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1 Introduction

The equity premium, namely the expected return on equities less the risk-

free rate, is an important economic quantity for many reasons. It is an input

into the decision process of individual investors as they determine their asset

allocation between stocks and bonds. It is also a part of cost-of-capital calcu-

lations and thus investment decisions by firms. Finally, financial economists

use it to calibrate and to test, both formally and informally, models of asset

pricing and of the macroeconomy.1

The equity premium is usually estimated by taking the sample mean of

stock returns and subtracting a measure of the riskfree rate such as the average

Treasury Bill return. As is well known (Merton, 1980), it is difficult to estimate

the mean of a stochastic process. If one is computing the sample average, a

tighter estimate can be obtained only by extending the data series in time

which has the disadvantage that the data are potentially less relevant to the

present day.

Given the challenge in estimating sample means, it is not surprising that

a number of studies investigate how to estimate the equity premium using

techniques other than taking the sample average. These include making use of

survey evidence (Claus and Thomas, 2001; Graham and Harvey, 2005; Welch,

2000), as well as data on the cross section (Polk, Thompson, and Vuolteenaho,

2006). The branch of the literature most closely related to our work uses

the accounting identity that links prices, dividends, and returns (Blanchard,

1993; Constantinides, 2002; Fama and French, 2002; Donaldson, Kamstra, and

Kramer, 2010). The idea is simple in principle, but the implementation is

inherently complicated by the fact that the formula for returns is additive,

1See, for example, the classic paper of Mehra and Prescott (1985), and surveys such

as Kocherlakota (1996), Campbell (2003), Mehra and Prescott (2003), DeLong and Magin

(2009).
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while incorporating estimates of future dividend growth requires multi-year

discount rates which are multiplicative.2 As DeLong and Magin (2009) discuss

in a survey of the literature, it is not clear why such methods would necessarily

improve the estimation of the equity premium.

In this paper, we propose a method of estimating the equity premium that

incorporates additional information contained in the time series of prices and

dividends in a simple and econometrically-motivated way. Like the papers

above, our work relies on a long-run relation between prices, returns and divi-

dends. However, our implementation is quite different, and grows directly out

of maximum likelihood estimation of autoregressive processes. First, we show

that our method yields an economically significant difference in the estimation

of the equity premium. Taking the sample average of monthly log returns

and subtracting the monthly log return on the Treasury bill over the postwar

period implies a monthly equity premium of 0.43%. Our maximum likelihood

approach implies an equity premium of 0.32%. In annual terms, these translate

to 5.2% and 3.9% respectively. Assuming that returns are approximately log-

normally distributed, we can also derive implications for the equity premium

computed in levels: in monthly terms the sample average implies an equity

premium of 0.53%, or 6.37% per annum, while maximum likelihood implies an

equity premium of 0.42% per month, or 5.06% per annum.

Besides showing that our method yields economically significant differ-

ences, we also perform a Monte Carlo experiment to demonstrate that, in

finite samples and under a number of different assumptions on the data gener-

ating process, the maximum likelihood method is substantially less noisy than

the sample average. For example, under our baseline simulation, the sample

average has a standard error of 0.089%, while our estimator has a standard

2Fama and French (2002) have a relatively simple implementation in that they replace

price appreciation by dividend growth in the expected return equation. We will discuss their

paper in more detail in what follows.
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error of only 0.050%.

Further, we derive formulas that give the intuition for our results. Maxi-

mum likelihood allows additional information to be extracted from the level of

the predictor series. In the postwar sample, this additional information implies

that shocks to the dividend-price ratio have on average been negative. In con-

trast, ordinary least squares (OLS) implies that the shocks are zero on average

by definition. Because shocks to the dividend-price ratio are negatively cor-

related with shocks to returns, our results imply that shocks to returns must

have been positive over the time period. Thus maximum likelihood implies an

equity premium that is below the sample average.

Given this intuition, we show by Monte Carlo simulations that the effect

of our procedure is greater the more persistent is the predictor variable. Inter-

estingly, we also find that while the mean of the predictor variable is harder

to estimate for greater persistence, there is a parameter region for which the

equity premium becomes easier to estimate for greater persistence. Finally, we

also use our framework to demonstrate that when there is a persistent com-

ponent to the equity premium, finite-sample measures of return variance are

biased downward; as the persistence increases this bias becomes severe.

The remainder of our paper proceeds as follows. Section 2 describes our

statistical model and estimation procedure. Section 3 describes our results.

Section 4 describes the intuition for our results and how they vary with the

persistence of the state variable. Section 4 also describes the bias in variance

of returns that results from the persistent component. Section 5 concludes.
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2 Statistical Model and Estimation

2.1 Statistical model

Let Rt+1 denote net returns on an equity index between t and t+1, and Rf,t+1

denote net riskfree returns between t and t+ 1. We let rt+1 = log(1 +Rt+1)−
log(1 +Rf,t+1). Let xt denote the log of the dividend-price ratio. We assume

rt+1 − µr = β(xt − µx) + ut+1 (1a)

xt+1 − µx = θ(xt − µx) + vt+1, (1b)

where, conditional on (r1, . . . , rt, x0, . . . , xt), the vector of shocks [ut+1, vt+1]
>

is normally distributed with zero mean and covariance matrix

Σ =

 σ2
u σuv

σuv σ2
v

 .
We assume throughout that the dividend-price ratio follows a stationary pro-

cess, namely, that θ < 1. Note that our assumptions on the shocks imply that

µr is the equity premium and that µx is the mean of xt. While we focus on

the case that the shocks are normally distributed, we also explore robustness

to alternative distributional assumptions.3

Equations (1a) and (1b) for the return and predictor processes are standard

in the literature. Indeed, the equation for returns is equivalent to the ordi-

nary least squares regression that has been a focus of measuring predictability

in stock returns for almost 30 years (Keim and Stambaugh, 1986; Fama and

French, 1989). We have simply rearranged the parameters so that the mean

excess return µr appears explicitly. The stationary first-order autoregression

3To focus attention on our main contribution, we this simple system with a single predic-

tor variable and with constant coefficients. We could in principle allow for multiple valuation

ratios to predict returns (e.g. Kelly and Pruitt, 2013), or allow for structural breaks (Pástor

and Stambaugh, 2001; Lettau and Van Nieuwerburgh, 2008).

4



for xt is standard in settings where modeling xt is necessary, e.g. understanding

long-horizon returns or the statistical properties of estimators for β.4 Indeed,

most leading economic models imply that xt is stationary (e.g. Bansal and

Yaron, 2004; Campbell and Cochrane, 1999). A large and sophisticated liter-

ature uses this setting to explore the bias and size distortions in estimation

of β, treating other parameters, including µr, as “nuisance” parameters.5 Our

work differs from this literature in that µr is not a nuisance parameter but

rather the focus of our study.

2.2 Estimation procedure

We estimate the parameters µr, µx, β, θ, σ2
u, σ

2
v and σuv by maximum like-

lihood. The assumption on the shocks implies that, conditional on the first

observation x0, the likelihood function is given by

p (r1, . . . , rT ;x1, . . . , xT |µr, µx, β, θ,Σ, x0) =

|2πΣ|−
T
2 exp

{
−1

2

(
σ2
v

|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2
u

|Σ|

T∑
t=1

v2t

)}
. (2)

Maximizing this likelihood function is equivalent to running ordinary least

squares regression. Not surprisingly, maximizing the above requires choosing

means and predictive coefficients to minimize the sum of squares of ut and vt.

4See for example Campbell and Viceira (1999), Barberis (2000), Fama and French (2002),

Lewellen (2004), Cochrane (2008), Van Binsbergen and Koijen (2010).
5See for example Bekaert, Hodrick, and Marshall (1997), Campbell and Yogo (2006),

Nelson and Kim (1993), and Stambaugh (1999) for discussions on the bias in estimation of

β and Cavanagh, Elliott, and Stock (1995), Elliott and Stock (1994), Jansson and Moreira

(2006), Torous, Valkanov, and Yan (2004) and Ferson, Sarkissian, and Simin (2003) for

discussion of size. Campbell (2006) surveys this literature. There is a connection between

estimation of the mean and of the predictive coefficient, in that the bias in β arises from the

bias in θ (Stambaugh, 1999), which ultimately arises from the need to estimate µx (Andrews,

1993).
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This likelihood function, however, ignores the information contained in the

initial draw x0. For this reason, studies have proposed a likelihood function

that incorporates the first observation (Box and Tiao, 1973; Poirier, 1978),

assuming that it is a draw from the stationary distribution. In our case, the

stationary distribution of x0 is normal with mean µx and variance

σ2
x =

σ2
v

1− θ2
,

(Hamilton, 1994). The resulting likelihood function is

p (r1, . . . , rT ;x0, . . . , xT |µr, µx, β, θ,Σ) =(
2πσ2

x

)− 1
2 exp

{
−1

2

(
x0 − µx
σx

)2
}
×

|2πΣ|−
T
2 exp

{
−1

2

(
σ2
v

|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2
u

|Σ|

T∑
t=1

v2t

)}
. (3)

We follow Box and Tiao in referring to (2) as the conditional likelihood and

(3) as the exact likelihood. Recent work that makes use of the exact likelihood

in predictive regressions includes Stambaugh (1999) and Wachter and Waru-

sawitharana (2009, 2012), who focus on estimation of the predictive coefficient

β.6 Other previous studies have focused on the effect of incorporating this

first term (referred to as the initial condition) on unit root tests (Elliott, 1999;

Müller and Elliott, 2003).

We derive the values of µr, µx, β, θ, σ2
u, σ

2
v and σuv that maximize this likeli-

hood by solving a set of first-order conditions. We give closed-form expressions

for each maximum likelihood estimate in the Appendix. Our solution amounts

to solving a polynomial for the autoregressive coefficient θ, after which the so-

lution of every other parameter unravels easily. Because our method does not

require numerical optimization, it is computationally expedient.

6Wachter and Warusawitharana (2009, 2012) use Bayesian methods rather than maxi-

mum likelihood.
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The main comparison we carry out in this paper is between estimating the

equity premium using the sample mean versus maximum likelihood. At the

same time, we compare estimates of the full parameter vector as follows. For

the mean return and mean predictor, we compare the maximum likelihood

estimates µ̂r and µ̂x to the sample means µ̄r and µ̄x. For the predictive co-

efficient and the predictor persistence, we compare the maximum likelihood

estimates β̂ and θ̂ to the OLS estimates βOLS and θOLS. For the covariance

matrix, we report estimates of the standard deviations σu, σv and the corre-

lation ρuv between ut and vt by backing them out of the maximum likelihood

and OLS estimates for σ2
u, σ

2
v and σuv.

7

2.3 Data

We calculate maximum likelihood estimates of the parameters in our predictive

system for the excess return of the value-weighted market portfolio from CRSP.

Recall that our object of interest is rt, the logarithm of the gross return in

excess of the riskfree asset: rt = log(1 + Rt) − log(1 + Rf
t ). We take Rt to

be the monthly net return of the value-weighted market portfolio and Rf
t to

be the monthly net return of the 30-day Treasury Bill. We use the standard

construction for the dividend-price ratio that eliminates seasonality, namely,

we divide a monthly dividend series (constructed by summing over dividend

payouts over the current month and previous eleven months) by the price. Our

monthly data are from January 1927 to December 2011.

7Our maximum likelihood estimates for the entries of the covariance matrix are σ̂2
u, σ̂2

v

and σ̂uv. Given these, we report
√
σ̂2
u,
√
σ̂2
v and σ̂uv/

√
σ̂2
uσ̂

2
v as estimates of σu, σv and the

correlation ρuv.
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3 Results

3.1 Point estimates

Table 1 reports estimates of the parameters of our statistical model given in

(1). We report estimates for the 1927-2011 sample and for the 1953-2011

postwar subsample. For the postwar subsample, the equity premium from

MLE is 0.322% in monthly terms and 3.86% per annum. In contrast, the

sample average (given under the column labeled “OLS”) is 0.433% in monthly

terms, or 5.20% per annum. The annualized difference is 133 basis points.

Applying MLE to the 1927–2011 sample yields an estimated mean of 4.69%

per annum, 88 basis points lower than the sample average.

Table 1 also reports results for maximum likelihood estimation of the pre-

dictive coefficient β, the autoregressive coefficient θ, and the standard devi-

ations and correlation between the shocks. The estimation of the standard

deviations and correlation are nearly identical across the two methods, not

surprisingly, because these can be estimated precisely in monthly data. Esti-

mates for the average value of the predictor variable, the predictive coefficient

and the autoregressive coefficient are noticeably different. The estimate for the

average of the predictor variable is lower for maximum likelihood estimation

(MLE) than for OLS in both samples. The difference in the postwar data is 4

basis points, an order of magnitude smaller than the difference in the estimate

of the equity premium. Nonetheless, the two results are closely related, as we

will discuss in what follows.

As previously discussed, the estimation of the predictive coefficient β and

its relation to the autoregressive coefficient θ is itself the subject of a large

literature, and is not the focus of our manuscript. Table 1 shows that maximum

likelihood implies a postwar estimate of β of 0.69, lower than the OLS value

of 0.83. Because OLS is biased upward, the fact that our method generates

a lower value for β is intriguing; however the result is sample-dependent. In
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the longer sample, the estimate for β generated by maximum likelihood is in

fact slightly higher than the OLS estimate. The estimates for θ vary in the

opposite direction to the estimates for β: in the postwar sample the estimate

for θ is (slightly) higher, while in the longer sample it is (slightly) lower.

3.2 Efficiency

We next evaluate efficiency. Asymptotically, maximum likelihood is known to

be the most efficient estimation method, and so in large samples (assuming

that the specification is correct), our method is guaranteed to be more efficient

than taking the sample average. However, it is possible that this asymptotic

result may not extend to small samples or be robust to mis-specification. We

investigate both of these issues.

We simulate 10,000 samples of excess returns and predictor variables, each

of length equal to the data. Namely, we simulate from (1), setting parameter

values equal to their maximum likelihood estimates, and, for each sample,

initializing x using a draw from the stationary distribution. For each simulated

sample, we calculate sample averages, OLS estimates and maximum likelihood

estimates, generating a distribution of these estimates over the 10,000 paths.8

Table 2 reports the means, standard deviations, and the 5th, 50th, and 95th

percentile values. Panel A shows the results of a simulation calibrated using the

postwar sample. While the sample average of the excess return has a standard

deviation of 0.089, the maximum likelihood estimate has a standard deviation

of only 0.050 (unless stated otherwise, units are in monthly percentage terms).

8In every sample, both actual and artificial, we have been able to find a unique solution

to the first order conditions such that θ is real and between -1 and 1. Given this value for

θ, there is a unique solution for the other parameters. Figure 1 shows the histogram of the

resulting values of θ from the postwar simulation. The distribution is well-behaved in that

it falls as θ approaches the inadmissible value of 1. Further discussion of the polynomial for

θ is contained in Appendix A.
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Panel B shows an economically significant decline in standard deviation for

the long sample as well: the standard deviation falls from 0.080 to 0.058. It

is noteworthy that our results still hold in the longer sample, indicating that

our method has value even when there is a large amount of data available to

estimate the sample mean. Besides lower standard deviations, the maximum

likelihood estimates also have a tighter distribution. For example, the 95th

percentile value for the sample mean of returns is 0.47, while the 95th percentile

value for the maximum likelihood estimate is 0.40 (in monthly terms, the value

of the maximum likelihood estimate is 0.32). The 5th percentile is 0.18 for the

sample average but 0.24 for the maximum likelihood estimate.

Table 2 shows that the maximum likelihood estimate of the mean of the

predictor also has a lower standard deviation and tighter confidence intervals

than the sample average, though the difference is much less pronounced. Sim-

ilarly, the maximum likelihood estimate of the regression coefficient β also has

a smaller standard deviation and confidence intervals than the OLS estimate,

though again, the differences for these parameters between MLE and OLS are

not large. The results in this table show that, in terms of the parameters of

this system at least, the equity premium is unique in the improvement offered

by maximum likelihood. This is in part due to the fact that estimation of

first moments is more difficult than that of second moments in the time series

(Merton, 1980). However, the result that the mean of returns is affected more

than the mean of the predictor shows that this is not all that is going on. We

return to this issue in Section 4.

Figure 2 provides another view of the difference between the sample mean

and the maximum likelihood estimate of the equity premium. The solid line

shows the probability density of the maximum likelihood estimates while the

dashed line shows the probability density of the sample mean.9 The data gen-

erating process is calibrated to the postwar period, assuming the parameter

9Both densities are computed non-parametrically and smoothed by a normal kernel.
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estimated using maximum likelihood (unless otherwise stated, all simulations

that follow assume this calibration). The distribution of the maximum likeli-

hood estimate is visibly more concentrated around the true value of the equity

premium, and the tails of this distribution fall well under the tails of the

distribution of sample means.

In Table 2, we used coefficients estimated by maximum likelihood to evalu-

ate whether MLE is more efficient than OLS. Perhaps it is not surprising that

MLE delivers better estimates, if we use the maximum likelihood estimates

themselves in the simulation. However, Table 3 shows nearly identical results

from setting the parameters equal to their sample means and OLS estimates.

It is well known that OLS estimates of predictive coefficients can be severely

biased (Stambaugh, 1999). Tables 2 and 3 replicate this result. For example,

in the simulation in Table 2, the “true” value of the predictive coefficient β in

the simulated data is 0.69, however, the mean OLS value from the simulated

samples is 1.28. That is, OLS estimates the predictive coefficient to be much

higher than the true value, and thus the predictive relation to be stronger. The

bias in the predictive coefficient is associated with bias in the autoregressive

coefficient on the dividend yield. The true value of θ in the simulated data is

0.993, but the mean OLS value is 0.987.10 Maximum likelihood reduces the

bias somewhat: the mean maximum likelihood estimate of β is 1.24 as opposed

to 1.28, but it does not eliminate it entirely.11

These results suggest that 0.69 is probably not a good estimate of β, and

likewise, 0.993 is likely not to be a good estimate of θ. Does the superior

performance of maximum likelihood continue to hold if these estimates are

corrected for bias? We turn to this question next. We repeat the exercise

10These tables also show a downward bias in σu, the estimate of return shocks. We return

to this issue in Section 4.
11The estimates of the equity premium are not biased however; the mean for both maxi-

mum likelihood and the sample average is close to the population value.
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described above, but instead of using the maximum likelihood estimates, we

adjust the values of β and θ so that the mean computed across the simulated

samples matches the observed value in the data. The results are given in

Panel A of Table 4. This adjustment lowers β and increases θ, but does not

change the maximum likelihood estimate of the equity premium. If anything,

adjusting for biases shows that we are being conservative in how much more

efficient our method of estimating the equity premium is in comparison to

using the sample average. The sample average has a standard deviation of

0.138, while the standard deviation of the maximum likelihood estimate if

0.072. Namely, after accounting for biases, maximum likelihood gives an equity

premium estimate with standard deviation that is about half of the standard

deviation of the sample mean excess return.

In Panel B of Table 4 we conduct an additional robustness check. Here,

we check the impact of fat-tailed shocks on the efficiency of our method. We

simulate system (1) under the assumption that the shocks ut and vt are dis-

tributed as a bivariate Student’s t distribution with degree of freedom ν. To

estimate ν, we measure the kurtosis of the estimated residuals in the return

and predictor regressions and take the average. In the postwar sample the

kurtosis of the residual to the return regression is 5.76 and the kurtosis of

the residual to the predictor regression is 5.43, giving an estimated kurtosis

of 5.60. We match this number to the mean kurtosis of the residuals across

our simulations by adjusting the ν parameter of the simulated t shocks.12 In

addition, the true values of the parameters we use in our simulations have been

adjusted to account for estimation biases as above. Our results show that the

efficiency gain of our MLE method is virtually unchanged by the fat tails in

the shocks.

12The value of ν that achieves this is 5.96, which corresponds to a population kurtosis

of 6.05. The difference between the population number and the mean across our samples

reflects the fact that kurtosis in downward biased.
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3.3 The equity premium in levels

So far we have defined the equity premium in terms of log returns. However,

our result is also indicative of a lower equity premium using return levels. For

simplicity, assume that the log returns log (1 +Rt) are normally distributed.

Then

E[Rt] = E
[
elog(1+Rt)

]
− 1 = eE[log(1+Rt)]+

1
2
Var(log(1+Rt)) − 1.

Using the definition of the excess log return, E [log(1 +Rt)] = E[rt]+E[log(1+

Rf
t )], so the above implies that

E[Rt −Rf
t ] = eE[rt]eE[log(1+Rf

t )]+ 1
2
Var(log(1+Rt)) − 1− E[Rf

t ].

Our maximum likelihood method provides an estimate of E[rt] and all other

quantities above can be easily calculated using sample moments. Taking the

sample mean of the series Rt − Rf
t for the period 1953-2011 yields a risk

premium that is 0.530% per month, or 6.37% per annum. On the other hand,

using the above calculation and our maximum likelihood estimate of the mean

of rt gives an estimate of E[Rt − Rf
t ] of 0.422% per month, or 5.06% per

annum.13 Thus our estimate of the risk premium in return levels is 131 basis

lower than taking the sample average, in line with our results for log returns.

3.4 Comparison with Fama and French (2002)

Fama and French (2002) also propose an estimator that takes the time series

of the dividend-price ratio into account in estimating the mean return. Noting

the following return identity:

Rt =
Dt

Pt−1
+
Pt − Pt−1
Pt−1

,

13In the data, in monthly terms for the period 1953-2011, the sample mean of Rt is

0.918%, the sample mean of Rf
t is 0.387%, the sample mean of log(1 + Rf

t ) is 0.386% and

the variance of log(1 +Rt) is 0.194%.
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and taking the expectation:

E[Rt] = E

[
Dt

Pt−1

]
+ E

[
Pt − Pt−1
Pt−1

]
,

they propose replacing the capital gain term E[(Pt−Pt−1)/Pt−1] with dividend

growth E[(Dt −Dt−1)/Dt−1]. They argue that, because prices and dividends

are cointegrated, their mean growth rates should be the same. They find that

the resulting expected return is less than half the sample average, namely

4.74% rather than 9.62%.

While their argument seems intuitive, a closer look reveals a problem. Let

Xt = Dt/Pt, and let lower-case letters denote natural logs. Then

dt+1 − dt = xt+1 − xt + pt+1 − pt. (4)

Because Xt is stationary, E[xt+1 − xt] = 0 and it is indeed the case that

E[dt+1 − dt] = E[pt+1 − pt]. (5)

However, exponentiating (4) and subtracting 1 implies

Dt+1 −Dt

Dt

=
Xt+1

Xt

Pt+1

Pt
− 1. (6)

That is, stationarity of Xt implies (5), but not E[(Pt−Pt−1)/Pt−1] = E[(Dt−
Dt−1)/Dt−1]. Namely it does not imply that the average level growth rates are

equal.

For expected growth rates to be equal in levels, (6) shows that it must be

the case that E
[
Xt+1

Xt

Pt+1

Pt

]
= E

[
Pt+1

Pt

]
. It seems unlikely that there are general

conditions under which this holds. Note that it follows from E[log(Xt+1/Xt)] =

0 and Jensen’s inequality that E[Xt+1/Xt] > 1.14

14Indeed, if we assume that growth rates of dividends and prices are log-normal, a neces-

sary and sufficient condition for equality of expected (level) growth rates is that the variances
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Nonetheless, our results show that assuming cointegration of prices and

dividends can be very informative for estimation of the mean return.15 Indeed,

the intuition that we will develop in the next section is closely related to

that conjectured by Fama and French (2002): The sample average of realized

returns is “too high” because shocks to discount rates (proxied for by the

dividend-price ratio) were negative on average over the sample period.

4 Discussion

4.1 Source of the gain in efficiency

What determines the difference between the maximum likelihood estimate of

the equity premium and the sample average of excess returns? Let µ̂r denote

the maximum likelihood estimate of the equity premium. Given the maximum

likelihood estimates, we can define a time series of shocks ût and v̂t as follows:

of the log growth rates are equal:

Var(dt+1 − dt) = Var(pt+1 − pt). (7)

To see this, note that (5), combined with log-normality, implies that

E

[
Dt+1

Dt

]
e−

1
2Var(dt+1−dt) = E

[
Pt+1

Pt

]
e−

1
2Var(pt+1−pt).

If (7) holds, then the second terms on the right and left hand side cancel, yielding the result.

This is a knife-edge result in which the variance of the log dividend-price ratio xt and the

covariance of xt with log price changes cancel out. However, it is well-known that prices are

more volatile than dividends (Shiller, 1981).
15This point is also made by Constantinides (2002), who suggests adjusting the mean

return by the difference in the valuation ratio between the first and last observation. Con-

stantinides derives conditions such that the resulting estimator has lower variance than the

mean return.
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ût = rt − µ̂r − β̂(xt−1 − µ̂x), (8a)

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x). (8b)

By definition, then,

µ̂r =
1

T

T∑
t=1

rt −
1

T

T∑
t=1

ût − β̂
1

T

T∑
t=1

(xt−1 − µ̂x). (9)

As (9) shows, there are two reasons why the maximum likelihood estimate of

the mean, µ̂r, might differ from the sample mean 1
T

∑T
t=1 rt. The first is that

the shocks ût may not average to zero over the sample. The second is that, if

returns are predictable in the sense that β 6= 0, and if the average value of the

predictor variable is not equal to its mean over the sample, then the average

return will not equal the mean.

It turns out that only the first of these effects is quantitatively important

for our sample. For the period January 1953 to December 2001, the sample

average 1
T

∑T
t=1 ût is equal to 0.1382% per month, while β̂ 1

T

∑T
t=1(xt−1 − µ̂x)

is −0.0278% per month. The difference in the maximum likelihood estimate

and the sample mean thus ultimately comes down to the interpretation of the

shocks ût. To understand the behavior of these shocks, we will argue it is

necessary to understand the behavior of the shocks v̂t. And, to understand

v̂t, it is necessary to understand why the maximum likelihood estimate of the

mean of x differs from the sample mean.

4.1.1 Estimation of the mean of the predictor variable

To build intuition, we consider a simpler problem in which the true value of the

autocorrelation coefficient θ is known. Appendix A shows that the first-order

condition in the exact likelihood function with respect to µx implies

µ̂x =
(1 + θ)

1 + θ + (1− θ)T
x0 +

1

(1 + θ) + (1− θ)T

T∑
t=1

(xt − θxt−1). (10)
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We can rearrange (1b) as follows:

xt+1 − θxt = (1− θ)µx + vt+1.

Summing over t and solving for µx implies that

µx =
1

1− θ
1

T

T∑
t=1

(xt − θxt−1)−
1

T (1− θ)

T∑
t=1

vt, (11)

where the shocks vt are defined using the mean µx and the autocorrelation θ.

Consider the conditional maximum likelihood estimate of µx, the estimate

that arises from maximizing the conditional likelihood (2). We will call this

µ̂cx. Note that this is also equal to the OLS estimate of µx, which arises from

estimating the intercept (1− θ)µx in the regression equation

xt+1 = (1− θ)µx + θxt + vt+1

and dividing by 1− θ. The conditional maximum likelihood estimate of µx is

determined by the requirement that the shocks vt average to zero. Therefore,

it follows from (11) that

µ̂cx =
1

1− θ
1

T

T∑
t=1

(xt − θxt−1).

Substituting back into (10) implies

µ̂x =
(1 + θ)

1 + θ + (1− θ)T
x0 +

(1− θ)T
(1 + θ) + (1− θ)T

µ̂cx.

Multiplying and dividing by 1− θ implies a more intuitive formula:

µ̂x =
1− θ2

1− θ2 + (1− θ)2T
x0 +

(1− θ)2T
1− θ2 + (1− θ)2T

µ̂cx. (12)

Equation 12 shows that the exact maximum likelihood estimate is a weighted

average of the first observation and the conditional maximum likelihood esti-

mate. The weights are determined by the precision of each estimate. Recall

that

x0 ∼ N
(

0,
σ2
v

1− θ2

)
.

17



Also, because the shocks vt are independent, we have that

1

T (1− θ)

T∑
t=1

vt ∼ N
(

0,
σ2
v

T (1− θ)2

)
.

Therefore T (1 − θ)2 can be viewed as proportional to the precision of the

conditional maximum likelihood estimate, just as 1− θ2 can be viewed as pro-

portional to the precision of x0. Note that when θ = 0, there is no persistence

and the weight on x0 is 1/(T + 1), its appropriate weight if all the observa-

tions were independent. At the other extreme, as θ approaches 1, less and less

information is conveyed by the shocks vt and the “estimate” of µ̂x approaches

x0.
16

While (12) rests on the assumption that θ is known, we can nevertheless

use it to qualitatively understand the effect of including the first observation.

Because of the information contained in x0, we can conclude that the last T

observations of the predictor variable are not entirely representative of values

of the predictor variable in population. Namely, the values of the predictor

variable for the last T observations are lower, on average, than they would be

in a representative sample. It follows that the predictor variable must have

declined over the sample period. Thus the shocks vt do not average to zero,

as OLS (or conditional maximum likelihood) would imply, but rather, they

average to a negative value.

Figure 3 shows the historical time series of the dividend-price ratio, with

the starting value in bold, and a horizontal line representing the mean. Given

the appearance of this figure, the conclusion that the dividend-price ratio has

been subject to shocks that are negative on average does not seem surprising.

16Note that we cannot interpret (12) as precisely giving our maximum likelihood estimate,

because θ is not known (more precisely, the conditional and exact maximum likelihood

estimates of θ will differ).
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4.1.2 Estimation of the equity premium

We now return to the problem of estimating the equity premium. Equation 9

shows that the average shock 1
T

∑T
t=1 ût plays an important role in explaining

the difference between the maximum likelihood estimate of the equity premium

and the sample mean return. When these shocks are computed using the OLS

estimates of the parameters, they must, by definition, average to zero.17 When

the shocks are computed using the maximum likelihood estimate, however,

they may not.

To understand the properties of the average shocks to returns, we note that

the first-order condition for estimation of µ̂r implies

1

T

T∑
t=1

ût =
σ̂uv
σ̂2
v

1

T

T∑
t=1

v̂t. (13)

This is analogous to a result of Stambaugh (1999), in which the averages of the

error terms are replaced by the deviation of β and of θ from the true means.

Equation 13 implies a connection between the average value of the shocks to

the predictor variable and the average value of the shocks to returns. As the

previous section shows, MLE implies that the average shock to the predictor

variable is negative in our sample. Because shocks to returns are negatively

correlated with shocks to the predictor variable, the average shock to returns

is positive.18 Note that this result operates purely through the correlation of

17Note that the OLS estimate of µr is not the same as the sample average, though they

will be close. The reason is that OLS adjusts the intercept in (1a) for the difference between

the average of the first T observations of the predictor variable and the OLS estimate of µx.
18This point is related to the result that longer time series can help estimate parameters

determined by shorter time series, as long as the shocks are correlated. See Stambaugh

(1997) and Lynch and Wachter (2013). Here, the time series for the predictor is slightly

longer than the time series of the return. Despite the small difference in the lengths of

the data, the structure of the problem implies that the effect of including the full predictor

variable series is very strong.
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the shocks, and is not related to predictability.19

Based on this intuition, we can label the terms in (9) as follows:

µ̂r =
1

T

T∑
t=1

rt − 1

T

T∑
t=1

ût︸ ︷︷ ︸
Correlated shock term

− β̂
1

T

T∑
t=1

(xt−1 − µ̂x)︸ ︷︷ ︸
Predictability term

. (14)

As discussed above, the correlated shock term accounts for more than 100% of

the difference between the sample mean and the maximum likelihood estimate

of the equity premium. It makes sense that these terms would have opposite

signs: if the shocks to the dividend-price ratio were negative over the sample

(as is consistent with the positive shocks to returns), then the earlier observa-

tions of xt would tend to be above the estimated mean. Indeed, Figure 4 shows

that this result is typical in our simulated samples. This figure shows a scatter

plot of the correlated shock term and the predictability term. The correlated

shock term tends to be much larger in magnitude than the predictability term.

Moreover, the two effects are clearly negatively correlated.

This section explains the difference between the sample mean and the max-

imum likelihood estimate of the equity premium by appealing to the difference

between the sample mean and the maximum likelihood estimate of the mean

of the predictor variable. However, Table 1 shows that the difference between

the sample mean of excess returns and the maximum likelihood estimate of

the equity premium is many times that of the difference between the two esti-

mates of the mean of the predictor variable. Moreover, Table 2 shows that the

difference in efficiency for returns is also much greater than the difference in

efficiency for the predictor variable. How is it then that the difference in the

estimates for the mean of the predictor variable could be driving the results?

Equation 13 offers an explanation. Shocks to returns are far more volatile than

19Ultimately, however, there may be a connection in that variation in the equity premium

is the main driver of variation in the dividend-price ratio and thus the reason why the shocks

are negatively correlated.
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shocks to the predictor variable. The term σ̂uv/σ̂
2
v is about -100 in the data.

What seems like only a small increase in information concerning the shocks

to the predictor variable translates to quite a lot of information concerning

returns.

4.2 Properties of the maximum likelihood estimator

In this section we investigate the properties of the maximum likelihood esti-

mator, and, in particular, how the variance of the estimator depends on the

persistence of the predictor variable and the amount of predictability. We also

return to the issue of the finite-sample properties of the variance of returns

themselves.

4.2.1 Variance of the estimator as a function of the persistence

The theoretical discussion in the previous section suggests that the persistence

θ is the main determinant of the increase in efficiency from maximum likeli-

hood. Figure 5 shows the standard deviation of estimators of the mean of the

predictor variable (µx) and of estimators of the equity premium (µr) as func-

tions of θ. Other parameters are set equal to their estimates from the postwar

data, adjusted for bias (see Table 4). For each value of θ, we simulate 10,000

samples.

Panel A shows the standard deviation of estimators of µx, the mean of

the predictor variable. The standard deviation of both the sample mean and

the maximum likelihood estimate are increasing as functions of θ. This is not

surprising; holding all else equal, an increase in the persistence of θ makes

the observations on the predictor variable more alike, thus decreasing their

information content. The standard deviation of the sample mean is larger

than the standard deviation of the maximum likelihood estimate, indicating

that our results above do not depend on a specific value of θ. Moreover, the
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improvement in efficiency increases as θ grows larger.

Panel B shows the standard deviation of estimators of µr. In contrast to

the result of µx, the relation between the standard deviation and θ is non-

monotonic for both the sample mean of excess returns and the maximum

likelihood estimate of the equity premium. For values of θ below about 0.998,

the standard deviations of the estimates are decreasing in θ, while for values

of θ above this number they are increasing. This result is surprising given the

result in Panel A. As θ increases, any given sample contains less information

about the predictor variable, and thus about returns. One might expect that

the standard deviation of estimators of the mean return would follow the same

pattern as in Panel A. Indeed, this is the case for part of the parameter space,

namely when the persistence of the predictor variable is very close to one.

However, an increase in θ has two opposing effects on the variance of the

estimators of the equity premium. On the one hand, an increase in θ decreases

the information content of the predictor variable series, and thus of the return

series, as described above. On the other hand, for a given β, an increase

in θ raises the R2 in the return regression, namely it increases the relative

amount of return variance that can be predicted. Moreover, innovations to

the predictable part of returns are negatively correlated with innovations to

the unpredictable part of returns. That is, an increase in θ increases mean

reversion.

To see this, consider the effect of a series of shocks on excess returns (in

this calculation, we will assume, for expositional reasons, that the mean excess

return is zero):

rt = βxt−1 + ut

rt+1 = βθxt−1 + βvt + ut+1

rt+2 = βθ2xt−1 + βθvt + βvt+1 + ut+2
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and so on. Thus, for k ≥ 1, the autocovariance of returns is given by

Cov (rt, rt+k) = θkβ2Var(xt) + θk−1βσuv, (15)

where Var(xt) = σ2
v/(1 − θ2). An increase in θ increases the variance of the

predictor variable. In the absence of covariance between the shocks u and

v, this effect would increase the autocovariance of returns through the term

θkβ2Var(xt). However, because u and v are negatively correlated, the second

term in (15), θk−1βσuv is also negative. In Appendix B, we show that this

second term dominates the first for all positive values of θ up until a critical

value, at which point the first comes to dominate.

Intuitively, if in a given sample there is a sequence of unusually high re-

turns, this will tend to be followed by unusually low returns. Thus a sequence

of unusually high observations or unusually low observations are less likely to

dominate in any given sample, and so the sample average will be more stable

than it would be if returns were iid.20 Because the sample mean is simply the

scaled long-horizon return, our result is related to the fact that mean reversion

reduces the variability of long-horizon returns relative to short-horizon returns.

Of course, for θ sufficiently large, the reduction in information from autocor-

relation in the price-dividend ratio dominates, and both the sample mean and

the maximum likelihood estimate increase. In the limit, as θ approaches one,

20We can see this directly by computing the variance of the sample mean:

Var

(
1

T

T∑
t=1

rt

)
=

1

T

(
σ2
u + β2 σ2

v

1− θ2
+ 2β

σuv
1− θ

)
+O

(
1

T 2

)
(see Appendix C). The term σ2

u + β2σ2
v/(1 − θ2) measures the contribution of the return

shocks and the predictor to the variability of the sample-mean return. The term βσuv/(1−θ)
measures the contribution of the covariance of the return shocks and the predictor shocks to

the variability of the sample-mean return. The former term increases as θ increases, which

says that the sample-mean return is more variable because the predictor is more variable.

At the same time, the latter term becomes more negative as θ increases, so that in fact the

overall variability of the sample-mean return can decrease.
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returns become non-stationary and the sample mean has infinite variance.

Panel B of Figure 5 also shows that MLE is more efficient than the sample

mean for any value of θ. The benefit of using the maximum estimate increases

with θ. Indeed, while the standard deviation of the sample mean falls from

0.14 to 0.12 as θ goes from 0.980 to 0.995, the maximum likelihood estimate

falls from 0.14 to 0.06. The effects appear to reinforce each other, perhaps

because the samples that tend to feature a large degree of negative correlation

between shocks to u and v both feature greater mean reversion, and a greater

benefit of maximum likelihood.21

4.3 Variance of the return

We conclude by using our framework to examine the properties of the variance

of returns as the persistence increases to one. Like the previous section on the

properties of the estimator of the mean return, this section illustrates how a

small persistent component of returns can have a substantial impact not only

on conditional moments but on unconditional ones as well.

Figure 6 shows the standard deviation of the predictor variable (Panel A)

and the excess return (Panel B) as functions of θ. The solid line shows the

true value of the standard deviations. Both the standard deviation of the pre-

dictor variable and of returns increase in θ. However, the patterns differ: the

standard deviation of the predictor variable increases steadily as θ approaches

one, while the standard deviation of returns stays stable, and then increases

relatively quickly for very high values of θ. The reason is that the standard

deviation of returns is mainly driven by the unexpected portion of returns ut,

21If we assume that returns are unpredictable, the standard deviation of the sample mean

is constant as a function of θ because the marginal distribution of returns is iid. However,

the negative correlation between the shocks ut and vt still leads to an improvement from

maximum likelihood. A simulation exercise analogous to that reported in Figure 5 shows

that the benefits of the maximum likelihood estimate grow as θ increases.
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unless θ is very high. For high values of θ there are two reinforcing effects: a

greater percentage of the variance of returns is driven by the predictor, and

the predictor is also more volatile.

Figure 6 also shows the mean and median values of the standard deviations,

computed across the simulated samples. The figure shows a clear downward

bias in the standard deviations, both for the predictor variable and for returns.

Intuitively, as θ approaches one, the distribution for the return becomes non-

stationary and the true variance is infinite. However, in a finite sample, it

is always possible to compute a number for the variance. This bias may be

especially pernicious in the case of returns, where it has little effect unless θ

is very large, at which point the effect becomes dramatic. Thus, when returns

have even a small persistent component, the standard deviation computed in

any one sample can be severely biased downward.

5 Conclusion

A large literature has grown up around the empirical quantity known as the

equity premium, in part because of its significance for evaluating models in

macro-finance (Mehra and Prescott (1985)) and in part because of its prac-

tical significance as indicated by discussions in popular classics on investing

(e.g. Siegel (1994), Malkiel (2003)) and in undergraduate and masters’ level

textbooks.

Estimation of the equity premium is almost always accomplished by taking

sample means. The implicit assumption is that the period in question con-

tains a representative sample of returns. We show that it is possible to relax

this assumption, and obtain a better estimate of the premium, by bringing

additional information to bear on the problem, specifically the information

contained separately in prices and dividends.

We show that the time series behavior of prices, dividends and returns,
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suggests that shocks to returns have been unusually positive over the post-

war period. Thus the sample average will overstate the equity premium. We

show, surprisingly, that this intuition can be formalized with the standard

econometric technique of maximum likelihood. Applying maximum likelihood

rather than taking the sample average leads to an economically significant

reduction in the equity premium of 1.3 percentage points from 6.4% to 5.1%.

Furthermore, Monte Carlo experiments indicate that the small-sample noise

is greatly reduced.

It is well-known that the dividend-price ratio contains information about

the conditional mean of returns. Our study shows that the process for the

dividend-price ratio also has implications for unconditional moments of re-

turns. Besides showing that the average return overstates the equity premium

in the post-war period, we also show that that the standard deviation of returns

is biased downwards. The degree of these biases depend on the persistence of

the dividend-price ratio. We have assumed that the dividend-price ratio fol-

lows a stationary auto-regressive process. To the degree there is uncertainty

about the dividend-price ratio process itself, our results suggest that there

may be considerably more uncertainty about the unconditional distribution

of returns than reflected in conventional standard error measures. We look

forward to exploring these issues in further work.
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Appendix

A Derivation of the Maximum Likelihood Estimators

We denote the maximum likelihood estimate of parameter q as q̂. Here we derive

the estimators for µr, µx, β, θ, σ2u, σ2v and σuv. We note in particular that σ̂2u is

the estimator of σ2u, not the square of the estimator of σu, and similarly for σ̂2v .

Maximizing the exact log likelihood function is the same as minimizing the function

L:

L(β, θ, µr, µx, σuv, σu, σv) = log(σ2v)− log(1− θ2) +
1− θ2

σ2v
(x0 − µx)2

+ T log(|Σ|) +
σ2v
|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2u
|Σ|

T∑
t=1

v2t ,

where |Σ| = σ2uσ
2
v − σ2uv. The first-order conditions arise from setting the following

partial derivatives of the likelihood function to zero:

0 =
∂

∂β
L =

σ2v
|Σ|

T∑
t=1

ut(µx − xt−1)−
σuv
|Σ|

T∑
t=1

(µx − xt−1)vt (A.1a)

0 =
∂

∂θ
L =

θ

1− θ2
− θ (x0 − µx)2

σ2v

− σuv
|Σ|

T∑
t=1

ut(µx − xt−1) +
σ2u
|Σ|

T∑
t=1

vt(µx − xt−1)

(A.1b)

0 =
∂

∂µr
L = − σ

2
v

|Σ|

T∑
t=1

ut +
σuv
|Σ|

T∑
t=1

vt (A.1c)

0 =
∂

∂µx
L = −1− θ2

σ2v
(x0 − µx)

+
σ2v
|Σ|

T∑
t=1

βut −
σuv
|Σ|

T∑
t=1

(βvt − (1− θ)ut)−
σ2u
|Σ|

T∑
t=1

(1− θ)vt

(A.1d)

0 =
∂

∂σuv
L = −T 2σuv

|Σ|
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+ 2
σuvσ

2
v

|Σ|2
T∑
t=1

u2t − 2
σ2uσ

2
v + σ2uv
|Σ|2

T∑
t=1

utvt + 2
σuvσ

2
u

|Σ|2
T∑
t=1

v2t

(A.1e)

0 =
∂

∂σ2u
L = T

σ2v
|Σ|
− σ4v
|Σ|2

T∑
t=1

u2t + 2
σuvσ

2
v

|Σ|2
T∑
t=1

utvt −
σ2uv
|Σ|2

T∑
t=1

v2t (A.1f)

0 =
∂

∂σ2v
L =

1

σ2v
+ T

σ2u
|Σ|
− (1− θ2)(x0 − µx)2

1

σ4v

− σ2uv
|Σ|2

T∑
t=1

u2t + 2
σuvσ

2
u

|Σ|2
T∑
t=1

utvt −
σ4u
|Σ|2

T∑
t=1

v2t .

(A.1g)

Define the residuals

ût = rt − µ̂r − β̂(xt−1 − µ̂x),

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x).

We now outline the algebra that allows us to solve these first order equations.

Step 1: Express µ̂x in terms of θ̂ and the data.

Combining the first-order conditions (A.1c) and (A.1d) gives

T∑
t=1

v̂t =
(

1 + θ̂
)

(µ̂x − x0) , (A.2)

which we can write as

µ̂x =

(
1 + θ̂

)
x0 +

∑T
t=1

(
xt − θ̂xt−1

)
(

1 + θ̂
)

+
(

1− θ̂
)
T

. (A.3)

Step 2: Express the covariance matrix in terms of µ̂x, θ̂, µ̂r, β̂ and

the data.

The first-order conditions (A.1e), (A.1f) and (A.1g) give the relations
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T σ̂2u = − σ̂uv
σ̂2v

σ̂uv + (1− θ̂2)(x0 − µ̂x)2
(
σ̂uv
σ̂2v

)2

+

T∑
t=1

û2t , (A.4)

(T + 1)σ̂2v = (1− θ̂2)(x0 − µ̂x)2 +

T∑
t=1

v̂2t , (A.5)

σ̂uv
σ̂2v

=

∑T
t=1 ûtv̂t∑T
t=1 v̂

2
t

. (A.6)

Step 3: Solve for θ̂ in terms of the data. This also gives µ̂x and σ̂2
v

in terms of the data.

Combining the first-order conditions (A.1a) and (A.1b) gives

0 =
T∑
t=1

(µ̂x − xt−1)v̂t + σ̂2v
θ̂

1− θ̂2
− θ̂(x0 − µ̂x)2. (A.7)

Here µ̂x and v̂t are functions of only θ̂ and the data, so if we combine (A.7) and

(A.5) we can get an equation for θ̂:

0 = (T + 1)

T∑
t=1

(µ̂x − xt−1)v̂t +
θ̂

1− θ̂2

T∑
t=1

v̂2t − T θ̂(x0 − µ̂x)2.

Because we require that −1 < θ̂ < 1, we can multiply this by(
(T + 1)− (T − 1)θ̂

)2 (
1− θ̂2

)
and rearrange to obtain

0 = T
(
θ̂ − 1

)(
(T + 1)

(
1− θ̂2

)
+ 2θ̂

)( T∑
t=0

xt − θ̂
T−1∑
t=1

xt

)2

+
(

(T + 1)− (T − 1)θ̂
)(

θ̂ − 1
)( T∑

t=0

xt − θ̂
T−1∑
t=1

xt

)

×

[
2T θ̂(1 + θ̂)

(
T−1∑
t=1

xt

)
−
(

(T + 1) + (T − 1)θ̂
)( T∑

t=0

xt +
T−1∑
t=1

xt

)]

+
(

(T + 1)− (T − 1)θ̂
)2
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×

[
θ̂
((

1− θ̂2
)
T + 1

)(T−1∑
t=1

x2t

)
+
(
θ̂2(T − 1)− (T + 1)

) T∑
t=1

xtxt−1 + θ̂
T∑
t=0

x2t

]
.

This is a fifth-order polynomial in θ̂ where the coefficients are determined by the

sample. As a consequence, it is very hard to establish analytical results on existence

and uniqueness of solutions that would be accepted as estimators of θ. Nevertheless,

in lengthy experimentation and simulation runs we have always found that this

polynomial only has one root within the unit circle of the complex plane and that

this root is real. Therefore this root is a valid MLE of θ. Given this solution for θ̂,

(A.3) gives the estimator for µx and (A.5) gives the estimator for σ2v .

Step 4: Solve for µ̂r and β̂ in terms of the data. This also gives the

solution for σ̂uv and σ̂2
u.

The first-order condition (A.1c) gives

T∑
t=1

ût =
σ̂uv
σ̂2v

T∑
t=1

v̂t. (A.8)

Combining this with the first-order condition (A.1a) yields

β̂ = βOLS +
σ̂uv
σ̂2v

(
θ̂ − θOLS

)
, (A.9)

where

θOLS =
1

1
T

∑T
t=1 x

2
t−1 −

(
1
T

∑T
t=1 xt−1

)2
[

1

T

T∑
t=1

xt−1xt−

(
1

T

T∑
t=1

xt−1

)(
1

T

T∑
s=1

xs

)]

is the OLS coefficient of regressing xt on xt−1 and

βOLS =
1

1
T

∑T
t=1 x

2
t−1 −

(
1
T

∑T
t=1 xt−1

)2
[

1

T

T∑
t=1

xt−1rt−

(
1

T

T∑
t=1

xt−1

)(
− 1

T

T∑
s=1

rs

)]

is the OLS coefficient of regressing rt on xt−1.

Equations (A.6), (A.8) and (A.9) constitute a system of three equations in the

three unknowns µ̂r, β̂ and σ̂uv
σ̂2
v

. The solution is
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µ̂r =
1

J

[
1

T

T∑
t=1

rt −

(
1

T

T∑
t=1

xt − µ̂x

)
F − βOLSH

1 + (θ̂ − θOLS)H

−

(
1

T

T∑
t=1

xt−1 − µ̂x

)
βOLS(1 + θ̂H)− θOLSF

1 + (θ̂ − θOLS)H

]
(A.10)

β̂ =
βOLS + (θ̂ − θOLS)F

1 + (θ̂ − θOLS)H
− (θ̂ − θOLS)G

1 + (θ̂ − θOLS)H
µ̂r (A.11)

σ̂uv
σ̂2v

=
F − βOLSH

1 + (θ̂ − θOLS)H
− G

1 + (θ̂ − θOLS)H
µ̂r, (A.12)

where

J = 1− G

1 + (θ̂ − θOLS)H

[
1

T

T∑
t=1

xt − µ̂x − θOLS

(
1

T

T∑
t=1

xt−1 − µ̂x

)]

F =

∑T
t=1 rtv̂t∑T
t=1 v̂

2
t

G =

∑T
t=1 v̂t∑T
t=1 v̂

2
t

H =

∑T
t=1(xt−1 − µ̂x)v̂t∑T

t=1 v̂
2
t

.

Expressions (A.10) and (A.11) provide the estimators for µr and β because they

depend only on the data and µ̂x and θ̂, which we have already expressed in terms of

the data. Finally, (A.12) gives the estimator the estimator of σuv via (A.5), which

further yields the estimator of σ2u via (A.4).

B The Effect of θ on the Autocovariance of Returns

It follows from (15) that

Cov (rt, rt+k) = θk−1β (θβVar(xt) + σuv) .

We sign this autocovariance under the assumptions θ > 0, β > 0 and σuv < 0,

as we estimate the case to be in our data. Substituting in Var(xt) = σ2v/(1 − θ2),

multiplying by (1 − θ2) > 0 and dividing through by θk−1β > 0 shows that the
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autocovariance of returns is negative whenever

−σuvθ2 + βσ2vθ + σuv < 0.

The left-hand side is a quadratic polynomial in θ with a positive leading coefficient.

As a result, whenever this polynomial has two real roots in θ, the entire expression

is negative if and only if θ lies in between those roots. Indeed, the polynomial has

two real roots because its discriminant equals β2σ4v+4σ2uv > 0. Let θ1 be the smaller

of the two roots and let θ2 be the larger one, that is,

θ2 =
−βσ2v +

√
β2σ4v + 4σ2uv

−2σuv
.

Under our assumptions it is straightforward to prove that θ1 < −1 and −1 < θ2 < 1,

so the only possible change of sign of the return autocovariance happens at θ2. In

particular, Cov (rt, rt+k) < 0 whenever θ < θ2 and Cov (rt, rt+k) > 0 whenever

θ > θ2.

C The Effect of θ on the Variance of the Sample Mean

Return

By definition

1

T

T∑
t=1

rt = µr + β

(
1

T

T∑
t=1

xt−1 − µx

)
+

1

T

T∑
t=1

ut,

thus

Var

(
1

T

T∑
t=1

rt

)
= β2Var

(
1

T

T∑
t=1

xt−1

)
+Var

(
1

T

T∑
t=1

ut

)
+2βCov

(
1

T

T∑
t=1

xt−1,
1

T

T∑
t=1

ut

)
.

The variance of the average predictor is available and it depends on θ. The variance

of the average residual does not depend on θ. Finally, the covariance of the average

predictor and the average predictor depends on θ and ρuv. It is not a trivial quantity

because even though ut is uncorrelated with xt−1, it is correlated with xt via vt

whenever ρuv 6= 0 and thus it is also correlated with xt+1, xt+2, . . . , xT−1 whenever

θ 6= 0.
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In particular,

Var

(
1

T

T∑
t=1

ut

)
= σ2u

1

T
,

Var

(
1

T

T∑
t=1

xt−1

)
=

σ2v
1− θ2

[
1

T

(
1 + 2

θ

1− θ

)
+

2

T 2

θ(θT − 1)

(1− θ)2

]
,

Cov

(
1

T

T∑
t=1

xt−1,
1

T

T∑
t=1

ut

)
= σuv

[
1

T

1

1− θ
+

1

T 2

θT − 1

(1− θ)2

]
,

so that

Var

(
1

T

T∑
t=1

rt

)
=

1

T

(
σ2u + 2β

σuv
1− θ

+ β2
σ2v

1− θ2

)
− 1

T 2
2β

1− θT

(1− θ)2

(
βθ

σ2v
1− θ2

+ σuv

)
.
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Table 1: Estimates

1953–2011 1927–2011
OLS MLE OLS MLE

µr 0.433 0.322 0.464 0.391
µx −3.545 −3.504 −3.374 −3.383
β 0.828 0.686 0.623 0.650
θ 0.992 0.993 0.992 0.991
σu 4.414 4.416 5.466 5.464
σv 0.046 0.046 0.057 0.057
ρuv −0.961 −0.961 −0.953 −0.953

Notes: Estimates of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where the shocks [ut+1, vt+1]> are iid Gaussian over time with variance-covariance matrix

Σ =

[
σ2
u σuv

σuv σ2
v

]
,

and where rt is the continuously compounded return on the value-weighted CRSP portfolio
in excess of the return on the 30-day Treasury Bill and xt is the log of the dividend-price
ratio. Data are monthly. Means and standard deviations of returns are in percentage terms.
Under the OLS columns, parameters are estimated by ordinary least squares, except for µr

and µx, which are equal to the sample averages of excess returns and the predictor variable
respectively. Under the MLE columns, parameters are estimated using maximum likelihood.
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Table 2: The distribution of estimators in simulations: Calibration to MLE

True Value Method Mean Std. Dev. 5 % 50 % 95 %

Panel A: January 1953 to December 2011

µr 0.322
Sample 0.322 0.089 0.175 0.322 0.467
MLE 0.323 0.050 0.241 0.324 0.404

µx −3.504
Sample −3.508 0.231 −3.894 −3.507 −3.126
MLE −3.508 0.221 −3.875 −3.507 −3.145

β 0.686
OLS 1.284 0.699 0.420 1.145 2.639
MLE 1.243 0.670 0.440 1.103 2.541

θ 0.993
OLS 0.987 0.007 0.973 0.988 0.996
MLE 0.987 0.007 0.974 0.989 0.996

σu 4.416
OLS 4.408 0.119 4.213 4.408 4.603
MLE 4.406 0.119 4.211 4.406 4.600

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Panel B: January 1927 to December 2011

µr 0.391
Sample 0.390 0.080 0.258 0.389 0.522
MLE 0.391 0.058 0.295 0.390 0.485

µx −3.383
Sample −3.383 0.196 −3.710 −3.385 −3.063
MLE −3.384 0.190 −3.701 −3.384 −3.074

β 0.650
OLS 1.039 0.547 0.336 0.941 2.063
MLE 1.018 0.530 0.345 0.923 2.007

θ 0.991
OLS 0.987 0.006 0.976 0.988 0.995
MLE 0.987 0.006 0.977 0.989 0.994

σu 5.464
OLS 5.460 0.119 5.265 5.459 5.655
MLE 5.458 0.119 5.263 5.458 5.653

σv 0.057
OLS 0.057 0.001 0.055 0.057 0.059
MLE 0.057 0.001 0.055 0.057 0.059

ρuv −0.953
OLS −0.953 0.003 −0.958 −0.953 −0.948
MLE −0.953 0.003 −0.958 −0.953 −0.948

Notes: We simulate 10,000 monthly data samples from (1) with length and parameters as in
the postwar data series (Panel A) and as in the long data series (Panel B). Parameters are set
to their maximum likelihood estimates given in Table 1. We conduct maximum likelihood
estimation (MLE) for each sample path. As a comparison, we take sample means to estimate
µr and µx (Sample) and use ordinary least squares to estimate the slope coefficients and
the variance and correlations of the residuals (OLS). The table reports the means, standard
deviations, and 5th, 50th, and 95th percentile values across simulations.
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Table 3: The distribution of estimators in simulations: Calibration to OLS estimates

True Value Method Mean Std. Dev. 5 % 50 % 95 %

Panel A: January 1953 to December 2011

µr 0.433
Sample 0.432 0.082 0.297 0.431 0.565
MLE 0.432 0.049 0.352 0.432 0.513

µx −3.545
Sample −3.550 0.192 −3.865 −3.551 −3.232
MLE −3.550 0.184 −3.854 −3.552 −3.242

β 0.828
OLS 1.414 0.715 0.512 1.276 2.801
MLE 1.372 0.689 0.515 1.241 2.675

θ 0.992
OLS 0.986 0.007 0.971 0.987 0.995
MLE 0.986 0.007 0.972 0.988 0.995

σu 4.414
OLS 4.410 0.118 4.215 4.410 4.603
MLE 4.408 0.118 4.214 4.408 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Panel B: January 1927 to December 2011

µr 0.464
Sample 0.463 0.082 0.326 0.462 0.596
MLE 0.464 0.058 0.367 0.463 0.560

µx −3.374
Sample −3.373 0.200 −3.702 −3.373 −3.044
MLE −3.373 0.194 −3.690 −3.374 −3.054

β 0.623
OLS 1.019 0.543 0.322 0.925 2.051
MLE 0.995 0.527 0.329 0.903 1.983

θ 0.992
OLS 0.987 0.006 0.976 0.988 0.995
MLE 0.988 0.006 0.977 0.989 0.995

σu 5.466
OLS 5.465 0.121 5.269 5.463 5.668
MLE 5.463 0.121 5.268 5.461 5.666

σv 0.057
OLS 0.057 0.001 0.055 0.057 0.059
MLE 0.057 0.001 0.055 0.057 0.059

ρuv −0.953
OLS −0.953 0.003 −0.958 −0.953 −0.948
MLE −0.953 0.003 −0.958 −0.953 −0.948

Notes: We simulate 10,000 monthly data samples from (1) with length and parameters as in
the postwar data series (Panel A) and as in the long data series (Panel B). Parameters are
set to their OLS estimates given in Table 1. We conduct maximum likelihood estimation
(MLE) for each sample path. As a comparison, we take sample means to estimate µr and µx

(Sample) and use ordinary least squares to estimate the slope coefficients and the variance
and correlations of the residuals (OLS). The table reports the means, standard deviations,
and 5th, 50th, and 95th percentile values across simulations.
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Table 4: The distribution of estimators in simulations: Bias-correction and fat-tailed shocks

True Value Method Mean Std. Dev. 5 % 50 % 95 %

Panel A: Bias Correction

µr 0.322
Sample 0.324 0.138 0.097 0.327 0.546
MLE 0.322 0.072 0.205 0.323 0.441

µx −3.504
Sample −3.510 0.582 −4.464 −3.512 −2.567
MLE −3.510 0.557 −4.425 −3.506 −2.601

β 0.090
OLS 0.750 0.643 −0.009 0.610 1.989
MLE 0.686 0.601 0.036 0.528 1.881

θ 0.998
OLS 0.991 0.007 0.978 0.992 0.999
MLE 0.992 0.006 0.979 0.993 0.998

σu 4.424
OLS 4.417 0.118 4.223 4.416 4.611
MLE 4.417 0.118 4.225 4.416 4.612

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Panel B: Fat-Tailed Shocks

µr 0.322
Sample 0.323 0.138 0.098 0.320 0.552
MLE 0.322 0.072 0.204 0.322 0.440

µx −3.504
Sample −3.504 0.578 −4.454 −3.498 −2.543
MLE −3.504 0.549 −4.404 −3.498 −2.589

β 0.090
OLS 0.746 0.634 −0.007 0.601 1.947
MLE 0.683 0.594 0.040 0.533 1.836

θ 0.998
OLS 0.991 0.007 0.978 0.993 0.999
MLE 0.992 0.006 0.980 0.993 0.998

σu 4.430
OLS 4.419 0.185 4.136 4.411 4.727
MLE 4.419 0.185 4.136 4.410 4.727

σv 0.046
OLS 0.046 0.002 0.043 0.045 0.049
MLE 0.046 0.002 0.043 0.045 0.049

ρuv −0.961
OLS −0.961 0.004 −0.967 −0.961 −0.954
MLE −0.961 0.004 −0.967 −0.961 −0.954

Notes: We simulate 10,000 monthly data samples from (1) with length and parameters
as in the postwar data series. Parameters are set to their maximum likelihood estimates
from Table 1, adjusted so that the median maximum likelihood estimates of θ and β from
the simulation match the data values. We conduct maximum likelihood estimation (MLE)
for each sample path. As a comparison, we take sample means to estimate µr and µx

(Sample) and use ordinary least squares to estimate the slope coefficients and the variance
and correlations of the residuals (OLS). The table reports the means, standard deviations,
and 5th, 50th, and 95th percentile values across simulations. Panel A assumes normally
distributed shocks while Panel B uses t-distributed shocks with degrees of freedom parameter
equal to 5.96.
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Figure 1: We simulate 10,000 monthly data samples from (1) with length and parameters

as in the postwar data series. The figure reports the histogram of maximum likelihood

estimates of θ, the autocorrelation of the dividend-price ratio.
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Figure 2: We simulate 10,000 monthly data samples from (1) with length and parameters

as in the postwar data series. The figure reports densities of the estimators of the equity

premium µr. The solid line shows the density of the maximum likelihood estimates while

the dashed line shows the density of the sample means of excess returns.
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Figure 3: The logarithm of the dividend-price ratio over the period January 1953 to De-

cember 2011 (the postwar sample). The dotted line indicates the mean, and the black dot

the initial value.
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Figure 4: We simulate 10,000 monthly data samples from (1) with length and parameters as

in the postwar data series. The figure shows the joint distribution of the predictability term

β̂ 1
T

∑T
t=1(xt−1 − µ̂x) and the correlated shock term 1

T

∑T
t=1 ût that sum to the difference

between the maximum likelihood estimate and the sample mean.
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Panel A: Standard deviation of the mean of the predictor
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Panel B: Standard deviation of the equity premium estimate
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Figure 5: We simulate 10,000 monthly data samples from (1) with length and parameters

as in the postwar data series. Panel A reports the standard deviations of the sample mean

(dots) and of the maximum likelihood estimates of the mean (crosses) of the predictor

variable. Panel B does the same for the excess return. The figure shows these standard

deviations as functions of the autocorrelation θ. Other parameters are set to their maximum

likelihood estimates, adjusted for biases.
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Panel A: Standard deviation of the predictor
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Figure 6: We simulate 40,000 monthly data samples from (1) with length and parameters

as in the postwar data series. Panel A reports the mean, the median, and the population

value of the standard deviation of the predictor variable. Panel B does the same for the

excess return. The figure shows these statistics as functions of the autocorrelation θ. Other

parameters are set to their maximum likelihood estimates, adjusted for biases.
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