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The progress of a society is all the more rapid in proportion
as it is more completely subjected to external influences.

— Henri Pirenne

1 Introduction

In this paper we provide a theoretical description of a process of endogenous technol-

ogy diffusion which we use to study the effects of trade barriers on productivity. Our

theory complements the classical insights from international trade theories, in which

gains from trade are due to re-allocation of resources using the same technology. Yet,

we provide a model in which, as is widely and reasonably believed, trade serves as a

vehicle for technology diffusion.1

Our starting point is a static trade model. For concreteness we follow the frame-

work in Eaton and Kortum (2002) and Alvarez and Lucas (2007), EK-AL for short.

In this model (as in many others) freer trade replaces inefficient domestic producers

with more efficient foreign producers. We add to this familiar, static effect a theory

of endogenous growth in which people get new, production-related ideas by learning

from the people they do business with or compete with. Trade then has a selection

effect of putting domestic producers in contact with the most efficient (subject to

trade costs) foreign and domestic producers. The identification and analysis of these

selection and learning effects is the new contribution of the paper.

Though constructed from familiar components, our model has a complicated,

somewhat novel structure, and it will be helpful to introduce enough notation to

describe this structure before outlining the rest of the paper. There are n countries,

i = 1, ..., n, with given populations Li and given iceberg trade costs, κij. There are

many goods produced in each country. The productivity of any good produced in i

will be modeled as a draw from a country-specific probability distribution, defined by

its cdf

Fi(z) = Pr{productivity in i of good drawn at random ≤ z}.

We treat populations and trade costs as parameters and analyze the dynamics of the

technology profiles F = (F1, ..., Fn) that serve as the state variables of the model.

There are two steps in this analysis.

1It is certainly not the only vehicle: Think of the diffusion of nuclear weapons capabilities.
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Given a profile F together with populations and trade costs we define a static

competitive equilibrium for the world economy. We use the static model of interna-

tional trade to determine the way a given technology profile F defines a pattern of

world trade, including listings of which sellers in any country are domestic producers

or exporters from abroad.

The second step in the analysis is based on a model of technology diffusion that

involves stochastic meetings of individual people—we call them product managers—

who exchange production-related ideas. We use a variation on the Kortum (1997)

model, as developed in Alvarez et al. (2008). In this diffusion model, product man-

agers in country i meet managers from some source distribution Gi at a given rate αi

and improve their own knowledge whenever such meetings put them in contact with

someone who knows more than they do. In our application, this source distribution

Gi is the technology profile of the set of sellers of any good who are active in country

i, as determined by the trade theory applied in step 1. Under autarchy, then, the

source distribution is simply the distribution Fi of domestic producers.2 Trade im-

proves on this source distribution by replacing some inefficient domestic sellers with

more efficient foreigners, replacing Fi with a distribution Gi that stochastically dom-

inates it, at least for high productivities. It is this selection effect that provides the

link between trade volumes and productivity growth that we are seeking.

Technically, trade theory provides a map from a technology profile F to a profile

G = (G1, ..., Gn) of source distributions. The diffusion model gives us a map from

each pair (Fi, Gi) into a rate of change ∂Fi(x, t)/∂t. Combining these two steps yields

a law of motion for the technology profile F of all n countries together.

The organization of the rest of the paper is as follows. Section 2 introduces our

model of technological change in the context of a closed economy, which will be later

reinterpreted as a model of the entire world. For this case we present a complete

characterization of the dynamics of a single economy that introduces many features

that will be important in understanding the more general case. Section 3 characterizes

the competitive static trade theory that maps an arbitrary technology profile F into a

pattern of world trade. Section 4 then integrates the dynamics of technological change

and static equilibrium implied by trade theory. We characterize the balanced growth

path for a world economy and full dynamics of the right tail of the productivity

distributions under constant trade costs and populations. This section includes a

2Kortum (1997) calls this distribution the technology frontier.
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characterization of cases where trade costs have substantial effects on the stationary

distribution, relative income, and the volume of trade, relative to the static trade

theory of EK-AL. It also gives results for the case of costless trade. As we could

predict on the basis of the static trade theory alone, a full analytical characterization

of the dynamics in the general case is not a possibility, so we continue with numerical

results.

In Section 5 we carry out some quantitative explorations to illustrate the effects

of trade costs on income levels and growth rates. We calculate equilibrium paths for

a symmetric world economy under different trade paths and compare the static and

dynamic effects of tariff reductions in this context. We then consider catch-up growth

when a small, poor, open economy is introduced into the otherwise symmetric world.

These results are illustrated graphically. Section 6 provides a brief discussion of some

substantive conclusions suggested by these exercises and of directions for future work

that they suggest. Finally, in an Online Appendix we outlines a version of the model

with Bertrand competition, and show numerical results for this alternative model.

Before continuing, we present a brief summary of the main results in the paper,

and an overview of the related literature.

Preview of the Results This section review the main theoretical results, organiz-

ing them conceptually rather than in the order they are presented in the paper.

The initial conditions are given by the distribution of productivities Fi(·, 0). These

govern all future behavior in our deterministic model. Their tail behavior can be

characterized by level and curvature parameters, λi and θi respectively. In particular,

θi is a measure of the concentration of firms in country i with very high productivities.

Trade among countries leads to the immediate convergence across countries of the

curvature of the tail to the common value θ, the maximum of the θi values in all n

economies. Despite the continuous evolution of the distributions Fi through time this

common tail parameter θ remains constant. [Propositions 1, 2, 7 and 8]

Under natural assumptions, the distributions of productivities, consumption and

GDP converge to a unique balanced growth path with a common growth rate ν. The

rate ν is given by the product of the sum of the countries’ meeting rates,
∑

i αi and the

common tail parameter θ. Increases in the search efforts ai or in the concentration θ of

high productivities both stimulate faster growth. The model features a form of scale

effect on growth. Adding more countries to the world in a way that enlarges the initial
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set of best practices increases the world growth rate, while arbitrarily partitioning a

country into subregions leaves everything in the world unaltered. [Proposition 1, 2,

7 and discussion in Appendix C]

As with the case of the curvature parameter, the paths of the level parameters λi(t)

are independent of trade costs, as long as they are finite. Trade costs do not affect the

diffusion of extremely productive technologies—which are the ones determining tail

behavior—since for them productivity over-rides cost considerations. But in general

trade costs do affect the diffusion of technologies, and higher trade costs imply that

some more efficient foreign producers are replaced by inefficient domestic producers.

This reduces per-capita income levels. [Propositions 8, 10 and 11, and figures 2 and

3.]

Both the effects of trade costs on output and the volume of trade depend on the

elasticity of substitution across products, η. This parameter determines the weight

that is given to goods from the left tail of the distribution of productivity. As η

increases towards a critical value, expenditures become concentrated on goods with

higher productivities. In this case, the behavior of trade volume and relative output

on the model approaches the EK-AL Frechet case. [Proposition 9]

Our model has considerable flexibility because equilibrium wages are the only

feature of the static trade theory that is relevant in determining the distribution of

sellers in each country. No other feature of the equilibrium trade model is required

to determine the diffusion of productivity. In particular, as we show in the Online

Appendix, one can easily change the trade model from a competitive equilibrium to

a Bertrand competition and retain tractability.

Related Literature We build on previous work on both trade and growth. We

consider both perfect competitive setups from Eaton and Kortum (2002) and Alvarez

and Lucas (2007), and the case with Bertrand competition as in (Bernard et al.,

2003), Arkolakis et al. (2012), Holmes et al. (2012). We differ from these papers in

that we allow for a more general distribution of productivities.

Our work is closely related to a number of papers on endogenous growth theory.

Kortum (1997) considers a model of a closed economy in which innovators spend

resources to draw ideas from an exogenous distribution of potential technologies.

Unlike our model, innovators do not learn form other producers, but instead they learn

form a set of exogenous ideas not embodied in goods, and thus there are no external
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effects. Yet the mathematical setup from which innovators learn best practices from

disembodied exogenous ideas is similar to the one that producers in our set up use to

learn from ideas currently embodied in goods. The derived stationary distribution of

productivities is Frechet, but in their model there is no long-run growth unless there

is population growth. We abstract from innovation, but allow for the diffusion of

existing technologies across sectors and countries, and obtain a model with endogeous

growth.

Luttmer (2012) extends his work on growth driven by innovators with heteroge-

nous productivities and imitation by entrants. Luttmer (2007) considers imitation

of incumbants, which is closely related to our mechanism for growth. His interest is

to understand the contributions of both type of mechanisms to a balanced growth

path. This is a broad topic that has been studied extensively. An important early

contribution is Jovanovic and MacDonald (1994).

Weitzman (1998) gives a mathematical description of a process where the engine

of growth is the repeated combination of pairs of original ideas from different areas

of knowledge. Our modeling of diffusion, at that general level, is guided by the same

mechanism: ideas embodied in different goods are pairwise combined to produce

newer ideas. Nevertheless our specification of ideas is closer mathematically to the

one in Kortum (1997), as extended by Alvarez et al. (2008).

Jovanovic and Rob (1989) have a model with a simpler demand side, where new

ideas (productivities) are created by random meeting of existing ideas, but they al-

low for a richer set of possibilities after the meeting of two potential producers. In

their model, potential producers can either implement their ideas or engage in costly

search for a random meeting of a another holder of an unimplemented idea. Once

ideas are implemented, they are no longer available to be combined with other ideas

(implemented or not). Another difference in their outcome is that the ideas that are

being recombined are the relatively bad ones, since the goods ones are implemented.

Thus the initial set of ideas has an decreasing impact in the creating of new ideas as

as time goes by. Furthermore their model, as in Kortum (1997) features an exogenous

arrival of new ideas. Again, relative to our work, they abstract from trade.

A related problem is studied by Lucas and Moll (2011), who consider the problem

of an individual which can produce or search for new ideas with variable intensity i.e

in terms of the object of this model they select α(t) ∈ [0, 1], which is interpreted as

fraction of time devoted to search for new ideas. The process of search is similar to
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the one in this paper. This allows the authors to study aggregate economic growth

and cross sectional individual income differences. Perla and Tonetti (2012) study a

similar problem, but there formulation is closer to a standard search model.

We relate to a broader literature that examines the connection between growth

and trade, both theoretically and empirically.

Grossman and Helpman have several theoretical papers on growth and trade.

The one that is closest to ours is Helpman and Grossman (1991). They consider a

small open economy where reserchers develop new varieties of intermediate inputs.

Technology is transferred from the rest of the world as an external effect. The pace

of technology transfer is assumed to be proportional to the volume of trade. Their

model abstracts from the selection effect which is at the core of our model, since the

transmission depends on aggregate outcomes and affects all the entrants in the same

way.

There is a larger empirical literature studying the relationship between trade,

growth and development. On balance, they find relationships between trade flows,

domestic and foreign innovation, and TFP (Coe and Helpman, 1995; Coe et al., 1997;

Acharya and Keller, 2009). See Keller (2004) and Keller (2008) for reviews of this

literature.

2 Technology Diffusion in a Closed Economy

We begin with a description of technology diffusion and growth in a closed economy.

Consumers have identical preferences over a [0, 1] continuum of goods. We use c(s)

to denote the consumption of an agent of each of the s ∈ [0, 1] goods for each period

t. There is no technology to transfer goods between periods. The period t utility

function is given by

C =

[∫ 1

0

c(s)1−1/ηds

]η/(η−1)

,

so goods enter in a symmetrical and exchangeable way. Each consumer is endowed

with one unit of labor, which he supplies inelastically.

Each good s can be produced by many producers, each using the same labor-only,

linear technology

y(s) = z(s)l(s) (1)
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where l(s) is the labor input and z(s) is the productivity associated with good s.

Given the set-up, it is natural to assume that all the identical producers of good s

behave competitively, an assumption we will maintain for the analysis of the paper.3

Using the symmetry of the utility function and the assumed competitive behavior

we can group goods by their productivity z and write the time t utility as

C(t) =

[∫
R+

c(z)1−1/η f(z, t) dz

]η/(η−1)

, (2)

where c(z) is the consumption of any good s that has productivity z and f(·, t) is the

productivity density. We assume that f is continuous. We use F (z, t) for the cdf of

productivity so that the productivity density is f(z, t) = ∂F (z, t)/∂z.

In a competitive equilibrium the price of any good z will be p(z) = w/z and the

ideal price index for the economy at date t is

p(t) =

[∫
R+

p(z)1−1/ηf(z, t)dz

]η/(η−1)

. (3)

Real per capita GDP y(t) equals the real wage w/p(t) or

y(t) =

[∫
R+

z−1+1/ηf(z, t)dz

]−η/(η−1)

, (4)

provided the integral on the right converges.

In our model the analysis of the closed economy becomes a study of the evolution

of the productivity distribution F (z, t): a process of technological diffusion. We

model diffusion as a process of search and matching involving the product managers

of each of the s ∈ [0, 1] goods. We treat search as a costless activity, a by-product

of production. We assume that managers interact with each other and exchange

production-related ideas. When a manager of any good with productivity z meets a

manager of any other good with productivity z′ > z adopts z′ for the production of

his own good.4 After such a meeting the new technology z′ is instantaneously diffused

to all producers of the same good, thus keeping all the producers of the same good

homogenous. We assume that entire set of managers of any single good has a total of

3In the Online Appendix we consider the case of Bertrand competition.
4Perhaps a more descriptive, yet less tractable model will distinguish between goods that are

similar, in terms of how transferable is the technology.
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α meetings per unit of time. While we refer to this process as technology diffusion, it

might as well be called innovation, since the more advanced technology used for one

good are adapted to a different good.5

Next we give a mathematical description of this process. To motivate a law

of motion for the productivity distribution F (z, t), we describe the discrete change

between t and t + ∆, and then derive its continuous-time limit. For a given level of

the productivity z at date t, we assume that

F (z, t+ ∆) = Pr{productivity drawn at random < z at t+ ∆}

= Pr{productivity < z at t} × Pr{no greater draw in (t, t+ ∆)}

= F (z, t)F (z, t)α∆

The first term on the right reflects the option, which managers always have, to con-

tinue with their current productivity. The second is the probability that in α∆

randomly drawn meetings an agent with productivity z does not meet anyone with

a higher productivity. Given our assumption of independent draws, the fraction of

managers with productivity below z at date t + h is given by product of these two

terms.

We have that
F (z, t+ ∆)− F (z, t)

F (z, t)∆
=
F (z, t)α∆ − 1

∆

and taking limits as ∆→ 0 that:6

∂ logF (z, t)

∂t
= α log (F (z, t)) . (5)

Then for any initial distribution (cdf) F (z, 0) the path of F is given by

log(F (z, t)) = log(F (z, 0))eαt. (6)

5The effect of indirect links, of the role of chance in our diffusion process, is familiar to us from
the history of technology. Here is a nice example, taken from chapter 13 of Diamond (1998): “[N]ew
technologies and materials make it possible to generate still other new technologies by recombination
... Gutenberg’s press was derived from screw presses in use for making wine and olive oil, while his
ink was an oil-based improvement on existing inks....”

6See Appendix A for an interpretation of the continuous time limit. A similar, but not identical,
differential equation could be based on the more familiar assumption of Poisson arrivals, as opposed
to the continuous arrivals postulated here. The formulation here has the convenient property of
preserving distributions in the Frechet family. See Alvarez et al. (2008) and the Poisson extension
in the Online Appendix.
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It is evident from (6) that the law of motion (5) implies a non-decreasing level

of real income y(t). For empirical reasons, our interest is in sustained growth of

economies that either grow at a fairly constant rate or will do so asymptotically.

A central construct in our analysis will therefore be a balanced growth path (BGP),

defined as a cdf Φ (with continuous density φ) and a growth rate ν > 0 such that

F (eνtz, t) = Φ (z) for all t

is a particular solution to (5). On a BGP

f(z, t) =
∂F (z, t)

∂z
= φ(e−vtz)e−vt

also holds. Real GDP is

y(t) =

[∫
R+

z−1+1/ηφ(e−vtz)e−vtdz

]−η/(η−1)

=evt
[∫

R+

x−1+1/ηφ(x)dx

]−η/(η−1)

(7)

provided the integral on the right converges. In the rest of this section we characterize

(i) all pairs (Φ, ν) that are balanced growth paths and (ii) all initial distributions

F (z, 0) from which the solution F (evtx, t) will converge asymptotically to Φ(x).

The possible balanced growth solutions to (5) are contained in the Frechet family

of distributions, a two-parameter family defined by the cdfs:

F (z, 0) = exp(−λz−1/θ), θ, λ > 0. (8)

Proposition 1. The cdf/growth rate pair (Φ, ν) is a balanced growth path of (5) if

and only if Φ is a Frechet distribution with parameters λ > 0 and θ = ν/α.

Proof : It is immediate from (6) that if F (z, 0) is Frechet (λ, θ), F (z, t) is Frechet

(eαtλ,θ) for all t. Then if Φ(z) = F (eαθtz, t) is a BGP. Conversely, suppose (Φ, αθ) is

a BGP so that F (z, t) = Φ(e−αθtz) solves (6). Then

log
(
Φ(e−αθtz)

)
= log(Φ(z))eαt.
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Differentiating both sides with respect to t and setting t = 0 gives

d log(Φ(z))

d log(z)
= −1

θ
log(Φ(z))

which has the general solution

log(Φ(z)) = −λz−1/θ. � (9)

A Frechet distribution Φ has a “Pareto tail” which is to say that it has the property

lim
z→∞

1− Φ(z)

z−1/θ
= λ.

This is just a restatement of the solution (9) above, since Φ(z)→ 1 as z →∞ and so

the approximation log (Φ(z)) ' − [1− Φ(z)] becomes exact. The terminology stems

from the fact that the numerator above is the right cdf of the Frechet distribution

while the right cdf of the Pareto has the form Az−1/θ. The two tails are proportional.

The parameter θ is often referred to as a “shape” or “tail” parameter.

This observation is central to a study of the stability of balanced growth paths,

or to the question of what conditions on the initial distribution F (z, 0) ensure that

lim
t→∞

logF (eαθtz, t) = −λz−1/θ for all z > 0 (10)

for some λ > 0 and θ > 0. The answer to this question is given by

Proposition 2. The solution (6) to (5) satisfies the stability condition (10) for some

λ and θ if and only if the initial distribution F (·, 0) satisfies

lim
z→∞

1− F (z, 0)

z−1/θ
= lim

z→∞
θz1/θ+1f(z, 0) = λ. (11)

Proof. Using 6), (10) holds if and only if

lim
t→∞

log
[
F (eαθtz, 0)

]
eαt

z−1/θ
= −λ.
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Use the change of variable x = eαtz1/θ to get the equivalent statements

lim
x→∞

log
[
F (xθ, 0)

]
x

= −λ

or

lim
z→∞

1− F (z, 0)

z−1/θ
= λ.�

There are, of course, initial distributions that generate paths that do not converge

in the sense of (10): any distribution with a bounded support, for example. At the

opposite extreme, an example of an initial distribution that implies a growth rate that

increases without bound can also be constructed, as we show in the Online Appendix.

3 Competitive Trade Model

In this section we move from the autarky model of Section 2 to a world economy

of n countries. each with its own productivity distribution Fi(·, t) at any date t,

all linked by trade in goods. The technology profile F = (F1, ..., Fn) will be the

state variables of the world economy. We take iceberg trade costs and populations

as given and construct a static trade equilibrium under the assumption of continuous

trade balance. Among other things, this equilibrium will determine the productivity

distribution of the product managers who are active in each country i. We label the

cdfs of these distributions Gi(·, t). Product mangers in i, active and inactive, will meet

managers from Gi at a given rate α and the outcomes of these meetings will provide

a law of motion ∂Fi(z, t)/∂t for the technology profiles of all countries. This mapping

is the topic of this section. Since the analysis is static, we temporarily suppress the

time subscripts. The implied dynamics will be studied in Section 4.

The model is a variant of the trade theory of Eaton and Kortum (2000) and

Alvarez and Lucas (2007). Each country under autarky is identical to the closed

economy described in Section 2. We use the same notation here, adding the country

subscript i to the variables ci(s), zi(s), yi(s), and `i. In this many-country case we

group goods s which have the same profile z = (z1, ..., zn) of productivities across

the n countries, where zi`i is the production technology of the good z in country i.

We assume that productivities are independently distributed across countries, and let

f(z) =
∏n

i=1 fi(zi) denote the joint density of productivities. With this notation we

12



can write the period utility as

Ci =

[∫
Rn+
ci(z)1−1/η f(z)dz

]η/(η−1)

,

where ci(z) is the consumption in country i of goods that have the cost profile z.

We use wi wage rates. We assume iceberg shipping costs: when a good is sent

from country k a fraction κik of the good arrives in i. The costs κik are the same

for all goods, and satisfy 0 < κij ≤ 1 for all i, j and κii = 1 for all i. Each good

z = (z1, ..., zn) is available in i at the unit prices

w1

κi1z1

, ...,
wn
κinzn

,

which reflect both production and transportation costs.

We solve for equilibrium prices, given wages. Let pi(z) be the prices paid for good

z in i :

pi(z) = min
j

[
wj
κijzj

]
since agents in i buy the good at the lowest price. We let Bij ⊂ Rn

+ be subset of the

productivity (and goods) space

Bij = {z ∈ Rn
+ :

wj
κijzj

≤ wk
κikzk

for all k 6= j}.

for which j is the least cost vendor to i. Given prices pi(z), the ideal price index is

the minimum cost of providing one unit of aggregate consumption Ci to buyers in i :

p1−η
i =

∫
Rn+
pi(z)1−η f(z)dz =

n∑
j=1

∫
Bij

(
wj
κijz

)1−η

fj(z)dz

or

p1−η
i =

n∑
j=1

(
wj
κij

)1−η ∫ ∞
0

zη−1fj(z)
∏
k 6=j

Fk

(
κijwk
κikwj

z

)
dz. (12)

With prices determined, given wages, we turn to the determination of equilibrium

wages. Consumption of good z in country i equals

ci(z) =

(
pi
pi(z)

)η
Ci =

(
pi
pi(z)

)η
wiLi
pi

.
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where the first equality follows from individual maximization and the second follows

from the trade balance conditions piCi = wiLi. The derived demand for labor in

country i is thus

n∑
j=1

∫
Bji

cj(z)
1

κjizi
f(z)dz =

n∑
j=1

∫
Bji

(
pj
pj(z)

)η
wjLj
pj

1

κjizi
f(z)dz

=
n∑
j=1

(
κjipj
wi

)η
wjLj
pj

1

κji

∫ ∞
0

zη−1fi(z)
∏
k 6=i

Fk

(
κijwk
κikwj

z

)
dz.

Since labor is supplied inelastically, this implies

Li =
n∑
j=1

(
pj
wi

)η
wjLj
pj

κη−1
ji

∫ ∞
0

zη−1fi(z)
∏
k 6=i

Fk

(
κijwk
κikwj

z

)
dz. (13)

Given populations L = (L1, ..., Ln), trade costs K = [κij] and the distributions

F = (F1, ..., Fn), equations (12) and (13) are 2n equations in wages w = (w1, ..., wn)

and prices p = (p1, ..., pn) .as n equations in w = (w1, ..., wn) .

Definition. A static equilibrium is a wage w = (w1, ..., wn) ∈ Rn
+ such that for some

p = (p1, ..., pn) ∈ Rn
+ , (w, p) solves (12) and (13).

The next proposition states that a static equilibrium exists and that, provided

η ≥ 1, there is a unique static equilibrium.

Proposition 3: We take as given trade costs K, populations L, and distributions F .

We assume that Li > 0 and that 0 < κij ≤ 1 and that the right cdfs F = (F1, ..., Fn)

have continuous densities and satisfy

lim
z→0

fi(z)z

1− Fi(z)
=

1

θi
> η − 1 (14)

for all i = 1, ..., n. Then there exists a static equilibrium wage w. Moreover, if η > 1,

the excess demand system has the gross substitute property, and hence (i) the static

equilibrium wage w is unique, and (ii) equilibrium relative wages are decreasing in

population sizes:
∂(wj/wi)

∂Li
> 0
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for all j 6= i.

Proof: See Appendix B.

4 Diffusion in a World Economy

The central idea of this paper is that trade in goods among countries stimulates the

exchange of productivity-related ideas. In Section 2 we described a specific model of

the exchange of ideas within a closed economy. In Section 3 we provided a model of

trade in goods with many countries. Now we put these pieces together.

To do this, we replace the assumption of Section 2 that product managers in

country i learn from the examples of other managers in their own country with the

assumption that they learn from the managers of products that are sold in i, regardless

of their origin. Instead of drawing from the distribution Fi(·, t) they draw from a

distribution Gi(·, t) defined by the cdf

Gi(z, t) = Pr{seller active in i at t has productivity ≤ z}

=
n∑
j=1

Pr{seller from j is active in i at t and has productivity ≤ z}

=
n∑
j=1

∫ z

0

fj(y, t)
∏
k 6=j

Fk

(
wk(t)κij
wj(t)κik

y, t

)
dy (15)

The probability that a producer in j with the productivity y exports to i is fj(y, t)

times the probability that no producer elsewhere can offer a lower price. This will

depend on all the productivity distributions plus trade costs plus equilibrium relative

wages as determined in Section 3. The law of motion for productivity in each country

then becomes
∂ log(Fi(z, t))

∂t
= αi log(Gi(z, t)) (16)

We are now in a position to define an equilibrium that describes the full dy-

namics of a world economy given parameters K,L and initial distributions F (·, 0) =

(F1(·, 0), ..., Fn(·, 0)).

Definition. An equilibrium is a time path of wages w(t) = (w1(t), ..., wn(t)) and cdfs

F (·, t) for all t ≥ 0 such that

15



( i) w(t) is a static equilibrium as defined in Section 3, and

(ii) given w(t) the path F (·, t) satisfies (15) and (16).

As in Section 2, we are also interested in balanced growth equilibria. Here we

define a BGP as a common growth rate ν and a profile of productivity distributions

Φ = (Φ1...,Φn) such that

Φi(x) = Fi(e
νtx, t)

for all t. Along a BGP we can substitute Φi(e
−νtz) for Fi(z, t) in (16) and φi(e

−νtz)e−νt

for fi(z, t), and using the homogeneity of the model we have that a BGP (Φ, ν) must

satisfy7

∂ log (Φi(e
−νtz))

∂t
= αi log

(
n∑
j=1

∫ e−νtz

0

φj(y)
∏
k 6=j

Φk

(
wkκij
wjκik

y

)
dy

)
.

Letting x = e−νtz, we have

ν
xφi(x)

Φi(x)
= −αi log (Γi(x)) , (17)

where

Γi(x) =
n∑
j=1

∫ x

0

φj(y)
∏
k 6=j

Φk

(
wkκij
wjκik

y

)
dy. (18)

Let γi(x) = ∂Γi(x)/∂x be the associated density.

The relations (15) and (18) of learning environments Gi to the profile F are

complicated. A backward producer in a large, low wage economy could undercut a

domestic producer with higher productivity or another foreign producer with higher

trade costs. Little can be said in general, but the next result shows that all Gi are

bounded from below by the joint distribution of sellers that would be active in i in a

hypothetical world economy with no trade costs and a common labor market.

Proposition 4: Gi(z; K,w) ≥
∏n

j=1 Fj(z), with equality if K = I and w = 1.

7Formally, let (w, p) be the equilibrium wages and prices for an economy with K,L, F . Let

ξ ∈ R++ and define F ξi as F ξi (z) = Fi(ξz), for all i. Then (w, p) are also the equilibrium wages and
prices for an economy with K,L, F ξ.
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Proof : Define the sets

M(z) =
{
z ∈ Rn

+ : max{z1, ..., zn} ≤ z
}

and

Bi(z; w,K) =

{
z ∈ Rn

+ : zj∗ ≤ z, where j∗ = arg min
j∈{1,...,n}

{
wj
zjkij

}}
.

It is easy to see that M(z) ⊆ Bi(z; w,K) since max{z1, ..., zn} ≤ z ⇒ zj ≤ z, all

j = 1, ..., n. Therefore,

Gi(z; K,w) =

∫
z∈Bi(z;w,K)

f(z, t)dz ≥
∫
z∈M(z)

f(z, t)dz =
n∏
j=1

Fj(z, t).�

The next result is instructive, even though it is limited to the case of a symmetric

world with costless trade.

Proposition 5: Assume that the n countries have the same size, Li = L, and

the same α = αi, and that trade is costless, κij = 1, all i, j, and that the initial

distributions are the same: Fi(z, 0) = F (z, 0). Then wages will be identical and the

equilibrium path of F (z, t) is

∂ log(F (z, t))

∂t
= αn log(F (z, t)). (19)

Proof: The distribution of sellers varies across countries only through its dependence

on country specific trade costs (see (15)). Therefore, in the case of costless trade all

countries share the same distribution of sellers, Gi(z) = G(z). In this case, the

distribution of productivity for every country i solves

∂ log(Fi(z, t))

∂t
= α log(G(z, t)).

In this symmetric case,

G(z, t) =

∫ z

0

nf(y, t) [F (y, t)]n−1 dy = F (z, t)n.

We can drop the subscripts and (19) follows.�
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Along a BGP we can replace F (z, t) with Φ(e−νtz) and let x = e−νtz to obtain

φ(x)x

Φ(x)
= −αn

ν
log(Φ(x))

Then Proposition 1, with nα replacing α yields the

Corollary 1: The symmetric world economy described in Proposition 5 is on a

balanced growth path if and only the cdfs are given by the Frechet cdf

Φi(z) = exp(−λz−
1
θ )

with parameters λ and θ, and the growth rate of each of all economies is

ν = nαθ.

The fact that the equilibrium growth rate is proportional to the number of economies

n may require comment. We certainly do not believe that the division of Czechoslo-

vakia into Slovakia and the Czech Republic led to an increase in world growth rates.

In practice, ν would be identified with measured gdp growth and θ with a tail param-

eter (as discussed below) and the product nα with ν/θ. In everything that follows,

we treat n as an unobservable constant.8

In Propositions 6-8 below, we develop some facts about much more general cases.

The Frechet distribution does not obtain in these cases. But, perhaps surprisingly,

the formula ν = nαθ (or more generally, ν = θ
∑n

i=1 α) continues to describe the

BGP of all economies.

The following condition on the tail behavior of these distributions will be used in

deriving the next three results in this section.

Condition C: We say that a profile F (z) = (F1(z), ..., Fn(z)) satisfies Condition C

if

lim
z→∞

1− Fi(z)

z−1/θi
= λi <∞

8In Appendix C we present an extension of the model with multiple locations per country to
clarify the role of scale effects. There we show that, provided that the structure of transportation
cost and labor markets across locations is kept constant, an equilibrium of the model is invariant to
arbitrary division of locations into countries.
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for all i,

lim
z→∞

1− Fi(z)

z−1/θi
= λi > 0

for some i, and wi and κij > 0 for all i, j.

If Condition C holds no country is capable of ever-accelerating growth, at least

one country is capable of sustained growth at a positive rate, and all countries are

connected in the sense that it is possible for any country to trade with any other

country.

The next result shows that the distributions Gi share a common right tail, with

tail parameter θ = maxi θi.

Proposition 6: Assume that the profile F (z) satisfies Condition C. Then for all i

the cdfs G1, ..., Gn satisfy

lim
z→∞

1−Gi(z, 0)

z−1/θ
= λ > 0, (20)

where θ = maxi θi and λ =
∑

j λj.

Proof: We show that

lim
z→∞

gi(z, 0)

(1/θ) z−1/θ−1
= λ (21)

for all i which will obviously imply (20). Differentiating both sides of (15) with respect

to z and dividing through by (1/θ) z−1/θ−1 where θ = maxi θi we obtain

lim
z→∞

gi(z, 0)

(1/θ) z−1/θ−1
=

n∑
j=1

lim
z→∞

fj(z, 0)

(1/θ) z−1/θ−1

since the cdfs Fk → 1 as z →∞ under the assumption that wi and κij > 0. Condition

C requires that

lim
z→∞

gi(z, 0)

(1/θ) z−1/θ−1
=

n∑
j=1

λj lim
z→∞

(1/θj) z
−1/θj−1

(1/θ) z−1/θ−1
.

The terms in the sum on the right are zero if λj = 0 or if θj < θ and equal to λj > 0

otherwise. This verifies (21) and completes the proof. �
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Proposition 6 describes the instantaneous effects of anything that alters the static

trade equilibrium. Suppose, for example, that the initial distributions F1(·, 0), ...Fn(·, 0)

represent a situation of autarky that is ended at t = 0 by an opening to trade. Then

immediately all countries will have access to the source distributions Gi(·, 0) charac-

terized in Proposition 6, all which have the same “Pareto tail.” For the analysis of

trade dynamics, then, any initial differences in the initial tail parameters θi cease to

matter, and we use θ to denote only θ = maxi θi.

Proposition 7. Assume that αi > 0, all i, and that the profile of stationary dis-

tributions Φ = (Φ1(z), ...,Φn(z)) satisfies Condition C. Then the growth rate on the

balanced growth path equals

ν = θ
n∑
i=1

αi (22)

and

lim
x→∞

1− Φi(x)

x−1/θ
=

αi∑
j αj

∑
j

λj. (23)

Proof: For large x, (17) and (18) imply

ν
φi(x)

x−1/θ−1
' − αi

log (Γi(x))

x−1/θ

= αi
∑
j

λj (24)

where the second line follows from Proposition 6 and Condition C. Condition C also

implies that for large x, φi(x) ' (λi/θ)x
−1/θ−1 so

νλi = θαi

n∑
j=1

λj.

Summing both sides over i yields (22) and then (23) follows from (24). �

As in Section 2, we are interested in conditions on the initial knowledge distri-

butions Fi(z, 0) that will imply convergence to a balanced growth path, in the sense

that

lim
t→∞

log
[
Fi

((
e(ν/θ)tx

)θ
, t
)]

x−1
(25)
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is constant for all x > 0, i.e., that the normalized productivity x(t) ≡ e−νtz(t) has

a Frechet distribution as in equation (10). Here we assume profiles for initial distri-

butions Fi(z, 0) that satisfy Condition C. Proposition 7 then implies that equations

(22)-(23) hold for the common value θ > 0 and positive values λ1, ..., λn. In this n

country case, ν = θ
∑n

i=1 αi. It is certainly not the case that these conditions will

imply (25) for all values of x but the next result shows that (25) holds in the limit

as x → ∞ and provides a characterization of the dynamics of the right-tail of the

productivity distributions Fi(z, t).

Proposition 8: Assume that
∑n

i=1 αi > 0, that F (z, 0) satisfies Condition C, and

that there exist a solution to (16) that is twice continuously differentiable with respect

to z and t. Let

λi(t) = − lim
x→∞

log
[
Fi((e

−(ν/θ)tx)θ, t)
]

x−1

and let

λ∗i =
αi∑n
j=1 αj

n∑
j=1

λj(0).

Then, for all t

λi(t)− λ∗i = [λi(0)− λ∗i ] e−(ν/θ)t. (26)

Proof: See Appendix B.

Note that neither wages wj nor trade costs κij affect the right tail of productiv-

ity in the balanced growth path. The relative level of the right tail across countries

depends only on the relative value of αi, the rate at which technology diffusion op-

portunities arrive. If all the αi are the same, then the right tail (of normalized)

productivity converges to the same value for all countries. Otherwise, countries with

more opportunities for technology diffusion converge to a permanently higher produc-

tivity, which translates into higher income levels. As in the closed economy case, the

level of the initial right tail of productivity has a permanent effect on the long run

distribution, except that in the multi-country case it is the sum of the (normalized)

right tails which matters in the long run. In addition, note that if αi = 0 for some

country i then λ∗i = 0, as this country’s technology is constant, and hence gets farther
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and farther behind the rest.

To better understand the role of cross country differences on the arrival of tech-

nology diffusion opportunities consider the case where trade is costless, so all κij = 1,

but where the value of αi differs across countries. With costless trade Gi(z) = Gj(z)

for all z, and hence from (17) and (18) we obtain that for all z > 0:

Φi(z) = Φj(z)
αi
αj

or equivalently

lim
t→∞

log
[
Fi

((
e(ν/θ)tz

)θ
, t
)]

log
[
Fj

(
(e(ν/θ)tz)

θ
, t
)] =

αi
αj

(27)

Thus if αi > αj country i has a distribution of productivity that is stochastically

better than j. Hence with costless trade the ratio of (25) equals the ratio of the α’s

not only as z →∞ but for all values of z <∞.9

The next proposition analyzes the effect of the elasticity of substitution η in im-

ports elasticities, equilibrium wages, and relative GDP’s. As a preliminary step we

define the total value Iij of purchases of country i from j as function of trade cost K

and wages w by

Iij =

∫
Bij

pi(z)ci(z)f(z)dz

=

∫ ∞
0

(
wj

zj κij pi

)1−η

wiLi fj(zj)
∏
k 6=j

Fk

(
wkκij
wjκik

zj

)
dzj ,

Remark 1: For the case when all Fi are given by Frechet distributions with scale

parameters λi and the same shape parameter θ, i) the Armigton’s elasticity, i.e. the

price elasticity of imports demand, which equals 1/θ, (iii) equilibrium wages, and iv)

relative real GDP’s, and thus gains from trade, are all independent of η, and relative

GDP’s are given by the ratio of λ’s (Eaton and Kortum, 2002; Alvarez and Lucas,

2007).

9In the case of different α’s the value of (25) for country i is not constant across z, i.e. the
distributions Φi is not Frechet.
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We use the notation Ĩij, w̃i, p̃i and ỹi to refer to imports of i from j, country’s i

equilibrium wages, price level, and real GDP for the Frechet case with tail parameter

θ. The same three objects without a tilde can be interpreted as the long run distri-

bution of a world economy that starts with Frechet distributions in all countries with

the same tail parameter θ.

Proposition 9: Let θi = θ for all countries, and 0 < λi <∞. Then

lim
η→1+1/θ

Ii,j(K,w; η) = Ĩi,j(K,w) =
λj

(
wj
κij

)−1/θ

∑n
s=1 λs

(
ws
κis

)−1/θ
wiLi ,

lim
η→1+1/θ

wi(K; η) = w̃i(K) ,

lim
η→1+1/θ

pi(K; η)

pj(K; η)
=

p̃i(K)

p̃j(K)
,

lim
η→1+1/θ

yi(K; η)

yi(In×n; η)
=

ỹi(K)

ỹi(In×n)
.

Proof: See Appendix B.

This proposition is useful because the effects for the Frechet case are simple and

well understood. The logic behind the result is clear: as η → 1 + 1/θ the goods

became such good substitutes that demand is concentrated on the best products.

The result follows because the long run distributions of productivities have the same

behavior in the tail as a Frechet distribution. The proposition is stated in terms of

ratios for two reasons: first in the Frechet case the effect of η is multiplicative, and

hence it cancels in this form. Second, the levels of GDP and imports as η tends to

this limit diverge to infinity.

Corollary 2: For the case of costless trade, K = In×n, in the long-run

lim
η→1+1/θ

yi(In×n; η)

yj(In×n; η)
=

(
λ∗i
λ∗j

)θ/(1+θ)

=

(
αi
αj

)θ/(1+θ)

.
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This corollary is a direct consequence of the last two propositions and equation (27).

Summarizing, as explained in Remark 1, Eaton and Kortum (2002) takes as given

that productivity distribution given by Frechet with common tail θ and country spe-

cific λi which determines the Armington elasticities, and per-capita income differ-

ences. Our technology diffusion model gives a simple theory of θ and λi (propositions

7 and 8). In this theory, heterogeneity in α’s imply differences in the level of income

per-capita, while the sum of α’s affects the common growth rate of the countries in

the world.

We finish the theoretical exploration of the model by studying the effects of trade

cost and wages in the neighborhood of costless trade, which would be helpful to in-

terpret some of the numerical results that follow. If we start from a situation with

costless trade and equal wages, a marginal increase in trade cost or wages has a neg-

ligible effect in the distribution of sellers.

Proposition 10: Take an arbitrary profile of productivity distribution F (z) and

consider the distribution of seller to country i given a profile of equal wages and

costless trade. Then, the distribution of sellers to country i is invariant to small

changes in trade cost or wages, i.e.,

∂Gi(z; K,w)

∂κij

∣∣∣∣
K=I,w=1

=
∂Gi(z; K,w)

∂wj

∣∣∣∣
K=I,w=1

= 0.

Proof: Differentiating (18) with respect to κij

∂Gi(z; K,w)

∂κij
=

∫ z

0

[
fj(y)

∑
k 6=j

wk
wjκik

yfk

(
wkκij
wjκik

y

) ∏
l 6=j,k

Fl

(
wlκij
wjκil

y

)

+
∑
k 6=j

fk(y)

(
−wjκik

wk

1

κ2
ij

y

)
fj

(
wjκik
wkκij

y

) ∏
l 6=j,k

Fl

(
wkκil
wlκik

y

)]
dy.
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Evaluating at K = I and w = 1 and rearranging terms

∂Gi(z; K,w)

∂κij

∣∣∣∣
K=I,w=1

=

∫ z

0

[
−yfj(y)

∑
k 6=j

fk (y)
∏
l 6=j,k

Fl (y)

+yfj(y)
∑
k 6=j

fk(y)
∏
l 6=j,k

Fl(y)

]
dy

= 0.

A similar analysis follows by differentiating (18) with respect to wj �

Proposition 10 holds independently of the profile of cdfs F (z), but it takes as

given the profile of wages w which we know is determined by the profile F (z). We

complement this result in Proposition 11, which studies the comparative static for

the stationary distribution. That proposition establishes that when starting from

a world with symmetric countries and costless trade, so that equilibrium wages are

equal, changes in trade cost or in the size of an individual country have a negligible

effect on the profile of stationary distributions of productivity of each country.

Let the parameters of a world economy be given by n, α, K and L. We are inter-

ested in the comparative statics of the profile of stationary distributions φ(x; K,L)

with respect to K and L, evaluated at the case of a world of n equal size economies

with costless trade.

Proposition 11: Consider a world economy with matrix of trade cost K and vector

of population L. Let φ(z; K,L) be the stationary distribution of such an economy

where the corresponding equilibrium wages ensure balance trade for each country.

Assume that for each z the density φ(z; K,L) is differentiable. Then, for all z

∂φi(z; K,L)

∂κij

∣∣∣∣
K=I,L=1

=
∂φi(z; K,L)

∂Lj

∣∣∣∣
K=I,L=1

= 0.

Proof: Notice first that φ(z; K,L) is the solution to the system of non-linear dif-

ferential equations given by: equation (17) defining a balance growth path, equation

(18) defining the distribution of sellers, equation (13) giving the solution to the static
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trade equilibrium wages, ν = nαθ defining the growth rate of a balance growth path,

and limx→0
xφi(x)
Φi(x)

= θ and limx→0 θx
θ−1φi(x

θ) = λ giving the boundary conditions for

the densities. The result follows from totally differentiating the system of non-linear

differential equations and Proposition 10. �

Propositions 10 and 11 taken together give the precise sense in which in a homo-

geneous world small trade costs have no effect on the diffusion of productivity. In

the quantitative exploration that follows, we find that the lack of first order effects is

clearly visible in a large range of parameters.

5 Quantitative Exploration

In this section we present numerical examples to illustrate the effect of trade costs.

We consider two cases: a world consisting of n symmetric countries facing trade costs

κij = κ, and, a world consisting of one asymmetric and n − 1 symmetric locations

facing trade costs κ1 = κ1j ≤ κji = 1, j = 2, ..., n, i 6= j. We also illustrate the effect

on the diffusion of technology of heterogeneous arrival rates αi and wages rates wi,

driven by differences in the size of countries Li.

Calibration and Interpretation of Parameters

We can gain some understanding of the order of magnitude of the parameters α and

θ by using information of the long-run growth rate of the economy ν, and information

on θ which instead can be obtained either from the dispersion of productivities, or

the tail of the size distribution of firms/plants, or the magnitude of trade elasticities.

We turn to the description of each of these approaches.10

First, since we show above that asymptotically z is Frechet distributed, then

log(z), the log of productivity, has standard deviation equal to θπ/
√

6, see chapter

3.3.4 of Rinne (2008). Hence we can take measures of dispersion of (log) productivity

to calibrate θ. The dispersion of (log) productivity range from 0.6 − 0.75 when

measured as the value-added per worker – see Bernard et al. (2003) Table II – and

10Our calibration strategy follows that in Lucas (2009), although our focus is on the distribution of
productivity across “product managers” instead of individual workers. To operationalize the notion
of a “product manager” we interpret a plant or firm as one manager, but we acknowledge the limits
of this analogy.
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around 0.8 when measures of physical total factor productivity are obtained using

data on value-added, capital and labor inputs, and assumptions about the demand

elasticities – see Hsieh and Klenow (2009) Table I, dispersion of TFPQ.11 These

numbers suggest a value for θ in the range [0.5, 0.6].

Second, using that productivity is asymptotically distributed Frechet, and that the

tail of the Frechet behaves as that of a Pareto distribution with tail coefficient 1/θ, we

can use data on the tail of the distribution of productivity to directly infer θ. Lacking

direct information on physical productivities, we can use information on the tail of the

distribution of employment, together with a value for the elasticity of demand.12 The

tail of the size (employment) distribution of firms is approximately equal to 1.06 – see

Figure 1 in Luttmer (2007). Therefore for the values of demand elasticities typically

considered in the literature, say η ∈ [3, 10], (see Broda and Weinstein (2006), Imbs

and Mejean (2010), or Hendel and Nevo (2006)) it would imply a value for θ in the

range [0.1, 0.5].

Third, as showed before, in the case of a model with several symmetrical locations,

θ is approximately the Armington trade elasticity, which will also give us another way

to measure it. This method would suggest a value for θ in [0.1, 0.25] (Alvarez and

Lucas, 2007).

Once we have an estimate of θ, whatever its source, together with an estimate of

long term growth of output ν, we can estimate the value of α, using that ν = nαθ.

For instance, if we take the long-run growth to be 0.02, nα would be in the range

[0.03, 0.2]. Note that with a value of nα = 0.1, which is the object that governs the

speed of convergence of the λ’s in general as shown in Equation (26), and of GDP in

the setup of Corollary 2, the half-life to convergence will be approximately 5 years.

Based on this discussion, we set θ = 0.2 to be consistent with the available evidence

on the right tail of the distribution of productivity, and set α = 0.02/(θ n), to match

a growth rate 0.02. We consider a world consisting of n = 50 economies symmetric

in all dimensions, with the possible exception of their trade cost. Given our choice of

n, in a world with symmetric trade cost each economy has a relative GDP similar to

11Using data for eleven products for which direct measures of physical output are available Halti-
wanger et al. (2008) calculate true measures of physical total factor productivity. They find that
the dispersion of (log) true physical productivity is 20% higher than that measured using just value-
added information.

12The CES structure implies that employment at industry/firm with cost x satisfies l(z) ∝
(1/z)η−1.
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that of Canada or South Korea.

Symmetric World

Figure 1 illustrates the long run effect on the distribution of productivities z of in-

troducing trade costs in a symmetric word of n countries. The thought experiment

is to go from costless trade to a case where κij takes a common value κ < 1 for all

j 6= i. On the x-axis we measure the value of productivity, expressed as a ratio to

the average productivity in the economy with costless trade (κ = 1). On the y-axis

we display the density of relative productivities for different values of κ. The top

panel shows the densities of productivities of the potential producers, the density φ

(or f). The bottom panel shows the density of productivities of the sellers active in

each country, the common density γ (or g). We have chosen the value of λ for the

initial distribution so that with costless trade the average value of productivity z is

equal to one.

Note first that, due to the selection effect, the density of sellers is stochastically

larger than that of potential producers for each κ. The difference between the two

densities increases for larger trade cost (for lower values of κ). Second, note that

for κ = 1 the densities are Frechet, as we showed in Corollary 1. Third, for larger

trade cost (lower κ) both densities have a thicker left tail, especially so for potential

producers. Fourth, the change in the distribution of potential producers as κ varies

illustrates the effect of trade costs on the diffusion of technologies, the main feature

of the model in this paper. Finally, we note that these distributions are independent

of the value of η, as equations (15) and (18) are independent of η, and wi = 1 in a

symmetric world.

Figure 2 illustrates the effect of introducing symmetric trade costs on real gdp in

the top panel and in the ratio of imports to gdp in the bottom panel in a symmetric

word of n countries. On the x-axis we measure trade cost. On the y-axis we measure

real gdp, relative to gdp under costless trade (top panel) or the trade share, relative

to the costless trade benchmark (bottom panel). In each panel the solid line displays

the impact effect of introducing the trade costs, calculated by holding the distribution

of productivity fixed at its distribution under of costless trade. As shown above, this

benchmark has a Frechet distribution. The other lines in each panel show the effect of

introducing trade cost on the balanced growth path. Each line is for a different value
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Figure 1: Long Run Effect of Trade Cost on the Distribution of Productivity

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Potential Producers from a Country, F(z)
d

e
n

s
it
y

 

 

κ = 1.00

κ = 0.90

κ = 0.60

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Sellers to a Country, G(z)

d
e

n
s
it
y

productivity, z / costless trade average

The top panel displays the density of the stationary distribution of normalized productivity z of potential
producers in a country. for different value of trade cost, κ = 1, 0.9, 0.6. The bottom panel displays the
stationary density of normalized productivities for the in each country. The productivities in the x-axis
are measured relative to the expected value of the stationary distribution of potential producers in the
case of costless trade. We consider a world economy with n = 50 symmetric locations with parameter
values θ = 0.20, α = 0.002.

of the elasticity of substitution η. Recall that the growth rate of the world economy

is unaffected by the introduction of finite trade cost, as long as κ > 0, so the ratios

on these panels should be interpreted as level effects around the common balanced
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growth path.

Figure 2: Impact and Long run effect of introducing trade cost
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The top panel shows the effect of trade cost on per-capita income on impact (solid), and the long-run
effect for various values of η = 2, 4, 5. The comparison, and the initial condition, is given by the model
with costless trade, i.e., κ = 1. The bottom panel shows the effect of trade cost on the volume of trade,
measured as import to GDP. The effect on impact is the same regardless of the value of η. We consider
a world economy with n = 50 symmetric locations with parameter values θ = 0.20, and α = 0.002.

The solid lines showing the impact effects correspond to the familiar effects of
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trade cost in the Ricardian trade theory of Eaton and Kortum (2002) and Alvarez

and Lucas (2007). In this case there is an analytical expression for the GDP of an

economy relative to case of costless trade:13

C(κ)

C(1)
=

[
1 + (n− 1)κ

1
θ

]θ
nθ

.

The output effects of trade cost depend only on θ, the country size, 1/n, and the

value of the trade cost κ. As it has been noted, this expression does not depend

on the value of the substitution elasticity η. In contrast, in the long-run, once the

distributions of productivity adjust, the value of η does matter, as showed by the

dashed lines. These effects of trade costs on gdp are larger the more difficult it is to

substitute domestic goods for imports. The long-run calculations include the effects

of the changes in the distribution of productivity due to the diffusion of technology,

which are the contribution of this paper. As trade cost increases, individuals in each

country meet relatively more unproductive sellers, and therefore the good technologies

diffuse more slowly.

This panel also shows that the difference between the effect on impact (solid

line) and the long-run effects (any of the other lines) are extremely small in the

neighborhood of costless trade. This is to be expected, since Proposition 11 shows

that around the symmetric costless trade, trade cost have only second order effects

on productivity. Indeed, Figure 1 shows that the lesson drawn from Proposition 11

applies for a large range of trade costs, say even trade cost as large as κ ≥ 0.5.

The effect of trade cost on the volume of trade is shown in the bottom panel of

Figure 2.14 The impact effect and long-runs effects are defined as in the top panel.

Note that the impact effect of trade is the same as in Alvarez and Lucas (2007), since

the distribution of productivities is Frechet, and it is given by15

v =
(n− 1)κ1/θ

1 + (n− 1)κ1/θ

The long run effect of trade cost on the volume of trade is smaller than its effect

13This formula follows from specializing equation (6.10) in Alvarez and Lucas (2007) to a world
without intermediate goods, non-tradable goods, and tariffs.

14Total imports in country j are Ij =
∑n
i=1,i6=j Iji and volume of trade, defined as imports relative

to GDP, is given by vj = 1/(1 + Ijj/Ij).
15See Alvarez and Lucas (2007) expression (6.11) for the case of β = ω = 1 and α = 0.
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on impact. This is due to the fact that a higher trade cost leads to a distribution

of productivity for potential producers with a thicker left tail and the same right

tail (see Figure 1), i.e. they lead to larger dispersion of productivities. A larger

dispersion of productivity is associated with larger gains from trade. In addition,

the difference between the long-run and the impact effect is larger the lower the

elasticity of substitution η. As discussed before, the distribution of productivities are

independent of the value of η, but the gains from trade are not independent of η, and

with a lower elasticity of substitution for any given κ there is more trade.

For the interpretation of the magnitude of trade cost, the reader should remember

that, for simplicity, in our model all goods are tradable. Compare our model with

Alvarez and Lucas (2007) which includes a non-tradable sector, one with infinite trade

cost, and with a fixed (i.e. Cobb-Douglas) share of expenditure. Thus our model’s

closest counterpart in the data will be the volume of trade for the tradable sector.

Alternatively one could introduce a non-tradable sector in our model, and match it

with the volume of trade of the whole economy, as in Alvarez and Lucas (2007).16

In the Online Appendix we also explore the robustness of the welfare results

presented above to the case with Bertrand competition. We conclude there that

for small and medium size trade cost, i.e. κ ≥ 0.5, the welfare difference between

perfect and Bertrand competition is a pure level effect, i.e. independent of κ, both

on impact and on the long run. We reach this conclusion by analyzing the case of 25

symmetric countries, each with two locations, so that the total number of locations

are the same as in the previous examples. For each elasticity η, we compare the ratio

of the consumption using Bertrand competition to perfect competition for a given

common trade cost κ < 1, with the same ratio for a zero trade cost (κ = 1). These

ratios were between .98 and .95. For large trade cost, κ < 0.5, the effect of changes

in trade cost on this ratio is more significantly, although the pattern depends on the

particular value of the elasticity of substitution, taking values between 0.87 and 0.99.

16For instance, suppose non-tradables have a share ξ of expenditures, with labor freely mobile
across sectors. Furthermore, suppose a form of Balassa-Samuelson hypothesis where there is no
diffusion in non-tradables. Then, the model applies literally to a fraction 1− ξ of the economy, and
the trade share for the whole economy will be (1 − ξ) times the trade share of our. Yet a better
model, which has a similar effect but that requires more analysis, is one where diffusion occurs across
both tradables and non-tradeables. The effect on this model on trade volume will be similar, but
the analysis of the dynamics of diffusion is more complicated. We skip the inclusion of non-tradables
for simplicity.
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Asymmetric Trade Barriers

In the previous exercises we illustrated the effect of symmetric trade barriers. We

now explore the impact of unilateral trade barriers by considering a world economy

consisting of n countries, n − 1 of which face symmetric trade cost κ1 when trading

among themselves, and a single country that faces a relatively larger cost to trade

from and to this country, κn ≤ κ1. We refer to the first group as the n− 1 symmetric

countries, and to the later as the single deviant economy. Given our choice of n = 50,

the single deviant economy is a country of the size of Canada or South Korea.17

We interpret the n − 1 relatively open countries as developed economies. Following

Alvarez and Lucas (2007), we calibrate their trade cost to κ1 = 0.75.18

In Figure 3 we illustrate, for different levels on initial trade cost, how the balanced

growth path of these n− 1 economies is affected by changes in the cost of trade with

the single deviant economy, κn. In the top panel we show the effect on the per-capita

income of the n− 1 symmetric countries (solid line) and the single deviant economy

(dashed line). Similarly, in the bottom panel we show the effect on the volume of

trade. Most of the impact occurs in the single deviant economy which has higher trade

cost. For the n − 1 symmetric economies the goods produced by the single deviant

economy are a small fraction of their consumption. As before there are two effects on

real consumption from reductions in trade costs. The first is the effect captured in

the traditional trade model: i.e., individuals consume goods that are less costly. The

second effect is that the distribution of productivity get better as domestic producers

interact with more productive sellers.

Figure 4 displays the dynamic path following a trade liberalization of the single

deviant economy whose initial balanced growth path is described in Figure 3, for three

values of the pre-liberalization trade cost. In particular, Figure 4 displays the dynamic

effects of a once-and-for-all trade liberalization in the single deviant economy, taking

the form of a reduction of its trade costs to the level of the advanced economies.

These dynamics are shown for three different initial conditions (pre-liberalization),

17For our benchmark parameter values this size of the single deviant economy is far from the
theoretical small open economy limit discussed in Appendix C. In that limit case there should be no
effect on GDP or volume of trade after impact. Instead for the size of this single deviant economy
there is a non negligible dynamic effect.

18This value is a compromise between low values of κ obtained from indirect estimates using
gravity equations and higher ones using direct evidence of transportation costs, e.g., freight charges,
imputed time costs on cargo in transit.
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corresponding to the balance growth path with three alternative values of trade cost

κn(0) = 0.05, 0.30, 0.50. In the top panel we show the value of GDP per-capita relative

to the case with costless trade for the single deviant economy in the pre-liberalization

and in the first 20 years following the trade liberalization. The bottom panel shows

the initial and post liberalization dynamics of the volume of trade. In the x-axis we

show the years that elapse since the trade liberalization.

The main message from Figure 4 is that a large part of the output gains from a

reduction in trade costs occur immediately. The distribution of productivity of the

single deviant economy is not affected on impact, but this economy is no longer forced

to rely on its own producers for most of the goods it consumed, and can therefore

discontinue its most unproductive technologies. In the model, this effect happens

immediately. This is the effect captured by the standard trade model.19 Thereafter,

the distribution of productivity continues to improve due to the diffusion. This affects

the whole distribution with the exception of the right tail (see Proposition 7 and 8,

and Figure 1). These effects are persistent. The half lives are 10 years and longer.

The magnitude of the effect on the distribution on per-capita income will depend on

the value of η. For instance, if η is close to 1/θ+1, per-capita income is only a function

of the tail of the distribution, which is not affected by trade cost (see Proposition 9).

Heterogeneity in the Diffusion Rates α

In this section we explore the effect of cross country heterogeneity on the diffusion

rate α of the long run relative real income levels. This analysis complements the cases

of either large elasticity of substitution, η → 1/θ + 1, or a small open economy of

Corollary 2 and Remark 2 in Appendix C, where we obtain the following analytical

result: The ratio of long term real GDP equals yi/yj = (αi/αj)
θ/(1+θ). We focus on

a case where there are two values of the diffusion rate αL < αH , where half of the

countries have one value and the other half the other, and where countries are identical

in all other respects. We focus on costless trade so that the only departure from a

Frechet distribution of productivities is due to the heterogeneity on the meeting rate.

We conclude that the differences with the analytical cases discussed above are small.

Figure 5 plots the ratio of the long term real gdp levels for the countries with αL

19These effects are larger than those predicted by a model with Frechet distribution (Eaton and
Kortum, 2002), as the initial distribution of the single deviant economy has substantially more mass
in the left tail than a Frechet distribution, similarly to the examples described in Figure 1.
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Figure 3: Long run effect of increasing trade costs in a single deviant economy
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The top panel shows the effect of increasing the trade cost of a single deviant economy, κn, on per-capita
income. The trade cost of the n − 1 remaining countries is fixed at κ1 = 0.75. The solid line shows the
effect on the remaining n − 1 symmetric countries. The dashed line shows the effect on the nth single
deviant economy. The per capita income are compared with the value they would have had if there trade
cost will be zero in all countries, i.e. κ1 = κn = 1. The bottom panel shows the effect of increasing
the trade cost of the single deviant economy on the volume of trade, measured as imports to GDP. We
consider a world economy with n = 50 countries. We use θ = 0.20, α = 0.002, η = 3.

relative to those with αH . The rest of the parameters are n = 50, the growth rate

is ν = 0.02 and the value of θ = 0.2. For each ratio of the α’s we chose the sum of
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Figure 4: Transitional Dynamics Following a Reduction in Trade Cost of a Single
Deviant Economy
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The top panel shows the dynamics of per-capita GDP of the nth originally deviant country following a
reduction in trade cost, κn(0)→ κn = 0.75, for three initial levels of trade cost, κn(0) = 0.05, 0.30, 0.50.
The trade cost of the n−1 symmetric countries is fixed at κ1 = 0.75. Per-capita GDP is measured relative
to the value in a world with costless trade, i.e., κ1 = κn = 1. The bottom panel shows the corresponding
dynamics of the volume of trade, measured as imports to GDP. We consider a world economy with n = 50
countries. We use θ = 0.20, α = 0.002, η = 3.

them so that the balanced growth rate is ν = 0.02. We display the ratio of the α’s

in the horizontal axis. Each curve corresponds to a different value of the elasticity of
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Figure 5: Effects of Heterogeneous α’s on Per-Capita Income for Alternative Values
of η.
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In the y-axis we plot the ratio of the long term real gdp levels for the countries with αL relative to those
with αH . We display the ratio of the α’s in the horizontal axis. Each curve corresponds to a different
value of the elasticity of substitution η. The rest of the parameters are n = 50, the growth rate is ν = 0.02
and the value of θ = 0.2. For each ratio of the α’s we chose the sum of them so that the balanced growth
rate is ν = 0.02.

substitution η.

We make two remarks on Figure 5 . First, the line for η = 1/θ+ 1 corresponds to

the case of Corollary 2 and Remark 2 in Appendix C. Note that, for instance, if half

of the countries have a diffusion rate ten times smaller, then the ratio of real incomes

is about 60% of the one with the large diffusion rate. Instead if this diffusion rate is

half, their real gpd is about 85% of the leaders. This is a numerical illustration of the

comments right after Corollary 2. Second, the effect of a smaller η in relative gpd is

small. In the case where the elasticity of substitution across goods is lower than the

critical value, i.e., η < 1/θ + 1, the effect beyond the right tail have to be taken into
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account. Yet, the quantitative effects, i.e., the vertical distance between the lines, are

small.

Technology Diffusion and Wages

Figure 6: Effects of Heterogeneous Population Size’s on Per-Capita World Income for
Alternative Values of η.
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The horizontal axis of Figure 6 has the ratio of the size of the countries, in log scale. The vertical axis
plots the real aggregate per capital world consumption, as defined in (28). We normalize c for the static
case to 1, and plots the log of this quantity. The solid line shows the impact effect, i.e., the effect when
we take as given the initial Frechet distribution. The growth rate is ν = 0.02 and the value of θ = 0.2,
and therefore, we set α = 0.05. We set Lsmall + Llarge = 1.

This section assesses the effect of different wages on the diffusion of technology.

Recall that our assumption is that technology is diffused to the potential producers

in a location from cost efficient producers located everywhere. Since sellers are deter-

mined by a comparison of relative cost of a particular good across locations, which
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depends on wages, thus differences in wages translate into difference in diffusion of

technologies. In particular we explore the difference in diffusion due to difference

in wages, itself caused by difference in country size, i.e. Li. To isolate from other

features we consider the case of no trade cost, i.e. κj,i = 1 and of only two large

countries (or equivalently two group of countries, each group made of countries of the

same size).

We fixed L, a vector of sizes normalized so that
∑n

i Li = 1, solve for the equilib-

rium wages w(L), and consider the per-capita world real consumption as a measure

of productivity, i.e.:

c(L) =
∑
i

w(L)Li/p (w(L)) (28)

where p(w(L)) is the equilibrium common price level, which depends only on wages.

We compare the effect of variations on relative size (and hence wages) on the real

per capita world consumption both on impact and in the long run. For the impact

effect we use that the distribution of productivities is Frechet. For the long run effect,

which takes into account the effect on diffusion, we use the invariant distribution that

solves equations (17) and (18). Thus the interpretation of the experiment is that we

start from a world with two countries of the same size and compare the effects of

“moving” people from one country to the other.20

The horizontal axis of Figure 6 has the ratio of the size of the countries, in log

scale. The vertical axis plots the real aggregate per capital world consumption, as

defined in (28). We normalize c for the static case to 1, and plots the log of this

quantity. The solid line shows the impact effect, i.e., the effect when we take as given

the initial Frechet distribution. As shown in Alvarez and Lucas (2007), in this case

the per-capita world consumption equals:

c(L) = λθ/(1+θ)
∑
i

L
1/(1+θ)
i .

Clearly this expression is maximized when Li/
∑

j Lj = 1/n, for all i. This is because

we assume that costs are independently distributed across locations, thus if one region

has a small share of the population it can only produce a small share of the products,

20The computations of these examples are facilitated greatly by using the converse of Proposition 3
stated and proven in the Online Appendix, so that we can actually compute the invariant distribution
of productivity for a given w and then find the vector L that supports the equilibrium with balanced
trade.
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and hence requiring the more populous region to do it – which incidentally will be

reflected in the equilibrium value of relative wages.

Our interest is on the additional difference between the impact effect and the long

run effect. As explained in Proposition 11 there the effects are of second order for

small change in wages. For change of wages of 50 %, i.e. those changes that correspond

to different of size of about 92%, we found that the extra effect of diffusion is of 15

percentage points.

6 Conclusions

We have proposed and studied a new theory of cross-country technology diffusion,

constructed by integrating two existing models: a static model of international trade

based on the Ricardian framework introduced by Eaton and Kortum (2002) and a

stochastic-process model of knowledge growth introduced in Kortum (1997) in which

individuals get new ideas through their interactions with others. The new feature

that connects these two models is a selection effect of international trade: Trade

directly affects productivity levels by replacing inefficient domestic producers with

more efficient foreigners and so increasing every country’s contacts with best-practice

technologies around the world.

The theory implies a long-run equilibrium in which all economies share a common,

constant, endogenously determined growth rate, provided they are all connected in

some degree through trade. Differences in trade cost will induce differences in income

levels but not, in the long run, in rates of growth. This feature is shared with the von

Neumann (1927) model and with the Parente and Prescott (1994) model of “barriers

to riches.” The transition dynamics following changes in trade costs, both world wide

and by an individual country, are illustrated through stylized numerical examples.

These dynamics are a mixture of static gains from trade that occur instantaneously

under the trade model we use and gradual change that results from to changes in

the intellectual environment that trade brings to individual countries. Improvements

in technology arise from interactions among people who are brought together by the

prospects of gains from trade and who get new ideas by adapting better technologies

currently used in other locations and/or in the production of other goods.

The model of this paper is general enough to support a fairly realistic calibration

to the world economy (as in Alvarez and Lucas (2007)) but our numerical illustrations
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here should not be viewed as an attempt to do this. The trade shares in the figures

are much larger than those we observe. Adding a non-tradeables sector would remedy

this, and would also reduce the size of the jump in production that follows a trade

liberalization, but we have not done this. The model of technological change that we

have adopted from Kortum (1997) is one of many possibilities—see, for example, the

ones explored in Lucas and Moll (2011)—and we have not yet sought a parameteriza-

tion that matches up to observations on actual catch-up growth. These are but two

of the many directions that would be interesting to pursue further.
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A Interpretation of the Continuous Time Limit

For some readers the continuous time law of motion of F (z, t) may seem odd, since for

small ∆ there are a “fractional” number of meetings. Here we show that our limit as

∆ goes to zero can be regarded as simply an “extrapolation” of the law of motion to

all values of t, with no change on the substance –provided the value of α is adjusted

accordingly–, but with a simpler mathematical formalization. To see this consider

the following discrete time law of motion for the right CDF of a closed economy:

F (z, j + 1) = F (z, j)F (z, j) = F (z, j)2, for all j = 0, 1, 2, 3, ...

where we are measuring time in units so that there is exactly one meeting per period.

In this case j is also the number of meetings since time zero. Continuing this way,

and taking logs

logF (z, j + 1) = 2 logF (z, j) = 2j logF (z, 0)

If we now measure time t in natural units (say years) and we assume that there are α′

meetings per unit of time, we can write that j periods correspond to t = j/α′ (years)

and replacing in the previous expression

logF (z, j) = 2α
′t logF (z, 0)

Compare this with the continuous time limit we obtain in Section 2:21

logF (z, t) = eαt logF (z, 0)

Thus both expression for the law of motion give identical expression (on integers

values of t/α) if

log(2) = α/α′.

In other words, the continuous time value of α has to be smaller than the discrete time

value to take into account the ”compounding” effect of the meetings, but otherwise

they give the same answer.

21To be more precise, log F̃ (z, t) = logF (z, tα′) = eαt logF (z, 0) = eαt log F̃ (z, 0).
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B Additional Proofs

Proof of Proposition 3: To establish existence we show that the the excess demand

system satisfies i) Walras’ law, i.e.
∑n

i=1wiZi(w) = 0 for all w, ii) that the functions

Z are continuous and homogenous of degree zero in w, iii) that Z (w) are bounded

from below, and iv) that maxj Z(w) → ∞ as w → w0 where w0 is on the boundary

of the n dimensional simplex.

Part (i) follows from replacing pi in the expression for Zi, (ii) continuity is im-

mediate since the functions Fi are differentiable, and homogeneity is immediate by

inspection of (12) and (13). For (iii), we can take −maxj Lj to be the lower bound.

For (iv) we assume, without loss of generality, that 0 = w0
1 ≤ w0

2 ≤ · · · ≤ w0
n = 1,

and show that Z1(w)→ +∞. For any w we have

Z1(w)− L1

≥
(
wn
w1

)η (
wn

pn(w)

)1−η

Ln κ
η−1
n1

∫ ∞
0

z1−η
1 f1(z1)

∏
k 6=1

Fk

(
w1κnk
wkκn1

z1

)
dz1

Note that for all i we have

pi ≤ (wn/κin)

[∫ ∞
0

z1−ηfn(z) dz

]1/(1−η)

,

where the left hand side is the price that would be obtained by consumers in country

i if they restrict themselves to buy only from country n. Considering w = wr we have

that wn/pn(w) is uniformly bounded from above by the previous expression, setting

i = n for all r large enough since w0
n = 1. Finally, for any ε > 0, w1/wk ≤ 1− ε for all

r large enough, and hence Fk

(
w1κnk
wkκn1

z1

)
> 0 for all finite z1. Using that η > 1 and

taking limits we obtain the desired result. Given (i)-(iv), existence of an static trade

equilibrium wage follows from Proposition 17.C.1 in Mas-Colell et al. (1995).

To establish the gross substitute property, since the excess demand system satisfies

Walras’ law, it suffices to show that ∂Zi(w)/∂wr > 0 for all i, r = 1, ..., n and i 6= r.

First notice that pj(w) is increasing in each of the components of w and homogenous
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of degree one in w for all j. This implies that wr/pr(w) is increasing in wr. We have:

∂Zi(w)

∂wr
=

n∑
j=1,j 6=r

∂

∂wr

[(
wi

pj(w)

)−η
wj

pj(w)
Lj

]∫ ∞
0

(
zi
κji

)1−η

fi(zi)
∏
k 6=i

Fk

(
wi
wk

κik
κij

zi

)
dzi

+
n∑

j=1,j 6=r

(
wi

pj(w)

)−η
wj

pj(w)
Lj

∫ ∞
0

(
zi
κji

)1−η

fi(zi)
∏
k 6=i

∂

∂wr

[
Fk

(
wi
wk

κik
κij

zi

)]
dzi

+
∂

∂wr

[(
wi

pr(w)

)−η
wr

pr(w)
Lr

]∫ ∞
0

(
zi
κri

)1−η

fi(zi)
∏
k 6=i

Fk

(
wi
wk

κik
κir

zi

)
dzi

+

(
wi

pr(w)

)−η
wr

pr(w)
Lr

∫ ∞
0

(
zi
κri

)1−η

fi(zi)
∏
k 6=i

∂

∂wr

[
Fk

(
wi
wk

κik
κir

zi

)]
dzi

For j 6= r, using that η > 1 and pj(w) in increasing, we get ∂
∂wr

[(
wi

pj(w)

)−η
wj
pj(w)

Lj

]
>

0. For j = r, using that η > 0, that wr/p(w) is decreasing in wr we get that

∂
∂wr

[(
wi

pr(w)

)−η
wr
pr(w)

Lr

]
> 0. For k = r 6= i we have that ∂

∂wr

[
Fk

(
wi
wk
zi

)]
> 0 since

Fk is decreasing.

That wi/wj, relative wages of country i respect to any country j, are decreasing

in Li, follows from the strong gross substitute property. In particular, form an an ap-

plication of the Hick’s law of demand, since the excess demand of country i decreases

with Li, while the excess demand for any other country increases with Li, –see, for

example, first corollary of Theorem 3 in Quirk (1968). �

Proof of Proposition 8: Decomposing the time derivative of Fi((e
αntz)θ, t) in the

usual way, we have

dFi

((
e(ν/θ)tz

)θ
, t
)

dt
=

∂Fi

((
e(ν/θ)tz

)θ
, t
)

∂z

d
(
e(ν/θ)tz

)θ
dt

+
∂Fi

((
e(ν/θ)tz

)θ
, t
)

∂t

= (ν/θ) fi

((
e(ν/θ)tz

)θ
, t
)
θ
(
e(ν/θ)tz

)θ−1
e(ν/θ)tz

+
∂Fi

((
e(ν/θ)tz

)θ
, t
)

∂t
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and so, dividing by Fi(
(
e(ν/θ)tz

)θ
, t) and applying (16) to the last term on the right,

d logFi

((
e(ν/θ)tz

)θ
, t
)

dt
=

(ν/θ) fi

((
e(ν/θ)tz

)θ
, t
)
θ
(
e(ν/θ)tz

)θ−1
e(ν/θ)tz

Fi

(
(e(ν/θ)tz)

θ
, t
)

+αi logGi

((
e(ν/θ)tz

)θ
, t
)
.

Let x = e(ν/θ)tz and multiplying through by x to obtain

d

dt

logFi(x
θ, t)

x−1
= (ν/θ)

fi(x
θ, t)θxθ+1

Fi(xθ, t)
+ αi

logGi(x
θ, t)

x−1
.

Now let x→∞

− d

dt
lim
x→∞

fi(x
θ, t)θxθ+1 = (ν/θ) lim

x→∞
fi(x

θ, t)θxθ+1 − αi lim
x→∞

gi(x
θ, t)θxθ+1,

where limx→∞
d
dt

logFi(x
θ,t)

x−1 = d
dt

limx→∞
logFi(x

θ,t)
x−1 since Fi(., .) is assumed to be twice

continuously differentiable. Reversing signs to conform to the definition of λi(t),

d

dt
λi(t) = − (ν/θ)λi(t) + αi

n∑
j=1

λj(t). (B.1)

Summing both sides over i we have

d

dt

n∑
i=1

λi(t) = − (ν/θ)
n∑
i=1

λi(t) +
n∑
i=1

αi

n∑
j=1

λj(t) = 0 ,

where the last equality uses the fact that ν = θ
∑n

i=1 αi. Then
∑

i λi(t) stays constant

and using the definition of λ∗i , (B.1) implies that

dλi(t)

dt
=

d (λi(t)− λ∗i )
dt

= − (ν/θ) (λi(t)− λ∗i )−
ν

θ
λ∗i + αi

n∑
j=1

λj(t)

= − (ν/θ) (λi(t)− λ∗i ) .

Integrating gives equation (26). �
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Proof of Proposition 9: We first remind the reader that for the case of a Frechet

distribution

Ĩij(K,w) =

(
wj
κij p̃i

)1−η

wiLi

∫ ∞
0

λj
θ
y−1+η−1/θ−1 exp

[
−

n∑
k=1

λk

(
wkκij
wjκik

)−1/θ

y−1/θ

]
dy

doing a change of variables

Ĩij(K,w) =

(
wj
κij

)−1/θ (
1

p̃i

)1−η

wiLi
λj[∑

k λk

(
κik
wk

)1/θ
]1+θ(1−η)

∫ ∞
0

tθ(1−η) exp [−t] dt.

Similarly for the price index,

p̃1−η
i =

∫∞
0
tθ(1−η) exp [−t] dt[∑

k λk

(
κik
wk

)1/θ
]1+θ(1−η)

n∑
s=1

λs

(
ws
κis

)−1/θ

.

Which implies

Ĩij(K,w) =
λj

(
wj
κij

)−1/θ

∑n
s=1 λs

(
ws
κis

)−1/θ
wiLi.

In the general case

Iij(K,w; η) =

(
wj
κij pi

)1−η

wiLi

∫ ∞
0

y−1+η fj(y)
∏
k 6=j

Fk

(
wkκij
wjκik

y

)
dy ,

=

(
wj
κij

)1−η

wiLi

∫∞
0
y−1+η fj(y)

∏
k 6=j Fk

(
wkκij
wjκik

y
)
dy∑s

s=1

(
ws
κis

)1−η ∫∞
0
y−1+η fs(y)

∏
k 6=j Fk

(
wkκis
wsκik

y
)
dy

where the second equality follows by substituting the expression for the price level.
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Defining

I ij(z) = λj

(
wj
κij

)−1/θ

wiLi ×∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wjκik
wkκij

)1/θ

y−1/θ

]
Mij(y)dy

∑n
s=1 λs

(
ws
κis

)−1/θ ∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wsκik
wkκis

)1/θ

y−1/θ

]
Mis(y)dy

where

Mij(z) =
fj(z)

∏
k 6=j Fk

(
wkκij
wjκik

z
)

λj
θ
z−1/θ+1e−λjz

−1/θ ∏
k 6=j e

−λk
(
wjκik
wkκij

)1/θ

z−1/θ

a function that converges to 1 as z →∞ given our assumption on the behavior of fj.

Furthermore, notice that

lim
z→∞

∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wjκik
wkκij

)1/θ

y−1/θ

]
Mij(y)dy

∫ z
0

1
θ
y exp

[
−
∑n

k=1 λk

(
wsκik
wkκis

)1/θ

y−1/θ

]
Mis(y)dy

= 1.

which implies

lim
η→1/θ+1

Iij(K,w, η) ≡ lim
z→∞

I ij(z) =
λj

(
wj
κij

)−1/θ

∑n
s=1 λs

(
ws
κis

)−1/θ
wiLi = Ĩi,j(K,w).

From this follows that the equilibrium wages are the same. The result for the ratio

of price levels follows a similar argument. Finally, the claim for the ratio of the real

GDP follows from the previous two results. �

C Multiple Locations per Country

In order to clarify the role of scale effects and the interpretation of countries of

different sizes we introduce the notion of a location within a country. We consider a
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world economy consisting of n countries, where each country i contains mi locations.

To simplify the analysis, we assume that a country is defined by a set of locations

satisfying the following conditions:22

1. within each country there is a common labor market across the mi locations;

2. there are no trading cost between locations within a country;

3. locations within a country face the same trading cost when trading with loca-

tions in other countries.

Denoting by Li,l the labor force in location l of country i, we can write the labor

force of country i as

Li =

mi∑
l=1

Li,l. (C.1)

Since we assume that all locations within a country share the same labor market,

there is a unique wage wi for all location within a country. Likewise, given that there

are no transportation cost within a country and all locations within a country face

the same trading cost when trading with locations in other countries, all locations

within a country face the same prices for all goods.

Denoting by Fi,l(z, t) the distribution of cost in location l of country i, we can

write the distribution of best practices in country i as

Fi(z, t) =

mi∏
l=1

Fi,l(z, t). (C.2)

Notice that the right hand size of (C.2) is the distribution of the minimum labor

requirement over all locations within a country. This follows from the fact that all

locations within a country share the same wages, there is no transportation cost

between location within a country, and that all locations within a country share the

same transportation cost vis-a-vis all other countries. Thus, the distribution Fi(z, t)

of cost of a country is all we need to know to calculate a static trade equilibrium.

In particular, given the distribution of cost in each country and the size of the labor

force of each country, Li, we can calculate a static trade equilibrium as described in

22It is straightforward to extend the analysis to the case where labor is not mobile across location
and there are arbitrary transportation costs across locations. In this case an equilibrium is given by
a wage vector of dimension

∑n
i=1mi.
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Section 3. In particular, the equilibrium values of (wi(t), pi(t), Ci(t))i=1,...,n are only

function of the (Fi(·, t), Li)i=1,...,n and independent of the decomposition of countries

into locations as long as equations (C.1) and (C.2) hold.

Assuming that the arrival rate of ideas in location l of country i equals αi,l, we

can aggregate the evolution of best practices of all locations in a country to obtain

the law of motion of best practices in country i:

mi∑
l=1

∂ log (Fi,l(z, t))

∂t
=

mi∑
l=1

αi,l log [Gi(z, t)]

or

∂ log (Fi(z, t))

∂t
= αi log [Gi(z, t)]

where αi =
∑mi

l=1 αi,l.

Furthermore, assuming that countries are aggregates of different different number

of symmetric locations in terms of their population and number of technology man-

agers, Li,l = L and αi,l = α, we have that countries of different size are obtained by

scaling their population Li = mi L and the arrival rate of ideas αi = mi α.

It should be also clear that, provided that the structure of transportation cost

and labor markets across locations is kept constant, an equilibrium of the model is

invariant to arbitrary division of locations into countries. For instance, a country

with mi locations can be divided into mi individual countries, each of them with a

population of size L, receiving α ideas per period, and having a distribution of best

practices Fi,l(z, t) = (Fi(z, t))
1
mi .

We use the notion of locations to study the effect of changes in the arrival rate of

product diffusions of a single small open into this country’s output and welfare. To

do so we first consider a limit set-up where all countries are identical and very small.

Then we let one of these small economies to differ in its own meeting rate. Consider a

sequence of worlds, each one indexed by n. We split the world economy into n identi-

cal locations, so that each country corresponds to one location, but where otherwise

every other aspect of the world is kept the same. In particular fix ᾱ, L̄ and a right cdf

F̄ (z, t). Using our previous result, for each world made of n countries let Li = L̄/n,

αi = ᾱ/n and Fi(z, t) =
(
F̄ (z, t)

) 1
n for each country i = 1, ..., n. Furthermore assume
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that κij = 1 for all i, j regardless of the number of countries n. Clearly equilibrium

wages are wi = 1 for every country in every world with n countries. Moreover, for any

n the stationary distribution of sellers, Γi in equation (18), is independent of i and is

given by the same Frechet distribution with shape parameter θ and scale parameter

λ derived from F̄ (·, 0). The common growth rate of each country is ν = ᾱθ for every

n. The case of n small open economies is obtained when we let n be very large,

so that each country i has negligible effect on common distribution Γ faced by each

country. This is the same concept used in section 8 of Alvarez and Lucas (2007) to

study optimal tariff rates.

Remark 2. Consider n small open economies, for large n. Assume that country

1 has α1 < ᾱ/n ≡ α2 = α3 = · · · = αn. Since each economy is very small, the

stationary distribution of sellers Γ in every country i is not affected by α1. Equa-

tions (17)-(18) implies that the stationary distribution of country 1 is Frechet with

the same shape parameter θ but with scale parameter λ∗1 = (α1/αj)λ < λ = λ∗j , for

j 6= 1. Relative GDP’s equals the relative λ′s to the power θ/(1 + θ), and the relative

λ′s equal the relative α′s. Moreover, we can study the dynamics of the effect of a

permanent change in α1 using Equation (26) from Proposition 8. Hence country’s 1

real income level converges to (α1/αj)
θ/(1+θ) at rate ν/θ = ᾱ for j 6= 1.

Remark 2 and Corollary 2 give two different setups where relative meeting rates

for diffusion opportunities, i.e. relative α’s, determine exactly relative income levels.
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