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1 Introduction

In macroeconomic applications, vector autoregressions (VARs) are typically estimated either

exclusively based on quarterly observations or exclusively based on monthly observations.

In a forecasting setting, the advantage of using quarterly observations is that the set of

macroeconomic series that could potentially be included in the VAR is larger. Gross domestic

product (GDP), as well as many other series that are published as part of the national income

and product accounts (NIPA), are only available at quarterly frequency. The advantage of

using monthly information, on the other hand, is that the VAR is able to track the economy

more closely in real time.

To exploit the respective advantages of both monthly and quarterly VARs, this paper de-

velops a mixed-frequency VAR (MF-VAR) that allows some series to be observed at monthly

and others at quarterly frequency. The MF-VAR can be conveniently represented as a state-

space model, in which the state-transition equations are given by a VAR at monthly frequency

and the measurement equations relate the observed series to the underlying, potentially un-

observed, monthly variables that are stacked in the state vector. The MF-VAR is meant

to be an attractive alternative to a standard VAR in which all series are time-aggregated

to quarterly frequency (QF-VAR). To cope with the high dimensionality of the parameter

space, the MF-VAR is equipped with a Minnesota prior and estimated using Bayesian meth-

ods. The Minnesota prior is indexed by a vector of hyperparameters that determine the

relative weight of a priori and sample information.

This paper makes contributions in two areas. On the methodological front we show how to

numerically approximate the marginal data density (MDD) of a linear Gaussian MF-VAR.

The MDD can be used for a data-based selection of hyperparameters, which is essential

to achieve a good forecasting performance with a densely parameterized VAR. The second

set of contributions is empirical. We compile a real-time data set for an eleven-variable

VAR that includes observations on real aggregate activity, prices, and financial variables,

including GDP, unemployment, inflation, and the federal funds rate. Using this data set, we

recursively estimate the MF-VAR and assess its forecasting performance. The comparison

to a QF-VAR is the main focus of the empirical analysis.

First, we ask the following very basic question: what is the gain, if any, from utilizing

within-quarter monthly information in a VAR framework? To answer this question, we

group our end-of-month forecast origins in three bins. Given the release schedule of macroe-

conomic data in the U.S., at the end of the first month of the quarter, no additional monthly
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observations of non-financial variables for the current quarter are available. At the end of

the second and third month either one or two within-quarter monthly observations are avail-

able. We find that during the third month of the quarter the switch from a QF-VAR to a

MF-VAR improves the one-step-ahead forecast (nowcast) accuracy on average by 60% for

nonfinancial variables observed at the monthly frequency and by 11% for variables observed

at quarterly frequency. In the first month of the quarter the improvements are about 6%.

The improvement in forecast accuracy is most pronounced for short-horizon forecasts and

tempers off in the medium and long run. Thus, if the goal is to generate VAR nowcasts or

forecasts of one- or two-quarters ahead, it is well worth switching to from a QF-VAR to a

MF-VAR. If the focus is on a one- to two-year horizon, the QF-VAR is likely to suffice.

Second, we generate real-time forecasts of macroeconomic aggregates for the 2008-09

(Great) recession period. This episode is of great interest to macroeconomists, because

the large drop in aggregate real activity poses a challenge for existing structural and non-

structural models. We document that the monthly information helped the MF-VAR track

the economic downturn more closely in real time than the QF-VAR supporting the view that

the MF-VAR is an attractive alternative to a standard QF-VAR. Third, as a by-product of

the MF-VAR estimation, we generate an estimate of monthly GDP growth rates, which may

be of independent interest to business cycle researchers. Finally, we also provide a compari-

son of bivariate MF-VARs to mixed data sampling (MIDAS) regressions. We find for GDP

forecasts that the percentage differential in forecast accuracy is the same, regardless whether

the forecast is made at the end of the first, second, or third month of the quarter. We are in-

terpreting this finding as both approaches being able to exploit the information differentials

between the three months of the quarter in relative terms equally well. In absolute terms,

the MF-VARs tend to outperform the MIDAS regressions in our particular implementation.

This paper focuses on VARs which are time series models that generate multivariate predic-

tive distributions. VARs have been an important forecasting tool in practice (see Litterman

(1986) for an early assessment and Giannone, Lenza, and Primiceri (2012) for a recent assess-

ment) and there is strong evidence that they perform well in high-dimensional environments

if estimated with shrinkage estimation techniques (see, e.g., De Mol, Giannone, and Reichlin

(2008) and Banbura, Giannone, and Reichlin (2010)). Moreover, in addition to generating

unconditional forecasts, they are widely used to produce conditional forecasts, e.g., condi-

tional on an interest rate path (see Doan, Litterman, and Sims (1984) and Waggoner and

Zha (1999)), which do require a multivariate framework. In our comparison between MF-

VARs and QF-VARs we mostly study univariate root-mean-squared errors (RMSEs), though
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we also consider log determinants of (multivariate) forecast error covariance matrices. To

the extent that we are considering univariate RMSEs one could conduct comparisons with

univariate predictive regressions. However, comparisons of VAR forecasts to forecasts from

other classes of time series models are not the focus of this paper and can be found elsewhere

in the literature (see, e.g., Chauvet and Potter (2013) for forecasting output and Faust and

Wright (2013) for forecasting inflation).

To cope with the high dimensionality of the parameter space, the MF-VAR is equipped with

a Minnesota prior and estimated with Bayesian methods. Our version of the Minnesota prior

is based on Sims and Zha (1998). This prior is also used, for instance, in Banbura, Giannone,

and Reichlin (2010) and Giannone, Lenza, and Primiceri (2012) and the authors document

that the forecasting performance of the Bayesian VAR dominates that of an unrestricted

VAR by a large margin. Alternative prior specifications for Bayesian VARs are surveyed

in Karlsson (2013) and the effect of specification choice on forecast accuracy is studied

in Carriero, Clark, and Marcellino (2011). In order to generate accurate forecasts it is

important that the prior covariance matrix is properly configured. A set of hyperparameters

controls the degree of shrinkage toward the prior mean and we choose the hyperparameter

to maximize the log MDD. MDD-based hyperparameter selection has been discussed, for

instance, in Phillips (1996), used in Del Negro and Schorfheide (2004) and, most recently,

studied in Giannone, Lenza, and Primiceri (2012).

We are building on existing approaches of treating missing observations in state-space

models (see, for instance, the books by Harvey (1989) and Durbin and Koopman (2001)).

We are employing modern Bayesian computational tools, in particular the method of data

augmentation. We construct a Gibbs sampler along the lines of Carter and Kohn (1994) that

alternates between the conditional distribution of the VAR parameters given the unobserved

monthly series, and the conditional distribution of the missing monthly observations given

the VAR parameters. Draws from the former distribution are generated by direct sampling

from a Normal-Inverted Wishart distribution, whereas draws from the latter are obtained

by applying a simulation smoother to the state-space representation of the MF-VAR. Our

numerical approximation of the log MDD is based on the modified harmonic mean estimator

proposed by Geweke (1999).

An alternative Gibbs sampling approach for the coefficients in an MF-VAR is explored in

Chiu, Foerster, Kim, and Seoane (2012). Their algorithm also iterates over the conditional

posterior distributions of the VAR parameters and the missing monthly observations, but

utilizes a different procedure to draw the missing observations. The focus of their paper is
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on parameter estimation rather than forecasting. The authors link the coefficients of the

MF-VAR to the coefficients of a QF-VAR via a transformation. Chiu, Foerster, Kim, and

Seoane (2012) then compare the posterior distributions of parameters and impulse response

functions obtained from the estimation of the two models to document the value of the

monthly observations.

Mixed-frequency observations have also been utilized in the estimation of dynamic factor

models (DFMs). Mariano and Murasawa (2003) apply maximum-likelihood factor analysis

to a mixed-frequency series of quarterly real GDP and monthly business cycle indicators

to construct an index that is related to monthly real GDP. Aruoba, Diebold, and Scotti

(2009) develop a DFM to construct a broad index of economic activity in real time using a

variety of data observed at different frequencies. Giannone, Reichlin, and Small (2008) use

a mixed-frequency DFM to evaluate the marginal impact that intra-monthly data releases

have on current-quarter forecasts (nowcasts) of real GDP growth.

When using our MF-VAR to forecast quarterly GDP growth, we are essentially predict-

ing a quarterly variable based on a mixture of quarterly and monthly regressors. Ghysels,

Sinko, and Valkanov (2007) propose a simple univariate regression model, called a mixed

data sampling (MIDAS) regression, to exploit high-frequency information without having

to estimate a state-space model. To cope with potentially large numbers of regressors, the

coefficients for the high-frequency regressors are tightly restricted through distributed lag

polynomials that are indexed by a small number of hyperparameters. Bayesian versions of

the MIDAS approach are developed in Rodriguez and Puggioni (2010) and Carriero, Clark,

and Marcellino (2012).

Ghysels (2012) generalizes the MIDAS approach to a VAR setting. Unlike our MF-VAR,

his MIDAS VAR is an observation-driven model that does not require numerical techniques

to integrate out unobserved monthly variables. As in Chiu, Foerster, Kim, and Seoane

(2012), the empirical analysis focuses on impulse responses but not on real-time forecasting.

In our view, the state-space setup pursued in this paper is more transparent and flexible

and the computational advances of the last decade make it feasible to estimate Bayesian

state-space models with code written in high-level languages such as MATLAB in a short

amount of time.

Bai, Ghysels, and Wright (2013) examine the relationship between MIDAS regressions and

state-space models applied to mixed-frequency data. They consider dynamic factor models

and characterize conditions under which the MIDAS regression exactly replicates the steady
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state Kalman filter weights on lagged observables. They conclude that Kalman filter forecasts

are typically a little better, but MIDAS regressions can be more accurate if the state-space

model is misspecified or over-parameterized. Kuzin, Marcellino, and Schumacher (2011)

compare the accuracy of Euro Area GDP growth forecasts from MIDAS regressions and MF-

VARs estimated by maximum likelihood. The authors find that the relative performances

of MIDAS and MF-VAR forecasts differ depending on the predictors and forecast horizons.

Overall, the authors do not find a clear winner in terms of forecasting performance.

The remainder of this paper is organized as follows. Section 2 presents the state-space

representation of the MF-VAR and discusses Bayesian inference and forecasting. The real-

time data sets used for the forecast comparison of MF-VAR and QF-VAR, as well as the

timing of within-quarter monthly information, are discussed in Section 3. The empirical

results are presented in Section 4. Finally, Section 5 concludes. The Online Appendix

provides detailed information about the Bayesian computations, the construction of the

data set, as well as additional empirical results.

2 A Mixed-Frequency Vector Autoregression

The MF-VAR considered in this paper is based on a standard constant-parameter VAR in

which the length of the time period is one month. Since some macroeconomic time series, e.g.,

GDP, are measured only at quarterly frequency, we treat the corresponding monthly values

as unobserved. To cope with the missing observations, the MF-VAR is represented as a state-

space model in Section 2.1. In order to ease the exposition, we use a representation with a

state vector that includes even those variables that are observable at monthly frequency, e.g.,

the aggregate price level, the unemployment rate, and the interest rate. A computationally

more efficient representation in which variables observed at monthly frequency are dropped

from the state vector is presented in the Online Appendix. Bayesian inference and forecasting

are discussed in Section 2.2.

Throughout this paper, we use Yt0:t1 to denote the sequence of observations or random

variables {yt0 , . . . , yt1}. If no ambiguity arises, we sometimes drop the time subscripts and

abbreviate Y1:T by Y . If θ is the parameter vector, then we use p(θ) to denote the prior

density, p(Y |θ) is the likelihood function, and p(θ|Y ) the posterior density. We use iid

to abbreviate independently and identically distributed, and N(µ,Σ) denotes a multivari-

ate normal distribution with mean µ and covariance matrix Σ. Let ⊗ be the Kronecker
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product. If X|Σ ∼MNp×q(M,Σ⊗P ) is matricvariate Normal and Σ ∼ IWq(S, ν) has an In-

verted Wishart distribution, we say that (X,Σ) has a Normal-Inverted Wishart distribution:

(X,Σ) ∼MNIW (M,P, S, ν).

2.1 State-Transitions and Measurement

We assume that the economy evolves at monthly frequency according to the following VAR(p)

dynamics:

xt = Φ1xt−1 + . . .+ Φpxt−p + Φc + ut, ut ∼ iidN
(
0,Σ

)
. (1)

The n×1 vector of macroeconomic variables xt can be composed into xt = [x′m,t, x
′
q,t]
′, where

the nm × 1 vector xm,t collects variables that are observed at monthly frequency, e.g., the

consumer price index and the unemployment rate, and the nq × 1 vector xq,t comprises the

unobserved monthly variables that are only published at quarterly frequency, e.g., GDP.

Define zt = [x′t, . . . , x
′
t−p+1]

′ and Φ = [Φ1, . . . ,Φp,Φc]
′. Write the VAR in (1) in companion

form as

zt = F1(Φ)zt−1 + Fc(Φ) + vt, vt ∼ iidN
(
0,Ω(Σ)

)
, (2)

where the first n rows of F1(Φ), Fc(Φ), and vt are defined to reproduce (1) and the remaining

rows are defined to deliver the identities xq,t−l = xq,t−l for l = 1, . . . , p−1. The n×n upper-left

submatrix of Ω equals Σ and all other elements are zero. Equation (2) is the state-transition

equation of the MF-VAR.

We proceed by describing the measurement equation. One can handle the unobserved

variables in several ways: by imputing zeros and modifying the measurement equation by

setting the loadings on the state variables to zero (e.g., Mariano and Murasawa (2003));

by setting the measurement error variance to infinity (e.g., Giannone, Reichlin, and Small

(2008)); or by varying the dimension of the vector of observables as a function of time t (e.g.,

Durbin and Koopman (2001)). We employ the latter approach. To do so, some additional

notation is useful. Let T denote the forecast origin and let Tb ≤ T be the last period that

corresponds to the last month of the quarter for which all quarterly observations are available.

The subscript b stands for balanced sample. Up until period Tb the vector of monthly series

xm,t is observed every month. We denote the actual observations by ym,t and write

ym,t = xm,t, t = 1, . . . , Tb. (3)
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Assuming that the underlying monthly VAR has at least three lags, that is, p ≥ 3, we express

the three-month average of xq,t as

ỹq,t =
1

3
(xq,t + xq,t−1 + xq,t−2) = Λqzzt. (4)

For variables measured in logs, e.g., lnGDP , the formula can be interpreted as a log-linear

approximation to an arithmetic average of GDP that preserves the linear structure of the

state-space model. For flow variables such as GDP, we adopt the NIPA convention and

annualize high-frequency flows. As a consequence, quarterly flows are the average and not

the sum of monthly flows. This three-month average, however, is only observed for every

third month, which is why we use a tilde superscript. Let Mq,t be a selection matrix that

equals the identity matrix if t corresponds to the last month of a quarter and is empty

otherwise. Adopting the convention that the dimension of the vector yq,t is nq in periods in

which quarterly averages are observed and zero otherwise, we write

yq,t = Mq,tỹq,t = Mq,tΛqzzt, t = 1, . . . , Tb. (5)

For periods t = Tb + 1, . . . , T no additional observations of the quarterly time series are

available. Thus, for these periods the dimension of yq,t is zero and the selection matrix Mq,t

in (5) is empty. However, the forecaster might observe additional monthly variables. Let

ym,t denote the subset of monthly variables for which period t observations are reported by

the statistical agency after period T , and let Mm,t be a deterministic sequence of selection

matrices such that (3) can be extended to

ym,t = Mm,txm,t, t = Tb + 1, . . . , T. (6)

Notice that the dimension of the vector ym,t is potentially time varying and less than nm.

The measurement equations (3) to (6) can be written more compactly as

yt = MtΛzzt, t = 1, . . . , T. (7)

Here, Mt is a sequence of selection matrices that selects the time t variables that have been

observed by period T and are part of the forecaster’s information set. In sum, the state-space

representation of the MF-VAR is given by (2) and (7).

2.2 Bayesian Inference

The starting point of Bayesian inference for the MF-VAR is a joint distribution of observ-

ables Y1:T , latent states Z0:T , and parameters (Φ,Σ), conditional on a pre-sample Y−p+1:0 to
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initialize lags. Using a Gibbs sampler, we generate draws from the posterior distributions of

(Φ,Σ)|(Z0:T , Y−p+1:T ) and Z0:T |(Φ,Σ, Y−p+1:T ). Based on these draws, we are able to simu-

late future trajectories of yt to characterize the predictive distribution associated with the

MF-VAR and to calculate point and density forecasts.

Prior Distribution. An important challenge in practical work with VARs is to cope with

the dimensionality of the coefficient matrix Φ. Informative prior distributions can often

mitigate the curse of dimensionality. A widely used prior in the VAR literature is the so-

called Minnesota prior. This prior dates back to Litterman (1980) and Doan, Litterman,

and Sims (1984). We use the version of the Minnesota prior described in Del Negro and

Schorfheide (2011)’s handbook chapter, which in turn is based on Sims and Zha (1998).

The main idea of the Minnesota prior is to center the distribution of Φ at a value that

implies a random-walk behavior for each of the components of xt in (1). Our version of

the Minnesota prior for (Φ,Σ) is proper and belongs to the family of MNIW distributions.

We implement the Minnesota prior by mixing artificial (or dummy) observations into the

estimation sample. The artificial observations are computationally convenient and allow us

to generate plausible a priori correlations between VAR parameters. The variance of the

prior distribution is controlled by a low-dimensional vector of hyperparameters λ. Details

of the prior are relegated to the Online Appendix, and the choice of hyperparameters is

discussed below.

Posterior Inference. The joint distribution of data, latent variables, and parameters

conditional on some observations to initialize lags can be factorized as follows:

p(Y1:T , Z0:T ,Φ,Σ|Y−p+1:0, λ) (8)

= p(Y1:T |Z0:T )p(Z1:T |z0,Φ,Σ)p(z0|Y−p+1:0)p(Φ,Σ|λ).

The distribution of Y1:T |Z1:T is given by a point mass at the value of Y1:T that satisfies (7).

The density p(Z1:T |z0,Φ,Σ) is obtained from the linear Gaussian regression (2). The condi-

tional density p(z0|Y−p+1:0) is chosen to be Gaussian and specified in the Online Appendix.

Finally, p(Φ,Σ|λ) represents the prior density of the VAR parameters. The factorization (8)

implies that the conditional posterior densities of the VAR parameters and the latent states

of the MF-VAR take the form

p(Φ,Σ|Z0:T , Y−p+1:T ) ∝ p(Z1:T |z0,Φ,Σ)p(Φ,Σ|λ) (9)

p(Z0:T |Φ,Σ, Y−p+1:T ) ∝ p(Y1:T |Z1:T )p(Z1:T |z0,Φ,Σ)p(z0|Y−p+1).
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We follow Carter and Kohn (1994) and use a Gibbs sampler that iterates over the two

conditional posterior distributions in (9). Conditional on Z0:T , the companion-form state

transition (2) is a multivariate linear Gaussian regression. Since our prior for (Φ,Σ) belongs

to the MNIW family, so does the posterior and draws from this posterior can be obtained

by direct Monte Carlo sampling. Likewise, since the MF-VAR is set up as a linear Gaussian

state-space model, a standard simulation smoother can be used to draw the sequence Z0:T

conditional on the VAR parameters. The distribution p(z0|Y−p+1) provides the initialization

for the Kalman-filtering step of the simulation smoother. A detailed discussion of these

computations can be found in textbook treatments of the Bayesian analysis of state-space

models, e.g., the handbook chapters by Del Negro and Schorfheide (2011) and Giordani,

Pitt, and Kohn (2011).

Computational Considerations. For expositional purposes, it has been convenient to

define the vector of state variables as zt = [x′t, . . . , xt−p+1]
′, which includes the variables

observed at monthly frequency. From a computational perspective, this definition is ineffi-

cient because it enlarges the state space of the model unnecessarily. We show in the Online

Appendix how to rewrite the state-space representation of the MF-VAR in terms of a lower-

dimensional state vector st = [x′q,t, . . . , xq,t−p]
′ that only includes the variables (and their

lags) observed at quarterly frequency. Our simulation smoother uses the small state vector

st for t = 1, . . . , Tb and then switches to the larger state vector zt for t = Tb + 1, . . . , T to

accommodate missing monthly observations toward the end of the sample.

Forecasting. For each draw (Φ,Σ, Z0:T ) from the posterior distribution we simulate a tra-

jectory ZT+1:T+H based on the state-transition equation (2). Since we evaluate forecasts of

quarterly averages in our empirical analysis, we time-aggregate the simulated trajectories ac-

cordingly. Based on the simulated trajectories (approximate) point forecasts can be obtained

by computing means or medians. Interval forecasts and probability integral transformations

(see Section C.3) can be computed from the empirical distribution of the simulated trajec-

tories.

2.3 Marginal Likelihood Function and Hyperparameter Selection

The empirical performance of the MF-VAR is sensitive to the choice of hyperparameters. The

prior is parameterized such that λ = 0 corresponds to a flat (and therefore improper) prior

for (Φ,Σ). As λ −→ ∞, the MF-VAR is estimated subject to the random-walk restriction

implied by the Minnesota prior. The best forecasting performance of the MF-VAR is likely
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to be achieved for values of λ that are in between the two extremes. In a Bayesian framework

the hyperparameter, λ can be interpreted as a model index (since a Bayesian model is the

product of likelihood function and prior distribution). We consider a grid λ ∈ Λ and assign

equal prior probability to each value on the grid. Thus, the posterior probability of λ is

proportional to the MDD

p(Y1:T |Y−p+1:0, λ) =

∫
p(Y1:T , Z0:T ,Φ,Σ|Y−p+1:0, λ)d(Z0:T ,Φ,Σ). (10)

The log MDD can be interpreted as the sum of one-step-ahead predictive scores:

ln p(Y1:T |Y−p+1:0, λ) =
T∑
t=1

ln

∫
p(yt|Y−p+1:t−1,Φ,Σ)p(Φ,Σ|Y−p+1:t−1, λ)d(Φ,Σ). (11)

The terms on the right-hand side of (11) provide a decomposition of the one-step-ahead

predictive densities p(yt|Y1−p:t−1, λ). This decomposition highlights the fact that inference

about the parameter is based on time t − 1 information, when making a one-step-ahead

prediction for yt.

Hyperparameter Selection. To generate the MF-VAR forecasts, for each forecast origin

we condition on the value λ̂T that maximizes the log MDD. This procedure can be viewed

as an approximation to a model averaging procedure that integrates out λ based on the

posterior p(λ|Y−p+1:T ). The MDD-based selection of VAR hyperparameters has a fairly long

history and tends to work well for forecasting purposes (see Giannone, Lenza, and Primiceri

(2012) for a recent study).

Marginal Data Density Approximation. From (10) we see that the computation of the

MDD involves integrating out the latent states. In the remainder of this section we describe

how we compute the integral. To simplify the exposition we consider the special case of

n = 2, p = 1, and T = 3. We assume that one of the variables is observed at monthly

frequency and the other as a quarterly average. Thus, we can write zt = [xm,t, xq,t]
′. The

observations Y1:3 are related to the states Z1:3 as follows:

y1 = xm,1, y2 = xm,2, y3 =

[
xm,3

1
3
(xq,1 + xq,2 + xq,3)

]
. (12)

Using a change of variable of the form

Z1:3 = J

[
Y1:3

W1:3

]
(13)
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where Z1:3 = [z′1, z
′
2, z3]

′, Y1:3 = [y1, y2, y
′
3]
′, W1:3 = [xq,1, xq,2]

′ (note that despite the 1 : 3

subscript, W1:3 is a 2 × 1 vector in this example), and J is a 6 × 6 non-singular matrix of

constants. Thus, we can replace p(Z1:3|λ) by p(Y1:3,W1:3|λ) = p(Y1:3|W1:3)p(W1:3|λ). Using

Bayes Theorem, we can write (abstracting from the initialization of the VAR)

1

p(Y1:3|λ)
=
p(W1:3|Y1:3, λ)

p(Y1:3,W1:3|λ)
. (14)

Suppose that f(W1:3) has the property that
∫
f(W1:3)dW1:3 = 1, and let {W (i)

1:3}Ni=1 denote

a sequence of draws from the posterior distribution of W1:3|(Y1:3, λ). Then the MDD can be

approximated using Geweke (1999)’s harmonic mean estimator, which is widely used in the

DSGE model literature to approximate MDDs in high-dimensional settings:

p̂(Y1:3|λ) =

[
1

N

N∑
i=1

f(W
(i)
1:3)

p(Y1:3,W
(i)
1:3|λ)

]−1
. (15)

The draws from the distribution of W1:3|(Y1:3, λ) can be obtained by transforming the draws

from Z1:3|(Y1:3, λ), which are generated as a by-product of the posterior sampler described in

Section 2.2. Using the properties of the MNIW distribution, it is straightforward to compute

p(Z1:3|λ) =

∫
p(Z1:3|Φ,Σ)p(Φ,Σ|λ)d(Φ,Σ) (16)

analytically. A straightforward change of variables based on (13) leads from p(Z1:3|λ) to

p(Y1:3,W
(i)
1:3|λ). Note that the Jacobian of this transformation is simply a constant term.

Generalization. Taking the initialization of the VAR into account, the identity provided

in (14) can be generalized as follows:

1

p(Y1:T |Y−p+1:0, λ)
=
p(W1:T , w0|Y1:T , Y−p+1:0, λ)

p(W1:T , Y1:T , w0|Y−p+1:0, λ)
, (17)

with the understanding that W1:T stacks the unobserved values of xq,t for the first and second

month of each quarter of the estimation sample and w0 contains the corresponding values

for the initialization period t = −p+ 1, . . . , 0. The approximation of the MDD becomes:

p̂(Y1:T |Y−p+1:0, λ) = c

[
1

N

N∑
i=1

f0(w
(i)
0 )f(W

(i)
1:T )

p(Z
(i)
1:T |z

(i)
0 , λ)p(z

(i)
0 |Y−p+1:0, λ)

]−1
, (18)

The constant c in (18) captures the Jacobian term associated with the change-of-variables

from (w0,W1:T , Y1:T ) to (z0, Z1:T ). For the function f(·) we follow Geweke (1999) and use

a trimmed multivariate normal distribution with mean µ̂W1:T
= 1

N

∑N
i=1W

(i)
1:T and variance
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Σ̂W1:T
= 1

N

∑N
i=1W

(i)
1:TW

(i)′

1:T−µ̂W1:T
µ̂′W1:T

. This normal distribution approximates p(W1:T |Y−p+1:T )

and stabilizes the ratio in (18). We set f0(w
(i)
0 ) = p(z

(i)
0 |Y−p+1:0, λ) such that the two terms

cancel. To evaluate the denominator, we use the analytical expression for p(Z
(i)
1:T |z

(i)
0 , Y−p+1:0, λ),

which is obtained from the the normalization constants for the MNIW distribution and is

provided, for instance, in Section 2 of Del Negro and Schorfheide (2011).

3 Real-Time Data Sets and Information Structure

We subsequently conduct a pseudo-out-of-sample forecast experiment with real-time data

to study the extent to which the incorporation of monthly observations via an MF-VAR

model improves upon forecasts generated with a VAR that is based on time-aggregated

quarterly data (QF-VAR). We consider VARs for eleven macroeconomic variables, which are

summarized in Section 3.1. The construction of the real-time data sets and the classification

of forecast origins based on within-quarter monthly information are described in Section 3.2.

Section 3.3 explains our choice of actual values that are used to compute forecast errors.

3.1 Macroeconomic Variables

We consider VARs for eleven macroeconomic variables, of which three are observed at quar-

terly frequency and eight are observed at monthly frequency. The quarterly series are GDP,

Fixed Investment (INVFIX), and Government Expenditures (GOV). The monthly series are

the Unemployment Rate (UNR), Hours Worked (HRS), Consumer Price Index (CPI), In-

dustrial Production Index (IP), Personal Consumption Expenditure (PCE), Federal Funds

Rate (FF), Treasury Bond Yield (TB), and S&P 500 Index (SP500). Precise data definitions

are provided in the Online Appendix. Series that are observed at a higher than monthly

frequency are time-aggregated to monthly frequency. The variables enter the VARs in log

levels with the exception of UNR, FF, and TB, which are divided by 100 in order to make

them commensurable in scale to the other log-transformed variables.

3.2 Real-Time Data for End-of-Month Forecasts

We consider an increasing sequence of estimation samples Y−p+1:T , T = Tmin, . . . , Tmax, and

generate forecasts for periods T + 1, . . . , T +H. The maximum forecast horizon H is chosen

to be 24 months. The period t = 1 corresponds to 1968:M1, Tmin is 1997:M7, and Tmax
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is 2010:M1, which yields 151 estimation samples. We eliminated four of the 151 samples

because the real-time data for PCE and INVFIX were incomplete. The estimation samples

are constructed from real-time data sets, assuming that the forecasts are generated on the

last day of each month. Due to data revisions by statistical agencies, observations of Y1:T−1

published in period T are potentially different from the observations that had been published

in period T−1. For this reason, real-time data are often indexed by a superscript, say τ ≥ T ,

which indicates the vintage or data release date. Using this notation, a forecaster at time

T potentially has access to a triangular array of data Y 1
−p+1:1, Y

2
−p+1:2, . . . , Y

T
−p+1:T . Rather

than using the entire triangular array and trying to exploit the information content in data

revisions, we estimate the MF-VAR and QF-VAR for each forecast origin T based on the

information set Y T
−p+1:T = {yT−p+1, . . . , y

T
T }. As in Section 2, we are using the convention

that the vector yTt contains only the subset of the eleven variables listed above for which

observations are available at the end of month T .

In order to assess the usefulness of within-quarter information from monthly variables, we

sort the forecast origins Tmin, . . . , Tmax into three groups that reflect different within-quarter

information sets. Forecast error statistics will be computed for each group separately. The

grouping of forecast origins is best explained in a concrete example. Consider the January

31, 1998 forecast origin. By the end of January, the Bureau of Economic Analysis (BEA) has

just published an advance estimate of 1997:Q4 GDP. In addition, the forecaster has access

to nonfinancial monthly indicators from December 1997 and earlier. A similar situation

arises at the end of April, July, and October. We refer to this group of forecast origins as

“+0 months,” because the current-quarter forecasts do not use any additional nonfinancial

monthly variables.

At the end of February 1998, the forecaster has access to an preliminary estimate of

1997:Q4 GDP and to observations for unemployment, industrial production, and so forth,

for January 1998. Thus, we group February, May, August, and November forecasts and refer

to them as “+1 month.” Following the same logic, the last subgroup of forecast origins

has two additional monthly indicators (“+2 months”) and the final release of GDP for

1997:Q4 in the information set. Unlike the non-financial variables, which are released with

a lag, financial variables are essentially available instantaneously. In particular, at the end

of each month, the forecaster has access to average interest rates (FF and TB) and stock

prices (SP500). The typical information sets for the three subgroups of forecast origins are

summarized in Table 1.

Unfortunately, due to variation in release dates, not all 151 estimation samples mimic



14

Table 1: Illustration of Information Sets

January (+0 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

February (+1 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

March (+2 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 X X X X X X X X ∅ ∅ ∅
Q1 M3 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Notes: ∅ indicates that the observation is missing. X denotes monthly observation and QAv denotes
quarterly average. “+0 Months” group: January, April, July, October; “+1 Month” group: February, May,
August, November; “+2 Month” group: March, June, September, December.

the information structure in Table 1. For 47 samples the last PCE figure is released with

a two-period (approximately five weeks) instead of one-period (approximately four weeks)

lag. This exception occurs for 28 samples of the “+0 months” group. For these samples a

late release of PCE implies the quarterly consumption for the last completed quarter is not

available. In turn, the QF-VAR could only be estimated based on information up to T − 4

instead of T−1 and would be at a severe disadvantage compared to the MF-VAR. Since PCE

is released only a few days after the period T forecasts are made, we pre-date its release.

Thus, for the 28 samples of the “+0 months” group that are subject to the irregular timing,

we use PCET−1 in the estimation of both the QF-VAR and MF-VAR. No adjustments are

made for the “+1 month” and “+2 months” groups. Further details about these exceptions
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are provided in the Online Appendix.

3.3 Actuals for Forecast Evaluation

The real-time-forecasting literature is divided as to whether forecast errors should be com-

puted based on the first release following the forecast date, say yT+hT+h, or based on the most

recent vintage, say yT∗t+h. The former might do a better job of capturing the forecaster’s loss,

whereas the latter is presumably closer to the underlying “true” value of the time series. We

decided to follow the second approach and evaluate the forecasts based on actual values from

the T∗ = 2012:M1 data vintage. While the MF-VAR in principle generates predictions at

the monthly frequency, we focus on the forecasts of quarterly averages, which can be easily

compared to forecasts from the QF-VAR.

4 Empirical Results

The empirical analysis proceeds in four parts. The hyperparameter selection is discussed

in Section 4.1. Section 4.2 compares root mean squared error (RMSE) statistics from the

MF-VAR to a QF-VAR and a set of MIDAS regressions. Section 4.3 contrasts MF-VAR

density forecasts during the 2008-9 (Great) recession with QF-VAR forecasts. Finally, in

Section 4.4 we present a monthly GDP series that arises as a by-product of the MF-VAR

estimation. Based on some preliminary exploration of the MDDs, we set the number of lags

in the (monthly) state transition of the MF-VAR to p(m) = 6 and the number of lags in the

QF-VAR to p(q) = 2.

Unless otherwise noted, for each estimation sample we generate 20,000 draws from the

posterior distribution of the VAR parameters using the MCMC algorithm described in Sec-

tion 2.2. We discard the first 10,000 draws and use the remaining 10,000 to calculate Monte

Carlo approximations of posterior moments. The Online Appendix provides some informa-

tion on the accuracy of the MCMC. The Monte Carlo standard deviation of the posterior

mean forecasts (output, inflation, interest rates, and unemployment), computed across in-

dependent runs of the MCMC, is generally less than 0.5 basis points. For comparison, the

RMSE associated with these forecasts ranges from 10 to 200 basis points.
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4.1 Hyperparameter Selection

We will subsequently compare MF-VAR and QF-VAR forecasts. Both VARs are equipped

with a Minnesota prior that is represented in terms of dummy observations and indexed by

a vector of hyperparameters λ. We use the same set of dummy observations for both types

of VAR. However, the hyperparameters are chosen for each type of VAR separately. The

careful choice of this hyperparameter vector is crucial for obtaining accurate forecasts. As

explained in Section 2.3, we determine the hyperparameters by maximizing the log MDD. For

the QF-VAR the MDD can be computed analytically (see, e.g., Del Negro and Schorfheide

(2011)) and the maximization is straightforward. Thus, we will focus on the hyperparameter

selection for the MF-VAR.

The hyperparameter vector consists of five element, controlling: the overall tightness of

the prior (λ1); the rate at which the prior variance on higher-order lag coefficients decays

(λ2); the dispersion of the prior on the innovation covariance matrix (λ3); the extent to

which the sum-of-coefficient on the lags of a variable xi,t is tilted toward unity (λ4); and

the extent to which co-persistence restrictions are imposed on the VAR coefficients (λ5).

In general, the larger λi the smaller the prior variance and the more informative the prior.

From a preliminary analysis based on the QF-VAR, we conclude that λ3 is not particularly

important for the forecasting performance and fix it as λ̂3 = 1. Based on a preliminary

search over a grid Λ(1) we determine suitable values for λ4 and λ5 for the first recursive

sample, which ranges from 1968:M1 to 1997:M7. These values are λ̂4 = 2.7 and λ̂5 = 4.3.

Conditioning on λ̂3 to λ̂5, we use a second grid, Λ̂(2) to refine the choice of λ1 and λ2.

The log MDD surface is depicted in the left panel of Figure 1 as function of λ1 and λ2,

holding the remaining three hyperparameters fixed at λ3 = 1, λ4 = λ̂4, and λ5 = λ̂5. The

surface has a convex shape and is maximized at λ̂1 = 0.09 and λ̂2 = 4.3. At its peak the

value of the log MDD is approximately 11,460. While the surface is fairly flat near the peak,

e.g. for λ1 ∈ [0.05, 0.15] and λ2 ∈ [4, 4.5], the MDD values drop substantially for values of λ

outside of these intervals. To assess the accuracy of the MDD evaluation, which involves the

numerical evaluation of a high-dimensional integral, we display a hairplot of a slice of the

MDD surface in the right panel of Figure 1, fixing λ2 at 4.3. Each hairline corresponds to

a separate run of the MCMC algorithm. We focus on the interval λ1 ∈ [0.05, 0.15]. While

there is some noticeable Monte Carlo variation with respect to the absolute magnitude of the

log MDD, this variation does not affect inference with respect to the optimal value of λ on the

grid. For each simulation, the log MDD peaks at 0.09. The accuracy of the approximation
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Figure 1: Log Marginal Data Density for 11-Variable MF-VAR
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Notes: The two plots depict ln p̂(Y1:T |Y−p+1:0,λ). In the left panel, we condition on λ3 = 1, λ4 = 2.7, and
λ5 = 4.3. In the right panel we condition on λ2 = 4.3, λ3 = 1, λ4 = 2.7, and λ5 = 4.3. Each “hair”
corresponds to a separate run of the MCMC algorithm.

can be improved by increasing the number of MCMC draws.

The re-optimization of the hyperparameters for the MF-VAR is computationally costly.

Because we expect the optimal hyperparameter choices to evolve smoothly over time, we are

reoptimizing with respect to λ approximately every three years, namely for the 40th, the

75th, the 110th, and the 151th recursive sample. During this reoptimization we keep λ̂3, λ̂4,

and λ̂5 fixed. The reoptimization essentially left the choice of hyperparameters unchanged.

We obtained a similar result for the QF-VAR and decided to keep the MF-VAR and the

QF-VAR hyperparameters constant for all recursive sample.

The hyperparameter estimates for the MF-VAR and the QF-VAR are summarized in Ta-

ble 2. While the overall tightness of the prior, controlled by λ1, is larger for the QF-VAR

than the MF-VAR, the MF-VAR strongly shrinks the coefficients on higher-order lags to

zero. The QF-VAR only uses two lags which are associated with 22 regression coefficients

for each endogenous variable. The MF-VAR, on the other hand, uses six lags which are

associated with 66 regression coefficients. Roughly 30% of these coefficients are associated

with regressors that are only observed a quarterly frequency. The hyperparameters for the

QF-VAR are broadly in line with the results in Giannone, Lenza, and Primiceri (2012).
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Table 2: Hyperparameters

λ1 λ2 λ3 λ4 λ5

MF-VAR(11) 0.09 4.30 1.0 2.70 4.30

QF-VAR(11) 3.08 0.01 1.0 1.12 1.62

4.2 MF-VAR Point Forecasts

MF-VAR versus QF-VAR. We begin by comparing RMSEs for MF-VAR and QF-VAR

forecasts of quarterly averages to assess the usefulness of monthly information. The RMSEs

are computed separately for the “+0 months,” “+1 month,” and “+2 months” forecast

origins defined in the previous section. Results for GDP growth (GDP), unemployment

(UNR), inflation (INF), and the federal funds rate (FF) are reported in Figure 2. The figure

depicts relative RMSEs defined as

Relative RMSE(i|h) = 100× RMSE(i|h)−RMSEBenchmark(i|h)

RMSEBenchmark(i|h)
, (19)

where i denotes the variable and we adopt the convention (in slight abuse of notation) that

the forecast horizon h is measured in quarters. The QF-VAR serves as a benchmark model

and h = 1 corresponds to the quarter in which the forecast is generated. The h = 1 forecast

is often called a nowcast. Absolute RMSEs for the 11-variable MF-VAR are tabulated in the

Online Appendix.

For all four series, the use of monthly information via the MF-VAR leads to a substantial

RMSE reduction in the short run. Consider the GDP growth forecasts. The “+2” nowcasts

have a 27% lower RMSE than the QF-VAR nowcasts. For the “+1 month” group and the

“+0 months” group, the reductions are both 15%. While the “+2 months” group forecasts

clearly dominate at the nowcast horizon h = 1, the relative ranking among the three sets

of MF-VAR forecasts becomes ambiguous for h ≥ 2. As the forecast horizon increases to

h = 4, the QF-VAR catches up with the MF-VAR. For horizons h ≥ 4, the RMSE differentials

between QF-VAR and MF-VAR GDP growth forecasts are negligible.

For the monthly unemployment, inflation, and federal funds rate series, the short-run

RMSE reductions attained by the MF-VAR for the monthly series are even stronger than for

GDP growth, which is observed at quarterly frequency. This is, of course, not surprising. At

the nowcast horizon, the MF-VAR is able to improve over the precision of the QF-VAR for
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Figure 2: Relative RMSEs of 11-Variable MF-VAR versus QF-VAR
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the “+2 months” forecasts by 65% for unemployment, 70% for inflation, and 100% for the

federal funds rate. Recall that “+2 months” corresponds to the last month of the quarter,

which means that at the end of the last month, the average quarterly interest rate is known.

Thus, by construction the RMSE reduction for the federal funds rate is 100%. The RMSE

reductions for the “+1 month” group range from 40% (unemployment) to 80% (federal

funds rate). For the “+0 months” group the improvement of the nowcast from using the

MF-VAR is about 10% for inflation and the unemployment rate and 60% for the federal funds

rate. While the gains from using monthly information tend to persist for unemployment and

interest rates as the forecast horizon h increases, for inflation, monthly observations generate

no improvements of forecast performance beyond the nowcast horizon.

To summarize the multivariate forecast performance of the VARs and aggregate the uni-

variate RMSE differentials across quarterly and monthly nonfinancial variables we consider

the log-determinant of the forecast error covariance matrix, proposed by Doan, Litterman,

and Sims (1984):

f(ε̂t) = ln(| 1

Tmax − Tmin

Tmax∑
t=Tmin

ε̂tε̂
′
t) |), (20)

where ε̂t is a vector of forecast errors. Log-determinant differentials of MF-VAR versus
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Figure 3: Log Determinant of MF-VAR versus QF-VAR
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Notes: The relative log determinant is defined as Relative Log Determinant = (100 · 0.5/nvar)[f(ε̂t,MF ) −
f(ε̂t,QF )], where f(·) is given in (20) and nvar = 3 for quarterly variables and nvar = 5 for monthly
nonfinancial variables. The forecast horizon h is measured in quarters and h = 1 corresponds to the quarter
in which the forecast is generated.

QF-VAR forecasts are depicted in Figure 3. We scale the log-determinant differentials by

100 · 0.5/nvar. The factor 0.5 converts mean-squared errors into RMSEs, the division by

nvar yields an average across the variables included in ε̂t, and the factor 100 converts the

differential into percentages. This scaling makes the log-determinant differentials comparable

to the RMSE differentials depicted in Figure 2. The results are qualitatively consistent

with the comparison of univariate RMSEs. Not surprisingly, for the group of quarterly

variables (GDP, INVFIX, GOV) the gain from including within-quarter monthly information

is smaller than for the group of monthly nonfinancial variables (UNR, HRS, CPI, IP, PCE).

For quarterly variables the forecast accuracy gains relative to the QF-VAR range from 11%

(“+2 months” group) to 6% (“+0 months” group). For monthly variables the gains for the

three forecast origin groups are 60%, 30% and 6% respectively. For h ≥ 3 the QF-VAR

catches up with the MF-VAR and the benefit from using monthly information vanishes. The

only exception are the “+2” months forecasts of the monthly variables. Here the within-

quarter monthly information remains even for forecast horizons exceeding one year. We

exclude the financial variables (FF, TB, SP500) from the group of monthly variables because

the financial variables are essentially known at the end of each quarter (“+2 months” group)

which creates a near-singularity in forecast error covariance matrices that include one or

more financial variables.
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MF-VAR versus MIDAS. A popular alternative to the multivariate state-space framework

used in this paper are MIDAS regressions. While there exist generalizations of the MIDAS

approach to VAR settings, in most applications MIDAS regressions are used as univariate

forecasting models. For a comparison of the two approaches we will focus on output growth.

Our VAR models use 11 macroeconomic variables. If all of these variables are included in a

MIDAS regression without any further restrictions, the MIDAS regression will perform very

poorly. The distributed-lag restrictions on high-frequency regressors are designed to deal

with many (high-frequency) observations of a single regressor but they are not designed to

impose parsimony on a specification with many different right-hand-side variables. Thus,

instead of comparing the 11-variable MF-VAR with MIDAS regressions, we will provide

comparisons between bivariate MF-VARs and MIDAS regressions, estimated using the same

set of variables.

Foroni, Marcellino, and Schumacher (2013) propose an unrestricted version of the MI-

DAS model (U-MIDAS) and show that when the mismatch of the frequency is low, like

in macroeconomic applications that typically involve monthly and quarterly data only, this

unrestricted version performs better in Monte Carlo experiments and provides a better GDP

nowcasting performance than a MIDAS regression with distributed-lag restrictions on the

coefficients of the high-frequency variables. Thus, we consider U-MIDAS (instead of MIDAS)

regressions in our comparison. The key aspect of our empirical analysis is the distinction

between three groups of forecast origins, denoted by “+0,” “+1,” and “+2” (months). Each

of these groups uses different within-quarter monthly information. Accordingly, we use three

separate U-MIDAS regressions, which, using the notation of Section 2, can be written as

“+0” : ỹq,t+3h = β0 + β1ỹq,t + β2ỹq,t−3 +
6∑
s=1

γsxm,t−s+1 + residt+3h (21)

“+1” : ỹq,t+3h = β0 + β1ỹq,t + β2ỹq,t−3 +
6∑
s=1

γsxm,t−s+1 + δ1xm,t+1 + residt+3h

“+2” : ỹq,t+3h = β0 + β1ỹq,t + β2ỹq,t−3 +
6∑
s=1

γsxm,t−s+1 + δ1xm,t+1 + δ2xm,t+2 + residt+3h,

where t = 0, 3, 6, 9, . . .. The quarterly variable ỹq,t+3h was defined as average of unobserved

monthly variables in (4) and corresponds to log GDP. The monthly variable xm,t is assumed to

be scalar and we consider all eight of our monthly variables individually. The regression (21)

is estimated by OLS for each group of forecast origins and for each forecast horizon separately.

Thus, as in Foroni, Marcellino, and Schumacher (2013) we use direct estimation, i.e., the
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Figure 4: Relative RMSEs of Bivariate MF-VAR versus MIDAS
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projection of ỹq,t+3h on the predictors available at the forecast origin, to determine the

coefficients for the multi-step forecasting equation. Recall that under the Bayesian approach

employed for the analysis of the MF-VAR multi-step forecasts are generated by iterating the
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VAR forward and using the posterior distribution to integrate out the unknown parameters.

Figure 4 illustrates the log GDP forecast performance of the bivariate MF-VARs relative to

the MIDAS regressions. Each panel corresponds to a different monthly variable. Two results

stand out. First, by and large, both the MF-VAR and MIDAS utilize the within-quarter

monthly information equally well. The RMSE differentials are essentially the same for each

of the three informational groups. For six out of the eight monthly variables the MF-VAR

forecasts are more accurate than the MIDAS forecasts at some horizons, and no worse at

the other horizons. For the unemployment rate, the gain from using the MF-VAR is highest

for horizons of 2-5 quarters. For industrial production, the stock market index, hours, and

the treasury bond rate the largest gain is realized at the long-horizon whereas for PCE the

improvement if fairly uniform for one- to eight-quarter ahead forecasts. Only for the federal

funds rate and CPI inflation MIDAS forecasts appear to be marginally more accurate than

the MF-VAR forecasts.

Other Comparisons. In the Online Appendix we also provide RMSE comparisons between

the 11-variable MF-VAR and univariate QF-AR(2) models; and between a 4-variable MF-

VAR (GDP, CPI, UNR, FF) and a 4-variable QF-VAR. The results are qualitatively very

similar: there is a substantial gain from using the within-quarter-monthly information for

nowcasting and short-horizon forecasting. This gain vanishes over one- to two-year horizons.

Finally, the Online Appendix contains a careful comparison between MF-VAR forecasts and

Greenbook (now Tealbook) forecasts, prepared by the staff of the Board of Governors for

the meetings of the Federal Open Market Committee. At the nowcast horizon the unem-

ployment forecasts of the MF-VAR are at par with the Greenbook forecasts, whereas the

GDP growth and inflation forecasts are less accurate than the Greenbook forecasts. Over a

four- to five-quarter horizon the MF-VAR generates more accurate GDP forecasts, whereas

the Greenbook contains more precise inflation and unemployment rate forecasts.

4.3 Forecasting During the Great Recession

The pseudo-out-of-sample forecast performance of the previous section documented that

the use of within-quarter monthly observations increases the precision of short-run forecast.

We now examine how the use of monthly real-time information sharpened the VAR forecasts

during the recent recession. We focus on the period from October to December 2008. Figure 5

depicts real-time interval forecasts from the MF-VAR and the QF-VAR. Moreover, we plot

actual values using the 2011:M7 data vintage. We focus on real GDP growth and CPI
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inflation. The figure is divided into subpanels that correspond to particular estimation

samples and forecast horizons. The first column of panels depicts October 2008 forecasts

(“+0 months” group), and the second and third columns show November (“+1 month”)

and December (“+2 months”) forecasts, respectively. A comparison between the first and

second (third and forth) row of panels shows how monthly within-quarter information alters

the density forecast for GDP (inflation).

The most striking feature of the top panels of Figure 5 is the -2% quarter-on-quarter

growth rate of GDP in 2008:Q4. The magnitude of the drop in output growth in late 2008 is

unexpected by the VAR models. It is, for all forecast origins, outside of the 90% predictive in-

terval. The drop in GDP growth is equally unexpected by state-of-the-art dynamic stochastic

general equilibrium (DSGE) models and the Blue Chip survey of professional forecasters as

documented in Del Negro and Schorfheide (2013). A comparison of the MF-VAR and QF-

VAR forecasts highlights how monthly information alters the within-quarter predictions.

Notice that the QF-VAR forecasts do not stay constant within the quarter. The variation

is caused by data revisions. As discussed in Section 3, each month new data releases for the

previous quarter become available and change the lagged observations that determine the

initial conditions for the VAR at the forecast origin. However, the within-quarter variation

of the QF-VAR forecasts is fairly small.

By December 2008 the QF-VAR nowcasts and forecasts show still no evidence of a severe

downturn, because the latest information that is used to generate the predictions stems from

2008:Q3. The MF-VAR forecasts, on the other hand, do get revised more substantially

during each quarter. In addition to the presence of data revisions, the forecasts are updated

based on the information that is available at monthly frequency. Compared to the QF-VAR

forecasts, the MF-VAR nowcasts during the fourth quarter of 2008 are a lot more pessimistic,

which is in line with the actual realization of output growth. Over a one-year horizon the

discrepancy between the MF-VAR and QF-VAR forecasts vanishes, which is consistent with

the forecast error statistics presented in the previous section. According to both VARs the

GDP growth forecasts are mean reverting. The models predict a GDP growth rate of about

1% for the second half of 2009. This prediction turned out to be accurate.

The bottom panels of Figure 5 depict the evolution of inflation forecasts in the last quarter

of 2008. Since the CPI is published at a monthly frequency, the differences between within-

quarter inflation forecasts from the MF-VAR and QF-VAR are much more pronounced than

for GDP. Throughout 2008:Q4 the inflation forecasts from the QF-VAR stay essentially

constant and miss the -2% deflation rate in 2008:Q4. The MF-VAR, on the other hand,
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Figure 5: Real-Time Forecasts During the Great Recession

GDP-Growth Forecasts: MF-VAR

GDP-Growth Forecasts: QF-VAR

Inflation Forecasts: MF-VAR

Inflation Forecasts: QF-VAR

Notes: Actual values are from the T∗ = 2012 : M1 data vintage and are denoted as the black line with
triangles. The title in each subplot indicates the forecast origin and the data vintage that are used in the
estimation. We show the median, 60% bands, and 90% bands constructed from the predictive distribution.

detects the deflation by November 2008 as it is unfolding. At the longer horizon, the MF-
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Figure 6: Monthly GDP Growth (Scaled to a Quarterly Rate)

VAR correctly predicts that the deflation episode is short-lived and that inflation rate will,

with about 50% probability, be positive by the end of 2009. To summarize, these real-time

forecasts during the Great Recession illustrate that the MF-VAR can transform within-

quarter monthly information into more accurate nowcasts and forecasts of quarterly averages.

4.4 Monthly GDP

The estimation of the MF-VAR generates a monthly GDP series as a by-product. This series

is implicitly extracted during the smoothing step of the Gibbs sampler (see Section 2.2) from

the eleven macroeconomic time series that enter the MF-VAR. A time series plot of monthly

GDP growth is depicted in Figure 6. For each trajectory of log GDP generated with the Gibbs

sampler, we compute month-on-month growth rates (scaled by a factor of 3 to make them

comparable to quarter-on-quarter rates). For each month we then plot the median growth

rate across the simulated trajectories. We overlay monthly GDP growth rates published

by Stock and Watson (2010), who combine monthly information about GDP components

to distribute quarterly GDP across the three months of the quarter.1 Moreover, we plot

growth rates computed from NIPA’s quarterly GDP, implicitly assuming that GDP growth

is constant within a quarter. Two observations stand out. First, at a monthly frequency GDP

growth is much more volatile than at a quarterly level. Second, the monthly GDP growth

series obtained from the MF-VAR estimation is somewhat smoother than the Stock-Watson

1Frale, Marcellino, Mazzi, and Proietti (2011) use a similar approach to construct a monthly GDP series

for the Euro Area.
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series. While the two monthly measures are positively correlated, they are not perfectly

synchronized, which is consistent with these measures being constructed from very different

source data.

5 Conclusion

We have specified a VAR for observations that are observed at different frequencies, namely,

monthly and quarterly. A Gibbs sampler was utilized to conduct Bayesian inference for

model parameters and unobserved monthly variables. To cope with the dimensionality of

the MF-VAR, we used a Minnesota prior that shrinks the VAR coefficients toward univariate

random-walk representations. The degree of shrinkage is determined in a data-driven way,

by maximizing the log MDD with respect to a low-dimensional vector of hyperparameters

and we show how to approximate the MDD of a MF-VAR. Finally, we used the model to

generate forecasts. The main finding is that within-quarter monthly information leads to

drastic improvements in the short-horizon forecasting performance. These improvements are

increasing in the time that has passed since the beginning of the quarter. Over a one- to

two-year horizon there are, however, no noticeable gains from using the monthly information.
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Online Appendix for
Real-Time Forecasting with a Mixed-Frequency VAR

Frank Schorfheide and Dongho Song

Section A of this appendix provides details of the implementation of the Bayesian computa-

tions for the MF-VAR presented in the main text. Section B discusses the construction of

the real-time data set. Finally, Section C of this appendix provides tables and figures with

additional empirical results. References to equations, tables, and figures without an A, B,

or C prefix refer to equations, tables, and figures in the main text.

A Implementation Details

Recall from the exposition in the main text (see equation (9)) that the Bayesian computations

are implemented with a Gibbs sampler that iterates over the conditional distributions

p(Φ,Σ|Z0:T , Y−p+1:T ) and p(Z0:T |Φ,Σ, Y−p+1:T ).

Conditional on Z0:T the MF-VAR reduces to a standard linear Gaussian VAR with a conju-

gate prior. The reader is referred to Section 2 of the handbook chapter by Del Negro and

Schorfheide (2011) for a detailed discussion of posterior inference for such a VAR.

We limit the exposition in this appendix to a brief presentation of the Minnesota prior and

the hyperparameter selection (Section A.1). The sampling from the conditional posterior

of Z0:T |(Φ,Σ, Y−p+1:T ) is implemented with a standard simulation smoother, discussed in

detail, for instance, in Carter and Kohn (1994), the state-space model textbook of Durbin

and Koopman (2001), or the handbook chapter by Giordani, Pitt, and Kohn (2011). The

only two aspects of our implementation that deserve further discussion are the initialization

(Section A.2) and the use of the more compact state-space representation for periods t =

1, . . . , Tb (Section A.3).

A.1 Minnesota Prior and Its Hyperparameters

To simplify the exposition, suppose that n = 2 and p = 2. A transposed version of (1) can

be written as

x′t = [x′t−1, x
′
t−2, 1]′Φ + u′t = w′tΦ + u′t, ut ∼ iidN(0,Σ). (A-1)
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We generate the Minnesota prior by dummy observations (x∗, w∗) that are indexed by a 5×1

vector of hyperparameters λ with elements λi. Using a pre-sample, let x and s be n × 1

vectors of means and standard deviations. For time series that are observed at monthly

frequency, the computation of pre-sample moments is straightforward. In order to obtain

pre-sample means and standard deviations for those series that are observed at quarterly

frequency, we simply equate xq with the pre-sample mean of the observed quarterly values

and set s equal to the pre-sample standard deviation of the observed quarterly series.

Dummy Observations for Φ1.[
λ1s1 0

0 λ1s2

]
=

[
λ1s1 0 0 0 0

0 λ1s2 0 0 0

]
Φ +

[
u11 u12

u21 u22

]
. (A-2)

We can rewrite the first row of (A-2) as

λ1s1 = λ1s1φ11 + u11, 0 = λ1s1φ21 + u12.

Since, according to (A-1) the ut’s are normally distributed, we can interpret the relationships

as

φ11 ∼ N (1,Σ11/(λ
2
1s

2
1)), φ21 ∼ N (0,Σ22/(λ

2
1, s

2
1)).

where φij denotes the element i, j of the matrix Φ, and Σij corresponds to element i, j of Σ.

The hyperparameter λ1 controls the tightness of the prior.

Dummy Observations for Φ2.[
0 0

0 0

]
=

[
0 0 λ1s12

λ2 0 0

0 0 0 λ1s22
λ2 0

]
Φ + U, (A-3)

where the hyperparameter λ2 is used to scale the prior standard deviations for coefficients

associated with xt−l according to l−λ2 .

Dummy Observations for Σ. A prior for the covariance matrix Σ, centered at a matrix

that is diagonal with elements equal to the pre-sample variance of xt, is obtained by stacking

the observations [
s1 0

0 s2

]
=

[
0 0 0 0 0

0 0 0 0 0

]
Φ + U (A-4)

λ3 times.

Sums-of-Coefficients Dummy Observations. When lagged values of a variable xi,t are

at the level xi, the same value xi is a priori likely to be a good forecast of xi,t, regardless of



Online Appendix A-3

the value of other variables:[
λ4x1 0

0 λ4x2

]
=

[
λ4x1 0 λ4x1 0 0

0 λ4x2 0 λ4x2 0

]
Φ + U. (A-5)

Co-persistence Dummy Observations. When all lagged xt’s are at the level x, a priori

xt tends to persist at that level:[
λ5x1 λ5x2

]
=
[
λ5x1 λ5x2 λ5x1 λ5x2 λ5

]
Φ + U. (A-6)

Prior Distribution. After collecting the T ∗ dummy observations in matrices X∗ and W ∗,

the likelihood function associated with (A-1) can be used to relate the dummy observa-

tions to the parameters Φ and Σ. If we combine the likelihood function with the improper

prior p(Φ,Σ) ∝ |Σ|−(n+1)/2, we can deduce that the product p(X∗|Φ,Σ) · |Σ|−(n+1)/2 can be

interpreted as

(Φ,Σ) ∼MNIW (Φ, (W ∗′W ∗)−1, S, T ∗ − k), (A-7)

where Φ and S are

Φ = (W ∗′W ∗)−1W ∗′W ∗, S = (X∗ −W ∗Φ)′(X∗ −W ∗Φ).

Provided that T ∗ > k + n and W ∗′W ∗ is invertible, the prior distribution is proper.

Hyperparameter Grid Search for MF-VAR: For the first recursive sample the grid

search proceeds in three steps. Define:

Λ
(1)
1 =

{
0.01, 1.12, 2.23, 3.34, 4.45, 5.56, 6.67, 7.78, 8.89, 10

}
Λ

(1)
2 =

{
0.01, 1.12, 2.23, 3.34, 4.45, 5.56, 6.67, 7.78, 8.89, 10

}
Λ

(1)
3 =

{
1
}

Λ
(1)
4 =

{
2.23, 2, 7, 3.34, 4.3, 4.45, 5.56

}
Λ

(1)
5 =

{
2.23, 2, 7, 3.34, 4.3, 4.45, 5.56

}
The first grid is given by

Λ(1) = Λ
(1)
1 ⊗ Λ

(1)
2 ⊗ Λ

(1)
3 ⊗ Λ

(1)
4 ⊗ Λ

(1)
5 ,

where ⊗ denote the Cartesian product. Thus, we are fixing λ3 = 1 throughout. We maximize

ln p̂(Y1:T |Y−p+1:0,λ) with respect to λ ∈ Λ(1). By construction λ̂3 = 1. We retain the argmax

values λ̂4 = 2.7 and λ̂5 = 4.3.
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In the second step we refine the grids for λ1 and λ2 as follows:

Λ
(2)
1 =

{
0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15

}
Λ

(2)
2 =

{
0.8, 1.3, 2.1, 2.8, 3.5, 4.3, 4.8, 5.2

}
.

Maximization of the MDD with respect to Λ(2) = Λ
(2)
1 ⊗Λ

(2)
2 ⊗{1.0}⊗{2.70}⊗{4.30} yields

λ̂ for the first recursive sample.

In the third step we reoptimize the choice of λ1 and λ2 for recursive samples 40, 75, 110,

and 151. In this step we use the following grids for λ1 and λ2:

Λ
(3)
1 =

{
0.05, 0.07, 0.09, 0.11, 0.13

}
Λ

(3)
2 =

{
2.1, 2.8, 3.5, 4.3, 4.8

}
.

Hyperparameter Grid Search for QF-VAR: For the QF-VAR we are also fixing

λ3 = 1. The grids for λ1 and λ2 are given by the 40 equally-spaced points on the interval

[0.01, 10]. The grids for λ4 and λ5 are given by the 40 equally-spaced points on the interval

[0.1, 10].

A.2 Initial Distribution p(z0|Y−p+1:0)

Recall that t = 1 corresponds to 1968:M1. Let T− = −11 such that t = T− corresponds

to 1967:M1. We then initialize zT− using actual observations. This is straightforward for

xm,T− , xm,T−−1, xm,T−−p because they are observed. We set xq,T− , xq,T−−1, xq,T−−p equal

to the observed quarterly values, assuming that during these periods the monthly within-

quarter values simply equal the observed averages during the quarter. This provides us

with a distribution for p(zT−) that is simply a point mass. We then set Φ and Σ equal to

their respective prior means and apply the Kalman filter for t = T− + 1, . . . , 0 to the state-

space system described in (2) and (7), updating the beliefs about the latent state zt with

pre-sample observations YT−:0. In slight abuse of notation, we denote the distribution of zt

obtained after the period 0 updating by p(z0|Y−p+1). Note that this distribution does not

depend on the “unknown” parameters Φ and Σ, because the Kalman filter iterations were

implemented based on the prior means of these matrices.
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A.3 Compact State-Space Representation

As discussed in the main text, the computational efficiency of the simulation-smoother step

in the Gibbs sampler can be improved by eliminating, for t = 1, . . . , Tb, the monthly ob-

servations xm,t from the state vector zt that appears in the measurement equation (7). We

begin by re-ordering the lags of xt and the VAR coefficients in (1) to separate lags of xm,t

from lags of xq,t. Define the pnm × 1 vector zm,t and pnq × 1 vector zq,t as

z′m,t =
[
x′m,t, . . . , x

′
m,t−p+1

]
, z′q,t =

[
x′q,t, . . . , x

′
q,t−p+1

]
.

In a similar manner, define the nm×pnm matrix Φmm, the nm×pnq matrix Φmq, the nq×pnm
matrix Φqm, and the nq × pnq matrix Φqq such that (1) can be rewritten as[

xm,t

xq,t

]
=

[
Φmm Φmq

Φqm Φqq

][
zm,t−1

zq,t−1

]
+

[
Φmc

Φqc

]
+

[
um,t

uq,t

]
. (A-8)

Recall that for t ≤ Tb, all the monthly series are observed. Thus, ym,t = xm,t and, in slight

abuse of notation, zm,t−1 = ym,t−p:t−1. Now define st = [x′q,t, z
′
q,t−1]

′ and notice that based

on the second equation in (A-8), one can define matrices Γs, Γzm, Γc, and Γu such that we

obtain a state-transition equation in companion form

st = Γsst−1 + Γzmym,t−p:t−1 + Γc + Γuuq,t. (A-9)

The measurement equation for the monthly series takes the form

ym,t = Λmsst + Φmmym,t−p:t−1 + Φmc + um,t. (A-10)

Finally, the measurement equation for the quarterly series can be expressed as

yq,t = Mq,tΛqsst, (A-11)

where the matrix Λqsst averages xq,t, xq,t−1, and xq,t−2 and Mq,t is a time-varying selection

matrix that selects the elements of Λqsst that are observed in period t. In sum, (A-9),

(A-10), and (A-11) provide an alternative state-space representation of the MF-VAR that

reduces the dimension of the state vector from np to nq(p + 1). In this alternative repre-

sentation, the “measurement errors” um,t in (A-10) are correlated with the innovations uq,t

in the state-transition equation (A-9). Moreover, the lagged observables ym,t−p:t−1 directly

enter the state-transition and measurement equations. Since these observables are part of

the t − 1 information, the modification of the Kalman filter and simulation smoother is

straightforward.
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At the end of period t = Tb, we switch from the state-space representation in terms of st =

[x′q,t, . . . , x
′
q,t−p]

′ to a state-space representation in terms of z̃t = [z′t, x
′
t−p] = [x′t, . . . , x

′
t−p]

′.2

In the forward pass of the Kalman filter, let ŝt|t = E[st|Y−p+1:t] and P s
t|t = V[st|Y−p+1:t]

(omitting (Φ,Σ) from the conditioning set). Since xm,t, . . . , xm,t−p+1 is known conditional on

the Y−p+1:t, we can easily obtain ˆ̃zt|t = E[z̃t|Y−p+1:t] by augmenting ŝt|t with ym,t, . . . , ym,t−p.

Moreover, P z̃
t|t = V[z̃t|Y−p+1:t] can be obtained by augmenting P s

t|t by zeros, to reflect that

xm,t, . . . , xm,t−p are known with certainty. In the backward pass of the simulation smoother

we start out with a sequence of draws from z̃T |Y−p+1:T and z̃t|(Z̃t+1:T , Y−p+1:T ) for t = T −
1, . . . , Tb+1. Let ˆ̃zt|T and P z̃

t|T denote the mean and variance associated with this distribution.

At t = Tb we convert the conditional mean and variance of z̃Tb into a conditional mean and

variance for sTb . This is done by eliminating all elements associated with xm,t, . . . , xm,t−p.

B Construction of Real-Time Data Set

The eleven real-time macroeconomic data series are obtained from the ALFRED database

maintained by the Federal Reserve Bank of St. Louis. Table B-1 summarizes how the series

used in this paper are linked to the series provided by ALFRED.

We construct two sequences of dates that contain the set of forecast origins (Tmin, . . . , Tmax).

One sequence contains the last day of each month, and the other sequence will comprise the

Greenbook forecast dates. ALFRED provides a publication date for each data vintage. We

wrote a computer program that selects for every forecast origin, the most recent ALFRED

vintage for each of the eleven variables and combines the series into a single data set. This

leaves us with a real-time data set for each forecast origin. Based on the missing values in

each real-time data set, we construct the selection matrices Mt, t = Tb + 1, . . . , T , that ap-

pear in (7). The patterns of missing values are summarized in Tables 1 and B-2. Greenbook

forecasts are also obtained from the ALFRED database.

Some of the vintages of PCE and INVFIX extracted from ALFRED were incomplete. The

recent vintages of PCE and INVFIX from ALFRED do not include data prior to 1990 or

1995 (depending on the vintages). However, the most recent data for PCE and INVFIX can

be obtained from BEA or NIPA, say, from 1/1/1967 to 1/1/2012. Let us consider PCE for

2We augment the state vector zt in (2) and (7) by an additional lag of xt to ensure that st is a sub-

vector of the resulting z̃t. This augmentation requires a straightforward modification of the state-transition

equation (2) and the measurement equations (7).
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Table B-1: ALFRED Series Used in Analysis

Time Series ALFRED Name

Gross Domestic Product (GDP) GDPC1

Fixed Investment (INVFIX) FPIC1

Government Expenditures (GOV) GCEC1

Unemployment Rate (UNR) UNRATE

Hours Worked (HRS) AWHI

Consumer Price Index (CPI) CPIAUCSL

Industrial Production Index (IP) INDPRO

Personal Consumption Expenditure (PCE) PCEC96

Federal Fund Rate (FF) FEDFUNDS

Treasury Bond Yield (TB) GS10

S&P 500 (SP500) SP500

illustration. For the vintages between 12/10/2003 and 6/25/2009, data start from 1/1/1990,

and for the vintages between 7/31/2009 and the present, data start from 1/1/1995. First, we

compute the growth rates from the most recent data. Based on the computed growth rates,

we can backcast historical series up to 1/1/1967 using the 1/1/1990 (1/1/1995) data points

as initializations. We think this is a reasonable way to construct the missing points. We

eliminated 4 of the 151 samples (28, 29, 33, 145) because the vintages for PCE and INVFIX

were incomplete. In principle, we could backcast as for the other vintages, but we took a

shortcut.

Table B-2 lists exceptions for the classification of information sets for specific forecast

origins.
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Table B-2: Illustration of Information Sets: Exceptions

Exceptions E0: January (+0 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M10 X X X X X X X X QAv QAv QAv

Q4 M11 X X X X X X X X QAv QAv QAv

Q4 M12 X X X X ∅ X X X QAv QAv QAv

Q1 M1 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Exceptions E1: February (+1 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M11 X X X X X X X X QAv QAv QAv

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X ∅ X X X ∅ ∅ ∅
Q1 M2 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Exceptions E2: March (+2 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 X X X X ∅ X X X ∅ ∅ ∅
Q1 M3 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Notes: ∅ indicates that the variable is missing. X denotes monthly observation and QAv denotes quarterly
average. “+0 months” group: January, April, July, October; “+1 month” group: February, May, August,
November; “+2 month” group: March, June, September, December. The table illustrates exceptions that
arise due to an occasional two-month publication lag for PCE. Exception E0 occurs for 28 out of 151 recursive
samples (1, 4, 7, 10, 13, 16, 19, 22, 28, 37, 43, 52, 61, 64, 73, 79, 85, 88, 97, 106, 109, 115, 124, 130, 133,
139, 145, 151). Exception E1 occurs for 14 out of 151 recursive samples (8, 20, 44, 53, 56, 68, 80, 89, 98,
101, 104, 116, 119, 140). Exception E2 occurs for 5 out of 151 recursive samples (21, 27, 48, 51, 78).
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C Additional Empirical Results

C.1 11-Variable VAR, End-of-Month Forecasts

Table C-1 provides numerical values for the RMSEs attained by the eleven-variable MF-VAR.

Figure C-1 compares the 11-variable MF-VAR forecasts to quarterly-frequency AR(2) fore-

casts.

Figure C-2 depicts recursive means of h = 1 and h = 8 step-ahead mean forecasts (setting

future shocks equal to zero). Each hairline corresponds to a separate run of our MCMC

algorithm. In each run, we generate 20,000 draws and discard the first 10,000 draws. We

plot Monte Carlo averages based on the subsequent 500, 1,000, 1,500, . . ., 10,000 draws.

The units on the y-axis are percentages. With the exception of the eight-quarter-ahead

federal funds rate forecast, the Monte Carlo variation is below one basis point and negligible

compare to the overall forecast error.



Online Appendix A-10

Table C-1: RMSEs for 11-Variable MF-VAR

Horizon UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

+0 Months

1 0.21 0.50 0.57 0.99 0.55 0.21 0.17 3.05 0.57 1.73 0.80

2 0.47 0.80 0.61 1.45 0.69 0.69 0.43 7.93 0.79 2.45 0.75

3 0.80 0.98 0.64 1.71 0.74 1.10 0.61 8.04 0.86 2.86 0.74

4 1.12 1.01 0.62 1.72 0.72 1.45 0.70 7.97 0.88 2.85 0.77

5 1.40 0.96 0.64 1.66 0.69 1.78 0.79 7.72 0.86 2.77 0.78

6 1.63 0.91 0.64 1.59 0.68 2.08 0.86 7.72 0.83 2.66 0.74

7 1.84 0.87 0.63 1.56 0.65 2.31 0.89 7.98 0.79 2.54 0.69

8 2.00 0.85 0.63 1.54 0.64 2.50 0.94 7.82 0.79 2.59 0.79

+1 Month

1 0.15 0.39 0.33 0.98 0.49 0.07 0.08 1.24 0.57 1.53 0.81

2 0.44 0.79 0.62 1.44 0.71 0.55 0.34 7.97 0.79 2.39 0.75

3 0.75 0.97 0.64 1.71 0.75 0.93 0.53 7.98 0.86 2.86 0.75

4 1.07 1.01 0.62 1.72 0.73 1.29 0.63 7.98 0.88 2.87 0.75

5 1.36 0.98 0.63 1.69 0.70 1.64 0.74 7.77 0.86 2.79 0.72

6 1.61 0.93 0.62 1.61 0.67 1.95 0.80 7.75 0.83 2.70 0.75

7 1.81 0.88 0.64 1.59 0.66 2.20 0.82 7.84 0.82 2.59 0.74

8 1.98 0.86 0.63 1.56 0.66 2.40 0.86 7.84 0.80 2.59 0.77

+2 Months

1 0.08 0.30 0.20 0.73 0.38 0.00 0.00 0.00 0.50 1.41 0.81

2 0.30 0.60 0.60 1.15 0.67 0.39 0.38 7.05 0.68 2.06 0.77

3 0.59 0.90 0.62 1.63 0.75 0.76 0.61 8.02 0.84 2.77 0.76

4 0.92 1.01 0.62 1.72 0.74 1.12 0.72 7.84 0.89 2.89 0.76

5 1.23 0.99 0.62 1.67 0.70 1.50 0.81 7.79 0.86 2.82 0.71

6 1.50 0.93 0.63 1.60 0.68 1.81 0.90 7.84 0.85 2.72 0.74

7 1.72 0.89 0.64 1.58 0.66 2.08 0.87 7.74 0.82 2.63 0.77

8 1.90 0.86 0.62 1.58 0.65 2.27 0.87 7.94 0.81 2.57 0.76

All Forecasts

1 0.16 0.40 0.40 0.91 0.48 0.13 0.11 1.90 0.55 1.56 0.81

2 0.41 0.74 0.61 1.35 0.69 0.56 0.39 7.67 0.75 2.31 0.76

3 0.72 0.95 0.63 1.68 0.75 0.94 0.59 8.01 0.85 2.83 0.75

4 1.04 1.01 0.62 1.72 0.73 1.30 0.68 7.93 0.88 2.87 0.76

5 1.33 0.98 0.63 1.67 0.70 1.65 0.78 7.76 0.86 2.79 0.74

6 1.58 0.92 0.63 1.60 0.68 1.95 0.86 7.77 0.84 2.69 0.74

7 1.79 0.88 0.64 1.57 0.66 2.20 0.86 7.85 0.81 2.59 0.73

8 1.96 0.86 0.63 1.56 0.65 2.39 0.89 7.87 0.80 2.58 0.77

Notes: RMSEs for UNR (%), FF (annualized %), and TB (annualized %) refer to forecasts of levels. The
remaining RMSEs refer to forecasts of quarter-on-quarter growth rates in percentages.
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Figure C-1: Relative RMSEs of MF-VAR versus QF-AR2
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Figure C-2: Convergence
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Notes: The figure depicts recursive means of h = 1 and h = 8 step-ahead mean forecasts (setting future
shocks equal to zero). Each hairline corresponds to a separate run of our MCMC algorithm. In each run,
we generate 20,000 draws and discard the first 10,000 draws. We plot Monte Carlo averages based on the
subsequent 500, 1,000, 1,500, . . ., 10,000 draws. The units on the y-axis are percentages.
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Figure C-3: Relative RMSEs of 4-Variable MF-VAR versus QF-VAR
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C.2 RMSEs for 4-Variable MF VAR

We also consider a four-variable MF-VAR based on one quarterly series and three monthly

series. The three monthly series are the Consumer Price Index (CPI), Unemployment Rate

(UNR), and Federal Funds Rate (FF). The quarterly series is Real GDP. Real GDP and CPI

enter the MF-VAR in log levels, whereas UNR and FF are simply divided by 100 to make

their scale comparable to the scale of the two other variables. As for the eleven-variable

VAR, the number of lags is set to six.

Figure C-3 reports RMSE ratios for the four-variable MF-VAR versus a four-variable QF-

VAR using the end-of-month sample. The results are qualitatively similar to the ones re-

ported in Figure 2. In general, the within-quarter monthly information of the MF-VAR

increases the forecast accuracy compared to the QF-VAR. However, for GDP growth and

the federal funds rate, these improvements are not as long-lived as in the eleven-variable

setting.
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C.3 11-Variable MF-VAR End-of-Month Density Forecasts

The MF-VAR generates an entire predictive distribution for the future trajectories of the

eleven macroeconomic variables. While, strictly speaking, predictive distributions in a

Bayesian framework are subjective, it is desirable that predicted probabilities are consis-

tent with observed frequencies if the forecast procedure is applied in a sequential setting.

To assess the MF-VAR density forecasts, we construct probability integral transformations

(PITs) from (univariate) marginal predictive densities. The probability integral transforma-

tion of an h-step ahead forecast of yi,t+h based on time t information is defined as

zi,h,t =

∫ yi,t+h

−∞
p(ỹi,t+h|Y1:t)dỹi,t+h. (A-12)

PITs, sometimes known as generalized residuals, are relatively easy to compute and facili-

tate comparisons among elements of a sequence of predictive distributions, each of which is

distinct in that it conditions on the information available at the time of the prediction. For

h = 1 the zi,h,t’s are independent across time and uniformly distributed: zi,h,t ∼ iidU [0, 1].

For h > 1 the PITs remain uniformly distributed but are no longer independently distributed.

Figure C-4 displays histograms for the PITs based on density forecasts from the MF-

VAR and the QF-VAR using the end-of-month sample. The PITs are computed from the

empirical distribution of the simulated trajectories YT+1:T+H . To generate the histogram

plots, the unit interval is divided into J = 5 equally sized subintervals, and we depict the

fraction of PITs (measured in percent) that fall in each bin. Since, under the predictive

distribution, the PITs are uniformly distributed on the unit interval, we also plot the 20%

line. For h = 1 (nowcast) and h = 2 (forecast for next quarter) the frequency of MF-VAR

PITs falling in each of the five bins is close to 20% for inflation, unemployment, and output

growth, indicating that the predictive densities are well calibrated. The federal funds rate

density forecasts, on the other hand, appear to be too diffuse, because of the small number

of PITs falling into the 0-0.2 and 0.8-1 bins. Over longer horizons, specifically for h = 4 and

h = 8, the deviations from uniformity become more pronounced for all the series. The federal

funds rate density forecasts remain too diffuse, and the MF-VAR tends to overpredict GDP

growth and underpredict unemployment. For the QF-VAR the deviations from uniformity

generally tend to be larger than for the MF-VAR forecasts.
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Figure C-4: PIT Histograms for 11-Variable VARs
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Notes: Probability integral transformations for forecasts of inflation (INF), unemployment rate (UNR),
federal funds rate (FF), and GDP growth (GDP). The bars represent the frequency of PITs falling in each
bin. The solid line marks 20%.
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C.4 11-Variable MF-VAR Forecasts: Comparison with Green-

book Forecasts

Data Set. We compare the MF-VAR forecasts to Greenbook forecasts, prepared by the

staff of the Board of Governors for the FOMC meetings. Greenbook forecasts are publicly

available with a five-year delay. The FOMC holds eight regularly scheduled meetings during

the year and additional meetings as needed. Our comparison involves 63 Greenbook forecast

dates from March 19, 1997, to December 8, 2004. Period t = 1 corresponds to 1968:M1. We

construct the real-time data set for the Greenbook comparison as in Section 3.2 with one

important exception. Financial variables are available in daily frequency, but typically their

monthly averages are not yet available at the Greenbook publication dates. Since up-to-date

information from the financial sector is potentially very important for short-run forecasting,

we compute estimates for these variables based on weighted within-month averages of daily

data up to the forecast origin. More specifically, we proceed as follows. Assume that there

are four days in a month and denote the daily interest rate as rτ . Imagine that at the

forecast origin, only r1 and r2 are available. We replace the missing monthly interest rate by

the expected monthly average (r1 + 3r2)/4 and include a measurement error with variance

5σ̂2
r/16, where σ̂2

r is the sample variance of past rτ − rτ−1’s. We do not group the Greenbook

publication dates based on the availability of within-quarter monthly observations when

computing forecast error statistics.

MF-VAR versus Greenbook Forecasts. We proceed by comparing the VAR forecasts to

Greenbook forecasts. Results are plotted in Figure C-5, which depicts absolute RMSEs for

quarter-on-quarter GDP growth (annualized), CPI inflation (annualized), and the unemploy-

ment rate. We are pooling the forecast errors from all estimation samples. At the nowcast

horizon h = 1, the Greenbook forecasts and the MF-VAR forecasts for GDP growth and

the unemployment rate attain roughly the same RMSE. For horizons h ≥ 3, the MF-VAR

produces more accurate output growth forecasts, while the Greenbook contains more precise

unemployment rate predictions. In regard to inflation, the Greenbook forecasts dominate

the MF-VAR forecasts at all horizons. As in the case of the end-of-month samples, the

short-run forecasts from the MF-VAR attain a smaller RMSE than the QF-VAR forecasts.

While the QF-VAR inflation forecasts slightly dominate the MF-VAR forecasts for horizons

h = 4 and h = 5, the MF-VAR GDP growth and unemployment rate forecasts are more

accurate than the QF-VAR forecasts at all horizons. A similar pattern also holds true for the

remaining seven variables (not depicted in the figure). The MF-VAR forecasts are as good
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Figure C-5: RMSEs of 11-Variable MF-VAR versus Greenbook
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Notes: 22nd and 38th samples are eliminated because the vintages for PCE were incomplete.

as the QF-VAR forecasts in the long run and substantially more accurate for short horizons.

As a low-brow alternative to the MF-VAR analysis, a forecaster with access to external

nowcasts could simply condition the QF-VAR forecasts on these nowcasts to improve the

short-horizon forecast performance of the QF-VAR. In the following experiment, we assume

that the forecaster is able to utilize the Greenbook nowcasts for quarterly GDP growth,

inflation, and unemployment.3 We refer to the resulting empirical model as QF-VAR+ and

it is implemented as follows: when simulating T + 1 draws from the predictive distribution

of the QF-VAR, the forecaster uses one iteration of the Kalman filter to condition the

simulated trajectories treating the nowcasts as actual observations. A detailed discussion

of this procedure in the context of dynamic stochastic general equilibrium (DSGE) model

forecasts is provided in Del Negro and Schorfheide (2013). The RMSEs for the QF-VAR+

are also plotted in Figure C-5. With respect to GDP growth and inflation, the benefit of

including the external nowcast into the QF-VAR is short-lived. While for h = 1 the QF-

VAR+ attains the Greenbook RMSE, for horizons > 1 the performance resembles that of

the QF-VAR. For the unemployment forecasts, the improvement in forecast performance

3We thank Jonathan Wright for suggesting this experiment to us. We do not update the posterior

distribution of the QF-VAR parameters in view of the additional information.
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Figure C-6: RMSEs of 11-Variable MF-VAR, QF-VAR, and QF-VAR+
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Notes: The MF-VAR aligns the information that was available to the staff of the Board of Governors.
The recursive estimation of the MF-VAR is repeated 62 times. The 22nd sample is eliminated because the
vintages for PCE were incomplete.

extends to horizons h > 1. In fact, the RMSEs for the MF-VAR and the QF-VAR+ are

quite similar. On balance, the MF-VAR compares well against a QF-VAR augmented by

current-quarter nowcasts. A comparison for all 11 variables is provided in Figure C-6.




