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This paper develops a simple method for calculating the cost of capital for alternative investments. Ex ante

cost of capital estimates are central to the efficient allocation of capital, and generally depend on the composition

of the investor’s total portfolio and the payoff profile of the new investment relative to the remainder of the

portfolio. In the context of alternative investments, these allocations (1) constitute a large share of the investor’s

total portfolio and (2) have nonlinear payoffs relative to the remainder of the portfolio at horizons that permit

rebalancing. We find that these two features interact to produce very large required rates of return relative to

commonly used benchmarking techniques, including those developed recently to address the nonlinear payoffs

of alternative investments.

Merton (1987) develops a model of capital market equilibrium with incomplete information in which in-

vestors must be informed about an investment before they allocate any capital to it. This creates specialization in

investing and leads some investors to hold highly concentrated portfolios in equilibrium. As a result, the equilib-

rium required rate of the return on these investments exceeds what would be required in a frictionless model. An

important class of real world decisions to which this applies are alternative investments. Conditional on investing

in alternatives, allocations are typically large relative to the equilibrium supply of these risks, in order to amortize

the fixed costs associated with expanding the traditional investment universe to include alternatives. For exam-

ple, as of June 2010, the Ivy League endowments had 40% of their combined assets allocated to non-traditional

assets (Lerner, et al. (2008)), whereas the share of alternatives in the global wealth portfolio was closer to 2%.1

This paper argues that the wedge between the proper cost of capital and that implied by a frictionless model is

likely to be particularly large here due to the non-linearity of the payoff profile relative to the remainder of the

portfolio. Taking observed portfolio allocations as given, we study the role concentrated allocations play in the

cost of capital for alternative investments.

To the extent that the real world equilibrium is affected by market frictions that lead some investors to hold

highly concentrated portfolios, these consequences must be explicitly handled in cost of capital estimates, but

typically are not. For example, traditional cost of capital computations are heavily reliant on linear factor models,

which implicitly assume that: (a) investors trade in frictionless markets, and thus hold efficient portfolios; and (b)

asset returns are well described by the considered set of traded factors. Merton (1987) highlights the theoretical

and empirical challenges posed by the first assumption when the equilibrium is one where a small subset of

investors hold relatively large shares of a particular risk, as appears to be the case for alternative investments.

The linear factor model approach relies on the notion that all agents agree on the required rate of return for
1As of end of 2010, the total assets under management held by hedge funds stood at roughly $2 trillion (source: HFRI), in comparison

to a combined global equity market capitalization of $57 trillion (source: World Federation of Exchanges) and a combined global bond
market capitalization of $54 trillion, excluding the value of government bonds (source: TheCityUK, “Bond Markets 2011”).
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a marginal deviation from their efficient portfolios, but this will generally not be true when market frictions

cause some investors to hold concentrated portfolios. Ignoring these issues altogether, the focus of the empirical

literature has been on expanding the factor set (e.g. by adding non-linear factors) in an attempt to describe the

downside risk exposure of alternatives. Nonlinear factors have been included in an ad hoc way, such that they

often do not represent feasible investments, and are unlikely to capture the specific nonlinear risk profile of hedge

funds.2 Moreover, this does little to correct for the problems due to return smoothing or asset illiquidity (Asness,

et al. (2001), Getmansky, et al. (2004)). We remedy these shortcomings, and produce cost of capital estimates

for alternatives reflecting the economic reality of the concentrated portfolio to which they belong.

To derive estimates of the cost of capital in a setting where investors make large allocations to downside risks,

we assemble a simple static portfolio selection framework that combines power utility (CRRA) preferences, with

a state-contingent asset payoff representation, in the spirit of Arrow (1964) and Debreu (1959). We specify the

joint structure of asset payoffs by describing each security’s payoff as a function of the aggregate equity index

(here, the S&P 500).3 Finally, to capture the non-linear risk exposure of alternatives, we model hedge fund

returns as a portfolio of cash and a short position in equity index put options. The contractual nature of index put

options immediately provides a complete state-contingent description of an investable alternative to the aggregate

hedge fund universe. In turn, the availability of a state-contingent risk profile allows us to determine the rate of

return that an investor would require as a function of his risk aversion, portfolio allocation, and the underlying

return distributions of other asset classes, all of which are necessary for any asset allocation decision.

Our first empirical contribution is to provide a new methodology for replicating the returns to a broad cross-

section of hedge fund indices. While evidence of non-linear systematic risk exposures resembling those of index

put writing has been provided by Mitchell and Pulvino (2001) for risk arbitrage, and Agarwal and Naik (2004)

for a large number of equity-oriented strategies, the literature – aside from Lo (2001) – has been comparatively

silent on exploring non-linear replicating strategies. We take seriously the problem of capital requirements

(Santa-Clara and Saretto (2009)) and transaction costs to produce the returns of feasible put writing strategies,

thus extending the linear hedge fund replication analysis of Lo and Hasanhodzic (2007). For a given hedge fund

index, we identify suitable replicating strategies by matching the mean pre-fee returns of the index. Our procedure

does not rely on linear regression, and therefore sidesteps problems due to return smoothing or asset illiquidity.

When compared with our put writing strategies, linear strategies identified via in-sample regressions: (a) generate
2For example, Agarwal and Naik (2004) use options that are 1% out-of-the-money to explain hedge fund returns, which may not be

the appropriate downside risk profile of these investments. Fung and Hsieh (2004) construct factors based on the theoretical returns to
lookback straddle portfolios, which represent highly infeasible portfolio returns since they do not satisfy margin requirements.

3The same state-contingent payoff model is used in Coval, et al. (2009) to value tranches of collateralized debt obligations relative to
equity index options, and in Jurek and Stafford (2013) to elucidate the time series and cross-section of repo market spreads and haircuts.
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statistically significant shortfalls in replicating the returns of hedge funds; (b) produce residuals exhibiting greater

skewness and excess kurtosis; (c) do a inferior job of matching the drawdown patterns of hedge fund indices;

and, (d) deliver minimal improvements in explanatory R2, despite being designed to essentially maximize this

statistic. To further validate our replication methodology we examine the cross-section of HFRI subindices

and compare the fit of our put writing strategies against linear factor models out-of-sample, by selecting the

replicating strategies using the first half of the data (Jan. 1996 - Jun. 2003) and examining their performance

using the second half (Jul. 2003 - Dec. 2010). We find that for the set of equity-related hedge fund subindices,

where simple strategies based on equity index options can be expected to perform well, non-linear replicating

portfolios dominate their linear counterparts both along the dimension of matching the risks, as well as, the

returns.

While the preceding analysis indicates that pre-fee hedge fund returns can be replicated using put writing

strategies, it has little to say about whether investors in either strategy have covered their proper cost of capital.

For example, to the extent that put options are fairly priced, our results indicate that hedge funds may be earning

compensation for jump and volatility risk premia. Another interpretation is that put options are themselves

mispriced, reflecting an imperfectly competitive market for the provision of “pre-packaged” liquidity, such that

a conclusion of zero after-fee alpha for hedge funds may still be rejected.4 To confront this possibility directly,

we use our state-contingent payoff framework combined with the composition of the put writing strategies and

the realized path of market volatility, to examine the time series of the proper cost of capital for an investor in

hedge funds. In the absence of any access to alternatives, the investor is assumed to have a baseline allocation of

40% to risk-free securities and a 60% allocation to risky securities, mimicking the standard benchmark invoked

by pension plans and endowments. With access to alternatives, the investor has a 35% or 50% allocation to

alternatives.

Our second empirical contribution demonstrates that cost of capital computations based on ex post factor

regressions, or ex ante theoretical estimates based on the CAPM, meaningfully understate the investors’ true cost

of capital. For example, linear regressions (CAPM, Fama-French, Fung-Hsieh) suggest that hedge fund investors

have required rates of return of 0% to 3% per annum, and have therefore earned alphas ranging from 3-6% net

of fees. By contrast, our model indicates that relative to the proper cost of capital, which accounts for the payoff

non-linearity of the aggregate hedge fund index and the concentrated investor allocations, the endowment investor

earned statistically unreliable alphas of −2.5% to −0.6%. The proper cost of capital for the endowment with
4Option returns reflect the returns to bearing jump and volatility risk (e.g. Carr and Wu (2009), Todorov (2010)), as well as, com-

pensation for systematic demand imbalances (e.g. Garleanu, et al. (2009), Constantinides, et al. (2012)). He and Krishnamurthy (2012)
highlight the role of time-varying capital constraints of intermediaries on asset prices.

3



a large allocation to hedge funds stands at 6.9% to 8.7%, more than twice as large as the theoretical prediction

based on the CAPM beta of the aggregate hedge fund universe (3%). We extend this analysis to the cross-section

of equity-related hedge fund strategies, and find that net-of-fee investor alphas are statistically indistinguishable

from zero for both investor types. In practice, many investors have likely underperformed their proper cost

of capital estimates as the hedge fund indices we study are likely to suffer from survivorship and backfill bias

(Malkiel and Saha (2005)), overstating the returns to actual hedge fund investors.

Finally, our state-contingent framework also allows us to provide a new perspective on the pricing of equity

index options. We find that the pre-fee put writing returns are consistently about 3.5% to 4% higher than their

associated hedge fund strategy return, which translates into consistently positive alphas. A highly specialized

investor (allocating 50% to put writing) generally realized alphas that are statistically indistinguishable from zero,

while less specialized investors realized statistically significant alphas from the put writing portfolios. While

these findings qualitatively confirm that equity index put options are “expensive,” our estimates of annualized

alphas are (at least) an order of magnitude lower than reported in previous papers (e.g. Coval and Shumway

(2001), Bakshi and Kapadia (2003), Bondarenko (2003), Frazzini and Pedersen (2011), Constantinides, et al.

(2012)). From the perspective of our model, the marginal price setters in equity index options markets may

simply hold concentrated portfolios, or believe the underlying equity index return distribution has a more severe

left tail than in our calibration.

The remainder of the paper is organized as follows. Section 1 describes the risk profile of hedge funds.

Section 2 presents a simple recipe for replicating the aggregate hedge fund risk exposure with index put options

and empirically compares the returns of this replication strategy with those produced by linear factor models.

Section 3 develops a generalized asset allocation framework for computing the cost of capital for investors with

large allocation to nonlinear payoffs. Section 4 evaluates the empirical pricing of downside risks using after-fee

hedge fund index returns, as well as, the pre-fee returns to put-writing strategies, and compares them to inference

based on traditional linear factor models. Finally, Section 5 concludes the paper.

1 Describing the Risk Profile of Hedge Funds

We begin our investigation of hedge fund risk profiles with an assessment of the risk properties of the aggre-

gate asset class. We proxy the performance of the hedge fund universe using two indices: the (value-weighted)

Dow Jones/Credit Suisse Broad Hedge Fund Index, and the (equal-weighted) HFRI Fund Weighted Composite

Index. Such indices are not investable, and typically provide an upward biased assessment of hedge fund per-

formance due to the presence of backfill and survivorship bias. For example, Malkiel and Saha (2005) report
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that the difference between the mean annual fund return in the backfilled and non-backfilled TASS database was

7.34% per year in the 1994-2003 sample. Moreover, once defunct funds are added in the computation of the mean

annual returns to correct for survivorship bias, the mean annual fund return declines by 4.42% (1996-2003). To

the extent that the survivorship bias also affects the measured risks, it is unlikely that the true risks are lower than

those estimated from the realized returns over this period.

Table 1 reports summary statistics for the HFRI and DJ/CS aggregates and their major sub-indices, computed

using quarterly returns from 1996:Q1-2010:Q4 (N = 60 quarters), and compares them to the S&P 500 index

and one-month T-bills. Although index returns are available at the monthly frequency, we focus on quarterly

returns throughout the paper to ameliorate the effects of stale prices and return smoothing (Asness, et al. (2001),

Getmansky, et al. (2004)). Finally, since our goal is to characterize compensation for bearing risk across various

markets rather than investor returns per se, we report summary statistics for pre-fee index returns. To obtain

pre-fee returns, we treat the observed net-of-fee time series as if it represented the return of a representative fund

that was at its high watermark throughout the sample, and charged a 2% flat fee and a 10% incentive fee, both

payable monthly.5 The difference between the mean pre-fee and net-of-fee returns represents an approximation

of the all-in investor fee. For comparison, using cross-sectional data from the TASS database for the period

1995-2009, Ibbotson, et al. (2010) find that the average fund collected an all-in annual fee of 3.43%. French

(2008) reports an average total fee of 4.26% for U.S. equity-related hedge funds in the HFRI database using data

from 1996 through 2007. We find that our crude computation of all in-fees coincides well with these estimates.

The attraction of hedge funds over this time period is clear: mean returns on alternatives exceeded that of

the S&P 500 index, while incurring lower volatility. Moreover, the estimated linear systematic risk exposures

(or CAPM β values) indicate that hedge fund performance was largely unrelated to the performance of the

public equity index, and suggests that relative to this risk model they have outperformed. The realized pre-fee

Sharpe ratios on alternatives were approximately three times higher than that of the S&P 500 index. Under all

of the standard risk metrics inspired by the mean-variance portfolio selection criterion, hedge funds represented

a highly attractive investment. Hedge funds also perform well when evaluated on the dimension of drawdowns,

which measure the magnitude of the strategy loss relative to its highest historical value (or high watermark).

Both hedge fund indices have a minimum drawdown of approximately -20%, which is less than half of the -50%

drawdown sustained by investors in public equity markets. This is further illustrated in Figure 1, which plots the
5In practice most funds impose a “2-and-20” compensation scheme, comprised of a 2% flat fee and a 20% incentive allocation, subject

to a high watermark provision. Our compensation scheme can therefore loosely be interpreted as describing the scenario where half of
the funds in the universe are at their high watermark at each point in time. Our computation is also likely conservative in that the incentive
component represents an option on the pre-fee return of a portfolio of funds, rather than a portfolio of options on the pre-fee returns of
the underlying funds.
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net-of-fee value of $1 invested in the various assets through time. By December 2010, the hedge fund investor

had amassed a wealth roughly 50% larger than the wealth of the investor in public equity markets, and more than

twice the wealth of an investor rolling over investments in short-term T-bills.

The data also reveal the presence of significant non-normalities in hedge fund returns, as demonstrated by

the departures of the measured skewness and kurtosis from zero and three, respectively. The Jarque-Bera (JB)

statistic evaluates whether a time series exhibits skewness and kurtosis, and is a popular test for normality. The 5%

critical value for the JB test statistic in a sample of our size is 5.0, indicating that the null of normally-distributed

returns is rejected for all, but four, of the eighteen hedge fund sub-indices. This raises the possibility that the

high measured CAPM alphas may not only reflect manager skill, but also some compensation for exposure to

(non-linear) downside risks.6

Figure 1 also confirms that the performance of hedge funds as an asset class is not market-neutral. For

example, hedge funds experience severe declines during extreme market events, such as the credit crisis during

the fall of 2008 and the LTCM crisis in August 1998. During the two-year decline following the bursting of

the Internet bubble, hedge fund performance is flat. And, finally, in the “boom” years hedge funds perform

well. Empirically, the downside risk exposure of hedge funds as an asset class is reminiscent of writing out-of-

the-money put options on the aggregate index. Severe index declines cause the option to expire in-the-money,

generating losses that exceed the put premium. Mild market declines are associated with losses comparable to the

put premium, and therefore flat performance. Finally, in rising markets the put option expires out-of-the-money,

delivering a profit to the option-writer.

There are structural reasons to view the aggregated hedge fund exposure as being similar to short index put

option exposure. Many strategies explicitly bear risks that tend to realize when economic conditions are poor

and when the stock market is performing poorly. For example, Mitchell and Pulvino (2001) document that the

aggregate merger arbitrage strategy is like writing short-dated out-of-the money index put options because the

underlying probability of deal failure increases as the stock market drops. Hedge fund strategies that are net long

credit risk are effectively short long-dated put options on firm assets – in the spirit of Merton’s (1974) structural

credit risk model – such that their aggregate exposure is similar to writing long-dated index put options. Other

strategies (e.g. distressed investing, leveraged buyouts) are essentially betting on business turnarounds at firms

that have serious operating or financial problems. In the aggregate these assets are likely to perform well when

purchased cheaply so long as market conditions do not get too bad. However, in a rapidly deteriorating economy

these are likely to be the first firms to fail.
6Harvey and Siddique (2000) provide an asset pricing model where skewness is priced, and present empirical evidence of a systematic

skewness risk premium in equity markets.
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The downside exposure of hedge funds is induced not only by the nature of the economic risks they are bear-

ing, but also by the features of the institutional environment in which they operate. In particular, almost all of

the above strategies make use of outside investor capital and financial leverage. Following negative price shocks

outside investors make additional capital more expensive, reducing the arbitrageur’s financial slack, and increas-

ing the fund’s exposure to further adverse shocks (Shleifer and Vishny (1997)). Brunnermeier and Pedersen

(2008) provide a complementary perspective highlighting the fact that, in extreme circumstances, the withdrawal

of funding liquidity (i.e. leverage) from to arbitrageurs can interact with declines in market liquidity to produce

severe asset price declines.

2 A New Method for Replicating Hedge Fund Risk Exposure

In order to replicate the aggregate risk exposure of hedge funds, we examine the returns to simple strategies

that write naked (unhedged) put options on the S&P 500 index. Our initial focus on replicating the risk exposure

of the aggregate hedge fund universe, rather than strategy sub-indices or individual funds, is motivated by the

observation that sophisticated investors (e.g. endowment and pension plans) generally hold diversified portfolios

of funds, either directly or via funds-of-funds. Consequently, a characterization of the asset class risk exposure

provides a first-order characterization of their problem.

We consider a range of replicating strategies with different downside risk exposures, as measured by how far

the put option is out-of-the-money and how much leverage is applied to the portfolio. Each replicating strategy

writes a single, short-dated put option, and is rebalanced monthly. Our hedge fund replication methodology

matches hedge fund indices to feasible put writing strategies on the basis of their realized mean returns, and

evaluates the model fit based on a variety of distributional properties of the feasible residuals, defined as the

difference between the quarterly returns of the hedge fund index and the feasible replicating portfolio. This

approach takes seriously the notion that many hedge fund strategies primarily bear downside risks resembling

put writing, and that risk premia across economically similar exposures should be equalized. To the extent that we

incorrectly benchmark hedge fund performance against an explicitly nonlinear strategy, we will produce residuals

that have large skewness and kurtosis relative to the residuals from linear factor models. On the other hand, to

the extent that hedge fund returns share the risk properties of put writing strategies, the put-writing-portfolio

residuals will have less skewness and kurtosis than those from linear factor model regressions.

Our proposed methodology, based on matching mean returns, contrasts starkly with existing approaches in

the hedge fund replication literature, which fall into three broad categories: factor-based, rule-based, and distribu-

tional. The factor-based methods, inspired by the ICAPM and APT, rely on regression analysis to identify repli-
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cating portfolios of tradable indices, which in some cases include option-based strategies (Fung and Hsieh (2002,

2004), Agarwal and Naik (2003, 2004), Lo and Hasanhodzic (2007)). A major concern with the regression-based

approach is that hedge fund return series are smoothed (Asness, et al. (2001), Getmansky, et al. (2004)), which

results in downward biased estimates of factor loadings, and therefore upward biased estimates of hedge fund

alphas. In principle, with additional assumptions about the smoothing technology one can try to improve the

specification. From a practical perspective, after correcting for return smoothing by using lower frequency re-

turns or adding lagged factors, the portfolios of traditional risks identified by these regressions typically fail to

match the high excess returns delivered by hedge funds. The rule-based methods use mechanical algorithms to

assemble portfolios mimicking basic hedge fund strategies (Mitchell and Pulvino (2001), Duarte, et al. (2007)).

To the extent that hedge fund strategies bear risks distinct from those represented by commonly-used asset pric-

ing factors, an attractive feature of this approach is that the replicating portfolio will earn the premia associated

with those distinct risks by being directly exposed. For our purposes, a disadvantage of this method is that the

issue of determining the appropriate cost of capital for these risks remains unresolved without a clear mapping

into an asset pricing model. Finally, distributional methods focus on matching the unconditional distribution of

hedge fund returns, with no emphasis on matching contemporaneous movements between hedge funds and other

assets, such as the market portfolio. This approach is inspired by Dybvig’s (1988) payoff distributional pricing

theory, which examines the properties of the cheapest-to-deliver lottery matching a given distribution, and was

first applied to hedge fund replication by Amin and Kat (2003). The general idea behind their approach is to

identify a static payoff function that transforms the distribution of the index return into the distribution of hedge

fund returns, and then replicate the static payoff through dynamic trading. While our approach shares the flavor

of using a transformation of the index return, through the choice of option strike and leverage pairs, our model

evaluation procedure explicitly relies on the contemporaneous replication residuals, rather than the properties of

the unconditional return distributions.

2.1 Measuring Put Writing Portfolio Returns

To calculate returns and characterize risks associated with put writing portfolios, we begin by specifying

feasible investment strategies. Implementing each strategy requires defining the (1) rebalancing frequency, (2)

security selection rule, and (3) amount of financial leverage.

Each month from January 1996 through December 2010, we form a simple portfolio consisting of a short

position in a single S&P 500 index put option, P(K(Z), T ), and equity capital, κE(L), whereK(Z) is the option

strike price, T is the option expiration date, and L is the leverage of the portfolio. The portfolio buys (sells) put
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options at the ask (bid) prevailing at the market close of the month-end trade date.7 If no market quotes are

available for the option contract held by the agent at month-end, the portfolio rebalancing is delayed until such

quotes become available. The proceeds from shorting the option, along with the portfolio’s equity capital are

invested at the risk-free rate for one month, earning rf,t+1. This produces a terminal accrued interest payment

of:

AIt+1 =
(
κE(L) + Pbidt (K(Z), T )

)
· (erf,t+1 − 1) . (1)

The monthly portfolio return, rp,t+1, is comprised of the change in the value of the put option plus the accrued

interest divided by the portfolio’s equity capital:

rp,t+1 =
Pbidt (K(Z), T )− Paskt+1(K(Z), T ) + AIt+1

κE(L)
. (2)

We construct strategies that write options at fixed strike Z-scores. Selecting strikes on the basis of their cor-

responding Z-scores ensures that the systematic risk exposure of the options at the rebalancing dates is roughly

constant, when measured using their Black-Scholes deltas. This contrasts with previous studies, which have fo-

cused on strategies with fixed option moneyness (measured as the strike-to-spot ratio, K/S, or strike-to-forward

ratio), such as Glosten and Jagannathan (1994), Coval and Shumway (2001), Bakshi and Kapadia (2003), Agar-

wal and Naik (2004). Options selected by fixing moneyness have higher systematic risk, as measured by delta or

market beta, when implied volatility is high, and lower risk when implied volatility is low.

In particular, we define the option strike corresponding to a Z-score, Z, by:

K(Z) = St · exp
(
σt+1 · Z

)
(3)

where St is the prevailing level of the S&P 500 index and σt+1 is the one-month stock index implied volatility,

observed at time t. We select the option whose strike is closest to, but below, the proposal value (3), and whose

expiration date is closest, but after the end of the month. At trade initiation, the time to option expiration is

roughly equal to seven weeks, since options expire on the third Friday of the following month. To measure

volatility at the one-month horizon, σt+1, we use the CBOE VIX implied volatility index.

Option writing strategies require the posting of capital, or margin. The capital bears the risk of losses due to
7We aim to provide a conservative assessment of put writing returns by assuming the strategy demands immediacy by executing at the

opposing side of the bid-ask spread. Returns measured on the basis of the option midprice are considerably higher given the wide bid-ask
spread, especially in the early part of the sample.
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changes in the mark-to-market value of the liability. The inclusion of margin requirements plays an important

role in determining the profitability of option writing strategies (Santa-Clara and Saretto (2009)), and further

distinguishes our approach from papers, where the option writer’s capital contribution is assumed to be limited

to the option price, as it would be for a long position. In the case of put writing strategies, the maximum loss

per option contract is given by the option’s strike value, K. Consequently, a put writing strategy is fully-funded

or unlevered (i.e. can guarantee the terminal payoff) if and only if, the portfolio’s equity capital is equal to (or

exceeds) the maximum loss at expiration. For European options, this requires an initial investment of unlevered

asset capital, κA, equal to the discounted value of the exercise price less the proceeds of the option sale:

κA = e−rf,t+τ ·K(Z)− Pbidt (K(Z), T ) (4)

where rf,t+τ is the risk-free rate of interest corresponding to the time to option expiration, and is set on the

basis of the nearest available maturity in the OptionMetrics zero curves. The ratio of the unlevered asset capital

to the portfolio’s equity capital represents the portfolio leverage, L = κA
κE

. Allowable leverage magnitudes are

controlled by broker and exchange limits, with values up to approximately 10 being consistent with existing

CBOE regulations.8 We consider four put writing strategies, [Z,L], all targeting an average realized return

to match that of the hedge fund index being replicated. In particular, we consider options at four strike levels,

Z ∈ {−0.5,−1.0,−1.5,−2.0}, which are progressively further out-of-the-money. The options we consider have

strike prices that (at inception) are on average between 4% (Z = -0.5) and 13% (Z = -2.0) below the prevailing

strike price. By contrast, Agarwal and Naik (2004), base their “out-of-the-money” put factor on options whose

strike is 1% below the prevailing spot price. Consequently, their approach is essentially equivalent to a linear

regression methodology which separately estimates the downside and upside betas, in the spirit of Glosten and

Jagannathan (1994). For each strike level, Z, we choose the leverage, L, such that the average strategy-level

return equals the mean realized return of the hedge fund strategy being considered over the estimation period.

2.1.1 An Example

To illustrate the portfolio construction mechanics consider the first portfolio rebalancing trade of the [Z =

−1, L = 2] strategy. The initial positions are established at the closing prices on January 31, 1996, and are held

8The CBOE requires that writers of uncovered (i.e. unhedged) puts “deposit/maintain 100% of the option proceeds plus 15% of the
aggregate contract value (current index level) minus the amount by which the option is out-of-the-money, if any, subject to a minimum of
[...] option proceeds plus 10% of the aggregate exercise amount:

min κCBOEE = Pbid(K, S, T ; t) + max (0.10 ·K, 0.15 · S −max(0, S −K)) .
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until the last business day of the following month (February 29, 1996), when the portfolio is rebalanced. At the

inception of the trade the closing level of the S&P 500 index was 636.02, and the implied volatility index (VIX)

was at 12.53%. Together these values pin down a proposal strike price, K(Z) = 613.95, for the option to be

written via (3). We then select an option maturing after the next rebalance date, whose strike is closest from below

to the proposal value, K(Z). In this case, the selected option is the index put with a strike of 610 maturing on

March 16, 1996. The [Z = −1, L = 2] strategy writes the put, bringing in a premium of $2.3750, corresponding

to the option’s bid price at the market close. The required asset capital, κA, for that option is $603.56, and since

the investor deploys a leverage, L = 2, he posts capital of κE = $301.78. The investor’s capital is invested

at the risk-free rate, with the positions held until February 29, 1996. The risk-free rates corresponding to the

trade roll date (29 days) and maturity (45 days) are rf,t+1 = 5.50% and rf,t+τ = 5.43%, respectively, and are

obtained from the OptionMetrics zero-coupon yield curves. On the trade roll date, the option position is closed

by repurchasing the index put at the close-of-business ask price of $1.8750. This generates a profit of $0.50 on

the option and $1.3150 of accrued interest, representing a 60 basis point return on investor capital. Finally, a

new strike proposal value, which reflects the prevailing market parameters is computed, and the entire procedure

repeats.

2.1.2 Comparison to Capital Decimation Partners

Lo (2001) and Lo and Hasanhodzic (2007) examine the returns to bearing “tail risk” using a related, naked

put-writing strategy, employed by a fictitious fund called Capital Decimation Partners (CDP). The strategy in-

volves “shorting out-of-the-money S&P 500 put options on each monthly expiration date for maturities less than

or equal to three months, and with strikes approximately 7% out of the money (Table 2, Panel A).” This strike

selection is comparable to that of a Z = −1.0 strategy, which between 1996-2010 wrote options that were on

average about 7% out-of-the-money. By contrast, given the margin rule applied in the CDP return computations,

the leverage, L, at inception is roughly three and a half times greater than our preferred hedge fund replication

strategy. The CDP strategy is assumed “to post 66% of the CBOE margin requirement as collateral,” where mar-

gin is set equal to 0.15 · S −max(0, S −K)−P . In what follows, we interpret this conservatively to mean that

the strategy posts a collateral that is 66% in excess of the minimum exchange requirement. Abstracting from the

value of the put premium, which is significantly smaller than the other numbers in the computation, and setting

the risk-free interest rate to zero, the strategy leverage given our definition is:

LCDP =
κA
κE
≈ 0.93 · S(

1 + 2
3

)
· (0.15 · S −max(0, S − 0.93 · S))

= 6.975 (5)
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This has led some to conclude that put-writing strategies do not represent a viable alternative to hedge fund

replication, due to difficulties with surviving exchange margin requirements. As we demonstrate, this is not the

case. The strategy that best matches the risk exposure of the aggregate hedge fund universe is comfortably within

exchange margin requirements at inception, and also does not violate those requirements intra-month (unreported

results).

2.2 Evaluating the Match for the Aggregate Index

Our hedge fund index replication procedure calls for applying varying degrees of leverage to strategies which

write equity index puts at four, fixed strike Z-scores, in order to match the in-sample arithmetic mean pre-fee

return of the target index. This procedure sidesteps the well-documented problems with regression analysis in

the presence of return smoothing, and relies on a simple notion of capital equilibrium whereby downside risks

embedded in hedge fund strategies and in derivative markets command similar risk premia. Even though hedge

fund returns may be smoothed (Asness, et al. (2001), Getmansky, et al. (2004)), weakening the contemporaneous

match, the strategies are anticipated to share a common trend due to the underlying risk premia being earned by

both. When applied to the HFRI Fund Weighted Composite over the period from January 1996 to December

2010, this methodology suggests four candidate put writing strategies: [Z = −0.5, L = 1.7], [Z = −1.0, L =

2.0], [Z = −1.5, L = 2.5], and [Z = −2.0, L = 3.6].

To evaluate the quality of our replication procedure, we conduct a variety of statistical tests. The empiri-

cal literature studying the characteristics of hedge fund returns has focused on linear regressions of index (and

individual fund) returns onto replicating portfolios of tradable indices (Fung and Hsieh (2002, 2004), Agarwal

and Naik (2004), Lo and Hasanhodzic (2007)). Consequently, we are interested in how the derivative-based risk

benchmarks introduced in this paper compare with commonly used factor models in characterizing the realized

returns of the aggregate hedge fund universe. In particular, we consider several popular linear factor models,

including the CAPM one-factor model; the Fama-French/Carhart four-factor model; and the Fung-Hsieh nine-

factor model, which was specifically developed to describe the risks of well-diversified hedge fund portfolios

(Fung and Hsieh (2001, 2004)). Five of the Fung-Hsieh factors are based on lookback straddle returns, to mimic

trend-following strategies, whose return characteristics are similar to being long options, or volatility (Merton

(1981)).9

9To facilitate comparisons with the other factor models, we represent each of the factors in the form of equivalent zero-investment
factor mimicking portfolios. Specifically, we make the following adjustments: (a) returns on the S&P 500 and five trend following factors
are computed in excess of the return on the 1-month T-bill (from Ken French’s website); (b) the bond market factor is computed as the
difference between the monthly return of the 10-year Treasury bond return (CRSP, b10ret) and the return on the 1-month T-bill; and (c)
the credit factor is computed as the difference between the total return on the Barclays (Lehman) US Credit Bond Index and the return on
10-year Treasury bond return.
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Table 2 reports results from regressions of hedge fund excess returns onto factor-mimicking portfolio returns,

alongside the corresponding regressions for the four mean-matched put writing portfolios. The regressions use

quarterly data spanning the period from January 1996 to December 2010. The linear factor models all achieve

high explanatory R2, ranging from 68% (CAPM) to 82% (Fama-French/Carhart), suggesting a good overall fit.

Table 2 also indicates that relative to standard linear factor models hedge funds have delivered pre-fee alphas

between 7-10% per year, accounting for 67-97% of the excess return earned by the aggregate hedge fund indices.

Put differently, standard asset pricing factors account for no more than a third of the risk premium earned by

alternatives in the context of the unconditional factor regression.

Table 2 also reports results from regressions of hedge fund excess returns onto the excess returns of the four

mean-matched put writing portfolios and a composite put writing index that is formed as an equally-weighted

portfolio of the four individual derivative-based strategies. Since the put writing strategies are selected to match

the mean in-sample return of the hedge fund index, it is not surprising that the intercepts are statistically indis-

tinguishable from zero, although this is not entirely mechanical since the slope coefficient estimates depart from

one. The put writing portfolios have consistently lower explanatory R2 when compared with the linear factor

models that include an intercept, although R2 values are reasonably large, averaging over 50%. For the put

writing composite index, the intercept is essentially zero and the slope is statistically indistinguishable from one,

producing a p-value of the joint test of 0.99. The last three specifications in the table include the excess return on

the put writing composite index as an additional factor to each of the linear factor models. The coefficient on the

put writing composite index is never statistically reliable in the presence of the other factors.

The results so far suggest that while the put writing portfolios replicate the risks of the hedge fund index

reasonably well on their own, after controlling for other common factors they appear to be statistically unre-

lated, offering no improvement in explanatory power. However, this conclusion is highly sensitive to two key

assumptions of the regression methodology. First, the regression evaluates the quality of the fit on the basis of

a specific criterion – residual variance – which is interesting, but not the only criterion of interest to investors.

We explore other distributional properties of residuals below. Second, the regression matches the mean excess

return of the hedge fund index with a free parameter (intercept) that will not earned by an investor passively repli-

cating the risks. The consequences of requiring a feasible replicating strategy are significant in both statistical

and economic terms. For example, the overall fit suggested by the linear factor model regression is not feasibly

achievable, when the measured intercept is positive. By contrast, the put writing portfolios impose feasibility

before they are evaluated ensuring that the entirety of the fitted return is achievable. To the extent that feasibility

is a desirable feature, we can compute a regression R2 based on feasible residuals, obtained by constraining the
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intercept to zero before computing the fitted values from the linear factor model. For the put writing strategies,

the feasible residuals are simply the difference in excess returns on the hedge fund index and those of the mean-

matched put writing strategies. On this basis, the put writing replicating portfolios deliver R2 values that are

essentially in line with those of the linear factor models. The average feasible R2 of the three linear models is

55%, while that of the non-linear models is 50%.

Figure 2 summarizes the fit of various feasible replicating strategies. The two top panels display the value

of an initial $1 investment in the hedge fund index and each of the feasible fitted linear factor model replicating

portfolios (i.e. excluding the intercept) (left panel) and each of the fitted put writing replicating portfolios (right

panel). The bottom panels plot the time series of drawdowns for each of the replicating models. The linear factor

models produce return series that look highly dissimilar to the HFRI return series. On the other hand, all of the

put writing strategies produce time series that look virtually identical to the aggregate hedge fund index. The top

left panel of Figure 2 shows how the highly significant positive means in the feasible residuals from the linear

factor models (Table 2), translate into large shortfalls in the terminal wealth levels, and that this feature is shared

by all linear models under consideration. By contrast, the put writing strategies match the losses during the fall

of 2008 and the LTCM crisis, the flat performance during the bursting of the Internet bubble, as well as the

strong returns during boom periods. While the put writing strategy fails to explain some of the return variation in

economically benign times like the bull market between 2002 and 2007, it captures the variation in economically

important times remarkably well. Clearly, from the perspective of feasible replicating strategies, the put writing

portfolios dominate those implied by the linear factor models because of the massive average return shortfall of

the linear factor models.

The remaining statistical question is how different are the residuals across the various models based on criteria

other than residual variance, given the residuals have been demeaned. Given the presence of both skewness and

excess kurtosis in the raw hedge fund returns (Table 1), we evaluate the ability of the various replicating models

to produce residuals free of skewness and excess kurtosis. We rely on the Jarque-Bera statistic (JB-statistic)

to test whether the time series of demeaned residuals from the various models exhibit skewness and kurtosis, a

popular test of normality. The JB-statistic has a χ-squared distribution with two degrees of freedom. Due to the

well known deviations in the distribution of the JB-statistic from its asymptotic distribution in finite samples, we

base inference on finite-sample distributions constructed by Monte Carlo. Table 3 reports the JB-statistic and p-

values for the residuals from each of the linear factor models, the four put writing portfolios, and the put writing

composite index. The JB-statistics are consistently higher for the linear factor models than for the put writing

portfolios, rejecting normality at the 2% level for all but the CAPM, which is rejected at the 9% level; and failing
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to reject normality for all put writing specifications.

Table 3 also reports some additional summary statistics of the fitted replicating portfolio returns, including

the estimated CAPM beta, annualized return volatility, the most severe drawdown, along with the root mean

squared error (RMSE) of the deviations between the drawdown time series of the hedge fund index and those of

the replicating strategy. The replicating portfolios implied by the linear factor models all have CAPM betas of

approximately 0.45, and annualized volatilities between 8-9%, which match the HFRI Fund Weighted Composite

well. The worst drawdowns range from -22% to -32%, and generally exceed the maximum drawdowns experi-

enced by the aggregate index of -18.8%. The root mean squared errors of the deviations between the drawdown

time series of the index and the feasible linear replicating strategies are economically large and range from 4.7%

to 7.0%. This confirms the intuition conveyed by the bottom left panel of Figure 2, which illustrates that the

drawdowns of the feasible linear replicating strategies are poorly matched with those of the hedge fund index.

This owes in part to the failure of linear factor models to deliver enough drift to keep pace with the index, thus

slowing down the recovery following adverse shocks (e.g. the bursting of the Internet bubble, the fall of 2008).

By contrast, the put-writing strategies exhibit noticeable cross-sectional variation in their estimated CAPM

betas, which decline monotonically from 0.53 for the [Z = −0.5, L = 1.7] strategy to 0.22 for the [Z =

−2.0, L = 3.6] strategy. Correspondingly, the volatilities and minimum drawdowns of the strategies also de-

cline. Intuitively, strategies applying higher leverage to further out-of-the-money options reallocate losses to

progressively worse states of nature, thus increasing their true economic risk. Linear CAPM betas fail to capture

this feature, instead suggesting a declining required rate of return. We return to this point in Section 3, where

we evaluate investors’ proper cost of capital for allocations to non-linear risk exposures. When compared on

the ability to match the time series of the hedge fund index drawdowns, the Z = {−1,−1.5,−2} strategies are

preferred to the Z = −0.5 strategy; all of the non-linear replicating strategies strongly dominate their linear

counterparts.

The final analysis reported in Table 3 is a joint test of the mean shortfall being zero (regression intercept

for linear factor models equals zero) and the normality of the demeaned residuals. We augment the Jarque-

Bera tests statistic by combining it with the square of the t-statistic for the mean of the of the feasible residuals

(or intercept from the linear factor model regressions). The new test statistic, which we refer to as the JS-

statistic, penalizes the residuals for deviations from normality, as well as, large mean shortfalls in replicating a

desired returns series, both of which are of interest to an investor seeking a feasible replicating strategy. The

JS-statistic (JS = JB + (mean t-stat)2) is asymptotically χ-square distributed with 3 degrees of freedom, since

the JB-statistic has a χ-squared distribution with two degrees of freedom, and the t-statistic of the mean is
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asymptotically Gaussian and independent of the other two moment estimators. Again, we base inference on

finite-sample distributions constructed by Monte Carlo.

The annualized shortfalls of the linear factor models range from 7-10% per annum with t-statistics ranging

from 5.8 to 9.5. The feasible residuals exhibit some skewness and kurtosis, though the Jarque-Bera statistic fails

to reject normality in the case of the CAPM. The JS-statistic, which evaluates the model fit on the basis of nor-

mality and the ability to match mean returns, strongly rejects all linear factor model replicating strategies. Since

the non-linear put writing strategies were selected to match the in-sample mean of the hedge fund index, the (an-

nualized) mean of the feasible residuals is close to zero by construction. The JB-statistics are uniformly smaller

for the put writing models than for the linear models, indicating that all of the considered put writing replicating

portfolios do a good job of removing the skewness and excess kurtosis from the returns of the aggregate hedge

fund index. Finally, the JS-statistic of the joint test of mean zero shortfall and normally distributed residuals does

not reject any of the put writing models.

The evidence suggests that the overall distributional properties of residuals from the two classes of models

are quite similar, with the linear regression models having a slight edge in terms of residual variance, and with the

mean-matched put writing portfolios having a slight edge in terms of being free of skewness and excess kurtosis.

The dominant difference between the two classes of models concerns the shortfall in mean returns coming from

the contribution of passive exposure to capital market risks. One interpretation of these results is that the put

writing strategies capture a dimension of hedge fund risk that the linear factor models do not capture and that

this risk is associated with an economically large risk premium. For example, it is well understood that option

returns reflect the returns to bearing jump and volatility risk (e.g. Carr and Wu (2009), Todorov (2010)), as well

as, compensation for systematic demand imbalances (e.g. Garleanu, et al. (2009), Constantinides, et al. (2012)).

This is consistent with the notion that hedge funds specialize in the bearing of a particular class of non-traditional,

positive net supply risks, that may be highly unappealing to a majority of investors. If the non-traditional risks

of hedge funds are more heavily smoothed than the traditional risks, then regression analysis will be unable to

detect this exposure while controlling for traditional risk factors. Matching on the mean realized return over a

sufficiently long sample period may provide a better method for identifying a feasible risk matched alternative.

We explore the robustness of our results by conducting out-of-sample tests in the next section. Additionally,

we repeat our analysis using the Dow Jones/Credit Suisse Broad Index, which is a value-weighted index designed

to capture the performance of the aggregate hedge fund universe. Given the similarities between the DJ/CS index

and the HFRI index evident in Figure 1, it is perhaps unsurprising that our results are qualitatively unchanged.

Finally, we verify that our results do not depend on our choice of working with pre-fee returns, rather than the
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after-fee returns provided by HFRI and DJ/CS. To maintain consistency with our main analysis, we apply a 2%

flat fee and a 10% incentive fee to the put writing portfolios. Our results continue to hold for both indices.

2.3 Replicating Hedge Fund Strategy Returns Out-of-Sample

The close fit of the put writing replicating strategy indicates that in spite of variation in the popularity of

individual hedge fund strategies and institutional changes in the industry, the underlying economic risk exposure

of hedge funds in the aggregate has remained essentially unchanged over the 15-year sample. At the individual

strategy level, there are many reasons to anticipate that risks change through time. The risk properties of the

investable universe for a specific strategy changes through time (e.g. the mix of cash-financed and stock-financed

deals affects the overall risk properties of merger arbitrage), views about appropriate leverage levels change over

time, and the actual classification of strategies is subject to modification through time.

Despite these potential challenges, we evaluate the performance of our replication methodology out-of-

sample using a cross-section of hedge fund sub-indices. Specifically, we use the first half of the sample (Jan.

1996 - June 2003) to identify candidate replicating strategies for each hedge fund sub-index; linear factor model

replicating portfolios via in-sample regression and put-writing replicating portfolios by matching mean in-sample

returns. We then evaluate the quality of the match using the second half of the data (July 2003 - December 2010).

We split the full cross-section of twenty HFRI and Dow Jones/Credit Suisse hedge fund indices reported in Table

I into two groups: equity-related and non-equity-related. The first group includes the aggregate indices studied

earlier and strategies that are likely to share the short-term downside exposure of the put writing portfolios (Event

Driven, Distressed, Merger Arbitrage, Equity Long/Short, Equity Market Neutral, and Equity Directional). The

second group includes strategies that trade primarily in intermediate or long-term credit, currencies, and com-

modities (Relative Value, Convertible Arbitrage, Corporate, Macro and Managed Futures). We report the results

for the non-equity related strategies for completeness, though economic intuition suggests that these are unlikely

to be well described by the short-dated put writing strategies we focus on in this paper. Many strategies in the

non-equity grouping are exposed to interest rate risk, which we do not model, unlike the Fung-Hsieh specification

which includes two interest rate factors (term and credit spread).10

The evaluation procedure involves producing out-of-sample returns and feasible residuals (differences be-

tween the out-of-sample returns of each sub-index and the returns of the replicating strategies) for each of the

three linear factor models, and the four put-writing strategies. Since there are twenty hedge fund indices and
10Coval, et al. (2009) and Jurek and Stafford (2013) show that long-dated credit exposures of structured and traditional corporate can

be accurately described using portfolios of U.S. Treasuries and 5-year equity index options. Since the dynamics of long-dated volatility
are generally distinct from those of short-dated volatility, the short-dated put-writing strategies we explore are a priori not expected to
capture interest rate or credit risk.

17



seven replicating portfolios we have a total of 140 out-of-sample time series of returns and feasible residuals. To

parsimoniously characterize our out-of-sample results for each index, we collapse the time series of the replicat-

ing returns produced by the three linear models into a single time series by forming an equally-weighted portfolio.

We apply the same weighting scheme to the put writing replicating strategies. This produces two time series of

replicating returns per hedge fund index to be evaluated out-of-sample.11

Tables IV and V report the results of this out-of-sample analysis. Panel A of each table reports the fit of the

linear replicating strategies, and Panel B summarizes the fit of the put writing strategies. Using the out-of-sample

returns, we report the feasibleR2 to characterize the strategies’ ability to explain monthly variation in returns, and

the root mean squared error of the out-of-sample drawdown time series to evaluate the downside risk exposure

match. Finally, we examine the distributional properties of the feasible residuals as in Table III.

Panel A shows that the linear replicating strategies fail to match the out-of-sample mean returns of all twelve

indices, as indicated by the presence of statistically significant mean residuals. The mean shortfalls range from

2.1% (HFRI Equity Hedge: Market Neutral) to 8.8% (HFRI Event Driven: Distressed) and t-statistics between

1.2 and 4.0. Moreover, the linear replicating strategies produce highly non-normal residuals, indicating they have

failed to match the downside risk properties of the hedge fund indices. The Jarque-Bera test rejects the normality

of the the feasible residuals at the 5% level for all but one investment style. Taken together these facts combine to

produce JS-statistics that strongly reject the ability of linear models to replicate the returns and risks of all hedge

fund styles at the 5% level.

Panel B reports the corresponding values for the out-of-sample fit of the put-writing strategies. On average,

the non-linear replicating strategies produce higher out-of-sample feasible R2 and match the drawdown patterns

of the hedge fund indices more closely. The put-writing strategies continue to match the mean returns of the

hedge fund strategies out-of-sample, producing mean feasible residuals that are statistically significant in only

one case (HFRI Equity Hedge - Market Neutral), where they are negative, indicating that the put writing portfolio

outperformed the corresponding hedge fund index. The JB statistics are uniformly smaller for the put writing

replicating portfolios than those of the linear factor model replicating portfolios for each index individually.

Normality of the feasible residuals is not rejected at the 5% level for any hedge fund sub-index within this

grouping. Correspondingly, the JS-statistic never rejects the joint test that the put-writing strategy has matched

the means returns and risks of the hedge fund index at the 5% level.

Figure 3 summarizes these results and provides intuition for the JS-statistic by plotting the pairs of (t-statistic
11Because inferences are similar within each class of model (linear factor models or put writing portfolios), our results are qualitatively

unchanged if we simply select the strategy that provides the best in-sample fit based on various criteria within each model class, and then
use that model to construct out-of-sample replicating returns.
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of the mean feasible residual, JB-statistic) for each strategy/model class, along with the 5% confidence level for

each test statistic. The left panel corresponds to the in-sample estimation period using the first half of the sample,

while the right panel corresponds to the out-of-sample evaluation period based on the second half of the sample.

The out-of-sample plot shows that the put writing model is never rejected on both dimensions across the twelve

strategies considered, and only rejected once for the mean shortfall. On the other hand, the linear factor model

is rejected on both dimensions for ten of the strategies considered. This highlights the robustness of the mean-

matched put writing view of hedge fund risks over the linear factor model regression view. The estimation period,

January 1996 to June 2003, covers a mostly benign economic environment where regression analysis identifies

risk-matched portfolios that result in large unexpected outcomes in the second half of the sample in terms of

skewness and kurtosis when the systematic risks of 2008 are realized. The investor using the mean-matched put

writing portfolios as a benchmark is not surprised.

Finally, Table V reports the out-of-sample fitting results for the non-equity-related hedge fund subindices.

The quality of the fit here is noticeably worse for both linear and non-linear replicating portfolios as evidenced

by the lower feasible R2 and higher root mean squared errors between the drawdown time series of the actual

index and the replicating strategies. The returns of the Macro and Managed Futures categories are particularly

poorly characterized. This is consistent with the summary statistics reported in Table I, which indicate that the

returns of these categories are largely unrelated to the equity market index (low CAPM beta), and are in some

instances, positively skewed. Across the various sub-indices, the linear strategies continue to generate positive

shortfalls, but their significance is now diminished. Overall, the results from Table V suggest that the JS-test has

power to reject the put writing replicating strategies when the match is dissimilar and that even when there is little

reason to expect that the short-dated put writing portfolio represents a reasonable replicating strategy, it does no

worse than the linear factor model replicating strategies.

3 Required Rates of Return for Downside Risks

The evidence presented so far suggests that it is reasonable to view a portfolio of cash and short positions

in short-dated index put options as a feasibly investable alternative to the hedge fund index. In this sample

period, hedge fund investors as a group would have been better off bearing this risk in the put writing replicating

portfolio, given the large fees that they paid for this exposure. The question that remains is whether either of these

strategies have actually covered their proper cost of capital, given they are typically held in such large allocations

relative to their equilibrium wealth share.
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3.1 The Investor’s Cost of Capital

To study investor required rates of return in the context of concentrated portfolios, we rely on the insights of

Merton’s (1987) model of capital market equilibrium with incomplete information. In this framework investors

must become informed about an investment before they allocate capital to it, creating specialization in investing.

This leads some investors to hold highly concentrated portfolios, and causes the investor required rate of return

to depart from that applicable under the fully diversified equilibrium. In this sprit, we assume that the universe

of investors consists of two types: (1) traditional investors who have access to cash and the equity index, but

do not invest in alternatives, and (2) endowment investors who have access to both traditional and alternative

investments. Consistent with the notion that alternative risks account for a small fraction of the aggregate wealth

and are held by a small set of investors in large allocations, we assume that the equity index is priced solely by

traditional investors, while alternatives are priced by endowment investors.

We assemble a static framework that combines power utility (CRRA) preferences with a state-contingent

asset payoff representation originating in Arrow (1964) and Debreu (1959). To specify the joint structure of asset

payoffs, we describe each security’s payoff as a function of the log return, r̃m on the aggregate equity index

(here, the S&P 500).12 For every $1 invested, the state-contingent payoffs of the three assets are as follows: the

risk-free asset pays exp(rf · τ) in all states, the equity index payoff is, by definition, exp(rm), and the payoff

to the hedge fund investment is f(rm). The analysis in Section 2 indicates that the state-contingent payoff to

alternatives can be accurately characterized using simple levered portfolios of index put options justifying the

existence of a suitable payoff representation. To emphasize that the payoff of the replicating portfolio depends on

the initial put premium, as in (2), we write, f(rm, P). Given a realization of the market return, r̃m, the agent’s

utility is given by:

U (r̃m) =
1

1− γ
·
(

(1− ωm − ωa) · exp (rf · τ) + ωm · exp (r̃m) + ωa · f (r̃m, P)
)1−γ

(6)

where, ωm and ωa, are his allocations to the equity market and alternatives, respectively. Finally, to operationalize

the framework we need to specify the investor’s risk aversion, γ, and the distribution of the log market index

return, φ(rm).

We are interested in studying the asset pricing implications of a segmented market equilibrium in which the

investor’s allocation to alternatives, ωa, is pre-specified exogenously to satisfy market clearing. We estimate this
12By specifying the joint distribution of returns using state-contingent payoff functions, we can allow security-level exposures to depend

on the market state non-linearly, generalizing the linear correlation structure implicit in mean-variance analysis. Patton (2004), Harvey,
et al. (2010), and Martellini and Ziemann (2010) emphasize the importance of higher-order moments and the asset return dependence
structure for portfolio selection.
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value based on observed allocations by Ivy League endowments to be between ωa = 35% to 50%. Taking the

alternative allocation, ωa, as given, we solve for the equilibrium equity market allocation and a valuation for the

put option, (ω∗
m, P∗), which jointly satisfy the investor’s two first order conditions with respect to the portfolio

weights. At the constrained equilibrium, the endowment investor’s subjective valuations of the equity index and

the alternative payoff, f (r̃m, P), match their market prices, which have both been normalized to one:

Et [Λ (ω∗
m, ωa, P∗) · exp (r̃m)] = 1 (7)

Et [Λ (ω∗
m, ωa, P∗) · f (r̃m, P∗)] = 1 (8)

where: Λ = exp(−rf · τ) · U ′(·)
Et[U ′(·)] , is the investor’s subjective pricing kernel, and ωa is the allocation to

alternatives, which is determined by the equilibrium supply of this type of risk relative to the aggregate wealth of

endowment investors. The first equation ensures the investor is at his optimal allocation to equities, and therefore

that subsequent required rate of return computations are based on (constrained) optimal portfolios. The second

equation pins down his subjective valuation for the put option embedded in the alternative investment, P∗, and is

used to determine the required rate of return on alternatives via (9). Both of these equations are computed taking

the distribution of equity index returns as exogenous, reflecting the assumption that the endowment investor is

assumed to be a price taker in this market. Once we have solved for the equilibrium value of P∗, the endowment

investor’s required excess rate of return on the alternative investment is:

r∗a (ωa) =
1

τ
· lnEt

[
f (r̃m, P∗)

Et [Λ (ω∗
m, ωa, P∗) · f (r̃m, P∗)]

]
− rf

=
1

τ
· lnEt [f (r̃m, P∗)]− rf (9)

Given our focus on a single-factor payoff representation, we contrast the proper required rate of return, (9),

with the corresponding rate of return based on the linear CAPM rule, β ·λ, where β = Cov[ra, rm]
V ar[rm] is the CAPM β

of the alternative on the equity index and λ is the market risk premium. The CAPM equilibrium logic identifies

the market risk premium, λ, as the rate of return, under which the representative investor is fully invested in the

portfolio of risky assets. Given a risk aversion, γ, for the representative agent and a Gaussian distribution for the

equity index, the equilibrium market risk premium is given by, λ = γ · σ2m.
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3.2 Baseline Model Parameters

The investor’s cost of capital is a function of model parameters describing the distribution of the (log) market

return, investor’s risk tolerance, investor’s allocation to other assets, and the structure of the alternative investment

(e.g. option strike price and leverage). Before turning to a discussion of the comparative statics of the investor’s

cost of capital, we describe the baseline model parameters.

3.2.1 Investor types and risk aversion, γ

We consider two investor types in our analysis and model calibration. The first investor type – the traditional

investor – is assumed to have access to cash (risk-free bonds) and equities, whereas the second investor – the

endowment investor – additionally has access to alternative investments. The investors have a risk aversion,

γ = 3.3, and in the absence of alternatives, are each assumed to hold a portfolio of 40% cash and 60% equities,

corresponding to an allocation commonly used as a benchmark by endowments and pension plans.

3.2.2 Equity index return distribution, φ(rm)

Given our focus on pricing payoffs with non-linear downside risk exposures, we choose a parametrization for

the equity index distribution, which can accommodate the empirical evidence of skewness and kurtosis in index

returns. Specifically, we rely on the normal inverse Gaussian (NIG) distribution, which allows us to flexibly

specify the first four moments (Appendix A). Since required rates of return will be increasing in the severity of

tail outcomes, we conservatively calibrate the distribution to match the properties of historical returns. To the

extent that our sample understates the severity of the possible outcomes, our calibration will produce downward

biased estimates of required rates of return. A similar effect would occur if the tails of the true return distribution

are heavier than implied by the NIG parametrization, e.g. exhibit power law decay (Gabaix (2009)).

We set the annualized volatility, σ, of the distribution to 17.8%, or 0.8 times the average value of the CBOE

VIX index our sample (1996-2010: 22.2%). This scaling is designed to remove the effect of jump and volatility

risk premia embedded in index option prices used to compute the index (e.g. Carr and Wu (2009), Todorov

(2010)), as well as, the effect of demand imbalances (e.g. Garleanu, et al. (2009), Constantinides, et al. (2012)).13

The remaining moments are chosen to roughly match historical features of monthly S&P 500 Z-scores, obtained

by demeaning the time-series of monthly log returns and scaling them by 0.8 of the VIX as of the preceding

month end. Specifically, we target a monthly Z-score skewness, S, of -1, and kurtosis, K, of 7. These parameters
13The scaling parameter was chosen on the basis of a historical regression of monthly realized S&P 500 volatility, computed using

daily returns, onto the value of the VIX index as of the close of the preceding month (1986 to 2010). The slope of this regression is 0.82,
with a standard error of 0.05.
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combine to produce a left-tail “event”once every 5 years that results in a mean monthly Z-score of -3.6. For

comparison, the mean value of the Z-score under the standard normal (Gaussian) distribution, conditional on

being in the left 1/60 percent of the distribution, is -2.5.14

We fix the equilibrium equity risk premium by imposing that a γ̃ = 2 investor is fully invested in the equity

market. In a Gaussian setting, this is equivalent to an optimal equity allocation of 60% for the traditional investor

(γ = 3.3), since the risky asset allocation is inversely related to the coefficient of relative risk aversion. This pins

down the conditional distribution from which we simulate τ -period log index returns:

rm = (rf + λ− kZ(1)) · τ + Z̃τ , Z̃τ ∼ NIG (0, V, S, K) (10)

where V = σ2 · τ is the τ -period variance. The market risk premium, λ = kZ(−γ̃) + kZ(1) − kZ(1 − γ̃), and

the convexity adjustment (Jensen) term kZ(1), depend on the cumulant generating function, kZ(u), of the shock,

Z̃τ , and are given in Appendix A. Under the baseline model parameters, the Gaussian component of the equity

risk premium equals 6.31%, with the higher order cumulants contributing an additional 0.25%. Finally, we set

the risk-free rate, rf , and equity market dividend yield, δ, to their sample averages, which are equal to 3.1% and

1.7%, respectively.

3.2.3 Alternative investment, [Z, L]

The payoff of the alternative investment is represented using a levered, naked put writing portfolio, as in

the empirical analysis in Section 2. Specifically, we assume that the investor places his capital, ωa, in a limited

liability company (LLC) to eliminate the possibility of losing more than his initial contribution. Limited liability

structures are standard in essentially all alternative investments, private equity and hedge funds alike, effectively

converting their payoffs into put spreads. In practice, the cost of establishing this structure is minimal relative to

the assets under management, hence we approximate its cost as zero. Given a leverage of L, the quantity of puts

that can be supported per $1 of investor capital is given by:

q =
L

exp (−rf · τ) ·K(Z)− P(K(Z), τ)
(11)

whereK(Z) is the strike corresponding to a Z-score, Z. The put premium and the agent’s capital grow at the risk

free rate over the life of the trade, and are offset at maturity by any losses on the index puts to produce a terminal
14Based on a preceding month-end VIX value of 22.4%, and our parameterization of the NIG distribution, the -21.6% return of the

S&P 500 index in October 1987 corresponds to a Z-score of -4.7. The probability of observing a monthly return at least as bad as this is
0.2% under the NIG distribution, and 0.0001% under the Gaussian distribution.
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state-contingent payoff:

f (r̃m, P) = max
(

0, exp (rf · τ) · (1 + q · P(K(Z), τ))− q ·max (K(Z)− exp (r̃m) , 0)
)

(12)

The terminal payoff of the alternative depends on the initial put premium, P , and the terminal realization of the

equity index. We substitute this payoff function into the endowment investor’s first order conditions to determine

his shadow valuation of the put option, and therefore, his required rate of return on the alternative investment.

3.3 Comparative Statics

The novel components of the framework as applied to alternative investments are the nonlinear downside

exposure as proxied by the put writing strategy and the large allocation to alternatives among the few who invest

at all. The large allocation relative to the aggregate share of total risks is presumably due to market frictions that

result in market segmentation. Figure 4 explores the consequences of this friction for the endowment investor

as a comparative static in ωa for the optimal portfolio weights and required returns. In the absence of market

frictions these risks can be diffusely held and ωa will be small, whereas if market frictions force high degrees of

specialization then ωa can be quite large. To illustrate the comparative statics we proxy the alternative investment

with the [Z = −1, L = 2] put writing strategy. The top left panel plots the portfolio weights. By construction, the

allocation to alternatives is a 45 degree line. The optimal allocation to the equity index declines monotonically

as market frictions force ωa to be large. The top right panel illustrates the consequences of changing ωa for

required rates of return. By assumption, the endowment investor takes the price of the equity index as given,

so the required return on the equity index remains constant as ωa changes. So too, does the required return on

the alternative investment based on the CAPM implementation (β · γ̃σ2, with β = 0.4), which ignores both

the nonlinearity and the large allocation. The proper required return for the endowment investor is increasing

and convex in ωa. Moreover, even at a tiny allocation to alternatives the proper required return meaningfully

exceeds the CAPM calculation due to the nonlinear risk profile. Another notable feature of this analysis is that

the endowment investors optimal allocation to risky assets (alternatives + equity) is increasing in ωa over the

considered range. The allocation to alternatives is initially removing risk from the endowment investors portfolio

allowing the total allocation to increase from the 60% risky and 40% safe benchmark, which rationalizes observed

endowment portfolio risk-on tilts.

Another interesting comparative static is the sensitivity of the endowment investor’s portfolio and required

rates of return as volatility changes. The bottom panels of Figure 4 explore the same model properties as a func-

tion of volatility, around a fixed equilibrium allocation to alternatives of ωa = 35%. The bottom left panel shows
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that there is a subtle adjustment to the equity index allocation, whereby the endowment investor reduces equity

exposure as volatility increases. The bottom right panel shows that required returns for both the equity index

(determined by the traditional investor) and the alternative investment increase sharply as volatility increases.

Moreover, the proper required return for alternatives increases much more rapidly than implied by the CAPM.

4 Evaluating Downside Risks against a Proper Cost of Capital

Traditional cost of capital computations, based on linear factor models, assume that: (1) an investor’s allo-

cation to the risk being evaluated represents an infinitesimal deviation from their efficient portfolio, and (2) the

payoff structure of the risk can be well-described via its covariances with the factors. In practice, neither of these

assumptions fits the problem of a typical investor in alternatives. First, given the specialized investment expertise

required to evaluate and monitor these investments, it is common for allocations to be large relative to the supply

of these risks, in order to amortize the fixed costs associated with expanding the investment universe to include

alternatives (Merton (1987)). Second, the analysis of feasible replicating residuals in Section 2 demonstrates

that the returns of many hedge fund strategies are matched more closely by the returns of (non-linear) put writing

strategies, than by the returns of replicating portfolios suggested by commonly used linear factor models (CAPM,

Fama-French, Fung-Hsieh). Taken together, these deviations suggest that inferences regarding the investor’s cost

of capital based on standard factor regressions are likely to be biased. Recall, such regressions suggest a cost

of capital ranging between 0-3% per annum (Table II). This section revisits the excess returns to hedge fund

strategies from the perspective of the state-contingent framework assembled in Section 3, which was explicitly

designed to handle large allocations to non-linear risks.

4.1 The Time Series of the Proper Cost of Capital

To evaluate the realized performance of the aggregate hedge fund universe and the equity-related sub-indices

that were well-described by the put writing portfolios, we use the state-contingent payoff model developed in

Section 3 to produce a time series of required rates of return for the endowment investor introduced in the

previous section. The endowment investor without access to alternatives would normally allocate 60% to stocks

and 40% to risk-free securities, but we assume they allocate either 35% or 50% to alternatives to match the

holdings of various Ivy League endowments.

To produce the time series of proper required rates of return for each considered downside risk profile, at each

rebalancing date we supply the model the specific composition of the fitted put writing replicating portfolio for

various hedge fund indices considered in Section 2, along with parameters characterizing the terminal distribution
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of the (log) equity index return. At each point in time, the composition of the put writing replicating portfolio

is pinned down by the option strike, K(Z), and the option price, P(Z), which jointly with L, determine the

quantity of options sold, and the investor’s capital. For parsimony, we hold the skewness and kurtosis of the

market return distribution fixed at their baseline values, and only let the market return volatility, σt, vary through

time, by setting it equal to 0.8 times the prevailing value of the VIX on each rebalancing date. The time series of

market volatility also pins down the time series of the equilibrium market risk premium, λt (Appendix A). For

comparison, we also produce a time series of required rates of return for hedge funds based on the linear CAPM

model by multiplying the βt of the option replicating portfolio (at inception) by the CAPM market risk premium,

γ̃ · σ2t , where γ̃ = 2 is the risk aversion of the “all equity” investor.

Before comparing the model required rates of return to the realized returns of hedge funds and put writing

strategies, we convert the continuously compounded required rates of return, r∗a(ωa), given by (9) and plotted

in Figure 4, into discretely-compounded net returns, and compute the required rate of return given the investor’s

allocation to alternatives, ωa. To obtain the discretely compounded monthly return, we scale the annualized con-

tinuously compounded rate by 1
12 , exponentiate it, and subtract one. We repeat this procedure at each rebalancing

date to produce a monthly time series of average required rates of return for use in performance evaluation.

4.2 Estimates of Hedge Fund Alphas

Panel A of Table 6 reports the annual time series from 1996 through 2010 of various measures of volatility,

as well as the excess realized and required returns for the S&P 500 index, the after-fee HFRI Fund Weighted

Composite, and the pre-fee put-writing replicating portfolio. The returns to put portfolio are computed as an

equal-weighted average of the returns to the four put writing strategies identified in-sample. The table shows

that the simple estimate of volatility (σt = 0.8 · V IXt) corresponds closely to realized volatility year-by-year

and on average. Mean reports the full-sample average with t-statistics reported in square brackets. Over this

period, the stock market index realized, on average, an annualized excess return of 5.1%, while the traditional

investor with no allocation to alternatives required 7.6% per year, given the realized path of volatility over the

sample. As a point of comparison, we also report the CAPM required return for the equity index, r∗m,t = γ̃σ2t ,

which averages 7.2%. The small 40 basis point wedge in required returns for the equity index is created by the

proper accounting for skewness and kurtosis of the assumed equity index distribution. These estimates reflect the

severe consequences of 2008 and 2009, when realized returns were low and realized volatility was high. Over the

more economically benign period of 1996 through 2007, the stock market index average annual excess return is

6.5%, the required excess return for the traditional investor is 6.2%. These computations suggest that our model
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calibration produces sensible required rates of return for traditional investments and that the sample period is not

particularly unusual.

We now turn to an evaluation of the after-fee HFRI Fund Weighted Composite, which has a mean realized

excess return is 6.3%. An endowment investor, proxying this risk with the put writing composite index identified

in Section 2, who allocates 35% to alternatives requires 6.9% for this exposure; and 8.7% with a 50% allocation

to alternatives. Both of these requirements are considerably higher than the CAPM required excess rate of return,

which stands at 3%. The wedge between the model and linear CAPM risk premia reflects the non-linearity of the

downside risk exposure, as well as the concentrated portfolio allocation. This can be seen by setting the alternative

allocation to a tiny amount, which produces an average required excess return of 4.1% over the sample period. In

other words, this calculation isolates the effect of the nonlinearity (1.1% over the CAPM required excess return).

The model risk premium is very volatile, averaging nearly 20% for the endowment investor with a large allocation

in 2008 and 2009, when both the VIX and realized volatility are high.

Panel B of Table 6 reports estimated alphas based on the CAPM and the generalized model required rate of

return for the HFRI Fund Weighted Composite under various assumptions. The annualized CAPM alpha is 3.3%

(t-statistic = 1.7), which is nearly 1% lower than the one reported in Table 1 due to the average of the time varying

CAPM risk premium being somewhat higher than the market risk premium realized in-sample. The endowment

investor with a 35% allocation to alternatives realizes an annualized alpha of -0.6% (t-statistic = -0.3), while

the endowment investor with a 50% alternatives allocation realizes an annualized alpha of -2.5% (t-statistic

= -1.2), neither of which are statistically distinguishable from zero. These results indicate that sophisticated

endowment investors, who had access to performance comparable to that of the survivorship-biased index, have

barely covered their properly computed cost of capital.

Table 6 also reports the results from these same analyses conducted on the pre-fee put writing replicating

portfolio, which was found to match well the risk properties of the HFRI index, and therefore commands the

same required return. The mean annualized excess return of the put writing portfolio exceeds that of the after-

fee HFRI index by 4% per year, indicating that a passive low cost exposure to downside risk through index

derivatives may be preferable to direct investment in hedge funds. For example, the endowment investor with a

35% allocation to the put writing composite index earns an alpha of 3.3% (t-statistic: 1.8) per year; and with a

50% allocation, earns an alpha of 1.5% (t-statistic: 0.8) per year. We investigate this result in more detail below.

Table 7 reports alpha estimates for the equity-related HFRI sub-indices whose risks were generally well-

explained by the put writing replicating portfolios. As before, we compute alpha estimates relative to the linear

CAPM model, and the generalized model for the endowment investor at two relatively large allocations to al-
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ternative investments. Panel A displays results for the after-fee hedge fund indices and Panel B displays those

for the associated pre-fee put writing portfolios. The endowment investor at either a 35% or 50% allocation to

alternatives realizes consistently small negative, but statistically unreliable alphas across all of the considered

hedge fund strategies over the period 1996-2010, while the endowment investor realized consistently negative,

and again, statistically unreliable alphas, ranging from -3.9% to 1.5%. This suggests that the investors in equity-

related hedge funds have barely earned their cost of capital, despite a finding of generally significantly positive

CAPM alpha estimates, ranging from 1.0% to 4.5%.

Overall, the evidence presented in Tables 6 and 7 is inconsistent with claims that sophisticated endowment

investors earned an “illiquidity premium” for investing in alternatives. To the extent that such a risk premium is

in fact responsible for explaining the realized returns on the HFRI Fund Weighted Composite and the put writing

strategy, this channel has been left unmodelled in our cost of capital computations. Consequently, our cost of

capital estimates are biased downward. Even relative to this impoverished benchmark, we find that investors with

concentrated hedge fund allocations did not earn statistically reliable alphas after fees between 1996 and 2010.

This casts doubt on the so-called “endowment model” which is based on the premise that illiquid investments earn

an additional risk premium that long-term institutional investors will have a comparative advantage in bearing

(Swensen (2000)). Finally, while it is reasonable to expect that the first endowments to allocate to alternatives

have actually earned the returns associated with the published indices, thus covering their cost of capital, more

recent investors in alternatives are likely to have earned something closer to the average fund-of-fund return.

These returns are on average over 300 basis points lower per year, than the reported average aggregate hedge

fund return, suggesting these investors have not covered their cost of capital.

4.3 A New Perspective on the Expensiveness of Index Put Options

The pre-fee put writing returns are consistently about 3.5% to 4% higher than their associated hedge fund

strategy return, which translates into consistently positive alphas for both investor types. The endowment investor

with a 35% allocation to the put writing composite (equal-weighted average of the four strategies identified in

sample) generally realizes statistically significant alphas from the put writing portfolios, while the endowment

investor with a 50% allocation generally realized alphas that are statistically indistinguishable from zero. These

findings contrast with much of the existing literature, which documents high negative (positive) risk-adjusted

returns to buying (selling) index options (e.g. Coval and Shumway (2001), Bakshi and Kapadia (2003), Bon-

darenko (2003), Frazzini and Pedersen (2011), Constantinides, et al. (2012)).15 The conclusion of index put
15Coval and Shumway (2001) report that zero-beta, at-the-money straddle positions produce average losses of approximately 3% per

week. Bakshi and Kapadia (2003) conclude in favor of a negative volatility risk premium by examining delta-hedged options returns.
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options being highly expensive implicitly assumes that an investor who is short these portfolios would earn the

negative of the long portfolio returns. This is far from the reality, as an investor with a short position would be

required to post sufficient margin to initiate the position and maintain sufficient margin to survive the sample

paths realized ex post in the data (Santa-Clara and Saretto (2009)).

The annualized alphas we report are an order of magnitude lower than reported in previous papers. This

difference is due to: (1) incorporating margin requirements, as emphasized by Santa-Clara and Saretto (2009);

and (2) a cost of capital computation that explicitly accounts for the non-linearity of the payoff profiles and in-

vestor portfolio concentration. Importantly, the large margin requirements for short positions in index put options

effectively make these positive net supply assets; the supplier of these payoffs has to allocate considerably more

capital to this activity than that implied in the frictionless models of Black-Scholes/Merton (1973). Moreover,

this is a risk that is not well distributed throughout the economy, as the suppliers of these securities are typically

highly specialized in bearing this risk. The same channel highlighted in our paper – concentrated portfolios

require additional risk premium above the frictionless model, especially when a nonlinear downside exposure

is present – manifests itself here. From the perspective of the frictionless model, both alternative investments

and index put options seem expensive, but much less so from the perspective of specialized investors (see also,

Garleanu, Pedersen, and Poteshman (2009)). These two frictionless model anomalies are fairly consistent with

one another after accounting for these two notable features.

Finally, it is important to recall that these calculations rely upon a specific distributional assumption about the

underlying stock market index, which is roughly consistent with the historical experience. A slightly worse left

tail will have a meaningful effect on the required returns for these portfolios, given their nonlinear risk profiles

and the large allocation sizes.

5 Conclusion

This paper argues that the risks borne by hedge fund investors are likely to be positive net supply risks

that are unappealing to average investors, such that they may earn a premium relative to traditional assets. A

distinguishing feature of many of these risks is that their payoff profiles have a distinct possibility of being non-

linear with respect to a broad portfolio of traditional assets. These non-linearities can arise either directly from

the underlying economic risk exposure (e.g. credit risk, merger arbitrage), or through the institutional structure

through which they are borne (e.g. funding liquidity). Our analysis focuses attention on investors with potentially

Frazzini and Pedersen (2011) report mean monthly delta-hedged excess returns between -9.5% (at-the-money) and -30% (deep out-of-
the-money) for one-month index put options.
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large allocations to such non-linear risk exposures, who may only be allowed to rebalance infrequently. This setup

is common in practice, but infrequently examined in the literature, which has placed emphasis on continuous

trading and/or assets whose risks can be well described by their covariance with each other over the rebalancing

horizon.

We begin by documenting that simple put writing strategies can be used to match both the risks and pre-

fee returns of the aggregate hedge fund universe, as well as, many equity-related hedge fund sub-indices. This

contrasts starkly with replicating strategies suggested by linear factor models (CAPM, Fama-French/Carhart,

Fung-Hsieh), which deliver high R2, but consistently fail to match the mean rate of return of a hedge fund

indices. Our non-linear replicating strategies dominate linear replicating portfolio both in-sample and out-of-

sample. Along the way, we introduce a novel test statistic, which can be used to evaluate the ability of a feasible

replicating strategy to match the returns and higher-order moments of the target return series.

We then exploit the transparency of the state-contingent payoffs of the risk-matched put writing portfolios to

develop estimates of the cost of capital for allocations to alternatives with downside risks. The model required

rates of return vary as a function of investor preferences and allocations, the non-linearity of the portfolio (option

strike price and leverage), and the properties of the underlying equity market return distribution (volatility and

tail risks). One of the attractive features of this simple generalized framework is that it conceptually requires no

information beyond the traditional analysis, although in practice it will require more sophisticated judgment over

the state-contingent risk profile of alternative investments.

An accurate assessment of the cost of capital is fundamental to the efficient allocation of capital throughout

the economy. Investment managers should select risks that are expected to deliver returns at least as large as

those required by their capital providers. The investors in alternatives should require returns for each investment

that compensate them for the marginal contribution of risk to their overall portfolio. In the case of investments

with downside exposure, the magnitude of these required returns is large relative to those implied by linear risk

models. As the allocation to downside risks gets large, the marginal contribution of risk to the overall portfolio

expands quickly, requiring further compensation. In practice, investors frequently seem surprised by increases in

return correlations between alternatives and traditional assets (or between alternatives themselves) as economic

conditions deteriorate, suggesting they may not fully appreciate their portfolio-level downside risk exposure.

This ex post surprise likely coincides with meaningful ex ante errors in estimates of required rates of return,

and therefore inappropriate capital allocations. The calibrations in this paper suggest that despite the seemingly

appealing return history of alternative investments, many investors have not covered their cost of capital.
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A Asset Pricing with NIG Distributions

The normal inverse Gaussian (NIG) distribution is characterized by four parameters, (a, b, c, d). The first two parameters
control the tail heavyness and asymmetry, and the second two – the location and scale of the distribution. The density of the
NIG distribution is given by:

f(x; a, b, c, d) =
a · d ·K1

(
a ·
√
d2 + (x− c)2

)
π ·
√
d2 + (x− c)2

· exp
(
d · η + b · (x− c)

)
(A.1)

whereK1 is the modified Bessel function of the third kind with index 1 (Abramowitz and Stegun (1965)) and η =
√
a2 − b2

with 0 ≤ |b| < a). Given the desired set of moments for the NIG distribution – mean (M), variance (V), skewness (S), and
kurtosis (K) – the parameters of the distribution can be obtained from:

a =

√
3 · K − 4 · S2 − 9

V ·
(
K − 5

3 · S2 − 3
)2 (A.2)

b =
S√

V ·
(
K − 5

3 · S2 − 3
) (A.3)

c = M− 3 · S ·
√
V

3 · K − 4 · S2 − 9
(A.4)

d =
3

3
2 ·
√
V ·
(
K − 5

3 · S2 − 3
)

3 · K − 4 · S2 − 9
(A.5)

In order for the distribution to be well-defined we need, K > 3 + 5
3 · S

2. The NIG-distribution has closed-form expressions
for its moment-generating and characteristic functions, which are convenient for deriving equilibrium risk premia and option
prices. Specifically, the moment generating function is:

E [exp(u · x)] = exp

(
c · u+ d ·

(
η −

√
a2 − (b+ u)

2

))
(A.6)

A.1 Pricing Kernel and Risk Premia

Suppose the value of the aggregate wealth portfolio evolves according to:

Wt+τ = Wt · exp
(

(µ− kZ (1)) · τ + Zt+τ

)
(A.7)

where kZ(u) the cumulant generating function of random variable Zt+τ :

kZ(u) =
1

τ
· lnEt [exp (u · Zt+τ )] = c · u+ d ·

(
η −

√
a2 − (b+ u)2

)
(A.8)

If markets are complete, there will exist a unique pricing kernel, Λt+τ , which prices the wealth portfolio, as well as, the
risk-free asset. Assuming the representative agent has CRRA utility with coefficient of relative risk aversion, γ, the pricing
kernel in the economy is an exponential martingale given by:

Λt+τ
Λt

= exp
(
− rf · τ − γ · Zt+τ − kZ (−γ) · τ

)
(A.9)

Now consider assets whose terminal payoff has a linear loading, β, on the aggregate shock , Zt+τ , and an independent
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idiosyncratic shock, Zi,t+τ :

Pt+τ = Pt · exp
(

(µ(β)− kZ(β)− kZi(1)) · τ + β · Zt+τ + Zi,t+τ

)
(A.10)

where µ(β) is the equilibrium rate of return on the asset, and the two k(·) terms compensate for the convexity of the

systematic and idiosyncratic innovations. For example, when β = 1 and the variance of the idiosyncratic shocks goes to

zero, the asset converges to a claim on the aggregate wealth portfolio. Assets with β < 1 (β > 1) are concave (convex) with

respect to the aggregate wealth portfolio.
To derive the equilibrium risk premium for such assets, we make use of the equilibrium pricing condition:

Λt · Pt = Et [Λt+τ · Pt+τ ] ⇔ 0 =
1

τ
· lnEt

[
Λt+τ
Λt
· Pt+τ
Pt

]
(A.11)

Substituting the payoff function into the above condition and taking advantage of the independence of the aggregate and
idiosyncratic shocks, yields the following expression for the equilibrium risk premium on an asset with loading β on the
aggregate wealth shock:

µ(β)− rf = kZ (−γ) + kZ (β)− kZ (β − γ) (A.12)

This expression generalizes the standard CAPM risk-premium expression from mean-variance analysis to allow for the
existence of higher moments in the shocks to the aggregate market portfolio. In particular, the risk premium of the equity
index, λ, is given by:

λ = kZ (−γ) + kZ (1)− kZ (1− γ) (A.13)

and is a function of the (instantaneous) moments of the shocks Zt+τ . For a Gaussian-distributed shock, Zt+τ , the cumulant

generating function is given by kZ(u) = 1
τ ·

(σ·
√
τ ·u)

2

2 , such that, (A.12), specializes to:

µ(β)− rf =
σ2

2
·
(
(−γ)2 + β2 − (β − γ)2

)
= β · γ · σ2 = β · (µ(1)− rf ) (A.14)

In our generalized setting, the risk premium on an asset with loading β on the innovations to the market portfolio does

not equal β times the market risk premium, unlike in the standard CAPM. The discrepancy is specifically related to the

existence of higher moments in the shocks to the aggregate market portfolio.
Equilibrium risk premia can also be linked to the moments of the underlying distribution of the shocks to the aggre-

gate portfolio, by taking advantage of an infinite series expansion of the cumulant generating function and the underlying
cumulants of the distribution of Zt+τ :

µ(β)− rf =
1

τ
·
∞∑
n=2

κn · ((−γ)n + βn − (β − γ)n)

n!
(A.15)

Note, that the leading term in the above expression is β · γσ2, consistent with the standard linear CAPM. The consecutive
cumulants, κn, are obtained by evaluating the nth derivative of the cumulant generating function at u = 0. The cumulants
can then be mapped to central moments: κ2 = V , κ3 = S · V 3

2 , and κ4 = K · V2. Using the value for the first four terms,
the equilibrium risk premium is approximately equal to:

µ(β)− rf ≈ 1

τ
·
{
β · γ · V +

β2 · γ − β · γ2

2
· S · V 3

2 +
2 · β3 · γ − 3 · β2 · γ2 + 2 · β · γ3

12
· K · V2

}
(A.16)
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This expression demonstrates the degree to which the agent demands compensation for exposure to higher moments, and

illustrates the degree to which the standard linear CAPM over- or understates the required rate of return for asset with a

given market beta, β.

A.2 The Risk-Neutral Distribution

Suppose the historical (P-measure) distribution of the shocks, Zt+τ , is NIG(a, b, c, d). The risk-neutral distribution,
πQ = πP · Λt+τ

Λt
, can also be shown to be the NIG class, but with perturbed parameters NIG(a, b − γ, c, d). To see this,

substitute the expression for the P-density into the definition of the Q-density to obtain:

πQ =
a · d ·K1

(
a ·
√
d2 + (Zt+τ − c)2

)
π ·
√
d2 + (Zt+τ − c)2

· exp
(
d · η + (b− γ) · (Zt+τ − c)− γ · c− kZ (−γ) · τ

)
(A.17)

where η =
√
a2 − b2. Making use of the expression for the cumulant generating function of the NIG distribution the above

formula can be rearranged to yield:

πQ =
a · d ·K1

(
a ·
√
d2 + (Zt+τ − c)2

)
π ·
√
d2 + (Zt+τ − c)2

· exp
(
d · η̃ + b̃ · (Zt+τ − c)

)
(A.18)

where we have introduced the perturbed parameters, b̃ = b − γ, and η̃ =
√
a2 − b̃. This verifies that the risk-neutral

(Q-measure) distribution is also an NIG distribution, but with shifted parameters, (a, b̃, c, d). The ratio of the historical
volatility, σP, to the risk-neutral volatility, σQ, is related to the NIG distribution parameters through:

σP

σQ =

(
a2 − (b− γ)

2

a2 − b2

) 3
4
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Table I
Pre-fee Hedge Fund Performance

This table reports the performance of investments in risk-free bills, public equities and hedge funds between January 1996 and
December 2010. T-bill is the return on the one-month U.S. Treasury T-bill obtained from Ken French’s website. S&P 500
is the total return on the S&P 500 index obtained from the CRSP database. The HFRI and DJ/CS series are pre-fee hedge
fund index return series based on data from Hedge Fund Research Inc. and Dow Jones/Credit Suisse, respectively. To compute
pre-fee returns, we treat the observed net-of-fee time series as if it represents the return of a representative fund that is at its high
watermark throughout the sample, and charges a 2% flat fee and a 10% incentive fee, both payable monthly. Before computing
summary statistics, monthly return time series are compounded to the quarterly frequency. Means, volatilities, CAPM alphas
(α̂), and Sharpe Ratios (SR) are reported in annualized terms. Skewness and kurtosis estimates are based on quarterly returns.
JB and pJB report the value of the Jarque-Bera test statistic for normality, and its associated p-value based on a finite sample
distribution obtained by Monte Carlo. CAPM α̂ and β̂ report the intercept (annualized) and slope coefficient from a regression
of the quarterly excess return of each asset onto the quarterly excess return of the market (S&P 500). Minimum Drawdown
measures the magnitude of the largest strategy loss relative to its highest historical value, and is computed using the monthly
return time series. All-in Fee is an estimate of the total annual management fee (flat + incentive) paid by investors in a given
hedge fund strategy, and is equal to the difference between the (annualized) mean pre- and net-of-fee strategy return.

CAPM Minimum All-in
Asset Mean Vol. Skew Kurt. JB pJB SR α̂ β̂ Drawdown Fee
T-bill 3.1% 1.0% -0.24 1.51 19.41 0.00 NaN 0.0% 0.00 0.0% -

S&P 500 8.5% 18.1% -0.38 2.96 1.70 0.30 0.30 0.0% 1.00 -50.2% -
HFRI Fund-Weighted Composite 13.6% 9.8% -0.27 3.74 2.86 0.13 1.07 8.0% 0.45 -18.8% 4.0%

DJ/CS Broad Index 13.6% 9.2% -0.19 5.88 3.98 0.07 1.15 8.6% 0.35 -18.8% 3.9%
HFRI Event Driven 14.7% 9.8% -0.93 4.36 10.08 0.01 1.18 9.2% 0.45 -22.4% 4.0%
DJ/CS Event Driven 14.4% 8.6% -1.79 7.15 20.18 0.00 1.30 9.3% 0.35 -16.5% 3.9%

HFRI ED - Distressed 13.9% 9.9% -1.36 6.65 12.91 0.01 1.08 8.7% 0.39 -25.0% 3.9%
DJ/CS ED - Distressed 14.9% 9.3% -1.60 6.27 18.20 0.00 1.26 9.7% 0.37 -20.1% 3.9%

HFRI ED - Merger Arbitrage 11.3% 4.9% -0.37 3.06 12.03 0.01 1.80 7.3% 0.17 -6.0% 3.4%
DJ/CS ED - Merger Arbitrge 10.2% 5.5% -0.83 4.66 11.06 0.01 1.33 6.1% 0.17 -7.3% 3.3%

HFRI Equity Hedge 15.5% 12.7% 0.15 4.26 1.64 0.31 0.98 9.3% 0.58 -28.1% 4.4%
HFRI EH - Market-neutral 8.8% 4.1% -0.70 4.06 12.85 0.01 1.57 5.3% 0.07 -7.6% 3.1%

HFRI EH - Directional 15.8% 17.1% 0.13 2.96 0.04 0.98 0.74 8.4% 0.81 -28.5% 5.0%
DJ/CS Long/Short Equity 15.4% 12.9% 1.09 7.85 39.15 0.00 0.96 9.5% 0.53 -20.5% 4.4%

HFRI Relative Value 12.2% 6.5% -1.67 8.14 18.09 0.00 1.40 7.8% 0.22 -16.4% 3.5%
HFRI RV - Convertible Arbitrage 12.7% 11.0% -0.27 8.66 19.56 0.00 0.87 7.9% 0.31 -33.7% 3.7%

DJ/CS Convertible Arbitrage 12.5% 10.5% -0.88 6.42 7.69 0.02 0.89 7.9% 0.26 -31.0% 3.8%
HFRI RV - Corporate 9.9% 9.0% -1.32 8.19 15.93 0.01 0.74 5.0% 0.34 -25.2% 3.5%
DJ/CS Fixed Income 8.7% 8.2% -2.56 14.14 66.41 0.00 0.67 4.4% 0.21 -27.4% 3.3%

HFRI Macro 12.6% 6.3% 0.05 3.43 5.15 0.05 1.50 8.7% 0.15 -6.8% 3.7%
DJ/CS Global Macro 17.0% 10.7% -0.33 4.57 4.21 0.07 1.32 13.2% 0.13 -24.4% 4.4%

DJ/CS Managed Futures 12.2% 12.9% 0.56 2.71 1.16 0.45 0.70 10.2% -0.19 -13.0% 4.5%



Table II
Comparison of Derivative-Based and Linear Factor Hedge Fund Replicating Models

This table reports coefficients from quarterly excess return regressions under several risk models over the period January 1996
through December 2010 (N = 60). The dependent variable is the quarterly excess return on the HFRI Fund Weighted Com-
posite, computed as the difference between the quarterly pre-fee HFRI return and the quarterly return from rolling investments
in 1-month T-bills, rf . All independent variables represent zero-investment portfolios, and are obtained by compounding the
corresponding monthly return series. Specification 1 corresponds to a CAPM-style model with a single factor calculated as the
total return on the S&P 500 minus rf . Specification 2 corresponds to the Fama-French (1993) model (RMRF, SMB, HML)
with the addition of a momentum factor (MOM). Specification 3 corresponds to the 9-factor model proposed by Fung-Hsieh
(2004). Specifications 4 through 7 correspond to derivative-based models with a single factor calculated as the quarterly return
of the in-sample mean-matched put-writing strategy [Z,L] less the compounded return from rolling investments in 1-month
T-bills. Specification 8 uses a single factor computed as the equal-weighted excess return on the four put writing strategies.
Specifications 9 thru 11 add the equal-weighted put writing composite to the CAPM, Fama-French/Carhart, and Fung-Hsieh
factor sets. OLS standard errors are reported in parentheses; coefficients significant at the 5% level are reported in bold. Adj.
R2 is the adjusted R2 measure of the goodness-of-fit of the linear regression. Adj. R2 [feasible] is the goodness-of-fit based
on feasible residuals, which are defined as the difference in the returns between the hedge fund index and a feasible replicating
portfolio. For models (1)-(3) and (9)-(11), we obtain feasible residuals by differencing the returns of the index with the fitted
value obtained from the regression after setting the intercept to zero. For models (4)-(8), we obtain feasible residuals by dif-
ferencing the returns of the index and the put writing strategy. Finally, we report the p-value of the joint test that the intercept
and slope of a regression of the hedge fund index returns onto the returns of the feasible replicating portfolio are zero and one,
respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Intercept (x100) 2.01 1.74 2.52 0.72 0.14 -0.59 -0.74 -0.06 1.67 1.52 2.24

(0.36) (0.29) (0.42) (0.46) (0.51) (0.59) (0.64) (0.52) (0.57) (0.46) (0.53)
RMRF 0.45 0.42 0.31 0.39 0.39 0.25

(0.04) (0.03) (0.05) (0.08) (0.06) (0.08)
SMB 0.22 0.23

(0.06) (0.06)
HML -0.04 -0.04

(0.04) (0.04)
MOM 0.07 0.08

(0.03) (0.03)
SIZE 0.24 0.25

(0.07) (0.07)
TSY -0.11 -0.13

(0.12) (0.12)
CREDIT 0.19 0.14

(0.16) (0.17)
TF-BD -0.00 -0.00

(0.01) (0.01)
TF-FX 0.01 0.01

(0.01) (0.01)
TF-COM -0.00 -0.00

(0.02) (0.02)
TF-IR -0.02 -0.02

(0.01) (0.01)
TF-STK 0.02 0.03

(0.02) (0.02)
Put Writing 0.71
[Z = −0.5, L = 1.7] (0.08)
Put Writing 0.95
[Z = −1.0, L = 2.0] (0.11)
Put Writing 1.27
[Z = −1.5, L = 2.5] (0.16)
Put Writing 1.29
[Z = −2.0, L = 3.6] (0.17)
Put Writing Composite 1.03 0.16 0.10 0.19
(equal-weighted) (0.12) (0.21) (0.16) (0.21)
Adj. R2 68.4% 82.4% 78.5% 57.5% 55.1% 52.3% 48.0% 56.0% 68.2% 82.2% 78.4%
Adj. R2 [feasible] 50.1% 68.0% 45.3% 47.9% 55.0% 49.8% 45.5% 55.2% 55.1% 71.0% 51.7%
p-value (H0 : α = 0, β = 1) 0.0001 0.0001 0.0001 0.0049 0.8592 0.0151 0.0107 0.9894 0.0001 0.0001 0.0001



Table III
Distributional Properties of Replicating Portfolio Returns and Residuals

This table compares the risk characteristics of feasible replicating portfolios and the distributional properties of the correspond-
ing feasible residuals obtained on the basis of commonly-used factor models (CAPM, Fama-French/Carhart, Fung-Hsieh) and
the non-linear put writing strategies ([Z,L]). For the factor models, the feasible replicating return is defined as the in-sample
fitted regression return after setting the intercept to zero. For the put writing strategies, the feasible replicating return is the
return of a put-writing strategy chosen to match the in-sample mean return of the hedge fund index. Feasible residuals are com-
puted as the difference in the quarterly pre-fee return of the HFRI Fund-Weighted Composite and that of feasible replicating
strategy. The Put Writing Composite is defined as the equal-weighted average of the four put writing strategies. The returns
of the index and the replicating strategies span the period from January 1996 to December 2010. We report the slope from
the regression of the quarterly excess return of the index and the feasible replicating strategies onto the excess return of the
S&P 500 index (CAPM β̂), the annualized volatility of the replicating strategy (Vol.), and the minimum drawdown sustained
by each strategy. To characterize the goodness-of-fit of the drawdown time series, we report the root mean squared error be-
tween the monthly drawdown time series of the HFRI Composite and each of the replicating strategies. Finally, we report the
distributional properties of the feasible residuals. Mean is the annualized mean of the quarterly replicating residuals, and t-stat
is the t-statistic of the test that the mean residual is statistically distinguishable from zero. JB is the value of the Jarque-Bera
test statistic for normality (zero skewness, kurtosis equal to three), and pJB is its associated p-value based on a finite-sample
distribution obtained by Monte Carlo. JS reports the value of a statistic designed to jointly test for mean-zero feasible residuals
and their normality, computed by summing the squared t-statistic of the mean residual and the Jarque-Bera test statistic. pJS is
the p-value of the test statistic based on its finite sample distribution.

Returns Drawdowns Feasible Residuals
CAPM β̂ Vol. Min. RMSE Mean t-stat JB pJB JS pJS

HFRI Fund-Weighted Composite 0.45 9.8% -18.8% 0.0% - - - - - -
CAPM 0.45 8.0% -25.1% 5.5% 8.0% 5.76 3.5 0.09 36.7 0.00

Fama-French/Carhart 4-factor 0.46 8.9% -21.7% 4.7% 7.0% 6.88 16.3 0.01 63.6 0.00
Fung-Hsieh 9-factor 0.45 8.8% -31.7% 7.0% 10.1% 9.46 9.6 0.02 99.1 0.00

Put Writing Composite 0.34 7.4% -21.4% 1.4% 0.1% 0.06 1.9 0.27 1.9 0.52
[Z = −0.5, L = 1.7] 0.53 10.4% -29.1% 2.9% -0.1% -0.07 0.5 0.76 0.5 0.91
[Z = −1.0, L = 2.0] 0.37 7.6% -21.8% 1.5% 0.1% 0.06 1.6 0.34 1.6 0.61
[Z = −1.5, L = 2.5] 0.25 5.6% -18.8% 1.7% 0.4% 0.20 1.1 0.49 1.1 0.73
[Z = −2.0, L = 3.6] 0.22 5.3% -18.5% 1.9% 0.1% 0.03 1.2 0.45 1.2 0.71



Table IV
Out-of-sample Evaluation: Equity strategies

This table compares the out-of-sample goodness-of-fit of feasible replicating strategies based on linear factor models (Panel
A) and put-writing portfolios (Panel B) for equity-related hedge fund subindices. We use the first half of the sample (January
1996-June 2003) to identify three linear replicating strategies via regression, and four non-linear, put writing strategies by
matching the mean in-sample return of each hedge fund subindex. We use the second half of the sample (July 2003-December
2010) to compute out-of-sample returns and feasible residuals (differences between the out-of-sample returns of each subindex
and the returns of the feasible replicating strategies). We evaluate the out-of-sample performance of each subindex relative
to an equal-weighted average of the three linear replicating strategies (Panel A), and an equal-weighted average of the four
put writing strategies (Panel B). R2 reports the adjusted R-squared goodness-of-fit measure computed using the out-of-sample
feasible residuals. RMSEDD reports the root mean squared error between the monthly drawdown time series of each hedge
fund subindex and the replicating strategy. Finally, we report the distributional properties of the feasible residuals. Mean is the
annualized mean of the quarterly replicating residuals, and t-stat is the t-statistic of the test that the mean residual is statistically
distinguishable from zero. JB is the value of the Jarque-Bera test statistic for normality (zero skewness, kurtosis equal to
three), and pJB is its associated p-value based on a finite-sample distribution obtained by Monte Carlo. JS reports the value
of a statistic designed to jointly test for mean-zero feasible residuals and their normality, computed by summing the squared
t-statistic of the mean residual and the Jarque-Bera test statistic. pJS is the p-value of the test statistic based on its finite sample
distribution.

Panel A: Linear Replication
R2 RMSEDD Mean t-stat JB pJB JS pJS

HFRI Fund-Weighted Composite 53.1% 5.2% 7.7% 4.64 98.0 0.00 119.6 0.00
DJ/CS Broad Index 42.8% 4.0% 7.7% 4.10 151.2 0.00 168.0 0.00
HFRI Event Driven 57.0% 2.4% 7.7% 3.96 62.6 0.00 78.3 0.00
DJ/CS Event Driven 28.3% 2.1% 8.4% 4.03 166.3 0.00 182.6 0.00
HFRI ED - Distressed 48.7% 3.9% 8.8% 3.70 34.4 0.00 48.1 0.00
DJ/CS ED - Distressed 33.3% 2.9% 8.0% 3.53 47.6 0.00 60.1 0.00
HFRI ED - Merger Arbitrage -46.4% 2.0% 4.8% 3.13 12.5 0.01 22.3 0.00
DJ/CS ED - Risk Arbitrage -73.5% 1.8% 2.9% 1.48 110.7 0.00 112.9 0.00
HFRI Equity Hedge 57.8% 6.2% 7.3% 3.08 51.6 0.00 61.1 0.00
DJ/CS Long Short Equity 45.4% 8.1% 8.4% 3.73 37.3 0.00 51.2 0.00
HFRI EH - Market Neutral -91.7% 1.8% 2.1% 1.23 191.3 0.00 192.9 0.00
HFRI EH - Directional 55.2% 9.6% 7.0% 2.63 0.2 0.88 7.2 0.05

Panel B: Non-Linear Replication
R2 RMSEDD Mean t-stat JB pJB JS pJS

HFRI Fund-Weighted Composite 71.1% 1.2% -0.1% -0.06 1.1 0.41 1.1 0.70
DJ/CS Broad Index 70.1% 1.2% -0.7% -0.42 0.6 0.70 0.7 0.84
HFRI Event Driven 69.0% 1.5% -0.2% -0.09 0.6 0.67 0.6 0.87
DJ/CS Event Driven 70.2% 1.5% 1.6% 0.97 0.7 0.61 1.7 0.53
HFRI ED - Distressed 63.1% 2.8% 1.8% 0.73 4.5 0.05 5.0 0.11
DJ/CS ED - Distressed 71.4% 1.8% -0.3% -0.17 2.1 0.15 2.2 0.40
HFRI ED - Merger Arbitrage -35.1% 3.5% -1.1% -0.64 1.8 0.20 2.2 0.39
DJ/CS ED - Risk Arbitrage 36.7% 2.1% 0.3% 0.20 0.0 0.98 0.1 1.00
HFRI Equity Hedge 71.5% 2.1% -3.3% -1.56 0.7 0.65 3.1 0.26
DJ/CS Long Short Equity 62.2% 1.8% -1.3% -0.59 0.4 0.82 0.7 0.85
HFRI EH - Market Neutral -30.8% 2.0% -3.1% -2.34 0.3 0.87 5.7 0.09
HFRI EH - Directional 56.2% 4.0% -0.4% -0.15 1.8 0.21 1.8 0.49



Table V
Out-of-sample Evaluation: Non-equity strategies

This table compares the out-of-sample goodness-of-fit of feasible replicating strategies based on linear factor models (Panel A)
and put-writing portfolios (Panel B) for non-equity-related hedge fund subindices. We use the first half of the sample (January
1996-June 2003) to identify three linear replicating strategies via regression, and four non-linear, put-writing strategies by
matching the mean in-sample return of each hedge fund subindex. We use the second half of the sample (July 2003-December
2010) to compute out-of-sample returns and feasible residuals (differences between the out-of-sample returns of each subindex
and the returns of the feasible replicating strategies). We evaluate the out-of-sample performance of each subindex relative
to an equal-weighted average of the three linear replicating strategies (Panel A), and an equal-weighted average of the four
put writing strategies (Panel B). R2 reports the adjusted R-squared goodness-of-fit measure computed using the out-of-sample
feasible residuals. RMSEDD reports the root mean squared error between the monthly drawdown time series of each hedge
fund subindex and the replicating strategy. Finally, we report the distributional properties of the feasible residuals. Mean is the
annualized mean of the quarterly replicating residuals, and t-stat is the t-statistic of the test that the mean residual is statistically
distinguishable from zero. JB is the value of the Jarque-Bera test statistic for normality (zero skewness, kurtosis equal to
three), and pJB is its associated p-value based on a finite-sample distribution obtained by Monte Carlo. JS reports the value
of a statistic designed to jointly test for mean-zero feasible residuals and their normality, computed by summing the squared
t-statistic of the mean residual and the Jarque-Bera test statistic. pJS is the p-value of the test statistic based on its finite sample
distribution.

Panel A: Linear Replication
R2 RMSEDD Mean t-stat JB pJB JS pJS

HFRI Relative Value 2.8% 3.2% 6.5% 2.57 13.6 0.01 20.2 0.00
HFRI RV - Convert Arb 9.3% 8.1% 6.9% 1.38 5.0 0.04 6.9 0.06
DJ/CS Convert Arb 6.9% 8.0% 5.9% 1.31 6.5 0.03 8.2 0.04
HFRI RV - Corporate 43.7% 4.9% 5.9% 2.14 20.7 0.00 25.3 0.00
DJ/CS Fixed Income 0.4% 7.4% 4.9% 1.30 43.3 0.00 45.0 0.00
HFRI Macro -57.3% 4.1% 8.6% 4.37 4.0 0.06 23.1 0.00
DJ/CS Global Macro -84.4% 2.5% 8.8% 3.13 35.2 0.00 45.0 0.00
DJ/CS Managed Futures -42.7% 8.1% 12.3% 2.43 1.5 0.27 7.4 0.05

Panel B: Non-Linear Replication
R2 RMSEDD Mean t-stat JB pJB JS pJS

HFRI Relative Value 63.9% 1.3% -0.1% -0.06 0.2 0.91 0.2 0.98
HFRI RV - Convert Arb 48.5% 3.6% -2.2% -0.57 7.7 0.02 8.0 0.04
DJ/CS Convert Arb 51.4% 3.3% -3.4% -1.03 0.5 0.76 1.5 0.57
HFRI RV - Corporate 33.0% 5.1% 3.0% 0.95 16.3 0.00 17.2 0.01
DJ/CS Fixed Income 36.0% 5.6% -0.5% -0.15 37.5 0.00 37.5 0.00
HFRI Macro -39.5% 4.6% 0.5% 0.22 7.7 0.02 7.8 0.04
DJ/CS Global Macro -77.4% 5.2% -2.4% -0.76 1.7 0.23 2.3 0.39
DJ/CS Managed Futures -19.4% 5.6% 0.8% 0.16 1.1 0.43 1.1 0.71



Table VI
Risk-Adjusted Returns of the HFRI Composite (1996-2010)

Panel A of this table compares the realized excess rates of return for S&P 500 index, the HFRI Fund-Weighted Composite
index and put writing, with ex ante required risk premia. The returns of the HFRI Fund-Weighted Composite are reported after
fees. The returns of the put writing strategy are computed as the equal-weighted average of four put writing strategies matching
the mean HFRI index return in the first half of the sample. Investor required rates of return are computed at the beginning of
each month in the sample (January 1996 - December 2010) using investor portfolios and an estimate of equity market volatility
(0.8 ·V IXt) based on the CBOE VIX index. Realized volatility is computed using the standard deviation of daily returns within
each month, annualized, and reported as a year-by-year average. The required risk premia are computed based on the linear
CAPM benchmark (βt · γ̃σ2

t ) and the non-linear model introduced in Section 3. The CAPM benchmark is computed using the
risk aversion of an all-equity investor (γ̃ = 2), and the market beta of the put writing portfolio at inception (βt). The model
required rate of return is computed for two investor types: a traditional investor with no allocation to alternatives (ωa = 0), and
an endowment investor with a large allocation to alternatives (ωa = 0.35 or ωa = 0.50). Each investor is assumed to have a
CRRA risk aversion, γ, equal to 3.3, such that – in the absence of alternatives – their optimal portfolio is roughly comprised
of 60% equities and 40% cash. The table reports the sum of monthly excess returns within each year, as well as, the mean
annualized excess return for the full sample (Mean). The t-statistic for the mean excess return is reported in square brackets.
Panel B reports the annualized values of the arithmetic mean monthly (excess) returns, and computes investor alphas as the
difference in the realized and required excess returns with respect to the linear CAPM benchmark and the model implied excess
return for the endowment investor (t-statistics in brackets).

Panel A: Excess returns
S&P 500 Index Alternatives

Realized Required Realized Required
HFRI Put

Volatility CAPM Traditional Composite Writing CAPM Traditional Endowment
Year 0.8 · V IX Realized S&P 500

(
γ̃σ2

t

)
(ωa = 0) (after-fee) (pre-fee)

(
βt · γ̃σ2

t

)
(ωa = 0) (ωa = 0.35) (ωa = 0.50)

1996 13.1% 11.4% 16.5% 3.5% 3.6% 14.4% 10.1% 1.4% 1.8% 3.0% 3.7%
1997 18.4% 17.2% 25.4% 7.0% 7.3% 10.8% 12.2% 2.7% 3.7% 6.3% 8.0%
1998 20.8% 18.6% 23.4% 9.4% 10.0% -1.5% 14.7% 4.0% 5.3% 9.0% 11.4%
1999 19.6% 18.0% 15.7% 7.8% 8.2% 23.3% 19.3% 3.3% 4.3% 7.2% 9.2%
2000 18.5% 21.9% -13.1% 7.1% 7.4% -0.4% 7.3% 2.5% 3.7% 6.3% 8.0%
2001 20.6% 21.0% -14.6% 8.8% 9.2% 1.0% 4.3% 3.4% 4.9% 8.3% 10.6%
2002 20.9% 24.6% -24.0% 9.3% 9.9% -3.0% 2.6% 3.7% 5.1% 8.7% 11.2%
2003 18.1% 16.5% 25.1% 7.0% 7.3% 17.0% 19.6% 2.9% 3.8% 6.5% 8.2%
2004 12.5% 11.0% 9.5% 3.1% 3.2% 7.6% 13.0% 1.3% 1.7% 2.7% 3.4%
2005 10.4% 10.1% 2.4% 2.2% 2.3% 6.1% 8.5% 0.9% 1.1% 1.8% 2.2%
2006 10.1% 9.8% 10.1% 2.1% 2.1% 7.6% 9.7% 0.8% 1.1% 1.7% 2.0%
2007 13.5% 15.1% 1.5% 3.9% 3.9% 5.1% 10.1% 1.7% 2.1% 3.5% 4.4%
2008 24.1% 35.2% -44.0% 14.1% 15.5% -22.1% -10.7% 6.3% 8.9% 14.6% 18.4%
2009 26.7% 25.0% 25.9% 15.2% 16.0% 18.5% 20.3% 6.9% 9.4% 16.1% 20.3%
2010 19.3% 16.8% 16.0% 7.8% 7.9% 9.9% 12.4% 3.7% 4.7% 8.0% 10.0%
Mean 17.8% 18.1% 5.1% 7.2% 7.6% 6.3% 10.2% 3.0% 4.1% 6.9% 8.7%

[1.2] [15.8] [14.9] [3.2] [5.4] [14.5] [13.8] [13.9] [13.9]

Panel B: Investor alphas
HFRI Put

Composite Writing
Realized excess return, R* 6.3% 10.2%

CAPM R* 3.0% 3.0%
alpha 3.3% 7.2%

[1.7] [3.9]
Model R* (endowment, ωa = 0.35) 6.9% 6.9%

alpha -0.6% 3.3%
[-0.3] [1.8]

Model R* (endowment, ωa = 0.50) 8.7% 8.7%
alpha -2.5% 1.5%

[-1.2] [0.8]



Table VII
Risk-Adjusted Returns of Hedge Fund Sub-Indices (1996-2010)

This table reports the investor alphas for equity-related hedge fund strategies (Panel A) and their associated put writing repli-
cating portfolios (Panel B) relative to the linear CAPM benchmark (βt · γ̃σ2

t ) and the model implied required rates of return for
the endowment investor, at two different allocations to alternatives (ωa = 0.35 and ωa = 0.50). For each subindex, the four
mean-matched put writing strategies are identified using the first half of the sample (January 1996-June 2003). We evaluate
performance of each index (Panel A) and the corresponding equal-weighted composite of the four put-writing strategies (Panel
B) using the full sample (January 1996-December 2010). The required rate of return for both strategies is computed on the basis
of the equal-weighted put writing composite. To capture feasible investor returns we use net-of-fee returns for the hedge fund
indices, as reported by HFRI and Dow Jones/Credit Suisse, and pre-fee returns for the put writing strategies. The cost of capital
estimates are based on an estimate of market volatility, σt, given by 0.8 · V IXt). The CAPM benchmark is computed using
the risk aversion of an all-equity investor (γ̃ = 2), and the market beta of the put writing portfolio at inception (βt). Alphas are
computed monthly as the difference in the realized and required excess returns, and are reported in annualized terms along with
their t-statistic.

Panel A: After-Fee Alphas (Hedge Funds)
Endowment Endowment

CAPM t-stat (ωa = 0.35) t-stat (ωa = 0.50) t-stat
HFRI 3.3% 1.7 -0.6% -0.3 -2.5% -1.2
DJCS 3.3% 1.6 -0.6% -0.3 -2.5% -1.1
HFR Event Driven 4.0% 2.1 -0.4% -0.2 -2.6% -1.3
DJCS Event Driven 3.9% 2.3 -0.3% -0.2 -2.3% -1.2
HFR ED - Distressed 3.3% 1.8 1.2% 0.7 -1.0% -0.5
DJCS ED - Distressed 4.5% 2.5 1.5% 0.8 -1.1% -0.6
HFR ED - Merger Arbitrage 2.4% 2.5 -0.3% -0.3 -1.4% -1.3
DJCS ED - Risk Arbitrage 1.7% 1.5 -0.3% -0.3 -1.2% -1.0
HFR Equity Hedge 4.1% 1.6 -0.9% -0.3 -3.3% -1.3
DJCS Long Short Equity 4.1% 1.5 -0.9% -0.3 -3.4% -1.2
HFR EH - Market Neutral 1.0% 1.2 -0.3% -0.3 -0.8% -0.9
HFR EH - Directional 3.7% 1.0 -1.4% -0.4 -3.9% -1.1

Panel B: Pre-Fee Alphas (Put Writing)
Endowment Endowment

CAPM t-stat (ωa = 0.35) t-stat (ωa = 0.50) t-stat
HFRI 7.2% 3.9 3.3% 1.8 1.5% 0.8
DJCS 7.3% 3.9 3.3% 1.8 1.5% 0.8
HFR Event Driven 7.8% 3.8 3.4% 1.7 1.2% 0.6
DJCS Event Driven 7.6% 3.8 3.4% 1.7 1.3% 0.7
HFR ED - Distressed 7.3% 3.9 3.3% 1.7 1.4% 0.7
DJCS ED - Distressed 8.0% 3.8 3.4% 1.6 1.2% 0.5
HFR ED - Merger Arbitrage 5.8% 4.0 3.1% 2.1 2.0% 1.3
DJCS ED - Risk Arbitrage 5.0% 4.0 3.0% 2.4 2.1% 1.7
HFR Equity Hedge 8.4% 3.8 3.4% 1.5 1.0% 0.4
DJCS Long Short Equity 8.4% 3.8 3.4% 1.5 1.0% 0.4
HFR EH - Market Neutral 4.0% 4.2 2.7% 2.8 2.2% 2.2
HFR EH - Directional 8.5% 3.8 3.4% 1.5 0.9% 0.4



Figure 1. Asset Class Performance Comparison. This figure plots the total return indices for two hedge fund indices – the
Hedge Fund Research Inc. (HFRI) Fund Weighted Composite Index, and the Dow Jones Credit Suisse Broad Hedge Fund
Index – the HFRI Fund-of-Funds Composite Index, the S&P 500 Index, and a strategy that rolls over one-month U.S. Treasury
bills over the period from January 1996 to December 2010 (N = 180 months). Hedge fund index returns are reported net of
fees.
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Figure 2. Replicating the Risks and Returns of the HFRI Fund-Weighted Composite In-Sample. The top panels compare
the compounded realized pre-fee returns of a direct investment in the HFRI Fund-Weighted Composite with the returns from
feasible replicating strategies identified in-sample (January 1996-December 2010). The left panel compares the hedge fund
index to portfolios based on linear factor model regressions (CAPM, Fama-French/Carhart, and Fung-Hsieh). The returns to
the feasible linear factor replicating portfolio are obtained by compounding the fitted regression values after setting positive
intercepts to zero. The right panel compares the hedge fund index to the compounded return of feasible put-writing strategies
selected by matching the mean arithmetic return in-sample. Each put writing strategy applies a progressively higher amount
of leverage to options that are written further out-of-the-money. The bottom panels plot the corresponding monthly drawdown
series for the hedge fund index and the feasible replicating strategies.
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Figure 3. Replicating the Risks and Returns of the Hedge Fund Indices Out-of-Sample. This figure summarizes the
goodness-of-fit analysis based on the properties of the feasible residuals for the linear factor models and put writing strategies
replicating the equity-related hedge fund strategies. The left panel summarizes the fit in-sample (January 1996-June 2003), and
the right panel summarizes the fit out-of-sample (July 2003-December 2010). Feasible residuals are computed as the difference
between the pre-fee returns of the hedge fund sub-index and an equal-weighted average of three feasible linear replicating
strategies, and an equal-weighted average of four feasible put writing strategies. The feasible linear factor model replicating
strategies are identified via in-sample regression; the corresponding put writing strategies are identified by matching the mean
in-sample hedge fund index return. The x-axis reports the value of the Jarque-Bera test statistic for the normality of the feasible
residuals; the y-axis reports the value of the t-statistic for the mean of the feasible residuals. A large value for the Jarque-Bera
test statistic indicates the feasible residuals are skewed or heavy-tailed. JS values larger than 80 are set to 80. A positive and
statistically significant value of the t-test indicates the returns of the hedge fund index exceed those of the replicating strategy.
To highlight the quality of the fit we plot the critical value of each test statistic at the 5%-significance level computed on the
basis of their finite-sample distributions.
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Figure 4. Required Rates of Return for Large Allocations to Non-Linear Risk Exposures. This figure illustrates the
comparative statics of the endowment investor’s optimal portfolio composition (left panels) and cost of capital (right panels) as
a function of his allocation to alternatives (top panels) and the level of market volatility (bottom panels). The payoff profile of
the alternative investment is assumed to be described by the [Z = -1, L = 2], put writing strategy. The top left panel illustrates
the investor’s optimal allocation to equities as a function of the share of his portfolio held in alternatives (ωa), and the total
allocation to risky assets (equities and alternatives). The volatility of the equity index is assumed to be fixed at 0.8 times the
sample average of the VIX index (σ = 17.8%). The top right panel plots the model required rate of return on the equity index
and the alternative investment as a function of the alternative allocation, and the risk premium for the alternative investment
based on the linear CAPM benchmark (β · γ̃σ2) with β = 0.4. The bottom left panel plots the optimal portfolio allocation as
a function of the prevailing level of equity market volatility (σ), while holding the allocation to alternatives fixed at 35%. The
bottom right panel plots the corresponding model required rates of return, along the CAPM risk premium for the alternative.
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