine-grained spatial data spanning the
periods both before and after the Industrial Revolution. Unfortunately, data on European
regional GDP or industrial output are not available over the time scale needed, and in
any event regional data might not be geographically fine-grained enough to test the
influence of proximity to coalfields in a sufficiently rigorous manner. We therefore use
data on city sizes, in line with several other recent studies (Nunn and Qian 2011, Dittmar
2011, and Cantoni 2013).2 While these do not provide us with information on income per
capita, they are a good indicator of the geographical distribution of economic activity at
a point in time. Furthermore, both Dittmar (2011) and Cantoni (2013) use city sizes to
assess the economic growth consequences of the introduction of the printing press, and

1Until declines in transport costs sufficiently weakened the gravitational pull of coalfields, some time
in the late 19th or early 20th century (Wright 1990).

2We cannot explore urbanization rates, since data on the denominator (total population) are not avail-
able at the level of regional disaggregation required for our purposes.
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Protestantism, respectively.

More precisely, we use a difference-in-differences (DID) strategy, to see whether
cities that were located closer to coalfields grew more rapidly during and after the In-
dustrial Revolution (but not before) than those further away. We find that being located
close to a coalfield mattered for city sizes after the Industrial Revolution, but not before;
we take this to be strong evidence in favour of the location hypothesis. We also find that
the introduction of the coal-using technologies of the Industrial Revolution can account
for up to 60% of European urban growth between 1750 and 1900, even when controlling
for period fixed effects. Because we do not have data on city GDPs, some readers may
not regard this as constituting a direct test of the growth hypothesis, Dittmar (2011) and
Cantoni (2013) notwithstanding. However, the finding that coal mattered to this extent
in determining city growth after the Industrial Revolution is an important finding in its
own right, and is certainly consistent with the growth hypothesis.

The paper proceeds as follows. Section 2 summarizes the debate between those
who think that coal was central to the Industrial Revolution, and those who have down-
played its significance. Section 3 provides a brief literature survey, while Section 4 dis-
cusses some historical issues relating to identification. Section 5 introduces our data.
Section 6 establishes the main empirical results of the paper, and Section 7 concludes.

2 The Historical Debate

There are two distinct arguments that were traditionally made about coal.

The first is that the switch to using coal as a source of energy, above all in met-
allurgy and in steam engines, was the central fact permitting the take-off to modern
economic growth. According to Deane (1965, p. 129), “The most important achievement
of the industrial revolution was that it converted the British economy from a wood-
and-water basis to a coal-and-iron basis.” For Landes (1965, p. 274), three phenomena
“constituted the Industrial Revolution”: “the substitution of machines...for human skill
and effort; the substitution of inanimate for animate sources of power, in particular, the
introduction of engines for converting heat into work, thereby opening to man a new
and almost unlimited supply of energy; the use of new and far more abundant raw
materials, in particular, the substitution of mineral for vegetable or animal substances.”
“Mechanisation required large sources of power” wrote Braudel (1973, pp. 274–275), but
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“they were not available until after the eighteenth century...Came steam and everything
was, as if by magic, speeded up.”

The best-known exponent of this view over the past fifty years has been E.A.
Wrigley, who regards the switch to coal as having been “a necessary condition for the
industrial revolution” (Wrigley 2010, p. 23), although not a sufficient one. For Wrigley,
the Industrial Revolution was above all a transition from an “organic economy” to an
“energy-rich economy”. In the former, photosynthesis was the major source of energy
(the others being water and wind), whether this energy took the form of human or an-
imal power, wood, or charcoal. Land was thus an indispensable input into all material
production, even of metallic products (since ores were heated with wood or charcoal)
(ibid., p. 9).

In such circumstances, it is not hard to see how Malthusian constraints could bind
tightly. “Iron, for instance, has many physical properties that make it of the greatest
value to man but as long as the production of 10,000 tons of iron involved the felling of
100,000 acres of woodland, it was inevitable that it was used only where a few hundred-
weight or at most a few tons of iron would suffice for the task in hand” (Wrigley 1988,
p. 80). The switch to coal allowed humans to tap into a vast capital reserve of energy—
“stored sunlight”, as Cipolla (1978, p. 62) calls it—which allowed them to break free
of these constraints. In a famous calculation, Wrigley estimated that English coal pro-
duction in 1800 yielded energy that would otherwise have required 11 million acres of
woodland (and that British coal production was equivalent to 15 million acres of wood-
land). This compares with a total English land area of 32 million acres (and a British
land area of 57 million acres) (Wrigley 1988, pp. 54–55; Wrigley 2010, p. 39). By the
1820s, British coal production “liberated” an area as large as the entire island (Sieferle
2001, p. 103).3

The second argument traditionally made about coal is that local supplies of coal
were essential, or at least highly desirable, if a region was to industrialize during the 19th
century. Matthias (1983, p. 11) puts the argument starkly: “The logistics of energy inputs
based upon coal, translated against available transport in a pre-railway age, precluded
any major industrial complex in heavy industry from developing except where coal
and ore were plentiful and adjacent to one another or to water carriage.” Coal was
bulky, heavy and costly to transport. It was also a fuel, whose weight vanished when

3Landes (1965, p. 327) calculates that the UK was consuming coal in 1870 whose calorific content could
have fed 850 million adult males.
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it was used in the production process: there were thus substantial cost savings if coal
was used close to where it was mined (Wrigley 1961, pp. 6–7).4 Pollard (1981, p. 4)
remarks that “the map of the British Industrial Revolution, it is well known, is simply
the map of the coalfields”, and Britain’s good fortune in being well-endowed with coal
has often been noted (ibid., p. 40). On the European Continent, the coalfields of Belgium
and northern France, and later on the Ruhr, became major centres of heavy industry,
and other industrial regions “only survived if they had reasonable access by water to a
supply of good coal” (ibid., p. 121).

On a grander scale, Pomeranz (2000) has argued that coal was a crucial reason why
the Industrial Revolution happened in Europe rather than in China. In Europe the coal
was abundantly located in the most dynamic economy of the 18th and 19th centuries,
Britain. By contrast, China’s coal resources were in “the wrong place”, in the north and
northeast, far from the southern coastal regions where China’s most dynamic regions
were located. And in a recent cliometric contribution, Allen (2009) has argued that in-
novation during the British Industrial Revolution was geared towards saving expensive
labour, and replacing it with cheap capital and coal. These new technologies were un-
profitable where coal was too expensive relative to labour, although as their efficiency
improved over time they diffused over an increasingly wide area. Directed technolog-
ical progress can thus help to explain why modern industrial techniques were initially
adopted close to sources of cheap coal.

There are several reasons why cliometricians have tended to downplay the role of
coal.

First, the increased use of coal was a symptom of technological change, which all
authors accept was the main driver of the Industrial Revolution, and which has been the
focus of a series of major works by Mokyr (1990, 2002, 2009). England always had coal,
but it took the Industrial Revolution for this geographical advantage to achieve its full
economic potential. There is no real dispute on this point: as we have seen Wrigley does
not view coal as being a sufficient condition for the Industrial Revolution, but rather as
a necessary one.5

Second, several authors dispute the notion that coal, or more broadly the search

4“If the full weight of the raw material is embodied in the product there is no saving in the total cost
of transport when the source of the raw material is also the point of manufacture: but if a part or the
whole of the weight disappears during manufacture, the saving in transport costs which follows from
manufacture at the source of the raw material may be considerable” (ibid.).

5See also Pomeranz (2000, pp. 66–68), who is also cited in Clark (2007, p. 260).
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for energy efficiency, was a driver of technological change. “In the absence of coal, the
ingenuity applied to using it would have been directed towards replacing it...Resource
scarcities, like demand, are a steering mechanism, not a primum movens, of technological
progress” (Mokyr 1990, pp. 160, 162; see also Mokyr 1993, p. 31; McCloskey 2011, pp.
188–189). This paper does not take a position on the issue of what drove technological
change: its concern is whether, once the Industrial Revolution was in progress, proximity
to coal started to matter for the location of economic activity, and whether coal-using
technological change mattered a lot or a little for urban growth.

Third, cliometricians have pointed out that coal could be transported, albeit at a
cost, and that coal only accounted for a fraction of the cost in several leading industries of
the Industrial Revolution, notably textiles.6 Mokyr (1976, pp. 204–208) argues that local
supplies of coal in Belgium cannot explain why it industrialized, while the Netherlands
did not: the Dutch could import coal by sea, and use both peat and wind. In a similar
vein, he dismisses the argument that pre-Famine Ireland did not industrialize because
of a lack of suitable coal deposits (Mokyr 1985, pp. 152-158). Ireland imported coal from
Britain, with the result that its coal prices were between 100 and 150% higher; fuel costs
in the “nonmetallurgical industries” were at most 4% of total costs. The lack of suitable
local coal supplies thus increased Irish costs by at most 10% relative to British costs,
and by less once substitution possibilities are taken into account. Lower Irish wages
should have more than compensated for this. True, being close to coal mattered more
in metallurgy than in textiles, and it mattered more in the days before widespread and
efficient railway transport: even coal sceptics like Mokyr and McCloskey (2011, p. 187)
recognize this. But both authors doubt whether coal was as significant a locational factor
as was traditionally claimed. In a recent contribution, Clark and Jacks (2007) admit that
coal may have been an important locational factor as far as iron making was concerned,
but that the latter sector contributed little to Industrial Revolution productivity growth.
“In a counterfactual world where the coal reserves were located in Ireland or Scotland
or elsewhere in northwest Europe the history of Industrial Revolution England need not
have resulted in much slower economic growth” (Clark and Jacks 2007, p. 65).

Fourth, some authors have disputed the growth hypothesis. Both McCloskey and
Mokyr stress that technological progress was extremely broad-based during this period:
“The industrial revolution was not the Age of Cotton or of Railways or even of Steam

6On the other hand, Balderston (2010) points out that between 1875 and 1884, the UK cotton industry
consumed 10 pounds of coal for every one pound of raw cotton: the fact that coal accounted for such a
small share of the industry’s costs reflects its abundance and consequent cheapness.
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entirely; it was an age of improvement” (McCloskey 1981, p. 118). In this context, an
argument often made against the importance of coal, or any other single factor thought
to have “caused” the Industrial Revolution, has to do with substitution: “a coal the-
ory, or any other one-step geographical theory, has an appointment with Harberger”
(McCloskey 2011, pp. 186–187). “The Industrial Revolution did not absolutely ‘need’
steam..., nor was steam power absolutely dependent on coal” (Mokyr 2009, pp. 101–
102). Water power, peat and wood were all potential substitutes for coal, and water
power was very important well into the 19th century (and was used with increasing
technical efficiency) (op. cit., p. 127). Scarcer and dearer coal would have implied greater
fuel efficiency, and an economy producing fewer energy-intensive goods (op. cit., p. 104):
the net cost to the economy might have been modest. Von Tunzelman’s (1978) social sav-
ings calculations for steam engines in 1800 are tiny. Clark and Jacks (2007) provide an
even more heroic calculation, assuming that in the absence of any European coal Britain
would have had to import the equivalent of its coal consumption in the form of Baltic
timber. They estimate that this more expensive fuel would have cost the British econ-
omy no more than 4% of GDP as late as the 1860s, and while by that stage Baltic timber
supplies would have come under strain, the textiles revolution “would have been well
under way in the 1820s and 1830s before energy constraints became even a significant
issue” (p. 68).

3 Previous Literature

Did coal matter a lot or a little for the location of economic activity? Did it matter a lot
or a little for post-Industrial Revolution growth? These are empirical issues requiring
econometric investigation.

There have been some country-specific studies testing the importance of coal for
the location of specific industries within a Heckscher-Ohlin framework: in this model,
abundant coal should matter for the location of fuel-intensive industries. The evidence
is mixed: Crafts and Mulatu (2006) find strong evidence that coal abundance mattered
for the location of steam-intensive industries within late 19th century Britain.7 By con-
trast, Wolf (2007) finds no evidence that mineral endowments explained the location of
fuel-intensive industries in interwar Poland, Klein and Crafts (2012) find little evidence

7Crafts and Wolf (2012) find mixed results regarding the importance of coal for the location of cotton
mills in Britain in 1838.
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that coal prices mattered for the location of fuel-intensive industries in the United States
between 1880 and 1920, and Martinez-Galarraga (2012) finds an effect of mineral endow-
ments on the location of mineral-intensive industries in Spain in 1913, but not in other
years. In a careful recent study, Gutberlet (2012) finds that access to coal mattered for
the location not only of metallurgy in late 19th century Germany, but of cotton textiles
production as well.

In contrast to these studies, we are interested in the overall location of economic
activity, as proxied by city size, rather than in the location of particular manufacturing
sectors. Those cliometricians who deny the importance of coal to aggregate growth after
the Industrial Revolution would not deny that being close to coal might have mattered
for the location of particularly fuel-intensive industries. They would, on the other hand,
argue that not being close to coal would have led to regions and national economies
specializing in industries that were not fuel-intensive, and that therefore the aggregate
impact of a lack of coal would have been small. The studies cited above do not deal
with this issue. Furthermore, in contrast to these papers, in this article we adopt a
pan-European rather than a national approach.

There are other papers which have used a DID strategy to study the evolution of
European urbanization, or city sizes, over time. For example, Andersen et al. (2013)
measure the benefits associated with the introduction of the heavy plough during the
medieval period. The cross-section variation that they exploit comes from soil type, since
some soils were more conducive to the introduction of the heavy plough than others.
They find that the heavy plough had a positive impact on urbanization (measured as the
number of cities per square kilometre) and population, accounting for around 10% of the
growth in these variables during the high medieval period. Dittmar (2011) analyses city
sizes, as we do, to explore the macroeconomic impact of the printing press. He finds that
cities which adopted the printing press in the 15th century grew 60% more rapidly in
the 16th century than those which did not. Cantoni (2013) also uses city sizes to explore
the growth consequences of Protestantism within the Holy Roman Empire. Unlike the
other papers just cited, the innovation studied in this paper—religious reform—does not
appear to have had an impact on city size, or by implication on economic growth.

Nunn and Qian (2011) use a DID approach to study the impact of the potato on
population and urbanization between 1700 and 1900. Their identification strategy is
based on the fact that some areas are better suited than others for the cultivation of
potatoes. They then ask whether, after the potato was introduced to the Old World, these
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more suitable areas experienced higher levels of population growth and urbanization
than less suitable regions. Nunn and Qian find that the potato’s introduction can explain
about a quarter of Old World population growth and urbanization during the 18th and
19th centuries.

4 Identification Issues

In Nunn and Qian (2011), the “treatment” is the introduction of the potato; in Dittmar
(2011) it is the introduction of the printing press. In this paper, the treatment is the
introduction of the coal-using technologies of the Industrial Revolution. Similarly, Nunn
and Qian achieve identification by exploiting the fact that some areas are better suited to
potato cultivation than others. In our case, we identify the impact of the new coal-using
technologies by exploiting the fact that some cities were located closer to coalfields than
others. There is of course a possibility that coalfields might have been discovered close
to cities, and we take account of this by using proximity to Carboniferous rock strata as
an instrument for proximity to coal.

When did the treatment which we are interested in take place? It is important
to note that coal was used in pre-Industrial Revolution Britain for a wide variety of
purposes, both domestic (heating) and industrial: “brickmaking, glass, ceramics, soap-
boiling, lime burning, forging, distilling, and brewing” (Mokyr 2009, p. 22). Cheap
domestic heating, for example, could have facilitated higher population densities even
before the Industrial Revolution (Balderston 2010, p. 574). What changed during the
Industrial Revolution was the use of coal in the iron and steel industry, and the intro-
duction of the steam engine. In 1709, Abraham Darby discovered how to smelt iron
ore using coke (a purified form of coal) rather than charcoal as a fuel, and the process
started becoming widespread in Britain in the second half of the century. Three years
later, in 1712, Thomas Newcomen developed his famous steam engine to pump water
from mines. James Watt started working on an improved design in 1763, and by 1776 his
steam engines were being used commercially. Steam then started to diffuse across the
economy, slowly at first, and then more rapidly, so that eventually coal was being used
to fuel not just the metallurgical industries, but textiles and many other sectors as well.
Steam accounted for 35,000 out of the 170,000 horsepower installed in Britain in 1800; for
165,000 out of 350,000 in 1830; for 2,060,000 out of 2,300,000 in 1870; and for 9,659,000
out of 9,842,000 in 1907 (Crafts 2004, p. 342).
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To summarize, the new coal-using technologies of the Industrial Revolution were
invented in stages over the course of the 18th century, and were then progressively
improved and increasingly adopted during both the 18th and 19th centuries. They were
first invented and used in Britain, but then diffused with a lag to the rest of Europe. By
the middle of the 19th century, both coke-smelting and steam engines were being used
in all the coalfields of northern France, Belgium and western Germany (Wrigley 1961, p.
4). An appropriate “treatment date” would thus be 1750 or later.

Why would being closer to a coalfield have led to bigger city sizes once these new
technologies had been introduced? The argument is straightforward, and relies on a
combination of the growth and location hypotheses. Adopting new coal-using technolo-
gies directly spurred economic growth, and once these technologies had been adopted
increasing production required higher inputs of coal. All of this was more profitable
where coal was cheaper, and coal was cheaper close to coalfields. Greater economic
activity, in turn, could lead to agglomeration economies, permitting further growth.8

Economic growth in turn stimulated population growth: indeed, the connection be-
tween industrial growth and population growth in the coalfield regions of northwest
continental Europe was so tight that Wrigley (1961) used the latter as a proxy for the
former.

Our identification strategy relies crucially on whether industry tended to locate
closer to coalfields because of the costs of transporting coal. The strategy would break
down when other forms of energy, such as electricity, became widely available, or when
the costs of transporting coal became sufficiently cheap. The historical record suggests
that being close to coalfields should have started mattering less by the end of the 19th
century, as electricity was increasingly adopted, and an increasingly dense and efficient
railway network lowered freight rates. “For example, a point was reached about 1890
when it became cheaper to carry coke to the Lorraine iron ore fields than to carry the
ore to the Ruhr, because blast furnaces had grown much more economical in their use of
coke than in the early days of the coke-fired furnace, and the lean ores of Lorraine were
unusually costly to transport” (Wrigley 1961, p. 6). For this reason, we end our analysis
in 1900.

8For example, Balderston (2010) argues that coal was crucial to the development of agglomeration
economies in the Lancashire cotton textile industry.
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5 Our Data

Our empirical analysis combines a number of different sources. To measure economic
activity we use historic population size for a panel of European cities based in the first
instance on Bairoch et al. (1988). The panel consists of around 2,200 cities that satisfy the
criterion of having at least 5,000 inhabitants at some stage between 800 and 1800. City
populations are measured at 100 year intervals between 800 and 1700, and at 50 year
intervals after 1700. The panel is unbalanced, since evidence on city population levels is
understandably lacking for many cities as we look further back in time.

These missing observations are potentially problematic, and we therefore take sev-
eral steps to remedy this. First, as in Nunn and Qian (2011), we supplement these data
with observations from De Vries (1984). Second, we begin our analysis in 1300, ignor-
ing all data prior to this date. The vast majority of cities included in the Bairoch et al.
dataset do not have population data prior to 1300, and we also suspect that the available
population evidence prior to 1300 is less accurate than more recent figures.

Bairoch et al. (1988) only provide city population sizes up until 1850. Given that we
want to measure economic development through the end of the 19th century, we extend
the Bairoch et al. panel to include city populations in 1900. For this purpose we use a
contemporary resource: Lippincott’s New Gazetteer (1906). The gazetteer lists the location
and population figures for the majority of the cities included in the Bairoch et al. panel.
We restrict our sample to cities positioned west of the 40 degree line of longitude, and
above the 30 degree line of latitude. This leaves a sample of 2,147 cities.

The aim of this paper is to link city populations to the availability of coal. Thus,
we need to create a measure of access to coal for each city. To do this we digitize the
Les Houillères Européennes map in Châtel and Dollfus (1931). This atlas contains the loca-
tion of 124 major coalfields within Europe. We include lignite fields in our calculations
since lignite (or brown coal) played an important role in the introduction of the steam
engine in Prussia (Redlich 1944). We digitize this map, and then calculate the minimum
distance from each city to a coalfield. For simplicity, we use great-circle distance for this
calculation. Another approach would be to use a least-cost distance measure, like Özak
(2012). However, dramatic changes in the form and speed of transportation methods
over our eight century sample period would greatly complicate such a calculation. Coal
prices, as used in Crafts and Wolf (2013), would be an economically more meaningful
measure of access to coal. Unfortunately we lack city-level price data for our panel of
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more than 2,000 cities over 800 years. However, it is reasonable to presume that our
proximity measure is correlated with the spatial variation in coal prices.

Figure 1: City’s Proximity to Coalfields or Carboniferous Strata (Grey Areas) in Europe.
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(b) Carboniferous Strata

Our great-circle distance-based proximity measure could bias our empirical exer-
cises for a number of reasons. As already noted, we are not using a least cost measure of
coal proximity. Thus, our coal measure does not reflect the fact that cities at, or close to,
the coast may have better access to coal than cities further away from the coast and/or lo-
cated on more rugged terrain. (However, we do include proximity to coasts, ruggedness
and a number of other geographical control variables in our empirical specifications.)
Another issue is that that while we can measure the distance to each coalfield, we can-
not measure the extent of the coalfield in terms of either abundance or quality. Both
of these features will result in measurement error in a regression model estimating the
impact of coal on city populations. Finally, we cannot rule out the possibility of reverse
causality, that is to say the possibility that the coalfields in our dataset were developed
because of their proximity to cities.

To address these measurement and endogeneity concerns, we instrument our prox-
imity to coal measure with a variable that measures the proximity of cities to Carbonif-
erous geological strata. Coal is often found in rock strata from the Carboniferous age,
and thus the coalfield locations should be on, or very close to, rock strata from the
Carboniferous epoch.9 To construct a Carboniferous measure that corresponds to our
coal proximity variable, we use data collated by the German Federal Institute for Geo-
sciences and Natural Resources (BGR) for a project that mapped the European geological

9Carboniferous literally means “coal-bearing”.
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landscape: the 1:5 Million International Geological Map of Europe and Adjacent Areas
(IGME 5000). This was a pan-European project that involved a high level of collaboration
across a number of national geological offices; the result was a high resolution GIS map
containing a number of geological features including age and rock type (Asch 2005). We
create a proximity to Carboniferous strata variable for each city in an equivalent manner
to that of the coal proximity variable.

Figure 1 contains two panels illustrating the location of our cities and their proxim-
ity to both coalfields and Carboniferous strata. Most coalfields overlap with areas whose
rock strata are categorized as being of the Carboniferous epoch, although this overlap
is not perfect. There are some Carboniferous areas that do not contain any coalfields,
and some coalfields not located within a Carboniferous area. For example, lignite is
geographically younger than black coal, typically originating in the Tertiary period. Our
coal and Carboniferous measures are evidently correlated, but not perfectly. Figure 2
illustrates the strength of this relationship. A weak relationship between these variables
would invalidate our IV strategy; however Figure 2 shows that the relationship between
these two variables is sufficiently strong for our purposes.10

Figure 2: Proximity to Coalfields and Proximity to Carboniferous Strata Scatterplot.
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10Our empirical section formally discusses the issue of weak instruments, and we provide a series of
appendix tables displaying the relevant weak instrument test measures.
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In addition to measurement error and simultaneity, omitted variable bias poses a
threat to our identification strategy. For example, Acemoğlu et al. (2005) argue that
the acceleration of growth in post-1500 Europe was caused by the proximity of certain
economies to the Atlantic coast (used for colonial trade) and the institutions that emerged
in these economies. Similarly, as we have seen Nunn and Qian (2011) find that the intro-
duction of the potato played an important role in explaining comparative development
in the Old World during the Industrial Revolution.

We therefore include a rich set of control variables in our regression analysis. These
include distance to coastlines; more precisely, we create three variables that measure the
distance to the Atlantic, the Mediterranean, and to all coasts. We also measure cities’
distance to primary rivers. Given the prominence of state institutions in Acemoğlu
et al.’s research, we also match each city to historical state borders. It is important
to acknowledge that both state borders and institutions changed, and had differential
impacts over time. We therefore digitize European state borders for a series of years
between 1500 and 1913 (1500, 1618, 1699, 1748, 1804, 1848, and 1908), and match these
borders as closely as possible to each year in our sample.

We also include variables measuring terrain ruggedness; the suitability of land for
cultivating potatoes, wheat, and oats; altitude; and temperature. An appendix table pro-
vides more detailed information on the construction of these variables and the sources
used. We also address the issue of spatial spill-overs and clustering in a number of ways.
First, we include controls for absolute latitude and longitude in all model specifications.
Second, we explicitly incorporate a spatially lagged variable in a number of model spec-
ifications. Given that working with spatially lagged longitudinal data requires balanced
panels (Millo and Piras 2012), we interpolate missing data for city populations. The
algorithm used to interpolate these data is included as an appendix.

6 Empirical Results

6.1 Empirical Methodology

Our empirical strategy follows the standard DID approach. We estimate city population
as a function of the interaction between a city’s proximity to coal and a post-treatment
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year indicator. In general, we estimate the following linear regression model:

ln(Popit) = ai + gt + b ln(Coali)IPost
t + #it (1)

where the natural log of each city’s population level is a function of city (ai) and time
(gt) fixed effects, the interaction between a city’s proximity to a coalfield (Coali) and a
binary variable equal to one when the year is after the specified cut-off point (IPost

t ), and
an idiosyncratic error term (#it), with the i and t subscripts corresponding to city and
time domains respectively. The b parameter represents the causal effect of coal on city
population size. Because it is more intuitive to interpret the effect of proximity to coal
than the effect of distance from it (so there is a positive relationship if coal causes city
population size), we define our coal variable by inverting the distance from each city to
the nearest coalfield.11

The inclusion of the interaction effect between proximity to coal and a post-treatment
year indicator implicitly assumes temporally heterogeneous coal effects. This assump-
tion is crucial for identifying the causal parameter beta in our DID setup. If, for example,
the impact of coal had been time invariant, beta would be subsumed into the city fixed-
effects and we would find that coal had no impact on city sizes. What we are interested
in is whether something happened during the course of the 18th or 19th centuries which
made proximity to coal matter for city sizes in a way that it had not mattered before.
That "something" was of course the introduction of the coal-using technologies of the
Industrial Revolution. In the following subsection we implement a flexible modelling
procedure that allows us to assess the plausibility of our DID strategy, and detect the
"treatment" cut-off year after which the new coal-using technologies started to matter for
city size.

The model in eq. 1 assumes that heterogeneous coal effects are the only observable
systematic variable that causes differences in city populations, aside from common time
effects and fixed city factors. Realistically, this assumption is likely to be violated, and
will result in an omitted variables bias when our coal proximity measure is correlated
with such omitted variables. Therefore, we include a rich set of covariates (interacted
with time effects) in all of our estimated models. We amend eq. 1 to take this into
account:

ln(Popit) = ai + gt + b ln(Coali)IPost
t +

1900

Â
j=1400

X0
iI

j
tYj + #it (2)

11Full details of this transformation are contained in a Data Appendix.

15



where the Â1900
j=1400 X0

iI
j
t term interacts a large number of geographic and historic control

variables (X0
i), described in Section 5, with time indicators (Ij

t), with the j subscript denot-
ing specific years. Alongside the city (ai) and time (gt) fixed effects, the matrix Xi also
contains multiple historic state border fixed effects. These multiple fixed effects allow
us to control for a variety of potentially confounding factors. For example, the city fixed
effects allow us to control for the possibility that administrative cities such as London
were consistently larger than other cities; the time fixed effects allow us to control for
the general rise in European urban populations over time; and the time-varying border
fixed effects allow us to control for increases in national urban populations, relative to
the European trend, due to national demographic developments, institutional environ-
ments, or other factors. Estimating a linear regression model with multiple categorical
variables can be computationally burdensome, so we use the recent algorithm provided
in Gaure (2013) to simplify the estimation procedure.12

The measurement of our coal proximity variable represents another potential threat
to our empirical strategy, as does the potential for endogeneity. Mismeasurement could
lead to a downward bias in our estimates of the causal beta parameter, while endogeneity
could lead to an upward bias. We tackle these concerns by using an equivalent measure
of proximity to Carboniferous strata as an instrumental variable (IV), and estimate eq.
2 via two-stage least-squares (2SLS). Our rationale for using this IV has already been
discussed, with Figure 2 illustrating the strength of the relationship between these two
variables. Figure 3 presents scatter plots illustrating the relationship between both our
coal and Carboniferous measures and the change in natural logged population between
1700 and 1900 for cities where we have recorded population totals in both years. Both
panel (a) and (b) in Figure 3 are consistent with the hypothesis that coal was an important
factor related to city population growth during the Industrial Revolution.

While Figure 3 is indicative, these relationships may be subject to the biases dis-
cussed earlier. Furthermore, Figure 3 leaves open the possibility that coal was an equally
important determinant of city growth before the Industrial Revolution, which would be
inconsistent with the argument of Wrigley et al. We therefore proceed to more formal
econometric analysis.

12We implement the procedure of Gaure (2013) in the R package lfe available on the Comprehensive R
Achieve Network.
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Figure 3: City Population Growth and Proximity to Coal Fields or Proximity to Car-
boniferous Strata Scatterplots.
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(a) Coal Fields
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(b) Carboniferous Strata

6.2 Flexible Model Results

We begin our formal empirical modeling by taking a flexible approach, and estimating
the following regression model:

ln(Popit) = ai + gt +
1900

Â
j=1400

b j ln(Coali)I j
t +

1900

Â
j=1400

X0
iI

j
tYj + #it (3)

where we include multiple interaction effects between the eight time periods and each
city’s proximity to coal. Thus, we obtain eight beta parameters, which indicate the
influence of coal on city population size relative to our 1300 baseline (since 1300 is the
excluded year). The "flexible" element in this approach is that it allows us to be relatively
agnostic about when coal started to matter; that is to say, about the definition of the
post-treatment period. The flexible model not only permits us to detect this cut-off, but
also provides an assessment of the DID approach’s plausibility. If coal was relatively
unimportant for city population sizes prior to the emergence of coal-based technological
innovations, we would not expect to see the earlier beta parameters (b1400–b1600) have a
substantial impact on city population levels. In this sense, these additional b estimates
form placebo tests.

Table 1 displays the estimated coal-year interaction OLS coefficients from eq. 3.
Columns (1) and (2) estimate the model on the original sample (that is to say excluding
interpolated estimates where city population data are missing), with and without cities
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Table 1: Flexible Regression Estimates, OLS: Full Controls with Border ⇥ Year Fixed
Effects.

Dependent Variable is Log City Population

Coal Variables (1) (2) (3) (4)

Coal ⇥ Year=1400 0.054 0.006 0.014⇤ 0.019⇤
(0.056) (0.064) (0.008) (0.010)

Coal ⇥ Year=1500 0.062 0.027 0.021⇤⇤ 0.022⇤
(0.043) (0.045) (0.010) (0.011)

Coal ⇥ Year=1600 0.101⇤⇤ 0.066 0.035⇤⇤⇤ 0.033⇤⇤⇤
(0.043) (0.044) (0.011) (0.012)

Coal ⇥ Year=1700 0.076⇤ 0.059 0.028⇤⇤ 0.032⇤⇤
(0.045) (0.044) (0.013) (0.015)

Coal ⇥ Year=1750 0.083⇤ 0.044 0.043⇤⇤⇤ 0.028⇤
(0.046) (0.044) (0.014) (0.016)

Coal ⇥ Year=1800 0.114⇤⇤ 0.040 0.062⇤⇤⇤ 0.023
(0.046) (0.044) (0.016) (0.017)

Coal ⇥ Year=1850 0.166⇤⇤⇤ 0.074⇤ 0.115⇤⇤⇤ 0.061⇤⇤⇤
(0.048) (0.045) (0.020) (0.021)

Coal ⇥ Year=1900 0.196⇤⇤⇤ 0.101⇤⇤ 0.142⇤⇤⇤ 0.090⇤⇤⇤
(0.049) (0.047) (0.025) (0.028)

Excludes UK N Y N Y
Includes Interpolated Cities N N Y Y
Num. obs. 10773 9799 19305 17613

All regressions include both year and city fixed effects. Standard errors
and p-values have been corrected to account for clustering at the city level.
***p < 0.01, **p < 0.05, *p < 0.1. These regressions also include year interac-
tions with the following variables: Latitude, Longitude, Potato, Wheat, Oat,
Ruggedness, Altitude, Temperature, Atlantic, Mediterranean, Coast, Rivers,
Atlantic2, Mediterranean2, Coast2, and Rivers2. The border ⇥ year fixed ef-
fects are as follows: 1500 borders ⇥ 1400, 1500 borders ⇥ 1500, 1618 borders
⇥ 1600, 1699 borders ⇥ 1700, 1748 borders ⇥ 1750, 1804 borders ⇥ 1800, 1848
borders ⇥ 1850, and 1908 borders ⇥ 1900.
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from the United Kingdom (UK) respectively. We also report standard errors that are
clustered on each city unit, thus taking into account any within-city serial correlation
that would lead to an underestimate of the standard error. Columns (3) and (4) show the
results of models equivalent to (1) and (2), but where we now include observations with
interpolated city populations in the sample. Overall, the results in Table 1 are consistent
with the hypothesis that the Industrial Revolution greatly increased the advantages of
being located close to coal. In all of the models the coal-year interactions grow stronger
over time. It appears that a city’s proximity to coal matters later when the sample only
includes non-UK cities, consistent with the Industrial Revolution starting in Britain and
diffusing later to the Continent. Contrasting the results between the samples excluding
and including cities for which we have imputed population figures we find that, as
expected, the inclusion of previously omitted observations reduces the standard errors.
Furthermore, the somewhat large b1600 coefficient in column (1) is reduced in column (3),
which is reassuring. Since both the dependent variable and coal variable are in natural
logarithms we can interpret these results as elasticities. However, we do not place too
much emphasis on this, since we present a counterfactual framework in Section 6.4 that
provides a much more intuitive way of interpreting our findings.

Table 2 provides equivalent estimates to those in Table 1, except that it uses the
Carboniferous variable interacted with the year indicators to instrument for coal. We
use the approach advocated in Angrist and Pischke (2009) for detecting weak instru-
ments in the presence of multiple endogenous regressors. This approach enables one to
calculate multiple partial F-test statistics (one for each endogenous regressor) analogous
to the method used in cases with a single endogenous regressor. The F-test statistics
associated with Table 2 are reported in an appendix alongside similar measures for the
relevant IV regression model results we report later in this section; none of these tests
indicate that there is an issue with weak instruments. We find support for our suspi-
cion that measurement error may result in a downward bias in the OLS coefficients,
since the estimated b coefficients for later years are substantially larger in Table 2 than
those reported in Table 1. The difference between the comparable non-interpolated and
interpolated model coefficients in Table 2 is small. Furthermore, the relatively large coef-
ficient on b1600 in column (1) in Table 1 is absent in the equivalent specification in Table
2.

Figure 4 provides an illustration of these results. Panel (a) plots the estimated b j

values when the model in eq. 3 is estimated without any control variables (that is, the
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Table 2: Flexible Regression Estimates, IV: Full Controls with Border ⇥ Year Fixed Ef-
fects.

Dependent Variable is Log City Population

Coal Variables (1) (2) (3) (4)

Coal ⇥ Year=1400 �0.055 �0.155 �0.011 �0.017
(0.102) (0.137) (0.018) (0.025)

Coal ⇥ Year=1500 0.046 �0.053 0.011 0.000
(0.098) (0.124) (0.021) (0.029)

Coal ⇥ Year=1600 0.059 �0.028 0.039 0.028
(0.103) (0.129) (0.025) (0.034)

Coal ⇥ Year=1700 0.020 �0.085 0.062⇤⇤ 0.058
(0.103) (0.123) (0.031) (0.041)

Coal ⇥ Year=1750 0.120 0.015 0.126⇤⇤⇤ 0.090⇤
(0.107) (0.126) (0.035) (0.047)

Coal ⇥ Year=1800 0.204⇤ 0.057 0.173⇤⇤⇤ 0.096
(0.108) (0.128) (0.044) (0.061)

Coal ⇥ Year=1850 0.222⇤⇤ 0.053 0.190⇤⇤⇤ 0.097
(0.109) (0.129) (0.050) (0.069)

Coal ⇥ Year=1900 0.290⇤⇤⇤ 0.186 0.232⇤⇤⇤ 0.213⇤⇤⇤
(0.109) (0.125) (0.061) (0.080)

Excludes UK N Y N Y
Includes Interpolated Cities N N Y Y
Num. obs. 10773 9799 19305 17613

All regressions include both year and city fixed effects. Standard errors
and p-values have been corrected to account for clustering at the city level.
***p < 0.01, **p < 0.05, *p < 0.1. These regressions also include year interac-
tions with the following variables: Latitude, Longitude, Potato, Wheat, Oat,
Ruggedness, Altitude, Temperature, Atlantic, Mediterranean, Coast, Rivers,
Atlantic2, Mediterranean2, Coast2, and Rivers2. The border ⇥ year fixed ef-
fects are as follows: 1500 borders ⇥ 1400, 1500 borders ⇥ 1500, 1618 borders
⇥ 1600, 1699 borders ⇥ 1700, 1748 borders ⇥ 1750, 1804 borders ⇥ 1800, 1848
borders ⇥ 1850, and 1908 borders ⇥ 1900.
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Figure 4: Coal Coefficients from Flexible Models.
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(a) Model without Controls.
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(b) Model with Full Controls.

Shaded areas indicate +/- 2 cluster robust standard errors.

matrix Xi is null.13 In other words, these results correspond to those in column (1) of
Tables 1 and 2, when we omit our control variables, but not the time or city fixed effects,
from the specification. Panel (b) displays the results corresponding to column (1) in
Tables 1 and 2. The results in both plots are consistent with one another, and show the
coal effect becoming important in the 18th century.

6.3 Rolling Growth Regression Results

The flexible model results presented in the preceding passage suggest that coal became
important for aggregate economic activity during the period typically associated with
the Industrial Revolution. In this section, we examine the evolution of this relationship
using an alternative flexible modelling approach, estimating the following regression
model:

D ln(Popit) = a + w ln(Popit�1) + b ln(Coali) + X’iY + #it (4)

Here, the change in the natural log of population between t and t � 1 is a function of
population in the initial period (ln(Popit�1)), our coal measure, and geographic and his-
toric control variables. We estimate this cross-section model for six successive centuries,
implying that all six columns are comparable. The individual city fixed effects are now
omitted from the model, since we are estimating cross-section regressions. However,

13We have omitted these results from the text for the sake of brevity.
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Table 3: Rolling Growth Regressions, Century Intervals.

D ln Pop1400 D ln Pop1500 D ln Pop1600 D ln Pop1700 D ln Pop1800 D ln Pop1900

Coal Coefficients (1) (2) (3) (4) (5) (6)

OLS 0.037 0.022 0.053⇤ �0.055⇤⇤ �0.033⇤⇤ 0.098⇤⇤⇤
(0.054) (0.049) (0.027) (0.027) (0.016) (0.019)

IV �0.045 �0.023 0.079 �0.032 0.000 0.128⇤⇤⇤
(0.105) (0.106) (0.085) (0.060) (0.030) (0.040)

Num. obs. 278 292 495 764 1165 1808

OLS: Excl. UK 0.047 �0.022 0.056⇤ �0.037 �0.036 0.064⇤⇤⇤
(0.081) (0.059) (0.033) (0.029) (0.022) (0.021)

IV: Excl. UK �0.352 �0.133 0.122 �0.082 0.001 0.179⇤⇤⇤
(0.314) (0.194) (0.156) (0.101) (0.065) (0.058)

Num. obs. 258 270 452 699 1012 1629

OLS: Incl. Interpolated 0.002 0.007 0.017⇤⇤ �0.017⇤ �0.013 0.095⇤⇤⇤
(0.005) (0.006) (0.007) (0.010) (0.009) (0.020)

IV: Incl. Interpolated �0.004 �0.004 0.037⇤⇤ 0.025 0.029 0.155⇤⇤⇤
(0.012) (0.013) (0.018) (0.023) (0.023) (0.044)

Num. obs. 2145 2145 2145 2145 2145 2145

OLS: Excl UK & Incl. Interpolated �0.001 0.003 0.013 �0.007 �0.010 0.070⇤⇤⇤
(0.006) (0.007) (0.008) (0.011) (0.011) (0.024)

IV: Excl UK & Incl. Interpolated �0.028 �0.014 0.046⇤ 0.051 0.047 0.239⇤⇤⇤
(0.019) (0.021) (0.028) (0.036) (0.038) (0.068)

Num. obs. 1957 1957 1957 1957 1957 1957

Standard errors and p-values have been corrected to account for heteroscedasticity. ***p < 0.01, **p < 0.05, *p < 0.1.
These regressions also include the following control variables: Latitude, Longitude, Potato, Wheat, Oat, Rugged-
ness, Altitude, Temperature, Atlantic, Mediterranean, Coast, Rivers, Atlantic2, Mediterranean2, Coast2, Rivers2, and
logged population levels from the start period (for example column (4) includes the population levels in 1600).
These regressions also include the following border year fixed effects: 1500, 1618, 1699, 1748, 1804, 1848, and 1908.

we include population in the initial period to capture the possibility that smaller cities
might grow faster than larger ones. Each of the regressions also contains the complete
set of historic state border fixed effects (i.e. for the years 1500, 1618, 1699, 1748, 1804,
1848, and 1908). These may capture the legacy effects that remain after the changing of
state borders, or indeed deep-rooted common cultural factors which shape future state
borders.

Table 3 provides the results when we estimate eq. 4 for century intervals from 1300–
1400 to 1800–1900. Once again, we provide OLS and IV coefficients for data samples
that have been stratified according to the inclusion or omission of non-UK cities, and
the inclusion or exclusion of interpolated missing city population figures. The results in
Table 3 are largely consistent with those in the previous subsection. In essence, columns
(1) to (5) can be seen as placebo regressions, since we do not expect a city’s proximity
to coal to influence its population growth prior to the Industrial Revolution. We do not
see any consistent pattern when we compare these columns. By contrast, proximity to
coal is clearly related to city growth during the 19th century. The estimated t-statistics
associated with some of the coefficients in columns (1) to (5) in Table 3 yield p-values
lower than what might be used as conventional levels for statistical significance, although
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this is not consistent across the different samples. Furthermore, if we look at the size
of the coefficients, we find that those in column (6) are always the largest across each of
the columns, and are estimated with a far greater degree of precision compared to their
counterparts in columns (1) to (5).

Figure 5: Coefficients from Rolling Growth Model
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Figure 5 provides a coefficient plot of the results shown in the first panel of Table 3.
We do not see any consistent pattern prior to the 19th century, but a clear positive effect
of coal on city growth after 1800.

6.4 Fixed Treatment Effect Results

Our analysis thus far has been primarily concerned with detecting the treatment year
after which coal endowments become a factor influencing comparative population sizes
in our panel of European cities. The analysis indicates that the earliest date for this post-
treatment cut-off is 1750. One drawback of the flexible modelling approach is that it
can be difficult to assess the economic significance of these results. Therefore, we follow
Nunn and Qian (2011) and estimate models with a single treatment effect—as detailed in
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eq. 2—and then use this singular causal parameter to create counterfactual population
totals. These counterfactual totals represent the estimated population of each city in the
absence of a coal effect; that is to say, in the absence of the introduction of the coal-using
technologies of the Industrial Revolution which implied that proximity to coal became a
factor influencing city sizes after the treatment year.

More formally, the counter-factual population for city i at the end of our estimation
sample, 1900, is ln gPopi1900 = ln Popi1900 � b̂ ln Coali. If we sum over all cities, we can
calculate a counterfactual total urban population for 1900, and thus a counterfactual
growth rate for the total urban population between the treatment year and 1900. This
can then be compared with the actual growth of the total urban population over the
same period, yielding an estimate of the percentage of total urban population growth
explained by the introduction of the coal-using technologies of the Industrial Revolution:

Total Effect = 1 � ln Â gPopi1900 � ln Â PopiPost
ln Â Popi1900 � ln Â PopiPost

(5)

where the Post term refers to the treatment year. If the estimated coal effect, b, was zero,
the numerator would equal the denominator in the second term and the estimated effect
would be zero.

Table 4 presents the beta coefficients obtained from various estimates of the fixed
treatment effect model. Once again we present results both including and excluding UK
cities, and including and excluding interpolated data points. Given that one can make
a case for several treatment dates, we present comparable estimates when three cut-offs
are used: post-1750, post-1800, and post-1850. The top three panels in Table 4 display the
OLS results, and the following three our preferred IV estimates. Once again, we omit the
relevant indicators of weak instruments from the table, but we find no evidence that the
Carboniferous variable interacted with the post-treatment effect indicator suffers from
the weak instruments problem. We have included these tests in an appendix. In addition
to the coefficients and their associated standard errors, we also include the “Total Effect”
percentage calculated as above.

Consistent with our hypothesis, proximity to coal has a positive effect on city
growth in each of the specifications in Table 4. The most noticeable feature of these
results is that, as before, the IV coefficients are larger than their OLS counterparts, a fact
that we attribute to measurement error in the coal proximity measure. Looking at the IV
results with a post-1750 cut-off in column (1), we see that over 60% of the city population
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Table 4: Fixed Treatment Effects.

Dependent Variable is Log City Population

(1) (2) (3) (4)

OLS
Coal ⇥ Post-1750 0.115⇤⇤⇤ 0.036⇤ 0.114⇤⇤⇤ 0.043⇤⇤⇤

(0.020) (0.020) (0.015) (0.016)
Counterfactual Explained (%) 34.729 10.969 36.148 13.829

Coal ⇥ Post-1800 0.105⇤⇤⇤ 0.038⇤⇤ 0.123⇤⇤⇤ 0.051⇤⇤⇤
(0.017) (0.017) (0.017) (0.018)

Counterfactual Explained (%) 38.323 13.680 44.837 18.512

Coal ⇥ Post-1850 0.090⇤⇤⇤ 0.036⇤ 0.122⇤⇤⇤ 0.061⇤⇤⇤
(0.017) (0.019) (0.019) (0.020)

Counterfactual Explained (%) 51.939 18.463 70.694 31.878

IV
Coal ⇥ Post-1750 0.208⇤⇤⇤ 0.144⇤⇤⇤ 0.187⇤⇤⇤ 0.099⇤⇤

(0.040) (0.053) (0.035) (0.045)
Counterfactual Explained (%) 60.974 42.526 57.868 31.248

Coal ⇥ Post-1800 0.153⇤⇤⇤ 0.102⇤⇤ 0.173⇤⇤⇤ 0.092⇤
(0.033) (0.042) (0.037) (0.048)

Counterfactual Explained (%) 54.873 36.049 62.049 32.658

Coal ⇥ Post-1850 0.131⇤⇤⇤ 0.126⇤⇤⇤ 0.157⇤⇤⇤ 0.107⇤
(0.033) (0.043) (0.041) (0.055)

Counterfactual Explained (%) 74.830 63.905 89.923 55.490

Excludes UK N Y N Y
Includes Interpolated Cities N N Y Y
Num. obs. 10773 9799 19305 17613

All regressions include both year and city fixed effects. Standard errors and p-
values have been corrected to account for clustering at the city level. ***p < 0.01,
**p < 0.05, *p < 0.1. These regressions also include year interactions with the fol-
lowing variables: Latitude, Longitude, Potato, Wheat, Oat, Ruggedness, Altitude,
Temperature, Atlantic, Mediterranean, Coast, Rivers, Atlantic2, Mediterranean2,
Coast2, and Rivers2. The border ⇥ year fixed effects are as follows: 1500 borders
⇥ 1400, 1500 borders ⇥ 1500, 1618 borders ⇥ 1600, 1699 borders ⇥ 1700, 1748
borders ⇥ 1750, 1804 borders ⇥ 1800, 1848 borders ⇥ 1850, and 1908 borders ⇥
1900.
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growth experienced between 1750 and 1900 can be attributed to the introduction of the
coal-using technologies of the Industrial Revolution. The “Counterfactual Explained”
percentage usually increases as we move the treatment year forward, a finding that is
consistent with the diffusion of coal-based technologies over time. Furthermore, compar-
ing results from samples including and excluding cities in the United Kingdom suggests
that the coal effect was stronger in the UK, but diffused spatially over time. This re-
sult is consistent with the fact that the coal-based technologies that drove the Industrial
Revolution first emerged in the United Kingdom.

6.5 Fixed Treatment Effect Results with Spatially Lagged Effects

Thus far, we have not formally accounted for the possibility that cities’ sizes might de-
pend on each other, as a result of market potential effects or other spatial spillovers.
A wide literature on spatial agglomeration and/or market potential effects exists, and
previous empirical research has found these effects to be substantial. Bosker, Buringh
and van Zanden (2013) calculate a measure of foreign urban potential for a number of
European and Islamic cities and find that this spatial interaction is positively correlated
with Western European city population growth from the 12th century onwards. Crafts
and Wolf (2013) estimate the impact of market potential on the location of UK cotton
textile manufacturers in 1838. They find that conditional on a number of key geographic
variables, including coal prices, market potential was an important factor that explained
variation in the location of the UK cotton industry in the 19th century.

We therefore estimate a spatial regression model in the spirit of Kelejian and Prucha
(1998), introducing both a spatially lagged dependent variable and a spatially correlated
error term to control for spatially interrelated cross-sections in the panel. Formally, we
revise eq. 2 as follows:

ln(Popit) = l(W ⌦ IT) ln(Popit) + ai + gt + b ln(Coali)IPost +
1900

Â
j=1400

X0
iI

j
tYj + uit (6)

uit = r(W ⌦ IT)uit + #it (7)

where IT is the identity matrix corresponding to the number of time periods T (nine
in our case), W is a cross-section spatial weights matrix, and the error term u has been
modified so that it permits spatial correlation alongside the usual idiosyncratic error:
#it ⇠ N (0, s2

# ). Our row-standardized spatial weights matrix W categorizes cities as
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neighbours if they lie within 50km of one another. We found that this scheme worked
well, since it strikes a balance between cities having too many or too few neighbours (the
median number of neighbours each city in our sample had is 5).

Complications exist when estimating the models in eq. 6 and 7 due to simultaneity,
as the spatial lag term is an endogenous regressor. This simultaneity arises due to the
reflection problem (Manski 1993): a city’s neighbour’s population influences the city’s
population, but the city’s population itself, in turn, influences neighbouring cities. Kele-
jian and Prucha (1998) show how this spatial model can be estimated via a Generalized
Moments (GM) framework using what they call Generalized Spatial Two-Stage Least
Squares (GS2SLS)—a three step estimator analogous to the Cochrane-Orcutt procedure
used in time-series econometrics. In the first step we estimate eq. 6 via 2SLS, using
both first and second order spatial lags of the exogenous variables (Â1900

j=1400 WX0
iI

j
t and

Â1900
j=1400 W2X0

iI
j
t) as instruments for the spatially lagged dependent variable.14 The second

step estimates the spatial error coefficient via the GM procedure originally proposed in
Kelejian and Prucha (1999). The final step uses the estimated r parameter to transform
both the dependent variables and regressors, before applying the first step again on the
transformed variables.

For our application we estimate a modified version of the Kelejian and Prucha
technique and fit the model outlined above, but taking the spatially lagged dependent
variable as an exogenous regressor. It is important to underline the fact that we have es-
timated our entire set of spatial models using the full Kelejian and Prucha estimator, and
the results we obtain are almost identical. We have included these results in an appendix.
The full Kelejian and Prucha estimator would require us to model both the spatial lag
and the coal variable as endogenous regressors. However, post-regression diagnostics
indicate that this approach is problematic. The problem stems from the inclusion of
many irrelevant instruments in the first-stage coal equation resulting in a weaker first
stage regression (we again document this issue in appendix). This is why we model the
spatially lagged variable as an exogenous regressor in this section (although as we show
in the appendix this is not crucial for our results). Since the spatially lagged dependent
variable’s coefficient might be biased, it is worthwhile considering the potential conse-
quences of this bias. The presence of a high degree of simultaneity should lead to an
over-estimate of the spatially lagged dependent variable, and consequently attenuation

14In our case, we omit the historical state border by year interactions from the vector of exogenous
variables because we are using the Gaure (2013) technique to estimate these factor/categorical variables
as fixed effects.
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Table 5: Fixed Treatment Effects, OLS and IV with Spatial Lag and Error: Full Sample
and Controls 1300–1900.

Dependent Variable is Log City Population

Post-Year 1750 1800 1850 1750 1800 1850
OLS OLS OLS IV IV IV
(1) (2) (3) (4) (5) (6)

Includes UK
Coal ⇥ Post-Year 0.068⇤⇤⇤ 0.082⇤⇤⇤ 0.087⇤⇤⇤ 0.132⇤⇤⇤ 0.124⇤⇤⇤ 0.128⇤⇤⇤

(0.016) (0.019) (0.022) (0.053) (0.057) (0.062)
l (Spatial Lag) 0.347⇤⇤⇤ 0.346⇤⇤⇤ 0.354⇤⇤⇤ 0.287⇤⇤⇤ 0.311⇤⇤⇤ 0.330⇤⇤⇤

(0.015) (0.017) (0.019) (0.039) (0.041) (0.046)
r (Spatial Error Lag) -0.065 -0.065 -0.066 -0.043 -0.053 -0.057
s2

e (Spatial Error Variance) 0.177 0.177 0.177 0.179 0.178 0.178
Counterfactual Explained (%) 32.918 45.959 77.905 56.929 62.662 96.334

Excludes UK
Coal ⇥ Post-Year 0.038⇤⇤ 0.055⇤⇤⇤ 0.064⇤⇤⇤ 0.098⇤ 0.103⇤ 0.143⇤⇤

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)
l (Spatial Lag) 0.299⇤⇤⇤ 0.298⇤⇤⇤ 0.298⇤⇤⇤ 0.273⇤⇤⇤ 0.278⇤⇤⇤ 0.270⇤⇤⇤

(0.040) (0.040) (0.040) (0.039) (0.039) (0.039)
r (Spatial Error Lag) -0.056 -0.056 -0.056 -0.044 -0.048 -0.044
s2

e (Spatial Error Variance) 0.168 0.168 0.168 0.169 0.169 0.169
Counterfactual Explained (%) 42.316 28.934 53.729 41.885 50.255 98.678

Includes Interpolated Cities Y Y Y Y Y Y
Num. obs. Incl. UK 19305 19305 19305 19305 19305 19305
Num. obs. Excl. UK 17613 17613 17613 17613 17613 17613

All regressions include both year and city fixed effects. Standard errors and p-values have been corrected
to account for clustering at the city level. ***p < 0.01, **p < 0.05, *p < 0.1. These regressions also include
year interactions with the following variables: Latitude, Longitude, Potato, Wheat, Oat, Ruggedness, Altitude,
Temperature, Atlantic, Mediterranean, Coast, Rivers, Atlantic2, Mediterranean2, Coast2, and Rivers2. The
border ⇥ year fixed effects are as follows: 1500 borders ⇥ 1400, 1500 borders ⇥ 1500, 1618 borders ⇥ 1600,
1699 borders ⇥ 1700, 1748 borders ⇥ 1750, 1804 borders ⇥ 1800, 1848 borders ⇥ 1850, and 1908 borders ⇥
1900.

bias in the other regressors. Therefore, our results for the coal coefficients represent an
underestimate in the presence of an endogenous spatially lagged dependent variable
(Franzese and Hays 2007). Nevertheless, a comparison of the results we present in the
text and those in the appendix fails to indicate the existence of any such simultaneity
bias.

Table 5 presents the results obtained when we estimate the spatial model outlined
above. The use of unbalanced spatial panels can be problematic (this is equivalent to as-
suming that each missing observation has a value of zero) and thus we only use samples
including interpolated populations. As we have already seen, including interpolated
city populations does not imply results substantially different from those obtained with
samples excluding these observations. The results are stratified in a number of ways.
The top and bottom panels indicate results obtained when we include and exclude UK
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cities from the estimation sample, whereas the alternate columns present results where
we first assume that the coal variable enters as an exogenous regressor with different
treatment cut-off points (1750, 1800, and 1850), and we then instrument for coal with
our Carboniferous variable in the final three columns. We also include a supplementary
table in the appendix that includes the relevant weak instrument detection values.

The results in Table 5 are similar to those presented in Table 4. Once again, we see
that the conditional relationship between coal and city population size is positive. The
coefficient on the spatially lagged dependent variable is positive in all the models. This
result is unsurprising as we would expect there to be positive externalities from popu-
lation growth in neighbouring cities. Interestingly, the spatial error lag is quantitatively
small, indicating the absence of a spatial relationship in any of the model’s residuals. As
before, the “Counterfactual Explained (%)” provides a measure of the economic impact
of our results. In this case the figure has been adjusted to account for the relevant spatial
effects, so that all of the figures in Table 5 relate to counterfactuals in a full spatial equi-
librium. These counterfactual effects again indicate that coal was indeed an important
element driving urban growth during the Industrial Revolution, with the effect again be-
ing weaker if we exclude the UK from the analysis, consistent with the gradual diffusion
of the Industrial Revolution from Britain to the rest of Europe.

7 Conclusion

The role that coal played in shaping economic development during and after the Indus-
trial Revolution has been the subject of considerable debate in the economic history liter-
ature. Two schools of thought exist. The first sees coal and the geographical distribution
of coalfields as a crucial factor underpinning aggregate and comparative development
during this period. The other sees the distribution of coal as relatively unimportant when
compared with other factors, such as intellectual and cultural traditions or the quality
of political institutions. This paper exploits the spatial variation in the location of Eu-
rope’s coalfields, and the emergence of coal-based industrial technologies, to quantify
the impact of coal on Europe’s city populations between 1300 and 1900.

The results indicate that Wrigley is right, and spectacularly so. No less than 60%
of urban growth in Europe between 1750 and 1900 can be attributed to the introduction
of the coal-using technologies of the Industrial Revolution, even when controlling for
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period fixed effects and many other factors. Subject to the caveat that our data are
for city populations, rather than GDP, this is an impressive vindication of the growth
hypothesis. Moreover, the only reason that we have been able to identify this overall
growth impact is because proximity to coal mattered so much for city sizes after the
Industrial Revolution, but not before. The location hypothesis therefore emerges with
flying colours when confronted with the data.

None of this is to suggest that access to coal was a sufficient cause of the Industrial
Revolution, or to deny that the underlying force driving the breakthrough to modern
economic change was technological progress. Indeed, all our results hinge on the fact
that the new coal-using technologies of the Industrial Revolution emerged when they
did. What our results do however clearly indicate is that the technological nature of
the Industrial Revolution was such that, during the 19th century, access to coal became
extremely important in driving economic development. The ultimate sources of growth
may have been elsewhere, but we cannot ignore the role of fossil fuels in fuelling growth
after the Industrial Revolution, or of geography in determining who experienced that
growth during the 19th century.
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A Data Appendix

Variable Name: City Population Size

Variable Construction: Natural logarithm transformation to normalize variable.

Variable Sources: Bairoch et al. (1988), De Vries (1984), Heilprin and Heilprin (1906).

Data partially retrieved from: http://scholar.harvard.edu/nunn/pages/data-0.

Note: We use the original source for the population totals in Paris and London for 1850
as these differ from the digitised source.

Variable Name: Coal

Variable Construction: Minimum distance (km) from any of Europe’s major coal fields.
When a city is positioned within a coal field we assume an arbitrary distance of 1km.
We transform this value into a proximity measure by dividing into one (inverse-distance
measure). To help interpret the model coefficients and normalize the distribution, we
use a multiplicative transformation (multiplying the inverse distance by 10,000) and then
take the natural logarithm of our inverse distance measure.

Variable Source: Châtel and Dollfus (1931).

Variable Name: Carbon

Variable Construction: Minimum distance (km) from any onshore geological area clas-
sified as being Carboniferous in the IGME 5000. When a city is positioned within such
an area we assume an arbitrary distance of 1km. We transform this value into a prox-
imity measure by dividing into one (inverse-distance measure). To help interpret the
model coefficients and normalize the distribution, we use a multiplicative transforma-
tion (multiplying the inverse distance by 10,000) and then take the natural logarithm of
our inverse distance measure.

Variable Source: Asch (2005).
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Variable Names: Latitude and Longitude.

Variable Construction: The line of absolute latitude/longitude a city is positioned on.
We use these data to construct both the Coal and the Carbon variables.

Variable Source: Bairoch et al. (1988).

Variable Names: Potato, Wheat, and Oat

Variable Construction: Suitability of city location for growing specific crops. Data were
constructed as in Nunn and Qian (2011), measuring the amount of land suitable for
cultivating each particular crop within 100km of the city location. The underlying data
for these variables originates from a series of raster images produced by the Food and
Agriculture Organization of the United Nations (FAO) under the Global Agro-Ecological
Zones (GAEZ) assessment methodology. Our data come from the data portal released
in 2011. We use the crop suitability index class to define whether or not land is suitable
for cultivating each crop. Like Nunn and Qian, we consider land suitability defined as
very high, high, good, and medium as suitable, and land in other classes as unsuitable.
We use rain-fed crop conditions with an intermediate input level, to capture historical
conditions as accurately as possible. The raster image that underpins these data is in a 5
arc-minute resolution, meaning that the raster cells are typically (although this changes
based on distance to the equator) 10km apart. Our suitability variable measures the area
of raster cells considered suitable for growing the crop in question where the centroid
of the raster cell lies within 100km radius of the city location. This yields a measure in
squared km. We take the natural logarithm of this value, after adding the arbitrary value
of 1 as some cities have no land suitable for a particular crop.

Variable Sources: FAO/IIASA (2011).

Data retrieved from: http://gaez.fao.org/Main.html#.

Variable Name: Altitude

Variable Construction: These values were extracted from a raster image produced by
the FAO, and relate to the median meters above sea level measured within each raster
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cell. We take the natural logarithm of this value, after adding the arbitrary value of 5m
as some cities are slightly below sea level.

Variable Sources: FAO/IIASA (2011).

Data retrieved from: http://gaez.fao.org/Main.html#.

Variable Names: Ruggedness

Variable Construction: A terrain ruggedness index. These data were constructed by
measuring the average terrain ruggedness within 100km of the city location. The un-
derlying data for this variable originates from the altitude raster image produced by the
FAO. Our data come from the data portal released in 2011. We convert this altitude raster
image to terrain ruggedness indices using the method proposed in Wilson et al. (2007),
where each cell represents the mean of the absolute differences between the value of that
cell and the value of its 8 surrounding cells. The raster image that underpins these data
is in a 5 arc-minute resolution, meaning that the raster cells are typically (although this
changes based on distance to the equator) 10km apart. We take the natural logarithm of
this value.

Variable Sources: FAO/IIASA (2011).

Data retrieved from: http://gaez.fao.org/Main.html#.

Variable Name: Temperature

Variable Construction: The mean annual temperature for each city. The underlying data
were extracted from a GIS raster image showing the mean annual temperature calculated
over the period 1961–1990. We then take the natural logarithm of this value.

Variable Sources: FAO/IIASA (2011).

Data retrieved from: http://gaez.fao.org/Main.html#.

Variable Names: Atlantic, Mediterranean, Coast, and Rivers

Variable Construction: We use 1:10m Physical Vector data on coastlines and rivers and
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measure the minimum distance from each city to each of these individual features. The
minimum distance to the coast relates to all coasts worldwide, and we separate the At-
lantic from the Baltic and Mediterranean seas at the most northerly point of Denmark
and most southerly point of Spain respectively. We then transform these measures into
proximity values by inverting, before taking the natural logarithm to normalize the dis-
tribution.

Data retrieved from: http://www.naturalearthdata.com/downloads/10m-physical-vectors/.

Variable Names: Historic Borders

Variable Construction: We digitize a series of maps that chart the evolution of Euro-
pean borders over the period 1500–2008. We geo-reference and make shapefiles for the
following border years (roughly) corresponding to the population data: 1500, 1618, 1699,
1748, 1804, 1848, and 1908.

Data retrieved from: http://www.iegmaps.de/map2-4.htm and http://www.iegmaps.

de/map2-1.htm.

B Data Interpolation Procedure

The use of a spatial panel methodology necessitates the use of balanced panels. However,
our source for city populations (Bairoch et al., 1988) does not contain population values
for every year in each city. To reconcile our data with the structure required for spatial
panel analysis we interpolate these missing values.

Our imputation algorithm begins by examining all cities that have a population
value for the year 1300. For each of these cities we iteratively interpolate the city popu-
lations by regressing logged population on year and, for cities containing 5 or more data
points, year squared. The missing values thus correspond to the predictions from these
models.

At the next step we perform an equivalent calculation for cities that have an obser-
vation in 1400, but not in 1300. We do not predict missing values in 1300 for this group
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in this manner; our imputation method for these observations is described later. After
calculating predictions for the missing values in the sample of cities with a population
value in 1400 but missing data thereafter, we replicate our procedure for 1500, 1600, 1700,
1750, and 1800.

The cities are then divided into 10 geographic clusters based on their contemporary
isocodes. These clusters were chosen in order to balance considerations of geographical
proximity (we want the cities close to each other) and sample size (we want a sufficient
number). The remaining missing data points were calculated by once again iteratively
examining each individual city, finding the nearest available data point, and then inter-
polating using the median growth rate for each particular cluster.

Cluster 1: Albania, Greece, Croatia, Macedonia, Slovenia, Yugoslavia, and Bosnia and
Herzegovina.

Cluster 2: Austria, Bulgaria, Czech Republic, Hungary, Moldova, Romania, Slovakia,
and Poland.

Cluster 3: Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Lithuania, Latvia, Russia,
and Ukraine.

Cluster 4: Belgium, Netherlands, and Luxembourg.

Cluster 5: Switzerland, and Germany.

Cluster 6: Denmark, Norway, Sweden, and Finland.

Cluster 7: Spain, Portugal, and Gibraltar.

Cluster 8: France.

Cluster 9: Ireland and Great Britain.

Cluster 10: Italy and Malta.

40



C Weak Instrument Statistics

Table 6: Angrist-Pischke Multivariate F-test Statistics for Flexible Regression Models.

F-Test Statistic

Endogenous Eqn. (1) (2) (3) (4)

Coal ⇥ Year=1400 37.415 24.195 189.299 105.159
Coal ⇥ Year=1500 63.769 41.046 189.299 105.159
Coal ⇥ Year=1600 97.438 58.889 182.022 98.515
Coal ⇥ Year=1700 143.316 55.200 166.792 85.975
Coal ⇥ Year=1750 89.860 52.630 163.473 83.351
Coal ⇥ Year=1800 157.752 77.812 150.804 72.446
Coal ⇥ Year=1850 159.081 82.242 156.610 77.276
Coal ⇥ Year=1900 214.498 129.149 184.674 105.930

Excludes UK N Y N Y
Includes Interpolated Cities N N Y Y
Num. obs. 10773 9799 19305 17613

The number in each cell displays the Angrist-Pischke multivariate F-test
statistic for the corresponding endogenous variable in the regression
estimates reported in Table 2. Each F-test statistic has been corrected to
account for clustering at the city level.
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Table 7: First-Stage F-Statistics, Rolling Growth Regressions.

F-Test Statistic

(1) (2) (3) (4) (5) (6)

IV 22.554 25.723 30.719 68.907 171.233 202.852
IV: Excl. UK 11.598 11.109 13.996 29.419 49.605 88.272
IV: Incl. Interpolated 177.212 177.306 177.365 178.070 178.250 177.723
IV: Excl UK & Incl. Interpolated 80.149 80.223 80.253 80.212 80.032 80.039

The number in each cell displays the partial first-stage F-test statistic for a corresponding
growth regression model reported in Table 3 wherein the Coal variable is modelled as an
endogenous regressor. Each F-test statistic has been corrected to account for heteroscedas-
ticity.

Table 8: First-Stage F-Statistics, Fixed Treatment Effects.

F-Test Statistic

Endogenous Eqn. (1) (2) (3) (4)

Coal ⇥ Post-1750 207.579 99.082 211.403 110.968
Coal ⇥ Post-1800 259.606 134.614 211.403 110.968
Coal ⇥ Post-1850 259.606 134.614 211.403 110.968

Excludes UK N Y N Y
Includes Interpolated Cities N N Y Y
Num. obs. 10773 9799 19305 17613

The number in each cell displays the partial first-stage F-test statistic for the cor-
responding regression model reported in Table 4 wherein the Coal variable is
modelled as an endogenous regressor. Each F-test statistic has been corrected to
account for clustering at the city level.

Table 9: First-Stage F-Statistics, Fixed Treatment Effects, OLS and IV with Spatial Lag
and Error: Full Sample and Controls 1300–1900.

F-Test Statistic

Post-Year 1750 1800 1850
(1) (2) (3)

Includes UK
F-Statistic 180.787 180.651 184.431

Excludes UK
F-Statistic 96.029 97.761 104.191

Includes Interpolated Cities Y Y Y
Num. obs. Incl. UK 19305 19305 19305
Num. obs. Excl. UK 17613 17613 17613

The number in each cell displays the partial first-stage F-test statis-
tic for a corresponding spatial regression model reported in Table 5
wherein the Coal variable is modelled as an endogenous regressor.
Each F-test statistic has been corrected to account for clustering at
the city level.
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D Spatial Estimators with Endogenous Lagged Dependent
Variable

Table 10: Fixed Treatment Effects, OLS and IV with Spatial Lag and Error: Full Sample
and Controls 1300–1900. Spatial Lag Modeled as Endogenous Regressor.

Dependent Variable is Log City Population

Post-Year 1750 1800 1850 1750 1800 1850
OLS OLS OLS IV IV IV
(1) (2) (3) (4) (5) (6)

Includes UK
Coal ⇥ Post-Year 0.061⇤⇤⇤ 0.074⇤⇤⇤ 0.078⇤⇤⇤ 0.112⇤⇤⇤ 0.122⇤⇤⇤ 0.132⇤⇤⇤

(0.017) (0.021) (0.024) (0.043) (0.048) (0.052)
l (Spatial Lag) 0.296⇤⇤⇤ 0.296⇤⇤⇤ 0.297⇤⇤⇤ 0.262⇤⇤⇤ 0.262⇤⇤⇤ 0.271⇤⇤⇤

(0.018) (0.020) (0.023) (0.039) (0.043) (0.047)
r (Spatial Error Lag) 0.110 0.106 0.117 0.128 0.126 0.129
s2

e (Spatial Error Variance) 0.179 0.179 0.179 0.179 0.179 0.179
Counterfactual Explained (%) 27.735 38.782 64.551 47.219 57.553 91.585

Excludes UK
Coal ⇥ Post-Year 0.031⇤ 0.046⇤⇤ 0.051⇤⇤ 0.068 0.081⇤ 0.100⇤

(0.078) (0.078) (0.081) (0.089) (0.089) (0.089)
l (Spatial Lag) 0.284⇤⇤⇤ 0.279⇤⇤⇤ 0.280⇤⇤⇤ 0.280⇤⇤⇤ 0.276⇤⇤⇤ 0.276⇤⇤⇤

(0.082) (0.081) (0.082) (0.085) (0.085) (0.085)
r (Spatial Error Lag) 0.091 0.089 0.090 0.094 0.091 0.091
s2

e (Spatial Error Variance) 0.170 0.169 0.169 0.170 0.170 0.170
Counterfactual Explained (%) 30.334 23.675 42.067 29.909 39.508 71.084

Includes Interpolated Cities Y Y Y Y Y Y
Num. obs. Incl. UK 19305 19305 19305 19305 19305 19305
Num. obs. Excl. UK 17613 17613 17613 17613 17613 17613

All regressions include both year and city fixed effects. Standard errors and p-values have been corrected
to account for clustering at the city level. ***p < 0.01, **p < 0.05, *p < 0.1. These regressions also include
year interactions with the following variables: Latitude, Longitude, Potato, Wheat, Oat, Ruggedness, Altitude,
Temperature, Atlantic, Mediterranean, Coast, Rivers, Atlantic2, Mediterranean2, Coast2, and Rivers2. The
border ⇥ year fixed effects are as follows: 1500 borders ⇥ 1400, 1500 borders ⇥ 1500, 1618 borders ⇥ 1600,
1699 borders ⇥ 1700, 1748 borders ⇥ 1750, 1804 borders ⇥ 1800, 1848 borders ⇥ 1850, and 1908 borders ⇥
1900.
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Table 11: Kleibergen-Paap rk Wald F statistic, Fixed Treatment Effects, OLS and IV with
Spatial Lag and Error: Full Sample and Controls 1300–1900.

F-Test Statistic

Post-Year 1750 1800 1850
(1) (2) (3)

Includes UK
Kleibergen-Paap rk Wald F-statistic 4.034 3.814 3.274

Excludes UK
Kleibergen-Paap rk Wald F-statistic 3.438 3.261 3.003

Includes Interpolated Cities Y Y Y
Num. obs. Incl. UK 19305 19305 19305
Num. obs. Excl. UK 17613 17613 17613

The number in each cell displays the Kleibergen-Paap rk Wald F
statistic for the corresponding spatial regression models reported
in Table 10, in which the Coal variable and the spatial lag are
modelled as endogenous regressors. Each F-test statistic has been
corrected to account for clustering at the city level.
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