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1 Introduction

The cross-country analysis of credit boom episodes by Mendoza and Terrones (2008) shows that

credit booms in advanced and emerging economies are relatively rare, occurring at a frequency

of 2.8 percent in a sample of 61 countries spanning the period 1960-2010. They also found,

however, that when they occur they display a clear cyclical pattern of economic expansion in the

upswing followed by a steep contraction in the downswing. Strikingly, 1/3rd of these credit booms

are followed by full blown financial crises, and this frequency is about the same in advanced and

emerging economies. Similarly, Reinhart and Rogoff (2009) found that banking crises are preceded

by boom-bust credit cycles and a marked upswing in private credit in historical cross-country data

going back two centuries. From this perspective, and with all dimensions properly taken, what

happened in 2008 in the United States is a recurrent event.

The realization that credit booms are rare but perilous events that often end in financial crises

and deep recessions has resulted in a strong push for implementing a new “macroprudential” form

of financial regulation. As described in the early work by Borio (2003) or a recent exposition

by Bernanke (2010), the objective of this macroprudential approach to regulation is to take a

macroeconomic perspective of credit dynamics, with a view to defusing credit booms in their

early stages as a prudential measure to prevent them from turning into crises. The efforts to

move financial regulation in this direction, however, have moved faster and further ahead than

our understanding of how financial policies influence the transmission mechanism driving financial

crises, particularly in the context of quantitative macroeconomic models that can be used to design

and evaluate the performance of these policies.

This paper aims to fill this gap by answering three key questions: First, can credit frictions

affecting individual borrowers turn into a significant macroeconomic problem, in terms of both

producing financial crises with quantitative features similar to those we see in the data and in-

fluencing ordinary business cycles? Second, what is the optimal design of macroprudential policy

when financial regulators lack the ability to commit to future policies (i.e. when the policy needs

to avoid the classic time-inconsistency problem that emerges if we assume that the regulator could

act under commitment)? Third, how powerful is this policy for affecting the incentives of private

credit market participants in a prudential manner, and for reducing the magnitude and incidence

of financial crises?

This paper proposes answers to these questions based on the quantitative predictions of a dy-

namic stochastic general equilibrium model of asset prices and business cycles with credit frictions.

We start by developing a simple normative theory for the design of macroprudential policy. Then

we extend this theory to a richer model with production and working capital financing, and show

that, in the absence of macroprudential policy, this model’s financial amplification mechanism

produces financial crises with realistic quantitative features. Then we characterize and solve for

the optimal, time-consistent macroprudential policy of a financial regulator who lacks the ability
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to commit to future policies, and quantify a state-contingent schedule of debt taxes that supports

the allocations of this policy in a decentralized equilibrium.

A central feature of the framework examined in this paper is a pecuniary externality in a

similar vein of those used in the related literature on credit booms and macroprudential policy

(e.g. Lorenzoni, 2008; Korinek, 2009; Bianchi, 2011; Stein, 2012): Individual agents facing a

collateral constraint do not internalize how their borrowing decisions in “good times” affect the

market price of collateral, and hence the aggregate borrowing capacity, in “bad times” in which

the collateral constraint binds. This creates a market failure that results in equilibria that can

be improved upon by a financial regulator who faces the same credit frictions but internalizes the

externality.

The collateral constraint is modeled as an occasionally-binding limit on the total amount of

debt (one-period debt and within-period working capital loans) as a fraction of the market value

of physical assets that can be posted as collateral, which are in fixed aggregate supply. This

constraint is the engine of the mechanism by which the model can produce financial crises with

realistic features as an equilibrium outcome. This is because, when the constraint binds, Irving

Fisher’s classic debt-deflation financial amplification mechanism is set in motion. The result is a

financial crisis driven by a nonlinear feedback loop between asset fire sales and borrowing ability.

In this setup, the pecuniary externality of the credit constraint appears as a wedge between the

marginal costs and benefits of borrowing considered by individual agents and those faced by the

regulator. Private agents fail to internalize when making their borrowing plans taking collateral

prices as given that, if the collateral constraint binds in the future, fire sales of assets will cause a

Fisherian debt-deflation spiral, which will cause asset prices to decline sharply and the economy’s

overall borrowing ability to shrink.1 Moreover, in the model we propose, when the constraint

binds production plans are also affected, because working capital financing is needed in order

to pay for a fraction of factor costs, and working capital loans are also subject to the collateral

constraint. This results in a sudden increase in effective factor costs and a fall in output when the

credit constraint binds. In turn, this affects expected dividend streams and therefore equilibrium

asset prices, and introduces an additional vehicle for the pecuniary externality to operate, because

private agents do not internalize the supply-side effects of their borrowing decisions either.

We study the optimal policy problem of a financial regulator that chooses the level of credit

to maximize the private agents’ utility subject to resource and credit constraints with two key

features: First, the regulator internalizes the pecuniary externality. Second, the regulator cannot

commit to future policies. The first feature leads the regulator to impute a higher social marginal

cost to choosing higher debt and leverage in good times, because the regulator takes into account

1For this reason, the literature also refers to this externality as a systemic risk externality, because individual
agents contribute to the risk that a small shock can lead to large macroeconomic effects, or as a fire-sale externality,
because as collateral prices drop, agents fire-sale the goods or assets that serve as collateral to meet their financial
obligations.
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that higher leverage can cause a Fisherian asset price deflation in bad times. The second feature

implies that the regulator’s optimal policy is time-consistent, in contrast with the time-inconsistent

policy chosen by a regulator acting under commitment. Under commitment, we show that if

the collateral constraint binds, it is optimal for the regulator to make promises of lower future

consumption with the aim to prop up current asset prices, but reneging is optimal ex post. Hence,

in the absence of effective commitment devices, this policy strategy is not credible. Instead, we

explicitly model the regulator’s inability to commit to future policies, and solve for optimal time-

consistent macroprudential policy as part of a Markov perfect equilibrium in which the effect of

current optimal plans of the regulator on future plans is taken into account.

The paper develops some theoretical results and conducts a quantitative analysis in a ver-

sion of the model calibrated to data for industrial economies. The theoretical analysis keeps the

model tractable by abstracting from production and working capital, assuming that borrowing

ability depends on the aggregate supply of assets, instead of individual asset holdings, and mod-

eling exogenous dividend shocks as the only underlying shocks hitting the economy. These three

assumptions are relaxed in the quantitative analysis.

The quantitative results show that financial crises in the competitive equilibrium are signif-

icantly more frequent and more severe than in the equilibrium attained by the regulator. The

incidence of financial crises is about three times larger. Asset prices drop about 30 percent in a

typical crisis in the decentralized equilibrium, versus 5 percent in the regulator’s equilibrium. The

size of the output drop is about 20 percent larger, because the fall in asset prices reduces access

to working capital financing. The more severe asset price collapses also generate an endogenous

“fat tail” in the distribution of asset returns in the decentralized equilibrium, which causes the

price of risk to rise 1.5 times and the equity premium to rise by 5 times, in both tranquil times

and crisis times.

We also show that the regulator can replicate its equilibrium allocations as a decentralized

equilibrium with an optimal state-contingent schedule of taxes on debt. A key element of this

schedule is a macroprudential debt tax levied in good times when the probability of a financial

crisis the following period is positive (i.e. when collateral constraints do not bind at date t but

can bind with positive probability at t + 1). Analytical results show that this macroprudential

debt tax is always positive, and in the calibrated model we find it to be about 1 percent on

average and positively correlated with leverage. The optimal tax schedule when the constraint

binds also includes two other components, which can be positive or negative: One that captures

the regulator’s “ex post” incentives to influence asset prices to prop up credit when collateral

constraints are already binding, and one that captures its incentives to influence the optimal plans

of future regulators due to the inability to commit to future policies.

This paper contributes to the growing literature in the intersection of Macroeconomics and

Finance by developing a non-linear quantitative framework suitable for the normative analysis

of macroprudential policy. The non-linear global methods are necessary in order to quantify
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accurately the macro implications of occasionally binding collateral constraints in models with

incomplete asset markets and subject to aggregate shocks. This is important for determining

whether the model provides a reasonable approximation to the non-linear macroeconomic features

of actual financial crises, and thus whether it is a useful laboratory for policy analysis, and also for

capturing the prudential aspect of macroprudential policy, which works by altering the incentives

of economic agents to engage in precautionary behavior in “good times,” when credit and leverage

are building up. Moreover, using non-linear global methods is also key for solving the Markov

perfect equilibrium that characterizes optimal time-consistent macroprudential policy.

Most of the recent Macro-Finance literature, including this article, follows in the vein of the

research program on fire sales and financial accelerators initiated by Bernanke and Gertler (1989),

Kiyotaki and Moore (1997).2 In particular, we follow Mendoza (2010) in the analysis of non-linear

dynamics caused by credit constraints. He conducted only a positive analysis to show how an

occasionally binding collateral constraint generates financial crises with realistic features that are

nested within regular business cycles as a result of shocks of standard magnitudes. We focus

instead on normative analysis, and develop a framework for designing optimal, time-consistent

macroprudential regulation that can reduce the risk of financial crises and improve welfare.

As noted earlier, the pecuniary externality at work in our model is related to those examined

in the theoretical work of Caballero and Krishnamurthy (2001), Lorenzoni (2008) , and Korinek

(2009), which arises because private agents do not internalize the amplification effects caused by

financial constraints that depend on market prices.3 There are also studies of this externality with

a quantitative focus similar to ours. In particular, Bianchi (2011) makes a quantitative assessment

of a prudential tax on borrowing, but in a setting in which the borrowing capacity is linked to the

relative price of nontradable goods to tradable goods. Benigno et al. (2013) show that there can

also be a role for ex-post policies to reallocate labor from the non-tradables sector to the tradables

sector and show how this reduces the level of precautionary savings.

This paper differs from the above quantitative studies in several important aspects. First, it

focuses on asset prices as a key factor driving debt dynamics and the pecuniary externality, instead

of the relative price of nontradable goods. This is important because private debt contracts,

particularly mortgage loans like those that drove the high household leverage ratios of many

industrial countries in the years leading to the 2008 crisis, use assets as collateral. Second, from

a theoretical standpoint, a collateral constraint linked to asset prices introduces forward-looking

effects that are absent with a credit constraint linked to goods prices. In particular, expectations

of a future financial crisis affect the discount rates applied to future dividends and distort asset

prices even in periods of financial tranquility. This also leads to the time consistency issues that

2More recent papers include Jermann and Quadrini (2012), Perri and Quadrini (2011), Khan and Thomas
(2013), Bigio (2011), Boissay, Collard, and Smets (2012), Arellano, Bai, and Kehoe (2012).

3For a generic result on constrained inefficiency in incomplete markets see e.g. Geneakoplos and Polemarchakis
(1986).
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we tackle in this study and that were absent from previous work. Finally, our model differs

because it introduces working capital financing subject to the collateral constraint, which leads

the externality to affect adversely production, factor allocations and dividend rates, and thus again

asset prices. In contrast, Bianchi (2011) studies an endowment economy and in Benigno et al.

(2013) firms are not affected by credit constraints.

This paper is also related to Jeanne and Korinek (2010) who study the quantitative effects of

macroprudential policy in a model in which assets serve as collateral. In their model, however,

output follows an exogenous Markov-switching process and individual credit is limited to the sum

of a fraction of aggregate, rather than individual, asset holdings plus a constant term. Since in their

calibration this second term dwarfs the first, and the probability of crises matches the exogenous

probability of a low-output regime, the debt tax they examine has no effect on the frequency of

crises and has small effects on their magnitude. In contrast, in our model both the probability

of crises and output dynamics are endogenous, and macroprudential policy reduces sharply the

incidence and magnitude of crises. Our approach also differs from Jeanne and Korinek in that

they impose restrictions on the ability of the planner to distort asset prices when the collateral

constraint binds, which bypasses the time consistency problem. In particular, they assume that

the planner takes as given an asset pricing function consistent with the Euler equation of asset

holdings of the decentralized equilibrium.4 In contrast, we study a Markov perfect equilibrium

taking into account explicitly the inability of the planner to commit to future policies without

restricting otherwise its ability to influence prices. This approach also allows us to provide a

clearer analytical characterization of the pecuniary externality.5

Our analysis is also related to other recent studies exploring alternative theories of inefficient

borrowing and their policy implications. For instance, Schmitt-Grohé and Uribe (2012) and Farhi

and Werning (2012) examine the use of prudential capital controls as a tool for smoothing aggregate

demand in the presence of nominal rigidities and a fixed exchange rate regime. In earlier work,

Uribe (2006) examined an economy with an aggregate borrowing limit and compared the borrowing

decisions with an economy where the borrowing limit applies to each individual agent. He provided

an exact “no overborrowing” result in a canonical endowment economy model and also showed that

borrowing decisions are almost identical in a version of the model where the borrowing capacity

depends on asset prices and this exact equivalence does not hold. Our analysis differs in that

we conduct a normative analysis where the social planner takes borrowing decisions internalizing

price effects from borrowing decisions.

4We followed a similar approach in Bianchi and Mendoza (2010) by setting up the optimal policy problem of
the planner in recursive form using the asset pricing function of the unregulated decentralized equilibrium to value
collateral.

5In particular, we show that the optimal macroprudential tax is positive in states in which the collateral con-
straint is not binding, which rationalizes the lean-against-the-wind argument of macroprudential policy. By con-
trast, Jeanne and Korinek provide an expression for the tax that depends on equilibrium objects with a potentially
ambiguous sign.
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The literature on participation constraints in credit markets initiated by Kehoe and Levine

(1993) is also related to our work, because it examines the role of inefficiencies that result from

endogenous borrowing limits. In particular, Jeske (2006) showed that if there is discrimination

against foreign creditors, private agents have a stronger incentive to default than a planner who

internalizes the effects of borrowing decisions on the domestic interest rate, which affects the

tightness of the participation constraint. Wright (2006) then showed that as a consequence of this

externality, subsidies on capital flows restore constrained efficiency.

From a methodological standpoint, this paper is related to the literature on the use of Markov

perfect equilibria to solve optimal time consistent policy. In particular, our paper is related to

the work of Klein, Krusell, and Rios-Rull (2008) on government expenditures and Klein, Paul

and Quadrini, Vincenzo and Rios-Rull (2005) on international taxation. Our paper extends these

methods to solve for models with an occasionally binding endogenous constraint, in our case a

collateral constraint.

The rest of the paper is organized as follows: Section 2 presents the simple version of the model

used for the analytical work and characterizes the unregulated competitive equilibrium. Section

3 conducts the normative analysis of the simple model. Section 4 extends the model for the

quantitative analysis by endogenizing production, introducing working capital financing, allowing

borrowing capacity to depend on individual asset holdings, and adding interest-rate shocks and

financial shocks. Section 5 calibrates the model and discusses the quantitative findings. Section 6

provides conclusions.

2 A Simple Fisherian Model of Financial Crises

This Section characterizes the decentralized competitive equilibrium of a simple model of financial

crises driven by a collateral constraint. We use this model to develop the normative analysis of

the pecuniary externality and optimal time-consistent macroprudential policy in a tractable way.

The main features of this analysis will be preserved in the more general model that we use for the

quantitative analysis later in the paper.

2.1 Economic Environment

The economy is inhabited by a continuum of identical, infinitely lived agents with preferences

given by:

E0

∞∑
t=0

βtu(ct) (1)

In this expression, E(·) is the expectations operator, β is the subjective discount factor. The

utility function u(·) is a standard concave, twice-continuously differentiable function that satisfies

the Inada condition.
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In each period, agents hold one-period non-state contingent bonds bt and an asset kt that pays

a random dividend zt each period, where zt is an aggregate shock that follows a first-order Markov

process. The asset is in fixed unit supply, so that the market clearing condition in the asset market

is simply kt = 1. We denote by qt the market price of this asset. Hence, the budget constraint is:

qtkt+1 + ct +
bt+1

R
= kt(zt + qt) + bt (2)

where R is an exogenous gross real interest rate. This last assumption can be interpreted as

implying that the economy is a price taker in world financial markets.6 This is a reasonable

assumption for most of the advanced economies considered in the quantitative experiments of

Section 5. Moreover, assuming a representative borrower allows us to focus on efficiency gains

from policy, setting aside distributional effects that would arise if borrowers are heterogeneous.

Agents also subject to a credit constraint by which it cannot borrow more than a fraction κ of

the market value of the economy’s aggregate quantity of assets:

bt+1

R
≥ −κqt (3)

The assumption that borrowing ability depends on the aggregate market value of assets simplifies

the analytical expressions that characterize the planner’s problem of the next Section, but is

not necessary in general. Hence, in Section 4 we extend the model for the quantitative analysis

by assuming the more realistic scenario in which individual asset holdings determine borrowing

capacity.

The agent chooses consumption, asset holdings and bond holdings to maximize (1) subject to

the budget constraint (2) and the collateral constraint (3). This maximization problem yields the

following first-order conditions for ct, bt+1 and kt+1 respectively:

λt = u′(ct) (4)

λt = βREtλt+1 + µt (5)

qtλt = βEt [λt+1 (zt+1 + qt+1)] (6)

where λt > 0 and µt ≥ 0 are the Lagrange multipliers on the budget constraint and collateral

constraint respectively. Condition (4) is standard. Condition (5) is the Euler equation for bonds.

When the collateral constraint binds, this condition implies that the effective marginal cost of

borrowing for additional consumption today exceeds the expected marginal utility cost of repaying

R units of goods tomorrow by an amount equal to the shadow value of the credit constraint (i.e.

the household faces an effective real interest rate higher than R). Condition (6) is the Euler

6An alternative assumption that yields an equivalent formulation is to assume deep-pockets, risk-neutral lenders
that discount future utility at the rate β∗ = 1/R. These agents would remain indifferent to the policies we consider
because the return they obtain on their savings remains the same.
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equation for assets, which equates the marginal cost and benefit of holding them. Since the

collateral constraint depends on the aggregate quantity of assets, this condition is not affected by

µt.

The interaction between the collateral constraint and asset prices at work in this simple model

can be illustrated by studying how standard asset pricing conditions are altered by the constraint.

In particular, combining (5), (6) and the definition of asset returns (Rq
t+1 ≡

zt+1+qt+1

qt
), it follows

that the expected excess return on assets relative to bonds (i.e. the equity premium, Rep
t ≡

Et(Rq
t+1 −R)), satisfies the following condition:

Rep
t =

µt
u′(ct)Etmt+1

−
covt(mt+1, R

q
t+1)

Etmt+1

(7)

where mt,t+j ≡ βju′(ct+j)
u′(ct)

is the stochastic discount factor, and for simplicity when j = 1 we denote

it just as mt+1.

Following Mendoza and Smith (2006), we can denote the first term in the right-hand-side of

(7) as a direct (first-order) effect of the collateral constraint, which reflects the fact that a binding

collateral constraint exerts pressure to fire-sell assets, depressing the current price and increasing

excess returns.7 There is also an indirect (second-order) effect of the collateral constraint given by

the fact that covt(mt+1, R
q
t+1) is likely to become more negative, because the collateral constraint

makes it harder for agents to smooth consumption.

Condition (6) yields a forward looking solution for asset prices:

qt = Et
∞∑
j=1

mt,t+jzt+j (8)

Using the definition of asset returns we can rewrite this pricing condition as follows:

qt = Et
∞∑
j=0

(
j∏
i=0

Et+iRq
t+1+i

)−1

zt+j+1, (9)

As in Mendoza and Smith (2006), it follows that a binding collateral constraint at date t increases

expected excess returns and lowers asset prices at t. This mechanism is at the core of the pecuniary

externality in our model: larger levels of debt lead to more frequent fire sales, driving excess returns

up and depressing asset prices, which in turn reduce the borrowing capacity of the economy as a

whole. Moreover, because expected returns rise whenever the collateral constraint is expected to

bind at any future date, condition (9) also implies that asset prices at t are affected by collateral

constraints not just when the constraints binds at t, but whenever it is expected to bind at any

7When we extend the model in Section 4 to assume that individual asset holdings at the beginning of the period
are posted as collateral, this direct effect is weakened by an additional effect due to the fact that the agent also
attaches additional value to holding assets as collateral.

9



future date along the equilibrium path. Hence, expectations about future excess returns and risk

premia feed back into current asset prices, and this interaction will be important for the analysis

of macroprudential policy, as shown in the next Section.

2.2 Recursive Competitive Equilibrium

We now characterize the competitive equilibrium in recursive form. Since agents are atomistic and

take all prices as given, the recursive formulation separates individual bond holdings b that are

under the control of the agent at date t from the economy’s aggregate bond position B on which

all prices depend. Hence, the state variables for the agent’s problem are the individual states (b, k)

and the aggregate states(B, z). Aggregate capital is not carried as a state variable because it is

in fixed supply. In order to be able to form expectations of future prices, the agent also needs to

consider the law of motion governing the evolution of the economy’s bond position B′ = Γ(B, z).

For given B′ = Γ(B, z) and q(B, z), the agent’s recursive optimization problem is:

V (b, k, B, z) = max
b′,k′,c

u(c) + βEz′|zV (b′, k′, B′, z′) (10)

s.t. q(B, z)k′ + c+
b′

R
= k (q(B, z) + z) + b

− b
′

R
≤ κq(B, z)

The solution to this problem is characterized by the decision rules b̂(b, k, B, z), k̂(b, k, B, z), and

ĉ(b, k, B, z). The decision rule for bond holdings induces an actual law of motion for aggregate

bonds, which is given by b̂(B, 1, B, z). In a recursive rational expectations equilibrium, as defined

below, the actual and perceived laws of motion must coincide.

Definition (Recursive Competitive Equilibrium). A recursive competitive equilibrium is defined

by an asset pricing function q(B, z),a perceived law of motion for aggregate bond holdings Γ(B, z),

and decision rules b̂′(b, k, B, z), k̂′(b, k, B, z), ĉ(b, k, B, z) with associated value function V (b, k, B, z)

such that:

1.
{
b̂(b, k, B, z), k̂(b, k, B, z), ĉ(b, k, B, z)

}
and V (b, k, B, z) solve the agent’s recursive opti-

mization problem, taking as given q(B, z) and Γ(B, z) .

2. The perceived law of motion for aggregate bonds is consistent with the actual law of motion:

Γ(B, z) = b̂(B, 1, B, z).

3. Market clearing: Asset markets clear k̂(B, 1, B, z) = 1 and the resource constraint holds
b̂′(B,1,B,z)

R
+ ĉ(B, 1, B, z) = z +B
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3 Normative Analysis

In this Section, we conduct a normative analysis of the model we just laid out. First we make

a brief comparison of the competitive equilibrium with an efficient equilibrium in which there

is no collateral constraint. Then we study a constrained-efficient social planner’s (or financial

regulator’s) problem in which the regulator chooses the bond position for the private agent while

lacking the ability to commit to future policies. Finally, we show that the allocations of this

planner’s problem can be decentralized with state-contingent taxes on borrowing.

3.1 Equilibrium without collateral constraint

In the absence of the collateral constraint (3), the competitive equilibrium allocations can be

represented as the solution to the following standard planning problem:

H(B, z) = max
B′,c

u(c) + βEz′|zH(B′, z′)

s.t. c+
B′

R
= z +B

and subject also to either this problem’s natural debt limit, which is defined by B′ ≥ −min(z)/(R−
1), or a tighter ad-hoc time- and state-invariant debt limit.

The common strategy followed in quantitative studies of the macro effects of collateral con-

straints (e.g. Mendoza, 2010) is to compare the allocations of the competitive equilibrium with the

collateral constraint with those corresponding to the above problem without collateral constraint.

Private agents borrow less in the former because the collateral constraint limits the amount they

can borrow, and also because they build precautionary savings to self-insure against the risk of

the occasionally binding credit constraint. Compared with the constrained-efficient allocations we

examine next, however, we will show that the competitive equilibrium with collateral constraints

displays overborrowing when the collateral constraint does not bind. Hence, the competitive

equilibrium of the economy with the collateral constraint features underborrowing relative to the

equilibrium without collateral constraints but overborrowing relative to the constrained-efficient

equilibrium with the collateral constraint.

3.2 A Constrained Efficient, Time-Consistent Planner

Consider now a constrained-efficient social planner who makes the choice of debt for the represen-

tative agent subject to the same collateral constraint and lacking the ability to commit to future

policies. A key assumption in defining this planner’s problem relates to how the equilibrium price

of collateral is determined, because this determines the economy’s borrowing capacity and plays a

central role in the time-consistency issues discussed later in this Section. We assume that this price
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is determined in a competitive market, and hence the social planner cannot control it directly (i.e.

agents retain access to asset markets). The planner does, however, internalize how its borrowing

decisions affect asset prices, and makes optimal use of its debt policy to influence them.8

3.2.1 Private Agents Optimization Problem

Since the government chooses bond holdings, the optimization problem faced by private agents

reduces to choosing consumption and asset holdings taking as given a government transfer Tt,

which corresponds to the resources added or subtracted by the planner’s debt choices:

Problem 1 (Agent’s Problem in Constrained-Efficient Equilibrium)

max
{ct,kt+1}t≥0

E0

∞∑
t=0

βtu(ct)

s.t. ct + qtkt+1 = kt(qt + zt) + Tt

The first-order condition of this problem with respect to assets is standard:

qtu
′(ct) = βEtu′(ct+1) (zt+1 + qt+1) (11)

This condition enters as an implementability constraint in the planner’s problem. This is a key

constraint, because as we explain in the analysis below, it links the planner’s policy rules with

the market price of assets. In particular, it drives the mechanism by which these rules influence

the relationship between expectations about future consumption and asset prices and today’s

asset prices. As we explain below, this mechanism causes a planner assumed to be committed to

future policies to display a time-inconsistency problem, which motivates our interest in formulating

optimal macroprudential policy as a time-consistent problem of a planner that lacks the ability to

commit.9

8Since we focus on macroprudential policy, which by definition aims to prevent crises by altering behavior in
pre-crises times, this notion of constrained efficiency leaves out policies that may relax directly the credit constraint
and make crisis less severe ex-post. These policies are examined by Benigno et al. (2013) in the context of a model
in which the collateral constraint depends on goods prices. Nevertheless, as we show later in this Section, our
planner’s optimal policy does respond to incentives to prop up asset prices and borrowing capacity when credit
constraints are binding

9The time inconsistency problem does not arise in Lorenzoni (2008)’s classic model of fire sales because the
asset price is determined by a static condition linking relative productivity of households and entrepreneurs, rather
than expectations about future marginal utility as in our setup. Similarly, in Bianchi (2011), borrowing capacity is
determined by a static price of non-tradable goods. Bianchi and Mendoza (2010) and Jeanne and Korinek (2010)
impose time-consistency by construction in models with asset prices by imposing pricing conditions as explained
in the Introduction.
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3.2.2 Social Planner’s Optimization Problem

As in Klein et al. (2005), we focus on Markov stationary policy rules, which set the values of bond

holdings, consumption and asset prices as functions of the payoff-relevant state variables (b, z).

Since the planner is unable to commit to future policy rules, it chooses its policy rules at any given

period taking as given the policy rules that represent future planners’ decisions, and a Markov

perfect equilibrium is characterized by a fixed point in these policy rules. At this fixed point, the

policy rules of future planners that the current planner takes as given to solve its optimization

problem match the policy rules that the current planner finds optimal to choose. Hence, the

planner does not have the incentive to deviate from other planner’s policy rules, thereby making

these rules time-consistent.

Let B(b, z) be the policy rule for bond holdings of future planners that the planner takes as

given, and C(b, z) and Q(b, z) the associated recursive functions that return the private consump-

tion allocations and the market price of assets under that policy rule. Given these functions, we can

use the fact that the first-order condition of the households’ problem is an implementability con-

straint in the planner’s problem to illustrate how by choosing b′ the planner affects the stochastic

discount factor that determines current asset prices. In particular, the implementability constraint

(11) can be rewritten by replacing private consumption using the budget constraint of private

agents evaluated at equilibrium together with the planner’s budget constraint (Tt = bt − bt+1

R
).

The resulting expression indicates that the equilibrium asset price must satisfy:

Q(bt, zt) =
βEtu′

(
bt+1 + zt+1 − B(bt+1,zt+1)

R

)
(zt+1 +Q(bt+1, zt+1))

u′
(
bt + zt − bt+1

R

) (12)

while C(bt, zt) = bt + zt− B(bt,zt)
R

.The right-hand-side of this expression shows that the debt choice

of the planner affects asset prices directly, by inducing agents to reallocate consumption between

t and t + 1 which affects the stochastic discount factor, and indirectly by affecting the bond

holdings chosen by future governments, which also affects ct+1. These effects will be reflected in

the optimality conditions that characterize the social planner’s equilibrium. This equilibrium can

be defined in recursive form as follows.

Problem 2 (Recursive Representation of the Planner’s Problem) Given the policy rule of future

planners B(b, z), and the associated consumption allocations C(b, z) and asset prices Q(b, z) the
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planner’s problem is characterized by the following Bellman equation:

V(b, z) = max
c,b′,q

u(c) + βEz′|zV(b′, z′) (13)

c+
b′

R
= b+ z

b′

R
≥ −κq

u′(c)q = βEz′|zu′
(
b′ + z′ − B(b′, z′)

R

)
(Q(b′, z′) + z′)

In the above problem, the planner chooses b′(b, z) optimally to maximize the household’s utility

subject to three constraints: First, the economy’s resource constraint (with Lagrange multiplier

λ), which states that the consumption plan must be consistent with what private agents choose

optimally given their budget constraint, market clearing in the asset market, and the planner’s

transfer. Second, the collateral constraint (with Lagrange multiplier µ), which the planner faces

just like private agents. Third, the implementability constraint (with Lagrange multiplier ξ),

which requires that the asset price be consistent with the optimality condition that holds in the

private asset market.

Assuming that the equilibrium policy functions and the value function are differentiable, we can

apply the standard Envelope theorem results to the first-order conditions of the planner’s problem

in order to recover the corresponding optimality conditions for ct, bt+1 and qt in sequential form.

These optimality conditions are:

ct :: λt = u′(ct)− ξtu′′(ct)qt (14)

bt+1 :: u′(ct) = βREt
{
u′(C(bt+1, zt+1))− ξt+1u

′′(C(bt+1, zt+1))Q(bt+1, zt+1) + ξtΩt+1

}
+ξtu

′′(ct)qt + µt (15)

qt :: ξt =
κµt
u′(ct)

(16)

with Ωt+1 ≡ u′′(C(bt+1, zt+1))Cb(bt+1, zt+1)(Q(bt+1, zt+1) + zt+1) +Qb(bt+1, zt+1)u′(C(bt+1, zt+1)).

The key differences between the unregulated competitive equilibrium and the financial reg-

ulator’s equilibrium can be described intuitively by comparing the above optimality conditions

with those of the decentralized competitive equilibrium. Compare first condition (14) with the

analogous condition in the decentralized equilibrium, equation (4). Condition (4) states that for

private agents the shadow value of wealth is equal to the marginal utility of consumption, but (14)

shows that for the regulator it equals the marginal utility of consumption plus the effect by which
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an increase in consumption relaxes the implementability constraint.10 Moreover, condition (16)

shows that the planner sees a social benefit from relaxing the implementability constraint if and

only if the collateral constraint is currently binding, i.e., sign(µt) = sign(ξt). Hence, when the

collateral constraint binds, having an additional unit of wealth has a social benefit derived from

how an increase in consumption raises equilibrium asset prices, which in turn relaxes the collateral

constraint. This is clearer if we use (16) to rewrite the additional shadow value of wealth for the

planner in (14) as −u′′(ct)qt κµt
u′(ct)

. If the collateral constraint does not bind, µt = ξt = 0 and

the shadow values of wealth of the regulator and private agents in the decentralized equilibrium

coincide.

Compare next the planner’s Generalized Euler equation for bonds (15) with the analogous

Euler equation in the competitive equilibrium (5). These equations differ in two key respects:

First, condition (15) reflects the fact that the differences identified above in the valuation of bond

holdings of the regulator and the private agents “ex post,” when the collateral constraint binds, also

result in valuation differences “ex ante,” when the constraint is not binding, which arise because

both the regulator and the agents are forward looking. In particular, if µt = 0, the marginal cost of

increasing debt at date t for private agents in the competitive equilibrium is simply βREtu′(ct+1).

In contrast, the second term in the right-hand-side of (15) shows that the regulator attaches a

higher social marginal cost to borrowing, because it internalizes the effect by which the larger debt

at t reduces tomorrow’s borrowing ability if the credit constraint binds then.11 In other words,

because the planner values more consumption when the constraint binds ex-post compared to

private agents, it borrows less ex-ante. Moreover, this mechanism captures the standard pecuniary

externality of the related literature on macroprudential regulation, because it reflects the response

of the regulator who takes into account how equilibrium asset prices tomorrow respond to the debt

choice of today if the constraint becomes binding tomorrow. Since asset prices are determined in

private markets, the equilibrium response is captured by the changes in the pricing kernel reflected

in u′′(ct+1).

The second difference between the two Euler equations for bonds is in that condition (15)

includes additional dynamic effects from current borrowing choices resulting from the forward

looking nature of asset prices. Because of its inability to commit, the regulator aims to influence

future marginal utilities by changing the endogenous state variable of the next-period’s regulator,

as reflected in the partial derivatives of the future policy rule and pricing function with respect

to b included in the term Ωt+1 in the right-hand-side of (15). These incentives are only relevant,

however, if the borrowing constraint is binding at t, because otherwise they vanish when ξt = 0.

We can now define the constrained-efficient equilibrium formally:

Definition. The recursive constrained-efficient equilibrium is defined by the policy rule b′(b, z)

10Note that −ξtu′′(ct)qt > 0 because u′′(ct) < 0 and ξt > 0, as condition (16) implies. Hence, λt > u′(ct).
11We can use again (16) to make this more evident mathematically by rewriting the second term in the right-

hand-side of (15) as −u′′(ct+1)qt+1
κµt+1

u′(ct+1)
, which is positive for µt+1 > 0.
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with associated consumption plan c(b, z), pricing function q(b, z) and value function V(b, z), and

the conjectured functions characterizing the policy rule of future planners B(b, z) and its associated

consumption allocations C(b, z) and asset prices Q(b, z), such that the following conditions hold:

1. Planner’s optimization: V(b, z),b′(b, z),c(b, z) and q(b, z) solve the Bellman equation defined

in Problem (2) given B(b, z), C(b, z),Q(b, z).

2. Time consistency (Markov stationarity): The conjectured policy rule, consumption alloca-

tions, and pricing function that represent optimal choices of future planners match the cor-

responding recursive functions that represent optimal plans of the current regulator: b′(b, z) =

B(b, z), c(b, z) = C(b, z), q(b, z) = Q(b, z).

Note that the requirements that the consumption allocation must be an optimal choice for

households according to (1) and that the holdings of assets by households satisfy kt = 1 are

redundant, because the former is implied by the planner’s resource constraint and the latter is the

planner’s implementability constraint. The transfer Tt is also implicit from the planner choices for

bonds.

3.3 Decentralization

We show now that a state-contingent tax on debt can decentralize the constrained-efficient, time-

consistent allocations.12 With a tax τ t on borrowing, the budget constraint of private agents in

the regulated competitive equilibrium becomes:13

qtkt+1 + ct +
bt+1

R(1 + τ t)
= kt(zt + qt) + bt + Tt (17)

where Tt represents lump-sum transfers by which the government rebates all its tax revenue. The

agents’ Euler equation for bonds becomes:

u′(ct) = βR(1 + τ t)Etu′(ct+1) + µt (18)

Analyzing the optimality conditions of the planner’s problem together with those of the regulated

and unregulated decentralized equilibria leads to the following proposition:

Proposition 1 (Decentralization) The constrained-efficient equilibrium can be decentralized using

a state contingent tax on debt with its revenues rebated as a lump-sum transfer. The tax on debt

12 Following Bianchi (2011), it is also possible to decentralize the planner’s problem using measures targeted
directly to financial intermediaries; in particular using capital requirements, reserve requirements or loan-to-value
ratios.

13The tax can also be expressed as a tax on the price of bonds (i.e. on the income generated by borrowing), so
that the post-tax price would be (1− τR)(1/R). The two treatments are equivalent if we set τR = τ/(1 + τ).
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is given by:

τ t =
REt

{
−ξt+1u

′′(C(bt+1, zt+1))Q(bt+1, zt+1) + ξtΩt+1 + ξtu
′′(ct)qt

}
Etu′(C(bt+1, zt+1))

Proof: See Appendix A.1

The above optimal state-contingent tax schedule can be broken down into three components.

The first is the macroprudential debt tax, τMP , which is defined as the one levied when the

collateral constraint is not binding at t but may bind with positive probability at t+ 1. This is in

line with the operational definition of macroprudential policies, which are defined as those aimed

to tackle credit growth in “good times” to lower the risk of financial instability. Using (16), the

macroprudential debt tax reduces to:

τMP
t =

−REt
κµt+1

u′(C(bt+1,zt+1))
u′′(C(bt+1, zt+1))Q(bt+1, zt+1)

Etu′(C(bt+1, zt+1))

This tax is strictly positive, since u′ > 0, u′′ < 0 and ξ ≥ 0. In particular, the tax is strictly

positive whenever there is a positive probability that the collateral constraint (or equivalently the

implementability constraint, given condition (16)) can become binding at t+ 1.

The other components of the optimal schedule of debt taxes are the terms that include the

multiplier ξt in eq.(1). These components can be positive or negative, and they are present only

when the collateral constraint is binding at t, since sign(µt) = sign(ξt). These components reflect

the fact that, when the constraint binds at t, the optimal tax schedule must incorporate two effects.

First, the regulator internalizes that one more unit of current consumption raises current asset

prices, which leads to a subsidy on debt when the collateral constraint binds (i.e. the regulator

has the incentive to subsidize debt when the collateral constraint binds in order to prop up asset

prices and provide more borrowing capacity).14 Second, the regulator has incentives to influence

the behavior of future planners by altering the bond holdings they receive, which are captured by

the terms that include Cb(t+ 1) and Qb(t+ 1) in Ω(bt+1, zt+1).

It is worth noting also that in quantitative applications of this simple version of the model it

is possible to set τ = 0 without affecting equilibrium allocations and prices when µt > 0. This is

because private agents borrow the maximum amount, which is independent of the tax. As shown

in the Appendix A.1, the role of the tax when µt > 0 is only to implement the planner’s shadow

value from relaxing the collateral constraint, and since this shadow value in the decentralization is

affected by τ even if the constraint is binding, the analytical expression for the tax can be positive

or negative. This result, however, does not extend to the more general model we solve in Section

14This is captured in the terms µt + ξtu
′′(ct)qt of eq.(1) which form an expression with ambiguous sign, because

the first term is positive but the second negative, with the latter capturing the incentive to prop up asset prices at
t.
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5, for which the value and sign of all the components of the state-contingent tax schedule are

uniquely determined even if µt > 0.

3.4 Time Inconsistency under Commitment

We close this Section with some remarks illustrating how a time-inconsistency problem emerges

if instead of studying the constrained-efficient, time-consistent social planner’s problem we set up

the analogous problem of a regulator assumed to be able to commit to future policies. This is

useful because, as we mentioned earlier, our interest in studying time-consistent macroprudential

policy is motivated in part by the fact that under commitment the planner’s optimal policies are

time-inconsistent.15

Under commitment, the planner chooses at time 0 its policy rules in a once-and-for-all fashion.

The first-order conditions of the planner’s problem in sequential form are (∀t > 0):

λt = u′(ct)− ξtqtu′′(ct) + u′′(ct)ξt−1(qt + zt) (19)

λt = βREtλt+1 + µt (20)

ξt = ξt−1 +
µtκ

u′(ct)
(21)

The time inconsistency problem is evident from the presence of the lagged multipliers in these

optimality conditions.16 According to (19), the planner internalizes how an increase in consump-

tion at time t helps relax the borrowing constraint at time t and makes it tighter at t − 1. As

(21) shows, this implies that the Lagrange multiplier on the implementability constraint ξt follows

a positive, non-decreasing sequence, which increases every time the constraint binds. Intuitively,

when the constraint binds at t, this planner likes to promise lower future consumption so as to

prop up asset prices and borrowing capacity at t, but ex post when t + 1 arrives it would be

sub-optimal to keep this promise. We can show that under commitment, a state contingent tax

on borrowing is also sufficient to implement the constrained-efficient solution, except that again

it would be a non-credible policy because of the planner’s incentives to deviate from announced

policy rules ex post.

15As noted earlier, in Bianchi and Mendoza (2010) we followed an ad-hoc approach to construct a time-consistent
macroprudential policy, by proposing a conditionally-efficient planner restricted to value collateral using the same
pricing function of the unregulated competitive equilibrium. Decentralizing this planner’s allocations requires, in
addition to the debt tax, a state-contingent tax on dividends.

16It should be understood that time t − 1 variables include the history up to time t − 1 and time t variables
represent the history up to time t− 1 in addition to a time t exogenous disturbance.
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4 Model for Quantitative Analysis

The remainder of the paper focuses on studying the model’s quantitative predictions. Before pro-

ceeding, however, we introduce three modifications that are important for improving the model’s

ability to produce financial crises with features more in line with actual crises, so that the model

can be viewed as a sound benchmark to conduct quantitative policy assessments. First, we intro-

duce production and factor demands using a working capital channel which creates a link between

financial amplification and the supply-side of the economy. Second, we modify the collateral con-

straint so that borrowing capacity is limited by individual asset holdings, instead of the aggregate

supply of assets. Third, we introduce shocks to the interest rate and to the collateral constraint

to incorporate additional exogenous driving forces of business cycles and financial crises. In the

preceding analytical sections we abstracted from these features to keep the model tractable, and

while these changes introduce effects that obviously interact with the pecuniary externality, the

main features of macroprudential regulation highlighted in the normative analysis are still present.

4.1 Firm-Households Optimization Problem

We follow Mendoza (2010) to add production into the model by replacing the representative agent

of the simple model with a representative firm-household, which we also refer to as an agent. This

agent makes both production plans and consumption-savings choices.

The agent’s preferences are given by:

E0

∞∑
t=0

βtu(ct −G(ht)) (22)

where ht is the agent’s labor supply. The argument of u(·) is the composite commodity ct −
G(ht) defined by Greenwood et al. (1988). G(h) is a convex, strictly increasing and continuously

differentiable function that measures the disutility of working. This formulation of preferences

removes the wealth effect on labor supply by making the marginal rate of substitution between

consumption and labor depend on labor only. This assumption ensures that the model does not

deliver a counterfactual increase in labor supply during crises.

The representative firm-household combines physical assets, imported intermediate goods (νt),

and domestic labor services (ht) to produce final goods using a production technology such that

y = ztF (kt, ht, vt), where F is a twice-continuously differentiable, concave production function.

Hence, zt is now a standard productivity shock instead of an exogenous dividends process. This

shock has compact support and follows a finite-state, stationary Markov process. Imported inputs

are purchased in competitive world markets at a constant exogenous price pν in terms of the

domestically produced goods (i.e. pν can be interpreted as the terms of trade).

The profits of the agent are given by ztF (kt, ht, vt) − pvvt, and the agent’s budget constraint
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can be written as:

qtkt+1 + ct +
bt+1

Rt

= qtkt + bt + [ztF (kt, ht, vt)− pvvt] (23)

where Rt is the real interest rate, which we continue to treat as exogenous. Like the productivity

shocks, interest rate shocks also follow a finite-state, stationary Markov process with compact

support. The two shocks can be modeled as correlated or independent processes.

As noted earlier, the assumption that the interest rate is exogenous is equivalent to assuming

that the economy is a price-taker in world credit markets, as in other studies of the U.S. financial

crisis like those of Boz and Mendoza (2010), Corbae and Quintin (2009) and Howitt (2011), or

alternatively it implies that the model can be interpreted as a partial-equilibrium model of the

household sector. This assumption is adopted for simplicity, but is also in line with evidence

indicating that the observed decline in the U.S. risk-free rate in the era of financial globalization

has been driven largely by outside factors, such as the surge in reserves in emerging economies

and the persistent collapse of investment rates in South East Asia after 1998. Warnock and

Warnock (2009) provide econometric evidence of the significant downward pressure exerted by

foreign capital inflows on U.S. T-bill rates since the mid 1980s. Mendoza and Quadrini (2009)

document that about 1/2 of the surge in net credit in the U.S. economy since then was financed

by foreign capital inflows, and more than half of the stock of U.S. treasury bills is now owned

by foreign agents. From this perspective, assuming a fluctuating Rt around a constant mean is

actually conservative, as in reality the pre-crisis boom years were characterized by a falling real

interest rate, which would strengthen our results. Still, we study later in the sensitivity analysis

how our quantitative results vary if we relax this assumption and consider instead an exogenous

inverse supply-of-funds curve, which allows the real interest rate to increase as debt rises.

The agent also faces a working capital constraint which requires it to pay for a fraction of the

cost of input purchases in advance of production using foreign financing. In particular, a foreign

working capital loan is used to pay for a fraction θ of the cost of imported inputs pvvt at the

beginning of the period and repaid at the end of the period. In the conventional working capital

setup, a cash-in-advance-like motive for holding funds to pay for inputs implies that the effective

marginal cost of inputs carries a financing cost determined by Rt. In contrast, here we simply

assume that working capital funds are within-period loans so that the interest rate on working

capital is effectively zero. We follow this approach so as to show that the effects of working capital

in our analysis hinge only on the need to provide collateral for working capital, as explained below,

and not on the effect of interest rate fluctuations on effective factor costs, which is the standard

mechanism in business cycle models with working capital (e.g. Uribe and Yue, 2006).17 Moreover,

we consider only imported inputs in the working capital constraint because this constraint relates

17We could also change to the standard setup, but in our calibration, θ = 0.5 and the average interest rate is
R = 1.028, and hence working capital loans would only add 1.4 percent to the cost of imported inputs.
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to external financing, which is thus natural to connect to inputs acquired abroad (i.e. we view

working capital as akin to trade credit from foreign suppliers of intermediate goods). Labor can

be viewed as using working capital loans from domestic creditors that do not require collateral

without altering our setup.

The agent faces a collateral constraint that limits total debt, including both intertemporal

debt and within period working capital loans, not to exceed a possibly stochastic fraction κt of

the market value of beginning-of-period asset holdings (i.e. κt imposes a ceiling on the leverage

ratio):

− bt+1

Rt

+ θpvvt ≤ κtqtkt (24)

We interpret shocks to κt as financial shocks that lead creditors to adjust collateral requirements on

borrowers. It is important to note, however, that neither the nature of the amplification mechanism

nor the normative arguments stated in the previous Section rely on κt being stochastic, and that

even with κ constant models in this class can produce crises dynamics with realistic features (see

Mendoza (2010) and Bianchi and Mendoza (2010)). Fluctuations in κt are useful for improving

the model’s ability to match the co-movements linking financial flows and business cycles (see

Jermann and Quadrini (2012)) and to generate sharp credit expansions in pre-crisis periods (see

(Boz and Mendoza, 2010)).

Collateral constraints similar to the one proposed above are often defined using kt+1 as collateral

(e.g. Kiyotaki and Moore, 1997 and Aiyagari and Gertler, 1999) instead of kt. This is immaterial

for the equilibrium amount of assets that can be pledged as collateral in this model, because assets

remain in fixed unit aggregate supply. As we show below, the assumption does affect the timing

of the shadow values of binding collateral constraints in the agent’s Euler equation for assets,

but what is critical is that the collateral constraint depends on asset prices. As long as this is

the case, the intuition for the role that the collateral constraint plays and the incentives of the

planner to manage the pecuniary externality are qualitatively the same. We used kt as collateral

for tractability and because it facilitates providing a contractual foundation for the existence of

the constraint. In particular, we show in Appendix A.3, the collateral constraint (24) can be

obtained as an implication of incentive compatibility constraints on the part of borrowers in an

environment in which limited enforcement prevents lenders from collecting more than a fraction

κt of the value of the kt owned by a defaulting debtor.

4.2 Unregulated Decentralized Equilibrium

In the unregulated decentralized competitive equilibrium (DE), agents maximize (22) subject to

(23) and (24) taking asset and factor prices as given. Also, the markets of goods, assets and factors

of production clear.

The maximization problem of the agent yields the following sequence of optimality conditions
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for each date t:

ztFh(kt, ht, vt) = G′(ht) (25)

ztFv(kt, ht, vt) = pv(1 + θµt/u
′(t)) (26)

u′(t) = βRtEtu′(t+ 1) + µt (27)

qtu
′(t) = βEt

[
u′(t+ 1) (zt+1Fk(kt+1, ht+1, vt+1) + qt+1) + κt+1µt+1qt+1

]
(28)

where µt ≥ 0 is the Lagrange multiplier on the collateral constraint and u′(t) denotes u′(ct−G(ht)).

Condition (25) is the labor market optimality condition equating the marginal disutility of

labor supply with the marginal productivity of labor demand, which implicitly determines the

wage rate. Condition (26) is a similar condition setting the demand for imported inputs by

equating their marginal productivity with their marginal cost. Note, however, that there is key

difference in the latter, because the marginal cost of imported inputs includes the extra financing

cost θµt/u
′(t) which is incurred in states of nature in which the collateral constraint binds.

The last two conditions are the Euler equations for bonds and assets respectively, and they yield

similar implications for the effects of binding collateral constraints as in the simple model. When

the collateral constraint binds, condition (27) implies that the marginal utility of reallocating

consumption to the present exceeds the expected marginal utility cost of borrowing in the bond

market by an amount equal to the shadow price of relaxing the credit constraint. Condition (28)

equates the marginal cost of an extra unit of assets with its marginal gain. The fact that assets

serve as collateral increases the benefits of holding the assets by βEtκt+1µt+1qt+1.

Proceeding again as we did with the simple model, we can combine the Euler equations for

bonds and assets to derive this model’s expression for the equity premium:

Rep
t =

µt
u′(t)Etmt+1

−
Et
(
φt+1mt+1

)
Etmt+1

−
covt(mt+1, R

q
t+1)

Et [mt+1]
(29)

where φt+1 ≡ κt+1
µt+1

u′(ct)
qt+1

qt
represents a collateral effect that contributes to reduce excess returns

because an extra unit of assets improves the ability to borrow.18

The collateral effect can in turn be decomposed into a first-order effect and a risk (or second-

order) term:
Et
(
φt+1mt+1

)
Etmt+1

=
covt

(
φt+1,mt+1

)
Etmt+1

− Etφt+1

Notice that covt(mt+1, R
q
t+1) and covt

(
φt+1,mt+1

)
have opposite signs as collateral is most valued

when the household is more constrained, which coincides with high marginal utility.

Given the definitions of Sharpe ratio (SRt ≡ Rep
t /σt(R

q
t+1) ) and price of risk (σt(mt+1)/Etmt+1),

18A similar effect is present when kt+1 serves as collateral instead of kt, but its timing also changes. In this
case, the marginal benefit of holding more assets as collateral shows up as the term −µtκt in the equity premium
expression (see Mendoza and Smith, 2006 and Bianchi and Mendoza, 2010)
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we can rewrite the expected excess return and the Sharpe ratio as:

Rep
t = Stσt(R

q
t+1), St =

µt − Et
(
φt+1mt+1

)
u′(t)Etmt+1σt(R

q
t+1)
− ρt(R

q
t+1,mt+1)

σt(mt+1)

Etmt+1

(30)

where σt(R
q
t+1) is the date-t conditional standard deviation of asset returns and ρt(R

q
t+1,mt+1) is

the conditional correlation between Rq
t+1 and mt+1. Thus, the collateral constraint has direct and

indirect effects on the Sharpe ratio analogous to those it has on the equity premium. The indirect

effect reduces to the usual expression in terms of the product of the price of risk and the correlation

between asset returns and the stochastic discount factor. The direct effect is normalized by the

variance of returns. These relationships will be used later to quantify the effects of the credit

friction and the macroprudential policy on asset pricing conditions.

The solution method that we implement in the next Section works using the recursive repre-

sentation of the competitive equilibrium. We use s to denote the triplet of shocks s = {zt, κt, Rt}.
The agent’s recursive optimization problem is:

V (b, k, s) = max
b′,k′,c,h,ν

u(c−G(h)) + βEs′|sV (b′, k′, B′, s′) (31)

s.t. q(B, s)k′ + c+
b′

R
= q(B, s)k + b+ [zF (k, h, ν)− pvv]

− b
′

R
+ θpvv ≤ κq(B, s)k

The solution to this problem is characterized by the decision rules b̂(b, k, s), k̂(b, k, s), ĉ(b, k, s), ν̂(b, k, s)

and ĥ(b, k, s). The decision rule for bond holdings induces an actual law of motion for aggregate

bonds, which is given by b̂(B, 1, B, s).

Definition (Recursive Competitive Equilibrium). A recursive competitive equilibrium is defined

by an asset pricing function q(B, s), a perceived law of motion for aggregate bond holdings Γ(B, s),

and decision rules b̂′(b, k, s), k̂′(b, k, s), ĉ(b, k, s), ĥ(b, k, s), v̂(b, k, s) with associated value function

V (b, k, s) such that:

1.
{
b̂(b, k, s), k̂(b, k, s), ĉ(b, k, s), ĥ(b, k, s), v̂(b, k, s), µ̂(b, k, s)

}
and V (b, k, s) solve the agents’

recursive optimization problem, taking as given q(B, s) and Γ(B, s).

2. The market for assets clear and the resource constraint holds b̂′(B,1,B,s)
R

+ ĉ(B, 1, B, s) =

zF (1, n̂(B, 1, B, s), v̂(B′, 1, B, s′)) +B − pvv̂(b, 1, B, s) , and k̂(B, 1, B, s) = 1

3. The perceived law of motion for aggregate bonds is consistent with the actual law of motion:

Γ(B, z) = b̂(B, 1, B, z).
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4.3 Planner’s Problem and Macroprudential Policy

As in the simple model, we continue to assume that a constrained-efficient, time-consistent social

planner (SP) chooses directly the amount of debt, while consumption, asset holdings, and now

production, labor, and imported inputs are chosen competitively by private agents. As shown in

the Appendix A.2, taking as given a policy rule for bond holdings of future regulators B and the

associated recursive functions governing labor H, consumption C, imported inputs ν, and asset

prices Q, the current regulator’s optimization problem can be written as the following Bellman

equation:

V(b, s) = max
c,b′,q,µ,h,ν

u(c−G(h)) + βEs′|sV(b′, s′) (32)

c+
b′

R
≤ b+ zF (1, h, ν)− pvv

zFh(1, h, ν) = G′(h)

zFv(1, h, ν) = pv

(
1 +

θµ

u′(c−G(h))

)
b′

R
− θpvv ≥ −κq

µ

(
b′

R
− θpvv + κq

)
= 0

qu′(c−G(h)) = βEs′|s {u′(C(b′, s′)−G′(H(b′, s′)))(Q(b′, s′) + z′Fk(1,H(b′, s′), ν(b′, s′)))

+κ′µ(b′, s′)Q(b′, s′)}

Finally, following Proposition 1, the constrained efficient allocations can again be decentralized

with an optimal, state-contingent schedule of taxes on debt (see Appendix A.2). As before, this

schedule has a macroprudential component that is levied when the constraint does not bind at t

but can bind with positive probability at t + 1 and two other components that apply when the

constraint binds at t, one reflecting the incentive to prop up asset prices to improve borrowing

capacity and the other reflecting the aim to influence the behavior of future regulators given the

inability to commit of the financial regulator.

We also show in the Appendix A.2 that the optimal macroprudential debt tax is given by:

τMP
t =

1

Etu′(t+ 1)
REt

{
ζvt+1pvθµ(t+ 1)u′′(t+ 1)

u′(t)2
− ξt+1u

′′(t+ 1)Q(bt+1, zt+1)

}
(33)

where ζvt is the shadow value of relaxing the implementability constraint associated with the

private agents’ limited access to working capital financing for purchasing imported inputs. As

with the simple model, the tax is zero if there is zero probability of a binding collateral constraint

tomorrow. On the other hand, when there is a positive probability of hitting the constraint at

t+ 1 the optimal tax can no longer be unambiguously signed because there is an additional term
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that captures the incentive compatibility constraint associated with the choice of imported inputs.

This is the first term in the numerator in the right-hand-side of (33), which has an ambiguous sign

because ζvt has an ambiguous sign (since the implementability constraint must hold with equality).

Quantitatively, however, the tax is largely dominated by the second term in that numerator, which

is positive and identical to the expression for the macroprudential tax in the simple model, and

hence yields strictly positive values for τMP in all the numerical exercises we conducted.

5 Quantitative Analysis

5.1 Calibration

We calibrate the model to annual frequency using data from advanced economies. For some

variables (e.g. value of housing wealth, utilization-adjusted TFP, Frisch elasticity of labor supply),

we used only U.S. data because of data availability limitations, but we examine the implications

of parameter variations in the sensitivity analysis.

The functional forms for preferences and technology are the following:

u(c−G(h)) =

(
c− χh1+ω

1+ω

)1−σ
− 1

1− σ
ω > 0, σ > 1

F (k, h, ν) = zkαkνανhαh , αk, αν , αh ≥ 0 αk + αν + αh ≤ 1

We set σ = 1.5, which is in the range of commonly used values in open-economy DSGE models.

The Frisch elasticity of labor supply (1/ω) is set equal to 1, in line with evidence for the United

States provided by Kimball and Shapiro (2008). The parameter χ is inessential and is set so that

mean hours are equal to 1, which requires χ = αh (with αh calibrated as described below).

The production function of gross output is Cobb-Douglas. To calibrate the share of imported

inputs, we use data reported by Goldberg and Campa (2010) on the average ratio of imported

to domestic intermediate goods for 16 advanced economies. The average ratio across them is 25

percent. At standard average ratios of total intermediate goods to gross output of 45 percent, the

implied share of imported inputs in gross output is αν = 0.124. The factor share of labor is then

set so that in terms of value added we obtain the standard share of 0.64, which is similar across

industrial countries (see Stockman and Tesar, 1995). This implies αh = 0.64∗(1 − αν) = 0.56.

Since capital in the model is in fixed supply, we do not set the capital share to the standard

1/3rd of GDP, because this factor share measures capital income accrued to the entire capital

stock. Instead, we set αk so that the model matches an estimate of the ratio of capital in fixed

supply to GDP based on the value of the housing stock. Consistent data across countries on this

component of household wealth are not available, so we measured the ratio for the United States

using data from the Flow of Funds database of the Federal Reserve. In particular, we used the
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ratio as of 2007, which was about 1.3, because it corresponds to the last year before the start of

the 2008 financial crisis. The model matches this ratio, given the other parameter values, if we set

αk = 0.05.19 Notice that this implies that production effectively has decreasing returns to scale,

but this is not critical for the results because of the unit supply of capital and because profits

return to private agents as income.

We follow Schmitt-Grohe and Uribe (2007) in taking M1 money balances owned by firms as a

proxy for working capital. Based on the observations that in the United States about two-thirds

of M1 are held by firms (Mulligan, 1997) and that M1 was 10 percent of GDP in 2007, we calibrate

the working capital-GDP ratio to (2/3)∗0.1 = 0.066. Given αν = 0.124 and that the ratio of GDP

to gross output is 1−αν , and assuming also that the collateral constraint does not bind, the value

of θ is solved for as θ = 0.066[(1− αν)/αν ], which is about 0.5.

The value of β is set to the standard value in DSGE models of 0.96, but in addition in this

calibration it supports an average household debt-income ratio in a range that is in line with

U.S. data from the Flow of Funds database. Before the mid-1990s this ratio was stable at about

30 percent. Since then and until 2007, it rose steadily to a peak of almost 70 percent. By

comparison, the average debt-income ratio in the stochastic steady-state of the model with the

baseline calibration is 38 percent. A mean debt ratio of 38 percent is sensible because 70 percent

was an extreme at the peak of a credit boom and 30 percent is an average from a period before

the substantial financial innovation of recent years.

The shocks to the interest rate and productivity are set to fit a discrete approximation to

estimates of the following VAR process:(
zt

Rt

)
= ρ

(
zt−1

Rt−1

)
+

(
εz,t

εR,t

)
,

where (εz,t, εR,t) follow a bivariate normal distribution with zero mean and contemporaneous

variance-covariance matrix Cov. The interest rate is measured as the ex-post real interest rate on

U.S. three-month T-bills, which is the standard measure of the exogenous world real interest rate

in International Macro models. TFP is measured using the TFP estimates adjusted for changes

in utilization and relative input prices constructed by Fernald (2009). The VAR estimation yields

the following results:

ρ=

[
0.755972 −0.030037

−0.074327 0.743032

]
, Cov =

[
0.0000580 −0.0000107

−0.0000107 0.0001439

]
.

The discrete approximation to this VAR process is constructed using the Tauchen-Hussey

quadrature method, set to produce a Markov chain with three realizations of each shock. Their

19Estimates of the value of capital in fixed supply vary depending on whether they include land used for residential
or commercial purposes, or owned by government at different levels. We used an estimate based on residential
property because it is a closer match to the structure of the model (for example, the discount factor was set to
match the household debt ratio).
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Table 1: Calibration

Description Value Source / target

Risk aversion σ = 1.5 Standard value
Discount factor β = 0.96 Standard value
Share of imported inputs αv = 0.124 Cross-country data from Goldberg and Campa (2010)
Share of labor αn = 0.56 0.64 cross-country data from Stockman and Tesar (1995)
Share of assets αk = 0.05 2007 U.S. housing stock/GDP =1.3
Labor disutility coefficient χ = 0.56 Normalizatition for average h = 1
Frisch elasticity parameter ω = 1 Kimball and Shapiro (2008)
Working capital coefficient θ = 0.5 2007 U.S. firms’ M1/GDP = 0.1

Financial shock
κL = 0.3 Average leverage = 30%
PHH = 0.9 10-year mean duration of κH (crisis prob.=0.03)
PLL = 0.1 Prob. of κL=0.1 (3-year crisis duration)

TFP and Interest Rate Shocks see text

algorithm uses as inputs ρ and Cov, and yields the Markov realization and transition probability

matrices, which are available from the authors on request.

The regime-switching process of κ is assumed to be independent from the bivariate process

of (zt, Rt). In particular, κt follows a standard two-state, regime-switching Markov process with

regime values given by
{
κL, κH

}
and transition matrix

P =

[
PL,L 1− PL,L

1− PH,H PH,H

]
.

The values of κH and κL are difficult to calibrate directly from the data because of the model’s

high level of aggregation and the wide dispersion in loan-to-value restrictions and ability to leverage

across households and firms of various characteristics in the data. We set κH high enough so that

the collateral constraint never binds with strictly positive probability when the economy is in that

regime, so that effectively the actual value of κH is immaterial. The value of κL is set to 0.30,

which in the unregulated competitive equilibrium yields an average leverage ratio of 30 percent.

This is consistent with measures of household and corporate leverage, which were 0.2 and 0.45

respectively at the onset of the 2008 financial crisis.20 The continuation probability PH,H is set

so as to produce a mean duration of the κH regime of 10 years, which yields PH,H = 0.9.21 The

20These leverage ratios were computed using Flow of Funds data (total assets and credit market debt outstanding
of households and nonprofit organizations, and total assets and debt outstanding of the domestic nonfinancial
business sector). The resulting leverage ratios are lower than maximum loan-to-value ratios in home mortgages,
which reached around 95 percent in the sub-prime market at the peak of the housing boom, but the lower ratio in
the Flow of Funds data suggests that this is not a representative figure for the broader housing sector.

21The κL and κH regimes have mean durations of 1/(1− PL,L) and 1/(1− PH,H) respectively.
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value of PL,L is then set so that, given PH,H , the long-run probability of the κL regime is only 10

percent. This long-run probability can be expressed as (1−PH,H)/(2−PH,H −PL,L), which yields

PL,L = 0.105. Under this parameterization, the DE produces financial crises events, defined in a

similar way as in the empirical literature, with a frequency of 3 percent and a mean duration of 3

years, both of which are consistent with empirical estimates (see Reinhart and Rogoff, 2009).22

The model is solved using a global, nonlinear solution method that takes into account the

occasionally binding, stochastic credit constraint. In the SP’s problem, the algorithm also takes

into account the need to solve for the Markov stationary policy rules that support time-consistency.

Further details are provided in Appendix B.

5.2 Frequency and Severity of Financial Crises

The first important result of the quantitative analysis is that the time-consistent macroprudential

policy reduces significantly the frequency and severity of financial crises. With regard to the

former, recall that the calibrated process for κ implies that the DE has financial crises with the

same 3-percent frequency observed in the data. Under the same baseline calibration, the frequency

of crises in the SP economy is only 0.2 percent. Thus, the absence of regulation results in financial

crises that are 15 times more likely.23

The reduced severity of financial crises in the SP economy is illustrated by conducting an

event analysis of crisis episodes using simulated data for the DE and SP economies. The results

are presented in Figure 1, which shows nine-year event windows for total credit (bonds plus working

capital), asset prices, output, and consumption, all expressed as deviations from long-run averages

in the DE equilibrium, as well as two windows that show the evolution of the exogenous shocks.24

We construct comparable event windows for the two economies following this procedure: First,

we simulate the DE for 100,000 periods and identify financial crisis events using the event-study

methodology we borrowed from the empirical literature as described in the calibration (see footnote

22). Second, we construct nine-year event windows centered in the crisis year by computing the

averages of all endogenous variables across the cross section of crisis events at each date. This

produces the DE dynamics plotted as the red, continuous lines in Figure 1. For TFP and interest

rate shocks we also show the cross sectional average in each year, but for the financial shock we

show the fraction of the time the κL regime was observed in the cross section of each year. We

22 Following Forbes and Warnock (2012) methodology to identify the timing and duration of sharp changes in
international capital flows, we defined a financial crisis as an event in which credit falls by at least two standard
deviations, with a starting (ending) date set at the year within the previous (following) two years in which credit
first fell below (rose above) one standard deviation. In addition, we require that the collateral constraint be binding.

23We identify financial crises for the SP using the credit thresholds of the DE in levels. Re-computing the
thresholds using the standard deviation of credit in the SP equilibrium, which is smaller, the frequency of crises
for the regulator rises to 0.6 percent, which is still much lower than in the DE. Our results are also largely robust
to alternative definitions of crises.

24We also produced event windows expressing the data as deviations from the long-run averages of each economy,
instead of both in percent of DE means, but this did not result in significant differences.
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Figure 1: Financial Crises Event Analysis.

Note: all panels except panel (e) plotted as % differences relative to DE unconditional averages
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do this because, as mentioned earlier, the value of κH was set high enough so that it does not

bind with positive probability, and hence any value that satisfies this criterion yields the same

equilibrium dynamics. Third, we take the initial bond position at t−5 of the DE and the sequences

of shocks the DE went through in the nine years of each crisis event, and then pass them through

the policy functions of the SP. Finally, we average in each date the cross-sectional sample of the

SP equilibrium to generate the averages shown as the blue, dashed line in Figure 1.

Panel (a) of Figure 1 shows that the pecuniary externality results in higher borrowing in the

DE in the periods preceding the crisis. While credit in the SP remains very close to the DE

long-run average throughout, credit in the DE is above its long-run average by 2.5 to 5 percentage

points from t− 4 to t− 1. The cumulative difference relative to the SP is close to 15 percent. As

a result of this overborrowing, the DE builds up higher levels of leverage and experiences a larger

collapse in credit when the financial crisis hits. Credit falls about 30 percentage points more, and

although it rises at a fast pace after the crisis, four years later it remains 5 percentage points below

both its long-run average and the SP level.25

Asset prices (panel b), output (panel c) and consumption (panel d) also fall more sharply in

the DE than the SP. The declines in consumption and asset prices are particularly larger (−17

v. −4 percent for consumption and −31 v. −6 percent for asset prices). The asset price collapse

plays an important role in explaining the more pronounced decline in credit in the DE, because

it reflects the impact of the Fisherian deflation mechanism. Output falls 1 percentage point more

in the DE than in the SP, because of the higher shadow price of imported inputs due to the

effect of the tighter binding credit constraint on access to working capital. This may seem a small

difference, but consider that it reflects the impact of the higher financing cost of inputs that have

a factor share of only 12.4 percent.

Panel (e) shows that in the DE simulation the economy spends close to 90 percent of the time

in the κH regime, in line with the long-run probability of κH , but in the period in which the crisis

hits it always switches to the κL regime. Panel (f) shows that TFP is declining on average before

the financial crisis, and reaches a through of about -1.5 percent below the mean when the crisis

hits, and after that it recovers at a fast pace. The real interest rate is stable at just above 2

percent in the years before the crisis, and when the crisis hits it rises about 50 basis points and

then remains stable near 2.5 percent in the years that follow. Thus, financial crises in the DE are

associated on average with adverse TFP, interest rate and financial shocks. Note, however, that

the model also generates crises with positive TFP shocks when leverage is sufficiently high and an

adverse financial shock hits.

It is important to note that the DE simulation does a reasonable job at matching key features of

actual financial crises (i.e. crises episodes are characterized by unusually large recessions and asset

price declines). Moreover, these financial crises are infrequent events nested within regular business

25The model produces very large drops in credit partly because all intertemporal credit is in the form of one-period
bonds, whereas loans in the data have on average a longer maturity.
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cycles that have a standard deviation of GDP of about 2.5 percent, close to what is observed in

industrial countries (e.g. the standard deviation of HP- filtered U.S. GDP is 2.1 percent in 1947-

2007 data).26 These are important first steps for making the normative implications of the model

relevant.

Interestingly, the implications of the SP equilibrium for the frequency and magnitude of finan-

cial crises are not very different from those we obtained in Bianchi and Mendoza (2010) imposing

time-consistency by assuming that the planner takes as given the pricing function of the unreg-

ulated DE. This suggests that the DE asset pricing function may not differ markedly from the

one that the time-consistent planner supports, which in turn suggests that, under our baseline

calibration, the Markov stationary debt policy rule of the planner unable to commit restricts the

ability to affect the equilibrium asset prices when the collateral constraint binds.

5.3 Borrowing Decisions and Amplification

The financial amplification mechanism and the pecuniary externality at work in the DE simulation,

and the credit effects of the SP’s policy, can be illustrated further by studying the differences in

their borrowing decisions. These borrowing decisions are reflected in the policy functions for

bonds of each economy (BDE(B, s) and BSP (B, s)) shown in Figure 2 as the red-continuous and

blue-dashed curves respectively.27 These policy functions indicate each economy’s choice of bonds

for t + 1 in the vertical axis (B′) for each value of bond holdings at t in the horizontal axis (B),

keeping the values of exogenous shocks at κL, average R and a negative TFP shock equal to 1.5

standard deviations below the mean. The Figure also shows the limit on intertemporal borrowing

that each economy faces (BDE(B, s) and BSP (B, s)), computed using the asset pricing functions

of each economy valued at the corresponding (B, s) pairs.28

An important result illustrated in this Figure is that the Fisherian deflation mechanism gener-

ates V-shaped bond policy functions, instead of the typical monotonically-increasing ones of both

standard Bewley-style incomplete markets models of heterogeneous agents and RBC models of

the small open economy. The point at which the policy functions switch slope corresponds to the

value of B at which the collateral constraint is marginally binding in each economy (i.e. it holds

with equality but the choice of debt is exactly the same debt allowed by the credit constraint). To

the right of this point, the collateral constraint does not bind and the policy functions are upward

sloping. To the left of this point, the policy functions are decreasing in B, because a reduction

in B results in a sharp reduction in asset prices, which tightens the borrowing constraint, thus

increasing B′.29 In line with these results, the policy functions lie above their corresponding bor-

26Mendoza (2010) shows that these features of this class of models hold even in richer variants with capital
accumulation.

27Note that BDE(B, s) ≡ Γ(B, z) from the definition of the recursive equilibrium.
28The borrowing limits are defined as −κqDE(B, s) + pν ν̂

DE(B, 1, B, s) and −κqSP (B, s) + pν ν̂
SP (B, s)

29In Bianchi (2011), there is also a non-monotonicity in the bonds decision rule, but arising from how consump-
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rowing limits to the right of the values of B at which the constraint becomes binding in the DE

and SP, and to the left of those critical values the decision rules must equal to their corresponding

borrowing limits.

The bonds policy functions can be divided into three regions: a “constrained credit region,”

a “positive crisis probability region” and a “stable credit region.” The constrained credit region

is defined by the values of B with sufficiently high initial debt (low B) such that the collateral

constraint binds for the SP. This is the range with B ≤ −0.33. In this region, the collateral

constraint must bind also for private agents in the DE, because the pecuniary externality affecting

agents in this economy implies that the constraint starts binding at higher values of B than in the

SP, as we show below.

The total debt (working capital plus debt in bonds) in the constrained credit region is very

similar in the DE and SP outcomes. It is not identical because asset prices differ, as the SP is

optimally using its policy function to influence asset prices and thus manage borrowing capacity,

but within the limits of what its inability to commit allows. To see why asset prices must differ,

suppose by way of contradiction that total debt were the same and hence asset prices were the

same with the constraint binding. However, because future marginal utilities differ under the DE

and SP, this would imply different asset prices. In addition, the bond choices are also similar (as

shown in Figure 2), because the choices of imported inputs are also similar in the two economies.30

The positive crisis probability region is located to the right of the constrained region, and it

includes the interval −0.33 < B < −0.24. Here, the regulator chooses uniformly higher B′ (lower

debt) than private agents, because of the effect that internalizing the externality has on the SP’s

decisions when the constrained region is near. In fact, private agents hit the credit constraint at

B = −0.32, while at this B the regulator still retains some borrowing capacity. Moreover, this

region is characterized by “financial instability,” in the sense that the values of B′ chosen in the

DE are high enough so that some combinations of shocks at t + 1 can lead to a binding credit

constraint and a financial crisis. The financial amplification dynamics that can occur when the

economy is in this region were discussed in the previous section. As shown in the theoretical

analysis, this is the region of the state space in which the regulator uses the macroprudential debt

tax.

The stable credit region is the interval for which B ≥ −0.24. In this region, the probability

of a binding constraint next period is zero for both DE and SP. The bond choices of the two still

differ, however, because expected marginal utilities differ under the two equilibria. But here the

regulator does not use the macroprudential debt tax, because even negative shocks cannot lead to

a binding credit constraint at t+ 1.

tion affects the marginal rate of substitution between tradables and non-tradables and thus the relative price of
nontradables, rather than through the effects on as in this model.

30Notice that the planner still treats asset prices as endogenous in these states, which could in principle lead it to
consume more to raise asset prices and relax the constraint. However, doing this is generally not feasible because
the increase in debt to sustain higher consumption violates the collateral constraint.
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Figure 2: Bond policy functions and borrowing limits.

The larger debt (i.e. lower B′) choices of private agents relative to the regulator in the positive

crisis probability region provide a measure of the overborrowing effect at work in the DE. The

regulator accumulates extra precautionary savings above and beyond what private individuals

consider optimal in order to self-insure against the risk of financial crises. This effect may seem

small in terms of the difference between the two bond choices, but as we showed in Figure 1, it

still leads to large differences in financial amplification. In fact, Figure 2 also reflects the large

differences in macroeconomic outcomes when the constraint binds despite the small differences in

bond choices when it does not.

The long-run probabilities with which the DE (SP) visit the three regions of the policy functions

of bonds in Figure 2, which are conditional on the particular state s used in the Figure, are: 3 (2)

percent for the constrained credit region, 86 (88) percent for the positive crisis probability region,

and 11 (10) percent for the stable credit region. Hence, both economies spend close to 90 percent

of the time in the second region, but the prudential actions of the regulator reduce the probability

of entering in the constrained region. This is consistent with the finding mentioned earlier that

financial crises are much less frequent in the SP equilibrium than in the unregulated DE.

The significantly nonlinear debt dynamics that result from the financial amplification mech-

anism, and the SP’s ability to weaken them, are illustrated in Figure 3. This Figure shows the
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policy functions for bonds of the DE and SP over the interval [-0.35,-0.2] of their domain for two

different triples of s. One is labeled positive shock, which is a state with higher TFP and lower

R, and the second is labeled negative shock, which has lower TFP and higher R.31 The financial

regime is kept at κL in both cases. Hence, the plot illustrates amplification dynamics in response

to shocks of standard magnitudes to TFP and R without changes in κ. The ray from the origin

is the stationary choice (45 degree) line, where B′ = B. We use a narrower range of B than in

Figure 2 to highlight the differences in policy functions in the region that is relevant for financial

amplification.

The amplification dynamics to which the DE is exposed can be illustrated as follows. Assume

the economy starts in a hypothetical first period with bonds at point D, which is the intersection

of DE’s policy function with positive shocks with the 45 degree line. At this point, the choice of

B′ in the DE is identical to the initial B, hence the DE ends the period with the same amount

of bonds it started with. Assume then that the second period arrives and the realizations of TFP

and R shocks shift to the negative-shock state. The DE starts at point D but now the collateral

constraint becomes binding, and the Fisherian deflation dynamics force a sharp, nonlinear upward

adjustment of the bond position such that B′ increases to point D′, reducing debt from −0.34 to

−0.22.

Compare the above financial amplification dynamics with what the same experiment produces

under the SP equilibrium. The planner starts also at point D, but its policy function for that

initial condition moves it to point P , so the planner chooses a value of B′ that reduces its debt

slightly below what the DE chose (the planner’s B′ is just about 50 basis points higher than what

the DE’s chooses at point D). This occurs because the regulator builds precautionary savings and

borrows less, since it faces the higher marginal cost of borrowing that results from internalizing

the pecuniary externality due the positive probability that the credit constraint may bind in the

second period. The second period arrives with the same shift to the negative-shock-state as in

the DE economy. The planner starts from point P because of its lower borrowing choice in the

first period, and its policy function for the negative-shock state indicates that its bond choice will

increase to point P ′. Hence, the slight difference in initial debt of the SP v. the DE in the second

period results in a sharply smaller upward adjustment in B′ for the planner (about 2 v. 12 percent

of GDP). This illustrates the dynamics of the mechanism that results in the significantly smaller

magnitude of the crisis episodes in the SP v. the DE shown in Figure 1.

The differences in borrowing decisions are also reflected in differences in the long-run distribu-

tions of leverage of the DE and SP. Figure 4 shows the cumulative ergodic distributions of leverage

ratios (measured as −bt+1+θpννt
qt

) in the two economies. The stronger precautionary savings motive

of the SP results in an ergodic distribution of leverage that concentrates less probability at higher

31In the positive-shock state, TFP is above and R below their means by about 1.3 times their standard deviations,
and in the negative-shock state R reverts to its mean and TFP falls below its mean also by about 1.3 times its
standard deviation.
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leverage ratios than in the DE. In fact, the leverage ratio in the DE exceeds the maximum of

observable under the SP close to 4 percent of the time. Comparing averages across these ergodic

distributions, however, mean leverage ratios differ by less than 1 percent. Hence, overborrowing

may seem a relatively minor problem when comparing unconditional long-run averages of leverage

ratios. Behind this apparently negligible difference hide the large differences in crises probabilities

and magnitudes that result from the strongly nonlinear dynamics of financial amplification in the

DE. Note also that these same features result in a longer left tail in the DE’s distribution due to

the deleveraging that occurs following a crisis. In the SP equilibrium the leverage ratio is never

below 28 percent with positive probability, whereas in the DE leverage ratios near 25 percent are

still positive-probability states.

5.4 Asset Pricing

The forward-looking nature of asset prices and their determinants can be illustrated by looking at

their recursive functions in “good” states of nature. Figure 5 shows plots of six key asset pricing

variables as functions of B in the DE and SP economies when TFP and the interest rate take their

average values and κ = κH (this is in contrast with Figure 2, which plotted policy functions for a

“bad” state with low TFP and κL). The variables plotted are the expected return on assets, the

price of assets, the Sharpe ratio, the volatility of returns, the risk premium, and the price of risk.

In this Figure, for sufficiently high initial values of B that pertain to the stable credit region

(with average TFP and R, and κ = κH), all the variables plotted except asset prices (panel (b))

are almost the same for the DE and SP economies. This is because from those initial states at

date t the collateral constraint is not expected to bind at t+1. In contrast, for lower initial B that

pertains to the region with a positive probability of a crisis at t + 1, expected returns are higher

in the SP than the DE (panel (a)), and the opposite is true for Sharpe ratios, return volatilities,

risk premia and the price of risk (panels (c)-(f)). The higher expected return is due to the fact

that in this region the SP is actively using the macroprudential debt tax (which is used only when

E[µt+1 > 0]), and by arbitrage of returns between assets and bonds this tax increases the expected

return on assets. The higher risk premia, return volatilities, risk prices and Sharpe ratios, which

reflect higher order moments, are due to the fact that the DE is significantly more risky than the

SP economy. Thus, there is a clear over-compensation for risk-taking in the former relative to the

latter.

The higher expected returns in the positive crisis probability region of panel (a) contribute to

explain the uniformly lower asset prices of the SP relative to the DE for all the domain of B in

panel (b). This occurs because even in states where B is in the stable credit region as of an initial

date t, there are sequences of shocks and bond decisions that can move the economy to the region

in which expected returns are higher for the SP at some future t+ j, and as explained in Section 2

higher expected returns for those future dates imply heavier discounting of future dividends and
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thus lower asset prices at t.

The higher risk premia, Sharpe ratios and return volatilities in the DE than the SP should in

principle push asset prices down by reducing excess returns. At equilibrium, however, this effect is

more than offset by the first-order effect of the SP’s debt tax, which as explained above increases

expected returns and moves prices lower in the SP than the DE.

It is also important to note in Figure 5 the significant nonlinearities in the asset pricing variables

within the DE itself (and keeping in mind we are looking at these variables for realizations of shocks

in a “good” state as of date t). In particular, in the region with a positive probability of a crisis

at t + 1, the Sharpe ratio, return volatility, risk premium and price of risk are steep decreasing

functions of B, while they are virtually flat in the stable credit region. Similarly, asset prices are

a steeper function of B in the positive crisis probability region than in the stable credit region.

Figure 6 shows the long-run distributions of realized asset returns for the DE and SP. The

distribution for the former displays a sizable fat tail at the low end that is not present in the

latter. The 99th percentile of returns is about −30.5 percent in the DE v. −3.6 percent for the

regulator. The fat tail in the DE case corresponds to states in which negative shocks hit when

agents have a relatively high level of debt. Intuitively, the standard effect of negative shocks

reducing expected dividends and putting downward pressure on asset returns is amplified by the

effect of asset fire-sales that occur if the collateral constraint becomes binding.

The fat tail of the distribution of asset returns in the DE, and its substantial effects on the

risk premium due to the associated time-varying risk of financial crises, are important results

because they are an endogenous equilibrium outcome resulting from the non-linear asset pricing

dynamics in the DE when the debt-deflation mechanism is at work. Fat tails in asset returns are

also highlighted in the recent literature on asset pricing and “rare disasters” but this literature
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generally treats financial disasters as resulting from exogenous stochastic processes specified to

feature fat tails and time-varying volatility.32

Table 2 reports statistics that characterize the main properties of asset pricing behavior in

the DE and SP. The Table shows expected excess returns (Et[Rq
t+1]) in column (1) and its two

components, namely the after-tax risk free rate and the equity premium (Rep
t ) in columns (2) and

(3) respectively. Using eq. (29), Rep
t is decomposed into the two components that result from the

effect of collateral constraints that bind at t (column (4)) or are expected to bind at t+ 1 (column

(5)), and the standard risk premium component given by the covariance between the stochastic

discount factor and asset returns (column (6)). The equity premium in column (3) is equal to the

sum of these three components. In addition, the Table reports the market price of risk (column

(7)), the log standard deviation of returns (column (8)) and the Sharpe ratio (column (9)). All of

these statistics are reported for the unconditional long-run distributions of each economy as well

as for distributions conditional on the collateral constraint being binding and not binding.

Consider first unconditional expected returns. These are larger in the DE than in the SP by

about 40 basis points (4.3 v. 3.9 percent). The optimal tax schedule makes the risk-free rate

inclusive of tax higher in the SP than the DE (3.4 v. 2.8 percent) but the equity premium is three

times larger in the DE than the SP. Since the difference in equity premium is larger than in the

risk-free rates, the expected returns in the DE are higher.

Conditional on unconstrained states (i.e. µt = 0), the mean expected return of the SP is higher

because of the macroprudential debt tax that is levied in states in which Et[µt+1] > 0. In contrast,

conditional on constrained states (µt > 0) the equity premium surges to nearly 47 percent in the

DE and 27 percent in the SP. In the former this translates into large expected returns with a

mean of nearly 50 percent, while in the latter the optimal tax schedule calls for a sizable subsidy

that reduces the risk free rate inclusive of tax to −22 percent and lowers mean excess returns

to 4.5 percent. This is in line with the SP’s incentives to prop up asset prices to help sustain

borrowing capacity when the collateral constraint is binding. The economy spends roughly 97 and

99.5 percent of the time in the unconstrained region the DE and SP economies respectively, so the

unconditional moments weigh significantly more the unconstrained states than the constrained

states. Moreover, while the optimal policy schedule calls for a substantial debt subsidy when

µt > 0, states in which this policy is actually implemented have near zero probability, so the debt

subsidy is almost never used.

Next we examine the equity premium and its components. The unconditional average of Rep
t

is 1.5 percent in the DE v. 0.5 percent in the SP. The equity premium in the DE is relatively

large, about half as large as the average of R (which is 2.8 percent), but much lower than empirical

estimates which are in the 6-9 percent range (see Mehra and Prescott, 2003). Still, the sizable

32The literature on disasters typically uses Epstein-Zin preferences in order to match the large observed equity
premia. Here, we use standard CRRA preferences with a risk aversion coefficient of 1.5, and as we show below, we
can obtain much larger risk premia than in the typical CRRA setup without credit frictions.

39



Table 2: Asset Pricing Moments

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Expected Risk-free Equity Collateral Risk Price
Return Plus Tax Premium Current Expected Premium of Risk σt(R

q
t+1) SRt

Decentralized Equilibrium
Unconditional 4.3 2.8 1.5 1.3 -0.2 0.4 5.8 4.7 0.3
Constrained 49.7 2.8 46.9 46.9 -0.007 0.06 2.0 3.1 15.0
Unconstrained 2.9 2.8 0.1 0.0 -0.25 0.37 5.9 4.7 0.03

Social Planner
Unconditional 3.9 3.4 0.5 0.6 -0.17 0.07 2.6 2.6 0.2
Constrained 4.5 -22.1 26.6 27.4 -0.99 0.24 4.8 4.3 6.2
Unconstrained 3.9 4.0 -0.09 0.0 -0.15 0.07 2.6 2.6 -0.03

Note: The Sharpe ratio for each row is computed as the average of all corresponding equilibrium realizations of excess
returns divided by the standard deviation of excess returns. All figures except the Sharpe ratios are in percent.

equity premium in the DE contrasts sharply with existing findings (e.g. Heaton and Lucas, 1996)

showing that credit frictions without the Fisherian deflation mechanism do not produce large

premia.33 In both the DE and the SP, the unconditional equity premium is dominated by the

component that reflects the effect of contemporaneously binding collateral constraints, while the

effects of expected binding collateral constraints and the standard risk premium tend to offset

each other. Note, however, that the risk premium term at 0.4 percent still plays an important role

in the DE, and is significantly larger than in the SP.

Conditional on constrained states, the equity premium is driven by the large current collateral

effects present when µt > 0, which dwarf the other two components of the equity premium in both

the DE and the SP. Conditional on unconstrained states, the current collateral effects are absent

by construction, because the unconstrained states are those with µt = 0. In these states, while the

risk premium is still near 0.4 percent in the DE, the effect of future binding constraints reduces

the equity premium to 0.1. For SP, this effect turns the equity premium into marginally negative.

With regard to the decomposition of the equity premium in terms of the Sharpe ratio and the

volatility of returns in eq. (30), the main result from Table 2 is the higher Sharpe ratios in the DE

v. the SP. The unconditional Sharpe ratio of the DE is about 0.3 v. 0.2 in the SP, and conditional

on being credit constrained the DE Sharpe ratio is 15 v. 6.2 in the SP. Hence, risk-taking is

“overcompensated” in the competitive equilibrium relative to the compensation it receives under

the optimal policy. Interestingly, the unconditional Sharpe ratio in the DE is similar to U.S. data

33He and Krishnamurthy (2013) also found that financial frictions can produce large equity premia, close to 4
percent, in a model where specialists face an equity constraint. However, their result uses an exogenous income
process with a standard deviation of 9 percent, whereas in our model TFP shocks have a standard deviation of
1.4 percent and GDP fluctuates 2.5 percent. The effect of credit constraints on asset pricing is also emphasized by
Alvarez and Jermann (2001). Both of these studies, however, do not investigate the effects of credit frictions on
asset pricing from a constrained-efficient standpoint.
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estimates of around 0.3 (Campbell, 2003). Notice that the unconditional equity premium is larger

in the DE, as noted above, but returns are also more variable. Still, the unconditional Sharpe

ratio is higher in the DE than the SP because the equity premium rises proportionally more than

the variability of returns.

The unconditional average of the price of risk and the average conditional on being uncon-

strained are about twice as large in the DE than in the SP. This reflects the fact that consump-

tion, and therefore the pricing kernel, fluctuate significantly more in the former than in the latter.

Conditional on being constrained, the opposite occurs and the price of risk is about twice as large

in the SP than in the DE.

5.5 Macroprudential Debt Tax

We now study the characteristics of the macroprudential debt tax. As defined in Section 2, this

tax is levied in “good times” when the collateral constraint is not binding but debt and leverage

are sufficiently high for it to become binding the following period with positive probability.

Figure 7 shows two plots that illustrate the main features of the macroprudential debt tax.

Panel (a) shows the tax schedule as a function of B for the same “good” states of TFP, R and

κ used in Figure 5. Panel (b) shows the simulated event analysis evolution of the tax around

financial crises episodes.

Panel (a) shows that when B is high enough to be in the stable credit region, the tax is zero

because the probability of hitting the collateral constraint at t + 1 is also zero. For B < −0.3,

the constraint is still not binding at t, given the “good” states of TFP, R and κ, but the economy

enters into the positive-crisis-probability region, where the constraint could bind at t+ 1 in some

states of nature. In this region, the tax is higher at lower B (i.e, it is increasing in the level of

current debt), because this makes it more likely that the constraint will become binding at t+ 1,

and that if it does it will be more binding than at higher values of B. The tax can be as high as

5.5 percent when debt is about 37 percent.

Panel (b) shows that the tax is positive and rising rapidly in the four years prior to the financial

crisis. Recall from Figure 1 that these are also the years in which credit and leverage would be

rising in the unregulated DE. Hence, the policy is taxing debt to reduce the overborrowing that

would otherwise occur when private agents fail to internalize the pecuniary externality, so as to

mitigate the magnitude of a financial crisis if it occurs. The tax peaks at about 4.5 percent in

the year just before the crisis hits. When the crisis starts the tax is zero, because at this point

µt > 0 and hence the prudential aspect of the policy vanishes, and remains close to zero one year

after the crisis. In the second year after the crisis and beyond the tax rises gradually to about 1

percent at t+ 4.

The long-run average of the macroprudential debt tax is about 1.1 percent. It has a standard

deviation equal to about 2/3rds of the standard deviation of GDP, and a positive correlation
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Figure 7: Macroprudential Debt Tax: Schedule in “Good States” and Event Analysis

of 0.8 with the leverage ratio. This is consistent with the prudential rationale behind the tax:

The tax is high when leverage is building up and low when the economy is deleveraging. Note,

however, that since leverage itself is negatively correlated with GDP, the tax also has a negative

GDP correlation. Finally, the tax also has a positive correlation with credit conditions measured

by κt, again in line with arguments often used to favor macroprudential policy.

It is important to note that Jeanne and Korinek (2010) also computed a schedule of macro-

prudential taxes on debt to correct a similar pecuniary externality due to a collateral constraint

that depends on asset prices. Their findings, however, are quite different. In particular, their

results show that the debt taxes lessen the effects of financial crises much less than in our setup

and have no effect on the probability of crises. These different results are due to key differences

in the structure of the borrowing constraints, the behavior of output, and the design of the quan-

titative experiments. In their setup, the credit constraint is determined by the aggregate level

of assets K̄ and by a linear state- and time-invariant term ψ (i.e. their constraint is defined as
bt+1

R
≥ −κqtK̄ − ψ). The fact that this constraint depends on aggregate rather than individual

asset holdings, as in our model, matters because it implies that agents do not value additional

asset holdings as a mechanism to manage their borrowing ability. But more importantly, in their

quantitative analysis they calibrate parameters to κ = 0.046, ψ = 3.07 and qtK = 4.8, which

imply that the effects of the credit constraint are driven mainly by ψ, and only 7 percent of the

borrowing ability depends on the value of assets (0.07=0.046*4.8/(0.046*4.8+3.07)). As a result,

the Fisherian deflation effect and the pecuniary externality are weak, and thus macroprudential

policy cannot be very effective at containing financial crises. The asset price drop is reduced from

12.3 to 10.3 percent, and the consumption drop is reduced from 6.2 to 5.2 percent (compared with

declines from 30 to 6 and 16 to 4 percent respectively in our model). Moreover, since they model

output (or dividends) as an exogenous, regime-switching Markov process such that the probability

of a crisis (i.e. binding credit constraint) coincides with the probability of a bad output realization,

macroprudential policy cannot affect the probability of crises.
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5.6 Welfare Effects

We study the welfare implications of the optimal policy by calculating welfare gains as compen-

sating consumption variations for each initial state (B, s) that equalize expected utility under the

allocations of the DE and those attained with the SP’s optimal policy (both conditional on that

(B, s)). Formally, for a given initial state (B, s) at date 0, the welfare gain of the optimal policy

is computed as the value of γ0 that satisfies this condition:

E0

∞∑
t=0

βtu(cDEt (1 + γ0)−G(hDEt )) = E0

∞∑
t=0

βtu(cSPt −G(hSPt )) (34)

The welfare gains of the optimal policy arise from two sources. The first source is the reduced

variability of consumption in the SP v. the DE, due to the fact that the credit constraint binds more

often in the DE, and when it binds it induces a larger adjustment in asset prices and consumption.

The second is the efficiency loss in production that occurs in the DE due to the effect of the credit

friction on working capital. Without the binding collateral constraint limiting access to working

capital, the marginal productivity of imported inputs equals their constant price and hence the

allocation of these inputs is efficient. With the working capital constraint, however, the shadow

marginal cost of these inputs rises when the constraint binds, and this drives a wedge between

their marginal product and their market price. Again, since the collateral constraint binds more

often in the DE than in the SP, this implies a larger efficiency loss in the former.

The welfare gains of the optimal policy are illustrated in Figure 8. Panel (a) shows the state-

contingent schedule of welfare gains as a function of B for the “good” state of nature with average

TFP, average R, and κH . Panel (b) shows the event-analysis dynamics of the welfare gains around

financial crises events. In looking at these results, keep in mind that overall the values of γ are

small because the model is in the class of stationary-consumption, representative-agent models

with CRRA preferences that produce small welfare effects due to consumption variability (see

Lucas, 1987). Moreover, although the efficiency loss in production at work when the collateral

constraint binds can be relatively large and add to the welfare effects, this is only a low probability

event because of the low probability of hitting the constraint.

The schedule of welfare gains as a function of B in panel (a) is bell-shaped in the region

with a positive probability of crisis at t + 1. It rises sharply as B rises from −0.36, peaking at

about a 0.1 welfare gain when B = −0.35, and then falls gradually. The welfare gains continue

to fall gradually, and almost linearly, as B moves into the stable credit region, and fall to about

0.07 percent when B = −0.3. This pattern is due to the differences in the optimal plans of the

regulator vis-a-vis private agents in the DE. In the region where a crisis is possible at t + 1, the

SP’s allocations projected as of date t for the future differ sharply from those of the DE, because

of the latter’s higher magnitude and frequency of crises, and this generally enlarges the welfare

gains of the optimal policy (or the losses due to the pecuniary externality). Notice that, since the
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Figure 8: Welfare Gains: Schedule in “Good States” and Event Analysis Dynamics

regulator’s allocations involve more savings and less current consumption, there are welfare losses

in terms of current utility for the regulator, but these are far outweighed by less vulnerability to

sharp decreases in future consumption during financial crises. As the level of debt falls and the

economy enters the stable credit region, financial crises are unlikely at t + 1, or are likely much

further into the future, and thus the welfare gains of the policy (or the costs of the externality)

decrease.

Panel (b) shows that the welfare gains of the optimal policy are fairly stable in the four years

before the crisis, increasing only slightly from about 0.09 percent at t − 4. When the crisis hits

the welfare gain drops to close to 0.04 percent, because by then the crisis has arrived and the

prudential aspect of the optimal policy is less valuable, but right after the crisis the welfare gain

increases sharply and continues to increase 4 years late. The unconditional average welfare gain

computed using the DE’s ergodic distribution of bonds and exogenous shocks is equal to a 0.09

percent compensating variation in consumption.

5.7 Simple Policies

The state-contingent nature of the optimal debt tax policy raises a familiar criticism posed in

the context of Ramsey optimal policy analysis: State-contingent policy schedules are impractical

because of the evident limited flexibility of policy-making institutions to adhere to complex, pre-

determined, time-varying rules for adjusting policy instruments.34 Moreover, there is also a broader

concern over the ability of regulators to keep close track of financial conditions and fine-tune

macroprudential policy as needed in a timely fashion (see Cochrane, 2013). For instance, in the

case of our optimal macroprudential debt tax, as we documented earlier it varies widely with a

standard deviation of 2.2 percent, up to a maximum around 5 percent, and is positively correlated

34A related criticism is that Ramsey optimal policies are generally time-inconsistent, but this does not apply
to our findings because we solved for the optimal time-consistent policy of a financial regulator who is unable to
commit to future policies.
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with the leverage ratio.

In light of the above concerns, we examine here the performance of policy rules that are simpler

than the optimal policy. In particular, we study the effects of a fixed debt tax constant across time

and states of nature. While the optimal policy calls for increasing τMP when leverage is building

up, this simpler policy restricts the government to keep the debt tax fixed.

The results show that while fixed debt taxes still reduce the probability and severity of financial

crises, they have markedly different welfare implications across states of nature. In particular, fixed

taxes still produce welfare gains when computed conditional on initial states for a date t in which

the constraint is not binding, but can produce welfare losses if the constraint is binding at t.

This is due to the negative short-run effects of debt taxes on asset prices and the tightness of

the collateral constraint: Debt taxes have a negative effect on asset prices because the increased

cost of borrowing shifts demand from assets to bonds. There is also a positive effect due to a

reduction in the riskiness of assets, but this effect is dominated by the first-order effect of taxes

on the relative demand for bonds.

Figure 9 shows two plots that illustrate the effects of fixed debt taxes ranging from 0 to 1 percent

on the long-run probability of financial crises (panel(a)) and social welfare (panel (b)). With regard

to the former, the constant taxes prove very effective for sharply reducing the likelihood of crises

from 3 to 1 percent. This is natural because as debt is taxed more, agents build less leverage and

are less vulnerable to crises, but this does not mean that they are necessarily better off.

Panel (b) shows welfare gains for constant taxes in the 0 to 1 percent range measured relative

to the DE allocations. The plot shows the average, maximum and minimum welfare gain under

each tax, and for comparison it also shows the average obtained under the SP (with the optimal

state-contingent tax schedule). This plot illustrates two main results. First, fixed taxes are always

inferior to the optimal policy. This is reflected in the fact that the maximum (average) welfare

gain of fixed taxes peaks at about 0.03 (0.02) percent with a tax of 0.6 percent, which are gains

about 1/3rd the size of the SP’s average welfare gain.35 Second, fixed taxes can produce welfare

losses (negative gains). Fixed taxes always induce welfare losses in a subset of the state space, as

illustrated by the fact that the minimum welfare gain is always negative for all debt taxes in panel

(b), and this subset grows as the fixed tax rate rises (the minimum welfare gain drops to −0.25

percent as the tax approaches 1 percent). When the subset of the state space with welfare losses

is large enough, the average welfare gain also turns negative. This occurs for debt taxes above

0.82 percent.

Fixed taxes can produce welfare losses because they deliver lower asset prices, which make

crises worse, when the collateral constraint binds. This suggests that a regulator constrained

to consider only taxes of this form would want to trade off the prudential benefit of the taxes

35The fact that fixed taxes can deliver welfare gains is related to Bianchi (2011), but the trade-off we highlight
here is not present in his setup because there are no adverse effects from current or future taxes on borrowing
capacity.
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in restraining credit growth in good times against their adverse effects in financial crises events.

This tradeoff is clearly reflected in panel (b), which indicates that the optimal fixed tax would

be about 0.6 percent. This fixed tax is roughly 50 basis points smaller than the average of the

optimal macroprudential tax, and it achieves about 30 percent of the welfare gains obtained with

the optimal policy.
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Figure 9: Effects of Fixed Debt Taxes on Probability of Crises and Welfare
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Figure 10: Event Analysis: Decentralized Equilibrium, Optimal Policy and Fixed Tax

Performing event analysis of financial crises events for the welfare-maximizing, on average,

fixed debt tax (0.6 percent) we found that the stabilizing effects of taxing debt are still present,

although weaker than under the optimal policy (compare Figure 10 v. Figure 1). With the fixed

tax set at 0.6 percent, the probability of financial crises drops from 3 percent in the DE to about

2 percent, and the declines in credit, asset prices, and consumption are still smaller than in the

DE (e.g. asset prices fall 24 percent with the fixed tax v. 31 percent in the DE).

Overall, the above results show that our findings highlight both the potential benefits of macro-

prudential policies as well as their dangers: If institutional constraints limit the ability of regulators

to optimally fine-tune macroprudential policy instruments, it is possible to end up with environ-

ments in which the policy is welfare-reducing. In particular, maintaining time-invariant debt
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taxes or other credit management tools at play in crisis times can be welfare reducing due to their

adverse effects on asset prices.

5.8 Sensitivity

Table 3 reports the results of a sensitivity analysis in which we show how the main results change as

we vary the coefficient of relative risk aversion, the value of κL, and the working capital coefficient

θ, and also as a result of modifying the model to consider an environment in which the real interest

rate varies with the level of debt (as an approximation to a setup with an endogenous interest

rate). The table shows the unconditional averages of the macroprudential debt tax and welfare

gains implied by the implementation of the SP’s optimal policy, the crises probabilities under the

DE and SP, the average size of the asset price collapses in simulated financial crises events of both

economies, and the unconditional risk premia. In this Table, differences across the DE and SP

columns reflect how the parameter changes affect the effects of the externality and the Fisherian

amplification, while differences across rows, in a given DE or SP column, reflect how the parameter

changes affect each equilibrium.

The results of this sensitivity analysis, particularly those for the macroprudential debt tax, can

be understood more easily by referring to the expression that defines τMP (eq. (33)). For given R,

τMP is given by the expected sum of two terms. These terms capture the effect of the pecuniary

externality on borrowing capacity for working capital (the first term) and intertemporal debt (the

second term). The first term is quantitatively small because the choice of intermediate inputs

does not differ significantly between the SP and DE. The second term, which can be expressed

as −κt+1µt+1u
′′(t+ 1)qt+1/u

′(t+ 1), is the main quantitative determinant of the debt tax, and as

explained earlier this term is the product of the shadow value of relaxing the credit constraint

multiplied by the effect on the value of collateral (i.e. asset prices) resulting from changes in

consumption allocations.

The results in Table 3 show that the coefficient of relative risk aversion σ is a key parameter,

because altering the curvature of the utility function has first- and higher-order effects that affect

how asset prices change when consumption changes, which as explained above are key for the size

of the optimal debt tax. Given a sequence of future prices and consumption, a drop in current

consumption leads to a larger drop in asset prices the higher is σ. A high σ also makes the

stochastic discount factor more sensitive to changes in consumption, and therefore makes asset

prices react more to changes in bond holdings. Accordingly, rising σ from 1.5 in the baseline to

2 rises the welfare cost of the credit externality by about 40 percent, and widens the differences

in risk premia across the SP and DE. Stronger precautionary savings reduce the probability of

crises in the DE, and financial crises become a zero-probability event in the SP. In line with these

changes, the average of τMP increases slightly to 1.2 percent. Conversely, reducing σ to 1 weakens

the externality, which results in smaller gaps in the crisis impact effect on asset prices and risk

47



Table 3: Sensitivity Analysis

Macroprudential Welfare Probability of Crises Asset Price Drop Risk Premium
Debt Tax Gains DE SP DE SP DE SP

Baseline 1.1 0.09 2.9 0.05 -28.6 -5.6 0.37 0.07
σ = 2 1.2 0.148 1.3 0.000 -58.9 -6.9 0.64 0.12
σ = 1 0.8 0.034 4.6 0.008 -11.9 -5.0 0.17 0.05
κL = 0.32 1.1 0.12 1.9 0.01 -32.5 -5.0 0.44 0.07
κL = 0.28 1.1 0.07 3.0 0.05 -19.7 -5.6 0.30 0.07
θ = 0.45 1.1 0.08 2.6 0.01 -25.9 -4.8 0.34 0.06
Endogenous R 1.3 0.13 2.3 0.00 -17.6 -7.3 0.36 0.05

premia across DE and SP, and a smaller welfare cost of the externality. The probability of crises

rises, since the incentives for precautionary savings are weaker, but the crises that occur are much

less severe. The result of these changes is that the optimal policy of the SP can be decentralized

with a lower average debt tax of 0.8 percent.

The value of κL also plays an important role because it alters the amount by which asset price

changes affect borrowing ability (since κ is a key determinant of the pecuniary externality on

intertemporal debt noted above). Increasing κL for a given price response when the constraint is

binding implies a larger change in borrowing ability, which makes the externality stronger. On the

other hand, a higher κL makes the constraint less likely to bind, which weakens the externality

(since it depends on the expectation that µt+1 > 0). The effects of changes in κL are clearly

non-monotonic. If κL = 0 , there is no effect of prices on borrowing ability. At the same time, for

high enough values of κL, the constraint never binds (for sure as κL approaches κH since the latter

never binds by construction). In both cases, there is no Fisherian deflation and the externality

does not play any role.

Quantitatively, Table 3 shows that small changes in κL around the baseline value are positively

associated with the size of the externality. The average tax does not change noticeably, but

the average welfare gain is higher with the higher κL. The probability of crisis is lower in the

DE relative to the baseline, but the size of the asset price drop during a crisis and the average

risk premium are higher. These results suggest that while increasing credit access by rising κL

may increase welfare relative to a more financially constrained environment, rising κL also makes

macroprudential policy more desirable.

To examine the effects of varying θ, we report results for a case reducing θ from 0.5 in the

baseline to 0.45, but keeping the two experiments comparable by adjusting κ so as to obtain the
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same average borrowing ability in terms of one-period bonds (this requires a slight reduction in

κL to 0.3 to 0.295). The effects of this small reduction in θ have a negligible impact on the results

relative to the baseline. It is also obvious, however, that a large reduction in this coefficient would

not be as neutral. In the limit, with θ = 0 the model would not have a mechanism linking the

supply-side of the economy with the financial transmission mechanism. When a financial crisis

hits, output and factor allocations would remain the same as in a frictionless RBC model, and

also the stream of dividends entering in the asset pricing function would become independent of

whether the collateral constraint binds or not.

In the last sensitivity experiment we modify the model to relax the assumption of a perfectly

elastic supply of funds at a constant rate R. We introduce an exogenous function making the real

interest rate vary with aggregate bond holdings. In particular, we assume that the net interest

rate is now given by r(B′) = rt − %(e−(B′−B̄) − 1), where B̄ denotes the average value of bond

holdings.36 With % > 0, the interest rate increases with the debt of the economy. In principle,

this could work to attenuate the Fisherian deflation and the pecuniary externality, because of the

endogenous self-correcting mechanism increasing the cost of borrowing as debt increases, but we

found that quantitatively this did not result in large changes relative to the baseline.37 This is

shown in the last row of Table 3 for a value of % = 0.05. With this value of %, the real interest

rate reaches a minimum of −1.5 percent in the simulations which is around the minimum value

observed in the data between 1980 and 2012.

6 Conclusions

This paper examined the positive and normative effects of a pecuniary externality that arises in a

dynamic stochastic general equilibrium model because a collateral constraint limits access to debt

and working capital to a fraction of the market value of an asset in fixed supply. We compared the

allocations, prices, and welfare attained by private agents in a competitive equilibrium in which

agents face this constraint taking prices as given, with those attained by a constrained-efficient

financial regulator who lacks the ability to commit to future policies. This regulator faces the

same borrowing limits as private agents but takes into account how its current borrowing choices

affect asset prices and the borrowing decisions of the regulators in future periods.

The regulator’s inability to commit is important because it implies that the optimal macro-

36This specification is proposed by Schmitt-Grohe and Uribe (2003) to avoid the problem with the unit root in
net foreign assets that arises when using perturbation methods to solve small open economy models. In our model,
its purpose is only to approximate what would happen if the interest rate could respond to debt choices in a richer
general equilibrium model.

37The average macroprudential debt tax and welfare gain are higher because now the planner also internalizes
how borrowing affects the interest rate, which is taken as exogenous by individual agents. The welfare gains of
moving from the constrained efficient equilibrium with an exogenous interest rate to the decentralized equilibrium
with the endogenous interest rate are about the same as in the baseline, which again suggests that the exogeneity
of the interest rate does not have significant effects on the quantitative results.
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prudential policy we study is endogenously time-consistent. Under commitment, the regulator

would be tempted to promise lower future consumption to prop up current asset prices when the

constraint binds, and then renege when the future arrives. Up to now, time-inconsistency had

been set aside in the literature on macroprudential policy by setting up problems without the

forward-looking elements that drive time inconsistency under commitment (which emerge natu-

rally in asset pricing models), or imposed exogenously by assuming constraints on the ability of

so-called conditionally efficient financial regulators to alter asset pricing functions of unregulated

equilibria (e.g. Bianchi and Mendoza, 2010 and Jeanne and Korinek, 2010).

The financial regulator internalizes the debt-deflation process that drives macroeconomic dy-

namics during financial crises, and hence borrows less in periods in which the collateral constraint

does not bind, so as to weaken the debt-deflation process in the states in which the constraint be-

comes binding. Conversely, private agents overborrow in periods in which the constraint does not

bind, and hence are exposed to the stronger adverse effects of the debt-deflation mechanism when

a financial crisis occurs. Moreover, the regulator responds to the incentives implied by its inability

to commit, thus internalizing how the debt choices of future regulators, and the associated future

consumption allocations and asset prices, respond to current borrowing decisions.

We also show that the allocations of the optimal, time-consistent financial regulator can be

decentralized by means of a state-contingent schedule of debt taxes. A key component of this tax

schedule is a macroprudential debt tax that is positive in states in which the collateral constraint

does not bind but may become binding in the following period. As Bianchi (2011) showed, however,

policies like capital requirements or loan to value ratios can be used with equivalent results as

macroprudential debt taxes.

Our analysis quantifies the effects of the debt deflation process and the pecuniary externality

in a setup in which the credit friction has effects on both aggregate demand and supply. On

the demand side, consumption drops as access to debt becomes constrained, and this induces an

endogenous increase in excess returns that leads to a decline in asset prices. Because collateral is

valued at market prices, the drop in asset prices tightens the collateral constraint further and leads

to fire-sales of assets and a spiraling decline in asset prices, consumption and debt. On the supply

side, production and demand for imported inputs are affected by the collateral constraint, because

firms buy the latter using working capital loans that are limited by the collateral constraint.

Hence, when the constraint binds the effective cost of imported inputs rises, so the demand for

these inputs and output drops. This affects dividend rates and hence feeds back into asset prices.

Previous studies in the Macro/Finance literature have shown how these mechanisms can produce

financial crises with features similar to actual financial crises, but the literature had not conducted

a quantitative analysis comparing regulated v. competitive equilibria in an equilibrium model of

business cycles and asset prices.

We conducted a quantitative analysis in a version of the model calibrated to data for industrial

countries. This analysis showed that, while the externality results in only slightly larger average
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ratios of debt and leverage to output compared with the regulator’s allocations, the externality does

produce financial crises that are significantly more severe and more frequent than in the regulated

equilibrium. There are also important asset pricing implications. In particular, the externality

and its associated higher macroeconomic volatility in the competitive equilibrium produce equity

premia, Sharpe ratios, and market price of risk that are much larger than in the regulated economy.

In terms of the macroprudential debt tax, our results show that the optimal, time-consistent

taxes can fully neutralize the externality and increase social welfare. The tax is about 1 percent

on average, and positively correlated with leverage. Hence, the tax is higher when the economy

is building up leverage and becoming vulnerable to a financial crisis, but before a crisis actually

occurs, so as to induce private agents to value more the accumulation of precautionary savings

than they do in the competitive equilibrium without regulation.

We also examine the implications of policies simpler than the state-contingent optimal tax, in

the form of time- and state-invariant taxes. These fixed debt taxes can also reduce the severity

and frequency of financial crises, although not as much as the optimal policy. Moreover, fixed debt

taxes that remain in place in crises times need to tradeoff the prudential benefits of weakening

the pecuniary externality in good times against the costs of making crises worse in bad times.

Hence, the welfare-maximizing fixed tax is lower than the average optimal tax, and it produces

an average welfare gain that is roughly 1/3rd the gain under the optimal policy.

We recognize that despite the positive findings of this paper about the potential benefits of

macroprudential policy in terms of reducing the frequency and severity of financial crises, there

are also important hurdles. One has to do with the complexity of actual financial markets vis-

a-vis the simple structure of the model. In reality, there is a large set of financial constraints

affecting borrowers in credit markets at the level of households, nonfinancial firms and financial

intermediaries, and the regulator aiming for the optimal policy would thus be faced with severe

informational requirements in terms of both coverage and timeliness of leverage and debt posi-

tions. A second important hurdle relates to incomplete information and financial innovation as

the optimal macroprudential response could be different depending on the factors driving the

credit cycle In Bianchi et al. (2012) we examined the limitations of macroprudential regulation

in an environment in which financial innovation occurs but agents, including the regulator, are

imperfectly informed about it.
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A Proofs

A.1 Proof of Proposition 1

Define the tax as:

1+τ t =
βREt

{
u′(C(bt+1, zt+1))− ξt+1u

′′(C(bt+1, zt+1))Q(bt+1, zt+1) + ξtΩt+1

}
+ ξtu

′′(ct)qt

βREtu′(C(bt+1, zt+1))
(35)

The constrained efficient equilibrium can be characterized by sequences {ct, kt+1, bt+1, qt, λt, µt}
∞
t=0

that satisfy (2), (14), (15), (16), kt = 1 together with complementary slackness condition.

The regulated decentralized equilibrium is characterized by a sequence {ct, kt+1, bt+1, qt, λt, µt}
∞
t=0

that satisfy (2), (3), (4), (5),

u′(ct) = βR (1 + τ t)Etu′(ct+1) + µt, (36)

together with complementary slackness conditions. Using the expression for the tax (35) and (36),

yields condition (15) and identical conditions characterizing the two equilibria.

A.2 Quantitative Model: Construction of the Planner’s Problem and
Proof of Decentralization

Households in the constrained efficient allocations solve

max
{ct,ht,νt,kt+1}t≥0

E0

∞∑
t=0

βtu(ct −G(ht)

s.t. ct + qtkt+1 = ktqt + ztF (kt, ht, vt)− pvvt + Tt

bt+1

R
− θpννt ≥ −κtqtkt

This yields conditions

ztFh(kt, ht, νt) = G′(ht) (37)

ztFν(kt, ht, νt) = pν(1 + θµt/u
′(t)) (38)

qtu
′(t) = βEt

{
u′(t+ 1) (zt+1Fk(kt+1, ht+1, νt+1) + qt+1) + κqt+1µt+1

}
(39)

These equations together with market clearing in asset markets (kt = 1) are the implementability

constraints in the planner’s problem 32.

Let υt be the multiplier on the complementary slackness condition and µ∗ the multiplier on

the collateral constraint and ζνt , ζ
h
t be the multiplier on the first order conditions with respect to
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νt and ht.
38 First-order conditions with respect to c, b, h, q and µ and envelope condition are:

ct : λt = u′(t) +
ζνt pνθµtu

′′(t)

u′(t)2
− ξtu′′(t)Qt

bt+1 : λt = µ∗t + βREt(Vb(bt+1, st+1) + ξtΩ̂t+1) + µtυt

where Ω̂t+1 ≡ u′′(t + 1)Cb(bt+1, st+1)(Qt+1 + zt+1Fk(t + 1)) + u′(t + 1)Qb(bt+1, st+1) + zt+1Fh(t +

1)Hb(bt+1, st+1) + Fν(t+ 1)νb(bt+1, st+1) + µb(bt+1, st+1).

qt : ξtu
′(t) = κ(µtυt + µ∗t )

ht : u′(t)G′(ht) = λtztFh(t) + ζht [G
′′(h)− ztFhh(t)] + ζνt

[pνθµtu′′(t)
u′(t)2

G′(ht)

− ztFν(t, ht, νt)
]

+Qtu
′′(t)G′(h)ξt

νt : λtztFν(t) = pν [λt + µ∗t + µtνt] + ζht ztFhν(t) + ztFνν(t)

µt : υt

(
b′

R
− pννt + κQt

)
= pν

θµt
u′(ct −G(ht))

ζνt

V ′(bt) = λt

The Euler condition for bonds is the following:

u′(t) = βREt
[
u′(t+ 1) +

ζt+1pνθµt+1u
′′(t+ 1)

u′(t)2
− ξt+1u

′′(t+ 1) + ξtΩ̂t+1

]
+µtυt −

ζtpνθµtu
′′(t)

u′(t)2
+ ξtu

′′(t)qt + µ∗t

Following the proof in section A.1, using (40) we can show that the tax that decentralizes the

constrained-efficient allocations is given by:

1 + τ t =
1

βEtu′(t+ 1)
βREt

[
ζt+1pνθµt+1u

′′(t+ 1)

u′(t)2
− ξt+1u

′′(t+ 1)Qt+1 + ξtΩ̂t+1

]
+

1

βEtu′(t+ 1)

[
µtυt −

ζtpνθµtu
′′(t)

u′(t)2
+ ξtu

′′(t)qt

]
When the collateral constraint is not binding, we obtain the following macroprudential debt tax.

1 + τ t =
βREt

(
ζνt+1pνθµt+1u

′′(t+1)

u′(t)2
− ξt+1u

′′(t+ 1)Qt+1

)
βREtu′(t+ 1)

38Of course, µt is different from µ∗t as the private and social values from relaxing the collateral constraint are
different. Note that the relevant one for the asset price is µt.
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A.3 Derivation of Collateral Constraint

We provide a derivation of the collateral constraint (24) as an incentive compatibility constraint

resulting from a limited enforcement problem. Debt contracts are signed with creditors in a

competitive environment. Financial contracts are not exclusive, i.e., agents can always switch

to another creditor at any point in time. Households borrow at the beginning of the period,

before the asset market open. Within period, households can divert future revenues and avoid

any costs from defaulting next period when debt becomes due. At the end of the period, there

are no more opportunities for households to divert revenues and repayment of previous bonds is

enforced. Financial intermediaries can costlessly monitor diversion activities at time t. If creditors

detect the diversion scheme, they can seize a fraction κt of the household assets. After defaulting,

a household regains access to credit markets instantaneously and a repurchases the assets that

investors sell in open markets. Given this environment, a household that borrows d̃t+1 and engage

in diversion activities gains d̃t+1 and loses a κtqtkt.

Formally, let V R and V d be the value of repayment and default respectively, and V be the

continuation value. If a household borrows d̃ at the beginning of the period and defaults, it gets

V d(d̃, b, k,X) = max
b′,k′,c,v

u(c−G(h)) + βEs′|sV (b′, k′, B′, s′) (40)

s.t. q(B, s)k′ + c+
b′

R
= d̃+ q(B, s)k(1− κ) + b+ zF (k, h, ν)− pνν

− b
′

R
+ θpνν ≤ κq(B, s)k

where the budget constraint reflects the fact that the household regain access to credit markets

and can borrow b′ and the collateral constraint reflects that agents buy back the assets from

investors. If the household does not default, it gets the utility from current consumption plus the

continuation value of starting next period with debt b′ as stated in 31.

V r(b, k,X) = max
b′,k′,c,h

u(c−G(n)) + βEs′|sV (b′, k′, B′, s′) (41)

s.t. q(B, s)k′ + c+
b′

R
= q(B, s)k + b+ zF (k, h, ν)− pνν

− b
′

R
+ θpνν ≤ κq(B, s)k

A simple inspection at the budget constraints implies that households repay if and only if d̃t+1

≤ κtqtkt

Notice that for the constrained-efficient equilibrium, the derivation of the feasible credit posi-

tions is analogous to the case in the decentralized equilibrium. If the planner engages in diversion,

creditors can seize a fraction κt of assets in the economy. Moreover, households can buy back

the assets at the market price qt. This implies that the same collateral constraint applies in the

constrained-efficient equilibrium in this environment.
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B Computational Algorithm

B.1 Numerical Solution Method for Decentralized Equilibrium

Following Bianchi (2011), we use Coleman (1990)’s time iteration algorithm, modified to address

the occasionally binding endogenous constraint, that operates directly on the first-order conditions.

Formally, the computation of the competitive equilibrium requires solving for functions

{B(b, s),Q(b, s), C(b, s), ν(b, s),H(b, s), µ(b, s)} such that:

C(b, s) +
B(b, s)

R
= zF (1,H(b, s), ν(b, s)) + b− pvν(b, s) (42)

− B(b, s)

R
+ θpνν(b, s) ≤ κQ(b, s) (43)

u′(C(b, s)−G′(H(b, s))) = βREs′|s [u′(C(B(b, s), s′)−G′(H(B(b, s), s))] + µ(b, s) (44)

zFn(1,H(b, s), ν(b, s)) = G′(H(b, s)) (45)

zFν(1,H(b, s), ν(b, s)) = pν(1 + θµ(b, s)/u′(C(b, s))) (46)

qu′(c−G(h)) = βEs′|s {u′(C(b′, s′)−G′(H(b, s)))(Q(b′, s′) + z′Fk(1,H(b′, s′), ν(b′, s′))) (47)

+κ′µ(b′, s′)Q(b′, s′)} (48)

The algorithm follow these steps:

1. Generate a discrete grid for the economy’s bond position Gb = {b1,b2, ...bM} and the shock

state space Gs = {s1,s2, ...sN} and choose an interpolation scheme for evaluating the func-

tions outside the grid of bonds. We use 300 points in the grid for bonds and interpolate the

functions using a piecewise linear approximation.

2. Conjecture Bk(b, s),Qk(b, s), Ck(b, s),Hk(b, s), νk(b, s), µk(b, s) at time K, ∀b ∈ Gb and ∀s ∈
Gs

3. Set j = 1

4. Solve for the values of Bk−j(b, s),Qk−j(b, s), Ck−j(b, s), (b, s), µk−j(b, s) at time k − j using

(42)-(48) and Bk−j+1(b, s),Qk−j+1(b, s), Ck−j+1(b, s)

Hk−j+1(b, s), µk−j+1(b, s)∀ b ∈ Gb and ∀ s ∈ Gs:

(a) Assume collateral constraint ( 43) is not binding. Set µk−j(b, s) = 0 and solve for

Nk−j(b, s) using (45). Solve for Bk−j(b, s) and Ck−j(b, s) using (42) and(44) and a root

finding algorithm.

(b) Check whether −Bk−j(b,s)
R

+ θpννk−j(b, s) ≤ κQk−j+1(b, s) holds.
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(c) If constraint is satisfied, move to next grid point.

(d) Otherwise, solve for µ(b, s), νk−j(b, s),Hk−j(b, s),Bk−j(b, s) using (43, (44) and(45) with

equality.

(e) Solve for Qk−j(b, s) using (48)

5. Evaluate convergence. If supB,s‖xk−j(b, s)− xk−j+1(b, s)‖ < ε for x = B, C,Q, µ,H we have

found the competitive equilibrium. Otherwise, set xk−j(b, s) = xk−j+1(b, s) and j  j + 1

and go to step 4.
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B.2 Numerical Solution Method for Constrained-Efficient Equilib-
rium

The algorithm uses a nested fixed point algorithm.

1. Generate a discrete grid for the economy’s bond position Gb = {b1,b2, ...bM} and the shock

state space Gs = {s1,s2, ...sN} and choose an interpolation scheme for evaluating the func-

tions outside the grid of bonds. We use 300 points in the grid for bonds and interpolate the

functions using a piecewise linear approximation.

2. Guess policy functions B,Q, C, ν, µ at time K ∀ b ∈ Gb and ∀ z ∈ Gz. We use as initial

policies the policies of the decentralized equilibrium, and we check that we obtain the same

equilibrium when starting from alternative policies.

3. For given C,Q,H, ν, µ solve for the value function and policy functions :

V (b′, s′) = max
c,b′,µ,h,ν

u(c−G(h)) + βEs′|sV (b′, s′) (49)

c+
b′

R
= b+ zF (k, h, ν)− pνν (50)

zFh(k, h, ν) = G′(h) (51)

zFν(k, h, ν) = pν

(
1 +

θµ

u′(c−G(h))

)
(52)

µ

(
b′

R
− θpνν + κq

)
= 0 (53)

b′

R
− θpνν ≥ −κq (54)

qu′(c−G(h)) = βEs′|s {u′(C(b′, s′)−G′(H(b, s)))(Q(b′, s′) + z′Fk(1,H(b′, s′), ν(b′, s′))

+κ′µ(b′, s′)Q(b′, s′)} (55)

This recursive problem is solved using value function iteration. The value functions and

policy functions are approximated using linear interpolation whenever the bond position is

not in the grid. To solve the optimal choices in each state, we first assume the collateral

constraint is not binding. We search over a grid of debt and then using the solution to this

problem as an initial guess in a non-linear optimization routine. If the collateral constraint is

binding, we solve for every b′, the combinations of c, h, ν, q, µ that satisfy these 6 conditions

(50)-(55), with (55) holding with equality.

4. Denote by σi, i = c, q, h, ν, µ the policy functions that solve the recursive problem in step (3)

Compute the sup distance between B,Q, C, ν, µand σi, i = c, q, h, ν, µ. If the sup distance is

higher than 1.0e-6, update B,Q, C, ν, µ and solve again the recursive problem.
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