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1 Introduction

Asset pricing theories commonly assume a particularly strong form of knowledge by eco-

nomic agents: they know the true model and true parameter values. This is, in part,

motivated by conventional wisdom suggesting that parameter learning has negligible as-

set pricing implications. To see why, assume normally distributed consumption growth,

∆ ln(Ct) = yt
i.i.d.∼ N (µ, σ2), µ is unknown, and that µ ∼ N (µ0, A0σ

2) a priori. Bayesian

updating implies the posterior is N (µt, Atσ
2) , where µt and At are recursively defined and

yt is data up to time t. Under power utility preferences, the ‘equity’premium on a single-

period consumption claim is γσ2 (1 + At). Since At decreases rapidly over time, parameter

uncertainty has a small initial and quickly dissipating impact on asset prices.

We show that this conventional wisdom does not hold generally because rational para-

meter learning generates subjective long run consumption risks that have important asset

pricing implications when the representative agent has Epstein-Zin recursive utility (see

Bansal and Yaron (2004)). Long run risks arise because posterior distributions, P (θ ∈ A|yt),
as well as posterior moments, are martingales (e.g., Doob (1949)), which implies that shocks

to rational beliefs are permanent and impact consumption growth in all future periods. For

agents who prefer early resolution of uncertainty, assets whose payoffs are affected by un-

known parameters may therefore be particularly risky. The same logic holds when there is

uncertainty over the model specification and agents learn about the ‘true’model over time.

Parameter uncertainty is intuitively important, especially in asset pricing models with

numerous parameters and increasingly complex dynamics. In many common specifications,

the main asset pricing implications arise from long-run properties of consumption dynamics

and/or rare events, both of which are extremely hard-to-estimate with observed histories of

macroeconomic aggregates. This fact suggests the importance of accounting for parameter

uncertainty when analyzing the relation between macroeconomic risks and asset prices, as

emphasized in Hansen (2007).

This paper studies qualitatively and quantitatively how parameter uncertainty impacts

asset prices when the temporal resolution of uncertainty matters. The overall finding is

that reasonable calibrations of parameter and model uncertainty can tremendously amplify

the perceived quantity of aggregate risk, with corresponding strong implications for asset

prices. Parameter learning affects asset prices principally because belief updating leads to

large shocks to continuation utility. This is distinct from other conduits (e.g., Weitzmann

(2007)), where parameter uncertainty leads to fat-tailed predictive distributions, increasing
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the probability of very high marginal utility states. Since the shocks to beliefs are permanent,

even a small amount of parameter uncertainty can have a large effect on continuation utility,

which is a function of the conditional distribution of consumption in all future periods. As

continuation utility shocks arise from subjective beliefs updates, learning can drive a large

wedge between the known-parameters consumption dynamics and the dynamic behavior of

the pricing kernel. For instance, large time series variation in the price of risk and the equity

risk premium can arise from homoskedastic macro fundamentals, even though the preferences

are time- and state-invariant.1

Since there are many different types of parameters (means, variances, transition proba-

bilities, etc.), we are particularly interested in understanding when parameter learning may

generate large and long-lasting effects on central asset pricing quantities like the risk pre-

mium and return volatility of the aggregate consumption and dividend claims, as well as real

yields on short- and long-term default-free bonds. To this end, we consider a range of mod-

els with uncertainty about parameters governing different aspects of aggregate consumption

dynamics.

We first consider the simple consumption growth model described above and document,

analytically and numerically, the asset pricing implications of an unknown mean growth

rate. While overly simple to be realistic, this model highlights the underlying economics.

In addition to this case, we consider learning about the variance of shocks (see Weitzmann

(2007) and Bakshi and Skoulakis (2010)), as well as parameters governing the persistence and

severity of rare events (see, Rietz (1988), Barro (2006, 2009), and Gourio (2012) for models

on disaster risk). Finally, we consider parameter uncertainty in the form of model uncertainty

where the agent is learning whether consumption growth is iid or contains a small, persistent

component. This range of model and types of parameter uncertainty provide a taxonomy of

how Bayesian parameter learning impacts asset prices.

In terms of realistic calibrations, learning about the persistence of rare events or otherwise

hard to measure bad states of the economy has dramatic and quite realistic asset pricing

effects. For example, consider a Markov-switching model where the bad state occurs once

every 100 years on average, with a mean and persistence calibrated to U.S. consumption

data during the Great Depression. With uncertainty over the persistence of the bad state,

assuming a 100 year training sample, the model delivers an equity risk premium over the last

1Related, long-run consumption risk due to parameter learning does not imply predictability of consump-
tion growth moments– a controversial feature of standard long-run risk models (see Beeler and Campbell
(2012)).
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100 years of about 6% when the agent has relative risk aversion (RRA) coeffi cient of 3.9 and

an elasticity of intertemporal substitution (EIS) of 2. The pricing kernel volatility is high, a

prerequisite for explaining asset price moments (see Hansen and Jagannathan (1991)). With

a 200 year training sample, the equity risk premium falls to 5%. The corresponding ‘full-

information’model with known parameters generates a risk premium of 1%. Thus, realistic

parameter uncertainty provides a dramatic magnification of macroeconomic risks on asset

prices. Further, the model can match the very high equity return volatility at the onset of the

Great Depression relative to normal times, as well as the drop in aggregate price-dividend

ratios, as the risk premium increases strongly in bad times.

Learning about rare event parameters, though realistic and important, has only a minor

impact on dynamics during ‘normal’ times, since learning about bad states is rare. We

therefore also consider learning about parameters governing business cycle fluctuations in

consumption via a case of model uncertainty. Here, the representative agent is uncertain

whether consumption growth is i.i.d. or it contains a small, persistent component a la Bansal

and Yaron (2004).2 In this case, the impact of learning on asset prices is quantitatively large

and endogenously long lasting. In fact, learning generates a high price of risk even if agents

assign a very small probability to the more risky economy with persistent shocks. The

price of risk and the risk premium vary substantially even though both are constant in each

individual model and can, in certain states, be more than double their size in either of the

individual models. When feeding this model the actual consumption realizations over the

post-WW2 U.S. sample, the price of risk and the equity market risk premium are high in

recessions relative to expansions, as in the data.

Alvarez and Jermann (2004) argue that asset prices imply small welfare costs from busi-

ness cycle fluctuations if business cycles are comprised of only transitory fluctuations, consis-

tent with the analysis is Lucas (1987). In the model uncertainty case we analyze, a non-trivial

fraction of the variation in beliefs stems from business-cycle fluctuations during the post-

WW2 U.S. sample. Thus, business cycle fluctuations are associated with permanent shocks

to subjective consumption dynamics, and carry therefore ‘long-run’risk. Alvarez and Jer-

mann (2004, 2005) document empirically that permanent components in the pricing kernel

are the main source of large welfare costs. Our learning channel provides an endogenous

mechanism for how such large permanent macro shocks arise.

2A similar problem is analyzed in Hansen and Sargent (2010), but they focus on learning under a preference
for robustness.
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2 Parameter learning as a source of long-run risks

Parameter uncertainty and rational updating generates truly ‘long-run’risks. Intuitively,

this occurs because the forecast errors of optimal beliefs are unpredictable, which implies

that shocks to beliefs are permanent. Mathematically, long run risks arise due to various

martingale properties associated with conditional probabilities.

Denote the time-t posterior density of a vector of parameters θ as p (θ|yt). By the law of
iterated expectations, P [θ ∈ A|yt] , expectations of functions of the parameters (E [h (θ) |yt]),
and likelihood ratio statistics are all martingales. This is easy to see: defining µt ≡ E [θ|yt] ,

E
[
µt+1|yt

]
= E

[
E
[
θ|yt+1

]
|yt
]

= E
[
θ|yt
]

= µt. (1)

Thus, the belief process, µt, is a martingale, and evolves via µt+1 = µt + ηt+1, where

E
[
ηt+1|yt

]
= 0. From this, it is clear that the shocks to rational beliefs, ηt+1, are not just

persistent, but permanent as they have a unit root. This property of Bayesian parameter

learning has been noted before, see, e.g., Hansen (2007).

This intuition also holds for learning about competing model specifications. Consider two

models, denoted model 0 and model 1, and define an indicator variable,M , such thatM = 1

(0) indicates that model 1 (0) is true. The data is then generated from p(yt+1|M = 0, yt)

or p(yt+1|M = 1, yt), where the dependence on yt as a conditioning variable reflects the fact

there could be learning about other parameters or state variables within the model. From

the agent’s perspective, M is a random variable whose value can be learned. Given initial

probabilities, p0 = P [M = 0], rational learning generates the posterior pt = P [M = 0|yt] ,
which is defined recursively by Bayes rule as

pt+1 =
p(yt+1|M = 0, yt)pt

p(yt+1|M = 0, yt)pt + p(yt+1|M = 1, yt) (1− pt)
. (2)

As in the case of fixed parameter uncertainty, shocks to beliefs regarding the true model

specification (the random variable M) are martingales and have permanent effects.

We consider an Epstein-Zin (1989) agent with utility, V , over consumption, C :

Vt =

{
(1− β)C

1−1/ψ
t + β

(
Et
[
V 1−γ
t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

, (3)

where γ is RRA, ψ is the EIS, and β is the time discount factor. The stochastic discount
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factor (SDF) in this economy is

Mt+1 = β

(
Ct+1
Ct

)−γ (
β
PCt+1 + 1

PCt

)θ−1
, (4)

where PCt is the wealth-consumption ratio at time t and where θ = (1− γ) /
(
1− ψ−1

)
.

The first component, β
(
Ct+1

Ct

)−γ
, is the usual power utility component. When there is a

preference for the timing of the resolution of uncertainty, (i.e., if θ 6= 1), the SDF has a

second term,
(
β PCt+1+1

PCt

)θ−1
, through which long-run risks impact asset prices.

When the underlying structural parameters governing consumption dynamics are un-

known, parameter learning impacts marginal intertemporal rates of substitution. In partic-

ular, revisions in beliefs generate permanent shocks to the conditional distribution of future

consumption, impacting the price-consumption ratio via changes in growth expectations

and/or discount rates. From Equation (4) it is immediate that these shocks are priced risk

factors in this economy.

The rest of the paper quantifies the impact of various types of parameter uncertainty in

a range of models. We first consider the simplest model, where consumption growth is i.i.d.

lognormal, but the mean growth rate is unknown. This case transparently provides intuition

and a sense of magnitudes. We then move on to more interesting consumption dynamics,

including learning about rare events and model uncertainty.

2.1 Relation to existing literature

Our focus on parameter learning connects to a long-standing debate in macroeconomics. One

common critique of rational expectations models assuming perfect knowledge is precisely

the assumption that agents know ‘fixed but unknown’parameters, e.g., Modigliani (1977).

Of course there is nothing about parameter or model learning inconsistent with rational

expectations, as noted by Lucas and Sargent (1978, p. 68)): “... it has been only a matter of

analytical convenience and not of necessity that equilibrium models have used the assumption

of stochastically stationary "shocks" and the assumption that agents have already learned the

probability distributions that they face. Both of these assumptions can be abandoned, albeit

at a cost in terms of the simplicity of the model. . . .While models incorporating Bayesian

learning and stochastic nonstationarity are both technically feasible and consistent with the

equilibrium modeling strategy, almost no successful applied work along these lines has come

to light. One reason is probably that nonstationary time series models are cumbersome and
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come in so many varieties.”As discussed below, numerical solutions are generally required

and can be quite complicated.

Hansen (2007) stresses the importance of studying how parameter and model uncertainty

impacts asset valuation, forcing economic agents to face the inference problems as econome-

tricians. Hansen (2007), and also Hansen and Sargent (2010), take a robustness approach,

with agents making decisions that are robust to model uncertainty and consider the case

of an EIS of one. In contrast, we focus on Bayesian learning with Epstein-Zin preferences

and consider EIS values different from unity and also consider the pricing of long-horizon

risky claims– notably claims to the infinite streams of consumption and dividends, as well

as long-term bonds.

Other related papers considering general equilibrium implications of parameter learning

include Veronesi (2000), Cogley and Sargent (2008), Jobert, Platania, and Rogers (2006),

Benzoni, Collin-Dufresne and Goldstein (2011), Johannes, Lochstoer, and Mou (2010), and

Kumar and Gvozdeva (2012). Relative to these our paper focuses on the impact of priced

parameter uncertainty on asset price moments in a general equilibrium model with Epstein-

Zin preferences.3

Pastor and Veronesi (2009, 2012) consider parameter learning applications with power

utility preferences over final wealth. As shown in Timmermann (1993) and Lewellen and

Shanken (2002), parameter learning about dividend dynamics induces excess return pre-

dictability in in-sample forecasting regressions as typically undertaken in the literature. The

hallmark of the learning channel, however, is poor out-of-sample performance of such regres-

sions, consistent with the data (see Goyal and Welch (2008) and Johannes, Korteweg and

Polson (2013)).

A number of papers consider state uncertainty, where the state evolves discretely via a

Markov chain or smoothly via a Gaussian process.4 Veronesi (2000) considers learning about

mean-dividend growth rates in a power utility setting and focuses on the role of information

quality. Learning about a fixed parameter is a special case, and with common preference

parameters, Veronesi shows that in this case the equity premium falls and could even be

negative when parameters are uncertain.

3Benzoni, Collin-Dufresne and Goldstein (2011) also solve for a continuous time general equilibrium
model where there is parameter uncertainty associated with a rare crash-event probability. Their focus
is on explaining the implied option skew however. Kumar and Gvozdeva (2012) also consider a general
equilibrium model with Epstein-Zin preferences and parameter uncertainty, but their numerical solution is
only an approximation to the true problem.

4Earlier contributions include Detemple (1986), Dothan and Feldman (1986), and Gennotte (1986) who
show that you can separate the filtering problem from the pricing problem.
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David (1997) consider learning about the level of firm profitability, which is assumed to

switch between two states. Moore and Shaller (1996) consider consumption/dividend based

Markov switching models with state learning and power utility. Veronesi (2004) studies the

implications of learning about a peso state in a Markov switching model with power utility.

David and Veronesi (2010) consider a Markov switching model with learning about states.

Pastor and Veronesi (2003, 2006) study uncertainty about a fixed dividend-growth rate or

profitability levels with an exogenously specified pricing kernel, in part motivated in order

to derive cross-sectional implications.

In the case of Epstein-Zin utility, Brandt, Zeng, and Zhang (2004) study alternative

rules for learning about an unknown Markov state, assuming all parameters and the model

is known. Chen and Pakos (2008), Lettau, Ludvigson, and Wachter (2008) and Boguth and

Kuehn (2012) consider economic agents who know parameter values, but learn about states

in a Markov switching consumption based asset pricing model. Ai (2010) studies learning

in a production-based long-run risks model with Kalman learning about a persistent latent

state variable. Bansal and Shaliastovich (2008) and Shaliastovich (2010) consider learning

about the persistent component in a Bansal and Yaron (2004) style model with sub-optimal

Kalman learning.

Alternative preferences with a preference for early resolution of uncertainty will exhibit

similar effects to those we document with parameter learning and Epstein-Zin preferences.

The quantitative effects will of course depend on the utility specification and parameter

assumptions. Examples include general Kreps-Porteus preferences and smooth ambiguity

aversion preferences of Klibanoff, Marinacci, and Mukerji (2009) and Ju and Miao (2012), as

well as the fragile beliefs setup of Hansen and Sargent (2010).5 Strzalecki (2011) discusses of

the relation between ambiguity attitudes and the preference for the timing of the resolution

of uncertainty. Learning under ambiguity (e.g., Epstein and Schneider (2007)) differs from

Bayesian learning as learning under ambiguity depends on the sets of priors entertained by

the agent, with higher weight being given to more pessimistic prior beliefs when forming

predictive distributions.

5Benzoni, Collin-Dufresne, Goldstein and Helwege (2010) investigate the implications for credit spreads
of learning under fragile beliefs.
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3 The simplest case: learning about the mean

Assume that aggregate log consumption growth is i.i.d. normal:

yt+1 = ∆ct+1 = µ+ σεt+1, (5)

where σ and the shock distribution, εt+1
i.i.d.∼ N (0, 1), are known. µ is not known, and the

agent posits the conjugate prior µ ∼ N (µ0, A0σ
2). Rational beliefs sequential update upon

observing consumption growth rates using Bayes rule, which implies that µ|yt ∼ N (µt, Atσ
2)

where A−1t+1 = A−1t + 1. Defining ωt ≡
(
A−1t + 1

)−1
, beliefs have the familiar shrinkage form:

E
[
µt+1|yt

]
= ωt∆ct+1 + (1− ωt)µt. (6)

The conditional suffi cient statistics µt and At are state variables in the economy.

From the agent’s perspective, predictive consumption dynamics evolve via

∆ct+1 = µt +
√

1 + Atσε̃t+1, (7)

where ε̃t+1 ∼ N (0, 1) and the conditional mean evolves via

µt+1 = µt +
At√

1 + At
σε̃t+1. (8)

In words, the agent thinks that consumption growth is normally distributed, but the mo-

ments are time-varying and expected consumption growth has a unit root. Compared to

the consumption dynamics in Bansal and Yaron (2004), learning induces truly long-run con-

sumption risks, as the agent perceives expected consumption growth shocks to be permanent

versus Bansal and Yaron’s persistent, but still transitory, shocks.6 The consumption growth

process does not explode, however, as the posterior variance declines over time and will

eventually (at t→∞) go to zero.
Since actual consumption growth as in Equation (5) is unpredictable, it (trivially) can-

not be predicted by, e.g., the price-dividend ratios or risk-free rates. This difference between

the objective long-run risks assumed by Bansal and Yaron, which imply a high degree of

consumption predictability, and subjective long-run risks arising endogenously through pa-

6In Bansal and Yaron, conditional expected consumption growth follows an AR(1) with a monthly au-
toregression coeffi cient of 0.979.
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rameter learning, is empirically relevant. One critique of long-run risk models is that they

imply an implausible degree of consumption predictability (see Beeler and Campbell (2012)).

From the example presented here it is clear that such critique is not valid for long-run risks

induced by parameter learning.

3.1 Asset price implications when EIS = 1

When ψ = 1 and in continuous-time, there is an analytical solution for the value function,

the details of which are given in the Online Appendix.7 This generates simple expressions

for central asset pricing quantities and provides intuition for understanding the general equi-

librium effects of structural parameter uncertainty with Epstein-Zin preferences.

The continuous-time equivalent of Equation (5) is

dct = µtdt+ σdzt,

where dzt are innovations to a standard Brownian motion under the agent’s filtration and the

hyperparameters, µt and At (the state variables in this economy), evolve via dµt = Atσdzt

and dAt = −A2tdt. In continuous-time, the volatility of consumption growth (short-run risk)
is the same as in a full-information economy. The log value function (vt) is (see Online

Appendix):

vt = ct + (1− γ)2 σ2
1 + At/β̃ − exp

(
β̃/At

)
Ei
(
−β̃/At

)
2β̃

+
1− γ
β̃

µt, (9)

where Ei (z) =
∫∞
−z

e−t

t
dt is the exponential integral function and β̃ ≡ − ln β, where β is the

discrete-time time preference parameter from Equation (3).

The maximal conditional Sharpe ratio (SR, conditional volatility of the log pricing kernel)

and risk premium (RP) on the consumption claim are given by

SR = γσ +
γ − 1

β̃
Atσ and RP = γσ2 +

γ − 1

β̃
Atσ

2, (10)

respectively. The first terms in each expression are the familiar power utility terms, and the

7In subsequent models, it will be necessary to resort to numerical solutions and therefore we move back to
a discrete-time setting shortly. The results do not hinge on the distinction between discrete and continuous
time.
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second terms are generated by learning. The quantitative impact of learning is therefore

a function of (i) the preference for the timing of resolution of uncertainty, γ − ψ−1, (ii)

the duration of the belief shock in terms of its effect on utility, 1/β̃, and (iii) the size of

shocks to beliefs, Atσ. Intuitively, a preference for early resolution of uncertainty (γ > 1/ψ)

is needed for learning to increase risk. The extra risks arising from parameter learning and a

preference for early resolution of uncertainty come from updating beliefs and not from a fat-

tailed conditional distribution of consumption growth—the subjective distribution is normal.

This is different from Geweke (2002) and Weitzman (2007), who note that learning about σ

in discrete-time induces a fat-tailed predictive distribution for consumption.

3.1.1 Asset pricing implications and the speed of learning

Equation (10) implies that when ψ = 1 important moments like pricing kernel volatility and

the risk premium have a constant loading on the amount of parameter uncertainty. With

a preference for an early resolution of uncertainty, parameter learning clearly increases the

Sharpe ratio and risk premium. However, since Bayesian learning is effi cient, one might think

that parameter learning effects are small and disappear quickly. Indeed, since dAt = −A2tdt
and assuming A0 = 1, we obtain At = (1 + t)−1. Thus, the ex ante magnitude of the shock

to beliefs about the mean growth rate (Atσ), declines at a rate (1 + t)−1.

However, with parameter learning, even if the size of the belief shock is small, the effect

is permanent and so the effect on continuation utility can still be large. As an example,

consider a quarterly calibration with time-preference and risk aversion as in Bansal and

Yaron (2004): β̃ = − ln 0.994 and γ = 10. The multiplier on the amount of parameter

uncertainty is extremely large, (γ − 1) /β̃ = 1, 495. This implies that even after learning for

100 years, the annualized Sharpe ratio and risk premium are 1.37 times or 37% larger than

the corresponding quantities in the full-information or known parameters case.8 With a 200

(300) years long training sample, the increase is 19% (12%). Thus, there is a quantitatively

large and long-lasting magnification of macroeconomic risks. This is one of our primary

results. In contrast, in the case of γ = 1/ψ = 1 (log utility), the agent is indifferent to

the timing of resolution of uncertainty and there are no effects of parameter learning on the

risk-premium or Sharpe ratio.

It is also important to note that the speed of learning slows over time. Measuring time

t in quarters (consistent with the quarterly model calibration), the conditional volatility of

8The relative magnitude are obtained by dividing the equations in (10) by γσ and γσ2, respectively.
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shocks to the mean beliefs about µ declines by a factor of 400 over the first one hundred

years of learning, but the rate is not uniform. In the first 10 years of learning, volatility

declines by a factor of 40. From year 10 to 50 by a factor of 5, and from years 50 to 100

and years 100 to year 200, the volatility declines only by a factor of 2. Thus the speed of

learning slows. This is why the asset pricing impact of parameter learning persists for a very

long time, even in this simple model.

At this stage, note that when learning about a fixed parameter, the amount of parameter

uncertainty will typically, and in this case certainly, decline with time, implying time-trends

in asset prices. While one can argue that the market Sharpe ratio and risk premium overall

has declined over the available historical sample (see, e.g., Fama and French (2000)), one

can reasonably rule out declines greater than, say, a factor of 5.9 Thus, the reasonability of

a prior can be assessed in part by whether it implies excessive learning (time-trends) over

samples such as those we have available relative to observed asset price behavior.

3.1.2 The term structure

The real risk-free rate in this economy is:

rf,t = β̃ + µt +
σ2

2
− γσ2 − γ − 1

β̃
σ2At, (11)

which are driven by µt, a martingale, and At, which decreases deterministically over time.

Thus, future risk-free rates are always expected to be higher than current risk-free rates, sug-

gesting an upward-sloping term structure. However, the risk premium on bonds is negative,

as low realized consumption growth decreases µt, which, in turn, decreases the risk-free rate

and increases bond prices. The slope of the term structure depends on the relative magni-

tude of the risk premium and the increase in future expected short-rates from the decreasing

precautionary savings (At).

The price of a zero-coupon, default-free τ−year bond is

P (t, τ) = (Atτ + 1)
σ2(2γ(Atτ+1)−1)

2At e
−τ
(

1−γ
β̃
Atσ2+β̃+µt

)
. (12)

9This is obviously not an exact statement. Readers are invited to make their own judgment about the
data on this point.
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The slope of the term structure at maturity τ is then:

yt,τ − yt,0 = −1

τ

σ2 (2γ (Atτ + 1)− 1)

2At
ln (1 + Atτ)− σ2

2
+ γσ2, (13)

where yt,0 = rf,t. Based on the preference parameters from above, the 10—year slope is

between 0 and −1.3 basis points when At ≤ 1, with σ set to the same value as in Bansal and

Yaron (2004). The combination of a negative bond risk premium and increasing expected

future short-rates roughly nets to zero, and the yield curve is flat. In contrast, the Bansal

and Yaron (2004) model generates a strongly downward-sloping term structure, which Beeler

and Campbell (2012) argue is counter-factual.

3.2 Asset pricing implications when EIS > 1

The case of EIS 6= 1 is discussed in detail in the Online Appendix, and we briefly summa-

rize the implications. When the substitution effect dominates the wealth effect (i.e., when

EIS > 1), the price-consumption ratio increases upon a positive revision of the beliefs about

the growth rate. Overall, the primary effect of increasing the EIS is an increase in excess

return volatility, which, in turn, increases the risk premium, both of which are important

for matching historical asset price data. Further, the impact of parameter learning on the

pricing kernel changes over time: the volatility of the pricing kernel decreases at a slower rate

over time when the EIS is high than when it is low. This is due to an endogenous increase

in the sensitivity of the price-consumption ratio to belief updates. This occurs as discount

rates decrease over the sample, which makes the price-consumption ratio more sensitive to

updates in the expected growth rate (see Pastor and Veronesi (2004)).

Importantly, these effects combine to imply that the risk premium on the consumption

claim after 100 years of learning is almost twice as the risk premium in a full-information,

known parameter economy when EIS = 2, while the price of risk is almost 1.5 times higher

and the return volatility is 1.24 times higher than in the known parameter economy. Further,

as highlighted in Lewellen and Shanken (2002), learning generates excess return predictability

in standard, in-sample forecasting regressions.

3.3 Asset pricing implications of unknown volatilities

The Online Appendix, for completeness, also analyzes learning about σ2 in the simple i.i.d.

consumption growth case in a discrete time economy. Bakshi and Skoulakis (2010) note that
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uncertain variance with reasonable truncation bounds for the support of the distribution

leads to negligible effects on the price of risk in a power utility setting. Since learning about

the variance parameter also generates shocks to continuation utility, it is not clear this result

holds when agents have a preference for early resolution of uncertainty. However, as learning

about a constant volatility parameter is more rapid than about a mean parameter, and since

volatility is a second-order effect in terms of utility, the asset pricing effects of learning about

the volatility of shocks become quickly very small with Epstein-Zin preferences.

3.4 Discussion

The analytical solution cleanly shows how parameter uncertainty in conjunction with a

preference for early resolution of uncertainty can be a powerful amplification mechanism for

the pricing of macro shocks. Parameter uncertainty generates quantitatively large and long-

lasting effects and helps in understanding many of puzzling observations such as the high

equity premium and Sharpe ratio, as well as the shape of the yield curve. Furthermore, the

subjective nature of the long-run risks induced by parameter learning means that neither the

risk-free rate nor valuation ratios (e.g., the price-dividend ratio) forecast future consumption

growth. In particular, the high EIS and time-varying risk-free rate in this model are entirely

consistent with estimates of the EIS close to zero obtained from Hall (1988)—type regressions,

as actual consumption growth is i.i.d. and thus unpredictable.10

Of course, the i.i.d. normal model is overly simplistic as a description of actual consump-

tion dynamics. We consider next parameter uncertainty in more realistic models, where

learning is likely to take a long time and where asset pricing implications of parameter un-

certainty are large. In particular, we consider learning about rare events such as the Great

Depression, and also a case of model uncertainty where two models with very different asset

pricing implications are hard to differentiate using available macroeconomic data.

4 Learning about rare events

Markov switching models have been widely used in consumption based asset pricing, both

for their flexibility and their analytical tractability (see, e.g., Mehra and Prescott (1986) and

10The fact that the Hall-regression does not uncover the EIS of economic agents is also a feature in
Garleanu and Panageas (2012), who show that long-run risk in individual consumption growth rates, with
corresponding time-variation in the risk-free rate, are generated from optimal consumption sharing with
heterogeneous agents even when aggregate consumption is i.i.d.
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Rietz (1988)). Since the financial crisis, there has been a renewed interest in using these

models to capture particularly bad periods economic periods like the Great Depression, com-

monly called consumption disasters. These models provide a particularly useful laboratory,

as it is hard to learn about the parameters governing rare events and these parameters have

particularly strong asset pricing implications.

It is diffi cult to estimate the frequency, severity, and length of consumption disasters or

depressions. In fact, even using centuries of data and a broad panel of countries, Barro,

Nakamura, Steinsson, and Ursua (BNSU, 2011) report significant uncertainty in parameter

estimates in formal models. They estimate a consumption disaster frequency of 2.8% per

year and a probability of exiting a disaster is 13.5% per year. The standard errors are high:

e.g., a 2 standard-error bound for the average duration of the bad state is between 4.5 and

9 years. There is also a large amount of uncertainty over the size (mean and variance) of

consumption disasters.

To investigate the impact of parameter learning in rare events models, we consider a

two-state Markov switching model:

∆ct = µst + σstεt,

where εt
i.i.d.∼ N (0, 1), st is a 2-state observed Markov chain with transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
.

Without any loss of generality, we label st = 1 the ‘good’or normal state and st = 2 the ‘bad’

or rare event state. With i, j ∈ {1, 2} and i 6= j, the unconditional or ergodic probability of

state i is

P [st = i] =
1− πjj

2− πii − πjj
. (14)

We separately consider the cases of unknown transition probabilities (Section 4.1) and

uncertain means/variances (Section 4.2) to understand the role of different types of parameter

uncertainty while keeping the size of the state-space manageable.
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4.1 Uncertain transition probabilities

4.1.1 The Learning Problem

Assume the transition matrix is unknown and conjugate, Beta-distributed priors πii ∼
β (ai,0, bi,0), for i = 1, 2. Under the assumption that st is observed, the posterior distribution

for the transition probabilities depends only on the state counts, which makes the learning

problem particularly tractable.11 Defining the observed states up to time t as st = (s1, ..., st),

the posterior distribution is πii|st ∼ β (ai,t, bi,t), where

ai,t = ai,0 +
t∑

k=1

1 (sk = i, sk−1 = i) and bi,t = bi,0 +
t∑

k=1

1 (sk = j, sk−1 = i) , (15)

for i 6= j and i, j ∈ {1, 2}. The posterior mean and variance are respectively

Et [πii] =
ai,t

ai,t + bi,t
and vart (πii) =

ai,tbi,t

(ai,t + bi,t)
2 (ai,t + bi,t + 1)

.

In calibrating the priors, we consider a range of historical experiences that are easy to

incorporate given the conjugate structure. Our priors are unbiased, as our focus is on the

effects of priced parameter uncertainty and not biased beliefs (see, e.g., Cogley and Sargent

(2008) for biased priors). Thus, the priors parameters imply the number of prior transitions

coincides with the true ergodic probability of the corresponding regime from equation (14).

Given the true values of π11 and π22, the priors and posteriors are functions of numbers of

years of observations, T0.

We consider priors corresponding to 100, 200, or 300 years of quarterly observations.

After 200 years of observations starting from a flat prior, the posterior standard deviation

of π22 is very close to the corresponding standard error reported in BNSU. Since BNSU

arrive at this standard error after having used the last 100 years of data in the estimation,

we choose the prior based on 100 years of observations as our benchmark for understanding

asset prices over this past century. The prior based on 300 years of learning is added as a very

conservative case and would assume that the agent began learning early in the 1600s, close

to the opening year for the world’s first stock exchange —the Amsterdam Stock Exchange

(1611).

11If both the parameters and state are unobserved, the learning problem becomes intractable as the
parameter posteriors require computing every possible combination of observed states and their probabilities.
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4.1.2 Calibration

The remaining model parameters are calibrated to match the U.S. consumption data over

the century. The bad state is calibrated to the Great Depression, when real, per capita

log consumption declined −4.6% per year from 1929 to 1933 with 2.94% volatility per year

(µ2 = −1.15% and σ2 = 1.47% at a quarterly frequency). We set π11 = 0.9975 and π22 =

0.9375, corresponding to one 4-year depression per century. In the normal growth state,

µ1 = 0.54% and σ1 = 0.98%, generating a time-averaged, annual log consumption growth

mean and standard deviation of 1.8% and 2.2%, respectively, matching the observed values

(from NIPA) from 1929 to 2011.

We price a dividend claim to compare to market returns and assume

∆dt+1 = µ̄+ λ (∆ct+1 − µ̄) + σdηt+1, (16)

where dt is the log of dividends, µ̄ is the unconditional mean consumption growth rate, λ is

a leverage parameter, and ηt is an i.i.d. standard normal shock (independent of εt). This

ensures the long-run growth rate of dividends and consumption is the same, while the short-

run response of dividends to consumption shocks is higher than that of consumption. Using

the 1929 to 2011 sample, we estimate the leverage parameter to be 2.5 by regressing annual

real dividend growth (constructed from CRSP data) on annual consumption growth.

In terms of exposure to parameter uncertainty, our dividend assumption is conservative

relative to the more standard specification, ∆dt+1 = λ∆ct+1 + σdηt+1.
12 Alternatively, one

could assume consumption and dividends are cointegrated, which introduces another state

variable and is computationally costly. We set the idiosyncratic volatility σd such that annual

dividend volatility is 11.5%, as in Bansal and Yaron (2004). The model is solved numerically

using a backwards recursion method where the known parameters economies are used as

boundary conditions (see the Online Appendix for more details).13

We consider a range of preference parameters, but a preference for an early resolution

of uncertainty, γ > 1/ψ. In our main calibration, we choose values for ψ and β commonly

used in the long-run risks literature and set γ to match the level of the risk-free rate. This

generates ψ = 2, β = 0.994 (as in Bansal and Yaron (2004)), and γ = 3.9. We consider

12In particular, the uncertainty about the long-run growth rate is the same for consumption and dividend,
and µ̄ = E (s1)µ1 + (1− E (s1))µ2.
13The case of learning about transition probabilities when the regimes are observed can be solved partic-

ularly fast. While the Appendix gives more details as to why, we note here that this model therefore is well
suited as a workhorse model for macro-finance applications.
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robustness to these values.

4.1.3 Results

Given these priors, we compute standard asset pricing moments for a ‘typical’long sample

(100 years) by averaging across 20,000 simulated sample moments. We also feed the regime

transitions corresponding to the U.S. historical experience from 1911 to 2010 into the model

to understand how conditional asset pricing moments (such as the conditional risk premium

and return volatility) respond to the Great Depression and, later, to the Great Recession.

Unconditional Moments
Panel A of Table 1 reports the average risk premium, return volatility, and Sharpe ratio

for a year sample, as well as the level and volatility of the real risk-free rate (all in logs). The

‘Data’column contains corresponding observed equity market moments for the U.S. from

1929 to 2011 (from CRSP). The real risk-free rate moments are from BY (2004).

As mentioned earlier, the T0 = 100 years prior is our benchmark, which implies that

the level of remaining parameter uncertainty after 100 years of observed data is consistent

with the uncertainty in BNSU’s parameter estimates. The average risk premium is 5.7%,

somewhat higher than its historical counterpart (5.1%), achieved with a 16% return volatility,

compared to 20% in the data. The Sharpe ratio of simple annual excess returns is 0.39,

slightly higher than in the data (0.36). The known parameters case (T0 = ∞) generates a
risk premium of 1.1% and a Sharpe ratio of 0.14, both well below their observed counterparts,

and a much higher risk-free rate. For the alternative cases with 200 and 300 years of prior

learning, the risk premium only falls slightly to 4.9% and 4.3%, respectively. In fact, the

model with the tightest prior (T0 = 300 years) can also match the risk premium if β is

increased to 0.9952 to match the risk-free rate level (right column of Panel A Table 1).

In sum, learning is slow and the quantitative effect of parameter learning on the risk

premium and Sharpe ratio are very large for a range of reasonable priors. It is remarkable

that the model can match the equity premium and Sharpe ratio, as well as the risk-free rate,

with a level of risk aversion of only 3.9 and an unconditional consumption volatility of 2.2%,

consistent with U.S. consumption data. By comparison, Bansal and Yaron (2004) match

the risk premium with relative risk aversion and consumption volatility calibrated to 10 and

2.7%, respectively.

Panel B of Table 1 reports results for ψ = 1.1. The risk premium with 100 years of prior

observations decreases from 5.7% to 4.1%. The Sharpe ratio falls only slightly from 0.39 to
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Table 1 - 100 year sample moments
Learning about the probability and persistence of a Great Depression

Unconditional Moments

Table 1: This table gives average sample moments from 20,000 simulations of 400 quarters of data
from the 2-state switching regime model of consumption growth, where the transition probabilities
are unknown. The bad state is calibrated to correspond to the U.S. consumption data over the Great
Depression, as explained in the main text. ET [x] denotes the average sample mean of x, SRT [x]
denotes the average sample Sharpe ratio of x, and σT [x] denotes the average sample standard
deviation of x. Rm and Rf denote the gross market return and real risk-free rate. Lower case
letters denote log of upper case variable. All statistics are annualized and, except for the Sharpe
ratio, given in percent. The relative risk aversion is 3.9 in all cases. Panel A shows the case of a
high IES (ψ = 2), while Panel B shows the case of ψ = 1.1. The time-preference parameter β is
set to 0.994, except for the case in the rightmost column which has β = 0.9952. The ’data’column
shows the historical excess market return moments for the U.S. from 1929 to 2011, as given in
CRSP. The real risk-free rate moments are taken from a similar sample as reported in Bansal and
Yaron (2004).

Panel A: (β = 0.994) (β = 0.9952)
ψ = 2, γ = 3.9 Data T0= 100yrs T0= 200yrs T0= 300yrs T0=∞ T0= 300yrs∗

ET [rm − rf ] 5.10 5.67 4.87 4.34 1.06 5.07

σT [rm − rf ] 20.21 16.23 16.56 16.67 15.07 16.61

SRT [RM −Rf ] 0.36 0.39 0.33 0.31 0.14 0.39

ET [rf ] 0.86 0.91 1.48 1.77 2.97 0.91

σT [rf ] 0.97 0.63 0.65 0.67 0.61 0.65

Panel B: (β = 0.994) (β = 0.9952)
ψ = 1.1,γ = 3.9 Data T0= 100yrs T0= 200yrs T0= 300yrs T0=∞ T0= 300yrs∗

ET [rm − rf ] 5.10 4.07 3.68 3.13 0.64 3.92

σT [rm − rf ] 20.21 14.54 15.05 15.30 14.02 15.12

SRT [RM −Rf ] 0.36 0.33 0.31 0.28 0.11 0.33

ET [rf ] 0.86 3.44 3.58 3.65 3.95 3.07

σT [rf ] 0.97 0.86 0.87 0.88 0.86 0.87

0.35, but the level of the risk-free rate increases significantly with a lower EIS. The volatility

of the price-consumption and price-dividend ratios are also lower. Thus, a high level of

the EIS is helpful in terms of matching the standard moments in models with parameter

uncertainty. For the more precise priors (T0 = 200 years and T0 = 300 years), there is a

modest decline in the risk premiums and increase in the risk free rate relative to the case
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when T0 = 100 years, similar to the dynamics from the high EIS case.

Conditional Moments using regime changes from 1911 to 2010
To mimic the U.S. historical experience, we feed into the model a path of states corre-

sponding to the 1911 to 2010 sample. We designate the NBER dates for the Great Depression

and the Great Recession as realizations of the bad state, with the remaining quarters are

assumed to be draws from the good state. The Great Recession was not as severe as the

Great Depression, though there were extensive fears in its early stages that it may become

a depression-like event.14

Figure 1 reports the mean beliefs about the transition probabilities for this case. From

1910 to 1929, the probability of remaining in the good state (π11) increased slowly, while

the belief about the persistence of the Depression state (π22) was not updated as there

were no observations from which to learn. When the Depression starts in 1929, Et [π11]

is sharply revised downwards, and Et [π22] increases during the Depression. At the end of

the Depression, Et [π22] is revised downwards as the length of this Depression now has been

resolved. From 1934 and onwards the pattern repeats as Et [π11] increases slowly until the

onset of the Great Recession. Since the Great Recession was quite short, Et [π22] is revised

downwards upon exit from the recession. Figure 2 shows how these belief dynamics are

reflected in conditional asset price moments. Abrupt shifts and then trending beliefs are

hallmarks of learning about rare events.

The wealth-consumption ratio (upper left panel of Figure 2) decreases strongly when

the bad state is realized, and continues to decrease until the bad state is exited. Given a

preference for early resolution of uncertainty and the stochastic discount factor, this event

is very risky, strongly increasing marginal utility. This is due both to a lower consumption

growth rate in a Depression, as well as increased risk coming from updates about the persis-

tence of the bad state. The latter is reflected in the difference between the dashed blue line,

the case with parameter uncertainty, and the solid red line, the benchmark case of known

parameters. The wealth-consumption ratio is lower in the case with parameter uncertainty,

reflecting higher discount rates, and it also falls more conditional on the bad state.

The real risk-free rate level (upper right panel of Figure 2) in both the models with

14The sample also contain 400 shocks to quarterly consumption growth (ε’s), which are random, antithetic
draws from a standard normal, normalized to have unit variance. We do not use actual consumption data
here as the pre-WW2 sample only has annual consumption data. In any case, the realized consumption
shocks have no impact on the evolution of either the wealth-consumption or the price-dividend ratios in this
model.
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Figure 1 - Mean beliefs about transition probabilities
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Figure 1: The top plot shows the mean beliefs about the probability of staying in the good state,
π11 for the 2-state switching regime model where the transition probabilties are unknown and where
the regimes are based on the U.S. macro data from 1911 to 2010. The lower plot shows the mean
beliefs about the probability of staying in the bad state π22.

and without parameter uncertainty decreases by about 5% in Depressions, due to the low

expected growth rate. In comparison, the real risk-free rate, measured as the nominal 3-

month T-bill rate minus the median inflation expectation from the Survey of Professional

Forecasters, decreased by about 5.5% from right before the Financial Crisis to the end of

the event. In the Great Depression the nominal rate did decrease by about 6%, but inflation

expectations are not available for this period. Realized inflation was, however, at some points

negative, indicating that the real rate decreased less than the nominal rate or possibly even

increased. On the other hand, the nominal rate was hitting the zero lower bound at this

point, so it is unclear how to relate this data to the frictionless economy presented here.
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Figure 2 - Sample path of the risk premium for case of learning about the
disaster probability
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Figure 2: The figure shows conditional moments from the 2-state switching regime model where
the transition probabilties are unknown and where the regimes are based on the U.S. macro data
from 1911 to 2010. The dashed line corresponds to the case with unknown transition probabilties,
while the solid line corresponds to the case with known transition probabilities. The preference
parameters are β = 0.994, γ = 3.9, ψ = 2.

The two bottom panels of Figure 2 display the conditional, annualized risk premium

and return volatility of the dividend claim. With parameter uncertainty, the risk premium

and return volatility increase to more than 40% and 80%, respectively, at the onset of the

bad state. Thereafter, both quantities decreased during the Depression, as the agent learns

about the persistence of the bad state. This decreasing return volatility is consistent with

recent experience over the financial crisis, both looking at realized volatility and the VIX

index. When the parameters are known, the conditional risk premium and return volatility
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stay constant through the depression at 18% and 52%, respectively. For comparison, Martin

(2012) argues that the risk premium at the onset of the financial crises exceeded 55%. Both

realized market volatility and the VIX index showed volatility in excess of 80% at the same

time. Realized volatility in the fall of 1929 also exceeded 80%.15

Table 2
Learning about the probability and persistence of a Great Depression

Additional moments using regimes from 1911 —2010

Table 2: This table gives the annualized sample moments from feeding the 2-state regime switching
model with unknown transition probabilities 400 quarters of regime switches based on U.S. macro
data from 1911 to 2010. ET [x] denotes the average sample mean of x, SRT [x] denotes the average
sample Sharpe ratio of x, and σT [x] denotes the average sample standard deviation of x. Lower
case letters denote log of upper case counterparts. The subscript m refers to the dividend claim
(the ’market’portfolio), while the subscript f refers to the real risk-free rate. All statistics are
annualized and, except for the Sharpe ratio, are given in percent. The superscript ’A’refers to
annual data. In particular, ∆cA is annual log consumption growth where, for the model simulated
data, the annual consumption data is time-averaged based on the quarterly model calibration. The
preference parameters used are β = 0.994, γ = 3.9, and ψ = 2. The ’data’ column shows the
historical excess market return moments for the U.S. from 1929 to 2011, as given in CRSP. The
real risk-free rate moments are taken from a similar sample as reported in Bansal and Yaron (2004).

Model
ψ = 2, γ = 3.9 Unknown π′s Known π′s Data

ET [rm − rf ] 5.51 0.98 5.10

σT [rm − rf ] 20.96 18.70 20.21

SRT [RM −Rf ] 0.32 0.14 0.36

ET [rf ] 1.10 2.90 0.86

σT [rf ] 1.02 1.02 0.97

Corr
(
∆cA,∆dA

)
0.59 0.59 0.38

Corr
(
∆cA, rAm

)
0.30 0.36 0.65

PDDepression
PDNormal

0.45 0.50 0.21/0.50

E
[
Rm|Beginning ofdepression

]
40 18 > 55

σ
[
Rm|Beginning ofdepression

]
85 52 > 80

Table 2 reports sample moments feeding in realized states. The return volatility with

parameter uncertainty is over this period 20.96%, relative to the observed volatility of 20.21%.

15Here realized volatility is calculated as the annualized value of the square root of realized daily variance
over a month.
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It is higher than the average reported across simulated economies in Table 1 due to the

presence of two crises in the sample. Table 2 also reports the correlation between annual

log consumption growth and market returns. With parameter uncertainty, this correlation

is 0.30, while with known transition probabilities this correlation is 0.36. In the data, from

1929 to 2011 as available from the BEA, this correlation is 0.65.16

The drop in the price-dividend ratio of the dividend claim at the onset of the bad state is

55% in the model with parameter uncertainty and 50% in the model with known transition

probabilities. In the Great Depression the drop in the price-dividend ratio from the beginning

of the Depression in 1929 to its lowest point in 1932 was 79%. For the recent Financial Crisis,

the corresponding drop was 50%.

In sum, the model with a depression state calibrated to consumption dynamics under

the U.S. Great Depression performs well along a number of dimensions when compared to

relevant moments from the data. In particular, it predicts a high unconditional risk premium

and a low risk-free rate, along with a very high risk premium and return volatility in the

crisis period, and only requires a relative risk aversion coeffi cient of 3.9. Relative to the

benchmark case with known transition probabilities, parameter uncertainty increases the

Sharpe ratio and the risk premium by factors of about 2.5 and 5, respectively.

Alternative Calibrations of Consumption Dynamics in the Depression State.
Table 3 shows results for alternative calibrations of the consumption dynamics in the

Depression state. The original calibration used the NBER dating of the Great Depression

(1929 − 1933) and the annual, real, per capita consumption data from BEA as the basis

for the calibration of the persistence of the bad state, as well as the mean and volatility of

consumption growth in this state. The 2-state regime switching model as calibrated here

does not account for any reversal phase with strong growth after a Depression has ended.

The high consumption growth of 5.4% in 1934 is consistent with such a reversal. The total

drop in consumption in the years 1929−1933 was 18%, while the decrease from 1929 to 1934

was 13%, and from 1929 to 1935 it was "only" 9%.

To assess the robustness of the results with respect to the calibration of the consumption

dynamics in this bad state, we also consider calibrations based on a 5- and 6-year Depression,

16This correlation is obtained using the beginning-of-period timing for consumption, given the time-
averaging of the consumption data (see Working (1960) and Campbell (1999)). That is, reported con-
sumption growth for year t is correlated with returns for year t − 1. The correlation between consumption
growth reported for year t and returns in year t, corresponding to using the end-of-period timing when
calculating consumption growth, is 0.18.
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with mean growth rate and volatility based on the years 1929 − 1934 and 1929 − 1935,

respectively. For ease of comparison, we keep the parameters in the good state the same.

The true quarterly persistence of the bad state is then 0.95 or 0.9583, with corresponding

quarterly means of −0.65% and −0.39%. The corresponding quarterly volatilities (where

volatility is as before adjusted for the time-averaging of the consumption data) are 3.01%

and 3.11%, respectively.

Table 3
Learning about the probability and persistence of a Great Depression

Alternative calibrations of Depression consumption dynamics

Table 3: This table gives average annualized sample moments from 20,000 simulations of 400 quar-
ters of data from the 2-state switching regime model of consumption growth, where the transition
probabilities are unknown. The bad state in the model is calibrated to the U.S. consumption data
for alternative choices for the duration of the Great Depression, as explained in the main text.
ET [x] denotes the average sample mean of x, SRT [x] denotes the average sample Sharpe ratio of
x, and σT [x] denotes the average sample standard deviation of x. Lower case letters denote log
of upper case counterparts. The subscript m refers to the dividend claim (the ’market’portfolio),
while the subscript f refers to the real risk-free rate. All statistics are annualized and, except for
the Sharpe ratio, are given in percent. The preference parameters used are given in the table below.
The preference parameters used are given for each column.

4yr 5yr 6yr 6yr dep.
depression depression depression β = 0.996

µD = −1.15% µD = −0.65% µD = −0.39% µD = −0.39%

ψ = 2, γ = 3.9 σD = 1.1% σD = 3.01% σD = 3.11% σD = 3.11%

ET [rm − rf ] 5.67 4.05 3.03 4.12 (0.85)

σT [rm − rf ] 16.23 16.13 15.84 15.73 (14.77)

SRT [RM −Rf ] 0.43 0.30 0.25 0.32 (0.13)

ET [rf ] 0.91 1.72 2.19 0.80 (2.22)

σT [rf ] 0.63 0.61 0.56 0.54 (0.54)

Table 3 shows that the risk premium and Sharpe ratio are both decreasing in the alter-

native calibrations, as the mean state is less severe. For the 4-year benchmark calibration,

the risk premium is 5.7%, whereas it is 4.1% and 3.0% in the 5- and 6-year calibrations,

respectively. The risk-free rate increases in these calibrations for the same reason. The final

column of Table 3 shows a calibration of the model with a 6-year Depression state where

the time-preference parameter (β) has been increased from 0.994 to 0.996 such that the level

of the risk-free rate is on par with the data. In this case, the risk premium and Sharpe
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ratio of the least risky, 6-year calibration are increased to 4.1% and 0.32, respectively. The

Sharpe ratio is on par with that observed historically. The corresponding case with known

parameters is shown in parentheses. Here the risk premium and Sharpe ratio are 0.9% and

0.13, respectively. We conclude from this that the overall implications of the parameter

uncertainty model are robust to alternative, reasonable calibrations of the Depression state,

in particular the strong increase in relevant asset pricing quantities such as the risk premium

and the Sharpe ratio relative to the benchmark known parameters case.

4.2 Uncertain mean and variance of the Depression state

In an experiment detailed in the online Appendix, we consider the case where the transi-

tion probabilities are known, but where instead the mean and variance parameters of the

Depression state (µ2 and σ2) are unknown. To summarize the results, learning about the

mean growth rate in the Depression state increases the risk premium by a factor of about 2

relative to the known mean benchmark case. Learning about the variance in the bad state

has only negligible impact on asset pricing moments.17

We next turn to a case of model uncertainty that generates interesting dynamics in

the price of risk and risk premium at the business cycle frequency. Since business cycles

are observed more frequently, learning can only be slow if the two models are very hard to

distinguish using available macro samples, which is exactly the case in the following analysis.

5 Learning about competing model specifications

In this section, we investigate an economy where agents face uncertainty over the model

specification. As discussed earlier, model uncertainty can be viewed as uncertainty about

an ‘indicator’parameter, M , that equals one for the true model and zero for an alternative

model. Here, we consider an agent who is uncertainty between the Bansal and Yaron (BY,

2004) model (M = 0) with homoskedastic shocks and a normally distributed i.i.d model

(M = 1).18 This is a natural framework to evaluate model uncertainty for two reasons: (1)

17We truncate the support of the mean and the variance parameters to ensure existence of equilibrium.
See the online Appendix for details.
18A similar problem was considered in Hansen and Sargent (2010), though their alternative model is not

the iid case, but a case where there is still positive, but less autocorrelation in consumption growth than in the
long-run risk model. Also, our focus is on the quantitative implications of rational learning for long-horizon
claims when the agent has Epstein-Zin preferences. Ju and Miao (2012) and Collard, Mukerji, Sheppard,
and Tallon (2011) consider different cases of model uncertainty under smooth ambiguity aversion.
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the predictable component in the BY model is highly persistent and diffi cult to detect over

even modestly sized samples; and (2) the asset pricing implications of the models are quite

different.

Consumption growth evolves via

∆ct+1 = M
{
µ+ σiidε

iid
t+1

}
+ (1−M)

{
µ+ xt + σBY ε

BY
t+1

}
,

where xt+1 = ρxt + ϕσxηt+1 and ε
iid
t+1, ε

BY
t+1, ηt

i.i.d.∼ N (0, 1). The agent knows neither M nor

xt and learns about them using Bayes rule. The steady state Kalman filter solves the the

filtering problem for xt. Under the BY model, the subjective consumption dynamics are

given by

∆ct+1 = µ+ x̂t + σ̂BY ε̂t+1,

x̂t+1 = ρx̂t + ϕ̂σ̂BY ε̂t+1, (17)

where x̂t = E [xt|yt, x̂0] and ε̂t+1, σ̂BY , and ϕ̂ have simple closed form expressions.

The agent initially assumes p0 = P (M = 0), and updates beliefs via Bayes rule:

pt+1 = P
(
M = 0|yt+1

)
∝ p

(
yt+1|yt,M = 0

)
pt. (18)

The probabilities are martingales. Letting p(yt+1|yt,M = 0) = pBY (yt+1|yt) and p (yt+1|yt,M = 1) =

piid (yt+1), the belief recursion is

pt+1 =
pBY (yt+1|yt)pt

pBY (yt+1|yt) pt + piid (yt+1) (1− pt)
, (19)

where pBY (yt+1|yt) ∼ N (µ+ x̂t, σ
2
BY + σ2x) and piid (yt+1) ∼ N (µ, σ2iid). The value function

normalized by consumption is a function of pt and x̂t and is computed numerically using

value function iteration, with boundary values given by the cases pt = 0 and pt = 1. See the

Online Appendix for more details on the numerical solution methodology.

5.1 Results and calibration

We calibrate the consumption dynamics based on Bansal and Yaron (2004) at a quarterly

frequency, since we will later feed actual consumption realizations. In particular, µ = 0.45%,

σiid = 1.65%, ρ = 0.9793, σBY = σiid, and ϕ = 0.089. This implies that σ̂BY = 1.706% and
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ϕ̂ = 0.044. The values for ρ and ϕ̂ are the same as the values for ρ and ϕ assumed in Bansal

and Yaron (2004). In other words, the amount of long-run risk as perceived by the agent

learning about xt from consumption growth is the same as that for the agent in Bansal and

Yaron (2004) who observes xt. Given the discussion in the previous section, we assume an

EIS greater than one. In our main calibration, we set ψ = 2 and calibrate β = 0.9963 and

γ = 9 such that we match the level of the equity market risk premium and risk-free rate.

5.1.1 The Price Of Risk

Figure 3 displays the annualized conditional price of risk (σ (Mt+1|pt, x̂t) /E (Mt+1|pt, x̂t)) in
this economy plotted against the state variables in the economy, pt and x̂t.

Figure 3 - Price of risk for case of model uncertainty
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Figure 3: The figure shows the annualized, conditional price of risk in the economy where the agent
is unsure whether true consumption growth is iid or follows the dynamics in Case 1 in Bansal and
Yaron (2004) —the homoskedastic case. The state variables are the current belief about the model
pt, where pt = 1 means the agent is certain the BY model is the true model, and x̂t —the current
belief about expected consumption growth, conditional on the BY model being the correct model.

When pt = 1, the agent is certain the BY economy is the true specification, in which
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case, the annualized price of risk is constant and equal to 0.51.19 In the i.i.d. case, pt = 0,

the price of risk is 0.30. For pt ∈ (0, 1) the price of risk is different than a simple weighted

average of the two boundary case economies—a crucial feature of priced model uncertainty.

In particular, at x̂t = 0, the price of risk remains close to, and in fact slightly higher than,

0.51 even for values of pt close to zero. Thus, even if the BY model is very unlikely, the agent

still perceives the economy to be much riskier than the i.i.d. case for two reasons. First,

shocks to model beliefs are permanent and therefore have a large impact on the continuation

utility, provided the two models have different continuation utilities (which is clearly the

case here). Second, as pt declines, the event that the BY model is the true model has an

impact similar to a ‘disaster’scenario. This occurs because the distribution of continuation

utility becomes increasingly negatively skewed as pt decreases, and such negative skewness

is disliked by risk averse agents with preferences for early resolution of uncertainty.

Unconditionally, the BY model generates lower utility than the iid model, and this dif-

ference increases when x̂t < 0, as future expected consumption growth rates are lower than

the i.i.d. model. Thus, model uncertainty is ‘worse’in these states of the world, generating

a higher conditional price of risk. Further, the two risks in the economy, the shock to con-

sumption and the update in the model probability, reinforce each other in these states. A low

consumption growth is bad also in the iid model. However, when x̂t < 0, a low consumption

growth realization also increases the likelihood of the BY model. In fact, Figure 3 shows that

when pt = 0.05 and x̂t is three standard deviations below its mean, the price of risk is about

1.10, almost twice that of the riskiest alternative model of the world. On the other hand,

when x̂t > 0 the updates in beliefs hedge the consumption shock in the following sense. A

low consumption realization is bad (which is also the case in the iid model), but since x̂t > 0,

the low consumption growth increases the likelihood that the iid model is the true model,

which is a good in a utility sense. Therefore, the total price of risk in these states can drop

below that of either of the limiting economies. In fact, when pt = 0.05 and when xt is three

standard deviations above its mean, the annualized price of risk is only 0.06.

Model uncertainty generates counter-cyclical risk prices, as x̂t tends to be low/high in

recessions/expansions. Figure 3 also show the tenuous nature of the rational expectations

assumption (see also Hansen (2007)). It is not until pt gets lower than 0.01% that the

asset pricing implications of model uncertainty are negligible, which, would take agents on

19In the exactly solved Bansal and Yaron model, the price of risk actually varies a tiny amount with x̂t,
but to the third decimal it is constant, as in the approximate solution for the homoskedastic case given in
Bansal and Yaron (2004).
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average about 800 years to learn starting from the initial prior p0 = 0.5. In sum, one

cannot outright dismiss a model as unimportant even though it is rejected by the data at

conventional significance levels—a point commonly made in the robustness literature. This

conclusion does depend on the agent having a preference for the timing of the resolution of

uncertainty, but as we show below, it does not rely on a high EIS. A model with an EIS

close to one, for instance, delivers similar dynamics. Power utility preferences, however, are

unaffected by model uncertainty and the price of risk is constant at γσ.20

5.1.2 Asset price moments

As in the previous case, the endogenous sensitivity to the learning dynamics generates strong

and long-lasting asset pricing implications even though agents are rational Bayesian learners.

Figure 4 shows the conditional risk premium, Sharpe ratio, and return volatility of the

dividend claim (see Equation(16)), as well as the model probability (pt) plotted against

time passed since the initial prior. The figure shows these moments averaged across 20,000

simulated economies where the initial beliefs are set to p0 = 0.5 and x̂0 = 0 and where the

true model is assumed to be the i.i.d. model (i.e., pt=∞ = 0). The corresponding moments

from each of the boundary economies are plotted as well.

After 100 years of learning the average model probability decreases from 0.5 to 0.17.

Though the agent updates in the direction of the true model, learning is slow as it is diffi cult

to discriminate between the two models. Despite downweighting the likelihood of the BY

model, the asset pricing moments are close to the corresponding values in the BY economy. In

fact, the risk premium and Sharpe ratio are only very slightly lower than in the BY model,

and barely decrease with time. In contrast to the initial case discussed earlier (learning

about the mean growth rate with EIS = 1), the asset pricing moments are highly nonlinearly

related to the variance of beliefs, which is pt (1− pt) and which decline substantially over
time, starting at 0.25 when pt = 0.5 and ending at 0.146 when pt = 0.17. The intuition

is similar to that for the price of risk, as given in Figure 3. The endogenous sensitivity of

continuation utility to belief shocks increases as pt declines, due to the increased negative

skewness in model risk.

Table 4 shows average 100-year sample moments for four different calibrations corre-

sponding to combinations of the EIS and initial model probability: ψ ∈ {1.1, 2} and
20Basically, it is γ − 1/ψ that matters for the pricing of shocks to the continuation utility. With γ = 9

this magnitude is 8.5 if ψ = 2, but only falls to 7 if ψ = 0.5. Thus, the main implications shown here are
robust to the level of the IES, as long as ψ is not very close to 1/γ.
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Figure 4 - Average conditional moments for case of model uncertainty
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Figure 4: The figure shows a the annualized conditional risk premium, Sharpe ratio, and return
volatility of the aggregate dividend claim averaged across 20,000 simulated economies over a 100
year period. The solid line corresponds to the case of model uncertainty, where the agent is unsure
whether true consumption growth is iid or follows the dynamics in Case 1 in Bansal and Yaron
(2004), the dashed line corresponds to the iid consumption growth model, and the dash-dotted line
corresponds to the case of the BY model. The bottom right plot shows the model probability (pt)
for each quarter over the 100 year samples, averaged across the 20,000 simulations.

p0 ∈ {0.1, 0.5}. The ‘Data’ column contains equity market moments and real risk-free
rate moments as described above. Table 4 also reports the correlation between annual log

consumption growth and market returns, which in the data, from 1929 to 2011 is 0.65.21

21This correlation is computed using the beginning-of-period timing for consumption, given the time-
averaging of the consumption data (see Working (1960) and Campbell (1999)). That is, reported consumption
growth for year t is correlated with returns for year t − 1. The correlation between consumption growth
reported for year t and returns in year t, corresponding to using the end-of-period timing when calculating
consumption growth, is 0.18.
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Table 4 —Model Uncertainty
100 year sample moments

Table 4: This table gives average sample moments from 20,000 simulations of 400 quarters of data
when the true model is that consumption growth is i.i.d., but the agent is unsure whether the
true model is Bansal-Yaron or the i.i.d. model. The prior probability p0 and the intertemporal
elasticity of substitution ψ are given for each column. In all cases, the time-preference β is 0.9963
and the relative risk aversion coeffi cient γ is 9, set to match the risk-free rate and the risk premium
in ’Model I’. ET [x] denotes the average sample mean of x, SRT [x] denotes the average sample
Sharpe ratio of x, and σT [x] denotes the average sample standard deviation of x. Lower case letters
denote log of upper case counterparts. The subscript m refers to the dividend claim (the ’market’
portfolio), while the subscript f refers to the real risk-free rate. The parameters governing the
dividend dynamics are λ = 2.5 and σd, as discussed in the main text. All statistics are annualized
and, except for the Sharpe ratio, are given in percent. The ’data’ column shows the historical
excess market return moments for the U.S. from 1929 to 2011, as given in CRSP. The real risk-free
rate moments are taken from a similar sample as reported in Bansal and Yaron (2004).

β = 0.9963 Model I Model II Model III BY Model iid Model
γ = 9 Data ψ=2, p0=0.5 ψ=1.1, p0=0.5 ψ=2, p0=0.1 ψ=2, p0=1 ψ=2, p0=0

ET [rm − rf ] 5.10 5.09 4.65 4.90 5.25 1.84

σT [rm − rf ] 20.21 14.44 13.94 14.25 14.82 11.49

SRT [RM −Rf ] 0.36 0.42 0.40 0.41 0.42 0.21

ET [rf ] 0.86 0.86 1.56 0.84 0.84 1.66

σT [rf ] 0.97 0.44 0.44 0.50 0.32 0.00

CorrT
(
∆cA, rAm

)
0.65 0.54 0.54 0.54 0.61 0.54

The ’Model I’column summarizes the case with initial model uncertainty, p0, set to 0.5

and ψ = 2. The model undershoots volatility somewhat (14.44% versus 20.21% in the data),

but otherwise matches these unconditional moments quite well. In fact, the moments are

very similar to the moments in the BY model, despite the true model here being the i.i.d.

model. In contrast, the i.i.d. model does a poor job in asset pricing. The ’Model II’column

keeps the prior the same, but decreases ψ to 1.1. The risk premium and return volatility both

decrease somewhat (to 4.65% and 13.94%, respectively), but overall the model does quite

well. In fact, as the risk-free rate here is a little too high, the model admits a calibration

with a higher β, which as seen in Equation (10) increases the risk premium and Sharpe

ratio when there is parameter uncertainty. Thus, the implications of model uncertainty as

considered here are robust to the level of the EIS, as long as it is above 1.22

22With an IES < 1, the return volatility decreases faster, making excess volatility too small. Also, as
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The column ’Model III’in Table 4 shows the asset pricing moments for the case when

the prior belief that the Bansal-Yaron model is the true model is low, p0 = 0.1. The asset

pricing moments look largely the same, although volatility is increased slightly. This is

in line with the discussion regarding the price of risk (Figure 1), which shows that as the

probability declines, the sensitivity of the continuation utility to updates in beliefs is higher,

even though the variance of beliefs is decreased substantially in this case: 0.09 versus 0.25

in the case when p0 = 0.5.

5.1.3 Feeding the model actual consumption data

Finally, we consider the impact of model uncertainty on the post-WW2 sample using the

corresponding time series of U.S. quarterly, real, per capita consumption growth. To be

consistent with the model, we first remove autocorrelation of 0.25 induced by time-averaging

of the data (see Working (1960)) and then normalize the sample mean and variance of this

modified consumption growth series to have mean and variance as assumed in the model

calibration.23

The solid line in the top graph in Figure 5 shows the posterior probability of the Bansal

and Yaron model, P(M = 0|yt+1), from 1947Q3 to 2010Q4, starting with an initial probability

of 0.5. The model probabilities vary quite a bit, from about 0.25 to 0.9. Periods with long

runs of either high consumption growth (late 1960’s) or low consumption growth (the Great

Recession) increase the probability of the Bansal and Yaron model relative to the iid model.

At the end of the sample, the likelihood of the Bansal and Yaron model is 0.9 at its maximum.

The dashed line shows the case where the initial model probability is set to 0.1. The dynamics

are largely the same, but the probability is of course shifted down relative to the earlier case.

In this case, the probability of the Bansal-Yaron model at the end of the sample is about

0.45.

The middle plot of Figure 5 shows the conditional price of risk, which varies substantially

and is overall counter-cyclical. However, there are cases where this is not the case. For

instance, in the expansion of the late 1960’s the price of risk increases as the Bansal and

Yaron model becomes more likely. Through the recession of 2001, on the other hand, the

price of risk decreases as the Bansal and Yaron model becomes more likely. This is due

emphasized in Drechsler and Yaron (2010), and IES > 1 is needed to explain the variance risk premium.
23We first construct yt = ∆ct − 0.25×∆ct−1, using actual real per capita quarterly consumption growth

data from Q2 in 1947 to Q4 in 2010. The modified consumption growth series is then constructed as
∆̃ct ≡ µ+ σiid × yt−ET [yt]

σT [yt]
, where ET [·] and σT [·] denote the sample mean and variance, respectively.
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to the then current high value of x̂t, arising from high growth in the 1990’s. As can be

seen from Figure 3, the high current x̂t makes the prospect of facing the Bansal and Yaron

consumption dynamics a conditionally less risky prospect as the agent then can enjoy higher

expected consumption growth than in the iid case. For the case with p0 = 0.5, the price of

risk in this sample reaches its maximum of roughly 0.7 during the Great Recession, and its

lowest point close to 0.4 in the mid 1960s. Corresponding to the dynamics apparent from

Figure 3, the price of risk in fact becomes more volatile with p0 = 0.1. Now, the price of

risk is about 0.9 during the financial crisis about 0.2 in the mid 60s. The bottom graph of

Figure 5 shows that the conditional risk premium on the levered consumption claim largely

inherits the dynamics of the price of risk. The conditional, annualized risk premium varies

substantially throughout the sample, from about 4% to 8% when p0 = 0.5 and 1% to 9%

when p0 = 0.1.

Overall, model learning leads to interesting risk price and equity premium dynamics,

even though both candidate models are homoskedastic and exhibit constant risk premiums

and Sharpe ratios. As in the earlier example, model learning has long-lasting, quantitatively

significant implications for standard asset pricing moments. This is due to the martingale

shocks, as well as the large difference in the utility continuation values implied by the two

models, and to the endogenously increased sensitivity of continuation utility to updates in

beliefs as pt decreases (as evident from Figure 3).

When feeding the agent the realized consumption growth from the post-WW2 sample, the

learning problem itself is quite hard and model beliefs for most of the sample are close to 0.5.

As before, the learning mechanism that gives rise to a potential resolution of standard asset

pricing puzzles does not rely on the predictability of any moment of consumption growth in

the data.

6 Conclusion

This paper finds that uncertainty about fixed parameters governing the exogenous aggregate

endowment process of the economy can have long-lasting, quantitatively significant asset

pricing implications. This conclusion relies on rational learning, which implies that posterior

probabilities regarding fixed quantities are martingales, and that agents have a preference for

early resolution of uncertainty. For such agents the updating of beliefs, with its associated

permanent shocks to the conditional distribution of future consumption growth, constitute

an additional risk that can serve as a tremendous amplification mechanism for the impact
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Figure 5
Model uncertainty: post-WW2 sample conditional moments
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Figure 5: The figure shows sample paths of the model probability (pt), the annualized conditional
price of risk, and the annualized conditional risk premium for the case of model uncertainty, where
the agent is unsure whether true consumption growth is iid or follows the dynamics in Case 1
in Bansal and Yaron (2004), where the shocks are taken from the post-WW2 real per capita
consumption growth as explained in the main text. The solid line corresponds to the case where
the initial subjective probability that the Bansal-Yaron model being the true model is set to 0.5.
The dashed line corresponds to the case where the initial probability of the Bansal and Yaron model
is set to 0.1. The yellow bars correspond to NBER recessions.

of macro shocks on marginal utility.

In several cases of parameter uncertainty we document an endogenous interaction between
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the increased precision of beliefs and an increased sensitivity of marginal utility to shocks

to beliefs. Thus, in a general equilibrium setting the asset pricing impact of parameter

uncertainty does not in general decline one for one with the variance of beliefs. For instance,

in a particular case of model uncertainty, we document that the price of risk in the economy in

fact can increase as the variance of parameter uncertainty declines due to a strong concurrent

increase in the skewness of beliefs.

We evaluate the quantitative impact of many different forms of parameter uncertainty and

show that learning about the persistence of bad states has the most dramatic asset pricing

implications. In particular, a model with a bad state calibrated to aggregate consumption

data from the U.S. during the Great Depression, where the agents learn about the persistence

of this state, yields a high equity premium (6%), a low risk-free rate (1%), with low relative

risk aversion (slightly less than 4), and low consumption volatility as in the data. In contrast,

the otherwise identical economy with known parameters yields an equity premium of 1%

with a risk-free rate of 3%. Further, this model can match the extremely high equity return

volatility observed at the onset of the Depression. We also emphasize a particular case of

model uncertainty, where agents learn whether consumption growth has a small persistent

component or not. This case, when fed the actual consumption growth realizations of U.S.

post-WW2 data, produces strongly counter-cyclical price of risk and equity risk premium at

the business cycle frequency despite the fact that both alternative models have homoskedastic

fundamentals and that preferences are isoelastic.

In sum, with Epstein-Zin preferences, which allow a separation of the intertemporal elas-

ticity of substitution and the relative risk aversion, parameter learning provides a significant

source of additional macro risk that can help explain both a high level and counter-cyclical

time-variation in the volatility of the marginal utility of the representative agent, as needed

to explain asset market data.

References
Ai, H. (2010), "Information about Long-Run Risk: Asset Pricing Implications," Journal of

Finance 65, 1333 - 1367.

Alvarez, F. and U.J. Jermann (2004), "Using asset prices to measure the cost of business

cycles," Journal of Political Economy 112, 1223—1256.

35



Alvarez, F. and U.J. Jermann (2005), "Using asset prices to measure the persistence of the

marginal utility of wealth," Econometrica 73, 1977—2016.

Bakshi, G. and G. Skoulakis (2010), "Do Subjective Expectations Explain Asset Pricing

Puzzles?", Journal of Financial Economics, December 2010, 117 - 140.

Bansal, R. and I. Shaliastovich (2010), "Confidence risk and asset prices", working paper,

Duke University and Wharton School of Business.

Bansal, R. and A. Yaron (2004), "Risks for the Long-Run: A Potential Resolution of Asset

Pricing Puzzles", Journal of Finance 59(4), 1481 - 1509

Barro, R. (2006), "Rare Disasters and Asset Markets in the Twentieth Century", Quarterly

Journal of Economics 121, 823 - 866

Barro, R. (2009), "Rare Disasters, Asset Prices, and Welfare Costs," American Economic

Review 99, 243 - 264.

Barro, R., Nakamura, E., Steinsson, J., and J. Ursua (2011), "Crises and Recoveries in an

Empirical Model of Consumption Disasters," Columbia Business School working paper

Beeler, J. and J. Campbell (2012), "The Long-Run Risks Model and Aggregate Asset

Prices: An Empirical Assessment," Critical Finance Review 1, 141 - 182..

Benzoni, L., Collin-Dufresne, P., and R. S. Goldstein (2011), "Explaining asset pricing

puzzles associated with the 1987 market crash," Journal of Financial Economics, 101, 552

—573.

Boguth, O. and L. Kuehn (2012), "Consumption Volatility Risk," Forthcoming Journal of

Finance.

Brandt, M. , Q. Zeng, and L. Zhang (2004), "Equilibrium stock return dynamics under

alternative rules of learning about hidden states," Journal of Economic Dynamics and

Control, 28, 1925 —1954.

Cogley, T. and T. Sargent (2008), "The Market Price of Risk and the Equity Premium: A

Legacy of the Great Depression?", Journal of Monetary Economics 55, 454 - 476

Collard, F., S. Mukerji, K. Sheppard, and J-M. Tallon (2011), "Ambiguity and the

HIstorical Equity Premium," Working paper, Oxford University.

36



David, A. (1997), "Fluctuating Confidence in Stock Markets," Journal of Financial and

Quantitative Analysis, 32, 457 - 462.

Detemple, J. (1986), “Asset pricing in a production economy with incomplete

information.”Journal of Finance, 41, 383—390.

Doob, J. L. (1949), "Application of the theory of martingales." Coll. Int. du C. N. R. S.

Paris, 23 - 27.

Dothan, M. U. and D. Feldman (1986), “Equilibrium interest rates and multiperiod bonds

in a partially observable economy.”Journal of Finance, 41, 369 —382.

Epstein, L. and S. Zin (1989), "Substitution, Risk Aversion, and the Temporal Behavior of

Consumption and Asset Returns: A Theoretical Framework", Econometrica 57, 937 - 969

Garleanu, N. and S. Panageas (2012), "Young, Old, Conservative and Bold. The

implication of finite lives and heterogeneity for asset pricing." UC Berkeley and Chicago

Booth working paper.

Gennotte, G. (1986), "Optimal Portfolio Choice under Incomplete Information," Journal of

Finance, 61, 733-749.

Geweke, J. (2001), "A note on some limitations of CRRA utility," Economics Letters 71,

341 - 345.

Goyal A. and I. Welch, “A Comprehensive Look at the Empirical Performance of Equity

Premium Prediction,”July 2008, Review of Financial Studies 21(4), 1455-1508.

Gvozdeva, E. and P. Kumar (2012), "Asset Pricing with Unknown Consumption and

Financial Risk," working paper, University of Houston.

Hall, R. E (1988), "Intertemporal Substitution in Consumption," Journal of Political

Economy 96, 339 —357.

Hansen, L. (2007), “Beliefs, Doubts and Learning: Valuing Macroeconomic Risk,”Richard

T. Ely Lecture, The American Economic Review 97, No. 2., 1 - 30

Hansen, L. and T. Sargent (2001), "Robust control and model uncertainty," American

Economic Review 91, 60-66.

37



Hansen, L. and T. Sargent (2010), "Fragile Beliefs and the Price of Uncertainty,"

Quantitative Economics, Vol. 1, Issue 1, pp. 129-162

Jobert, A., A. Platania, and L. C. G. Rogers (2006), "A Bayesian solution to the equity

premium puzzle," Working paper, Statistical Laboratory, University of Cambridge.

Johannes, M., L. A. Lochstoer, and Y. Mou (2010), "Learning about Consumption

Dynamics," Working paper, Columbia University.

Johnson, T. (2007), "Optimal Learning and New Technology Bubbles," Journal of

Monetary Economics, 87, 2486 —2511.

Ju, N. and J. Miao (2012), "Ambiguity, Learning, and Asset Returns," Econometrica 80,

559 —591.

Klibanoff, P., M. Marinacci, and S. Mukerji (2009), "Recursive Smooth Ambiguity

Preferences," Journal of Economic Theory 144, 930 —976.

Kreps, D. and E. Porteus (1978), "Temporal Resolution of Uncertainty and Dynamic

Choice Theory", Econometrica 46, 185 —200.

Lettau, M., S. Ludvigson and J. Wachter (2008), "The Declining Equity Premium: What

Role Does Macroeconomic Risk Play?", Review of Financial Studies 21(4), 1653 - 1687.

Lewellen, J. and J. Shanken (2002), "Learning, Asset-Pricing Tests, and Market

Effi ciency," Journal of Finance (57(3), 1113 - 1145.

Lu, Y. and M. Siemer (2011), "Asset Pricing with Learning about Disaster Risk," Boston

University Working paper.

Lucas, R. (1978), “Asset Prices in an Exchange Economy,”Econometrica 46, 1429-1446

Lucas, R. (1987). Models of Business Cycles. New York: Blackwell.

Lucas, R. and T. Sargent (1978), “After Keynesian macroeconomics”in After the Phillips

curve: Persistence of high inflation and high unemployment, Federal Reserve Bank of

Boston, Boston, MA.

Modigliani, F. (1977), "The monetarist controversy or, should we forsake stabilization

policies?," American Economic Review 67, 1—19.

38



Moore, B. and H. Schaller (1996), "Learning, Regime Switches, and Equilibrium Asset

Pricing Dynamics", Journal of Economic Dynamics and Control 20, 979 - 1006

Pastor, L. (2000), "Portfolio Selection and Asset Pricing Models," Journal of Finance 55,

179 - 223

Pastor, L. and P. Veronesi (2003), "Stock valuation and learning about profitability,"

Journal of Finance, 58, 1749 —1789.

Pastor, L. and P. Veronesi (2006), "Was there a NASDAQ bubble in the late 1990s?,"

Journal of Financial Economics, 81, 61 —100.

Pastor, L. and P. Veronesi (2009), "Learning in Financial Markets," Annual Review of

Financial Economics.

Pastor, L. and P. Veronesi (2012), "Uncertainty about government policy and stock

prices," Journal of Finance 64, 1219—1264.

Rietz, T. (1988), "The equity risk premium: A solution?", Journal of Monetary Economics,

Volume 22, Issue 1, July 1988, Pages 117-131

Shaliastovich, I. (2008), "Learning, Confidence and Option Prices," Working Paper, Duke

University

Strzalecki, T. (2011), "Temporal Resolution of Uncertainty and the Recursive Models of

Ambiguity Aversion," Harvard Working Paper.

Timmermann, A. (1993), "How Learning in Financial Markets Generates Excess Volatility

and Predictability in Stock Prices." Quarterly Journal of Economics, 1993, 108, 1135-1145.

Vazquez-Grande, F. (2009), "Effects of Learning the Long-Run Asset Pricing Model,"

working paper, Booth School of Business, The University of Chicago.

Veronesi, P. (2000), "How does information quality affect stock returns?" Journal of

Finance, 55.

Weitzman, M. (2007), “Subjective Expectations and Asset-Return Puzzles,”American

Economic Review, 97(4), 1102-1130.

Working, H. (1960), "Note on the Correlation of First Differences of Averages in a Random

Chain," Econometrica 28(4), 916 - 918.

39



Online Appendix —Not Intended For
Publication

7 Derivations of analytical solutions for the learning

about the mean case
There are several formal treatments of stochastic differential utility and its implications for asset pricing (see, e.g.,

Duffi e and Epstein (1992a,b), Duffi e and Skiadas (1994), Schroder and Skiadas (1999, 2003), and Skiadas (2003)).

In this Appendix we offer a simple derivation of the pricing kernel that obtains in an exchange economy where the

representative agent has a KPEZ recursive utility with unit EIS and where he is learning about the constant growth

rate of aggregate consumption. We first recall a few well-known results about stochastic differential utility.

7.1 Representation of Preferences and Pricing Kernel

We assume the existence of a standard filtered probability space (Ω,F , {Ft}, P ) on which there exists a vector z(t)

of d independent Brownian motions.

Aggregate consumption in the economy is assumed to follow a continuous process, with stochastic growth rate

and volatility:

d logCt = µC (Xt) dt+ σC (Xt) dz (t) , (20)

dXt = µX (Xt) dt+ σX (Xt) dz (t) , (21)

where Xt is a n-dimensional Markov process (we assume suffi cient regularity on the coeffi cient of the stochastic

differential equation (SDE) for it to be well-defined, e.g., Duffi e (2001) Appendix B). In particular µX is an (n, 1)

vector, σX is an (n, d) matrix.

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over a consumption

process {Ct} are represented by a utility index U(t) that satisfies the following recursive equation:

U(t) =

{
(1− e−βdt)C1−ρ

t + e−βdtEt
(
U(t+ dt)1−γ) 1−ρ1−γ

} 1
1−ρ

. (22)

With dt = 1, this is the discrete time formulation of KPEZ, in which Ψ ≡ 1/ρ is the EIS and γ is the risk-aversion

coeffi cient.

To simplify the derivation let us define the function

uα(x) =


x1−α

(1−α)
0 < α 6= 1

log(x) α = 1 .
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Further, let us define

g(x) = uρ(u
−1
γ (x)) ≡


((1−γ)x)1/θ

(1−ρ) γ, ρ 6= 1

uρ(e
x) γ = 1, ρ 6= 1

log((1−γ)x)
(1−γ)

ρ = 1, γ 6= 1 ,

where

θ =
1− γ
1− ρ .

Then, defining the ‘normalized’utility index J as the increasing transformation of the initial utility index J(t) =

uγ(U(t)), Equation 22 becomes:

g(J(t)) = (1− e−βdt)uρ(Ct) + e−βdt g (Et [J(t+ dt)]) . (23)

Using the identity J(t+ dt) = J(t) + dJ(t) and performing a simple Taylor expansion we obtain:

0 = βuρ(Ct)dt− βg(J(t)) + g′(J(t))Et [dJ(t)] . (24)

Slightly rearranging the above equation, we obtain a backward recursive stochastic differential equation which

could be the basis for a formal definition of stochastic differential utility (see Duffi e Epstein (1992), Skiadas (2003)):

Et[dJ(t)] = −βuρ(Ct)− βg(J(t))

g′(J(t))
dt. (25)

Indeed, let us define the so-called ‘normalized’aggregator function:

f(C, J) =
βuρ(C)− βg(J)

g′(J)
≡


βuρ(C)

((1−γ)J)1/θ−1
− βθJ γ, ρ 6= 1

(1− γ)βJ log(C)− βJ log((1− γ)J) γ 6= 1, ρ = 1

βuρ(C)

e(1−ρ)J
− β

1−ρ γ = 1, ρ 6= 1 .

(26)

We obtain the following representation for the normalized utility index:

J(t) = Et

(∫ T

t

f(Cs, J(s)) + J(T )

)
. (27)

Note the well-known fact that when ρ = γ (i.e., θ = 1) then f(C, J) = βuρ(C)− βJ and a simple application of

Itô’s lemma shows that

J(t) = Et

(∫ T

t

e−β(s−t)βuρ(Cs)ds+ e−β(T−t)J(T )

)
. (28)

Further, Duffi e-Epstein (1992b) show that the pricing kernel (Π(t)) for this economy has the following form (if
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there exists an ‘interior’solution to the optimal consumption portfolio choice problem of the representative agent):

Π (t) = e
∫ t
0 fJ (Cs,Js)dsfC (Ct, Jt) . (29)

It is the Riesz representation of the gradient of the normalized utility index at the optimal consumption (See Chapter

10 of Duffi e (2001) for further discussion.) We now consider the case of unitary EIS (ρ = 1) and give an expression

for the utility index and for the pricing kernel in this economy.

7.2 Equilibrium Prices when ρ = 1

Assuming the equilibrium consumption process given in equations (20)-(21) above, we obtain an explicit characteri-

zation of the utility index J and the corresponding pricing kernel Π.

For this we define, respectively, the operator

Dh (x) = hx (x)µX (x) +
1

2
trace

(
hxxσX (x)σX (x)T

)
where hx is the (n, 1) Jacobian vector of first derivatives and hxx denotes the (n, n) Hessian matrix of second

derivatives. With these notations, we find:

Proposition 1 Suppose I(x) : Rn → R solves the following equation:

0 = I(x)

(
(1− γ)µC(x) + (1− γ)2 ||σC(x)||2

2

)
+DI(x) + (1− γ)σC(x)σX(x)>Ix(x)− βI(x) log I(x) (30)

and satisfies the transversality condition limT→∞E
[
e−βT logCT + e−βT log I(XT )

]
= 0 then the value function is

given by:

J(t) = uγ(Ct)I(xt) (31)

The corresponding pricing kernel is:

Π(t) = e−
∫ t
0 β(1+log I(xs))ds(Ct)

−γI(xt) (32)

Proof. From its definition in equations 27 and 26 we obtain:

dJ(t)

J(t)
= (−(1− γ)β logC(t) + β log((1− γ)J(t))) dt+ σJ(t)dz(t) (33)

for some Ft-measurable diffusion process σJ . An application of Itô’s lemma to e−βt log((1 − γ)J(t)) shows that its
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solution satisfies the following integral equation for any T > t:

log((1− γ)J(t)) = E

[∫ T

t

e−β(s−t)
(
β(1− γ) logC(s) +

1

2
|σJ(s)|2

)
ds+ e−β(T−t) log((1− γ)J(T ))

]
(34)

Further, if it satisfies the transversality condition limT→∞ E[e−βT log((1− γ)J(T ))] = 0, then J(t) solves

log((1− γ)J(t)) = E

[∫ ∞
t

e−β(s−t)
(
β(1− γ) logC(s) +

1

2
|σJ(s)|2

)
ds

]
(35)

Now suppose I(x) satisfies the ODE given in equation 30. Applying Itô’s lemma to e−βt log((1 − γ)J(t)) using

our guess J(t) = uγ(Ct)I(xt) we find that

e−βT log((1−γ)J(T ))−e−βt log((1−γ)J(t)) = −
∫ T

t

e−βs
(
β(1− γ) logC(s) +

1

2
|σJ(s)|2

)
ds+

∫ T

t

e−βs((1−γ)σC(Xs)+σI(Xs))dz(s)

where

σI(x)> =
σX(s)>IX(x)

I(x)

and

σJ = (1− γ)σC + σI .

Suppose that (a) the stochastic integral is a martingale (suffi cient conditions are E
[∫ T
t
e−2βs(|σC(Xs)|2 + |σI(Xs)|2)ds

]
<

∞) and (b) the transversality condition listed in the proposition is satisfied, then taking expectations and the limit

when T →∞ in equation 35 above we obtain:

log((1− γ)J(t)) = E

[∫ ∞
t

e−β(s−t)
(
β(1− γ) logC(s) +

1

2
|σJ(s)|2

)
ds

]
(36)

This shows that our candidate solution satisfies the recursive backward stochastic differential equation we are

trying to solve. Uniqueness follows from the appendix in Duffi e, Epstein, Skiadas (1992) (under some additional

technical conditions listed therein).

The expression for the pricing kernel follows from its definition in equation 29, the expression for the aggregator

in equation 26 and the expression for the value function just derived.

The next result investigates the property of equilibrium prices.

Proposition 2 The risk-free interest rate is given by:

r(xt) = β + µC(xt) +
||σC(xt)||2

2
− γ||σC(xt)||2 + σC(x)σI(x) (37)

Further, if the following transversality condition is satisfied limT−>∞E [ΠTCT ] = 0, then the value of the claim to

aggregate consumption is given by:

V (t) =
C(t)

β
(38)
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It follows that
dVt
Vt

= (µC(xt) +
1

2
||σC(xt)||2)dt+ σC(xt)dz(t) (39)

The risk premium on the claim to aggregate consumption is given by

µV (x) + β − r(x) = (γσC(x)− σI(x))> σC(x) (40)

Proof. To prove the result for the interest rate, apply the Itô-Doeblin formula to the pricing kernel. It follows from

r(t) = −E[ dΠ(t)
Π(t)

]/dt that:

r(xt) = β + β log I(xt) + γµc(xt)−
1

2
γ2||σc(xt)||2 −

DI(xt)

I(xt)
+ γσ>I σC . (41)

Now substitute the expression for log I(x) from the ODE for I(x) in Proposition 1 to obtain the result.

To prove the result for the consumption claim, define V (t) = Ct
β
. It follows from Itô’s lemma that:

dVt + Ctdt

Vt
= (µV (Xt) + β)dt+ σC(Xt)dzt

with µV (x) = (µC(xt) + 1
2
||σC(xt)||2). Then, using the definition of the risk-free rate we obtain:

dVt + Ctdt

Vt
=
(
r(Xt) + (γσC(Xt)− σI(Xt))> σC(Xt)

)
dt+ σC(Xt)dzt

In turn since the state price density has dynamics:

dΠt

Πt
= −r(Xt)dt− (γσC(Xt)− σI(Xt)) dzt

an application of the Itô’s formula shows that

ΠTVT −ΠtVt +

∫ T

t

ΠsCsds =

∫ T

t

ΠsVs ((1− γ)σC(Xs) + σI(Xs)) dzs,

which is a martingale (under appropriate regularity conditions for the stochastic integral to be a Martingale). Taking

an expectation we thus obtain

ΠtVt = Et[

∫ T

t

ΠsCsds+ ΠTVT ]

If, furthermore, the solution satisfies the transversality condition listed in the proposition (i.e., limT−>∞E [ΠTCT ] =

0), then we can let T →∞ and have indeed proved that Vt = Ct
β
is the value of the claim to aggregate consumption.
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7.3 Application to learning

Suppose now that log consumption follows the following process:

d logCt = µdt+ σdz(t) (42)

but we assume further that µ has to be estimated by the representative agent based on observing past consumption.

Suppose that he starts with some Gaussian prior µ ∼ N(m0,Σ0). Then it is well-known that his posterior is also

Gaussian with mean and variance given by (mt,Σt) with dynamics:

dmt = λt (d logCt −mtdt) (43)

= λtσdz̃ (t) (44)

where the second equation defines the innovation process z̃t, a Brownian motion in the observation filtration of the

agent, in terms of which the consumption process can be rewritten as

d logCt = mtdt+ σdz̃ (t) . (45)

Further, the posterior variance is:

dΣt = −λ2
tσ

2dt (46)

and the regression coeffi cient is given by:

λt =
Σt
σ2
. (47)

Therefore, note the dynamics of λ:

dλt = −λ2
tdt. (48)

The solution of which is simply
1

λ (t)
=

1

λ0
+ t.

Now we see that the state-vector in the information filtration of the agent is X (t) = [mt, t] (or equivalently, [mt,Σt]).

7.3.1 The pricing kernel with EIS = 1

We now derive an expression for the I (·) function from proposition 1 above (for the case unitary EIS ρ = 1 and

arbitrary risk-aversion γ). The ode given in equation 30 simplifies to (we drop arguments for simplicity):

0 = I((1− γ)m+ (1− γ)2 σ
2

2
) +

1

2
Immλ(t)2σ2 + (1− γ)σ2λ(t)Im − βI log I + It. (49)
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We guess a solution of the form

log I(m, t) = a(t) + b(t)m

Plugging into the pde and setting coeffi cients in m to zero we obtain two odes which are:

b′(t)− βb(t) + 1− γ = 0 (50)

a′ (t)− βa (t) +
(1− γ)2 σ2

2
+

1

2
b(t)2λ(t)2σ2 + (1− γ)σ2λ (t) b (t) = 0 (51)

Now for the boundary conditions we note that (since limt→∞mt = µ and limt→∞ λ(t) = 0):

lim
t→∞

log I(t) =
(1− γ)µ+ 1

2
(1− γ)2σ2

β

thus we find the boundary conditions:

lim
t→∞

b(t) =
1− γ
β

(52)

lim
t→∞

a(t) =
(1− γ)2 σ2

2β
(53)

Now a solution satisfying this is (uniqueness follows from the result on BSDE):

b(t) =
1− γ
β

(54)

a (t) = (1− γ)2 σ2

∫ ∞
t

e−β(s−t)
(

1

2
+
λ (s)

β
+
λ (s)2

2β2

)
ds (55)

= (1− γ)2 σ2
1 + λt

β
− eβ/λt Ei

(
− β
λt

)
2β

(56)

where we have used the definition of the exponential integral function (the principal value of the integral Ei(z) =∫∞
−z

e−t

t
dt). It is straightforward to verify that the transversality condition of proposition 1 is satisfied.

Now, using the expression for the pricing kernel in Proposition 1, we can obtain the interest rate in closed form

using Proposition 2.

Specifically we find.

r(t) = β +mt +
σ2

2
− γσ2 + σ2bλ(t) (57)

and the dynamics of the pricing kernel:

dΠ(t)

Π(t)
= −r(t)dt− (γσ − bσλ(t))dz̃t. (58)

Note that interestingly the function a(t) plays no role in the expression for the interest rate and the risk-premium.

We can also solve for long-term zero-coupon bond prices (and hence yields in this model). Note that the risk-free
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zero coupon bond prices has price:

P (0, T ) = EQ[e−
∫ T
0 rtdt] (59)

= EQ[e
−
∫ T
0

(
β+mt+

σ2

2
−γσ2+σ2bλ(t)

)
dt

] (60)

where under the risk-neutral measure m has dynamics:

dmt = λtσ
(
dz̃Q (t)− (γσ − bσλt) dt

)
(61)

= −σ2 (γλt − bλ2
t

)
dt+ λtσdz̃

Q (t) . (62)

Since λt is deterministic, mt is a Gaussian process and the solution to the risk-free zero coupon bond is immediate.

P (0, T ) = e
−
∫ T
0

(
β+m0+σ2

2
−γσ2+σ2bλ(t)

)
dt
EQ[e−

∫ T
0 (
∫ t
0 σ

2(γλu−bλ2u)du−
∫ t
0 λuσdz̃

Q
u )dt]. (63)

Now, note that:

EQ[e−
∫ T
0

∫ t
0 λuσdz̃

Q
u dt] = EQ[e−

∫ T
0

∫ T
u λtσdtdz̃

Q
u ] (64)

= e
1
2

∫ T
0 (
∫ T
u λtσdt)

2
du. (65)

Thus, we get the final solution for the zero-coupon bond price:

P (0, T ) = e
−
∫ T
0

(
β+m0+σ2

2
−γσ2+σ2bλ(t)

)
dt+

∫ T
0

∫ t
0 σ

2(γλu−bλ2u)dudt+ 1
2

∫ T
0 (
∫ T
t λuσdu)

2
dt
. (66)

Now, we can do a lot of the integrals explicitly. By plugging in the expression for λ

1

λ(t)
=

1

λ0
+ t

we find

P (0, T ) = (λ0T + 1)
σ2(2γ(λ0T+1)−1)

2λ0 e−T(bλ0σ2+β+m0) (67)

and corresponding yield curve:

Y (0, T ) =
σ2(λ0T (2bλ0 + 2γ − 1) + (1− 2γ(λ0T + 1)) log(λ0T + 1))

2λ0T
+ β − γσ2 +m0 +

σ2

2
. (68)
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8 Further discussion of the "learning about the mean"-

economy
Here we discuss in detail the effect of increasing the EIS above 1 in the case when agents are learning about the

mean growth rate in the economy discussed in Section 3. The upshot is that increasing the EIS increases return

volatility, which in turn increases the risk premium. In addition, there is an interesting interaction effect between the

endogenous discount rate and the effect of shocks to the mean growth rate to the wealth-consumption ratio which

makes the pricing kernel more sensitive over time to shocks to beliefs. This is different from the case where the EIS

= 1, where the sensitivity of the pricing kernel to updates in beliefs is constant, and means that the asset pricing

implications of learning decrease over time at a slower rate than the posterior variance of beliefs.

8.1 The Effect of the Intertemporal Elasticity of Substitution

Increasing the EIS from 1 to, say, 2 has in typical calibrations only a minor effect on the sensitivity of the pricing

kernel to shocks to the continuation utility. For instance, if γ = 10, as in Bansal and Yaron (2004), increasing the

EIS from 1 to 2, means that this sensitivity, γ − 1/ψ, only increases from 9 to 9.5. However, when the substitution

effect dominates the wealth effect, the wealth-consumption ratio increases upon a high realization of consumption

growth as the expected mean growth rate is revised upwards. These dynamics create excess return volatility, which

in turn increases the risk premium. Further, interestingly, the endogenous sensitivity of the continuation utility to

updates in beliefs in this case increases over time, which leads to a slower decline in asset return Sharpe ratios over

time than in the cases with a lower EIS. Before we discuss these effects, we first explain how the model is solved.

8.1.1 Model solution

In the case when EIS 6= 1, it is necessary to resort to numerical solution of the model. Further, since the wealth

and substitution effects now no longer cancel, it is necessary to bound the support for the beliefs about the mean

growth rate, µ.24 Therefore, we consider a truncated normal prior distribution for µ, where the truncation bounds

µ and µ are set such that equilibrium exists for all possible ’boundary’(t = ∞) economies, where the agents have

learned the true mean. This ensures the existence of equilibrium. The updating equations for the hyperparameters,

µt+1 = µt + At√
1+At

σε̃t+1 and A−1
t+1 = A−1

t + 1, remain the same. The reason for this is easiest to see by considering

Bayes’ rule when the truncation of a general, untruncated prior, p (θ), is achieved by multiplying by an indicator

function which takes the value 1 if θ ∈
[
θ, θ̄
]
:

p
(
θ|yt

)
1θ≤θ≤θ̄ ∝ p

(
yt|θ

)
p (θ)1θ≤θ≤θ̄. (69)

24The reason is that a positive probability of an arbitrarily high (low) µ when the IES is greater than
(smaller than) 1, leads to a violation of a transversality condition and the equilibrium does not exist (i.e.,
the wealth-consumption ratio is infinite). This is easiest to see by considering a deterministic economy with
a constant growth rate. If the growth rate is higher than the risk-free rate, the wealth-consumption ratio,
and thus utility, is infinite.
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The conjugacy of the prior comes from the functional forms of the original prior and the likelihood, p (θ) and p
(
yt|θ

)
.

Thus, if the likelihood function is normal and the prior is truncated normal, the posterior is truncated normal

with the same truncation limits as the prior. The hyperparameters, µt and At, along with the truncation limits,

completely describe the solution. Of course, the hyperparameter µt, for instance, no longer in general corresponds to

the subjective conditional mean of consumption growth.

Note that since the posterior variance is deterministic (A−1
t+1 = A−1

t + 1), we can replace the state variable At

with time, t. Thus, the parameter uncertainty model is nonstationary. Building on Johnson (2007), who consider the

simpler case of power utility, we develop a solution methodology for the case of parameter uncertainty and Epstein-Zin

preferences where we solve the model using a backwards recursion from the known-parameters (t = ∞) boundary

economies.25 In particular, the log wealth-consumption ratio, pc, is found for each t on a grid for µt ∈
[
µ, µ

]
using

the recursion:

epc(µt,t) = E
[
βθe−γ∆ct+1+(θ−1) ln(exp(pc(µt+1,t+1))+1)|µt, t;A0, µ, µ

]
, (70)

where the evolution equations of the state variables are µt+1 = µt + At√
1+At

σε̃t+1 and A−1
t+1 = A−1

t + 1.26

8.1.2 Asset pricing moments versus amount of parameter uncertainty

To assess the asset pricing implications of varying degrees of parameter uncertainty in cases where EIS 6= 1, it is

necessary to calibrate the consumption dynamics as the model relies on a numerical solution. For this exercise, we

choose the true consumption dynamics to match the mean and volatility of time-averaged annual U.S. log, per capita

consumption growth, as reported in Bansal and Yaron (2004): ET [∆c] = 1.8% and σT (∆c) = 2.72%. This implies

true (not time-averaged) quarterly mean and standard deviation of 0.45% and 1.65%, respectively, which are the

numbers we use in the quarterly calibration. The lower bound for the quarterly growth rate µ is set at −0.3%, while

the corresponding upper bound is set at 1.2%. The prior beliefs are assumed to be unbiased and the maximum

level of prior uncertainty is A0 = 1, as before. The market claim we consider is a levered consumption claim. In

particular, we simply multiply the excess returns on the consumption claim with 1.5, which is consistent with the

average aggregate leverage ratio in the U.S. stock market.27

The left plot in Figure 6 shows that the conditional, annualized price of risk (that is, σt (Mt+1) /Et (Mt+1); see

Hansen and Jagannathan (1992)) is constant at 0.33 in the known parameters benchmark economy (solid line). This

is true for any level of the EIS since consumption growth is i.i.d. In the two economies with parameter uncertainty,

however, the price of risk decreases from about 1.15 to about 0.45. Thus, as in the EIS = 1 case discussed earlier, the

25See Vazquez-Grande (2009) for a similar solution technique.
26This backwards recursion is fast and very accurate. The only additional requirement is continuity at the

boundary when going from the boundary solutions where t = ∞ to a large t (we use t = 5000 as the point
in time before the known-parameter boundary is reached). This general solution method is used throughout
the paper, with detailed explanations relegated to the Appendix.
27Note that we do not add idiosyncratic dividend growth shocks. Thus, the return volatility of the market

claim ought not be compared directly to equity market return volatility. The risk premium, however, which
is a function of the covariance of dividend and consumption growth, can reasonably be compared to the
equity market risk premium.
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APPENDIX: Figure 6 - Price of Risk for case of unknown mean growth rate
when IES 6= 1
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Figure 6: The graph shows the conditional price of risk as well as the sensitivity of the continuation
utility component of the stochastic discount factor (SDF), as defined in the main text, to updates
in the mean beliefs about the growth rate of the economy (µ). The horizontal axis gives the number
of quarters passed since the initial prior. For both graphs the relevant statistics are evaluated for
unbiased beliefs (i.e.,at Et[µ] = µ. The red dashed line gives the case when the intertemporal
elasticity of substitution (IES) is 0.5, the blue dash-dotted line gives the case when the IES is 2,
while the black solid line gives the case for which the mean is known (note that in the latter case
the IES does not matter for the moments shown here).

price of risk decreases with the decreasing amount of parameter uncertainty (see Equation (10)). However, whereas

the component of the price of risk due to shocks to beliefs in the EIS = 1 case decreases by a factor of 200 over the

first 50 years, it only decreases by a little less than a factor of 3 in the cases shown in Figure 6.28

This much slower decline in the price of risk at the beginning of the sample is mainly due to the effect of truncation

bounds, which alters the prior distribution. In particular, for high At the prior is close to a uniform distribution with

upper and lower bounds µ and µ. Thus, extreme values are ruled out, which decreases the price of risk, but at the

same time, learning is slower as the signal to noise ratio in this case is decreased, relative to the untruncated case.

After about 100 quarters the effect of the truncation is negligible as, for µt = µ, the truncation bounds are 5

standard deviations away given the tighter prior at this time. At this point, there is an interesting relation between

the price of risk and the level of the EIS. In particular, the price of risk decreases more slowly with time with a higher

EIS (the red, dashed line has EIS = 0.5, while the blue, dashed-dotted line has EIS = 2). This is the result of an

endogenous interaction between the amount of parameter uncertainty, the effect of such uncertainty on the volatility

of the pricing kernel, and the level of the EIS.

The rightmost plot of Figure 6 shows the sensitivity of the continuation utility component of the log pricing

28In the plot, the price of risk decreases from about 1.15 to about 0.6 over the first 200 quarters. Since the
component due to learning is given by what is in excess of 0.33 (the case of known parameters), the decrease
is from about 0.8 to about 0.3, which is a little less than a factor of 3.

50



kernel to shocks to beliefs as a function of time (prior variance) and for the two levels of the EIS (0.5 and 2). This

sensitivity is calculated numerically from each model as (θ − 1) dpct
dµt
|µt=µ (see Equation (4)). From the analytical EIS

= 1 case (see Equation (9)), the relevant sensitivity is given by γ−1

β̃
= 1, 495 and is thus constant. From the rightmost

plot of Figure 6, focusing on the dynamics after 100 quarters of learning has taken place and the effects of truncation

are negligible, it is clear that this sensitivity is increasing for the high EIS case, but decreasing for the low EIS case.

In fact, this time-varying sensitivity is due to an endogenous interaction between discount rates and the size of the

shock to the growth rate, µt. As is well understood, the price-consumption ratio is more sensitive to shocks to the

growth rate if discount rates are low (see, e.g., Pastor and Veronesi (2002)). When the EIS is greater than one and

the substitution effect dominates, the price-consumption ratio increases when uncertainty decreases (see also Bansal

and Yaron (2004)) and so, holding µt = µ, the price-consumption ratio in this case increases over time, meaning that

discount rates decrease and, thus, the sensitivity to belief shocks increases. When the EIS is less than one, however,

the price-consumption ratio is decreasing over time as discount rates now increase when uncertainty decreases, and

this makes the pricing kernel less sensitive to shocks to beliefs over time. These endogenous dynamics are why after

100 years of learning the component of the price of risk that is due to belief shocks is almost twice as big for EIS =

2 versus EIS = 0.5, even though the direct risk price of shocks to the continuation utility (γ − 1/ψ) when the EIS =

2 is only 1.19 times the same when the EIS = 0.5.

Figure 7 shows the conditional, annualized market risk premium, log return volatility, as well as the log real yield

spread, for different economies versus the amount of parameter uncertainty, as measured by quarters passed since the

initial prior, A0 = 1. The conditional moments are always calculated assuming an unbiased prior, µt = µ.29 . The

yield spread is defined as the difference between the annualized 10-year yield on a real, default-free zero-coupon bond

minus the current (quarterly), annualized real risk-free rate. The economies with parameter uncertainty have EIS

ψ = {0.5, 2}, and as before we let γ = 10 and β = 0.994. As a benchmark, the black solid line depicts the case where

µ is known (in which the EIS does not matter for any of the reported moments, given the assumed i.i.d. consumption

growth process).

For the high EIS case (ψ = 2), the risk premium is initially about 12%, declining as posterior variance decreases,

and after 100 years of learning about 3%. For comparison, the case where µ is known yields a risk premium of 1.7%

(for any level of the EIS). Thus, there is again a significant effect of parameter uncertainty even after 100 years of

learning, even though at this point the standard deviation of beliefs about µ is only 0.09%.

For the low EIS case (ψ = 0.5), however, the risk premium is initially negative and increasing as posterior

variance decreases. When the EIS is less than one, the wealth effect dominates, and therefore a positive revision in

beliefs about µ, resulting from high realized consumption growth, is accompanied by a decrease in the price-dividend

ratio of this claim. For high levels of parameter uncertainty, the return on this claim is in fact negatively correlated

with realized consumption growth, which leads to a negative risk premium. As the posterior variance tightens over

time, the updates in the price-dividend ratio become smaller and the realized dividend dominates, which restores the

positive correlation between the return to this claim and consumption growth.

29See, e.g., Cogley and Sargent (2008) for a discussion of the asset pricing implications of biased priors.
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APPENDIX: Figure 7 - Conditional Moments for case of unknown mean
growth rate when IES 6= 1
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Figure 7: The graph shows the conditional risk prmeium, return volatility and real yield spread for
the economy with unknown mean growth rare (µ). The horizontal axis gives the number of quarters
passed since the initial prior. For all graphs the relevant statistics are evaluated for unbiased beliefs
(i.e., Et[µ] = µ. The red dashed line gives the case when the intertemporal elasticity of substitution
(IES) is 0.5, the blue dash-dotted line gives the case when the IES is 2, while the black solid line
gives the case for which the mean is known (note that in the latter case the IES does not matter
for the moments shown here).
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The middle plot in Figure 7 shows how these dynamics play out for the volatility of returns. With a high

EIS, when the substitution effect dominates, a positive shock leads to both high dividends and an increase in the

price-dividend ratio of the claim, which in turn means return volatility is high (excess volatility). After 100 years

of learning, the volatility is 6.2% versus 5% in the benchmark, known parameters economy. With a low EIS, the

response of the price-dividend ratio and realized dividend growth offset to some extent and volatility is therefore

always lower than in the case with an EIS > 1. The lowest level of volatility occurs when the level of parameter

uncertainty is such that the two offset almost exactly, as seen at around 180 quarters of learning.

The bottom plot in Figure 7 shows that the yield spread is positive initially and then basically zero for the case

of high EIS, but negative initially for the case of a low EIS. With a low EIS, the volatility of the risk-free rate is

higher, which leads to more volatile bond returns. The negative risk premium on real bonds, which are hedges in

this economy as discussed earlier, is therefore higher in the case if a low EIS, which leads to a negative yield spread.

With a high EIS, however, the effect of expected future higher short-term rates, as precautionary savings decreases

over time, dominates initially.

In sum, with an EIS greater than one, the model delivers excess return volatility and a higher risk premium

than in the case when EIS = 1, as analyzed earlier. Further, the real term structure is, except for in cases with

very high parameter uncertainty, essentially flat. Again, this is in sharp contrast to the objective long-run risks

assumed in Bansal and Yaron (2004), which implies a strongly downward-sloping yield curve. A low EIS generates a

counter-factual negative risk premium and also tends to deliver return volatility that’s lower than dividend volatility,

which is strongly counter-factual (see, e.g., Shiller (1980), Campbell and Shiller (1987)).

8.2 Unknown variance

In the preceding, the variance parameter σ2 was assumed known to investors. It is straightforward to relax this

assumption, though as pointed out in Weitzmann (2007) and Bakshi and Skouliakis (2010), it is necessary to truncate

also the support for σ2 in order to ensure finite utility. Weitzmann (2007) argues that learning about the variance

parameter can lead to arbitrarily high risk premiums as the subjective distribution for consumption growth becomes

fat-tailed. He further argues that learning about the mean, as in the preceding section, does not increase the fatness

of the tails of the conditional consumption growth distribution and therefore cannot help in explaining asset pricing

puzzles. Clearly, the latter intuition does not hold when considering a utility function that allows for a preference for

early resolution of uncertainty.30

Bakshi and Skouliakis (2010) argue that Weitzmann’s results, which are developed under power utility, are not

robust to reasonable truncation limits for σ2. However, given that we focus primarily not on the fatness of the tails,

but on permanent shocks to the conditional consumption growth distribution induced by the learning process itself,

uncertain variance can potentially still have important asset pricing implications. In the following, we show that

30In fact, with a truncated normal as the prior, the tails of the subjective distribution are actually less fat
than for a normal distribution with the same dispersion, but due to the updating that generates long-run
risks, the asset pricing implications were shown to be nontrivial.
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quantitatively large asset pricing implications of learning about the variance parameter indeed can arise, but that

interesting asset pricing effects of learning about the variance parameter are shorter-lived than those documented for

the uncertain mean case.

We assume that the joint prior over the mean µ and the variance σ2 is Normal-Inverse-Gamma:

p
(
µ, σ2|yt

)
= p

(
µ|σ2, yt

)
p
(
σ2|yt

)
, (71)

where

p
(
σ2|yt

)
∼ IG

(
bt
2
,
Bt
2

)
, (72)

p
(
µ|σ2, yt

)
∼ N

(
at, Atσ

2) . (73)

Given that log consumption growth is normally distributed, these prior beliefs lead to posterior beliefs that are of

the same form (conjugate priors). The updating equations for investors’beliefs are:

A−1
t+1 = 1 +A−1

t , (74)

at+1

At+1
=

at
At

+ yt+1, (75)

bt+1 = bt + 1, (76)

Bt+1 = Bt +
(yt+1 − at)2

1 +At
. (77)

In terms of pricing, note that this system can be reduced to three state-variables: at, Bt, and t, given initial priors.

We solve the model numerically and, as before, use the closed-form solution for the known parameters cases as the

boundary values in a recursion that is solved backwards in time on a grid for at and Bt. In order for the Inverse

Gamma distribution to have a finite mean and variance, which is convenient, we set the maximum prior uncertainty

as b0 = 5. As mentioned, we need to truncate the distribution for σ2 and we choose wide bounds: σ2 = 100 ∗ σ2,

σ2 = σ2/100. As before, the true quarterly variance is calibrated as σ2 = (1.65%)2, and the model is solved at the

quarterly frequency. The other parameters of the model are the same as in the case where the mean was the only

unknown parameter: a0 = µ = 0.45%, A0 = 1, γ = 10, ψ = 2, and β = 0.994. We set b0 = 5 and B0
b0−2

= σ2. The

latter implies that the initial truncated prior for the variance is unbiased, with a standard deviation of (1.85%)2.

Figure 8 shows the conditional annualized volatility of the log pricing kernel as the average per quarter across

20,000 simulated economies over a 100 year sample. We plot three cases. Learning about the mean only, as discussed

in the previous section, learning about the variance only, and learning about the mean and the variance parameters.

First, consider the dashed line, which shows the case when learning about the variance only. The volatility of the

pricing kernel is very high in the first decade, but then comes down quite quickly towards the benchmark, known

parameter value of 0.33.31 Pretty much all of this pattern comes from the continuation utility component of the

31The somewhat uneven line for the variance cases in the 5 first years is due to the truncation bounds
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APPENDIX Figure 8 - Conditional Volatility of the Pricing Kernel:
Cases with unknown variance
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Figure 8: The graph shows the subjective conditional annualized volatility of the Epstein-Zin
stochastic discount factor with preference parameters γ = 10, ψ = 2 and β = 0.994 over a 100
year sample period, averaged across 20,000 simulated economies at each time t. The dashed lined
corresponds to the case of unknown variance only, the dotted line corresponds to the case of
unknown mean only, while the dash-dotted line corresponds to the case of unknown mean and
variance.

pricing kernel and not from the power utility component. Thus, we confirm the results in Bakshi and Skouliakis

(2010), the fatness of the tails given reasonable bounds on the variance parameter is not suffi cient to strongly affect

asset prices. However, the large updates in beliefs about the variance that occur in the first 10 years does have

significant impact on the volatility of the pricing kernel through the effect on the continuation utility. After this,

the impact of shocks to beliefs about the variance parameter have a very small impact. The dash-dotted line shows

the case of unknown mean and variance. Here, we see that adding unknown variance yields a pricing kernel that

is on average always more volatile than in the known variance, unknown mean case. However, there are only large

differences in the first decade, relative to the case with only unknown mean (dotted line).

The risk premium for a 100 year long sample that start with priors corresponding to tossing out the 10 first years

plotted in Figure 8, is 1.8% for the case of unknown variance but known mean, relative to 1.7% for the benchmark

known parameters economy. In the case of unknown mean and variance, the average risk premium over this sample

slightly affecting the form of the subjective distribution for the variance parameters when the level of uncer-
tainty is very high.
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is 4.9% compared to 4.4% for the case of unknown mean and known variance.

In sum, unknown variance has more of a second-order effect on asset pricing moments, unless uncertainty is very

large, as would be the case in the decade after a structural break for instance. There are two reasons for this more

short-lived effect. First, Bayesian learning implies that learning about variance is much faster than learning about

the mean. Second, the variance is a second order moment, so generally less important for the continuation utility

than changes in the mean.

9 Uncertain mean and variance of the Depression state
Here, we consider the case where the transition probabilities are known, but where instead the mean and variance

parameters of the Depression state (µ2 and σ2) are unknown. The true model parameters are as in the previous

case.32

We assume that the joint prior over the unknown parameters is Normal-Inverse-Gamma:
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and where τ counts time spent in state 2 and where ∆cτ denotes the history of consumption growth realizations in

the Depression state. Obviously, there is no learning about µ2 and σ
2
2 from consumption growth in the good state.

Given that log consumption growth is normally distributed, these prior beliefs lead to posterior beliefs that are of

the same form (conjugate priors). The updating equations for investors’beliefs are:

A−1
τ+1 = 1 +A−1

τ , (81)

aτ+1

Aτ+1
=

aτ
Aτ

+ ∆cτ+1, (82)

bτ+1 = bτ + 1, (83)

Bτ+1 = Bτ +
(∆cτ+1 − aτ )2

1 +Aτ
. (84)

In terms of pricing, note that this system can be reduced to three state-variables: aτ , Bτ , and τ , given initial priors.

We solve the model numerically and, as before, use the closed-form solution for the known parameters cases as the

32In a related paper, Lu and Siemer (2011) consider an economy where agents use an adaptive learning
rule to learn about whether there is a disaster or not, as well as the mean growth rate in the disaster state.
This mean growth rate is drawn at the beginning of each disaster and so it is not a fixed parameter as in
the case we consider here.
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boundary values in a recursion that is solved backwards in time, where time again is counted in terms of time spent

in the Depression state, τ , on a grid for aτ and Bτ .

To ensure existence of equilibrium, it is necessary to truncate the distribution for the unknown parameters. For

example, the normal distribution for the mean in the disaster state implies that there is a positive probability that

the disaster state has, in fact, an arbitrarily high mean growth rate. As is well known, the growth rate of the economy

has, in conjunction with preference parameters, to satisfy a transversality condition, so an unbounded support for µ2

is inadmissible. Further, as pointed out by Geweke (2002), Weitzman (2007), and Bakshi and Skoulakis (2010), it is

also necessary to truncate the support for σ2. The updating equations for the state variables are not affected by the

truncation, although of course the numerical integration will take the truncation into account. More details on the

model solution technique are provided later in this Appendix.

As discussed earlier, our focus in this paper is on unbiased priors and we choose wide truncation limits relative

to the initial prior to limit the effects of truncation on our results.33 In particular, we let the truncation limits

on the mean growth rate be +/− 4 standard deviations away from the true mean, where the standard deviation

in question is that which arises after an initial prior learning period of 100 years. Thus, µ2= µ2 − 4 × σ2 ×
√
A0,

µ2 = µ2 + 4×σ2×
√
A0, where A0 = 16 (given the assumption of one previously observed Depression in the 100 year

training period) and at=0 = µ2. This implies that the prior standard deviation of beliefs about the Depression mean

is 0.3675%. Similarly, we set σ2 = 9 ∗ σ2, σ2 = 1e − 6. We set b0 = 16, reflecting the 100 year prior learning prior,

and B0
b0−2

= σ2 so the prior is unbiased.34 Simulating data from the truncated Inverse-Gamma distribution, we find

that this implies that the prior standard deviation of beliefs about the variance σ2
2 is (0.91%)2, while the standard

deviation of beliefs about the standard deviation σ2 is 0.27%.

Table 5 shows average 100-year sample asset pricing moments from this economy for γ = {3.9, 5} , β = 0.994,

and ψ = 2, as well as for the 100-, 200-, and 300-year prior training sample periods. The table also gives the asset

pricing implications of assuming that only the mean or only the variance are unknown. This is achieved by setting

A0 = 0 and b0 =∞, respectively.

Panel A of Table 5 shows the case where only the disaster mean µ2 is unknown. When γ = 3.9 the average

sample equity premium is 1.80% versus 1.05% in the known parameters benchmark case. This compares to 5.67% for

the case of unknown transition probabilities. Thus, while an uncertain disaster mean adds risk to this calibration, the

risk amplification is much less than in the case of unknown persistence parameters. The Sharpe ratio is 0.19, while

the risk-free rate is somewhat high at 2.75%, again giving a much poorer fit to the data than the case of unknown

transition probabilities.

Figure 9 shows as an example a simulated path of the annual wealth-consumption from this economy, which

33At the same time, we do not choose truncation limits that are very close to violating transversality
conditions. Bakshi and Skoulakis (2010) show that the results in Weitzman (2007) are due exactly to this,
i.e. that the quantitatively significant results come from the tiny probability of extreme levels of consumption
volatility.
34Through simulation we verify that the truncation bounds are such that E

[
σ22|b0, B0

]
= B0

b0−1 is very
close to a correct expression also for the truncated Inverse-Gamma distribution.
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shows how updates in beliefs only happen in the Depression state. In this case, the updating leads to time-varying

beliefs about µ2 (see Equation (82)), which is reflected in time-variation in the wealth-consumption ratio.35 Thus,

the learning about the mean economy generates somewhat more interesting dynamics in valuation ratios during a

disaster than the case when learning about the transition probabilities.

APPENDIX: Figure 9 - Mean beliefs about disaster mean and the
wealth-consumption ratio
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Figure 9: The figure shows a representative simulated 100-year sample path from the 2-state regime
switching model, where the mean consumption growth rate in the bad state is unknown. Top plot
shows the mean belief about this parameter, while the lower plot shows the annualized wealth-
consumption ratio (P/C), given a 100-year training period for the prior.

In Barro, Nakamura, Steinsson, and Ursua (2011), the standard error about the annual disaster mean is reported

to be 0.7%, which corresponds to about 0.18% for a quarterly mean. This level of uncertainty corresponds roughly

to a 200-year prior learning period before the last 100-years of data these authors base their estimates on. In the

200-year prior case, the equity premium is 1.45% and the Sharpe ratio is 0.17, while for the 300-year prior the risk

premium is 1.33% and the Sharpe ratio is 0.16. Thus, while the effects of parameter uncertainty are decreasing over

time, the decrease is very slow simply because one can only learn about a parameter that governs dynamics in a rare

event when the event occurs.

35We did not feed actual regimes and consumption shocks into this model as quarterly consumption data
is not available for the pre-WW2 period (including, of course, the Great Depression).
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The rightmost set of columns shows the case when the risk aversion coeffi cient is increased from 3.9 to 5. Now,

the 100-year prior yields a risk premium of 4.95% for the case of unknown mean with a 100-year prior, decreasing to

3.57% for the 300-year prior, which is still substantially higher than the 2.74% in the known mean benchmark case.

Note that the modest increase in risk aversion in this experiment has a large impact on the asset pricing moments.

This is nonlinearity is due to the negative skewness and ensuing non-normality of the consumption dynamics the

Depression calibration implies (see, e.g., Rietz (1988)). To summarize Panel A of Table 5, unknown Depression mean

can almost double the risk premium and increase the Sharpe ratio by up to a factor of 1.5 relative to the known

parameter case. This is in contrast to the previous case with unknown transition probabilities which increased the

risk premium by up to a factor of 5 and the Sharpe ratio by almost a factor of 3.

Figure 9 shows a 100-year path of the mean belief about the Depression mean, at, as well as the wealth-

consumption ratio, when the model is fed regimes from the last century of U.S. macro data, as discussed earlier for

the case of unknown transition probabilities. The calibration has γ = 3.9 and a 100-year prior and uncertainty over

only the mean parameter. The wealth-consumption ratio falls at the onset of the Great Depression, as before, but now

the updating about the mean growth rate in the Depression state leads to more dynamics in the wealth-consumption

ratio while in the Depression state. Once the normal state re-emerges, the wealth-consumption ratio is constant as

there is nothing to learn outside of the Depression event for the uncertain parameters considered here.

Panel B of Table 5 shows the case where only the variance in the bad state is unknown. This case is quickly

summarized. For either risk aversion assumptions, the asset pricing implications arising from the 100-, 200-, and

300-year priors are in all cases the same as those for the known parameters benchmark model. As is well-known,

second moments are much more precisely estimated than first moments, and this is reflected in the speed of learning

about the variance parameter. Note that this result is robust to small changes in the truncation bounds for σ2
2.

Panel C of Table 5 shows the case where both the mean variance in the bad state are unknown. In this case, the

risk premium and Sharpe ratio are slightly higher than for the case where only the mean was unknown. For instance,

for γ = 3.9, the risk premium increases from 1.80% to 1.83%, while for the γ = 5 case, the risk premium increases

from 4.95% to 5.13%. Thus, the unknown variance does interact with the unknown mean, in particular to create a

little higher return volatility, but the effect is not very large. In sum, in the case considered here where the priors

are unbiased, uncertainty about a truncated volatility parameter does not have large asset pricing impact given a

reasonably calibrated prior. Of course, with biased priors, a drifting variance parameter can affect both ex ante and

ex post risk premiums considerably (see Johannes, Lochstoer, and Mou (2010)). The exercise in this paper, however,

is to establish the properties of the risk pricing of parameter uncertainty.

10 Numerical solution method for model uncertainty

case
The model is given in the main text from Equation (10). The state variables are x̂t = E

[
∆ct+1 − µ|∆ct,M = 0

]
, the

conditional level of long-run risk given the Bansal-Yaron model, and the probability that the Bansal-Yaron model is
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the true model, relative to the iid consumption growth model, pt.

The boundary cases, pt = 0 and pt = 1, are solved as follows. For iid consumption growth, the price-consumption

ratio, PCt, is found using the fact that this ratio is constant in this case. Thus:

(
PC (pt = 0)

1 + PC (pt = 0)

)θ
= Et

[
βθe(1−γ)∆ct+1

]
= βθe(1−γ)µ+ 1

2
(1−γ)2σ2 . (85)

For the case where pt = 1, we have that:

PC (pt = 1, x̂t)
θ = Et

[
βθe(1−γ)∆ct+1 (PC (pt = 1, x̂t+1) + 1)θ

]
, (86)

where

∆ct+1 = µ+ x̂t + σ̂BY ε̂t+1, (87)

x̂t+1 = ρx̂t + ϕ̂σ̂BY ε̂t+1, (88)

pt+1 =
pBY (yt+1|yt)pt

pBY (yt+1|yt) pt + piid (yt+1) (1− pt)
, (89)

where the parameters are defined in the main text. The price-consumption ratio is found on a grid for x̂ by iterating

on Equation (86) given an initial guess of PC (pt = 1, x̂t).

Given these boundary solutions, the price-consumption ratio for the general cases where 0 < pt < 1 are found by

iterating on the equation:

PC (pt, x̂t)
θ = Et

[
βθe(1−γ)∆ct+1 (PC (pt+1, x̂t+1) + 1)θ

]
, (90)

on a grid for x̂ and p, given an initial guess of PC (pt, x̂t). We note that it is important to have an incredibly fine

grid as p approaches zero in order to ensure a nicely behaved PC ratio at this boundary. We use 200 grid points for

p with a strongly nonlinear grid for the reason just mentioned. The exact grid used can be obtained upon request.

Once the solution for the price-consumption ratio is found, we solve for the price-dividend ratio of the claim to

the exogenous dividend stream:

∆dt = µ+ λ (∆ct − µ)− 1

2
σ2
d + σdεd,t, (91)

where εd,t is iid standard normal and uncorrelated with the shock to consumption. In particular, we solve in a similar

manner as that just described for the consumption claim, the recursion:

PD (pt, x̂t) = Et
[
βθe−γ∆ct+1+∆dt+1 ((PC (pt+1, x̂t+1) + 1) /PC (pt, x̂t))

θ−1 (1− PD (pt+1, x̂t+1))
]
. (92)

We set, as the initial guess, the price-dividend ratio equal to the price-consumption ratio.
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11 Numerical solution method for 2-state switching

regime model with unknown parameters
Aggregate consumption growth is given by:

∆ct+1 = µ (st+1) + σ (st+1) εt+1, (93)

where εt+1
i.i.d.∼ N (0, 1) and where st ∈ {1, 2} follows a 2-state observable Markov chain with constant transition

probabilities:

Π =

 π11

1− π22

1− π11

π22

 , (94)

with πii ∈ (0, 1). The regime changes are assumed to be independent of the Gaussian shocks.

The agent knows the parameters within each state (µ1, µ2, σ1, σ2), but does not know the transition probabilities

(π11 and π22). At t = 0, the agent is given an initial, Beta-distributed prior over each of these parameters and

thereafter updates beliefs sequentially upon observing the time-series of realized regimes, st. We denote the history

of realized regimes up until time t as st. The prior Beta-distribution coupled with the realization of regimes, which

are governed by constant probabilities, leads to a conjugate prior and so posterior beliefs are also Beta-distributed.

The probability density function of the Beta-distribution is:

p (π|a, b) =
πa−1 (1− π)b−1

B (a, b)
, (95)

where B (a, b) is the Beta function (a normalization constant). The parameters a and b govern the shape of the

distribution. Of particular interest is the expected value:

E [π|a, b] =
a

a+ b
. (96)

In our case, there is one uncertain probability corresponding to each regime and a standard application of Bayes

rule shows that the updating equations basically count the number of times state i has been followed by state i

versus the number of times state i has been followed by state j. Given this sequential updating, we let the a and b

parameters have a subscript for the relevant state (1 or 2), as well as a time subscript .In particular:

ai,t = ai,0 + # (state i has been followed by state i) , (97)

bi,t = bi,0 + # (state i has been followed by state j) . (98)

When solving this problem numerically, we use the known parameters boundary economies (at T =∞ when the

parameters have been learned) as terminal values in a backwards recursion, following Johnson (2007).36 We use the

36Johnson uses this approach in a case with parameter learning and power utility. We extend this to the
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following state variables in the numerical solution :

τ1,t = a1,t − a1,0 + b1,t − b1,0 (99)

λ1,t ≡ Et [π11] =
a1,t

a1,t + b1,t
(100)

τ2,t = a2,t − a2,0 + b2,t − b2,0 (101)

λ2,t ≡ Et [π22] =
a2,t

a2,t + b2,t
, (102)

where the initial prior beliefs (a1,0, b1,0, a2,0, b2,0) are given as parameter inputs to the economy.

The equilibrium, recursive expression for the wealth-consumption ratio (PC) is standard in the Epstein-Zin case

and is (when ψ 6= 1) given by:

PCθt = Et
[
βθe(1−γ)∆ct+1 (PCt+1 + 1)θ

]
, (103)

where the subscript t here denotes dependence on information known at time t and Et [·] denotes the conditional

expectation given all information available at time t. We note that the state variables are st and Xt, where Xt ≡

[τ11,t, λ1,t, τ22,t, λ2,t] are suffi cient statistics for the agent’s priors. Further, note from Equations (97) through (102)

that we can write Xt+1 = f (st+1, st, Xt). Given this, we write the recursion equation (Equation (103)) as:

PC (st, Xt)
θ =

βθE
[
e(1−γ)(µ(st+1)+σ(st+1)εt+1) (PC (st+1, st, Xt) + 1)θ |st, Xt

]
= βθE

[
E
[
e(1−γ)(µ(st+1)+σ(st+1)εt+1) (PC (st+1, st, Xt) + 1)θ |st+1, st, Xt

]
|st, Xt

]
= βθE

[
e(1−γ)µ(st+1)+ 1

2
(1−γ)2σ(st+1)

2

(PC (st+1, st, Xt) + 1)θ |st, Xt
]

= βθ
2∑

st+1=1

Pr (st+1|st, Xt) e(1−γ)µ(st+1)+ 1
2

(1−γ)2σ(st+1)
2

(PC (st+1, st, Xt) + 1)θ . (104)

where the second to last equality uses the fact that regime changes and the Gaussian shocks to consumption growth

(st+1 and εt+1) are independent. Next, we need to find Pr (st+1|st, Xt). Denote the conditional density of πst+1,st
as g

(
πst+1,st |st, Xt

)
. Then:

Pr (st+1|st, Xt) =

∫ 1

0

πst+1,stg
(
πst+1,st |st, Xt

)
dπst+1,st

= E
[
πst+1,st |st, Xt

]
. (105)

Given the state variables described above, this expectation equals λst,t or 1− λst,t.

case of Epstein-Zin utility. A similar approach has also been used by Vasquez-Grande (2009).
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Thus, the numerical backward recursion will be as follows:

PC (st, Xt)
θ = βθ

2∑
st+1=1

E
[
πst+1,st |st, Xt

]
e(1−γ)µ(st+1)+ 1

2
(1−γ)2σ(st+1)

2

(PC (st+1, st, Xt) + 1)θ , (106)

where the boundary values for the wealth-consumption ratio for this backwards recursion are given by the limiting

economies at τ11,∞ and/or τ22,∞, where π11 and/or π22 are known. This backward recursion is solved on a grid for

λ1 and λ2. It is important to have very dense grid for λ of each state as it approaches 1 for the numerical solution

to be accurate. We use 100 grid points for each λ and the exact grid used can be obtained upon request.

11.1 Solving for a dividend claim

Let exogenous dividend growth be given by:

∆dt+1 = µ+ λ (∆ct+1 − µ)− 1

2
σ2
d + σdεd,t+1

= λ∆ct+1 + (1− λ)µ− 1

2
σ2
d + σdεd,t+1, (107)

where µ ≡ E (Pr (s∞ = 1|π11, π22))µ1 + E (Pr (s∞ = 2|π11, π22))µ2 and Pr (s∞ = i) is the ergodic probability of

being in state i. Thus, the leverage factor λ affects (relatively) short-run movements, whereas the uncertainty about

true long-run (unconditional) growth, which is a function of the uncertainty about the transition probabilities, is the

same for the dividend claim as for the consumption claim. Note that the long-run mean under the agent’s filtration

is in fact random and its’ t + 1 value can be expressed as µ (st+1, st, Xt). Finally, dividends have an idiosyncratic

component given by the standard normal shock εd, which is assumed uncorrelated with any other shocks in the

economy.

Solving for the price-dividend ratio of this claim is analogous to solving for the consumption claim. Note how

the uncertainty about the infinite horizon dividend growth rate is the same as that for infinite horizon consumption

growth rate as the exposure of dividend growth to µ (st+1, st, Xt) is always one, unaffected by the leverage parameter,

λ. In particular:

PD (st, Xt) =
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βθE

 e(λ−γ)(µ(st+1)+σ(st+1)εt+1)+(1−λ)µ(st+1,st,Xt)
(
PC(st+1,Xt+1)+1

PC(st,Xt)

)θ−1

...

× (PD (st+1, st, Xt) + 1) |st, Xt



= βθE

E
 e(λ−γ)(µ(st+1)+σ(st+1)εt+1)+(1−λ)µ(st+1,st,Xt)...(

PC(st+1,Xt+1)+1

PC(st,Xt)

)θ−1

(PD (st+1, st, Xt) + 1)
|st+1, st, Xt

 |st, Xt


= βθE

 e(λ−γ)µ(st+1)+ 1
2

(λ−γ)2σ(st+1)
2
+(1−λ)µ(st+1,st,Xt)

(
PC(st+1,Xt+1)+1

PC(st,Xt)

)θ−1

...

× (PD (st+1, st, Xt) + 1) |st, Xt



= βθ
2∑

st+1=1

Pr (st+1|st, Xt)


e(1−γ)µ(st+1)+ 1

2
(1−γ)2σ(st+1)

2
+(1−λ)µ(st+1,st,Xt)...(

PC(st+1,Xt+1)+1

PC(st,Xt)

)θ−1

(PD (st+1, st, Xt) + 1)

 . (108)

11.2 Limiting economies —boundary values for general case

11.2.1 All parameters known

The simplest limiting economy is given by the case where both π11 and π22 are known. Since the state is observed and

all the parameters are known, st is the only state variable and thus the wealth-consumption ratio can only take on

two values. Solving this limiting economy amounts to solving two nonlinear equations in two unknowns (PC (s = 1)

and PC (s = 2)):

PC (s = 1)θ = βθ

 π11e
(1−γ)µ1+ 1

2
(1−γ)2σ21 (PC (s = 1) + 1)θ ...

+ (1− π11) e(1−γ)µ2+ 1
2

(1−γ)2σ22 (PC (s = 2) + 1)θ

 , (109)

PC (s = 2)θ = βθ

 (1− π22) e(1−γ)µ1+ 1
2

(1−γ)2σ21 (PC (s = 1) + 1)θ ...

+π22e
(1−γ)µ2+ 1

2
(1−γ)2σ22 (PC (s = 2) + 1)θ

 . (110)

These equations are relatively straightforward to solve numerically, imposing the requirement ex ante that the wealth-

consumption ratio is positive and real. In our case, it was possible to verify that there is only one economically

reasonable solution by plotting the function space for the grid for the π′s, given the other parameters as assumed in

the main paper.

We solve these limiting equations for a grid on π11 and π22 with lower and upper bounds set to the 0.01% and

99.9% percentile values of the initial prior distribution for the general case we ultimately want to solve for, as given

by ai,0 and bi,0, i ∈ {1, 2}.

11.2.2 One transition probability known, one unknown

Another set of boundary economies are given by the case where one of the transition probabilities is known and

the other is unknown. This case corresponds to τ11,t < ∞, τ22,∞ or τ11,∞, τ22,t < ∞. We can find the wealth-
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consumption for these cases using the backward induction as given by Equation (106):

PC (st, Xt)
θ = βθ

2∑
st+1=1

E
[
πst+1,st |st, Xt

]
e(1−γ)µ(st+1)+ 1

2
(1−γ)2σ(st+1)

2

(PC (st+1, st, Xt) + 1)θ , (111)

where for the transition probability whose value is known, trivially E
[
πst+1,st |st, Xt

]
= πst+1,st . For instance, if

π11 is known, then E [π11|st, Xt] = π11 and E [1− π11|st, Xt] = 1 − π11 for all t. Also, in this case we have that

Xt = [τ22,t, λ2,t].

From these boundary values, we iterate backwards in time (which here is a 2-dimensional concept, as we are

recording time spent in each regime) to find the solution for the finite τ’s we ultimately are interested in.

11.3 Existence of equilibrium

The existence proof relies on the concavity of the value function and the fact that the value function is finite in

all the boundary, known parameter cases. In particular, the value function is bounded above by either, depending

on whether the value of the EIS is above or below 1, the case where there is only the good state (π11 = 1 and

π22 = 0, and economy starts in good state), or the case where there is only the bad state (π11 = 0 and π22 = 1 and

economy starts in bad state). Thus, the existence condition amounts to checking existence for cases of i.i.d. normal

log consumption growth with known mean and variance. A similar approach can be used to prove existence for all

the cases considered in this paper.

12 Unknown mean growth rate and variance of shocks

in Depression state of 2-state regime switching model
Aggregate consumption growth is given by:

∆ct+1 = µ (st+1) + σ (st+1) εt+1, (112)

where εt+1
i.i.d.∼ N (0, 1) and where st ∈ {1, 2} follows a 2-state observable Markov chain with constant transition

probabilities:

Π =

 π11

1− π22

1− π11

π22

 , (113)

with πii ∈ (0, 1). The regime changes are assumed to be independent of the Gaussian shocks.

In this case, the transition probabilities are assumed known, as are the mean and volatility parameters in the

good state, but the mean and volatility parameters of the bad state, µ2 and σ2, are assumed unknown. As discussed

in the main text, the conjugate prior for µ2 and σ2 is the Normal-Inverse-Gamma. In particular,

p
(
µ2, σ

2
2|∆cτ

)
= p

(
µ2|σ

2
2,∆c

τ) p (σ2
2|∆cτ

)
, (114)
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where

p
(
σ2

2|∆cτ
)
∼ IG

(
bτ
2
,
Bτ
2

)
, (115)

p
(
µ2|σ

2
2,∆c

τ) ∼ N
(
aτ , Aτσ

2
2

)
, (116)

and where τ counts time spent in state 2 and where ∆cτ denotes the history of consumption growth realizations in

the Depression state. Obviously, there is no learning about µ2 and σ
2
2 from consumption growth in the good state.

Given that log consumption growth is normally distributed, these prior beliefs lead to posterior beliefs that are of

the same form (conjugate priors). The updating equations for investors’beliefs are:

A−1
τ+1 = 1 +A−1

τ , (117)

aτ+1

Aτ+1
=

aτ
Aτ

+ ∆cτ+1, (118)

bτ+1 = bτ + 1, (119)

Bτ+1 = Bτ +
(∆cτ+1 − aτ )2

1 +Aτ
. (120)

In terms of pricing, note that this system can be reduced to three state-variables: aτ , Bτ , and τ , given initial priors.

We solve the model numerically and, as before, use the closed-form solution for the known parameters cases as the

boundary values in a recursion that is solved backwards in time, where time again is counted in terms of time spent in

the Depression state, τ , on a grid for aτ and Bτ .Both distributions have to be truncated in order to ensure existence

of equilibrium.

Define the state vector Xt = [aτ , Bτ ] as the state-variables in the economy with the exception of time in state 2,

τ , and the state itself, st. The equilibrium recursion used to solve the model is then:

PC (st, Xτ |st = 2)θ = βθ Pr (st+1 = 2|st = 2, Xs
t )×

...E
[
e(1−γ)∆ct+1 (PC (st+1, st, Xτ+1) + 1)θ |st+1 = 2, st = 2, Xt

]
+

...βθ Pr (st+1 = 1|st = 2, Xs
t )×

...E
[
e(1−γ)∆ct+1 (PC (st+1, st, Xτ ) + 1)θ |st+1 = 1, st = 2, Xt

]
. (121)

PC (st, Xτ |st = 1)θ = βθ Pr (st+1 = 2|st = 1, Xs
t )×

...E
[
e(1−γ)∆ct+1 (PC (st+1, st, Xτ+1) + 1)θ |st+1 = 2, st = 1, Xt

]
+

...βθ Pr (st+1 = 1|st = 1, Xs
t )×

...E
[
e(1−γ)∆ct+1 (PC (st+1, st, Xτ ) + 1)θ |st+1 = 1, st = 1, Xt

]
. (122)

Note that PC (s,Xτ ) appears in both sides of each equation as there is no updating of beliefs if the economy is in

state 1 next period. Thus, the numerical recursion involves also solving the nonlinear 2 equations, 2 unknowns problem
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implicit in these equations. We numerically integrate over the uncertainty in the mean and volatility parameters,

as well as for the shock to consumption . In particular, we use quadrature weights for the truncated normal for µ2

as well as for the inverse gamma for σ2, in addition to standard quadrature weights for the normal shock, ε. The

price-dividend ratio for the claim to the exogenous dividend stream is found analogously given the solution for the

price-consumption ratio (as in the earlier cases).
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