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The uncovered interest rate parity (U.I.P.) condition states that expected exchange rate changes should

be exactly offset by interest rate differences across countries, so expected currency excess returns should be

always equal to zero. The U.I.P. condition fails empirically in the short run: a U.S. investor who trades foreign

Treasury bills and does not hedge her currency risk exposure earns predictable dollar excess returns that depend

on ex ante observable currency characteristics, such as the country’s interest rate (Hansen and Hodrick, 1980;

Fama, 1984) and the slope of the yield curve (Ang and Chen, 2010). The profitability of the classic currency

carry trade, which goes long in Treasury bills of high interest rate currencies and short in low interest rate

currencies, is a well-known example (Lustig and Verdelhan, 2007).

Our paper explores the properties of the same investment strategy implemented with long-term bonds, and

compares it to the standard strategy that uses Treasury bills. In particular, we fix the holding period at one

month, we focus on the same set of G10 countries, and we consider the most important predictors of bond and

currency returns: the level and slope of the yield curve. The first strategy we consider goes long the bonds of

high interest rate strategies and short the bonds of low interest rate strategies, whereas the second strategy

goes long the bonds of flat yield curve currencies and short the bonds of steep yield curve currencies. We

jointly refer to those two strategies as the carry trade strategy. It is key to note that the investment horizon

is one-month, as in the classic tests of the U.I.P. condition, not ten years or more as in the tests of the U.I.P

condition over long horizons. We find that, as the maturity of the bonds increases, the average excess return

declines to zero. In other words, whereas the carry trade implemented with Treasury bills is profitable, the

carry trade implemented with long-term bonds is not. Similar results emerge in individual country time-series

predictability tests: as the maturity of the bonds increases, the predictability of the cross-country differences

in dollar bond returns disappears.

The downward-sloping term structure of carry trade risk premia that we uncover is a challenge for the

leading models in international finance. While some recent no-arbitrage models replicate the U.I.P. puzzle,

they fail to replicate the carry trade risk premia at the long end of the yield curve. To illustrate this point,

we simulate the multi-country model of Lustig, Roussanov, and Verdelhan (2011) and show that it implies a

counterfactual flat term structure of currency carry trade risk premia. Therefore, our empirical findings on the

long-term bond returns expressed in the same currency raise the bar for models in international finance and our

paper explains why by deriving a preference-free condition that dynamic asset pricing models need to satisfy.
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In particular, we show that the difference between domestic and foreign long-term bond risk premia, expressed

in domestic currency, is determined by the difference in the volatilities of the permanent components of the

stochastic discount factors (SDFs). Therefore, to obtain zero currency carry trade risk premia at the long end

of the yield curve, the conditional risk in the permanent components needs to be equalized across currencies –

in other words, the shocks to the quantity or price of risk cannot impact marginal utility differences, and hence

exchange rates, in the long run. We refer to this condition as the long-run risk neutrality of exchange rates.

Armed with our preference-free condition, we revisit a large class of dynamic asset pricing models that have

been used to study U.I.P. violations, ranging from the Campbell and Cochrane (1999) external habit model,

the Bansal and Yaron (2004) long run risks (LRR) model, the disaster risk model, and the reduced-form model

of Lustig, Roussanov, and Verdelhan (2011). In each case, we derive the restrictions on the model’s parameters

that are necessary in order to match our empirical findings, sometimes leading to degenerate model solutions.

Our preference-free condition should help design the next generation of models because the downward-

sloping term structure of carry trade risk premia is informative about the kind of risks that drive exchange

rates and bond returns and the properties of SDFs. The finance literature has established that SDFs need

to be highly volatile (see Hansen and Jagannathan, 1991) and that most of the risk needs to be permanent

(see Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009). Moreover, to replicate the failure of U.I.P.

in no-arbitrage models, the SDFs need to be more volatile in countries with currently low interest rates (see

Backus, Foresi, and Telmer, 2001). Finally, to generate profitable currency carry trades, the SDFs need to

be more exposed to global risk in low interest rate countries (see Lustig, Roussanov, and Verdelhan, 2011).

We contribute to this literature by showing that our empirical findings impute a key role to transitory risk in

currency markets, since the permanent SDF components should exhibit the same volatilities. We also derive

a lower bound on the correlation between the domestic and foreign permanent SDF components. The lower

bound depends on the maximum risk premium in the domestic and foreign economies, the domestic and foreign

term premia, as well as the volatility of the permanent component of the exchange rate changes. The large

equity risk premium, the low term premium, and the low volatility of the permanent component of the exchange

rate changes imply a lower bound of at least 0.90. While Brandt, Cochrane, and Santa-Clara (2006) show that

SDFs are highly correlated across countries, we show that this high correlation comes from the permanent SDF

components, which are the key drivers of equity risk premia and the welfare cost of the business cycles (see
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Alvarez and Jermann, 2004).

Finally, our theoretical framework sheds light on the long-run U.I.P condition, which compares foreign and

domestic long-term interest rates to long-term changes in exchange rates. Meredith and Chinn (2005) find

that long-run U.I.P is a potentially valid description of the data. However, empirical tests lack power in finite

samples: intuitively, there are few non-overlapping observations of 10-year windows available so far. We show

that long-run U.I.P. holds on average when exchange rates are not subject to permanent shocks, and thus are

stationary in levels. In the absence of permanent shocks, countries with high long-term interest rates have

stronger currencies (the level of the exchange rate is temporarily high), so their currencies are expected to

depreciate in the long run (see Dornbusch, 1976; Frankel, 1979, for early contributions on the relation between

the level of the exchange rate and interest rates). A similar reasoning applies to Engel’s (2016) puzzling finding

that currencies with high short-term interest rates earn high excess returns (and hence are risky) in the short

run, but these same currencies produce low excess returns (and hence are not risky) in the long run.

Our analysis is subject to two important caveats: we proceed under the assumption that financial markets

are complete and that long-term bond returns can be approximated in practice by 10 and 15-year bond returns.

The first assumption is certainly counterfactual but provides a natural benchmark. We show that imposing the

absence of arbitrage only on Treasury bills generalizes our results to a large class of incomplete market models

that feature constant relative risk-aversion and heteroskedastic consumption growth. The second assumption

is supported by the simulation of the state-of-the-art Joslin, Singleton, and Zhu (2011) term structure model.

Moreover, Martin and Ross (2013) show that abstracting from the martingale component does not come at a

great cost when pricing domestic bonds and that the returns on long-term bonds converge to those of infinite

maturity bond returns at an exponent rate in a Markov environment without a martingale component in the

pricing kernel. Our preference-free condition does not apply to exchange rate models that abandon complete

markets (see, e.g., Gabaix and Maggiori, 2015, and Bacchetta and van Wincoop, 2005, for leading examples).

It remains to be determined whether these models can fit our facts, so we leave this as an open question for

future research.

The rest of the paper is organized as follows. Section 1 rapidly reviews the literature. Section 2 focuses on

the time-series and cross-section of foreign bond risk premia. Section 3 compares recent no-arbitrage models

to the empirical term structure of currency carry trade risk premia. In Section 4, we derive the no-arbitrage,
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preference-free theoretical restriction imposed on bond returns and SDFs. Section 5 links long-term U.I.P. to

exchange rate stationarity. Section 6 uses the previous theoretical results to analyze a large set of international

finance models. Section 7 derives a lower bound on the correlation of the permanents components of SDFs and

proposes a new benchmark to characterize bond returns across countries. In Section 8, we present concluding

remarks. An Online Appendix contains supplementary material and all proofs not presented in the main body

of the paper.

1 Related Literature

Our paper is related to three large strands of the literature: the literature on U.I.P. in the short run and the

long run, the literature on empirical term premia across countries, and the literature that studies the general

properties of SDFs. Our paper builds on the vast literature on the short-run UIP condition and the currency

carry trade (see e.g. Engel, 1996, and Lewis, 2011, for recent surveys). Lustig, Roussanov, and Verdelhan

(2011) focus on accounting for short-run uncovered interest rate parity condition (UIP) deviations and short-

term carry trades respectively. They show that asymmetric exposure to global innovations to the pricing kernel

are key to explaining the global currency carry trade premium at short maturities in a large class of dynamic

term structure models.

Our work shows that these global innovations cannot have long-run effects on investors’ marginal utility. In

other words, if the carry trade risk premium is zero at the long end of the yield curve, then countries cannot

differ in their exposure to permanent risk. Thus, in a large class of no-arbitrage models, carry trade risk premia

at the short end of the yield curve simply compensates investors for bearing temporary shocks to their marginal

utilities of wealth. Turning to long-run U.I.P., we are the first to derive general conditions under which long-run

unconditional UIP holds.

Our focus is on the cross-sectional and time-series relation between the slope of the yield curve, interest

rates, and exchange rates. We study whether investors earn higher returns on foreign bonds from countries

in which the slope of the yield curve is higher than the cross-country average. Prior work, from Campbell

and Shiller (1991) to Bekaert and Hodrick (2001) and Bekaert, Wei, and Xing (2007), focus mostly on the

time series, testing whether investors earn higher returns on foreign bonds from a country in which the slope

of the yield curve is currently higher than average for that country. Our results are consistent with, but not
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identical to the Campbell and Shiller (1991)-type time-series findings. There is no mechanical link between the

time-series evidence and our cross-sectional result on the relative magnitudes of currency and bond risk premia.

Time-series regressions test whether a predictor that is higher than its average implies higher returns, while the

cross-sectional tests show whether a predictor that is higher in one country than in others implies higher returns

in that country. Chinn and Meredith (2004) document some time-series evidence that supports a conditional

version of UIP at longer holding periods, while Boudoukh, Richardson, and Whitelaw (2016) show that past

forward rate differences predict future changes in exchange rates. Some papers study the cross-section of bond

returns: Koijen, Moskowitz, Pedersen, and Vrugt (2016) and Wu (2012) examine the currency-hedged returns

on ‘carry’ portfolios of international bonds, sorted by a proxy for the carry on long-term bonds, but they do

not examine the interaction between currency and term risk premia, the topic of our paper. Ang and Chen

(2010) and Berge, Jordà, and Taylor (2011) have shown that yield curve variables can also be used to forecast

currency excess returns. These authors do not examine the returns on foreign bond portfolios.1

We interpret our empirical findings using a preference-free decomposition of the pricing kernel, building on

recent work in the exchange rate and term structure literatures. On the one hand, at the short end of the

maturity curve, currency risk premia are high when there is less overall risk in foreign countries’ pricing kernels

than at home (Bekaert, 1996, Bansal, 1997, and Backus, Foresi, and Telmer, 2001). On the other hand, at the

long end of the maturity curve, local bond term premia compensate investors mostly for the risk associated

with transitory innovations to the pricing kernel (Bansal and Lehmann, 1997; Hansen and Scheinkman, 2009;

Alvarez and Jermann, 2005; Hansen, 2012; Hansen, Heaton, and Li, 2008; Bakshi and Chabi-Yo, 2012; Backus,

Boyarchenko, and Chernov, 2016). Backus, Gregory, and Zin (1989) offer for one of the earliest analyses of

long run bond yields and forward rates. In this paper, we combine those two insights to derive preference-

free theoretical results under the assumption of complete financial markets. Foreign bond returns allow us to

compare the permanent components of the SDFs, which as Alvarez and Jermann (2005) show, are by far the

main drivers of the SDFs.

1 Dahlquist and Hasseltoft (2013) study international bond risk premia in an affine asset pricing model and find evidence for
local and global risk factors. Jotikasthira, Le, and Lundblad (2015) study the co-movement of foreign bond yields through the
lenses of an affine term structure model. Our paper revisits the empirical evidence on bond returns without committing to a specific
term structure model.
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2 Foreign Bond Returns in the Time-Series and Cross-Section

We first describe the data and the notation, and then turn to our empirical results on the time-series and

cross-sectional properties of foreign government bond returns.

2.1 Data

Our benchmark sample, to which we refer as the G10 sample, consists of a small homogeneous panel of developed

countries with liquid bond markets: Australia, Canada, Germany, Japan, New Zealand, Norway, Sweden,

Switzerland, and the U.K. The domestic country is the United States. For those countries, we calculate the

returns of both coupon and zero-coupon bonds.

Our data on total return bond indices come from Global Financial Data. The dataset includes a 10-year

government bond total return index, as well as a Treasury bill total return index, in U.S. dollars and in local

currency, for each of our target countries. The data are monthly, starting in 1/1951 and ending in 12/2015.

We use the 10-year bond returns as a proxy for long-maturity (theoretically infinity-approaching maturity)

bond returns. While Global Financial Data offers, to the best of our knowledge, the longest time-series of

government bond returns available, the series have two key limitations. First, they pertain to coupon bonds,

while the theory presented in this paper pertains to zero-coupon bonds. Second, they only offer 10-year bond

returns, not the entire term structure of bond returns. To address these issues, we also use zero-coupon bond

prices.

Our zero-coupon bond dataset covers the same benchmark sample of G10 countries, but from at most

1/1975 to 12/2015. We use the entirety of the dataset in Wright (2011) and complement the sample, as needed,

with sovereign zero-coupon curve data sourced from Bloomberg, estimated from government notes and bonds

as well as interest rate swaps of different maturities.2 Yields are available for bond maturities ranging from

three months to 15 years, in three-month increments.

Finally, we collect data on inflation rates and sovereign credit ratings. Inflation rates are calculated using

monthly Consumer Price Index (CPI) data from Global Financial Data, whereas sovereign credit ratings are

2The panel is unbalanced: for each currency, the sample starts with the beginning of the Wright (2011) dataset. The starting
dates for each country are as follows: 2/1987 for Australia, 1/1986 for Canada, 1/1973 for Germany, 1/1985 for Japan, 1/1990 for
New Zealand, 1/1998 for Norway, 12/1992 for Sweden, 1/1988 for Switzerland, 1/1979 for the U.K., and 12/1971 for the U.S. For
New Zealand, the data for maturities above 10 years start in 12/1994.
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from Standard & Poor’s, available over the 7/1989–12/2015 period.3 In order to construct credit rating averages

for portfolios formed before 7/1989, we backfill each country’s credit rating by assuming that the country’s rating

before 7/1989 is equal to its rating at the first available observation.

2.2 Notation

We now introduce our notation for bond prices, exchange rates, and bond and currency returns. In all cases,

foreign variables are denoted as the starred version of their U.S. counterpart.

Bonds P
(k)
t denotes the price at date t of a zero-coupon bond of maturity k, while y

(k)
t denotes its continuously

compounded yield: logP
(k)
t = −ky(k)

t . The one-period holding return on the zero-coupon bond is R
(k)
t+1 =

P
(k−1)
t+1 /P

(k)
t . The log excess return on the domestic zero-coupon bond, denoted rx

(k)
t+1, is equal to

rx
(k)
t+1 = log

[
R

(k)
t+1/R

f
t

]
, (1)

where the risk-free rate is Rft = R
(1)
t+1 = 1/P

(1)
t . Finally, rft denotes the log risk-free rate: rft = logRft = y

(1)
t .

Exchange Rates The nominal spot exchange rate in foreign currency per U.S. dollar is denoted St. Thus,

an increase in St implies an appreciation of the U.S. dollar relative to the foreign currency. The log currency

excess return is given by

rxFXt+1 = log

[
St
St+1

Rf,∗t

Rft

]
= rf,∗t − r

f
t −∆st+1, (2)

and is the log excess return of a strategy in which the investor borrows at the domestic risk-free rate, Rft ,

invests at the foreign risk-free rate, Rf,∗t , and converts the proceeds into U.S. dollars at the end of the period.

Bond Risk Premia The log return on a foreign bond position (expressed in U.S. dollars) in excess of the

domestic (i.e., U.S.) risk-free rate is denoted rx
(k),$
t+1 . It can be expressed as the sum of the bond log excess

3To construct averages of credit ratings, we assign each rating to a number, with a smaller number corresponding to a higher
rating. In particular, a credit rating of AAA corresponds to a numerical value of 1, with each immediately lower rating getting
assigned the immediately higher numerical value: AA+ corresponds to a numerical value of 2 and AA to 3, all the way down to CC-
(22) and SD (23). We also construct rating series adjusted for outlook, as follows: a ‘Negative’ outlook corresponds to an upward
adjustment of 0.5 in the numerical value of the rating, a ‘Watch Negative’ outlook to an upward adjustment of 0.25, a ‘Stable’ or
‘Satisfactory’ outlook to no adjustment, and a ‘Positive’, ‘Strong’ or ‘Very Strong’ outlook to a downward adjustment of 0.5. For
example, a credit rating of BB (coded as 12) receives a numerical value of 12.5 with a ‘Negative’ outlook and a value of 11.5 with
a ‘Positive’ outlook.
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return in local currency plus the log excess return on a long position in foreign currency:

rx
(k),$
t+1 = log

[
R

(k),∗
t+1

Rft

St
St+1

]
= log

[
R

(k),∗
t+1

Rf,∗t

Rf,∗t

Rft

St
St+1

]
= log

[
R

(k),∗
t+1

Rf,∗t

]
+ log

[
Rf,∗t

Rft

St
St+1

]
= rx

(k),∗
t+1 + rxFXt+1. (3)

Taking conditional expectations, the total term premium in dollars consists of a foreign bond risk premium,

Et[rx
(k),∗
t+1 ], plus a currency risk premium, E[rxFXt+1] = rf,∗t − r

f
t − Et[∆st+1].

2.3 Time-Series Predictability of Foreign Bond Returns

To study the properties of the cross-country differences in expected bond excess returns, we first run individual

currency predictability regressions on variables that can be used to predict bond and currency returns. As

noted by Ang and Chen (2010) and Berge, Jordà, and Taylor (2011), the intersection of currency and bond

return predictors reduces to the level and slope of the term structure, so we focus on those two predictive

variables.

We regress the 10-year dollar bond log excess return differential (rx
(10),$
t+1 −rx

(10)
t+1 ) on the short-term interest

rate differential (rf,∗t −r
f
t , Panel A of Table 1) and on the yield curve slope differential ([y

(10,∗)
t −y(1,∗)

t ]− [y
(10)
t −

y
(1)
t ], Panel B of Table 1), focusing on the post-Bretton Woods sample (1975 – 2015). Given that the 10-year

dollar bond log excess return differential (left columns) can be decomposed into the sum of currency log excess

returns (rxFXt+1) and local currency bond log excess return differentials (rx
(10),∗
t+1 − rx

(10)
t+1 ), we also regress each of

those two components on the same predictors (middle and right columns, respectively). By construction, the

sum of the slope coefficients in the middle and right columns equals the slope coefficients in the corresponding

left column. For each individual country regression, we report Newey-West standard errors with two lags. The

panel regressions include country fixed effects and standard errors are calculated using the Driscoll and Kraay

(1998) methodology, which corrects for heteroskedasticity, serial correlation, and cross-equation correlation.

When using interest rate differentials as predictors, there is no consistent evidence in support of predictabil-

ity of 10-year bond return differentials in dollars: indeed, out of nine countries, there is evidence of return

predictability only for Japan. To shed light into the lack of predictability, we consider the decomposition into

currency log returns and local currency bond log excess return differentials. As seen in the table, currency

log excess returns are strongly forecastable by interest rate differentials: as documented in the existing liter-

ature, higher than usual interest rate differentials in a given country pair predict higher than usual currency
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log excess returns. But, while Treasury bill return differentials in U.S. dollars are forecastable, long-term bond

return differentials in U.S. dollars are not. The deterioration of return predictability for long-maturity bonds,

compared to Treasury bills, appears to be due to the offsetting effect of local currency bond returns: higher

than usual interest rate differences in a given country predict lower local currency bond return differences. In

the panel regression, the local bond return slope coefficient is −1.34, largely offsetting the 1.98 slope coefficient

in the currency excess return regression. The net effect on dollar bond returns is only 65 basis points, the slope

coefficient is not statistically significant, and the regression R2 is only 0.14%. Thus, from the perspective of

a U.S. investor, the time variation in the currency excess return is largely offset by the variation in the local

term premium. Note that the local currency log bond excess return differential is highly predictable by the

interest rate differential (right column), simply because the interest rate spread in effect predicts itself, as it is

a component (with a negative sign) of the dependent variable. When we regress the local currency log return

differential on the interest rate differential (not reported), there is no evidence of predictability.

When using yield curve slope differentials as predictors, a similar finding emerges. On the one hand,

currency log excess returns are forecastable by yield curve slope differentials: a steeper than usual slope in

a given country predicts lower than usual currency log excess returns. On the other hand, a slope steeper

than usual in a given country also predicts higher local currency bond excess returns. In the panel regression,

the local bond excess return slope coefficient is 3.96, more than offsetting the −2.02 slope coefficient in the

currency excess return regression. The net effect on dollar bond excess return differences is 194 basis points in

a surprising direction: a steeper slope seems to weakly forecast higher dollar returns for foreign bonds, rather

than lower dollar returns as for foreign Treasury Bills. The slope coefficient is statistically significant, but the

regression R2 is only 0.60%. Thus, from the perspective of a U.S. investor, the time variation in the currency

excess return is more than offset by the variation in the local term premium. Again, the predictability of

local currency bond log excess return differentials (right column) disappears when we attempt to predict local

currency log return differentials (not reported).

2.4 Cross-Sectional Properties of Foreign Bond Returns

After focusing on time-series predictability, we turn now to cross-sectional evidence. We sort countries into

three portfolios on the level of the short-term interest rates or the slope of their yield curves. Portfolios are

9



Table 1: Time-Series Predictability

Bond dollar return difference Currency excess return Bond local currency return diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

β s.e. R2(%) β s.e. R2(%) β s.e. R2(%)

Panel A: Short-Term Interest Rates

Australia -0.15 [1.04] -0.20 1.29∗ [0.66] 0.56 -1.44∗∗ [0.63] 1.51 492

Canada -1.10 [0.71] 0.11 1.22∗∗ [0.53] 0.46 -2.32∗∗∗ [0.45] 3.64 492

Germany 1.52 [1.16] 0.37 2.49∗∗ [0.98] 1.71 -0.97 [0.72] 0.48 492

Japan 2.37∗∗∗ [0.83] 1.13 3.11∗∗∗ [0.67] 3.48 -0.74 [0.54] 0.13 492

New Zealand 0.69 [0.88] -0.03 2.23∗∗∗ [0.53] 3.14 -1.54∗∗ [0.64] 1.62 492

Norway 0.72 [0.66] 0.08 1.74∗∗∗ [0.59] 2.26 -1.02∗∗ [0.49] 0.97 492

Sweden -0.64 [0.86] -0.02 0.89 [0.89] 0.25 -1.53∗∗∗ [0.53] 2.02 492

Switzerland 1.16 [0.79] 0.33 2.45∗∗∗ [0.78] 2.43 -1.29∗∗∗ [0.47] 1.69 492

United Kingdom 1.02 [1.21] 0.04 2.69∗∗∗ [0.91] 2.44 -1.67∗∗ [0.74] 1.39 492

Panel 0.65 [0.49] 0.14 1.98∗∗∗ [0.45] 1.96 -1.34∗∗∗ [0.33] 1.47 4428

Panel B: Yield Curve Slopes

Australia 3.84∗∗ [1.57] 1.54 -1.00 [1.18] -0.02 4.84∗∗∗ [0.91] 7.65 492

Canada 4.04∗∗∗ [0.99] 2.25 -0.72 [0.69] -0.07 4.76∗∗∗ [0.60] 9.09 492

Germany 0.50 [1.68] -0.18 -3.05∗∗ [1.38] 1.15 3.55∗∗∗ [1.10] 4.07 492

Japan -0.32 [1.32] -0.19 -4.18∗∗∗ [1.05] 2.91 3.85∗∗∗ [0.83] 3.96 492

New Zealand 2.94 [1.89] 1.26 -1.60 [1.08] 0.62 4.55∗∗∗ [1.16] 7.41 492

Norway 0.59 [1.02] -0.12 -2.03∗∗ [0.91] 1.33 2.62∗∗∗ [0.66] 3.35 492

Sweden 3.12∗∗∗ [1.17] 2.12 -0.13 [1.14] -0.20 3.25∗∗∗ [0.77] 5.29 492

Switzerland 0.97 [1.17] -0.06 -3.59∗∗∗ [1.29] 1.97 4.55∗∗∗ [0.76] 8.82 492

United Kingdom 1.59 [1.52] 0.17 -3.17∗∗ [1.25] 2.11 4.75∗∗∗ [0.88] 7.95 492

Panel 1.94∗∗ [0.79] 0.60 -2.02∗∗∗ [0.70] 0.98 3.96∗∗∗ [0.50] 6.17 4428

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the

U.S. nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). We use returns on 10-year coupon bonds. The holding period is
one month and returns are sampled monthly. The log returns and the yield curve slope differentials are annualized. The sample period is
1/1975–12/2015. The balanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the
U.K. In individual country regressions, standard errors are obtained with a Newey-West approximation of the spectral density matrix with two
lags. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology with
two lags. One, two, and three stars denote statistical significance at the 10%, 5%, and 1% level, respectively.
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rebalanced every month and those formed at date t only use information available at that date. Portfolio-level

log excess returns are obtained by averaging country-level log excess returns across all countries in the portfolio.

We first describe results obtained with the 10-year bond indices, reported in Table 2, and then turn to the

zero-coupon bonds to study the whole term structure, presented in Figure 1.

2.4.1 Sorting by Interest Rates

We start with the currency portfolios sorted by short-term interest rates. In order to focus on the conditional

carry trade, we use interest rates in deviation from their past 10-year rolling mean as the sorting variable.

Thus, the first (third) portfolio includes the conditionally low (high) interest rate currencies. Over the 1/1975–

12/2015 period, the countries in the third portfolio tend to experience higher inflation rates and lower yield

slopes (Panel A of Table 2, left section). Clearly, the classic uncovered interest rate parity condition fails in

the cross-section: the currencies in the third portfolio only depreciate by 60 basis points per year on average,

not enough to offset the 2.65% interest rate difference. As a result, average currency excess returns increase

from low- to high-interest-rate portfolios, ranging from −0.61% to 2.04% per year over the last 40 years. Thus,

the long-short currency carry trade (invest in Portfolio 3, short Portfolio 1) implemented with Treasury bills

delivers an average annual log excess return of 2.65% and a Sharpe ratio of 0.36, higher than the Sharpe ratio

on the U.S. S&P500 equity index over the same period (Panel B). However, implementing the carry trade with

long-term bonds does not yield a similar performance, as local currency bond premia decrease from low- to

high-interest-rate portfolios, from 3.53% to −0.25%, implying that the 10-year bond carry trade entails a local

currency bond premium of −3.78% (Panel C). Thus, the average log excess return on foreign bonds in U.S.

dollars of the high-interest-rate portfolio is 1.12% lower than the average excess return of the low-interest-rate

portfolio (Panel D); that dollar spread comprises the 2.65% currency risk premium spread and the −3.78% local

term premium spread. Therefore, the long-short currency carry trade implemented with long-term government

bonds delivers a negative average return, in contrast to the equivalent trade using Treasury bills. Notably, the

carry trade dollar return of −1.12% is not statistically significant, suggesting that investors have no reason to

favor the long-term bonds of a particular set of countries on the basis of average returns after converting the

returns into the same currency (here, U.S. dollars).
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Table 2: Cross-sectional Predictability: Bond Portfolios

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 2.90 3.45 4.81 1.91 4.89 3.41 2.87 2.02

s.e. [0.16] [0.19] [0.23] [0.20] [0.23] [0.19] [0.18] [0.19]

Rating Mean 1.45 1.25 1.49 0.04 1.54 1.38 1.28 0.25

s.e. [0.02] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.03]

Rating (adj. for outlook) Mean 1.50 1.37 1.84 0.33 1.84 1.50 1.37 0.47

s.e. [0.03] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.03]

y
(10),∗
t − r∗,ft Mean 1.52 0.92 -0.44 -1.96 -0.81 0.85 1.96 -2.76

Panel B: Currency Excess Returns

−∆st+1 Mean -0.44 0.11 -0.60 -0.16 -0.95 0.38 -0.36 -0.58

rf,∗t − rft Mean -0.17 0.54 2.65 2.81 3.35 0.55 -0.88 4.23

rxFXt+1 Mean -0.61 0.66 2.04 2.65 2.41 0.92 -1.24 3.65

s.e. [1.35] [1.44] [1.36] [1.14] [1.48] [1.38] [1.40] [1.18]

SR -0.07 0.07 0.23 0.36 0.26 0.11 -0.14 0.49

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.53 2.60 -0.25 -3.78 -1.01 2.29 4.61 -5.61

s.e. [0.69] [0.69] [0.73] [0.77] [0.76] [0.69] [0.70] [0.74]

SR 0.80 0.58 -0.05 -0.77 -0.21 0.53 1.00 -1.18

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 2.92 3.26 1.80 -1.12 1.40 3.21 3.36 -1.96

s.e. [1.56] [1.58] [1.57] [1.33] [1.64] [1.57] [1.62] [1.38]

SR 0.29 0.32 0.18 -0.13 0.14 0.33 0.32 -0.22

rx
(10),$
t+1 − rx(10)

t+1 Mean 0.14 0.48 -0.98 -1.12 -1.38 0.43 0.59 -1.96

s.e. [1.64] [1.64] [1.73] [1.33] [1.81] [1.63] [1.75] [1.38]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year
yield and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping
10,000 samples of non-overlapping returns. The table reports the average change in exchange rates (∆s), the average interest rate difference
(rf,∗ − rf ), the average slope of the yield curve (y(10),∗ − r∗,f ), the average inflation rate, the average currency excess return (rxFX), the
average foreign bond excess return on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as
the difference between the average foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For
the excess returns, the table also reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized.
The balanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are
monthly and the sample is 1/1975–12/2015.
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2.4.2 Sorting by Slopes

Similar results emerge when we sort countries into portfolios by the slope of their yield curves. There is

substantial turnover in these portfolios, more so than in the usual interest rate-sorted portfolios. On average,

the flat slope currencies (first portfolio) tend to be high interest rate currencies, while the steep slope currencies

(third portfolio) tend to be low interest rate currencies. As expected, average currency log excess returns decline

from 2.41% per annum on the first portfolio to −1.24% per annum on the third portfolio over the last 40 years

(Panel B). Therefore, a long-short position of investing in flat-yield-curve currencies (Portfolio 1) and shorting

steep-yield-curve currencies (Portfolio 3) delivers a currency excess return of 3.65% per annum and a Sharpe

ratio of 0.49. Our findings confirm those of Ang and Chen (2010): the slope of the yield curve predicts currency

excess returns at the short end of the maturity spectrum. However, those currency premia are offset by term

premia, as local currency bond excess returns and currency excess returns move in opposite directions across

portfolios. In particular, the first portfolio produces negative bond average excess returns of −1.01% per year,

compared to 4.61% on the third portfolio (Panel C), so the slope carry trade generates an average local currency

bond excess return of −5.61% per year. This result is not mechanical: the spread in the slopes is about half of

the spread in local currency excess returns. The corresponding average dollar bond excess returns range from

1.40% to 3.36%, so the slope carry trade implemented with 10-year bonds delivers an average annual dollar

excess return of −1.96% (Panel D), which is not statistically significant.

2.4.3 Looking Across Maturities

The results we discussed previously focus on the 10-year maturity. We now turn to the full maturity spectrum,

using the zero-coupon bond dataset. Our findings are presented graphically in Figure 1, which shows the dollar

log excess returns as a function of the bond maturity, using the same set of funding and investment currencies.

Investing in the short-maturity bills of countries with flat yield curves (mostly high short-term interest rate

countries), while borrowing at the same horizon in countries with steep yield curves (mostly low short-term

interest rate countries) leads to an average dollar excess return of 2.09% per year. This is the slope version

of the standard currency carry trade. However, when we implement the same strategy using longer maturity

bonds instead of short-term bills, the dollar excess return decreases monotonically in bond maturity. At the

long end (15-year maturity), the bond term premium more than offsets the currency premium, so the slope
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carry trade yields a (non-significant) average annual dollar return of −2.18%. Therefore, carry trade strategies

that yield positive average excess returns when implemented with short-maturity bonds yield lower (or even

negative) excess returns when implemented using long-maturity bonds.
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Figure 1: Long-Minus-Short Foreign Bond Risk Premia in U.S. Dollars— The figure shows the dollar log excess returns
as a function of the bond maturities. Dollar excess returns correspond to the holding period returns expressed in U.S. dollars of investment
strategies that go long and short foreign bonds of different countries. The unbalanced panel of countries consists of Australia, Canada, Japan,
Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. At each date t, the countries are sorted by the slope of their yield curves
into three portfolios. The first portfolio contains countries with flat yield curves (mostly high interest rate countries) while the last portfolio
contains countries with steep yield curves (mostly low interest rate countries). The first portfolio correspond to the investment currencies while
the third one corresponds to the funding currencies. The slope of the yield curve is measured by the difference between the 10-year yield and the
3-month interest rate at date t. The holding period is one quarter. The returns are annualized. The shaded areas correspond to one standard
deviation above and below each point estimate. Standard deviations are obtained by bootstrapping 10,000 samples of non-overlapping returns.
Zero-coupon data are monthly, and the sample window is 4/1985–12/2015.

2.5 Robustness Checks

We consider many robustness checks, studying (i) different lengths of the bond holding period, (ii) different

time windows, (iii) different samples of countries, (iv) sorts on non-demeaned interest rate levels, and (v) other
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potential explanations of excess returns. All the results are reported in the Online Appendix. Here, we simply

describe the main findings.

First, our results appear robust to the choice of the bond holding period. Apart from one-month holding

periods, as reported in Table 2, we also consider holding periods of three and twelve months. For those longer

holding periods, the return patterns are similar and the dollar bond term premia are not statistically significant.

Second, our findings appear robust across time windows. In particular, we consider a longer sample,

1/1951-12/2015, and a shorter sample, 7/1989–12/2015, and find that our main result remains: an investor in

short-term Treasury bills enjoys positive returns, while an investor in long-term bonds of the same countries

suffers negative returns. Again, currency and local term premia offset each other, and thus average carry trade

returns are different at the short end and the long end of the term structure.

Third, our results appear robust across several samples of countries.4 For each dataset, we report and

comment in the Online Appendix detailed results over the full time window and the post-Bretton-Woods

sample. The results are very similar to those in our benchmark sample. Introducing more countries adds power

to the experiment, but forces us to consider less liquid and more default-prone bond markets.

Fourth, instead of sorting countries into portfolios on their demeaned nominal interest rates, we sort on

their actual nominal interest rates. The carry trade risk premium is somewhat larger when sorting on interest

rates, as documented by Lustig, Roussanov, and Verdelhan (2011) and Hassan and Mano (2014), as these sorts

capture both the conditional carry trade premium (long in currencies with currently high interest rates) and

the unconditional carry trade premium (long in currencies with high average interest rates). Since our paper

is about the conditional currency carry trade, we focus on the demeaned sorts.

Fifth, it may be the case that the empirical cross-sectional patterns in bond term premia we uncover are

driven by differences in exposure to inflation risk or credit risk: portfolios may have high term premia not

4With coupon bonds, we consider two additional sets of countries: first, a larger sample of 20 developed countries (Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, New Zealand,
Norway, Portugal, Spain, Sweden, Switzerland, and the U.K.), and second, a large sample of 30 developed and emerging countries
(the same as above, plus India, Mexico, Malaysia, the Netherlands, Pakistan, the Philippines, Poland, South Africa, Singapore,
Taiwan, and Thailand). We also construct an extended version of the zero-coupon dataset which, in addition to the countries of the
benchmark sample, includes the following countries: Austria, Belgium, the Czech Republic, Denmark, Finland, France, Hungary,
Indonesia, Ireland, Italy, Malaysia, Mexico, the Netherlands, Poland, Portugal, Singapore, South Africa, and Spain. The data for
the aforementioned extra countries are sourced from Bloomberg. The starting dates for the additional countries are as follows:
12/1994 for Austria, Belgium, Denmark, Finland, France, Ireland, Italy, the Netherlands, Portugal, Singapore, and Spain, 12/2000
for the Czech Republic, 3/2001 for Hungary, 5/2003 for Indonesia, 9/2001 for Malaysia, 8/2003 for Mexico, 12/2000 for Poland,
and 1/1995 for South Africa.
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because the bonds are subject to higher interest rate risk, but because they contain the currencies of countries

with high inflation risk or high likelihood of sovereign debt default. To determine if that is a valid concern,

we calculate average inflation rates and average credit ratings for each portfolio. We report average inflation

rates and credit ratings in Table 2 and in the Online Appendix. For both the long sample (1/1951 – 12/2015)

and the post-Bretton Woods sample (1/1975 – 12/2015), there is a negative correlation between average term

premia and average inflation rates: term premia are higher in low inflation countries. Thus, assuming that

there is a positive association between average inflation rates and exposure to inflation risk, inflation risk does

not account for our findings. This is true not only for our benchmark set of countries, but also for the extended

sets of countries. Similarly, the cross-sectional patterns in term premia we observe empirically are not likely to

be due to sovereign default risk. As seen in Table 2, countries with high average local currency bond premia

have average credit ratings (both unadjusted and adjusted for outlook) that are either lower than, or very

similar to, the ratings of countries with low average local currency bond premia. That finding is robust to

considering different sample periods: it holds both in the long sample period (1/1951 – 12/2015) and in the

7/1989–12/2015 period, during which full ratings are available. Therefore, while it is difficult to definitively

rule out an inflation- or credit-based risk premium explanation, a simple interest rate risk interpretation seems

the most relevant, especially over the last thirty years.

3 The Term Structure of Currency Carry Trade Risk Premia: A Challenge

In this section, we show that the downward sloping term structure of currency carry trade risk premia is a

challenge for existing models. Several two-country models replicate the failure of the U.I.P. condition, but they

cannot replicate the portfolio evidence on carry trade risk premia. In similar models with multiple countries,

investors can diversify away the country-specific exchange rate risk and there are no cross-sectional differences

in carry trade returns across portfolios. To the best of our knowledge, only two models can so far replicate the

portfolio evidence on carry trades: the multi-country long-run risk model of Colacito, Croce, Gavazzoni, and

Ready (2017) and the multi-country reduced-form factor model of Lustig, Roussanov, and Verdelhan (2011).

We focus on the latter because of its flexibility and close forms, and revisit the long-run risk model in Section

6, along with other explanations of the U.I.P. puzzle.
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3.1 The Necessary Condition for Replicating the U.I.P Puzzle

We start with a review of a key necessary condition on the stochastic discount factors, established by Bekaert

(1996) and Bansal (1997) and generalized by Backus, Foresi, and Telmer (2001). To do so, we first introduce

some additional notation.

Pricing Kernels and Stochastic Discount Factors The nominal pricing kernel is denoted by Λt($); it

corresponds to the marginal value of a a currency unit delivered at time t in the state of the world $. The

nominal SDF M is the growth rate of the pricing kernel: Mt+1 = Λt+1/Λt. Therefore, the price of a zero-coupon

bond that promises one currency unit k periods into the future is given by:

P
(k)
t = Et

(
Λt+k
Λt

)
. (4)

SDF Entropy SDFs are volatile, but not necessarily normally distributed. In order to measure the time-

variation in their volatility, it is convenient to use entropy, rather than variance (Backus, Chernov, and Zin,

2014). The conditional entropy Lt of any random variable Xt+1 is defined as:

Lt (Xt+1) = logEt (Xt+1)− Et (logXt+1) . (5)

If Xt+1 is conditionally lognormally distributed, then the conditional entropy is equal to one half of the con-

ditional variance of the log of Xt+1: Lt (Xt+1) = (1/2)vart (logXt+1). If Xt+1 is not conditionally lognormal,

the entropy also depends on the higher moments: Lt(Xt+1) = κ2t/2! + κ3t/3! + κ4t/4! + . . ., where {κit}∞i=2 are

the cumulants of logXt+1.

Exchange Rates When markets are complete, the change in the nominal exchange rate corresponds to the

ratio of the domestic to foreign nominal SDFs:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

. (6)

The no-arbitrage definition of the exchange rate comes directly from the Euler equations of the domestic and

foreign investors, for any asset return R∗ expressed in foreign currency terms: Et[Mt+1R
∗
t+1St/St+1] = 1 and
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Et[M
∗
t+1R

∗
t+1] = 1. When markets are complete, the SDF is unique, and thus the change in the exchange rate

equals the ratio of the two SDFs. When markets are incomplete, there are other candidate exchange rates.

Currency Risk Premia As Bekaert (1996) and Bansal (1997) show, in models with lognormally distributed

SDFs the conditional log currency risk premium Et(rx
FX) equals the half difference between the conditional

variance of the log domestic and foreign SDFs. This result can be generalized to non-Gaussian economies.5

When higher moments matter and markets are complete, the currency risk premium is equal to the difference

between the conditional entropy of two SDFs (Backus, Foresi, and Telmer, 2001):

Et
(
rxFXt+1

)
= rf,∗t − r

f
t − Et(∆st+1) = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
. (7)

According to the U.I.P. condition, expected changes in exchange rates should be equal to the difference

between the home and foreign interest rates and, thus, the currency risk premium should be zero. In the data,

the currency risk premium is as large as the equity risk premium. Any no arbitrage model that addresses the

U.I.P. puzzle must thus satisfy a simple necessary condition: high interest rate countries must exhibit relatively

less volatile SDFs. In the absence of differences in conditional volatility, no arbitrage models are unable to

generate a currency risk premium and the U.I.P. counterfactually holds in the model economy.

3.2 An Example: A Reduced-Form Factor Model

We now turn to a flexible N -country, reduced-form model that can both replicate the deviations from U.I.P. and

generate large currency carry trade returns on currency portfolios. To replicate the portfolio evidence, as Lustig,

Roussanov, and Verdelhan (2011) show, no arbitrage models need to incorporate global shocks to the SDFs

along with country heterogeneity in the exposure to those shocks. Following Lustig, Roussanov, and Verdelhan

(2014), we consider a world with N countries and currencies in a setup inspired by classic term structure

5The literature on disaster risk in currency markets shows that higher order moments are critical for understanding currency
returns. In earlier work, Brunnermeier, Nagel, and Pedersen (2009) show that risk reversals increase with interest rates. Jurek
(2014) provides a comprehensive empirical investigation of hedged carry trade strategies. Gourio, Siemer, and Verdelhan (2013)
study a real business cycle model with disaster risk. Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2013) estimate a no-
arbitrage model with crash risk using a cross-section of currency options. Chernov, Graveline, and Zviadadze (2011) study jump risk
at high frequencies. Gavazzoni, Sambalaibat, and Telmer (2012) show that lognormal models cannot account for the cross-country
differences in carry returns and interest rate volatilities.
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models.6 In the model, the risk prices associated with country-specific shocks depend only on country-specific

factors, but the risk prices of world shocks depend on world and country-specific factors. To describe these risk

prices, the authors introduce a common state variable zwt , shared by all countries, and a country-specific state

variable zit. The country-specific and world state variables follow autoregressive square-root processes:

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1.

Lustig, Roussanov, and Verdelhan (2014) assume that in each country i, the logarithm of the real SDF m̃i

follows a three-factor conditionally Gaussian process:

−m̃i
t+1 = α+ χzit +

√
γzitu

i
t+1 + τzwt +

√
δizwt u

w
t+1 +

√
κzitu

g
t+1,

where uit+1 is a country-specific SDF shock, while uwt+1 and ugt+1 are common to all countries’ SDFs. All three

innovations are i.i.d. Gaussian, with zero mean and unit variance. To be parsimonious, Lustig, Roussanov,

and Verdelhan (2014) limit the heterogeneity in the SDF parameters to the different loadings δi on the world

shock uwt+1; all the other parameters are identical for all countries. Therefore, the model is a restricted version

of the multi-factor dynamic term structure models, and there exist closed form solutions for bond yields and

risk premia.

There are two types of common shocks. The first type, uwt+1, is priced proportionally to country exposure δi,

and since δi is a fixed characteristic of country i, differences in such exposure are permanent. The second type,

ugt+1, is priced proportionally to zit, so heterogeneity with respect to this innovation is transitory: all countries

are equally exposed to this shock on average, but conditional exposures vary over time and depend on country-

specific economic conditions. Finally, the real risk-free rate is r̃f,it = α+
(
χ− 1

2(γ + κ)
)
zit +

(
τ − 1

2δ
i
)
zwt .

Country i’s inflation process is given by πit+1 = π0 + ηwzwt + σπε
i
t+1, where the inflation innovations εit+1

are i.i.d. Gaussian. It follows that the log nominal risk-free rate in country i is given by rf,it = π0 + α +(
χ− 1

2(γ + κ)
)
zit +

(
τ + ηw − 1

2δ
i
)
zwt − 1

2σ
2
π. The nominal bond prices in logs are affine in the state variable z

6In the Online Appendix, we cover a wide range of term structure models, from the seminal Vasicek (1977) model to the classic
Cox, Ingersoll, and Ross (1985) model and to the most recent, multi-factor dynamic term structure models. To save space, we focus
here on their most recent international finance version, illustrated in Lustig, Roussanov, and Verdelhan (2014).
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and zw: p
(n),i
t = −Cn,$,i0 −Cn,$1 zt−Cn,$,i2 zwt , where the loadings (Cn,$,i0 , Cn,$1 , Cn,$,i0 ) are defined in the Appendix.

Condition (7) implies that the foreign currency risk premium is given by:

Et(rx
FX,i
t+1 ) = −1

2
(γ + κ)(zit − zt) +

1

2
(δ − δi)zwt .

Investors obtain high foreign currency risk premia when investing in currencies with relative small exposure to

the two global shocks. That is the source of short-term carry trade risk premia.

3.3 The Model-Implied Term Structure of Currency Carry Trade Risk Premia

Using the benchmark calibration of the Lustig, Roussanov, and Verdelhan (2014) model, we calculate the model-

implied term structure of currency risk premia when implementing the slope carry trade strategy (invest in low

yield slope currencies, short the high yield slope interest rate currencies). This is very similar to investing in

high interest rate countries while borrowing in low interest rate countries. The simulation details are provided

in the Appendix.

Figure 2, obtained with simulated data, is the model counterpart to Figure 1, obtained with actual data. A

clear message emerges: while this model produces U.I.P. deviations (and thus currency risk premia) at the short

end of the yield curve, the model produces a flat term structure of currency carry trade risk premia. We turn

now to a novel necessary condition that future models need to satisfy in order to generate a downward-sloping

term structure.

4 Foreign Long-Term Bond Returns and the Properties of SDFs

In this section, we derive a novel, preference-free necessary condition that no-arbitrage models need to satisfy

in order to reproduce the downward sloping term structure of currency carry trade risk premia. To do so, we

first review a useful decomposition of the pricing kernel into a permanent and a transitory component.
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Figure 2: Simulated Long-Minus-Short Foreign Bond Risk Premia in U.S. Dollars— The figure shows the simulated
average dollar log excess return of the slope carry trade strategy as a function of the bond maturities in the reduced-form model of Lustig,
Roussanov, and Verdelhan (2014). At each date t, currencies are sorted into three portfolios by the slope of their yield curve (measured as the
difference between the 10-year and the three-month yields). The first portfolio contains the currencies of countries with low yield slopes, while
the third portfolio contains the currencies of countries with high yield slope. The slope carry trade strategy invests in the first portfolio and
shorts the third portfolio. The model is simulated at the monthly frequency. The holding period is one month and returns are annualized.

4.1 Pricing Kernel Decomposition

Our results build on the Alvarez and Jermann (2005) decomposition of the pricing kernel Λt into a permanent

component ΛP
t and a transitory component ΛT

t using the price of the long-term bond:

Λt = ΛP
t ΛT

t , where ΛT
t = lim

k→∞

δt+k

P
(k)
t

, (8)
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where the constant δ is chosen to satisfy the following regularity condition: 0 < lim
k→∞

P
(k)
t

δk
< ∞ for all t.7

Alvarez and Jermann (2005) assume that, for each t + 1, there exists a random variable xt+1 with finite

expected value Et(xt+1) such that almost surely Λt+1

δt+1

P
(k)
t+1

δk
≤ xt+1 for all k. Under those regularity conditions,

the infinite-maturity bond return is:

R
(∞)
t+1 = lim

k→∞
R

(k)
t+1 = lim

k→∞
P

(k−1)
t+1 /P

(k)
t =

ΛT
t

ΛT
t+1

. (9)

The permanent component, ΛP
t , is a martingale and is an important part of the pricing kernel: Alvarez and

Jermann (2005) derive a lower bound of its volatility and, given the size of the equity premium relative to the

term premium, conclude that it accounts for most of the SDF volatility.8 Thus, a lot of persistence in the

pricing kernel is needed to jointly deliver a low term premium and a high equity premium.

4.2 Main Preference-Free Result on Long-Term Bond Returns

We now use this SDF decomposition to understand the properties of the dollar returns of long-term bonds.

Recall that the dollar term premium on a foreign bond position, denoted by Et[rx
(k),$
t+1 ], can be expressed as the

sum of foreign term premium in local currency terms, Et[rx
(k),∗
t+1 ], plus a currency risk premium, Et[rx

FX
t+1] =

rf,∗t − r
f
t − Et[∆st+1]. Here, we consider the dollar term premium of an infinite-maturity foreign bond, so we

let k →∞.

Proposition 1. The foreign term premium on the long-term bond in dollars is equal to the domestic term

premium plus the difference between the domestic and foreign entropies of the permanent components of the

stochastic discount factors:

Et[rx
(∞),$
t+1 ] = Et

[
rx

(∞)
t+1

]
+ Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
. (10)

7The SDF representation defined here is subject to important limitations that need to be highlighted. Hansen and Scheinkman
(2009) point out that this decomposition is not unique under the assumptions used in Alvarez and Jermann (2005). The transitory
and permanent components are potentially correlated, which may complicate their interpretation. Despite this limitation, this
representation proves to be particularly useful when analyzing short-horizon returns on longer maturity bonds. We follow the more
general Hansen and Scheinkman (2009) decomposition when studying bond yields. The two methods lead to identical decompositions
for the models that we study in this paper.

8Note that ΛP
t is equal to:

ΛP
t = lim

k→∞

P
(k)
t

δt+k
Λt = lim

k→∞

Et(Λt+k)

δt+k
.

The second regularity condition ensures that the expression above is a martingale.
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In case of an adverse temporary innovation to the foreign pricing kernel, the foreign currency appreciates,

so a domestic position is the foreign long-term zero-coupon bond experiences a capital gain. However, this

capital gain is exactly offset by the capital loss suffered on that bond as a result of the increase in foreign

interest rates. Hence, interest rate exposure completely hedges the temporary component of the currency risk

exposure, and the only source of priced currency risks in the foreign bond position are permanent pricing kernel

innovations. Therefore, in order to have a non-zero bond risk premium at long maturities, conditional entropy

differences in the permanent component of SDFs are required. If the domestic and foreign SDFs have identical

conditional entropy, then high local currency term premia are always associated with low currency risk premia

and vice-versa, so dollar term premia are identical across currencies.

To intuitively link the long-run properties of SDFs to foreign bond returns and exchange rates, let us consider

the simple benchmark of countries represented by a stand-in agents with power utility and i.i.d. consumption

growth rates. In that case, all SDF shocks are permanent (Λt = ΛP
t for all t) and the risk-free rate is constant,

so bonds of different maturities offer the same returns. Foreign bond investments differ from domestic bond

investments only because of the presence of exchange rate risk and, since consumption growth rates are i.i.d,

exchange rates are stationary in changes but not in levels. Finally, carry trade excess returns are the same

at the short end, (see Equation (7)) and at the long end (see Equation (10)) of the yield curve, so the term

structure of currency carry trade risk premia is flat.

Proposition 1 pertains to conditional risk premia and is, thus, relevant for interpreting our empirical time

series predictability results and the average excess returns of currency portfolios sorted by conditioning informa-

tion (the level of the short-term interest rate or the slope of the yield curve). In fact, we can easily characterize

the condition that needs to be satisfied in order for conditional foreign dollar term premia to be identical to

conditional domestic term premia and, therefore, for differences in dollar bond excess returns across countries

to lack predictability.

Condition 1. In order for the conditional dollar term premia on long-maturity bonds to be identical across

countries, the conditional entropy of the permanent SDF component also has to be identical across countries:

Lt

(
ΛP
t+1

ΛP
t

)
= Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
, for all t.

We refer to this condition as long-run risk neutrality. This condition rules out shocks that have permanent
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effects on the quantity or price of risk, because these shocks would change the conditional entropy of the

permanent SDF component, unless those permanent shocks are identical across countries. If this condition

fails, portfolios sorted on conditioning variables produce non-zero currency carry trade risk premia at the long

end of the term structure, as the conditional dollar term premia of long-maturity bonds differ across countries.

There is one obvious way to satisfy this condition: having constant (and identical across countries) entropy of

the permanent SDF component. But equity and returns rule out this case (see Alvarez and Jermann, 2005;

Hansen and Scheinkman, 2009).

To provide some intuition on the long-run risk neutrality condition, we rely on an example from Alvarez

and Jermann (2005), who consider a model with conditionally log-normally distributed pricing kernels driven

by both permanent and transitory shocks.

Example 1. Consider the following pricing kernel (Alvarez and Jermann, 2005):

log ΛP
t+1 = −1

2
σ2
P + log ΛP

t + εPt+1,

log ΛT
t+1 = log βt+1 +

∞∑
i=0

αiε
T
t+1−i,

where α is a square summable sequence, and εP and εT are serially independent and normally distributed random

variables with mean zero, variance σ2
P and σ2

T , respectively, and covariance σTP . A similar decomposition applies

to the foreign pricing kernel.

In this economy, Alvarez and Jermann (2005) show that the domestic term premium is given by the following

expression: Et

[
rx

(∞)
t+1

]
= 1

2σ
2
T + σTP . Only transitory risk is priced in the market for long-maturity bonds:

when marginal utility is transitorily high, interest rates increase because the representative agent wants to

borrow, so long-term bonds suffer a capital loss. On the other hand, permanent shocks to marginal utility do

not affect the prices of long-term bonds at all. Similarly, the foreign term premium, in local currency terms, is

Et

[
rx

(∞),∗
t+1

]
= 1

2 (σ∗T )2 + σ∗TP .

The currency risk premium is the difference in the two countries’ conditional SDF entropy:

Et
[
rxFXt

]
= rf,∗t − r

f
t − Et[∆st+1] =

1

2

(
σ2
T + 2σTP + σ2

P

)
− 1

2

(
(σ∗T )2 + 2σ∗TP + (σ∗P )2

)
.
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As a result, the foreign term premium in dollars, given by Equation (7), is:

Et

[
rx

(∞),$
t+1

]
= Et

[
rx

(∞),∗
t+1

]
+ Et

[
rxFXt

]
=

1

2
σ2
T + σTP +

1

2

(
σ2
P − (σ∗P )2

)
.

Provided that σ2
P = (σ∗P )2, Condition 1 is satisfied, and the foreign term premium in dollars equals the domestic

term premium:

Et

[
rx

(∞),$
t+1

]
=

1

2
σ2
T + σTP = Et

[
rx

(∞)
t+1

]
.

5 Holding-Period Returns on Long-term Bonds vs Long-Horizon U.I.P.

Examining the conditional moments of one-period returns on long-maturity bonds, the focus of our paper, is not

equivalent to studying the moments of long-maturity bond yields in tests of the long-horizon U.I.P. condition.

In this section, we show that U.I.P holds on average over long horizons when exchange rates are stationary in

levels.

5.1 Finite Long-Horizon U.I.P.

The long-horizon U.I.P. condition states that the expected return over k periods on a foreign bond, once

converted into domestic currency, is equal to the expected return on a domestic bond over the same investment

horizon. The per period log risk premium on a long position in foreign currency over k periods consists of the

yield spread minus the per period expected rate of depreciation over those k periods:

Et[rx
FX
t→t+k] = y

(k),∗
t − y(k)

t −
1

k
Et[∆st→t+k]. (11)

The long-horizon U.I.P condition states that this risk premium is zero. As is well-known, this risk premium

is the sum of a term premium and future currency risk premia. To see that, start from the definition of the

one-period currency risk premium: Et
[
∆st→t+1

]
= rf,∗t − r

f
t −Et

[
rxFXt+1

]
. Summing up over k periods leads to:

Et[∆st→t+k] = Et

 k∑
j=1

(
rf,∗t+j−1 − r

f
t+j−1

)− Et
 k∑
j=1

rxFXt+j

 . (12)

25



From Equations (11) and (12), it follows that the log currency risk premium over k periods is given by:

Et[rx
FX
t→t+k] = (y

(k),∗
t − y(k)

t ) +
1

k

k∑
j=1

Et

(
rft+j−1 − r

f,∗
t+j−1

)
+

1

k

k∑
j=1

Et(rx
FX
t+j ). (13)

The first two terms measure the deviations from the expectations hypothesis over the holding period k, whereas

the last term measures the deviations from short-run U.I.P. over the k periods.

We can use a multi-horizon version of Equation (7) to show that the currency risk premium over k periods

depends on conditional SDF entropy:

Et[rx
FX
t→t+k] =

1

k

[
Lt

(
Λt+k
Λt

)
− Lt

(
Λ∗t+k
Λ∗t

)]
. (14)

The expression above states that only differences in k-period conditional SDF entropy give rise to long-run

deviations from U.I.P. Therefore, the risk premium on a multi-period long position in foreign currency depends

on how quickly SDF entropy builds up domestically and abroad over the holding period. To develop some

intuition, we consider a Gaussian example in the Appendix.

5.2 Infinite Horizon U.I.P.

To link long-horizon U.I.P. and exchange rate dynamics, we use again the decomposition of the pricing kernel

proposed by Alvarez and Jermann (2005).

Exchange Rate Decomposition Exchange rate changes can be represented as the product of two compo-

nents, defined below:

St+1

St
=

(
ΛP
t+1

ΛP
t

ΛP,∗
t

ΛP,∗
t+1

)(
ΛT
t+1

ΛT
t

ΛT,∗
t

ΛT,∗
t+1

)
=
SP
t+1

SP
t

ST
t+1

ST
t

. (15)

Exchange rate changes reflect differences in both the transitory and the permanent component of the two

countries’ SDFs.9 If two countries share the same martingale component of the pricing kernel, then the resulting

exchange rate is stationary and Condition 1 is trivially satisfied. However, exchange rate stationarity is obviously

not necessary for long-run risk neutrality.

9Note that SP
t+1, the ratio of two martingales, is itself not a martingale in general. However, in the class of affine term structure

models, this exchange rate component is indeed a martingale.
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Infinite-Horizon U.I.P. We now turn to the infinite-horizon case (k →∞) to show that long-horizon U.I.P

holds on average when exchange rates are stationary in levels. When domestic long-term interest rates increase

relative to the corresponding foreign rates, it implies that ΛT
t+1 is high relative to its foreign counterparts, so

the transitory component of the exchange rate ST
t+1 appreciates. That follows directly from the definition of

the transitory component of exchange rate changes, given by

∆sTt+1 =
(
λTt+1 − λTt

)
−
(
λT,∗t+1 − λ

T,∗
t

)
, (16)

where λTt ≡ log ΛT
t = limk→∞(t + k) log δ + limk→∞ ky

(k)
t . As a result, a currency experiences a temporary

appreciation when its long-term interest rates increase more than the foreign ones:

∆sTt+1 = log δ − log δ∗ + lim
k→∞

k
(

∆y
(k)
t+1 −∆y

(k),∗
t+1

)
. (17)

By backward substitution, it follows that the transitory component of the exchange rate in levels is given by

the spread in long-term yields:

sTt = s0 + t(log δ − log δ∗) + lim
k→∞

k
(
y

(k)
t − y

(k),∗
t

)
− lim
k→∞

k
(
y

(k)
0 − y(k),∗

0

)
. (18)

In short, the domestic currency is strong when the long-term rate is high at home relative to abroad. As a

result, the domestic currency is expected to depreciate in the future by the size of the spread in long-term rates,

as the transitory component of the exchange rate reverts back to its mean. The following proposition provides

the result formally.

Proposition 2. The expected rate of transitory depreciation is always given by the spread in the long-term

interest rates:

lim
k→∞

1

k
Et[∆s

T
t→t+k] = − lim

k→∞

(
y

(k)
t − y

(k),∗
t

)
.

Thus, the per period currency risk premium for long holding periods is the permanent component of the rate of

appreciation:

lim
k→∞

Et[rx
FX
t→t+k] = lim

k→∞

(
y

(k),∗
t − y(k)

t

)
− lim
k→∞

1

k
Et[∆st→t+k] = − lim

k→∞

1

k
Et[∆s

P
t→t+k].
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It follows that, if exchange rates are stationary in levels, in which case the permanent component of exchange

rate changes is zero, then the long-run log currency risk premium converges to zero as k →∞ and long-run U.I.P.

holds. In this case, the slope coefficient in the regression of long-run exchange rate changes on yield differences

converges to one and the intercept converges to zero. In other words, if exchange rates are stationary, then

long-run U.I.P. holds. This result is previewed in Backus, Boyarchenko, and Chernov (2016), who show that

claims to stationary cash flows earn a zero log risk premium over long holding periods. It follows that long-run

deviations from U.I.P. are consistent with no arbitrage only if the exchange rate is not stationary in levels.

We can further develop our understanding of the infinite-horizon U.I.P. condition, but we need to limit

ourselves to unconditional risk premia. Unconditionally, under some additional assumptions, as the maturity

of the bonds and the holding period increase, the risk of the permanent SDF component dominates. In the

limit (k → ∞), only the differences in the entropy of the martingale SDF components survive. The following

proposition states these assumptions and this result precisely.

Proposition 3. If the stochastic discount factors Λt+1

Λt
and

Λ∗t+1

Λ∗t
are strictly stationary, and limk→∞

1
kL
(
Et

[
Λt+k

Λt

])
=

0 and limk→∞
1
kL
(
Et

[
Λ∗t+k
Λ∗t

])
= 0, then the per period long-run currency risk premium is given by:

lim
k→∞

E[rxFXt→t+k] = lim
k→∞

E
(
y

(k),∗
t − y(k)

t

)
− lim
k→∞

1

k
E[∆st→t+k] = E

[
Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)]
.

This immediately implies that the per period currency risk premium converges to zero on average, and

therefore long-run U.I.P. holds on average, if long-run risk neutrality, i.e. Condition 1, is satisfied. Notably,

unconditional long-run U.I.P. does not necessarily require stationary exchange rates, as long-run risk neutrality

is a weaker condition that exchange rate stationarity. To the best of our knowledge, we are the first to

demonstrate the connection between exchange rate stationarity, long-maturity bond dollar return parity and

long-run U.I.P in a no arbitrage framework.

6 Implications for International Finance Models

Armed with our preference-free results, we now review several models that have been proposed to address the

U.I.P. puzzle and study their implications for long-term bond returns in U.S. dollars. We consider two-country
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versions of the habit, long-run risk, and disaster risk models with country-specific shocks and revisit the multi-

country factor model studied in Section 3. All the intermediary steps to determine the two components of the

SDFs are reported in the Online Appendix. In the habit model, Condition 1 is trivially satisfied because the

quantity of permanent risk is constant. In all the other models, Condition 1 implies some novel parameter

restrictions that were not satisfied by the original calibrations of these models, thus explaining why they do

not match the empirical evidence highlighted in Section 2.

6.1 External Habit Model

We first consider a version of the Campbell and Cochrane (1999) model with external habit used by Wachter

(2006), Verdelhan (2010), and Stathopoulos (2017) to study the properties of interest rates and exchange

rates. In this model, the agent maximizes the power utility (with risk aversion coefficient equal to γ and time

preference parameter δ) stemming from the difference between consumption and an endogenous subsistence (or

habit) level that is a function of past consumption. The log surplus consumption ratio, which measures the

percentage distance between consumption and habit, is a stationary variable that evolves as follows: st+1 =

(1− φ)s̄+ φst + λ(st)εt+1, where s̄ is its unconditional mean. The sensitivity function λ is given by:

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1, if s < smax

0, if s ≥ smax
,

where S̄ = σ
√

γ
1−φ−B/γ is the steady-state value of the surplus consumption ratio and smax = s̄+ 1

2(1−S̄2) is the

upper bound of the log surplus consumption ratio. Aggregate consumption growth is given by ∆ct+1 = g+εt+1,

where εt+1 ∼ N(0, σ2). Therefore, the log SDF has law of motion

log
Λt+1

Λt
= log δ − γg − γ(1− φ)(s̄− st)− γ(1 + λ(st))εt+1,

and the conditional SDF entropy is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=
γ2σ2

2
(1 + λ(st))

2 =
γ2σ2

2

1

S̄2
(1− 2(st − s̄)).
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The parameter B determines the cyclicality of the real interest rate. In particular, the equilibrium log risk-free

rate is given by:

rft = − log δ + γg − 1

2

γ2σ2

S̄2
−B(st − s̄).

If B > 0, then the log risk-free rate is countercyclical: when s is above its steady-state level, mean-reversion

implies that marginal utility is expected to increase in the future, incentivizing agents to save and decreasing

interest rates. Wachter (2006) shows that this condition is necessary for an upward sloping real term structure

of interest rates. However, as pointed out by Verdelhan (2010), the model requires procyclical interest rates

(B < 0) in order to generate the empirically observed relationship between interest rate differentials and

currency risk premia at the short end: as equation (7) implies, there must be more priced risk in low interest

rate countries than in high interest countries.

The conditional entropy of the permanent SDF component is constant:

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=
γ2σ2

2
,

whereas the conditional entropies of both the SDF and the transitory SDF component are time varying, as

they are functions of the log surplus consumption ratio s. The price of the long-term bond converges to

limk→∞ P
(k)t = exp (−γ(st − s̄)). Finally, the permanent component of exchange rate changes is given by

log
(
SP
t+1

SP
t

)
= −γ

(
∆ct+1 −∆c∗t+1

)
, so it is not affected by the surplus consumption ratio.

Symmetric Model with Country-Specific Shocks In a symmetric habit model (i.e., a model in which

all countries share the same parameters) with country-specific shocks, long-run risk neutrality (Condition 1)

is automatically satisfied: variation in the price of risk, governed by s, does not affect marginal utility and

exchange rates in the long run. The long-run loading of the exchange rate on the surplus consumption ratio is

given by:
∑∞

i=1Et[∆st+i] =
∑∞

i=1Et[log Λt+i
Λt
− log

Λ∗t+i
Λ∗t

] = −
∑∞

i=1 φ
i−1γ(1− φ)(s∗t − st) = −γ(s∗t − st). Thus,

long-run U.I.P holds,

lim
k→∞

Et[∆st→t+k] = −γ(s∗t − st) = lim
k→∞

k
(
y

(k),∗
t − y(k)

t

)
,

even though exchange rates are non-stationary in levels. A decrease in the foreign surplus consumption ratio

causes foreign long-term rates to increase and the foreign currency to depreciate in the long run. The slope
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coefficients in regressions of ∆st+i on the interest rate spread rf,∗t − r
f
t are equal to −φi−1γ(1−φ)

B , so they decline

geometrically in absolute value as i increases, and their infinite sum equals − γ
B . When B < 0, all these slope

coefficients are positive: a decrease in the foreign short rate causes the foreign currency to depreciate on average

next period and all periods after that, in line with the increase in the foreign long rate. These slope coefficients

cannot switch signs to match the evidence in Engel (2016), Valchev (2016), and Dahlquist and Penasse (2016).

Asymmetric model with Common Shocks We can generalize this model to N countries under the

assumption of common (i.e., global) shocks and heterogeneous exposure of countries’ SDFs to those shocks. In

order for Condition 1 to hold, countries can only differ in their surplus consumption ratio parameters (φ,B), as

differences in the other parameters (γ, σ2) would imply differences in the conditional entropy of the permanent

component of the SDFs, and thus differences in long-maturity bond returns expressed in the same units. Thus,

Condition 1 limits the source of heterogeneity to choices leading to different real interest rate persistence across

countries.

6.2 Long-Run Risks Model

We now consider the long-run risks model, proposed by Bansal and Yaron (2004) and further explored by

Colacito and Croce (2011), Bansal and Shaliastovich (2013) and Engel (2016) in the context of exchange rates.

In this class of models, the representative agent has utility over consumption given by:

logUt = (1− 1

ψ
) log

(1− δ)C1− 1
ψ + δEt

[
U1−γ
t+1

] 1− 1
ψ

1−γ

 ,

where ψ represents the intertemporal elasticity of substitution in an environment without risk. Aggregate

consumption growth ∆ct+1 has a persistent component xt, and both consumption growth shocks and shocks in
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xt exhibit conditional heteroskedasticity:

∆ct+1 = µ+ xt +
√
utε

c
t+1,

xt+1 = φxxt +
√
wtε

x
t+1,

ut+1 = (1− φu)θu + φuut + σuεut+1,

wt+1 = (1− φw)θw + φwwt + σwεwt+1.

All innovations are i.i.d. standard normal. The log SDF evolves as:

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utε

c
t+1 +B2

√
wtε

x
t+1 +B3ε

u
t+1 +B4ε

w
t+1,

where {A0, A1, A2, A3, B1, B2, B3, B4} are constants.10 For convenience, we assume that the agent has pref-

erences for early resolution of uncertainty (γ > 1
ψ ), so B2 < 0. It immediately follows that conditional SDF

entropy and the equilibrium log risk-free rate are given by:

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2
)
,

rft = −A0 −
1

2

(
B3

2 +B4
2
)

+
1

ψ
xt −

1

2

(
γ − 1

ψ
+ γ

)
ut −

1

2

(
1

ψ
− γ
)(

1

ψ
− 1

)(
κ

1− κφx

)2

wt.

The necessary condition (7) highlights how this model can replicate the U.I.P. puzzle: for procyclical interest

rates (with respect to ut and wt), high interest rates correspond to low volatility SDFs.

The real bond prices in logs are affine in the state variables: p
i,(n)
t = −Ci,n0 −Cn1 xt−C

i,n
2 ut−Ci,n3 wt. In the

long-run risk model, the conditional entropy of the permanent SDF component is given by:

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2ut + (B2 − C∞1 )2wt + (B3 − C∞2 σu)2 + (B4 − C∞3 σw)2
)
.

where C∞1 = 1
ψ(1−φx) , C∞2 = −A2+ 1

2
B2

1

1−φu , and C∞3 = −A3+ 1
2

(B2−C∞1 )2

1−φw .

10More precisely, the constants are A1 = − 1
ψ

, A2 =
(

1
ψ
− γ
)
γ−1

2
, A3 =

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2

, B1 = −γ, B2 =
(

1
ψ
− γ
)

κ
1−κφx ,

B3 =
(

1
ψ
− γ
)

1−γ
2

κ
1−κφu σ

u, and B4 =
(

1
ψ
− γ
)

1−γ
2

(
κ

1−κφx

)2
κ

1−κφw σ
w, where κ ≡ δe

(1− 1
ψ )m̄

1−δ+δe(1− 1
ψ )m̄

and m̄ is the point around

which a log-linear approximation is taken (see Engel (2015) for details); if m̄ = 0, then κ = δ.
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Symmetric Model with Country-Specific Shocks The quantity of risk is governed by ut, the volatility of

consumption growth, and wt, the volatility of expected consumption growth. Both of these forces feed into the

quantity of permanent risk unless B1 = B2 − C∞1 = 0. Thus, in a symmetric LRR model (i.e., when countries

share the same parameters) with country-specific shocks and heteroskedasticity, Condition 1 holds only if the

model parameters satisfy the following restriction: γ = 0 = 1
ψ , implying that the pricing kernel is constant

and the investor is risk-neutral. In this case, the model counterfactually replicates the U.I.P. condition in the

short-run.11

Asymmetric model with Common Shocks Thus, a natural extension to the model would feature common

volatility processes, such that ut = u∗t and wt = w∗t , relieving the strong parameter restriction above (see

Colacito, Croce, Gavazzoni, and Ready, 2017, for a multi-country LRR model with common shocks). Condition

1 again tells us where to introduce heterogeneity in a future version of this model. For the conditional entropy

of the permanent SDF component to be identical across countries, we need the following parameter restriction:

B1 = B∗1 and B2 − C∞1 = B∗2 − C∗,∞1 . In this case, we have different SDF entropy to generate carry risk

premia at the short end of the curve, but the same entropy of the permanent SDF component across countries

if B2 − C∞1 = B∗2 − C
∗,∞
1 and C∞1 − C

∗,∞
1 = B∗2 −B2 6= 0.

These restrictions have bite. Consider an example with only heterogeneity in the persistence of the shocks.

Our conditions are satisfied if γ = γ∗, δ = δ∗ and ψ = ψ∗, but φx 6= φx,∗ such that (1 − δφx)(1 − δφx,∗) =

δ2(1 − γψ)(1 − φx)(1 − φx,∗). That restriction cannot be satisfied when agents have a preference for early

resolution of uncertainty (γψ > 1), as is invariably assumed in LRR models. The constant component of the

entropy above adds even more parameter restrictions.

11In the long-run, U.I.P. is violated for risk-related innovations because the long-run loadings of the level of the exchange rate on
(ut, wt) do not line up with the loadings of the long rates:

∞∑
i=1

Et[∆st+i] =
A1

1− φx
(xt − x∗t ) +

A2

1− φu
(ut − u∗t ) +

A3

1− φw
(wt − w∗t ) 6= C∞1 (x∗t − xt) + C∞2 (u∗t − ut) + C∞3 (w∗t − wt),

because C∞2 6= − A2
1−φu and C∞3 6= − A3

1−φw .
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6.3 Disasters Model

In the Farhi and Gabaix (2016) version of the Gabaix (2012) and Wachter (2013) rare disasters model with

time-varying disaster intensity, the SDF has the following law of motion:

Λt+1

Λt
=

Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt
,

where Λ∗ denotes the global component of marginal utility:

Λ∗t+1

Λ∗t
= e−R ×


1, if there is no disaster at t+ 1

B−γt+1, if there is a disaster at t+ 1,

ωt+1 denotes the country-specific productivity:

ωt+1

ωt
= egω ×


1, if there is no disaster at t+ 1

Ft+1, if there is a disaster at t+ 1,

xt is the (scaled by e−h∗) time-varying component of the resilience of the country (with persistence φH) and

A > 0 depends on the model parameters, one of which is the investment depreciation rate λ. After some

algebra, we obtain the following expression for conditional entropy:

Lt

(
Λt+1

Λt

)
= log(1 +Ht)− ptEDt

[
log(Bγ

t+1Ft+1)
]

+ Lt

(
1 +Axt+1

1 +Axt

)
,

where pt is the conditional probability of a disaster occurring next period and EDt is the period t expectation

conditional on a disaster occurring next period. The equilibrium log risk-free rate is

rft = (R− gω − h∗) + log

(
1 +Axt

1 + (Ae−φH + 1)xt

)
.

Thus, the risk-free rate is decreasing in x and, thus, in the resilience of the country. Again, high interest rate

countries correspond to low volatility SDFs.
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Finally, the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
= log(1 +Ht)− ptEDt

[
log(Bγ

t+1Ft+1)
]

+ Lt

(
c+ xt+1

c+ xt

)
.

Symmetric Model with Country-Specific Shocks First, we consider a version of the model in which the

parameters are the same in each country, but the shocks are country-specific. The time-varying disaster risk

directly, driven partly by some country-specific shocks, affects the total quantity of permanent risk, thus vio-

lating the long-run risk neutrality Condition 1, unless the disaster intensity is constant (pt, xt, Ht are constant),

and hence all risk premia are constant.

Asymmetric model with Common Shocks Second, we consider a version of the disaster model with

common shocks, but asymmetric exposures. It is possible to introduce differences across countries that produce

differences in carry trade portfolio returns at the short but not at the long end of the curve, but the heterogeneity

is clearly restricted by Condition 1 to the parameters R, λ or gw.

6.4 Factor Model

The Lustig, Roussanov, and Verdelhan (2014) model has country-specific and common shocks and arry trade

risk premia arise from asymmetric exposures to global shocks. If the entropy of the permanent SDF component

cannot differ across countries, then all countries’ pricing kernels need the same loadings on the permanent

component of the global factors. In the Lustig, Roussanov, and Verdelhan (2014) model, the permanent

component of the SDF is given by:

log
ΛP
t+1

ΛP
t

= log β−1 − α− χzit −
√
γzitu

i
t+1 − τzwt −

√
δizwt u

w
t+1 −

√
κzitu

g
t+1

C∞,$1

[
(φ− 1)(zit − θ)− σ

√
zitu

i
t+1

]
+ C∞,$,i2

[
(φw − 1)(zwt − θw)− σ

√
zwt u

w
t+1

]
.

The U.S. term premium is simply Et[rx
(∞)
t+1 ] = 1

2(γzt + δzwt ), which is equal to one-half of the variance of the

log stochastic discount factor. The foreign long bond risk premium in dollars is then simply:

Et[rx
(∞),∗
t+1 ] + Et[rx

FX,∗
t+1 ] =

[
1

2
(γ + κ)zt + (C∞,$1 (1− φ)− χ)z∗t

]
+

[
1

2
δ + C∞,$,∗2 (1− φw)− τ − ηw

]
zwt ,
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where C∞,$1 , C∞,$2 represent the loadings of the nominal long rates on the two factors. Condition 1 thus holds

if C∞,$1 (1− φ) = χ, κ = 0, and C∞,$,∗2 (1− φw) = τ + ηw. The first two restrictions rule out permanent effects

of country-specific shocks, while the last restriction rules out permanent effects of global shocks (uw). When

these restrictions are satisfied, the pricing kernel is not subject to permanent shocks, and the expected foreign

log holding period return on a foreign long-term bond converted into U.S. dollars is equal to the U.S. term

premium: Et[rx
(∞),∗
t+1 ] + Et[rx

FX,∗
t+1 ] = 1

2(γzt + δzwt ). The higher foreign currency risk premium for investing in

high δ countries is exactly offset by the lower bond risk premium. As all these models show, Proposition 1

and Condition 1 offer a simple diagnostic to assess the term structure of currency carry trade risk premia in

no-arbitrage models.

The restrictions C∞,$1 (1 − φ) = χ, κ = 0, and C∞,$,∗,2 (1 − φw) = τ + ηw have a natural interpretation as

restrictions on the long-run loadings of the exchange rate on the risk factors:
∑∞

i=1Et[∆st+i] =
∑∞

i=1Et[mt+i−

m∗t+i] =
∑∞

i=1 φ
i−1χ(z∗t − zt). As can easily be verified, these two restrictions imply that the long-run loading

of the exchange rate on the factors equals the loading of long-term interest rates:

lim
k→∞

Et[∆st→t+k] =
χ

(1− φ)
(z∗t − zt) = C∞,$1 (z∗t − zt) = lim

k→∞
k
(
y

(k),∗
t − y(k)

t

)
,

where we have used C∞,$2 = C∞,$,∗2 . Hence, in the context of this model, our restrictions enforce long-run

U.I.P.12 In this special case, χ
(1−φ) = C∞1 =

√
γ/σ > 0. An increase in risk abroad causes the long rates to go

up abroad and the foreign exchange rate to depreciate in the long run, but given these long-run restrictions, the

initial expected exchange rate impact has to have the same sign (χ > 0), thus violating the empirical evidence,

as we explain below.

Our preference-free conditions constrains the sum of slope regression coefficients in a regression of future

exchange rate changes ∆st+i on the current interest rate spread rf,$,∗t − rf,$t to be equal to the response of

long-term interest rates. Engel (2016), Valchev (2016), and Dahlquist and Penasse (2016) study these slope

coefficients and find that they switch signs with the horizon i: an increase in the short-term interest rate initially

cause exchange rates to appreciate, but they subsequently depreciate on average. In the factor model with a

12When all innovations have an impact on risk, as is the case in this model, Condition 1 rules out permanent shocks.
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single country-specific factor, these slope coefficients in a regression of ∆st+i on the rf,$,∗t − rf,$t , given by

Et∆st+i =
φi−1χ

χ− 1
2γ

(
rf,$,∗t − rf,$t

)
,

decline geometrically as i increases, and their infinite sum equals
C∞1
χ− 1

2
γ

. When (χ − 1
2γ) < 0, the model can

match the short-run forward premium puzzle: when the foreign short rate increases, the currency subsequently

appreciates, but it continues to appreciate as long rates decline abroad. As a result, this model cannot match

the sign switch in these regression coefficients.13

7 Additional Implications

We end this paper with two additional implications of our main results that can further help build the next

generation of international finance models and guide future empirical work.

7.1 A Lower Bound on Cross-Country Correlations of the Permanent SDF Components

Brandt, Cochrane, and Santa-Clara (2006) show that the combination of relatively smooth exchange rates and

much more volatile SDFs implies that SDFs are very highly correlated across countries. A 10% volatility in

exchange rate changes and a volatility of marginal utility growth rates of 50% imply a correlation of at least

0.98.14 We can derive a specific bound on the covariance of the permanent component across different countries.

13A richer version of the factor model with multiple country-specific risk factors can generate richer dynamics. Consider the same
model with two country-specific risk factors. The long-run impulse responses of the exchange rate to short-term interest rate shocks
is driven by:

∞∑
i=1

Et[∆st+i] =

∞∑
i=1

Et[mt+i −m∗t+i] =

∞∑
i=1

[
φi−1

1 χ1(z1,∗
t − z

1
t ) + φi−1

2 χ2(z2,∗
t − z

2
t )
]
.

The slope coefficients in a regression of future exchange rate changes on the current interest rate spread rf,$,∗t − rf,$t are given by

Et∆st+i =
φi−1

1 χ1(χ1 − 1
2
γ1) + φi−1

2 χ2(χ2 − 1
2
γ2)

(χ1 − 1
2
γ1)2 + (χ2 − 1

2
γ2)2

(
rf,$,∗t − rf,$t

)
.

These coefficients can switch signs as we increase the maturity i if the risk factors have sufficiently heterogeneous persistence
(φ1, φ2), and provided that (χ1 − 1

2
γ1) and (χ2 − 1

2
γ2) have opposite signs.

14We do not interpret the correlation of SDFs or their components in terms of cross-country risk-sharing, because doing so
requires additional assumptions. The nature and magnitude of international risk sharing is an important and open question in
macroeconomics (see, for example, Cole and Obstfeld (1991); Wincoop (1994); Lewis (2000); Gourinchas and Jeanne (2006); Lewis
and Liu (2015); Coeurdacier, Rey, and Winant (2013); Didier, Rigobon, and Schmukler (2013); as well as Colacito and Croce (2011)
and Stathopoulos (2017) on the high international correlation of state prices). A necessary but not sufficient condition to interpret
the SDF correlation is for example that the domestic and foreign agents consume the same baskets of goods and participate in
complete financial markets. Even in this case, the interpretation is subject to additional assumptions. In a multi-good world,
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Proposition 4. If the permanent SDF component is unconditionally lognormal, the cross-country covariance

of the SDF’ permanent components is bounded below by:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ E

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
. (19)

for any positive returns Rt+1 and R∗t+1. A conditional version of the expression holds for conditionally lognormal

permanent pricing kernel components.

This result therefore extends the insights of Brandt, Cochrane, and Santa-Clara (2006) to the permanent

components of the SDFs. Chabi-Yo and Colacito (2015) extend this lower bound to non-Gaussian pricing

kernels and different horizons.

Since exchange rate changes and their temporary components are observable (thanks to the bonds’ holding

period returns), one can compute the variance of the permanent component of exchange rates, var
(

log
SP
t+1

SP
t

)
.

In the data; the contribution of the last term is on the order of 1% or less. Given the large size of the equity

premium compared to the term premium (a 7.5% difference according to Alvarez and Jermann, 2005), and

the relatively small variance of the permanent component of exchange rates, the lower bound in Proposition 4

implies a large correlation of the permanent components.

In Figure 3, we plot the implied correlation of the permanent component against the volatility of the per-

manent component in the symmetric case for two different scenarios. The dotted line is for Std
(
logSP

t /S
P
t+1

)
=

10%, and the plain line is for Std
(
logSP

t /S
P
t+1

)
= 16%. In both cases, the implied correlation of the permanent

components of the domestic and foreign pricing kernels is clearly above 0.9.

While Brandt, Cochrane, and Santa-Clara (2006) find that the SDFs are highly correlated across countries,

we find that the permanent components of the SDFs, which are the main sources of volatility for the SDFs, are

highly correlated across countries.

7.2 A New Long-Term Bond Return Parity Condition

Finally, we end this paper with a potential new benchmark for exchange rates. While hundreds of papers have

tested the U.I.P. condition, which assumes risk-neutrality, we suggest a novel corner case, this time taking risk

variation in the relative prices of the goods drives a wedge between the pricing kernels, even in the case of perfect risk sharing (Cole
and Obstfeld (1991)). Likewise, when markets are segmented, as in Alvarez, Atkeson, and Kehoe (2002) and Alvarez, Atkeson, and
Kehoe (2009), the correlation of SDFs does not imply risk-sharing of the non-participating agents.
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Figure 3: Cross-country Correlation of Permanent SDF Shocks — In this figure, we plot the implied correlation of the
domestic and foreign permanent components of the SDF against the standard deviation of the permanent component of the SDF.
The dotted line is for Std

(
logSP

t /S
P
t+1

)
= 10%. The straight line is for Std

(
logSP

t /S
P
t+1

)
= 16%. Following Alvarez and Jermann

(2005), we assume that the equity minus bond risk premia are 7.5% in the domestic and foreign economies.

into account. When countries share permanent innovations to their SDFs, a simple long bond return parity

condition emerges:

Proposition 5. If the domestic and foreign pricing kernels have common permanent innovations, ΛP
t+1/Λ

P
t =

ΛP,∗
t+1/Λ

P,∗
t for all states, then the one-period returns on the foreign longest maturity bonds in domestic currency

are identical to the domestic ones:

R
(∞),∗
t+1

St
St+1

= R
(∞)
t+1 for all states. (20)
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While Proposition 1 is about expected returns, Proposition 5 focuses on realized returns. In this polar

case, even if most of the innovations to the pricing kernel are highly persistent, the shocks that drive exchange

rates are not, because the persistent shocks are the same across countries. In that case, the exchange rate is a

stationary process. In the absence of arbitrage opportunities, the currency exposure of a foreign long-term bond

position to the stationary components of the pricing kernels is fully hedged by its interest rate risk exposure

and does not affect the return differential with domestic bonds, which then measures the wedge between the

non-stationary components of the domestic and foreign pricing kernels. When nominal exchange rates are

stationary, this wedge is zero and long bond return parity obtains: bonds denominated in different currencies

earn the same dollar returns, date by date.

8 Conclusion

This paper presents a simple but puzzling fact: while holding period bond returns, expressed in a common

currency, differ across G10 countries at the short end of the yield curve (the U.I.P. puzzle), they are rather similar

at the long end. In other words, the term structure of currency carry trade risk premia is downward-sloping.

Some recent no-arbitrage models of international finance that replicates the U.I.P. puzzle fail to replicate the

downward-sloping term structure of risk premia.

Under the assumption that markets are complete, we derive a simple preference-free result that helps assess

the existing models and guide future theoretical and empirical work. In order to exhibit similar long-term

bond returns when expressed in the same units, no arbitrage models need to exhibit the same volatility of

the permanent components of their SDFs. This condition implies novel parameter restrictions in the recent

no-arbitrage models of international finance.

Our results show that exchange rate risk is different from equity and bond risk. In order to account for

the high equity premium and the low term premium, most of the variation in the marginal utility of wealth

in no-arbitrage models must come from permanent shocks. But differences in the impact of permanent shocks

to marginal utilities would lead to counterfactual differences in long-term bond risk premia across countries.

Thus, in order to account for the U.I.P. puzzle and the currency carry trade risk premium at the short end of

the yield curve, no-arbitrage models need to feature differences in how temporary shocks affect the marginal

utility of wealth.
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A Theoretical Background and Proofs of Preference-Free Results

This section of the Appendix starts with a review of the Hansen and Scheinkman (2009) results and their link to the Alvarez and
Jermann (2005) decomposition used in the main text. Then, we report our theoretical results on bond and currency returns in two
special cases: the case of a Gaussian economy and the case of an economy with no permanent SDF shocks. The section concludes
with the proofs of all the theoretical results in the main body of the paper. To make the paper self-contained, we reproduce here
some proofs of intermediary results already in the literature, notably in Alvarez and Jermann (2005).

A.1 Existence and Uniqueness of Multiplicative Decomposition of the SDF

Consider a continuous-time, right continuous with left limits, strong Markov process X and the filtration F generated by the past
values of X, completed by the null sets. In the case of infinite-state spaces, X is restricted to be a semimartingale, so it can be
represented as the sum of a continuous process Xc and a pure jump process Xj . The pricing kernel process Λ is a strictly positive
process, adapted to F , for which it holds that the time t price of any payoff Πs realized at time s (s ≥ t) is given by

Pt(Πs) = E

[
Λs
Λt

Πs|Ft
]
.

The pricing kernel process also satisfies Λ0 = 1. Hansen and Scheinkman (2009) show that Λ is a multiplicative functional and
establish the connection between the multiplicative property of the pricing kernel process and the semigroup property of pricing
operators M.15 In particular, consider the family of operators M described by

Mtψ(x) = E [Λtψ(Xt)|X0 = x]

where ψ(Xt) is a random payoff at t that depends solely on the Markov state at t. The family of linear pricing operators M satisfies
M0 = I and Mt+uψ(x) = Mtψ(x)Muψ(x) and, thus, defines a semigroup, called pricing semigroup.

Further, Hansen and Scheinkman (2009) show that Λ can be decomposed as

Λt = eβt
φ(X0)

φ(Xt)
ΛP
t

where ΛP is a multiplicative functional and a local martingale, φ is a principal (i.e. strictly positive) eigenfunction of the extended
generator of M and β is the corresponding eigenvalue (typically negative).16 If, furthermore, ΛP is martingale, then the eigenpair
(β, φ) also solves the principal eigenvalue problem:17

Mtφ(x) = E [Λtφ(Xt)|X0 = x] = eβtφ(x).

Conversely, if the expression above holds for a strictly positive φ and Mtφ is well-defined for t ≥ 0, then ΛP is a martingale. Thus,
a strictly positive solution to the eigenvalue problem above implies a decomposition

Λt = eβt
φ(X0)

φ(Xt)
ΛP
t

where ΛP is guaranteed to be a martingale. The decomposition above implies that the one-period SDF is given by

Mt+1 =
Λt+1

Λt
= eβ

φ(Xt)

φ(Xt+1)

ΛP
t+1

ΛP
t

and satisfies
E [Mt+1φ(Xt+1)|Xt = x] = eβtφ(x).

Hansen and Scheinkman (2009) provide sufficient conditions for the existence of a solution to the principal eigenfunction
problem and, thus, for the existence of the aforementioned pricing kernel decomposition. Notably, multiple solutions may exist,

15A functional Λ is multiplicative if it satisfies Λ0 = 1 and Λt+u = ΛtΛu(θt), where θt is a shift operator that moves the time
subscript of the relevant Markov process forward by t periods. Products of multiplicative functionals are multiplicative functionals.
The multiplicative property of the pricing kernel arises from the requirement for consistency of pricing across different time horizons.

16The extended generator of a multiplicative functional Λ is formally defined in Hansen and Scheinkman (2009) and, intuitively,
assigns to a Borel function ψ a Borel function ξ such that Λtξ(Xt) is the expected time derivative of Λtψ(Xt).

17Since ΛP is a local martingale bounded from below, it is a supermartingale. For ΛP to be a martingale, additional conditions
need to hold, as discussed in Appendix C of Hansen and Scheinkman (2009).
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so the pricing kernel decomposition above is generally not unique. However, if the state space is finite and the Markov chain is
irreducible, then Perron-Frobenious theory implies that there is a unique principal eigenvector (up to scaling), and thus a unique
pricing kernel decomposition. Although multiple solutions typically exist, Hansen and Scheinkman (2009) show that the only (up to
scaling) principal eigenfunction of interest for long-run pricing is the one associated with the smallest eigenvalue, as the multiplicity
of solutions is eliminated by the requirement for stochastic stability of the Markov process X. In particular, only this solution
ensures that the process X remains stationary and Harris recurrent under the probability measure implied by the martingale ΛP.

Finally, Hansen and Scheinkman (2009) show that the aforementioned pricing kernel decomposition can be useful in approx-
imating the prices of long-maturity zero-coupon bonds. In particular, the time t price of a bond with maturity t + k is given
by

P
(k)
t = E

[
Λt+k
Λt
|Xt = x

]
= eβkEP

[
1

φ(Xt+k)
|Xt = x

]
φ(x) ≈ eβkEP

[
1

φ(Xt+k)

]
φ(x)

where EP is the expectation under the probability measure implied by the martingale ΛP and the right-hand-side approximation
becomes arbitrarily accurate as k →∞. Thus, in the limit of arbitrarily large maturity, the price of the zero-coupon bond depends
on the current state solely through φ(x) and not through the expectation of the transitory component. Notably, this implies that
the relevant φ is the one that ensures that X remains stationary under the probability measure implied by ΛP, i.e. the unique
principal eigenfunction that implies stochastic stability for X, and β is the corresponding eigenvalue.

Indeed, Alvarez and Jermann (2005) construct a pricing kernel decomposition by considering a constant β̂ that satisfies

0 < lim
k→∞

P
(k)
t

β̂k
<∞

and defining the transitory pricing kernel component as

ΛT
t = lim

k→∞

β̂t+k

P
(k)
t

<∞.

In contrast to Hansen and Scheinkman (2009), the decomposition of Alvarez and Jermann (2005) is constructive and not unique,
as their Assumptions 1 and 2 do not preclude the existence of alternative pricing kernel decompositions to a martingale and a
transitory component. Note that the Alvarez and Jermann (2005) decomposition implies that β̂ = eβ , where β is the smallest
eigenvalue associated with a principal eigenfunction in the Hansen and Scheinkman (2009) eigenfunction problem.

A.2 Gaussian Economy

If the pricing kernel is conditionally Gaussian over horizon k, the k-horizon foreign currency risk premium satisfies:

Et[rx
FX
t→t+k] =

1

2k

[
vart

(
log

Λt+k
Λt

)
− vart

(
log

Λ∗t+k
Λ∗t

)]
.

Let us assume that the variance of the one-period SDF is constant. The annualized variance of the increase in the log SDF can be
expressed as follows:

var (log Λt+k/Λt)

kvar (Λt+1/Λt)
= 1 + 2

k−1∑
j=1

(
1− j

k

)
ρj ,

where ρj denotes the j-th autocorrelation (Cochrane, 1988).18 In the special case where the domestic and foreign countries share
the same one-period volatility of the innovations, this expression for the long-run currency risk premium becomes:

E[rxFXt→t+k] = var (∆ log Λt+1)

[
k−1∑
j=1

(
1− j

k

)
(ρj − ρ∗j )

]
.

This is the Bartlett kernel estimate with window k of the spread in the spectral density of the log SDF at zero, which measures
the size of the permanent component of the SDF. More positive autocorrelation in the domestic than in the foreign pricing kernel
tends to create long-term yields that are lower at home than abroad, once expressed in the same currency. The difference in yields,
converted in the same units, is governed by a horse race between the speed of mean reversion in the pricing kernel at home and
abroad.

18Cochrane (1988) uses these per period variances of the log changes in GDP to measure the size of the random walk component
in GDP.
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To develop some intuition for the long run, we consider the limit behavior of the foreign currency risk premium when k →∞. In
the long run, the currency risk premium over many periods converges to the difference in the size of the random walk components:

lim
k→∞

E[rxFXt→t+k] =
1

2
var (∆ log Λt+1) lim

k→∞

[
1 + 2

∞∑
j=1

ρj

]
− 1

2
var (∆ log Λt+1) lim

k→∞

[
1 + 2

∞∑
j=1

ρ∗j

]

=
1

2

[
S∆ log Λt+1 − S∆ log Λ∗t+1

]
,

where S denotes the spectral density. The last step follows from the definition of the spectral density (see Cochrane, 1988). If
the log of the exchange rate (logSt) is stationary, then the log of the foreign (log Λ∗t ) and domestic pricing kernels (log Λt) are
cointegrated with co-integrating vector (1,−1) and hence share the same stochastic trend component. This in turn implies that
they have the same spectral density evaluated at zero. As a result, exchange rate stationarity implies that the long-run currency
risk premium goes to zero.

A.3 Economy with No Permanent Innovations

Consider the special case in which the pricing kernel is not subject to permanent innovations, i.e., limk→∞
Et+1[Λt+k]

Et[Λt+k]
= 1. For

example, the Markovian environment considered by Ross (2015) to derive his recovery theorem satisfies this condition. Building on
this work, Martin and Ross (2013) derive closed-form expressions for bond returns in a similar environment. Alvarez and Jermann
(2005) show that this case has clear implications for domestic returns: if the pricing kernel has no permanent innovations, then the
term premium on an infinite maturity bond is the largest risk premium in the economy.19

The absence of permanent innovations also has a strong implication for the term structure of the carry trade risk premia. When
the pricing kernels do not have permanent innovations, the foreign term premium in dollars equals the domestic term premium:

Et
[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
.

The proof here is straightforward. In general, the foreign currency risk premium is equal to the difference in entropy. In the absence
of permanent innovations, the term premium is equal to the entropy of the pricing kernel, so the result follows. More interestingly, a
much stronger result holds in this case. Not only are the risk premia identical, but the returns on the foreign bond position are the
same as those on the domestic bond position state-by-state, because the foreign bond position automatically hedges the currency
risk exposure. As already noted, if the domestic and foreign pricing kernels have no permanent innovations, then the one-period
returns on the longest maturity foreign bonds in domestic currency are identical to the domestic ones:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

= 1.

In this class of economies, the returns on long-term bonds expressed in domestic currency are equalized:

lim
k→∞

rx
(k),∗
t+1 + (ft − st)−∆st+1 = rx

(k)
t+1.

In countries that experience higher marginal utility growth, the domestic currency appreciates but is exactly offset by the capital
loss on the bond. For example, in a representative agent economy, when the log of aggregate consumption drops more below trend
at home than abroad, the domestic currency appreciates, but the real interest rate increases, because the representative agent is
eager to smooth consumption. The foreign bond position automatically hedges the currency exposure.

Alvarez and Jermann (2005) propose the following example of an economy without permanent shocks: a representative agent
economy with power utility investors in which the log of aggregate consumption is a trend-stationary process with normal innovations.
In particular, consider the following pricing kernel (Alvarez and Jermann, 2005):

log Λt =

∞∑
i=0

αiεt−i + β log t,

with ε ∼ N(0, σ2), α0 = 1. If limk→∞ α
2
k = 0, then the SDF has no permanent component. The foreign SDF is defined similarly.

19 If there are no permanent innovations to the pricing kernel, then the return on the bond with the longest maturity equals the
inverse of the SDF: limk→∞R

(k)
t+1 = Λt/Λt+1. High marginal utility growth translates into higher yields on long maturity bonds

and low long bond returns, and vice-versa.
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In the model, the term premium equals one half of the SDF variance: Et
(
rx

(∞)
t+1

)
= σ2/2, the highest possible risk premium

in this economy, as the returns on the long bond are perfectly negatively correlated with the stochastic discount factor. When
marginal utility is temporarily high, the representative agent would like to borrow, driving up interest rates and lowering the price
of the long-term bond.

In this economy, the foreign term premium in dollars is identical to the domestic term premium:

Et
[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2 = Et

[
rx

(∞)
t+1

]
.

This result is straightforward to establish: recall that the currency risk premium is equal to the half of the difference between the
domestic and the foreign SDF variance. Currencies with a high local currency term premium (high σ2) also have an offsetting
negative currency risk premium, while those with a small term premium have a large currency risk premium. Hence, U.S. investors
receive the same dollar premium on foreign as on domestic bonds. There is no point in chasing high term premia around the world,
at least not in economies with only temporary innovations to the pricing kernel. Currencies with the highest local term premia also
have the lowest (i.e., most negative) currency risk premia.

A.4 Proofs

• Proof of Proposition 1:

Proof. The proof builds on some results in Backus, Foresi, and Telmer (2001) and Alvarez and Jermann (2005). Specifically,
Backus, Foresi, and Telmer (2001) show that the foreign currency risk premium is equal to the difference between domestic
and foreign total SDF entropy:

(ft − st)− Et[∆st+1] = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
.

Furthermore, Alvarez and Jermann (2005) establish that total SDF entropy equals the sum of the entropy of the permanent
SDF component and the expected log term premium:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
log

R
(∞)
t+1

Rft

)
.

Applying the Alvarez and Jermann (2005) decomposition to the Backus, Foresi, and Telmer (2001) expression yields the
desired result.

To derive the Backus, Foresi, and Telmer (2001) expression, consider a foreign investor who enters a forward position in the
currency market with payoff St+1 − Ft. The investor’s Euler equation is:

Et

(
Λ∗t+1

Λ∗t
(St+1 − Ft)

)
= 0.

In the presence of complete, arbitrage-free international financial markets, exchange rate changes equal the ratio of the
domestic and foreign stochastic discount factors:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

,

Dividing the investor’s Euler equation by St and applying the no arbitrage condition, the forward discount is:

ft − st = logEt

(
Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
.

The second component of the currency risk premium is expected foreign appreciation; applying logs and conditional expec-
tations to the no arbitrage condition above leads to:

Et[∆st+1] = Et

(
log

Λt+1

Λt

)
− Et

(
log

Λ∗t+1

Λ∗t

)
.
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Combining the two terms of the currency risk premium leads to:

(ft − st)− Et[∆st+1] = logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
+ Et

(
log

Λ∗t+1

Λ∗t

)
Applying the definition of conditional entropy in the equation above yields the Backus, Foresi, and Telmer (2001) expression.

To derive the Alvarez and Jermann (2005) result, first note that since the permanent component of the pricing kernel is a
martingale, its conditional entropy can be expressed as follows:

Lt

(
ΛP
t+1

ΛP
t

)
= −Et

(
log

ΛP
t+1

ΛP
t

)
.

The definition of conditional entropy implies the following decomposition of total SDF entropy:

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

ΛT
t+1

ΛT
t

ΛP
t+1

ΛP
t

)
or, using the above expression for the conditional entropy of the permanent SDF component:

Lt

(
Λt+1

Λt

)
= − logRft − Et

(
log

ΛT
t+1

ΛT
t

)
+ Lt

(
ΛP
t+1

ΛP
t

)
.

The Alvarez and Jermann (2005) result hinges on:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1.

Under the assumption that 0 < lim
k→∞

P
(k)
t

δk
<∞ for all t, one can write:

lim
k→∞

R
(k)
t+1 = lim

k→∞

Et+1

(
Λt+k
Λt+1

)
Et
(

Λt+k
Λt

) =
lim
k→∞

Et+1(Λt+k/δ
t+k)

Λt+1

lim
k→∞

Et(Λt+k/δ
t+k)

Λt

=

ΛP
t+1

Λt+1

ΛP
t

Λt

= ΛT
t /Λ

T
t+1.

Thus, the infinite-maturity bond is exposed only to transitory SDF risk.

• Proof of Proposition 2:

Proof. Note that:

E[sTt ] = s0 + t(log δ − log δ∗) + lim
k→∞

kE
(
y

(k)
t − y

(k),∗
t

)
− lim
k→∞

k
(
y

(k)
0 − y(k),∗

0

)
.

Hence, due to the stationarity of sT, we have

lim
k→∞

Et[s
T
t+k] = lim

k→∞
E[sTt+k] = s0 + lim

k→∞
(t+ k)(log δ − log δ∗) + lim

k→∞
kE
(
y

(k)
t+k − y

(k),∗
t+k

)
− lim
k→∞

k
(
y

(k)
0 − y(k),∗

0

)
.

This, in turn, implies that:

lim
k→∞

Et[∆s
T
t→t+k] = lim

k→∞
Et[s

T
t+k]− sTt = lim

k→∞
k(log δ − log δ∗) + lim

k→∞
kE
(
y

(k)
t+k − y

(k),∗
t+k

)
− lim
k→∞

k
(
y

(k)
t − y

(k),∗
t

)
,

or
lim
k→∞

Et[∆s
T
t→t+k] = lim

k→∞
Et[s

T
t+k]− sTt = − lim

k→∞
k
(
y

(k)
t − y

(k),∗
t

)
,

where we have used log δ = − limk→∞E
(
y

(k)
t+k

)
.

• Proof of Proposition 3:
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Proof. Note that L(xt+1) = ELt(xt+1)+Lt(E(xt+1)). Given the stationary of the stochastic discount factor, limk→∞(1/k)Lt
(
E

Λt+k
Λt

)
=

0. Hence limk→∞(1/k)L
(
E

Λt+k
Λt

)
= limk→∞(1/k)ELt

(
E

Λt+k
Λt

)
. Given our assumptions, it can be shown directly that:

lim
k→∞

(1/k)

[
L

(
Λt+k
Λt

)
− L

(
Λ∗t+k
Λ∗t

)]
=

[
L

(
ΛP
t+1

ΛP
t

)
− L

(
ΛP,∗
t+1

ΛP,∗
t

)]
.

This result follows directly from the Alvarez-Jermann decomposition of the pricing kernel (see Alvarez and Jermann (2005)’s
proposition 6).

We offer a different, shorter proof that directly exploits the Hansen-Scheinkman decomposition of the pricing kernel, but
does not rely on the Alvarez-Jermann representation:

Λt+k
Λt

=
ΛP
t+k

ΛP
t

φ(Xt)

φ(Xt+k)eβk
.

Using a change of measure by exploiting the martingale property of the permanent component,

lim
k→∞

(1/k) logE
ΛP
t+k

ΛP
t

φ(Xt)

φ(Xt+k)eβk
= lim
k→∞

(1/k) log Ê
φ(Xt)

φ(Xt+k)eβk
= 1,

where the last step follows because X is a Markov process. We also know that

lim
k→∞

(1/k)E log
ΛP
t+k

ΛP
t

φ(Xt)

φ(Xt+k)eβk
= E log

ΛP
t+1

ΛP
t

.

As a result, we know that

lim
k→∞

(1/k)L

(
Λt+k
Λt

)
= 1− E log

ΛP
t+1

ΛP
t

= L

(
ΛP
t+1

ΛP
t

)
.

The same result can be derived in the framework of Alvarez and Jermann (2005), building on their Proposition 5. Alvarez and
Jermann (2005) show that, when the limits of the k-period bond risk premium and the yield difference between the k-period
discount bond and the one-period riskless bond (when the maturity k tends to infinity) are well defined and the unconditional

expectations of holding returns are independent of calendar time, then the average term premium E
[
limk→∞ rx

(k),∗
t+1

]
equals

the average yield spread E[limk→∞ y
(k),∗
t − y(1),∗

t ]. Substituting for the term premiums in Proposition 1 leads to:

E[y
(∞),∗
t ] + E[∆st+1] = E[y

(∞),∗
t ] + E

[
Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)]
.

Under regularity conditions, in a stationary environment, E[limk→∞
1
k

∑k
j=1 ∆st+j ] = limk→∞

1
k

∑k
j=1 E[∆st+j ] converges

to E[∆st+1]. Using this result also produces the proposition.

• Proof of Proposition 4:

First, following Alvarez and Jermann (2005), we establish a bound for the unconditional entropy of the permanent SDF
component:

L

(
ΛP
t+1

ΛP
t

)
≥ E (logRt+1)− E

(
logR

(∞)
t+1

)
.

Applying unconditional expectations on the two sides of the previously established conditional SDF entropy bound leads to:

Lt

(
Λt+1

Λt

)
≥ Et (logRt+1)− logRft ,

using the following property of entropy: for any admissible random variable X, it holds that

E [Lt(Xt+1)] = L(Xt+1)− L [Et(Xt+1)] .
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After some algebra, the following bound for the unconditional entropy of the SDF is obtained:

L

(
Λt+1

Λt

)
≥ L

(
1

Rft

)
+ E

(
log

Rt+1

Rft

)
.

To derive an expression for the unconditional entropy of the permanent SDF component, we need to decompose the uncon-
ditional SDF entropy. To do so, we start with the decomposition of the conditional SDF entropy,

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
logR

(∞)
t+1

)
− logRft ,

and apply unconditional expectations on both sides of the expression in order to obtain

L

(
Λt+1

Λt

)
= L

(
ΛP
t+1

ΛP
t

)
+ L

(
1

Rft

)
+ E

(
log

R
(∞)
t+1

Rft

)
,

using the fact that the permanent component of the pricing kernel is a martingale:

L

(
Et

ΛP
t+1

ΛP
t

)
= 0.

Using the above decomposition of unconditional SDF entropy, the unconditional entropy bound can be written as follows:

L

(
ΛP
t+1

ΛP
t

)
+ L

(
1

Rft

)
+ E

(
log

R
(∞)
t+1

Rft

)
≥ L

(
1

Rft

)
+ E

(
log

Rt+1

Rft

)
.

The Alvarez and Jermann (2005) unconditional bound follows immediately by rearranging the terms in the expression above.
Considering the unconditional covariance of the domestic and foreign permanent SDF components and using this bound
yields the unconditional expression of Proposition 4:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ Et

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
.

This result relies on the assumption that
ΛP
t+1

ΛP
t

and
Λ
P,∗
t+1

Λ
P,∗
t

are unconditionally lognormal and the entropy property

L(X) =
1

2
var(logX)

for any lognormal random variable X.

• Proof of Proposition 5:

Proof. As shown inAlvarez and Jermann (2005) (see the proof of Proposition 1), the return of the infinite maturity bond
reflects the transitory SDF component:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1.

The result of Proposition 5 follows directly from the no-arbitrage expression for the spot exchange rate when markets are
complete:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

.

In this case,

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

=
St
St+1

lim
k→∞

R
(k),∗
t+1
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k→∞

R
(k)
t+1

=
St
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ΛT
t

ΛT
t+1

ΛT,∗
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ΛT,∗
t

=
ΛP,∗
t+1

ΛP,∗
t

ΛP
t

ΛP
t+1

=
SP
t

SP
t+1

,

using the decomposition of exchange rate changes into a permanent and a transitory component:

St+1

St
=

(
ΛP
t+1

ΛP
t

ΛP,∗
t

ΛP,∗
t+1

)(
ΛT
t+1

ΛT
t

ΛT,∗
t

ΛT,∗
t+1

)
=
SP
t+1

SP
t

ST
t+1

ST
t

.
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The exposure of the domestic and foreign infinite-maturity bonds to transitory risk fully offsets the transitory component of
exchange rate changes, so only the exposure to the permanent part remains.

B Lustig, Roussanov, and Verdelhan (2014) Factor Model

This section provides details on the properties of bond and currency premia in the Lustig, Roussanov, and Verdelhan (2014) model.

SDF Decomposition The log nominal bond prices are affine in the state variable z and zw: p
i,(n)
t = −Ci,n0 −Cn1 zt−C

i,n
2 zwt .

To calculate the parameter set (Ci,n0 , Ci,n1 , Ci,n2 ), we follow the usual recursive process. In particular, the price of a one-period
nominal bond is:

P i,(1) = Et(M
i
t+1) = Et

(
e−α−χzt−τz

w
t −
√
γzitu

i
t+1−
√
δizwt u

w
t+1−
√
κzitu

g
t+1−π0−ηwzwt −σπε

i
t+1

)
.

As a result, C1
0 = α+ π0 − 1

2
σ2
π, C1

1 = χ− 1
2
(γ + κ), and Ci,12 = τ − 1

2
δi + ηw.

The rest of the bond prices are calculated recursively using the Euler equation: P
i,(n)
t = Et(M

i,$
t+1P

i,(n−1)
t+1 ). This leads to the

following difference equations:

−Ci,n0 − Cn1 zt − Ci,n2 zwt = −α− χzt − τzwt − Cn−1
0 − Cn−1

1 [(1− φ)θ + φzt]− Ci,n−1
2 [(1− φw)θw + φwzwt ]

+
1

2
(γ + κ)zt +

1

2

(
Cn−1

1

)2
σ2zt − σ

√
γCn−1

1 zt

+
1

2
δizwt +

1

2

(
Ci,n−1

2

)2

(σw)2 zwt − σw
√
δiCi,n−1

2 zwt

− π0 − ηwzwt +
1

2
σ2
π

Solving the equations above, we recover the set of bond price parameters:

Ci,n0 = α+ π0 −
1

2
σ2
π + Cn−1

0 + Cn−1
1 (1− φ)θ + Ci,n−1

2 (1− φw)θw,

Cn1 = χ− 1

2
(γ + κ) + Cn−1

1 φ− 1

2

(
Cn−1

1

)2
σ2 + σ

√
γCn−1

1

Ci,n2 = τ − 1

2
δi + ηw + Ci,n−1

2 φw − 1

2

(
Ci,n−1

2

)2

(σw)2 + σw
√
δiCi,n−1

2 .

The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

Pnt
= lim
n→∞

βt+neC
i,n
0 +Cn1 zt+C

i,n
2 zwt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005): 0 < limn→∞
Pnt
βn

< ∞. The
temporary pricing component of the SDF is thus equal to:

ΛT
t+1

ΛT
t

= βeC
∞
1 (zt+1−zt)+C

i,∞
2 (zwt+1−z

w
t ) = βe

C∞1

[
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√
zitu

i
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]
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i,∞
2 [(φw−1)(zwt −θ

w)−σ
√
zwt u

w
t+1].

The martingale component of the SDF is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χz
i
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√
γzitu

i
t+1−τz

w
t −
√
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w
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√
κzitu

g
t+1

e
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[
(φ−1)(zit−θ)−σ

√
zitu

i
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]
+C

i,∞
2 [(φw−1)(zwt −θ

w)−σ
√
zwt u

w
t+1].

As a result, we need χ = C∞1 (1−φ) to make sure that the country-specific factor does not contribute a martingale component. This
special case corresponds to the absence of permanent shocks to the SDF: when C∞1 (1−φ) = χ and κ = 0, the permanent component
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of the stochastic discount factor is constant. To see this result, let us go back to the implicit definition of B∞1 in Equation (26):

0 = −1

2
(γ + κ)− 1

2
(C∞1 )2 σ2 + σ

√
γC∞1

0 = (σC∞1 −
√
γ)2 ,

where we have imposed κ = 0. In this special case, C∞1 =
√
γ/σ. Using this result in Equation (26), the permanent component of

the SDF reduces to:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−τz
w
t −
√
δizwt u

w
t+1eC

i,∞
2 [(φw−1)(zwt −θ

w)−σ
√
zwt u

w
t+1].

Bond Premia The expected log excess return on a zero coupon bond is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Cn−1

1

)2
σ2 + σ

√
γCn−1

1 ]zt + [−1

2

(
Ci,n−1

2

)2

σ2 + σ
√
δ
i
Ci,n−1

2 ]zwt .

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(C∞1 )2 σ2 + σ

√
γC∞1 ]zt + [−1

2

(
Ci,∞2

)2

σ2 + σ
√
δ
i
Ci,∞2 ]zwt .

The − 1
2

(C∞1 )2 σ2 is a Jensen term. The term premium is driven by σ
√
γC∞1 zt, where C∞1 is defined implicitly in the second

order equation B∞1 = χ − 1
2
(γ + κ) + C∞1 φ − 1

2
(C∞1 )2 σ2 + σ

√
γC∞1 . Consider the special case of C∞1 (1 − φ) = χ and κ = 0 and

Ci,∞2 (1 − φ) = τ . In this case, the expected term premium is simply Et[rx
(∞)
t+1 ] = 1

2
(γzt + δzwt ), which is equal to one-half of the

variance of the log stochastic discount factor.

Currency Premia The expected log excess return of the infinite maturity bond of country i is:

Et[rx
(∞),i
t+1 ] =

[
C∞1 (1− φ)− χ+

1

2
(γ + κ)

]
zit +

[
Ci,∞2 (1− φw)− τ +

1

2
δi − ηw

]
zwt .

The foreign currency risk premium is given by:

Et[rx
FX,i
t+1 ] = −1

2
(γ + κ)(zit − zt) +

1

2
(δ − δi)(zwt ).

Investors obtain high foreign currency risk premia when investing in currencies whose exposure to the global shocks is smaller. That
is the source of short-term carry trade risk premia. The foreign bond risk premium in dollars is simply given by the sum of the two
expressions above:

Et[rx
(∞),i
t+1 ] + Et[rx

FX,i
t+1 ] =

[
1

2
(γ + κ)zt + (C∞1 (1− φ)− χ)zit

]
+

[
1

2
δ + Ci,∞2 (1− φw)− τ − ηw

]
zwt .

Simulation Results We simulate the Lustig, Roussanov, and Verdelhan (2014) model, obtaining a panel of T = 33600
monthly observations and N = 30 countries. The calibration parameters are reported in Table 3 and the simulation results in Table
4. Each month, the 30 countries are ranked by their interest rates (Section I) or by the slope of the yield curves (Section II) into
six portfolios. Low interest rate currencies on average have higher exposure δ to the world factor. As a result, these currencies
appreciate in case of an adverse world shocks. Long positions in these currencies earn negative excess returns (rxfx) of -4.09% per
annum. On the other hand, high interest rate currencies typically have high δ. Long positions in these currencies earn positive
excess returns (rxFX) of 2.35% per annum. At the short end, the carry trade strategy, which goes long in the sixth portfolio and
short in the first one, delivers an excess return of 6.45% and a Sharpe ratio of 0.54.

This spread is not offset by higher local currency bond risk premia in the low interest rate countries with higher δ. The log
excess return on the 30-year zero coupon bond is 0.67% in the first portfolio compared to 0.97 % in the last portfolio. At the 30-year
maturity, the high-minus-low carry trade strategy still delivers a profitable excess return of 6.75% and a Sharpe ratio of 0.50. This
large currency risk premium at the long end of the curve stands in stark contrast to the data. Similar results obtain when sorting
countries by the slopes of their yield curves. Countries with flat yield curves tend to be countries with high short-term interest
rates, while countries with steep yield curves tend to be countries with low short-term interest rates. As a result, the currency
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carry trade is long the last portfolio in Section II and short the first portfolio. At the 30-year maturity, the carry trade strategy
still delivers a profitable excess return of 6.18% and a Sharpe ratio of 0.46.

Our theoretical results help explain the shortcomings of this simulation. In Lustig, Roussanov, and Verdelhan (2014) calibration,
the conditions for long run bond parity are not satisfied. First, global shocks have permanent effects in all countries, because
Ci,∞2 (1 − φw) < τ + ηw for all i = 1, . . . , 30. Second, the global shocks are not symmetric, because δ varies across countries. The
heterogeneity in δ’s across countries generates substantial dispersion in exposure to the permanent component. As a result, our
long-run uncovered bond parity condition is violated.

Table 3: Parameter Estimates

Stochastic discount factor

α (%) χ τ γ κ δ

0.76 0.89 0.06 0.04 2.78 0.36

State variable dynamics

φ θ (%) σ (%) φw θw (%) σw (%)

0.91 0.77 0.68 0.99 2.09 0.28

Inflation dynamics Heterogeneity

ηw π0 (%) σπ (%) δh δl

0.25 −0.31 0.37 0.22 0.49

Implied SDF dynamics

E(Stdt(m̃)) Std(Stdt(m̃)) (%) E(Corr(m̃t+1, m̃
i
t+1)) Std(z) (%) Std(zw) (%)

0.59 4.21 0.98 0.50 1.32

Notes: This table reports the parameter values for the estimated version of the model. The model is defined by the following set of equations:

−m̃it+1 = α+ χzit +
√
γzitu

i
t+1 + τzwt +

√
δizwt u

w
t+1 +

√
κzitu

g
t+1,

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1,

πit+1 = π0 + ηwzwt + σπε
i
t+1.

All countries share the same parameter values except for δi, which is distributed uniformly on [δh, δl]. The home country exhibits the average
δ, which is equal to 0.36.
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Table 4: Simulated Excess Returns on Carry Strategies in the Lustig, Roussanov, and Verdelhan (2014) Model

Low 2 3 4 5 High

Section I: Sorting by Interest Rate Levels

Panel A: Exchange Rates, Interest Rates, and Bond Returns

∆s 1.93 0.79 0.44 0.06 −0.16 −0.85

σ∆s 11.04 9.55 9.06 8.98 9.02 9.54

rf,∗ − rf −2.16 −1.21 −0.63 −0.10 0.43 1.50

rx(30),∗ 0.67 0.75 0.79 0.89 0.93 0.97

Panel B: Carry Returns with Short-Term Bills

rxFX −4.09 −2.00 −1.06 −0.16 0.59 2.35

Panel C: Carry Returns with Long-Term Bonds

rx(30),$ −3.42 −1.25 −0.27 0.72 1.52 3.33

Section II: Sorting by Interest Rate Slopes

Panel A: Exchange Rates, Interest Rate Slopes, and Bond Returns

∆s −2.06 −1.12 −0.49 −0.03 0.50 1.92

σ∆s 11.35 9.60 8.97 8.84 8.95 9.93

y10 − y1/4 −0.87 −0.42 −0.13 0.12 0.38 1.03

rx(30),∗ 0.87 0.87 0.86 0.87 0.86 0.84

Panel B: Carry Returns with Short-Term Bills

rxFX 3.23 1.78 0.83 0.08 −0.76 −2.92

Panel C: Carry Returns with Long-Term Bonds

rx(30),$ 4.09 2.65 1.69 0.94 0.11 −2.09

Notes: The table reports summary statistics on simulated data from the Lustig, Roussanov, and Verdelhan (2014) model. Data are obtained
from a simulated panel with T = 33600 monthly observations and N = 30 countries. In Section I, countries are sorted by interest rates into
six portfolios. In Section II, they are sorted by the slope of their yield curves (defined as the difference between the 10-year yield and the
three-month yield). In each section, Panel A reports the average change in exchange rate (∆s), the average interest rate difference (rf,∗ − rf )
(or the average slope, y10− y1/4), the average foreign bond excess returns for bonds of 30-year maturities in local currency (rx(30),∗). Panel B
reports the average log currency excess returns (rxFX). Panel C reports the average foreign bond excess returns for bonds of 30-year maturities
in home currency (rx(30),$). The moments are annualized.

C Structural General Equilibrium Models

This section of the Appendix presents the details of SDF decomposition for three classes of structural general equilibrium models:
models with external habit formation, models with long run risks, and models with rare disasters.
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C.1 External habit model

The equilibrium log risk-free rate is

rft = −Et
(

log
Λt+1

Λt

)
− Lt

(
Λt+1

Λt

)
= − log δ + γg + γ(1− φ)(s̄− st)−

1

2
γ2σ2(1 + λ(st))

2,

which can be also written as

rft = − log δ + γg +
1

2
(B − γ(1− φ)) +B(s̄− st) = − log δ + γg − 1

2

γ2σ2

S̄2
+B(s̄− st).

Therefore, if B = 0, the log risk-free rate is constant: the intertemporal smoothing effect is exactly offset by the precautionary
savings effect. If, on the other hand, B 6= 0, then the log risk-free rate is perfectly correlated with the surplus consumption ratio s:
it is negatively correlated with s (and hence countercyclical) if B > 0, and positively correlated with s (and hence procyclical) if
B < 0. This is because, if B > 0, the intertemporal smoothing effect dominates the precautionary savings effect: when s is above
its steady-state level, mean-reversion implies that marginal utility is expected to increase in the future, incentivizing agents to save
and decreasing interest rates. On the other hand, if B < 0, the precautionary savings motive dominates, so agents save more when
s is low and marginal utility is more volatile.

To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ of the form

φ(s) = ecs,

where c is a constant. Then, the (one-period) eigenfunction problem can be written as

Et [exp(log δ − γ (g + (φ− 1)(st − s̄) + (1 + λ(st))εt+1) + cst+1)] = exp(β + cst)

which, after some algebra, yields

log δ − γg − γ(φ− 1)(st − s̄) + c(1− φ)s̄+ cφst +
σ2

2
((c− γ)(1 + λ(st))− c)2 = β + cst.

Setting c = γ, the expression above becomes

log δ − γg − γ(φ− 1)(st − s̄) + γ(1− φ)s̄+ γφst +
γ2σ2

2
= β + γst,

and, matching the constant terms, we get

β = log δ − γg +
γ2σ2

2
.

Therefore, the transitory component of the pricing kernel is

ΛT
t = eβt−cst ,

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ−c(st+1−st) = elog δ−γg+ γ2σ2

2
−γ((1−φ)(s̄−st)+λ(st)εt+1),

and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= elog δ−γ(g+(φ−1)(st−s̄)+(1+λ(st))εt+1)e− log δ+γg− γ
2σ2

2
+γ((1−φ)(s̄−st)+λ(st)εt+1)

= e−
γ2σ2

2
−γεt+1 .

In the Campbell and Cochrane (1999) model, the permanent SDF component reflects innovations in consumption growth,
which permanently affect the level of consumption, whereas the transitory SDF component is driven by innovations in the surplus
consumption ratio, which is a stationary variable. However, the two types of innovations are perfectly correlated by assumption, so
the two SDF components exhibit positive comovement: a negative consumption growth innovation not only permanently reduces
the level of consumption, but also transitorily decreases the surplus consumption ratio of the agent, increasing the local curvature
of her utility function. As a result, a negative consumption growth shock implies a positive shock for both SDF components.
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Finally, we consider the properties of the SDF and its components. In each country, the conditional entropy of the SDF is
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=
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the conditional entropy of the permanent SDF component is
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)
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,

and the conditional entropy of the transitory SDF component is
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(
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)
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(
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2
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2.

Notably, the permanent SDF component has constant conditional entropy, whereas the conditional entropy of both the SDF and
the transitory SDF component are time varying, as they are functions of the log surplus consumption ratio s. It follows that the
conditional term premium, in local currency terms, is

Et
[
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(∞)
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= Lt
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]
.

C.2 Long-Run Risks Model

We consider two versions of the model: a homeskedastic version, in which ut = θu and wt = θw for all t, and the full heteroskedastic
version presented in the main text.

Homoskedastic Version We start with the homoskedastic version. We can show that the log SDF has a law of motion
given by

log
Λt+1

Λt
= A0 +A1xt +B1

√
θuεct+1 +B2

√
θwεxt+1,

where {A0, A1, B1, B2} are constants, the values of which are reported in Panel A of Table 5. If the agent has preferences for early
resolution of uncertainty (in which case γ > 1

ψ
), then B2 < 0, so a positive shock in the predictable component of consumption

growth decreases marginal utility. On the other hand, if the agent prefers early resolution of uncertainty (γ < 1
ψ

), then B2 > 0.
The equilibrium log risk-free rate is
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)
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)
= −A0 −A1xt −
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2
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2θ
w),

so it is positively associated with x, the predictable component of consumption growth: when the drift of consumption growth is
above its unconditional mean, the risk-free rate is also above its time-series average.

In order to decompose the SDF, we use the guess and verify method. We guess an eigenfunction φ of the form

φ(x, u, w) = ecx

where c is a constant. Then, the (one-period) eigenfunction problem can be written as

Et

[
exp(log

Λt+1

Λt
+ cxt+1)

]
= exp(β + cxt)

which, exploiting the log-normality of the term inside the expectation, implies

Et

(
log

Λt+1

Λt
+ cxt+1

)
+

1

2
vart

(
log

Λt+1

Λt
+ cxt+1

)
= β + cxt.

After some algebra, matching terms yields

β = A0 +
1

2
B1

2θu +
1

2
(B2 + c)2θw,

c =
A1

1− φx = − 1

ψ

1

1− φx < 0.
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The transitory component of the pricing kernel is
ΛT
t = eβt−cxt

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ+c(1−φx)xt−c
√
θwεxt+1 = eβ+A1xt−c

√
θwεxt+1

and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= eA0+A1xt+B1

√
θuεct+1+B2

√
θwεxt+1e−β−A1xt+c

√
θwεxt+1 ,

or, after some algebra,

ΛP
t+1

ΛP
t

= e−
1
2
B1

2θu− 1
2

(B2+c)2θw+B1

√
θuεct+1+(B2+c)

√
θwεxt+1 .

Both SDF components are exposed to the consumption drift innovation εx, but only the permanent SDF component is exposed to
the consumption growth innovation εc. As a result, overall SDF and the permanent SDF component have identical loadings on the
consumption growth shock. However, the dependence on the consumption drift shock depends on the agent’s preferences towards
uncertainty resolution. If the agent prefers early resolution of uncertainty (γ > 1

ψ
), then a negative consumption drift shock (εx < 0)

is associated with an increase of the agent’s overall SDF and its permanent component and a decline of its transitory component:
the loading of the overall log SDF on εx is B2

√
θw < 0, the loading of the permanent SDF component is (B2 + c)

√
θw < B2

√
θw < 0

and the loading of the log transitory SDF component is −c
√
θw > 0. This is because the long-run effect of a consumption drift

innovation in the pricing kernel (captured by the permanent SDF component) is higher than its short-run effect (captured by the
overall SDF). Intuitively, a negative consumption drift shock lowers marginal utility in the long run both through an immediate
decline in the continuation utility (reflected in the overall SDF) and through the cumulative effect of a persistent reduction in x,
which is equal to − 1

ψ

∑∞
j=0(φx)j

√
θw = − 1

ψ
1

1−φx
√
θw = c

√
θw.

Conditional SDF entropy is constant, given by

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2θu +B2
2θw

)
.

The conditional entropy of the permanent SDF component is also constant, and equal to

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2θu + (B2 + c)2θw
)
,

and the conditional entropy of the transitory SDF component is

Lt

(
ΛT
t+1

ΛT
t

)
=

1

2
vart

(
log

ΛT
t+1

ΛT
t

)
=

1

2
c2θw.

Notably, the transitory and permanent SDF components are exposed to the expected consumption growth innovation εx, but only
the permanent SDF component is exposed to the consumption growth innovation εc. As a result, the overall SDF and the the
permanent SDF component have identical loadings on the consumption growth shock. However, the dependence on the consumption
drift shock depends on the agents’ attitude towards the resolution of uncertainty

The conditional term premium, in local currency terms, is constant, and equal to

Et
[
rx

(∞)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
= − c

2
(c+ 2B2) ,

so if the agent prefers early resolution of uncertainty (γ > 1
ψ

, so B2 < 0), the conditional term premium is negative. This is
because negative consumption drift shocks increase long-run marginal utility more than they increase short-run marginal utility, so
long-term bonds hedge long-run risk, as their price increases upon realization of negative consumption drift shocks.

Heteroskedastic Version In this full version of the model, the log SDF follows the law of motion:

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utε

c
t+1 +B2

√
wtε

x
t+1 +B3ε

u
t+1 +B4ε

w
t+1,
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Table 5: Pricing Kernel Loadings in the Long Run Risks Model

Loadings Parameters Loadings Parameters
Panel A: Homoskedastic Model

log
Λt+1

Λt
= A0 +A1xt +B1

√
θuεct+1 +B2

√
θwεxt+1.

A1 − 1
ψ

B1 −γ
B2

(
1
ψ
− γ
)

κ
1−κφx

Transitory Component log ΛT
t = βt− cxt

c1
A1

1−φx β A0 + 1
2
B1

2θu + 1
2

(B2 + c)2θw,

Panel B: Heteroskedastic Model

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utεct+1 +B2

√
wtεxt+1 +B3εut+1 +B4εwt+1.

A1 − 1
ψ

B1 −γ
A2

(
1
ψ
− γ
)
γ−1

2
B2

(
1
ψ
− γ
)

κ
1−κφx

A3

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2
B3

(
1
ψ
− γ
)

1−γ
2

κ
1−κφu σ

u

B4

(
1
ψ
− γ
)(

κ
1−κφx

)2
κ

1−κφw σ
w.

Transitory Component log ΛT
t = βt− c1xt − c2ut − c3wt

c1
A1

1−φx c2
A2+ 1

2
B2

1

1−φu

c3
A3+ 1

2
(B2+

A1
1−φx )2

1−φw β A0 + c2(1− φu)θu + c3(1− φw)θw + 1
2

(B3 + c2σu)2 + 1
2

(B4 + c3σw)2.

Notes: Pricing kernel loading parameters in the long run risks model. Parameter κ is defined as κ ≡ δe

(
1− 1

ψ

)
m̄

1−δ+δe
(
1− 1

ψ

)
m̄

, where m̄ is the point

around which a log-linear approximation is taken (see Engel (2016) for details); if m̄ = 0, then κ = δ.
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where {A0, A1, A2, A3, B1, B2, B3, B4} are constants, the values of which are reported in Panel B of Table 5. As usual, we assume
that the agent has preferences for early resolution of uncertainty (γ > 1

ψ
), so B2 < 0.

The equilibrium log risk-free rate is

rft = −Et
(

log
Λt+1

Λt

)
− Lt

(
Λt+1

Λt

)
= −A0 −A1xt −A2ut −A3wt −

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2) ,

or

rft = −A0 −
1

2

(
B3

2 +B4
2)−A1xt −

(
A2 +

B1
2

2

)
ut −

(
A3 +

B2
2

2

)
wt,

or

rft = −A0 −
1

2

(
B3

2 +B4
2)+

1

ψ
xt −

1

2

(
γ − 1

ψ
+ γ

)
ut −

1

2

(
1

ψ
− γ
)(

1

ψ
− 1

)(
κ

1− κφx

)2

wt.

Thus, the risk-free rate is positively associated with x, the predictable component of consumption growth, due to the intertemporal
smoothing effect, and negatively associated with u, the conditional variance of the consumption growth shock, as the intertemporal
smoothing effect is dominated by the precautionary savings effect. Finally, the sign of the relationship between the risk-free rate
and w, the conditional variance of the consumption drift shock, depends on the value of the IES parameter: if ψ > 1, then the
relationship is negative, as the precautionary savings effect dominates, whereas if ψ < 1, then the relationship is positive, as the
intertemporal smoothing effect dominates.

To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ of the form

φ(x, u, w) = ec1x+c2u+c3w

where {c1, c2, c3} are constants. Then, the (one-period) eigenfunction problem can be written as

Et

[
exp(log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1)

]
= exp(β + c1xt + c2ut + c3wt)

which, exploiting the log-normality of the term inside the expectation, implies

Et

(
log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1

)
+

1

2
vart

(
log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1

)
= β + c1xt + c2ut + c3wt.

After some algebra, matching terms yields

β = A0 + c2(1− φu)θu + c3(1− φw)θw +
1

2
(B3 + c2σ

u)2 +
1

2
(B4 + c3σ

w)2

c1 = A1 + c1φ
x

c2 = A2 + c2φ
u +

1

2
B2

1

c3 = A3 + c3φ
w +

1

2
(B2 + c1)2

so

c1 =
A1

1− φx = − 1

ψ

1

1− φx < 0,

c2 =
A2 + 1

2
B2

1

1− φu =
1

2

(
γ − 1

ψ
+ γ

)
1

1− φu > 0,

c3 =
A3 + 1

2
(B2 + c1)2

1− φw =

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2

+ 1
2

((
1
ψ
− γ
)

κ
1−κφx −

1
ψ

1
1−φx

)2

1− φw > 0,

where the sign for c2 and c3 is determined under the assumption that γ > 1
ψ

. The transitory component of the pricing kernel is

ΛT
t = eβt−c1xt−c2ut−c3wt ,

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ+c1(1−φx)xt−c2(1−φu)(θu−ut)−c3(1−φw)(θw−wt)−c1
√
wtε

x
t+1−c2σ

uεut+1−c3σ
wεwt+1 ,
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and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= eA0+A1xt+A2ut+A3wt+B1
√
utε

c
t+1+B2

√
wtε

x
t+1+B3ε

u
t+1+B4ε

w
t+1 ×

e−β−c1(1−φx)xt+c2(1−φu)(θu−ut)+c3(1−φw)(θw−wt)+c1
√
wtε

x
t+1+c2σ

uεut+1+c3σ
wεwt+1 ,

or, after some algebra,

ΛP
t+1

ΛP
t

= e−(1/2)(B3+c2σ
u)2−(1/2)(B4+c3σw)2−(1/2)B2

1ut−(1/2)(B2+c1)2wt ×

eB1
√
utε

c
t+1+(B2+c1)

√
wtε

x
t+1+(B3+c2σ

u)εut+1+(B4+c3σ
w)εwt+1 .

In summary, both SDF components are exposed to the consumption drift innovation εx, the consumption growth variance innovation
εu, and the consumption drift variance innovation εw, but only the permanent SDF component is exposed to the consumption growth
innovation εc. As a result, overall SDF and the permanent SDF component have identical loadings on the consumption growth
shock. However, the dependence on the rest of the innnovations depends on the agent’s preferences regarding the resolutions of
uncertainty. If the agent prefers early resolution (γ > 1

ψ
), we have c1 < 0, c2 > 0 and c3 > 0.

We can start with exposure to consumption drift shocks. Since B2 < 0, c1 < 0 implies that the permanent SDF component
is more sensitive to consumption drift shocks than the total SDF, while the transitory SDF component has the opposite sign. For
example, a negative consumption drift shock (εx < 0) is associated with an increase of the agent’s overall SDF and its permanent
component and a decline of its transitory component. This is because the long-run effect of a consumption drift innovation in
the pricing kernel (captured by the permanent SDF component) is higher than its short-run effect (captured by the overall SDF).
Intuitively, a negative consumption drift shock lowers marginal utility in the long run both through an immediate decline in the
continuation utility (reflected in the overall SDF) and through the cumulative effect of a persistent reduction in x, which is equal
to − 1

ψ

∑∞
j=0(φx)j

√
θw = − 1

ψ
1

1−φx
√
θw = c1

√
θw.

As regards the two variance shocks, whether long-run marginal utility reacts more or less than short-run marginal utility
depends on the sign of B3 and B4. If γ > 1, i.e. the agent is more risk-averse than a log utility investor, then B3 > 0 and B4 > 0,
so short-run marginal utility increases upon realization of any positive variance shock. Thus, c2 > 0 and c3 > 0 imply that long-run
marginal utility reacts more than short-run marginal utility: when either εu > 0 or εw > 0, the permanent SDF component increases
more than total SDF, with the transitory SDF component declining. On the other hand, if γ < 1, then B3 < 0 and B4 < 0, in which
case short-run marginal utility declines upon realization of any positive variance shock. As a result, c2 > 0 and c3 > 0 imply that
long-run marginal utility reacts less than short-run marginal utility: when either εu > 0 or εw > 0, the permanent SDF component
declines less than total SDF, as the transitory SDF component also falls.

Conditional SDF entropy is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2) ,

whereas the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2ut + (B2 + c1)2wt + (B3 + c2σ
u)2 + (B4 + c3σ

w)2) .
For conditional SDF entropy to be identical across countries, it is sufficient that the conditional variances u and w are identical

across countries, that B1 = B∗1 and B2 = B∗2 (i.e. that γ = γ∗ and
(

1
ψ
− γ
)

δ
1−δφx =

(
1
ψ∗ − γ

∗
)

δ∗

1−δ∗φx,∗ ), and that (B3 + c2σ
u)2 +

(B4 + c3σ
w)2 = (B∗3 + c∗2σ

u,∗)2 + (B∗4 + c∗3σ
w,∗)2. For the conditional entropy of the permanent SDF component to be identical

across countries, we need B2 + c1 = B∗2 + c∗1 instead of B2 = B∗2 . Therefore, we will have non-identical SDF entropy and identical
entropy of the permanent SDF component across countries if B2 + c1 = B∗2 + c∗1 and c1 − c∗1 = B∗2 − B2 6= 0. For example, those
conditions are satisfied if γ = γ∗, δ = δ∗ and ψ = ψ∗, but φx 6= φx,∗ such that (1− δφx)(1− δφx,∗) = δ2(1− γψ)(1− φx)(1− φx,∗).

Finally, the term premium, in local currency terms, is

Et
[
rx

(∞)
t+1

]
=

1

2

(
B2

2 − (B2 + c1)2)wt +
1

2

(
B3

2 − (B3 + c2σ
u)2)+

1

2

(
B4

2 − (B4 + c3σ
w)2) .

Following the discussion above, if γ > 1
ψ

(in which case B2 < 0), then the conditional term premium is negatively associated with w,
the variance of the consumption growth drift. This is because negative consumption drift shocks increase long-run marginal utility
more than they increase short-run marginal utility, so long-term bonds hedge long-run risk, as their price increases upon realization
of negative consumption drift shocks. Therefore, the higher the conditional volatility of those shocks, the more attractive long-term
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bonds are as a hedging asset, and the lower risk premium they earn.

C.3 Disasters Model

In the Farhi and Gabaix (2016) rare disasters model, the SDF has law of motion

Λt+1

Λt
=

Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt
,

where
Λ∗t+1

Λ∗t
= e−R ×

{
1, if there no disaster at t+ 1

B−γt+1, if there is a disaster at t+ 1

is the global numeraire SDF,

ωt+1

ωt
= egω ×

{
1, if there is no disaster at t+ 1

Ft+1, if there is a disaster at t+ 1

is the productivity growth of the country, and x is defined as xt ≡ e−h∗Ĥt, where Ĥ is the time-varying component of the

resilience of the country, to be discussed below. Finally, A ≡ e−R−λ+gω+h∗

1−e−R−λ+gω+h∗−φH
, where λ is the investment depreciation rate, and

h∗ ≡ log(1 +H∗). Finally, we assume that R+ λ− gω − h∗ > 0, so A > 0.
Resilience is defined as

Ht = H∗ + Ĥt = ptE
D
t

[
Bγt+1Ft+1 − 1

]
,

where pt is the conditional probability of a disaster occurring next period and EDt is the period t expectation conditional on a
disaster occurring next period. The time-varying component of resilience has law of motion

Ĥt+1 =
1 +H∗
1 +Ht

e−φH Ĥt + εHt+1,

with the conditional expectation of εH being zero independently of the realization of a disaster. As a result, the conditional
expectation of x is

Et(xt+1) = e−φH
xt

1 + xt
.

The equilibrium log risk-free rate is

rft = − logEt

(
Λt+1

Λt

)
= (R− gω − h∗) + log

(
1 +Axt

1 + (Ae−φH + 1)xt

)
,

so it is decreasing in x.
To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ of the form

φ(x) =
c+ x

1 +Ax
,

where c is a constant.20 Then, the (one-period) eigenfunction problem can be written as

Et

[
Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

which yields

Et
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ωt

]
Et

[
1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

so

e−R+gω+h∗(1 + xt)Et

[
1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

.

The expression above becomes:
e−R+gω+h∗(1 + xt)Et [c+ xt+1] = eβ(c+ xt),

20It can be shown that conjecturing the more general eigenfunction φ(x) = c1+c2x
1+Ax

, where c1 and c2 are constants, leads to same
SDF decomposition as the one derived below.
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so, plugging in the expression for the conditional expectation of x, we get

e−R+gω+h∗(1 + xt)

(
c+ e−φH

xt
1 + xt

)
= eβ(c+ xt),

which yields
β = −R+ gω + h∗

and
c = 1− e−φH .

The lower bound of x is e−φH − 1, so c+ xt > 0 for all t; thus, the conjectured eigenfunction is strictly positive, as required. The
transitory component of the pricing kernel is

ΛT
t = eβt

1 +Axt
c+ xt

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ
1 +Axt+1

c+ xt+1

c+ xt
1 +Axt

= e−R+gω+h∗ 1 +Axt+1

1 +Axt
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and the permanent SDF component is

ΛP
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ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= eR−gω−h∗
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ωt+1

ωt

c+ xt+1

c+ xt
.

The transitory SDF component is only exposed to resilience shocks (εH), but not to disaster risk; the entirety of the disaster risk for
marginal utility is reflected in the permanent SDF component, as disasters permanently affect the future level of marginal utility.

We can now calculate the conditional entropy of the SDF and its components. It holds that

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1
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,

so we can write
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)
= Lt
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ωt+1

ωt

)
+ Lt

(
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)
.

After some algebra, we get

Lt
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)
= log(1 +Ht)− ptEDt

[
log(Bγt+1Ft+1)

]
+ Lt

(
1 +Axt+1
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)
.

Similarly, the conditional entropy of the permanent SDF component is

Lt

(
ΛP
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ΛP
t

)
= log(1 +Ht)− ptEDt

[
log(Bγt+1Ft+1)

]
+ Lt
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.

Therefore, the conditional term premium, in local currency terms, is

Et
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.
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