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1 Introduction

In a regression rite of passage, social scientists around the world link student achievement to the

average ability of their schoolmates. A typical regression in this context puts individual test scores on

the left side, with some measure of peer achievement on the right. These regressions reveal a strong

association between the performance of students and their peers, a fact documented in Sacerdote’s

(2011) recent survey of education peer effects. Peer effects are not limited to education and schools;

evidence abounds for associations between citizens and neighbors in every domain, including health,

body weight, work, and consumption, to name a few (a volume edited by Durlauf and Young (2001)

points to some of the literature.)

Most people have a powerful intuition that "peers matter," so behavioral interpretations of the

strong positive association between the achievement of students and their classmates or the labor

force status of citizens and their neighbors ring true. Correlation among peers is a reliable descriptive

fact, but the scope for spurious correlation in peer analysis is wide. Others have made this point (see,

especially, Deaton, 1990; Manski, 1993; Boozer and Cacciola, 2001; Moffitt, 2001; and Hanushek,

Kain, Markman, and Rivkin, 2003). Nevertheless, I believe there’s value in a restatement and

synthesis of the many perils of econometrically estimated peer effects. I find it especially useful to

link econometric models of peer effects to the behavior of instrumental variables (IV) estimators.

The link with IV shows that models which assign a role to group averages in the prediction

of individual outcomes should be expected to produce findings that look like a peer effect, even

in a world where behavioral influences between peers are absent. The vacuous nature of many

econometric peer effects is not an identification problem; the parameters of the models I discuss are

identified. More often than not, however, these parameters teach us little about human behavior or

what we should expect from changes in group composition. If the group average in question involves

the dependent variable, the estimated peer effect is a mechanical phenomenon, either affirming an

identify in the algebra of expectations or providing a measure of group clustering devoid of behavioral

content. If the model in question draws in individual covariates, the putative peer effect is a test for

the equality of two-stage least squares (2SLS) and OLS estimates of the effect of these covariates on

outcomes. There are many reasons why 2SLS estimates might differ from OLS; peer effects are on

the list, but should not be at the top of it.
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2 Peer Theory

Like many in my cohort, I smoked a lot of dope in high school. Most of my friends smoked a lot of

dope too. Ten years later, my youngest brother went to the same high school, but he didn’t smoke

nearly as much dope as I did, something that worried me at the time. My brother’s friends also

smoked little. In fact, by the time my brother made it to our high school, nobody smoked as much

dope as we did in 1975. That must be why my brother smoked so much less than me.

This story calls for some research. Let s̄
j

be the smoke-alotta-dope rate among students attending

high school j, the school average of s
ij

, a dummy for whether student i smokes. Am I more likely

to smoke when rates are high? We can explore this by estimating the following regression,

s

ij

= ↵+ �s̄

j

+ ⇠

ij

(1)

Estimation of (1) is superfluous, of course. Any regression of s

ij

on s̄

j

produces a coefficient of

unity: X
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In fact, the properties of equation (1) emerge without algebra: The group average on the right hand

side is a fitted value from a regression of the left hand side on dummies indicating groups (high

schools, in this case). The covariance between any dependent variable and a corresponding set of

fitted values for this variable is equal to the variance of the fits.

The tautological nature of the relationship between individual data and group averages is not a

story about samples. Let � denote the population regression coefficient from a regression of (mean

zero) y on µ

y|z = E[y|z], for any random variables, y and z. The scenario I have in mind is that z

indexes peer-referent groups (like high schools). For any z, we can be sure that

� ⌘
E[yµ

y|z]

V [µ
y|z]

= 1, (2)

a relation that follows by iterating expectations:

E[yµ
y|z] = E{E[y|z, µ

y|z]⇥ µ

y|z} = E{E[y|z]⇥ µ

y|z}

= E[µ2
y|z] = V [µ

y|z].

Others have commented on the vacuous nature of regressions of individual outcomes on group

mean outcomes. Manski (1993) described the problem this way: “... observed behavior is always

consistent with the hypothesis that individual behavior reflects mean reference-group behavior” (ital-
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ics mine). Implicit in Manski’s extended discussion, however, is the suggestion that the tautological

nature of (2) is a kind of troubling special case, perhaps a bad equilibrium that can in principle be

avoided. In the same spirit, Brock and Durlauf (2001) and Jackson (2010), among others, describe

regressions like (2) as posing an identification problem, suggesting we might, with suitable econo-

metric magic, find a solution. Yet, the coefficient in my simple regression of individual outcomes on

high school mean outcomes is identified in a technical sense (the relevant likelihood has a unique

maximum).

Econometric models of endogenous peer effects are typically more sophisticated than the one I’ve

used to describe the Angrist brothers’ smoking habits. Discussing the identity, above, Boozer and

Cacciola (2001, p.46) observed: “Of course, since the setup just discussed delivers a coefficient of

exactly 1, it is improbable a researcher would not realize his error, and opt for a different estimation

strategy.” Sophistication, however, need not produce a sound causal framework. In a recent re-

analysis of data from the Tennessee STAR class size experiment, for example, Graham (2008) models

achievement in STAR classrooms as satisfying this equation:

y

ci

= ↵

c

+ (� � 1)"̄
c

+ "

ci

, (3)

where ↵
c

is a class or teacher effect and � > 1 captures social interactions. The residual "
ci

is a kind

of placeholder for individual heterogeneity, but not otherwise specified. The narrative in Graham

(2008) imbues (3) with a causal interpretation: “Consider the effect of replacing a low-" with high-"

... mean achievement increases for purely compositional reasons and ... because ... a high-" raises

peer quality” (p. 646).

Suppose that there are no teacher effects and the dependent variable has been made mean zero,

so that ↵
c

= ↵ = 0. Then (3) implies that class average scores, ȳ
c

, can be written,

ȳ

c

= ↵+ (� � 1)"̄
c

+ "̄

c

= �"̄

c

. (4)

There are infinitely many combinations of � and definitions of "
ci

that satisfy this. An obvious

choice sets "
ci

= y

ci

and � = 1, but we can equally allow "

ci

= y

ci

2 and � = 2. You might say this

indeterminateness reveals lack of identification, but I don’t see the problem in these terms. There

is no grouping scheme, including random assignment, and no sample design, random or otherwise,

for which � has predictive value for individual outcomes. Put another way, if you tell me you’d

like to measure y and " as, say, dollars and donuts, I will tell you what � is. The identification

problem can then be said to be solved, but you won’t know anything more about where y comes
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from.1 This situation can be contrasted with simultaneous-equations-style identification problems:

we need instruments to identify the elasticity of demand for labor, but if I know it, I’ll tell you the

employment consequences of an increase in the minimum wage.

2.1 Control Yourself

Many econometric models of peer effects build on a theoretical framework that includes both in-

dividual and group regressors. Townsend (1994), for example, hypothesized that, controlling for

household demographic structure, individual household consumption responds to village average

consumption in a theoretical relationship generated by risk sharing. Bertrand, Luttmer, and Mul-

lainathan (2000) described spillovers in welfare use that emerge as a result of ethnic networks -

these are parameterized as acting through neighborhood and ethnicity group averages, controlling

for individual characteristics. With individual covariates included as controls, a regression of y on

group average y need not produce a coefficient of unity. This methodological improvement notwith-

standing, I’m skeptical that the coefficient on group averages in a multivariate model of endogenous

peer effects reveals the action of social forces.

I interpret covariate-controlled endogenous peer relationships here using a model for the pop-

ulation expectation of outcomes conditional on individual and group characteristics. I focus on

a specification from Manski (1993), who notes that the following conditional expectation function

(CEF) is typical of econometric research on peer effects:

E[y|x, z] = �µ

y|z + �x. (5)

In this model, z defines groups, x is an individual covariate, and all variables are mean zero.

A natural first step in the study of (5) is to iterate over x, and then solve for E[y|z]. This

generates a reduced form relation which can be written,

E[y|z] = �

1� �

E[x|z]. (6)

Because � is thought to lie between 0 and 1, and 1
1��

scales the effect of individual covariates in (5),

the term �

1��

is said to reflect a social multiplier that magnifies the impact of covariate changes.

Becker and Murphy (2001, p.14), for example, argued that social multipliers make the effects of

changes in group composition large even when “there is only a small response to idiosyncratic (indi-

vidual) variation.” In a recent study of cheating behavior at service academies, Carrell, Malmstrom,

and West (2008, p. 193) estimated a version of the endogenous peer effects model where peer cheat-
1Allowing non-constant ↵

c

doesn’t save the day. Again, as one of many possible solutions, we can set "
ci

= y

ci

� ȳ

c

,
with parameters ↵

c

= ȳ

c

and � = 1.
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ing in college has a multiplier effect, controlling for whether students cheated in high school (an

individual covariate). They describe the multiplier idea as follows: “Hence, in full equilibrium, our

models estimate the addition of one college cheater ’creates’ roughly three new college cheaters.”

I’ll return to the social multiplier interpretation of (6) shortly. For now, I note that the regression

of average outcomes on average covariates suggested by (6) is algebraically two-stage least squares

(2SLS) using group dummies to instrument x, an estimand I label  1. Specifically, we have,

 1 =
E[yµ

x|z]

V [µ
x|z]

=
E(E[y|z]E[x|z])

V [µ
x|z]

, (7)

where µ

x|z is shorthand for E[x|z]. The first equals sign in (7) comes from the fact that the first

stage in this case is E[x|z], while the second follows by iterating expectations. Because 2SLS is the

same as OLS on group means, we also have that

 1 =
�

1� �

. (8)

With or without the interpretation of  1 derived from (5), the econometric behavior of the sample

analog of  1 is that of a 2SLS estimator. Evidence for social effects should be evaluated in light of

this fact.

Suppose the CEF is indeed as described by(5). This implies that we can write

E[xy] =�E[xµ
y|z] + ��

2
x

. (9)

The combination of (9) and (8) facilitate a link between � and � in (5) and more familiar econometric

parameters, specifically,  1 and its OLS counterpart, defined as:

 0 =
E[xy]

�

2
x

. (10)

Dividing (9) by �2
x

, we have
 0 = �⌧

2
 1 + �,

where ⌧2 =
V [µ

x|z ]

�

2
x

denotes the (population) first stage R-squared associated with  1. Using this

and (8), we find
� =

 1 �  0

 1
⇥ 1

(1� ⌧

2)
. (11)

Since ⌧2 is likely to be small, this analysis shows that

1

1� �

⇠=
 1

 0
. (12)

In other words, the social multiplier implied by (5) is approximately the ratio of the 2SLS to OLS

estimands for the effect of individual covariates on outcomes. Consequently, any excess of IV over
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OLS looks like a social multiplier.2

In an influential recent discussion of peer effects in social networks, Bramoullé, Djebbari, and

Fortin (2009) described models like (5) as posing an identification problem. Again, I see the problem

here differently. Just as in the context of the tautological bivariate regression of individual outcomes

on group mean outcomes, � in (5) and (12) is identified. My concern is that this parameter captures a

mechanical relationship, divorced from any social significance that you might wish for the underlying

CEF.

2.2 Greek Peers

I illustrate the value of the 2SLS interpretation of econometric peer models by re-examining the

Dartmouth College roommates research design pioneered by Sacerdote (2001). This design exploits

the fact that, conditional on a few preference variables, Dartmouth College matches freshman room-

mates randomly. Sacerdote (2001) used this to look at peer effects in academic achievement. In

a follow-up analysis, Glaeser, Sacerdote, and Scheinkman (GGS, 2003) used random assignment of

roommates to ask whether the propensity of Dartmouth freshman to join fraternities reflects a social

multiplier.

In the GSS application, the dependent variable, y, is an indicator of fraternity (or sorority)

membership (about half of Dartmouth College undergraduates go Greek). High school drinking is

a strong predictor of pledge behavior; a dummy variable indicating high-school beer drinking is my

x. Finally, peer reference groups, indexed by z, consist of dormitory rooms, dormitory floors, and

dormitory buildings. Each of these grouping schemes creates an increasingly coarse partition of a

fixed sample consisting of 1,579 freshmen.

The OLS estimand here consists of a regression of fraternity participation on a dummy for

whether students drank in high school. The resulting estimate of  0, computed in a model that

controls for own SAT scores, own high school GPA, and own and family income, appears in column

1 of Table 1 (taken from GSS). This estimate is about 0.10 with a standard error of 0.03, showing

that (self-reported) high school drinking is a strong and statistically significant predictor of fraternity

participation. The remaining columns of Table 1 report results from regressions that put E[y|z] on

the left hand side and E[x|z] on the right. These are estimates of  1 using room, floor, and building

dummies as an instrument for x (The regression of individual y on E[x|z] is the same as the regression
2A similar observation appears in Boozer and Cacciola (2001), who wrote (p. 47): “As long as the Between

coefficient ... lies above this [OLS coefficient] ... the estimated peer effect will be non-zero.” In the Boozer-Cacciola
setup, the “between coefficient” is the regression of average y on average x, which I have characterized as the 2SLS
estimand,  1.
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of E[y|z] on E[x|z] since the grouping transformation is idempotent.) Because these regressions use

grouped data, the resulting standard errors are similar to those that would be generated by 2SLS

after clustering individual data on z.3

As can be seen in column 2 of Table 1, the estimate of  1 with data grouped at the room level

is 0.098, remarkably similar to the corresponding OLS estimate of  0. Coarser grouping schemes

generate larger estimates: 0.15 with data grouped by floor and 0.23 with data grouped by building.

Using (12), the implied social multiplier is about one for dorm rooms, 1.4 for dorm floors, and 2.2

for dorm buildings. GSS interpret these findings as showing that social forces multiply the impact

of individual causal effects in large groups.

I believe that the estimates in Table 1 are explained by the finite sample behavior of 2SLS using

many or not so many weak instruments. The forces determining the behavior of 2SLS estimates as

the number of instruments change are divorced from those determining human behavior. Note first

that the instruments driving 2SLS estimates of the parameter I’ve labelled  1 are - by construction

- both many and weak. The instruments are weak because group membership is randomly assigned.

Asymptotically on group size, E[x|z] = E[x], and the first stage relationship supporting  1 disap-

pears. The instruments are many because there are many groups: 700 dorm rooms for the estimates

in column 2, in particular. This extreme version of a many-weak IV scenario seems likely to produce

an estimate close to the corresponding OLS estimate.

GSS observed that estimates of  1 increase as the level of aggregation increases. More important

from my point of view, however, is the fact that the standard errors increase sharply as aggregation

coarsens: the estimated standard errors in column 4 are five times larger than those in column 2.

Moving from dorm rooms to dorm floors and then from dorm floors to dorm buildings increases

group size with a fixed overall sample size. The resulting increase in imprecision is what I expect

from 2SLS estimates with a collapsing first stage, as are increasingly extreme magnitudes. Given

this simple, mechanical explanation for the pattern of estimates reported in Table 1, I’m reluctant

to acknowledge a role for elaborate social forces.

3 Leave Me Outta This!

In an influential study of risk sharing in Indian villages, Townsend (1994) regressed individual

household consumption on the leave-out mean of village average consumption (as one of a number

of empirical strategies meant to capture risk sharing). The tautological nature of “y on y-bar”
3A detail here is that the grouped data estimates in Table 1 are unweighted, while 2SLS implicitly weights groups

by their size (see, for example, Angrist and Pischke, 2009).
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regressions would appear to be mitigated by replacing full group means with leave-out means. In

my notation, the model of endogenous peer effects with leave-out means can be written,

s

ij

= ↵+ �s̄(i)j + ⇠

ij

, (13)

where the leave-out mean is constructed using,

s̄(i)j =
N

j

s̄

j

� s

ij

N

j

� 1
,

for individuals in a group of size N

j

.

In contrast with estimates of (1), estimates of equation (13) are not preordained. In my view,

however, these results are also bereft of information about human behavior. Students in the same

school and households from the same village are similar in many ways, almost certainly including

aspects of their behavior captured by the variable s
ij

, be this drug use, achievement, or consumption.

A simple model of this correlation allows for a group random effect, u
j

, defined as u

j

= E[s
ij

] in

group j. Random effects are shorthand for the fact that individuals in the same group are likely to

be more similar than individuals in different groups, just by virtue of the fact that they’re grouped

together. If we live in the same village, for example, we’re subject to the same weather.

The random effects notation allows us to model s
ij

as,

s

ij

= u

j

+ ⌘

ij

, (14)

where E[⌘
ij

u

j

] = 0. To see the implication of this for estimates of (13), suppose that group size is

fixed at 2 and that ⌘
ij

is homoskedastic and uncorrelated within groups. Then � is the regression

of s1j on s2j and vice versa, a coefficient that can be written,

C(s1j , s2j)

V [s
ij

]
=

�

2
u

�

2
u

+ �

2
⌘

, (15)

where �2
u

is the variance of the group effects and �2
⌘

is the variance of what’s left over. In a discussion

of Townsend’s (1994) empirical strategies, Deaton (1990) observed that in a regression of individual

consumption on a leave-out mean, any group-level variance component such as described by (14)

generates the correlation captured by (15). Risk sharing and other sorts of behavior might contribute

to this, but generic clustering makes models like (13) scientifically uninformative.

Dartmouth Do-Over

Sacerdote (2001) estimated a version of (13) for the freshman grades of Dartmouth College room-

mates. My version of the roommate achievement analysis appears here in Table 2. The first column
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shows the coefficient on roommate GPA from a model for 1,589 Dartmouth roommates in 705 rooms.

Theses models include 41 block (preference-group) effects to control for the fact that roommates are

matched randomly within blocks. The resulting precisely estimated coefficient of about 0.11 shows

that roommates’ GPAs are highly correlated.

A useful summary statistic for roommate ability is the SAT reasoning score, computed here

as the sum of SAT math and SAT verbal scores (divided by 100). SAT tests are taken in high

school, before roommates are matched. As can be seen in column 2 Table 2, roommates’ own SAT

reasoning score is also a strong predictor of own GPA, with an effect of about the same magnitude

as the roommate GPA coefficient, and estimated more precisely. At the same time, roommate’s SAT

score is unrelated to a student’s own GPA, as can be seen in column 3 of Table 2, which reports

estimates from a model that predicts each student’s GPA using his roommate’s as well as his own

SAT scores.

A social planner interested in boosting achievement among college freshman can work only

with the information he or she has, information like SAT scores that’s necessarily collected before

freshman year. Because SAT scores strongly predict college grades, aspiring social planners might

be tempted to mix and match new students using information on their SAT scores. The estimates

in Table 2 suggest any such manipulation is likely to be of no consequence. Estimates showing a

strong correlation in roommate GPAs would seem to be driven by common variance components in

outcomes. These are the sort of variance components that motivate empiricists to report clustered

standard errors, but not themselves usually seen as a causal force subject to external manipulation.

Shocking Peer Effects

Causal interpretations of common shocks appear frequently in scientific publications. In a widely

discussed study of social networks in the Framingham Heart Study, for example, Christakis and

Fowler (2007) report strong correlations in obesity across friends and family, with the strongest

correlations for mutual friends. This finding is offered as evidence of social transmission, described

in the study as a causal force. In particular, the within-network correlation this study reveals is

said to have predictive value for policy (p. 376-377): “Our study suggests that obesity may spread

in social networks in a quantifiable and discernible pattern that depends on the nature of social ties

... Consequently, medical and public health interventions might be more cost-effective than initially

supposed, since health improvements in one person might spread to others.” In an investigation

motivated by the Christakis and Fowler (2007) study, however, Cohen-Cole and Fletcher (2008)

find strong within-friend correlations in acne, height, and headaches. The fact that correlation in
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outcomes like height cannot be explained by transmission across social networks casts doubt on the

predictive value of social correlations in health outcomes and health-related behaviors.

You might hope that endogenous network effects can be uncovered by IV. Suppose, for example,

that students have better peers when assigned to the honors floor, indicated by h

j

. We might

therefore instrument s̄(i)j with this peer-changing group-level instrument, which is correlated with

s̄(i)j and, I’ll assume, nothing else. This is not a very realistic scenario, as it requires social engineers

to know the future. In any case, such awesome power is econometrically misplaced. Boozer and

Cacciola (2001) show that IV estimation of an equation like (13) produces a coefficient of unity, much

like the tautological model I started with. Straightforward regression algebra reveals why this must

be so: in this IV setup, where each observation of s
ij

provides both an outcome and a treatment, the

first stage (regression of roommates’ GPA on h

j

) and reduced form (regression of own GPA on h

j

)

are the same, since everybody in this data set is somebody’s roommate. Recognizing this difficulty,

however, opens the door to more informative strategies that separate research subjects from the

peers whose characteristics might influence them. I return to this point in Section 5.

4 Socially Awkward

The theory of human capital externalities suggests that a more educated workforce makes everyone

more productive, whether educated or not. Acemoglu and Angrist (2001) therefore asked whether

a man’s earnings are affected by the average schooling in his state. Human capital externalities

illustrate a class of peer effects where the group average of one variable is presumed to influence

individual outcomes that come later. Motivated by the schooling example, I call the effect of an

average predetermined variable, x, on an outcome variable, y, a social return. Social returns are

sometimes said to be contextual. Manski (1993) also calls such effects exogenous peer effects, as

opposed to the model of endogenous outcome-on-outcome peer effects meant to be captured by (5).

The typical population social returns CEF looks like this,

y = ⇡1µ
x|z + ⇡0x+ ", (16)

where ⇡1 is meant to capture the causal effect of changes in average x. This differs from (5) by

swapping µ

x|z for µ

y|z. As with (5), ⇡1 and ⇡0 are determined by more fundamental parameters.
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Specifically, Acemoglu and Angrist (2001) showed that,

⇡0 =
 0 �  1⌧

2

1� ⌧

2
= � 0 + (1� �) 1 =  1 � �( 1 �  0) (17)

⇡1 =
 1 �  0

1� ⌧

2
= �( 1 �  0) (18)

where  0 and  1 are as defined in (10) and (7), � = 1
1�⌧

2 , and ⌧2 is again the first stage R-squared

associated with the use of group dummies to instrument the individually-varying covariate, x. It’s

easy to see where (18) comes from: Equation (16) is the regression version of the Hausman (1978)

specification test comparing OLS and 2SLS estimates of the effect of x on y.

The social returns parameter in a contextual effects model is proportional to the difference

between 2SLS and OLS, while in the endogenous effects model, the social multiplier is proportional

to the ratio of these two. Either way, however, IV might exceed OLS due to measurement error.

As an empirical matter, Ashenfelter and Krueger (1994) find that adjustment for measurement

error produces a substantial increase in schooling coefficients. Many other regressors are measured

accurately, of course. But “measurement error” here is a metaphor for anything that gets averaged

out in grouped data. Perhaps schooling, though accurately measured on its own terms, has group-

specific variance components that affect earnings especially strongly.4

IV might exceed OLS for other reasons as well. For one thing, selection bias can push IV

estimates above or below the corresponding OLS estimates. Card (1995, 2001) and others note

the common finding that IV estimates of the returns to schooling tend to exceed the corresponding

OLS estimates. Here, the omitted variables bias seems to go the wrong way (though the theory of

optimal schooling choice is ambiguous on this point). This finding might also reflect discount rate

bias, a scenario first described by Lang (1993), in which those affected by compulsory schooling laws

and similar instruments tend to have unusually high returns, leading IV estimates to exceed OLS

estimates even when they are uncompromised by selection bias. Nonlinearity may also drive IV

estimates away from OLS. Suppose, for example, that the returns to college are below the returns to

secondary schooling, as seems true for middle-aged men in the 2000 Census (see Angrist and Chen,

2011). Grouping by state - implicitly instrumenting by state - might produce estimates closer to the

average secondary school return than to the average college return.
4Moffitt 2001 noted that measurement error complicates the interpretation of estimates of equations like (16).
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4.1 Social Returns Details

Models With Controls

Empirical social returns models typically allow for additional controls beyond the individual covari-

ate, x. Acemoglu and Angrist (2001), for example, control for state and year effects. A version of

equation (16) with controls can be written

y = ⇡1µ
x|z + ⇡0x+ �

0
w + " (19)

where w is a vector of controls other than x. At first blush, the introduction of additional controls

complicates the interpretation of ⇡1 and ⇡0 since µ
x|z is no longer the first stage fitted value for a 2SLS

model with covariates (as always, the relevant first stage must include the covariates). In Acemoglu

and Angrist, however, and probably not untypically, the key covariates are linear combinations of

the grouping dummies or instruments, z. In such cases, my interpretation of the parameters in (19)

stands with only minor modification.

To see this, let P

w

and P

z

denote the projection matrices associated with w and z and let

M

w

= I � P

w

be the residual-maker matrix for w. The scenario I have in mind has P

z

P

w

= P

w

, in

which case it’s straightforward to show that

M

w

P

z

x = P

z

M

w

x.

In other words, the order of instrumenting (with z) and covariate adjustment (for w) can be swapped.

From here it’s straightforward to show that (17) and (18) apply after dropping w from (19) and

replacing x by ex ⌘ M

w

x throughout.

Table 3 reports estimates of a version of equation (19) using the 1950-1990 census extracts used

in the Acemoglu and Angrist (2001) study. The average schooling variable in this case is constructed

using the same sample of white men in their forties that I used to construct the regression estimates

(The Acemoglu and Angrist study used an hours-weighted average for all workers). The covariates

here consist of a full set of state and census year effects, so the social returns formulas apply after

partialing them out. The estimate of  0 in column 1 of Table 3 comes in at 0.076, while the

estimate of  1 in column 2 is larger at 0.105. Because the first-stage R-squared in this case is close

to zero, the estimate of ⇡1 in column 3 is the difference between  1 and  0, at 0.029, a seemingly

reasonable magnitude for human capital externalities. Regardless of interpretation, however, we

learn from these estimates that 2SLS using state and year dummies as instruments for schooling

are (marginally) significantly larger than the corresponding OLS estimates. This result can arise
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for a variety of reasons. For example, any omitted variables bias (OVB) associated with this 2SLS

procedure seems very likely to be positive since states with high average schooling probably have

high average wages for other reasons as well. If so, the fact that 2SLS exceeds OLS may be unrelated

to human capital externalities.

Equally important, I can tune the findings in Table 3 as I wish: Columns 5-7 report estimates of

the social returns CEF after adding noise to the individual highest grade completed variable. The

reliability ratio relative to unadulterated schooling is 0.7. The addition of measurement error leaves

the estimate of  1 in column 6 largely unchanged, but the estimate of  0 in column 5 is attenuated.

Consequently, social returns come in larger, at almost 5 percent, a result with no predictive value

for the effects of social policy.

Back to School Again

Building on Sacerdote’s (2001) seminal analysis, columns 4-7 of Table 2 sketch a social returns

scenario for Dartmouth roommates. To make sure the social returns algebra applies in detail, I’ve

limited the sample to the 804 roommates living in doubles. My estimates also omit roommate

preference block effects, which turn out to matter little in the doubles subsample. In my social

returns analysis, freshman GPA plays the role of y, while the role of x is played by SAT scores.

Just as in the full sample, SAT achievement is a strong predictor of freshman GPA in the doubles

sample: every 100 point score gain (about two-thirds of a standard deviation) again boosts GPA by

almost 0.11 points. This can be seen in the estimate of  0 shown in column 4 of Table 2.

The regression of individual GPA on room average SAT, the parameter  1 in this context, is

0.09, just under the corresponding estimate of  0. Because  1 <  0, estimates of the social returns

equation, (19), show negative peer effects. The first-stage R-squared associated with column 5 is

surprisingly large, at 0.52, a consequence of the fact that there are half as many instruments in the

form of room dummies as there are observations. Using the formula in (18) produces the estimate

of ⇡1 found in column 6, in this case, �0.042.

It’s worth asking why 2SLS doesn’t exceed OLS in this case, thereby producing an apparent

positive peer effect. I believe the answer lies in the many-weak nature of the roommate grouping

instruments, much as for the GSS table discussed earlier. Although the first stage R-squared in this

case is large, the joint F for 401 room dummies in the first stage is small. With so many small groups

- equivalently, many weak instruments - a world without peer effects generates 2SLS estimates with a

sampling distribution centered near that of the corresponding OLS estimate. By contrast, the state

and year dummy instruments used to construct the estimates of  1 and ⇡1 reported in Table 3 have
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real predictive value for schooling. As I’ve noted, however, the strong first stage in the schooling

example isn’t necessarily an asset, since 2SLS estimates with strong instruments may diverge from

the corresponding OLS estimates for reasons unrelated to social returns.

I’ve Got Issues

The juxtaposition of peer effects estimates using samples of states and roommates raises two further

issues. The first is the importance of using leave-out means in place of full means in social returns

models. The sample analog of (16) for roommates can be written

g

ij

= µ+ ⇡1s̄j + ⇡0sij + ⌫

ij

, (20)

where g

ij

is the GPA of roommate i in room j, s
ij

is his SAT score, and s̄

j

is the room average.

Suppose that instead of the full room average, we use the leave-out mean, s̄(i)j . In a room with two

occupants, this is my roommate’s score, while with three, this is the average SAT for the other two.

The estimating equation becomes

g

ij

= �+ 1s̄(i)j + 0sij + u

ij

. (21)

Equation (21) seems to resonate more than equation (20) in the context of social spillovers. Perhaps

use of the leave-out mean ameliorates social awkwardness of the sort described by (17) and (18).

Substitution of the leave-out mean for the full mean typically matters little, and less and less as

group size increases. Here’s the algebra showing this for fixed group sizes:

g

ij

= �+ 1s̄(i)j + 0sij + u

ij

= �+ 1


Ns̄

j

� s

ij

N � 1

�
+ 0sij + u

ij

= �+
1N

N � 1| {z }
⇡1

s̄

j

+


0 �

1

N � 1

�

| {z }
⇡0

s

ij

+ u

ij

(22)

Estimated social returns differ by a factor of N

N�1 according to whether or not the peer mean is full

or leave out. This rescaling is as large as 2 for roommates, but the econometric behavior of social

returns equations is similar regardless of group size. Column 7 of Table 2 substantiates this with

estimates of (21) for Dartmouth roommates. At �0.021, the estimate of 1 is half that of ⇡1.

A second issue here is the role of the individual control variable in equations like (21). Perhaps

the mechanical link between estimates of social returns and the underlying estimates of  0 and  1

can be eliminated by dropping the individual s

ij

control in equation (21). After all, when peer

14



groups are formed randomly, we might reasonably expect a bivariate regression linking outcomes

with peer means to produce an unbiased estimate of causal peer effects. Setting 0 = 0 in equation

(21) generates a bivariate model that can be written like this,

g

ij

= ↵+ �s̄(i)j + v

ij

. (23)

How should we expect estimates of this equation to behave?

Here too, a link with IV is helpful. As noted by Kolesár, Chetty, Friedman, Glaeser, and Imbens

(2011), OLS estimates of equation (23) can also be interpreted as a jackknife IV estimator (JIVE;

Angrist, Imbens, and Krueger, 1999). JIVE estimates in this case are from regression of g
ij

on s

ij

using group dummy instruments. If there is an underlying first stage, that is, if groups are formed

systematically, we can expect JIVE estimates to behave much like 2SLS estimates when groups are

large. The resulting estimates of (23) therefore provide misleading estimates of peer effects, since

2SLS estimates in this case surely reflects the effect of individual s
ij

on outcomes in a setting with

or without peer effects.

The interpretation of (23) in a no-first-stage or random groups scenario is more subtle. In data

with a group structure, the leave-out mean, s̄(i)j , is likely to be negatively correlated with individual

s

ij

, regardless of how groups are formed. This correlation strengthens as between-group variation

falls, that is, as the first stage implicit in grouping grows weaker. More generally, the regression of

individual data on leave-out means can be written as

✓01 =
E[s

ij

s̄(i)j ]

V [s̄(i)j ]
=
⌧

2 � (1�⌧

2)
N�1

⌧

2 + (1�⌧

2)
(N�1)2

, (24)

where ⌧2 again is the first-stage R-squared associated with grouping, that is, V [µ
x|z ]

�

2
x

. I derive this

formula in the appendix.5 Note that when ⌧

2 = 0, ✓01 = �(N � 1), in which case individual data

and leave-out means are highly negatively correlated. On the other hand, with large groups and a

strong first stage, ✓01 ⇡ 1.

Equations (23) and (21) describe short and long regression models that can be used in conjunction

with (24) to understand the behavior of the short. The OVB formula tells us that

� = 1 + 0✓01, (25)

that is, short equals long plus the effect of omitted in long times the regression of omitted on
5See also Boozer and Cacciola (2001) and Guryan, Kroft, and Notowidigdo (2009) for closely related discussions.
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included. Using (25) in combination with the social returns formulas, (17) and (18), we have:

� = ✓01 1 + (1� ✓01)


N � 1

N

�
�( 1 �  0). (26)

This confirms that with large groups and a strong first stage, � ⇡  1 since ✓01 ⇡ 1. By contrast, in

the absence of peer effects, a many-weak IV scenario produces  1 ⇡  0, in which case,

� ⇡ ✓01 0 ⇡ �(N � 1) 0,

a strong negative effect (assuming  0 > 0). To see why the bivariate regression on leave-out means

is potentially misleading, consider (23) with only one group, say a single classroom. It would seem

there’s little to be learned about peer effects from a single classroom, yet the slope coefficient � in

(23) is identified and may be estimated precisely if the class is large. In the one-group case, however,

⌧

2 = 0 is a constraint of the data, and negative estimates of � a foregone conclusion.

I document the correlation between individual data and leave-out means using the sample of

Kenyan first-graders studied by Duflo, Dupas, and Kremer (2011). This study reports on a ran-

domized evaluation of tracking by ability in Kenyan primary schools: in the control group, students

were randomly assigned to one of two classes, while in the treatment group, students were grouped

by ability using a baseline test score. Along the way, Duflo, Dupas, and Kremer (2011) also looked

at classroom peer effects in the control group. My re-analysis of their data is similarly limited to

the control sample, which consists of 2,190 students from 61 schools, randomly split into two classes.

Outcome data come from a sample of up to 30 students drawn from each class, though many classes

are smaller, and 18% of those originally assigned were lost to follow-up.

As a benchmark, I estimated a version of (19) with peer means computed using students in the

analysis sample only. The covariates here consist of school effects, which are absorbed by grouping

into classes (so my analysis of (19) applies). When group means are constructed using the follow-up

sample, the grouping first stage has an R-squared under 0.02. The results, reported in columns 1-4

of Table 4, show  0 = 0.496,  1 = 0.785, and a marginally significant estimate of ⇡1 equal to 0.294.

Swapping leave-out means for full class means changes this little, as can be seen in the estimate of 1
reported in column 4.6 The original Duflo, Dupas, and Kremer (2011) study computes peer means

including students for whom follow-up data is unavailable; the resulting estimate of 1, reported in

column 5 of Table 4, is 0.359. This differs little from the corresponding estimate in column 4.

As can be seen in column 6 of Table 4, the omission of own-baseline controls reduces the estimated

peer mean coefficient to 0.092. Consistent with a low value of ⌧2 and the moderately large N for
6The scale factor linking ⇡1 and 1 differs from N

N�1 because group size varies in this application.
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peer groups, the regression of own on leave-out means in this case is strongly negative, on the order

of �0.53 in a model with school effects. This estimate of ✓01 is reported in column 7 of the table,

with an estimated standard error of 0.18. The peer effect necessarily falls here as a result: applying

(25), we have that 0.092 = 0.359 + (0.499⇥�0.534).

The mechanical forces generating a small estimate of � for the Kenya study bring us back to

equation (21), with controls for own baseline scores. The principle threat to validity here is divergence

between OLS and 2SLS for reasons unrelated to social returns. With a weak grouping first stage

such as produced by the Kenya tracking study, we can expect  1 ⇡  0 in the absence of peer effects.

The fact that  1 >  0 and the consequent large positive estimate of ⇡1 and 1 in columns 1-4 of

Table 4 may therefore signal positive peer effects, though ambiguities remain.

These ambiguities are documented in columns 8-10 of Table 4, which report estimates of (21)

in samples stratifying by the quantiles of baseline scores (the original Duflo, Dupas, and Kremer

study reported estimates using the same stratification scheme). Positive estimates of 1 are driven

by students in the upper and lower baseline quartiles; there’s no apparent peer effect for students

with baseline scores in the middle of the distribution. Duflo, Dupas, and Kremer (2011) give a

structural interpretation of this result, which they see as generated by complex interactions between

students and teachers. Weighing against this causal interpretation, in my view, is the fact that the

estimated effect of classmates’ baseline scores on outcome scores is much larger than the effect of

a student’s own baseline score. In column 10, for example, peer means raise achievement twice as

much as students’ own baseline scores. This suggests some kind of measurement error may be at

work after all, perhaps related to the fact that baseline scores in the study aren’t comparable across

schools.

5 A Little Help for My Friends

In an ambitious and original study of peer effects among freshmen at the United States Air Force

Academy (USAFA), Carrell, Sacerdote, and West (2013) explored the consequences of peer group

manipulation. They began by estimating econometric peer effects using a version of (19). The

outcome here is freshman GPA at USAFA, while peer characteristics include SAT scores and other

pre-treatment variables. The results from this initial investigation suggested that groups of students

who are predicted to do poorly in their first year at USAFA benefited from exposure to classmates

who have high SAT verbal scores. Motivated by this finding, the authors randomly assigned incoming

cadets to peer groups whose composition was informed by these estimates. As it turns out, this
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manipulation had no overall effect, with marginally significant negative estimates for the group the

intervention was meant to help. Carrell, Sacerdote, and West (2013) attributed these unexpected

results to social stratification within squadrons.

I read these findings as illustrating the proposition that estimates of equations like (19) are

unlikely to have predictive value for interventions that change peer groups. My diagnosis identifies

the problem as originating in the spurious nature of peer effects estimated using equations like (19),

as opposed to endogenous stratification. I’ll therefore conclude with a brief discussion of estimation

strategies that seem to me most likely to generate evidence on social interactions that has predictive

value. Two features strike me as especially important. The first is a clear separation between the

subjects of a peer effects investigation and the peers who provide the mechanism for causal effects

on these subjects. The second is a set-up where fundamental OLS and 2SLS parameters ( 0 and

 1, in my notation) can be expected to produce the same result in the absence of peer effects.

Imagine a peer experiment that takes a sample of J ⇥ N individuals and randomly allocates

J groups of size N to different peer environments, say neighborhoods. The analyst focuses on the

original J ⇥N subjects; the peers are a mechanism for causal effects but not themselves subjects for

study. By construction, peer characteristics in this design are orthogonal to individual characteris-

tics. As a result we needn’t control for the latter, avoiding the mechanical forces at work in estimates

of models like (19) and (23), where peers and subjects are treated symmetrically. The design I’m

describing fails to capture outcome-on-outcome causal effects of the sort that are sometimes said

to reflect social multipliers, but this design captures the causal effects of peer group manipulation

nevertheless.

An important experimental implementation of this design is the randomized evaluation of Moving

to Opportunity housing vouchers, analyzed in Kling, Liebman, and Katz (2007). Members of the

MTO treatment groups were randomly offered housing vouchers to cover rent for units located

in low poverty neighborhoods. Randomized voucher offers were orthogonal to subjects’ baseline

characteristics. The neighbors’ data plays no role in the statistical analysis of MTO, other than

to provide descriptive statistics that help to characterize the treatment in terms of average peer

characteristics for treatment and control groups. Although social scientists have long documented

correlation in the labor market outcomes of citizens and their neighbors, the well-designed MTO

intervention uncovered no evidence of causal peer effects.

Observational studies with similar design features include the Angrist and Lang (2004) explo-

ration of the consequences of busing low-income students into suburban schools through a program

known as Metco. The analysis sample here is limited to children found in classrooms receiving bused-
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in peers, omitting the Metco students who produce the change in peer composition. The Angrist and

Lang (2004) research design attempts to isolate exogenous variation in the number bused, variation

unrelated to Metco-receiving students’ characteristics. The Abdulkadiroglu, Angrist, and Pathak

(2014) analysis of selective public schools likewise focuses on the effect of exam school offers on

quasi-experimental subjects (in this case, exam school applicants). The Duflo, Dupas, and Kremer

(2011) tracking study also implements an RD analysis of the tracking treatment group, comparing

those who cross the high-ability threshold in tracked schools to those just below.

The MTO, Metco, exam school, and Kenya treatment group analysis can be understood as

constructing IV estimates of equations like (23), where constant-within-group manipulation becomes

an instrument for ex ante peer characteristics summarized by x̄(i)j . The instruments are meant to be

orthogonal to individual baseline variables, so that own-baseline controls such as found in equation

(16) are needless, or at least irrelevant. When successful, these designs eliminate OVB in estimates

linking peer characteristics with individual outcomes, including the own/leave-out bias described by

equation (25), and the spurious social returns generated by equation (16). Not coincidentally, in my

view, these studies also uncover little evidence of peer effects.

In designs that fail to separate subjects from their peers or produce an orthogonal-to-baseline peer

group manipulation, we’d like the 2SLS estimates we’d get using group dummies as instruments for

ex ante characteristics in a world without peer effects to be close to the corresponding OLS estimates

of the effects of these characteristics. As I’ve noted, random group formation implies a many-weak IV

scenario that has this feature. Yet, some amount of group-to-group variation in peer characteristics

is required for any peer effects design to be informative. This raises the question of just how weak

is weak enough to avoid bias from divergent 2SLS and OLS estimates under the no-peer-effects null

hypothesis. My reanalysis of the Kenya control sample illustrates the ambiguity here, yielding what

would seem to be implausibly large peer effects even under random assignment to groups.

A second robust research design for peer effects creates a strong first stage, while ensuring ⇡1 = 0

under the no-peer-effects null. A recent job training study by Crepon, Duflo, Gurgand, Rathelot,

and Zamora (2013) uses this approach to study job search assistance in French labor markets. The

Crepon experiment randomly assigned treatment proportions, p
c

, from the set {0, 25, 50, 75, 100} to

each of 235 local labor markets (cities). Within cities, treatment was randomly assigned at rate p

c

to the population of eligible job seekers. The social returns equation motivated by this design can

be written,
y

ic

= µ+ ⇡1pc + ⇡0tic + �

ic

, (27)

where y
ic

is an employment outcomes for individual i in city c and t

ic

is his treatment status (an offer
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of job search assistance). Equation (27) is meant to uncover externalities or spillovers engendered

by living in a city with many treated workers. If treated workers displace others, these spillovers are

negative. As an empirical matter, estimates of (27) indicate substantial negative spillovers for some

groups of workers.

As always, the parameters of a social returns model like (27) are determined by the corresponding

OLS and 2SLS fundamentals,  0 and  1. In this case,  0 is the slope coefficient from a regression of

y

ic

on t

ic

, a simple treatment-control contrast, while  1 is the slope coefficient from a regression of

y

ic

on p

c

. This is what we’d get using dummies for cities to instrument t

ic

. Note that E[t
ic

|c] = p

c

,

implying a strong first stage since p

c

has been set to vary across cities, while within cities samples

are large. As this is not a many-weak IV scenario, we might expect  0 6=  1 in a world without peer

effects. In this case, however, there’s no measurement error, omitted variables bias, nonlinearity, or

LATE-type heterogeneity to drive a wedge between 2SLS and OLS estimates for reasons other than

peer effects.

To see why this is a robust peer effects research design, let Y1ic and Y0ic denote individual

potential outcomes indexed against treatment status, t
ic

. The observed outcome, y
ic

, is

y

ic

= t

ic

Y1ic + (1� t

ic

)Y0ic.

By virtue of random assignment within cities, we have,

{Y1ic, Y0ic}q t

ic

|p
c

.

In other words, potential outcomes are independent of individual treatment status conditional on

treatment rates. Consequently, treatment-control comparisons within cities capture the average

causal effect of treatment when treatment is at rate p

c

:

E[y
ic

|t
ic

= 1, p
c

]� E[y
ic

|t
ic

= 0, p
c

] = E[Y1ic � Y0ic|pc].

This comparison is a misleading guide to overall program impact, however, if externalities make

E[Y0ic|pc] a decreasing function of p

c

. On the other hand, in the absence of externalities, the

probability of treatment is also ignorable:

{Y1ic, Y0ic}q t

ic

, p

c

,
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in which case, we have,

 0 = E[y
ic

|t
ic

= 1, p
c

> 0]� E[y
ic

|t
ic

= 0]

= E{E[Y1ic]� E[Y0ic]}

= E[Y1ic � Y0ic].

To evaluate  1, I begin by noting that 2SLS estimation using dummy instruments produces

a weighted average of estimates using the dummies one at a time (see, e.g., Angrist and Pischke

(2009)). It’s therefore enough to look at a single just-identified dummy-IV estimate, comparing, say,

cities with p

c

= p > 0 to cities with p

c

= 0. Let T

ic

(p) indicate i

0
s treatment status when p

c

in his

or her city is set to p. Note that T
ic

(p) is defined for all p for each i and not just for the realized p

c

.

In the Crepon, Duflo, Gurgand, Rathelot, and Zamora (2013) design, T
ic

(p) = t

ic

for all p > 0 and

is zero otherwise. The additional notation for latent treatment status is useful nonetheless.

With spillovers, use of a dummy for p
c

= p to instrument for t
ic

violates the exclusion restriction.

Without spillovers, however, this procedure estimates the local average treatment effect,

E[Y1ic � Y0ic|Tic

(p) = 1, T
ic

(0) = 0].

Because T

ic

(0) = 0 for everyone, this is the average treatment effect on the treated in cities with

p

c

= p. Formally, we have,

E[Y1ic � Y0ic|Tic

(p) = 1, T
ic

(0) = 0]

=E[Y1ic � Y0ic|tic = 1, p
c

= p].

Without spillovers, random assignment of t
ic

and p

c

makes this the population average treatment

effect. Consequently,  1 here is the population average treatment effect. This implies in turn that

 1 =  0 under the no-peer-effects null hypothesis.

6 Summary

Powerful mechanical and statistical forces link data on individuals with the characteristics of the

groups to which they belong. The relationships these forces generate have no behavioral implications

and no predictive value for the consequences of peer group manipulation. Because mechanical and

statistical artifacts make spurious correlation among individuals and their peers likely, I set a high

bar for a causal interpretation of econometrically estimated peer effects. My reading of the body

of recent empirical work implementing robust peer effects research designs is that this research has
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uncovered little in the way of causal effects.
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Appendix: The Regression of Own on Leave-Out

We’re interested in the regression of x
ij

on

x̄(i)j =
Nx̄

j

� x

ij

N � 1

in J groups of size N. In what follows, the total mean of x
ij

is set to zero.

To simplify, we first write

x̄(i)j =
Nx̄

j
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the difference in two orthogonal pieces. The variance in the denominator is therefore
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. As always, total variance, V [x
ij

], can be

written as the sum of between-group variance, E[x̄2
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], and average within-group variance, E[V
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(x
ij

)].

That is,
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With this notation in hand, the numerator simplifies as follows:
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The regression of own on leave-out is therefore
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The reverse regression produces,
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Finally, note that ⌧2 =
V [µ

x|z ]

�

2
x

, the first stage R-squared from a regression of x

ij

on a full set of

group dummy instruments.
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(1)
OLS

(2)
Room average 

(3)
Floor average 

(4)
Dorm average 

Drank beer in high school 0.104 0.098 0.145 0.232
(0.03) (0.04) (0.08) (0.19)

Observations 1579 700 197 57

Average group size 1 2.3 8.0 28
Notes: Adapted from Glaeser, Sacerdote, and Scheinkman (2003).  Data are for Dartmouth 
Freshmen. Roommates and dormmates are randomly assigned as described in Sacerdote (2001). 
Regressions include math and verbal SAT scores, dummy for male, family income, and high 
school GPA. SAT scores are from Dartmouth Admissions data. Family income, use of beer, and 
high school GPA are self-reported on the UCLA Higher Education Research Institute’s Survey of 
Incoming Freshmen. Standard errors in parentheses.   Column (1) shows the OLS regression of 
individual fraternity participation on own use of beer in high school.   Columns (2-4) show the 
results of grouped data regressions at various levels of aggregation.  All regressors are averaged.  

Table 1.  Social Multipliers in Fraternity Participation



(1) (2) (3) (4) (5) (6) (7)

Roommate GPA 0.111 0.111
(0.037) (0.036)

Own SAT 0.109 0.109 .110 .132 .109
Reasoning (0.010) (0.010) (.013) (.011) (.010)

Room Average .090 -.042
SAT Reasoning (.020) (.025)

Roommate SAT -0.003 -.021
Reasoning (0.010) (.012)

First Stage R2 0.52

Block Effects x x x

Table 2. Dartmouth Roommates Redux

Notes: The sample used to construct the estimates in columns 1-3 includes 1589 Dartmouth roommates in 705
rooms. The sample used to construct the estimates in columns 4-7 includes 804 Dartmouth rooomates in 402
rooms. The dependent variable is freshman GPA. Standard errors, clustered on room, are reported in
parentheses. 

Doubles OnlyAll Rooms



(1) (2) (3) (5) (6) (7)

Own Schooling .076 .076 .052 .052
(.001) (.001) (.001) (.001)

.105 .029 .098 .046
(.016) (.016) (.016) (.016)

First Stage R2 .0022 .0015

With Reliability 0.7

Notes: Based on Angrist and Acemoglu (2000). The dependent variable is the log weekly wage. The
sample includes 729,695 white men aged 40-49 in the 1950-1990 IPUMS files. Standard errors, clustered
on state, are reported in parentheses.  All models include state of residence and census year effects.  

Reported Schooling

State Average 
Schooling

Table 3. Human Capital Externalities



25-75 < 25 > 75
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Own Baseline 0.496 0.492 0.505 0.499 0.531 0.370 0.480
(0.024) (0.025) (0.024) (0.024) (0.057) (0.098) (0.089)

0.785 0.294
(0.152) (0.158)

0.292 0.359 0.092 -0.534 -0.050 0.573 0.966
(0.151) (0.161) (0.157) (0.179) (0.246) (0.207) (0.313)

N 2188 2188 2188 2188 2190 2190 2190 1092 525 573

Dependent Var Baseline 
Scores

Table 4. Kenya Leave-Me-Out

Outcome Scores

By Baseline Percentile

Notes: Estimates computed using the DDK (2011) control sample. The sample includes first graders in 61 schools, with two
classes each. The dependent variable is an outcome test score. All models control for school effects. Standard errors,
clustered on class, are reported in parentheses. The first stage R2 for column 2 is 0.016. The peer means used for columns 8-
10 were computed in the full sample. 

Outcome Scores

Class Mean Baseline

Classmates' Baseline 
(Leave-out) Mean

Peer Means Computed in 
Estimation Sample

Peer Means Computed in 
Full Sample




