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In this paper, we show that the term structure of currency carry trade risk premia is

downward-sloping: the returns to the currency carry trade are much smaller for bonds with

longer maturities. We derive a preference-free condition that links foreign and domestic long-

term bond returns, expressed in a common currency, to the permanent components of the

pricing kernels. The downward-sloping term structure of average carry trade returns is therefore

informative about the temporal nature of risks that investors face in currency markets.

Carry trades at the short end of the maturity curve are akin to selling Treasury bills in

funding currencies and buying Treasury bills in investment currencies. The exchange rate is

here the only source of risk. The set of funding and investment currencies can be determined

by the level of short-term interest rates or the slope of the yield curves, as noted by Ang and

Chen (2010). Likewise, carry trades at the long end of the maturity curve are akin to selling

long-term bonds in funding currencies and buying long-term bonds in investment currencies.

Each leg of the trade is subject to exchange rate and interest rate risk. The log return on a

foreign bond position (expressed in U.S. dollars) in excess of the domestic (i.e., U.S.) risk-free

rate is equal to the sum of the log excess bond return in local currency plus the return on a

long position in foreign currency. Therefore, average foreign bond excess returns converted in

domestic currency are the sum of a local bond term premium and a currency risk premium. The

absence of arbitrage has clear theoretical implications for those two risk premia.

On the one hand, at the short end of the maturity curve, currency risk premia are high when

there is less risk in foreign countries’ pricing kernels than at home (Bekaert, 1996; Bansal, 1997;

and Backus, Foresi, and Telmer, 2001). On the other hand, at the long end of the maturity curve,

local bond term premia compensate investors for the risk associated with temporary innovations

to the pricing kernel (Bansal and Lehmann, 1997; Alvarez and Jermann, 2005; Hansen, Heaton,

and Li, 2008; Hansen, 2009; Hansen and Scheinkman, 2009; and Bakshi and Chabi-Yo, 2012 ).

In this paper, we combine those two insights to derive three preference-free theoretical re-

sults that rely only on the absence of arbitrage in international financial markets. First, the

difference between domestic and foreign long-term bond risk premia, expressed in domestic cur-

rency terms, is pinned down by the entropies of the permanent components of the domestic and
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foreign stochastic discount factors (SDF). This is due to the fact that the currency exposure

completely hedges the exposure of the long-short strategy in long-term bonds to the ‘unshared’

temporary pricing kernel shocks. Second, when permanent shocks are fully shared across coun-

tries and therefore exchange rates are driven by temporary innovations, bond returns in dollars

are identical across countries, date by date. We refer to this condition as the uncovered bond

return parity condition and test it in the data. Third, we derive a lower bound on the covariance

between the domestic and foreign permanent components of the pricing kernels when they are

lognormal. The lower bound depends on the difference between the maximum log return and

the return on a long-term bond in the domestic and foreign countries, as well as the volatility

of the permanent component of exchange rate changes. These three results suggest a novel look

at actual bond returns across countries.

We study the uncovered bond return parity condition both in the cross-section and in the

time-series of foreign bond returns. The theoretical results pertain to risk-free zero-coupon bonds

with infinite maturity: those characteristics are not available in practice, and thus we rely on

long-term government bonds of developed countries. Our data pertain to either long time-series

of G10 sovereign coupon bond returns over the 12/1950–12/2012 sample, or a shorter sample

(12/1971–12/2012) of G10 sovereign zero-coupon yield curves. Although we do not observe

infinite maturity bonds in either case, we find significant differences in carry trade returns

across maturities.

Between 12/1950 and 12/2012, the portfolio of flat-slope (mostly high short-term interest

rate) currencies yields a one-month currency risk premium of 3.0% and a local term premium of

−1.8% per annum (which sum to a bond premium of 1.2%). Over the same period, the portfolio

of steep-slope (mostly low short-term interest rate) currencies yields a currency risk premium

of 0.05% and a local term premium of 4.0% (which sum to a bond premium of 4.05%). The

average spread in dollar Treasury bill returns between the low slope and high slope portfolios is

thus 2.95% (3.0%− 0.05%) for Treasury bills, but it is −2.85% (1.2%− 4.05%) for the 10-year

bond portfolios. Countries with a high currency risk premium tend to have a low bond term

premium. The profitable bond strategy therefore involves shorting the carry trade currencies
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and going long in the funding currencies. We obtain similar results when sorting countries by

the level of their short-term interest rates: the risk premia at the long end of the maturity

curve are significantly smaller that those at the short end, as the difference in local currency

bond term premia largely offsets the currency risk premium. As a result, the average returns

on foreign long-term bonds, once converted into U.S. dollars are small and rarely statistically

different from the average return on U.S. long-term bonds, as the uncovered bond return parity

condition implies on average.

The long-run uncovered bond parity condition is a better fit in the cross-section on average

than in the time series. In the post-Bretton Woods period, an 1% increase in U.S. long-term

bond returns increases foreign bond returns in dollars by an average of 0.38%. The exchange

rate exposure accounts for almost a third of this effect: the dollar appreciates on average against

a basket of foreign currencies when the U.S. bond returns are lower than average, and vice-versa,

except during flight-to-liquidity episodes. While we reject the long-run uncovered bond return

parity condition in the time series, we do find a secular increase in the sensitivity of foreign

long-term bond returns to U.S. bond returns over time, consistent with an increase in the risk-

sharing of permanent shocks in international financial markets. After 1991, an 1% increase in

U.S. long-term bond returns increases foreign bond returns in dollars by 0.48% on average. Since

bond returns expressed in dollars do not move one for one in the time-series, permanent shocks

to the foreign and domestic pricing kernels must not be perfectly shared.

To shed additional light on the nature of international risk sharing, we therefore decompose

exchange rates into their permanent and transitory components. Alvarez and Jermann (2005),

Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009), and Bakshi and Chabi-Yo

(2012) have explored the implications of such a decomposition of domestic pricing kernels for

asset prices. Given that exchange rates express differences in pricing kernels across countries,

the pricing kernel decomposition implies that exchange rate changes can be also broken into

two components, one that encodes cross-country differences in the permanent SDF components

and one that reflects differences in the transitory components. Data on long-maturity bond

returns allow us to extract the time series for two exchange rate components for a cross-section
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of exchange rates. The characteristics of the permanent components of exchange rates are then a

key ingredient to compute our lower bound on the covariance between the domestic and foreign

permanent components of the pricing kernels.

We find that the two exchange rate components contribute about equally to the volatility of

exchange rate changes, implying that internationally unshared pricing kernel transitory shocks

are equally important to unshared permanent shocks for exchange rate determination. This

finding contrasts with previous results obtained on domestic markets. From the relative size of

the equity premium (large) and the term premium (small), Alvarez and Jermann (2005) infer

that almost all the variation in stochastic discount factors arises from permanent fluctuations.

Since permanent fluctuations are an order of magnitude larger than transitory fluctuations, our

findings imply that countries share permanent shocks to a much larger extent than transitory

fluctuations. Indeed, we show that the implied correlation of the transitory stochastic discount

factor components, although positive, is much lower than the implied correlation of state prices,

as calculated in Brandt, Cochrane, and Santa-Clara (2006). We also find that the two exchange

rate components are negatively correlated with each other: permanent innovations that raise

the state price of a given country relative to that of a foreign country tend to be partly offset

by unshared transitory innovations.

Our paper is related to three large strands of the literature: the extent of international

risk-sharing, the carry trade returns, and the term premia across countries.

The nature of international risk sharing is a key question in macroeconomics, and the object

of a fierce debate (see, for example, Cole and Obstfeld, 1991; van Wincoop, 1994; Lewis, 2000;

Gourinchas and Jeanne, 2006; Coeurdacier, Rey, and Winant, 2013). The welfare gains from

removing all aggregate consumption uncertainty are large, but almost exclusively due to the low

frequency component in consumption, not the business cycle component (Alvarez and Jermann,

2004). While international risk sharing gains may not have been fully exploited, our finding that

the bulk of the persistent shocks to the pricing kernel are effectively traded away in international

financial markets suggests that the potential gains may be smaller than commonly assumed.

As pointed out by Brandt, Cochrane, and Santa-Clara (2006), the combination of relatively
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smooth exchange rates (10% per annum) and much more volatile stochastic discount factors

(50% per annum) implies that state prices are highly correlated across countries (at least 0.98).

Colacito and Croce (2011) argue that only the persistent component of consumption growth is

highly correlated across countries. Lewis and Liu (2012) reach a similar conclusion. Our findings

provide model-free evidence in support of the view that the bulk of permanent shocks are shared

across countries.

Our paper builds on the vast literature on uncovered interest rate parity condition (UIP)

and the currency carry trade [Engel (1996), and Lewis (2011) provide recent surveys]. We

derive general conditions under which long-run UIP follows from the absence of arbitrage: if all

permanent shocks to the pricing kernel are common, then foreign and domestic yield spreads

in dollars on long maturity bonds will be equalized, regardless of the properties of the pricing

kernel. Chinn and Meredith (2004) document some time-series evidence that supports UIP

at longer holding periods. Lustig, Roussanov, and Verdelhan (2011) show that asymmetric

exposure to global innovations to the pricing kernel are key to understanding the global currency

carry trade premium. They identify innovations in the volatility of global equity markets as

candidate shocks, while Menkhoff, Sarno, Schmeling, and Schrimpf (2012) propose the volatility

in global currency markets instead. Building on the reduced-form model of Lustig, Roussanov,

and Verdelhan (2011), we show in closed forms that if there is no heterogeneity in the loadings

of the permanent, global component of the SDF, then the foreign term premium, once converted

in U.S. dollars is the same as the U.S. term premium.

In closely related work, Koijen, Moskowitz, Pedersen, and Vrugt (2012) and Wu (2012)

examine the currency-hedged returns on ‘carry’ portfolios of international bonds, sorted by

a proxy for the carry on long-term bonds, but they do not examine the interaction between

currency and term risk premia, the topic of our paper. We focus on portfolios sorted by interest

rates, as well as yield spreads, since it is well-know since Campbell and Shiller (1991) that yield

spreads can predict excess returns on bonds. As already noted, Ang and Chen (2010) were the

first to show that yield curve variables can also be used to forecast currency excess returns, but

these authors do not examine the returns on foreign bond portfolios. Dahlquist and Hasseltoft
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(2013) study international bond risk premia in an affine asset pricing model and find evidence

for local and global risk factors. Jotikasthira, Le, and Lundblad (2012) report similar findings.

Our paper revisits the empirical evidence on bond returns without committing to a specific term

structure model.

The rest of the paper is organized as follows. In Section 1, we derive the no-arbitrage,

preference-free theoretical restrictions imposed on currency and term risk premia. In Section

2, we provide three simple theoretical examples. In Section 3, we examine the cross-section of

bond excess returns in local currency and in U.S. dollars and contrasts it to the cross-section

of currency excess returns. In Section 4, we test the uncovered bond return parity condition

in the time-series. In Section 5, we decompose exchange rate changes into a permanent and

a temporary component and links their properties to the extent of risk-sharing. In Section 6,

we present concluding remarks. The Online Appendix contains all proofs and supplementary

material not presented in the main body of the paper.

1 The Term Premium and the Currency Risk Premium

We begin by defining notation and then deriving our main theoretical results.

1.1 Notation

In order to state our main results, we first need to introduce the domestic and foreign pricing

kernels, SDFs, and bond holding period returns.

Pricing Kernel, Stochastic Discount Factor, and Bond Return The nominal pricing

kernel is denoted Λt($); it corresponds to the marginal value of a dollar delivered at time

t in some state of the world $. The nominal SDF is the growth rate of the pricing kernel:

Mt+1 = Λt+1/Λt. The price of a zero-coupon bond that matures k periods into the future is

given by:

P
(k)
t = Et

(
Λt+k
Λt

)
.
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The one-period return on the zero-coupon bond with maturity k is R
(k)
t+1 = P

(k−1)
t+1 /P

(k)
t . The

log excess returns, denoted rx
(k)
t+1, is equal to logR

(k)
t+1/R

f
t , where the risk-free rate are Rft =

R
(0)
t+1 = 1/P

(1)
t . The expected log excess return on the zero-coupon bond with maturity k, or

term premium, is:

Et

[
rx

(k)
t+1

]
= Et

[
logR

(k)
t+1/R

f
t

]
.

The yield spread is the log difference between the yield of the k-period bond and the risk-free

rate: y
(k)
t = log

(
Rft /(P

(k)
t )1/k

)
.

Entropy Bond returns and SDFs are volatile, but not necessarily normally distributed. In

order to measure the time-variation in their volatility, it is convenient to use entropy.1 The

conditional volatility of any random variable Xt+1 is thus measured through its conditional

entropy Lt, defined as:

Lt (Xt+1) = logEt (Xt+1)− Et (logXt+1) .

The conditional entropy of a random variable is determined by its conditional variance, as well

as its higher moments; if vart (Xt+1) = 0, then Lt (Xt+1) = 0, but the reverse is not generally

true. If Xt+1 is conditionally lognormal, then the entropy is simply the half variance of the log

variable: Lt (Xt+1) = (1/2)vart (logXt+1). The relative entropy of the permanent and transitory

components of the domestic and foreign SDFs turns out to be key to understanding the term

structure of carry trade risk.

Permanent and Transitory Innovations Following Alvarez and Jermann (2005), Hansen,

Heaton, and Li (2008), and Hansen and Scheinkman (2009), we decompose each pricing kernel

into a transitory (ΛT
t ) component and a permanent (ΛP

t ) component with:

Λt = ΛP
t ΛT

t , where ΛT
t = lim

k→∞

δt+k

P
(k)
t

.

1Backus, Chernov, and Zin (2012) make a convincing case for the use of entropy in assessing macro-finance
models.
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The constant δ is chosen to satisfy the following regularity condition: 0 < lim
k→∞

P
(k)
t

δk
<∞ for all

t. We assume that the transitory components of the domestic and foreign SDFs are bounded

from below and above: 0 < ΛT
t+1/Λ

T
t < ∞ and 0 < ΛT,∗

t+1/Λ
T,∗
t < ∞. Under those regularity

conditions, the infinite maturity bond return is then:

R
(∞)
t+1 = lim

k→∞
R

(k)
t+1 = lim

k→∞
P

(k−1)
t+1 /P

(k)
t =

ΛT
t

ΛT
t+1

.

The permanent component, ΛP
t , is a martingale.2 It is an important component of the pricing

kernel. Alvarez and Jermann (2005) derive a lower bound on its volatility, and, given the size of

the equity premium relative to the term premium, conclude that the permanent component of

the pricing kernel is large and accounts for most of the risk.3 In other words, a lot of persistence

is needed to deliver a low term premium and a high equity premium. In the absence of arbitrage,

Alvarez and Jermann (2005) show that the local term premium in local currency is given by:

Et

[
rx

(∞)
t+1

]
= lim

k→∞
Et

[
rx

(k)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
.

Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009), and Borovicka, Hansen,

Hendricks, and Scheinkman (2011) provide examples of similar factorizations in affine models.

The SDF decomposition defined here is subject to important limitations that need to be high-

lighted. Hansen and Scheinkman (2009) point out that this decomposition is not unique in

general and provide parametric examples in which uniqueness fails. In addition, the temporary

(or transient) and permanent components are potentially highly correlated, which complicates

their interpretation.4 Despite these limitations, we show that this decomposition proves to be

2Note that ΛP
t is equal to:

ΛP
t = lim

k→∞

P
(k)
t

δt+k
Λt.

The Euler equation for the zero coupon bond with maturity k implies that the expression above is a martingale.
3Alvarez and Jermann (2005) derive the following lower bound:

Lt

(
ΛP

t+1

ΛP
t

)
≥ Et (logRt+1)− Et

(
logR

(∞)
t+1

)
,

where Rt+1 denotes any return and R
(∞)
t+1 is the return on a zero-coupon bond of infinite maturity.

4The authors thank Lars Hansen for a detailed account of these issues.
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particularly useful when analyzing foreign bond returns at longer maturities.

Exchange Rates The spot exchange rate in foreign currency per U.S. dollar is denoted St.

When S increases, the U.S. dollar appreciates. Similarly, Ft denotes the one-period forward

exchange rate, and ft its log value. When markets are complete, the change in the exchange

rate corresponds to the ratio of the domestic to foreign SDFs:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

,

where ∗ denotes a foreign variable. The no-arbitrage definition of the exchange rate comes

directly from the Euler equations of the domestic and foreign investors, for any asset R expressed

in foreign currency: Et[Mt+1R
∗
t+1St/St+1] = 1 and Et[M

∗
t+1R

∗
t+1] = 1. When markets are

complete, the SDF is unique, and thus the change in exchange rate is the ratio of the two SDFs.

The log currency excess return corresponds to:

rxFXt+1 = log

[
St
St+1

Rf,∗t

Rft

]
= (ft − st)−∆st+1,

when the investor borrows at the domestic risk-free rate, Rft , and invests at the foreign risk-

free rate, Rf,∗t , and where the forward rate is defined through the covered interest rate parity

condition: Ft/St = Rf,∗t /Rft . As Bekaert (1996) and Bansal (1997) show, in a lognormal model,

the log currency risk premium equals the half difference between the conditional volatilities

of the log domestic and foreign SDFs. Gavazzoni, Sambalaibat, and Telmer (2012), however,

convincingly argue that higher moments are critical for understanding currency returns.5 When

higher moments matter and markets are complete, the currency risk premium is equal to the

difference between the entropy of the domestic and foreign SDFs (Backus, Foresi, and Telmer,

5In earlier work, Brunnermeier, Nagel, and Pedersen (2009) show that risk reversals increase with interest
rates. Jurek (2008) provides a comprehensive empirical investigation of hedged carry trade strategies. Gourio,
Siemer, and Verdelhan (2013) study a real business cycle with disaster risk. Farhi, Fraiberger, Gabaix, Ranciere,
and Verdelhan (2013) estimate a no-arbitrage model with crash risk using a cross-section of currency options.
Chernov, Graveline, and Zviadadze (2011) study jump risk at high frequencies.

9



2001):

Et
[
rxFXt+1

]
= (ft − st)− Et(∆st+1) = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
.

Following the decomposition of the pricing kernel discussed above, exchange rate changes

can also be decomposed into a permanent and a transitory component, defined below:

St+1

St
=

(
ΛP
t+1

ΛP
t

ΛP,∗
t

ΛP,∗
t+1

)(
ΛT
t+1

ΛT
t

ΛT,∗
t

ΛT,∗
t+1

)
=
SP
t+1

SP
t

ST
t+1

ST
t

.

Exchange rate changes capture the differences in both the transitory and the permanent compo-

nent of the two countries’ SDFs. In this paper, we use returns on long term bonds to implement

this decomposition in the data.

Term Premium on Foreign Bonds The log return on a foreign bond position (expressed

in U.S. dollars) in excess of the domestic (i.e., U.S.) risk-free rate is denoted rx
(k),$
t+1 . It can be

expressed as the sum of the log excess return in local currency plus the return on a long position

in foreign currency:

rx
(k),$
t+1 = log

[
R

(k),∗
t+1

Rft

St
St+1

]
= log

[
R

(k),∗
t+1

Rf,∗t

Rf,∗t

Rft

St
St+1

]
= rx

(k),∗
t+1 + rxFXt+1.

The first component of the foreign bond excess return is the excess return on a bond in foreign

currency, while the second component represents the log excess return on a long position in

foreign currency, given by the forward discount minus the rate of depreciation. Taking expecta-

tions, the total term premium in dollars thus consists of a foreign bond risk premium, Et[rx
(k),∗
t+1 ],

plus a currency risk premium, (ft − st)− Et∆st+1.

1.2 Main Theoretical Results

In this section, we present our four key theoretical results on (i) the term structure of carry trade

premia; (ii) the decomposition of exchange rates into permanent and transitory components;

(iii) the long-term bond return parity condition; and (iv) a lower bound on the risk-sharing of

permanent shocks.
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Carry Trade Term Premia We begin with a characterization of carry trade risk premia at

long maturities.

Proposition 1. The foreign term premium in dollars is equal to the domestic term premium

plus the difference between the domestic and foreign entropies of the permanent components of

the pricing kernels:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
+ Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
.

In order to deliver a currency risk premium at longer maturities, entropy differences in

the permanent component of the pricing kernel are required. If there are no such differences

and domestic and foreign pricing kernels are symmetric, then high local currency term premia

coincide with low currency risk premia and vice-versa. In the symmetric case, dollar term premia

are identical across currencies. At shorter maturities, the currency risk premium is determined

by the entropy difference of the entire pricing kernel. Since carry trade returns are base-currency-

invariant, heterogeneity in the exposure of the pricing kernel to a global component of the pricing

kernel is required to explain the carry trade premium (Lustig, Roussanov, and Verdelhan, 2011).

Clearly, a carry trade premium at longer maturities exists only with heterogeneous exposure to

a permanent global component.

Permanent Component of Exchange Rates The valuation of long-maturity bonds thus

encodes information about the nature of shocks that drive the changes in exchange rates. Using

the prices of long-maturity bonds in the domestic and foreign countries, under the regularity

conditions defined previously, we can decompose the changes in the bilateral spot exchange rate

into two parts: a part that captures cross-country differences in the transitory components of the

pricing kernel and a part that encodes differences in the permanent components of the pricing

kernel.

Proposition 2. When markets are complete, the ratio of the domestic and foreign infinite
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maturity bond returns, expressed in the same currency, measures the permanent component of

exchange rate changes:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

=
ΛP,∗
t+1

ΛP,∗
t

ΛP
t

ΛP
t+1

=
SP
t

SP
t+1

.

The left-hand side of this equality can be approximated by long term bonds, thus leading to

a measure of the permanent component of exchange rates. Since exchange rates are observed,

the temporary component of the exchange rates can also be easily obtained.

Long-Term Bond Return Parity Condition The exchange rate decomposition above im-

plies an uncovered long-bond return parity condition when countries share permanent innova-

tions to their SDFs. In this polar case, even if most of the innovations to the pricing kernel are

highly persistent, the shocks that drive exchange rates are not, because the persistent shocks

are shared across countries.

Corollary 1. If the domestic and foreign pricing kernels have common permanent innovations,

ΛP
t+1/Λ

P
t = ΛP,∗

t+1/Λ
P,∗
t for all states, then the one-period returns on the foreign longest maturity

bonds in domestic currency are identical to the domestic ones: R
(∞),∗
t+1

St
St+1

= R
(∞)
t+1 for all states.

Risk-Sharing The exchange rate decomposition also sheds light on cross-country risk-sharing.

Brandt, Cochrane, and Santa-Clara (2006) show that the combination of relatively smooth

exchange rates and much more volatile SDFs implies that state prices are very highly correlated

across countries. A 10% volatility in exchange rate changes and a volatility of marginal utility

growth rates of 50% imply a correlation of at least 0.98. We can derive a specific bound on the

covariance of the permanent component across different countries.

Proposition 3. If the permanent SDF component is unconditionally lognormal, the cross-

country covariance of the SDF’ permanent components is bounded below by:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ E

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
.
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A conditional version of the expression holds for conditionally lognormal permanent pricing

kernel components.

We can compute the variance of the permanent component of exchange rates, var
(

log
SP
t+1

SP
t

)
,

in the data; the contribution of the last term will typically be on the order of 1% or less — this

value will be discussed in our empirical work. Given the large size of the equity premium

compared to the term premium (a 7.5% difference according to Alvarez and Jermann, 2005),

and the relatively small variance of the permanent component of exchange rates, this bound

implies a large correlation of the permanent components. In Figure 1, we plot the implied

correlation of the permanent component against the volatility of the permanent component in

the symmetric case for two different scenarios: The dotted line is for Std
(
logSP

t /S
P
t+1

)
= 10%,

and the diamond line is for Std
(
logSP

t /S
P
t+1

)
= 16%.

1.3 Special Case: No Permanent Innovations

Let us now consider the special case in which the pricing kernel is not subject to permanent

innovations, i.e., limk→∞
Et+1[Λt+k]
Et[Λt+k] = 1. For example, the Markovian environment recently

considered by Ross (2013) to derive his recovery theorem satisfies this condition. Building on

this work, Martin and Ross (2013) derive closed-form expressions for bond returns in a similar

environment. Alvarez and Jermann (2005) show that this case has clear implications for domestic

returns: if the pricing kernel has no permanent innovations, then the term premium on an infinite

maturity bond is the largest risk premium in the economy.6

This case also has a strong implication for the term structure of the carry trade risk premia.

When the pricing kernels do not have permanent innovations, the foreign term premium in

dollars equals the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
.

The proof here is straightforward. In general, the foreign currency risk premium is equal to

6 If there are no permanent innovations to the pricing kernel, then the return on the bond with the longest
maturity equals the inverse of the SDF: limk→∞R

(k)
t+1 = Λt/Λt+1. High marginal utility growth translates into

higher yields on long maturity bonds and low long bond returns, and vice-versa.
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Figure 1: Permanent Risk Sharing — In this figure, we plot the implied correlation of the domestic and
foreign permanent components of the SDF against the standard deviation of the permanent component of the
SDF. The dotted line is for Std

(
logSP

t /S
P
t+1

)
= 10%. The diamond line is for Std

(
logSP

t /S
P
t+1

)
= 16%. Following

see Alvarez and Jermann (2005), we assume that the domestic and foreign equity minus bond risk premia are
7.5%.

the difference in entropy. In the absence of permanent innovations, the term premium is equal

to the entropy of the pricing kernel, so the result follows. More interestingly, a much stronger

result holds in this case. Not only are the risk premia identical, but the returns on the foreign

bond position are the same as those on the domestic bond position state-by-state, because

the foreign bond position automatically hedges the currency risk exposure. If the domestic

and foreign pricing kernels have no permanent innovations, then the one-period returns on the

longest maturity foreign bonds in domestic currency are identical to the domestic ones:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

= 1.
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In this class of economies, the returns on long-term bonds expressed in domestic currency are

equalized:

lim
k→∞

rx
(k),∗
t+1 + (ft − st)−∆st+1 = rx

(k)
t+1.

In countries that experience higher marginal utility growth, the domestic currency appreciates

but is exactly offset by the capital loss on the bond. For example, in a representative agent

economy, when the log of aggregate consumption drops more below trend at home than abroad,

the domestic currency appreciates, but the real interest rate increases, because the representative

agent is eager to smooth consumption. The foreign bond position automatically hedges the

currency exposure.

2 Three Theoretical Lognormal Examples

This section provides three lognormal examples of the theoretical results derived above. We start

with a simple homoscedastic SDF suggested by Alvarez and Jermann (2005), and then turn to

a heteroscedastic SDF like the one proposed by Cox, Ingersoll, and Ross (1985). Building on

these two preliminary examples and on Lustig, Roussanov, and Verdelhan (2011), the section

ends with a model featuring global permanent and transitory shocks. This model illustrates the

necessary conditions for the cross-sections of carry and term premia.

2.1 Homoscedastic SDF

Alvarez and Jermann (2005) propose the following example of an economy without permanent

shocks: a representative agent economy with power utility investors in which the log of aggregate

consumption is a trend-stationary process with normal innovations:

log Λt =
∞∑
i=0

αiεt−i + β log t,

with ε ∼ N(0, σ2), α0 = 1. If limk→∞ α
2
k = 0, then the SDF has no permanent component. The

foreign SDF is defined similarly. In this example, Alvarez and Jermann (2005) show that the
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term premium equals one half of the variance: Et

[
rx

(∞)
t+1

]
= σ2/2. In this case, we find that the

foreign term premium in dollars is identical to the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2 = Et

[
rx

(∞)
t+1

]
.

This result is straightforward to establish: recall that the currency risk premium is equal to

the half difference in the domestic and foreign SDF volatilities. Currencies with a high local

currency term premium (high σ2) also have an offsetting negative currency risk premium, while

those with a small term premium have a large currency risk premium. Hence, U.S. investors

receive the same dollar premium on foreign as on domestic bonds. There is no point in chasing

high term premia around the world, at least not in economies with only temporary innovations

to the pricing kernel. Currencies with the highest local term premia also have the lowest (i.e.,

most negative) currency risk premia.

Building on the previous example, Alvarez and Jermann (2005) consider a log-normal model

of the pricing kernel that features both permanent and transitory shocks:

log ΛP
t+1 = −1

2
σ2
P + log ΛP

t + εPt+1,

log ΛT
t+1 = log βt+1 +

∞∑
i=0

αiε
T
t+1−i,

where α is a square summable sequence, and εP and εT are i.i.d. normal variables with mean

zero and covariance σTP . A similar decomposition applies to the foreign SDF. In this case,

Alvarez and Jermann (2005) show that the term premium is given by the following expression:

Et

[
rx

(∞)
t+1

]
= σ2

T /2 + σTP . In this economy, the foreign term premium in dollars is:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2

(
σ2 − σ2,∗

P

)
.

Provided that σ2,∗
P = σ2

P , the foreign term premium in dollars equals the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2
T + σTP = Et

[
rx

(∞)
t+1

]
.
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2.2 Heteroscedastic SDFs: Cox, Ingersoll, and Ross (1985)

We turn now to a workhorse model in the term structure literature: the Cox, Ingersoll, and Ross

(1985) model (denoted CIR). The SDF M is defined by the following two equations:

− logMt+1 = α+ χzt +
√
γztut+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1.

In this model, log bond prices are affine in the state variable z: p
(n)
t = −Bn

0 − Bn
1 zt, where Bn

0

and Bn
1 are the solution to difference equations. The expected log excess return of an infinite

maturity bond is then:

Et

[
rx

(∞)
t+1

]
=

[
−1

2
(B∞1 )2 σ2 + σ

√
γB∞1

]
zt =

[
B∞1 (1− φ)− χ+

1

2
γ

]
zt,

where B∞1 is defined implicitly in the following second-order equation: B∞1 = χ− γ/2 +B∞1 φ−

(B∞1 )2 σ2/2+σ
√
γB∞1 . The first component, − (B∞1 )2 σ2/2, is a Jensen term. The term premium

is driven by the second component, σ
√
γB∞1 zt. In the CIR model, there are no permanent

innovations to the pricing kernel provided that B∞1 (1 − φ) = χ. In this case, the permanent

component of the pricing kernel is constant:

ΛP
t+1

ΛP
t

= β−1e−α−χθ.

In the case of no permanent innovations in the CIR model, the expected long-run term premium

is simply Et

[
rx

(∞)
t+1

]
= γzt/2. Hence, in the symmetric case, the foreign term premium in dollars

is equal to the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
γzt = Et

[
rx

(∞)
t+1

]
.

This result is equivalent to uncovered interest rate parity for very long holding periods. The

proof relies on an insight from Alvarez and Jermann (2005). They show that when the limits
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of the k-period bond risk premium and the yield difference between the k-period discount bond

and the one-period riskless bond (when the maturity k tends to infinity) are well defined and

the unconditional expectations of holding returns are independent of calendar time, then the

average term premium equals the average yield difference. In the CIR model without permanent

shocks, the average foreign yield spread in dollars is identical to the domestic yield spread, an

example of a long-run uncovered interest rate parity condition:

y
(∞),∗
t + (ft − st)− E[ lim

k→∞

1

k

k∑
j=1

∆st+j ] =
1

2
σ2 = y

(∞)
t .

2.3 Heteroscedastic SDFs: Lustig, Roussanov, and Verdelhan (2011)

Lustig, Roussanov, and Verdelhan (2011) show that the CIR model with (i) global shocks and (ii)

heterogeneity in the SDFs’ loadings on those global shocks can replicate the empirical evidence

on currency excess returns.7 Building on their work, we turn now to a version of the CIR model

with two global components: a persistent component and a transitory component. We show

that heterogeneity in the SDFs’ loadings on the permanent global shocks is key to obtaining

a cross-section of foreign term premia expressed in U.S. dollars. The model is defined by the

following set of equations:

− logMt+1 = α+ χzt +
√
γztut+1 + τzPt +

√
δzPt u

P
t+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

zPt+1 = (1− φP)θP + φPzPt − σP
√
zPt u

P
t+1,

where zt is the transitory factor, and zPt is the permanent factor. Note that the model abstracts

from the country-specific shocks and state variables; they can be added easily as in Lustig,

Roussanov, and Verdelhan (2011).

The nominal log zero-coupon n-month yield of maturity in local currency is given by the

7The model parameters must satisfy the two following constraints: interest rates must be pro-cyclical with
respect to the state variables, and high interest rate countries must load less on the global shocks to low interest
rate countries.
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standard affine expression y
(n)
t = − 1

n

(
An +Bnzt + Cnz

P
t

)
, where the coefficients satisfy second-

order difference equations. The nominal log risk-free interest rate is an affine function of the

persistent and transitory factors: rft = α+
(
χ− 1

2γ
)
zt+

(
τ − 1

2δ
)
zpt . In this model, the expected

log excess return on an infinite maturity bond is:

Et[rx
(∞)
t+1 ] =

[
B∞(1− φ)− χ+

1

2
γ

]
zt −

[
C∞(1− φp) + τ − 1

2
δ

]
zPt .

To give content to the notion that zt is transitory, we impose that B∞(1 − φ) = χ. This

restriction implies that the permanent component of the pricing kernel is not affected by the

transitory factor zt, as can easily be verified. In this case, the permanent component of the SDF

reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χθe
−C∞

[
(φP−1)(zPt−θP)−σP

√
zPt ut+1

]
,

which does not depend on zt. Given this restriction, the bond risk premium is equal to:

Et[rx
(∞)
t+1 ] =

1

2
γzt −

[
τ − 1

2
δ + C∞(1− φP)

]
zPt .

Both factors are common across countries, but, following Lustig, Roussanov, and Verdelhan

(2011), we allow for heterogeneous loadings on these common factors. The foreign SDF is

therefore defined as:

− logM∗t+1 = α+ χzt +
√
γ∗ztut+1 + τzPt +

√
δ∗zPt u

P
t+1.

The log currency risk premium is equal to: Et[rx
FX
t+1] = (γ−γ∗)zt/2 + (δ− δ∗)zPt /2. This implies

that the expected foreign log holding period return on a foreign long bond converted into U.S.
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dollars is equal to:8

Et[rx
(∞),$
t+1 ] = Et[rx

(∞),∗
t+1 ] + Et[rx

FX
t+1] =

1

2
γzt −

[
τ − 1

2
δ + C∞,∗(1− φP)

]
zPt .

Hence, the difference between the foreign and the domestic term premium is driven by:

(C∞,∗ − C∞) (1− φP)zPt .

In the symmetric case in which δ = δ∗, then C∞,∗ = C∞, and the foreign term premium in dollars

equals the domestic term premium. In this case, a cross-section of currency risk premia exists,

but term premia in dollars are all the same across countries. If γ > γ∗, there is a large positive

foreign currency risk premium (equal here to Et[rx
FX
t+1] = (γ−γ∗)zt/2), but that is exactly offset

by a smaller foreign term premium. This model thus illustrates our main theoretical findings:

chasing high currency risk premia does not necessarily imply high term premia. If there is no

heterogeneity in the loadings of the permanent global component of the SDF, then the foreign

term premium, once converted to U.S. dollars is the same as the U.S. term premium.

3 The Cross-Section of Long-Term Bond Returns

The empirical experiment is defined by the main theoretical results presented in Section 1. For

the reader’s convenience, we summarize them here in three equations:

Et
[
rxFXt+1

]
= (ft − st)− Et(∆st+1) = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
(1)

Et

[
rx

(∞),∗
t+1

]
= lim

k→∞
Et

[
rx

(k),∗
t+1

]
= Lt

(
Λ∗t+1

Λ∗t

)
− Lt

(
Λ∗,Pt+1

Λ∗,Pt

)
(2)

Et

[
rx

(∞),∗
t+1

]
+ Et

[
rxFXt+1

]
= Et

[
rx

(∞)
t+1

]
+ Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
. (3)

8The coefficient C∞,∗ is defined by the following second-order equation: C∞,∗ = − (τ − δ∗/2) +

C∞,∗

(
φp + σp

√
δ∗
)

+ (C∞,∗σ
p)2 /2. Therefore, if δ = δ∗, then C∞,∗ = C∞.
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Equation (1) shows that the currency risk premium is equal to the difference between the entropy

of the domestic and foreign SDFs (Backus, Foresi, and Telmer, 2001). Equation (2) shows that

the term premium is equal to the difference between the total entropy of the SDF and the

entropy of its permanent component (Alvarez and Jermann, 2005). Equation (3) shows that the

foreign term premium in dollars is equal to the domestic term premium plus the difference in

the entropy of the permanent component of the pricing kernel of the domestic and the foreign

country. Our empirical work thus focuses on three average excess returns: the currency risk

premium, the term premium in foreign currency, and the term premium in U.S. dollars. To test

the predictions of the theory, we sort currencies into portfolios based on variables that can be

used to predict bond and currency returns: the slope of the yield curve and then the level of

short-term interest rates. Returns are computed over horizons of one, three, and twelve months.

In all cases, portfolios formed at date t only use information available at that date. Portfolios

are rebalanced monthly.

3.1 Samples

The benchmark sample consists of a small homogeneous panel of developed countries with rea-

sonably liquid bond markets. This G-10 panel includes Australia, Canada, Japan, Germany,

Norway, New Zealand, Sweden, Switzerland, and the U.K. The domestic country is the United

States. It only includes one country from the eurozone, Germany. For robustness checks, we

consider two additional sets of countries: first, a larger sample of 20 developed countries (Aus-

tralia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy,

Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the

U.K.), and second, a large sample of 30 developed and emerging countries (Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Greece, India, Ireland, Italy, Japan,

Mexico, Malaysia, the Netherlands, New Zealand, Norway, Pakistan, the Philippines, Poland,

Portugal, South Africa, Singapore, Spain, Sweden, Switzerland, Taiwan, Thailand, and the

U.K.).

In order to build the longest time-series possible, we obtain data from Global Financial
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Data. The dataset includes a 10-year government bond total return index for each of our target

countries in dollars and in local currency and a Treasury bill total return index. The 10-year

bond returns are a proxy for the bonds with the longest maturity. Log returns on the currency

carry trade (rxFX) and the log returns on the bond portfolio in local currency (rx(10),∗) and

in U.S. dollars (rx(10),$) are first obtained at the country level. Then, portfolio returns are

obtained by averaging these log returns across all countries in a portfolio. The benchmark

sample is summarized by three portfolios while the other two samples are summarized by four

and five portfolios. For each set of countries, we report averages over the 12/1950–12/2012 and

12/1971–12/2012 periods. The main text focuses on the benchmark sample, while the Online

Appendix reports detailed results for the robustness checks.

While Global Financial Data offers, to the best of our knowledge, the longest time-series

of government bond returns available, the series have three key limits. First, they pertain to

discount bonds, while the theory pertains to zero-coupon bonds. Second, they include default

risk, while the theory focuses on default-free bonds. Third, they only offer 10-year bond returns,

not the entire term structure of bond returns. To address these issues, we use zero-coupon

bonds obtained from the estimation of term structure curves using government notes and bonds

and interest rate swaps of different maturities; the time-series are shorter and dependent on

the term structure estimations. In contrast, bond return indices, while spanning much longer

time-periods, offer model-free estimates of bond returns. Our results turn out to be similar in

both samples.

Our zero-coupon bond dataset consists of a panel of the benchmark sample of countries from

12/1971 to 12/2012. To construct our sample, we use the entirety of the dataset in Wright (2011)

and complement the sample, as needed, with sovereign zero-coupon curve data sourced from

Bloomberg. The panel is unbalanced: for each currency, the sample starts with the beginning

of the Wright (2011) dataset. 9 Yields are available at maturities from 3 months to 15 years, in

3-month increments.

9The starting dates for each country are as follows: 2/1987 for Australia, 1/1986 for Canada, 1/1973 for Ger-
many, 1/1985 for Japan, 1/1990 for New Zealand, 1/1998 for Norway, 12/1992 for Sweden, 1/1988 for Switzerland,
1/1979 for the United Kingdom, and 12/1971 for the United States. For New Zealand, the data for maturities
above 10 years start in 12/1994.
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3.2 Sorting Currencies by the Slope of the Yield Curve

Let us start with portfolios of countries sorted by the slope of their yield curve. Recall that the

slope of the yield curve, a measure of the term premium, is largely determined by the entropy

of the temporary component of the pricing kernel. As this entropy increases, the local term

premium increases as well. However, the dollar term premium only compensates investors for the

relative entropy of the permanent component of the U.S. and the foreign pricing kernel, because

the interest rate risk associated with the temporary innovations is hedged by the currency risk.

In the extreme case in which all permanent shocks are common, the dollar term premium should

equal the U.S. term premium.

Benchmark Sample Figure 2 presents the composition over time of portfolios of the 9 cur-

rencies of the benchmark sample sorted by the slope of the yield curve. There is substantial

turnover in the portfolios, but the typical currencies in Portfolio 1 (flat yield curve currencies)

are the Australian and New Zealand dollar and the British pound, whereas the typical currencies

in Portfolio 3 (steep yield curve currencies) are the Japanese yen and the German mark. The

portfolios show considerably more turnover than the usual interest rate-sorted portfolios.

Table 1 reports the annualized moments of log returns on the three slope-sorted portfolios.

The funding currencies here are in the highest slope portfolio (Portfolio 3), while the investment

currencies are in the lowest slope portfolio (Portfolio 1). We start by discussing the results

obtained at the one-month horizon over the whole sample (12/1950–12/2012). Clearly, the

uncovered interest rate parity condition fails in the cross-section. For example, in Portfolio 1

the foreign interest rate exceeds the U.S. interest rate by 3.03%, but the USD appreciates only

by 0.01%. Average currency excess returns decline from 3.02% per annum on Portfolio 1 to

0.06% per annum on the Portfolio 3. Therefore, a long-short position of investing in steep-yield-

curve currencies and shorting flat-yield-curve currencies delivers an excess return of −2.97% per

annum and a Sharpe ratio of −0.47. Our findings confirm those of Ang and Chen (2010). The

slope of the yield curve predicts currency excess returns very well, implying that the entropy of

the temporary component plays a large role in currency risk premia.
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Table 1: Slope-Sorted Portfolios: Benchmark Sample

Portfolio 1 2 3 3− 1 1 2 3 3− 1 1 2 3 3− 1

Horizon 1-Month 3-Month 12-Month
Panel A: 12/1950–12/2012

−∆s Mean -0.01 0.77 0.83 0.84 0.01 0.39 1.18 1.17 -0.09 0.55 1.09 1.18
f − s Mean 3.03 0.41 -0.77 -3.81 2.96 0.42 -0.71 -3.68 2.76 0.46 -0.55 -3.31

rxFX Mean 3.02 1.18 0.06 -2.97 2.97 0.81 0.47 -2.50 2.67 1.01 0.54 -2.13
s.e. [0.97] [0.94] [0.94] [0.81] [1.08] [1.03] [0.95] [0.87] [1.14] [1.07] [1.13] [0.86]
Std 7.59 7.37 7.36 6.30 8.25 7.75 7.60 6.84 9.05 8.31 8.39 6.65
SR 0.40 0.16 0.01 -0.47 0.36 0.10 0.06 -0.37 0.30 0.12 0.06 -0.32
s.e. [0.13] [0.13] [0.13] [0.13] [0.14] [0.13] [0.13] [0.15] [0.14] [0.13] [0.13] [0.14]

rx(10),∗ Mean -1.82 1.61 4.00 5.82 -0.86 1.33 3.33 4.19 -0.22 1.20 2.79 3.01
s.e. [0.50] [0.46] [0.51] [0.54] [0.58] [0.51] [0.58] [0.60] [0.62] [0.69] [0.65] [0.58]
Std 3.97 3.67 4.09 4.29 4.60 4.24 4.65 4.67 5.10 4.88 5.29 4.90
SR -0.46 0.44 0.98 1.35 -0.19 0.31 0.72 0.90 -0.04 0.25 0.53 0.61
s.e. [0.12] [0.12] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.15] [0.11]

rx(10),$ Mean 1.21 2.79 4.06 2.85 2.12 2.14 3.80 1.68 2.45 2.21 3.33 0.88
s.e. [1.09] [1.07] [1.12] [0.99] [1.19] [1.17] [1.18] [1.08] [1.28] [1.18] [1.31] [1.12]
Std 8.61 8.36 8.84 7.76 9.34 8.98 9.42 8.14 10.45 9.57 10.29 8.67
SR 0.14 0.33 0.46 0.37 0.23 0.24 0.40 0.21 0.23 0.23 0.32 0.10
s.e. [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.12] [0.14] [0.13] [0.13] [0.12]

rx(10),$ − rx(10),US Mean -0.30 1.28 2.55 2.85 0.60 0.62 2.28 1.68 0.91 0.66 1.79 0.88
s.e. [1.28] [1.14] [1.21] [0.99] [1.42] [1.29] [1.14] [1.08] [1.51] [1.25] [1.37] [1.12]

Panel B: 12/1971–12/2012
−∆s Mean -0.08 1.21 1.03 1.11 -0.08 0.61 1.51 1.60 -0.30 0.76 1.47 1.77
f − s Mean 3.40 0.54 -1.02 -4.42 3.31 0.54 -0.94 -4.25 3.08 0.57 -0.72 -3.80

rxFX Mean 3.32 1.75 0.01 -3.32 3.23 1.15 0.58 -2.65 2.78 1.33 0.75 -2.03
s.e. [1.45] [1.41] [1.37] [1.16] [1.65] [1.55] [1.44] [1.26] [1.71] [1.62] [1.66] [1.22]
Std 9.29 8.95 8.80 7.40 10.09 9.38 9.16 8.15 11.04 10.05 10.12 7.95
SR 0.36 0.20 0.00 -0.45 0.32 0.12 0.06 -0.32 0.25 0.13 0.07 -0.26
s.e. [0.16] [0.16] [0.16] [0.16] [0.17] [0.16] [0.16] [0.18] [0.17] [0.16] [0.16] [0.17]

rx(10),∗ Mean -1.68 1.94 4.56 6.24 -0.52 1.70 3.64 4.16 0.10 1.71 2.98 2.87
s.e. [0.74] [0.69] [0.72] [0.76] [0.85] [0.75] [0.81] [0.85] [0.88] [1.02] [0.91] [0.83]
Std. Dev. 4.67 4.37 4.63 4.84 5.45 5.03 5.20 5.26 5.95 5.73 5.86 5.54
SR -0.36 0.44 0.98 1.29 -0.10 0.34 0.70 0.79 0.02 0.30 0.51 0.52
s.e. [0.15] [0.15] [0.17] [0.15] [0.16] [0.16] [0.17] [0.15] [0.16] [0.17] [0.20] [0.12]

rx(10),$ Mean 1.64 3.69 4.56 2.93 2.70 2.85 4.22 1.51 2.88 3.04 3.73 0.84
s.e. [1.63] [1.59] [1.62] [1.41] [1.81] [1.74] [1.73] [1.56] [1.89] [1.77] [1.91] [1.63]
Std 10.45 10.13 10.46 8.97 11.30 10.79 11.15 9.59 12.54 11.33 12.15 10.23
SR 0.16 0.36 0.44 0.33 0.24 0.26 0.38 0.16 0.23 0.27 0.31 0.08
s.e. [0.16] [0.16] [0.16] [0.15] [0.16] [0.16] [0.16] [0.15] [0.17] [0.17] [0.17] [0.15]

rx(10),$ − rx(10),US Mean -0.87 1.18 2.06 2.93 0.17 0.32 1.69 1.51 0.32 0.47 1.16 0.84
s.e. [1.85] [1.63] [1.69] [1.41] [2.09] [1.88] [1.62] [1.56] [2.23] [1.87] [1.98] [1.63]

Notes: The table reports the average change in exchange rates (∆s), the average interest rate difference (f −s), the average
currency excess return (rxFX), the average foreign bond excess return on 10-year government bond indices in foreign
currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average foreign bond excess return in
U.S. dollars and the average U.S. bond excess return (rx(10),$ − rxUS). For the excess returns, the table also reports their
annualized standard deviation (denoted Std) and their Sharpe ratios (denoted SR). The annualized monthly log returns are
realized at date t+ k , where the horizon k equals 1, 3, and 12 months. The balanced panel consists of Australia, Canada,
Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K.. The countries are sorted by the slope of their
yield curves into three portfolios. The slope of the yield curve is measured by the difference between the 10-year yield and
the one-month interest rate at date t. The standard errors (denoted s.e. and reported between brackets) were generated by
bootstrapping 10,000 samples of non-overlapping returns.
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Figure 2: Composition of Slope-Sorted Portfolios — The figure presents the composition of portfolios of the
currencies in the benchmark sample sorted by the slope of their yield curves. The portfolios are rebalanced monthly. The
slope of the yield curve is measured as the 10-year interest rate minus the one-month Treasury bill rates. Data are monthly,
from 12/1950 to 12/2012.

As expected, Portfolio 3 produces large bond excess returns of 4% per annum, compared to

−1.82% per annum on Portfolio 1. Hence, a long-short position produces a spread of 5.82% per

annum.

A natural question is whether U.S. investors can “combine” this bond risk premium with

the currency risk premium. To answer this question, we compute the dollar bond excess returns

rx(10),$ by adding the currency excess returns rxFX and the local currency bond returns rx(10),∗.

In dollars, the aforementioned 5.82% spread is reduced to 2.85%, because of the partly offsetting

pattern in currency risk premia. What is driving these results? The low slope currencies tend

to be high interest rate currencies, while the high slope currencies tend to be low interest rate

currencies: Portfolio 1 has an interest rate difference of 3.03% relative to the U.S., while Portfolio
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3 has a negative interest rate difference of −0.77% per annum. Thus, the flat slope currencies are

the investment currencies in the carry trade, whereas the steep slope currencies are the funding

currencies.

For long maturities, global bond investors want to reverse the standard currency carry trade.

They can achieve a return of 2.85% per annum by investing in the (low interest rate, steep curve)

funding currencies and shorting the (high interest rate, flat slope) carry trade currencies. This

difference is statistically significant. Importantly, this strategy involves long positions in bonds

issued by Germany and Japan. These are countries with fairly liquid bond markets and low

sovereign credit risk. As a result, credit and liquidity risk differences are unlikely candidate

explanations for the return differences. Of course, at the one-month horizon, this strategy

involves frequent trading. At the 12-month horizon, these excess returns are essentially gone.

The local term premium almost fully offsets the carry trade premium.

Our findings confirm that currency risk premia are driven to a large extent by temporary

shocks to the pricing kernel. When we sort currencies by the yield curve slope, roughly a measure

of the entropy of the temporary SDF component, we find large differences in currency risk premia:

the largest currency risk premia correspond to the lowest bond risk premia. This finding is

consistent with the theory, as total SDF entropy is negatively related to currency risk premia,

but positively related to bond risk premia. However, those differences in temporary pricing kernel

risk do not appear to produce significant cross-sectional differences in the quantity of permanent

risk: carry trade premia at the 10-year maturity, which are associated with differences in the

entropy of the permanent SDF component, are modest. Notably, the behavior of long-maturity

dollar bond returns suggests that local investors in carry trade countries are less exposed to

temporary risk than those in funding currencies, but more exposed to permanent risk.

We get similar findings when we restrict our analysis to the post-Bretton Woods sample.

More generally, as can be verified from Figure 3 the difference in slope-sorted bond returns is

rather stable over time, although the difference in local bond premia is smaller in the last part

of the sample. For example, between 1991 and 2012, the difference in currency risk premia at

the one-month horizon between Portfolio 3 and Portfolio 1 is −4.20% per annum, compared to
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a 3.29% spread in local term premia. This adds up to a −0.91% return on a long position in

the steep-sloped bonds and a short position in the flat-sloped bonds. However, this difference is

not statistically significant, as the standard error is 1.52% per annum.

Robustness Checks: Developed Countries and Whole Sample In the sample of devel-

oped countries, the steep-slope (low yielding) currencies are typically countries like Germany, the

Netherlands, Japan, and Switzerland, while the flat-slope (high-yielding) currencies are typically

Australia, New Zealand, Denmark and the U.K. At the one-month horizon, the 2.42% spread in

currency excess returns obtained in this sample is more than offset by the 5.90% spread in local

term premia. This produces a statistically significant 3.48% return on a position that is long

in the low yielding, high slope currencies and short in the high yielding, low slope currencies.

These results are essentially unchanged in the post-Bretton-Woods sample. At longer horizons,

the currency excess returns and the local risk premia almost fully offset each other.

In the entire sample of countries, including the emerging market countries, the difference in

currency risk premia in the 1-month horizon is 6.11% per annum, which is more than offset by

an 11.45% difference in local term premia. As a result, investors earn 5.33% per annum on a

long-short position in foreign bond portfolios of slope-sorted currencies. As before, this involves

shorting the flat-yield-curve currencies, typically high interest rate currencies, and going long in

the steep-slope currencies, typically the low interest rate ones. The annualized Sharpe ratio on

this long-short strategy is 0.60.

Figure 4 shows the deviations from the uncovered interest rate parity and long bond return

parity in the cross-section of the entire sample of countries. We form five currency portfolios. If

uncovered interest rate parity condition were a good description of the data, the red diamonds

would be on the 45-degree line. Notably, the biggest UIP violation occurs for Portfolio 1 (flat-

yield-curve currencies), for which high interest rates are not offset by an adequate rate of currency

depreciation. If the long-term bond return parity condition were a good description of the data,

the blue dots would be on the 45-degree line. In the data, the positive interest rate difference

turns into a negative bond return for the flat-slope portfolios (small dots), while the negative

interest rate spread becomes a positive return spread for the steep-slope bond portfolios (large
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Figure 3: The Carry Trade and Term Premia: Conditional on the Slope of the Yield Curve –
The figure presents the cumulative one-month log returns on investments in foreign Treasury bills and foreign
10-year bonds. The benchmark panel of countries includes Australia, Canada, Japan, Germany, Norway, New
Zealand, Sweden, Switzerland, and the U.K. Countries are sorted every month by the slope of their yield curves
into three portfolios. The slope of the yield curve is measured by the spread between the 10-year bond yield and
the one-month interest rate. The returns correspond to an investment strategy going long in Portfolio 3 and short
in the Portfolio 1. The sample period is 12/1950–12/2012.
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Figure 4: Uncovered Interest Rate Parity and Uncovered Bond Return Parity: All Countries
Sorted by Interest Rate Slopes – This figure presents, with red diamonds, the average exchange rate changes
in five portfolios against the average interest rate differences between the foreign country and the U.S. for the same five
portfolios. The size of the marker indicates the number of the portfolio (where a small marker corresponds to Portfolio
1). The figure also presents, with blue dots, the average exchange rate changes in five portfolios against the local currency
bond return spread with the U.S., defined as the difference between the average bond return in foreign currency and the
U.S. bond return in U.S. dollars. Countries are sorted by the slope of their yield curves and allocated into five portfolios.
The portfolios are rebalanced every month. The monthly returns are annualized. The sample period is 12/1950–12/2012.
The sample includes developed and emerging countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, India, Ireland, Italy, Japan, Mexico, Malaysia, the Netherlands, New Zealand, Norway, Pakistan, the
Philippines, Poland, Portugal, South Africa, Singapore, Spain, Sweden, Switzerland, Taiwan, Thailand, and the U.K.

3.3 Sorting Currencies by Interest Rates

Let us turn now to portfolios of countries sorted by their short-term interest rates.

Benchmark Sample Typically, Switzerland and Japan (after 1970) are funding currencies

in Portfolio 1, while Australia and New Zealand are the carry trade investment currencies in
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Portfolio 3. The other currencies switch between portfolios quite often.

Table 2 reports the annualized moments of log returns. The structure of the table is the

same as of Table 1. As expected [see Lustig and Verdelhan (2007) for a detailed analysis], the

average excess returns increase from Portfolio 1 to the Portfolio 3. The average excess return

on the Portfolio 1 is −0.24% per annum, while the average excess return on the Portfolio 3 is

3.26%. The spread between Portfolio 1 and Portfolio 3 is 3.51% per annum. The volatility of

these returns increases only slightly from the first to the last portfolio. As a result, the Sharpe

ratio (annualized) increases from −0.03 on Portfolio 1 to 0.40 on the Portfolio 3. The Sharpe

ratio on a long position in Portfolio 3 and a short position in the Portfolio 1 is 0.49 per annum.

The results for the post-Bretton-Woods sample are very similar. Hence, the currency carry trade

is profitable at the short end of the maturity spectrum.

Recall that absence of arbitrage implies a negative relationship between the equilibrium

risk premium for investing in a currency and the SDF entropy of the corresponding country.

Therefore, given the pattern in currency risk premia, high interest rate currencies have low

entropy and low interest rate currencies have high entropy. As a result, sorting by interest rates

(from low to high) seems equivalent to sorting by pricing kernel entropy (from high to low). In

a log-normal world, entropy is just one half of the variance: high interest rate currencies have

low pricing kernel variance, while low interest rate currencies have volatile pricing kernels.

Table 2 shows that there is a strong decreasing pattern in local currency bond risk premia.

The average excess return on Portfolio 1 is 2.39% per annum and its Sharpe ratio is 0.68. The

excess return decreases monotonically to −0.21% on Portfolio 3. Thus, there is a 2.60% spread

per annum between Portfolio 1 and Portfolio 3.

If all of the shocks driving currency risk premia were permanent, then there would be no

relation between currency risk premia and term premia. To the contrary, we find a very strong

negative association between local currency bond risk premia and currency risk premia. Low

interest rate currencies tend to produce high local currency bond risk premia, while high interest

rate currencies tend to produce low local currency bond risk premia. The decreasing term premia

are consistent with the decreasing entropy of the total SDF from low (Portfolio 1) to high interest
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Table 2: Interest Rate-Sorted Portfolios: Benchmark Sample

Portfolio 1 2 3 3− 1 1 2 3 3− 1 1 2 3 3− 1

Horizon 1-Month 3-Month 12-Month
Panel A: 12/1950–12/2012

−∆s Mean 1.43 0.35 -0.18 -1.62 1.65 0.23 -0.28 -1.93 1.78 0.22 -0.42 -2.20
f − s Mean -1.68 0.78 3.45 5.13 -1.64 0.81 3.39 5.03 -1.55 0.91 3.19 4.74

rxFX Mean -0.24 1.13 3.26 3.51 0.00 1.03 3.11 3.10 0.23 1.12 2.77 2.54
s.e. [1.00] [0.84] [1.03] [0.92] [1.02] [0.91] [1.20] [1.03] [1.10] [1.03] [1.25] [0.98]
Std 7.92 6.64 8.10 7.22 8.29 6.91 8.74 7.97 9.20 7.32 9.59 8.03
SR -0.03 0.17 0.40 0.49 0.00 0.15 0.36 0.39 0.03 0.15 0.29 0.32
s.e. [0.13] [0.13] [0.14] [0.14] [0.13] [0.13] [0.14] [0.15] [0.13] [0.13] [0.14] [0.15]

rx(10),∗ Mean 2.39 1.67 -0.21 -2.60 2.17 1.31 0.41 -1.76 1.98 1.07 0.85 -1.13
s.e. [0.45] [0.47] [0.57] [0.57] [0.50] [0.53] [0.64] [0.61] [0.58] [0.65] [0.72] [0.65]
Std 3.50 3.65 4.50 4.47 4.01 4.34 5.10 4.72 4.41 5.22 5.67 5.05
SR 0.68 0.46 -0.05 -0.58 0.54 0.30 0.08 -0.37 0.45 0.20 0.15 -0.22
s.e. [0.13] [0.13] [0.13] [0.13] [0.14] [0.13] [0.13] [0.12] [0.15] [0.14] [0.13] [0.12]

rx(10),$ Mean 2.15 2.81 3.06 0.91 2.17 2.34 3.52 1.35 2.21 2.19 3.62 1.41
s.e. [1.18] [0.98] [1.16] [1.09] [1.22] [1.06] [1.31] [1.21] [1.26] [1.14 ] [1.42] [1.23]
Std 9.33 7.70 9.21 8.61 10.00 8.22 9.94 9.32 10.64 8.83 11.08 9.95
SR 0.23 0.36 0.33 0.11 0.22 0.28 0.35 0.14 0.21 0.25 0.33 0.14
s.e. [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.14] [0.14]

rx(10),$ − rx(10),US Mean 0.63 1.30 1.55 0.91 0.65 0.82 2.00 1.35 0.67 0.65 2.08 1.41
s.e. [1.22] [1.09] [1.32] [1.09] [1.16] [1.18] [1.51] [1.21] [1.33] [1.22] [1.61] [1.23]

Panel B: 12/1971–12/2012
−∆s Mean 2.16 0.30 -0.29 -2.45 2.39 0.14 -0.49 -2.89 2.61 0.05 -0.74 -3.35
f − s Mean -2.03 1.07 3.87 5.90 -1.99 1.11 3.80 5.78 -1.89 1.23 3.60 5.49

rxFX Mean 0.13 1.38 3.57 3.44 0.41 1.25 3.30 2.90 0.72 1.28 2.86 2.14
s.e. [1.52] [1.26] [1.50] [1.35] [1.56] [1.37] [1.75] [1.52] [1.67] [1.55] [1.82] [1.42]
Std 9.66 8.11 9.57 8.46 10.12 8.42 10.46 9.52 11.22 8.88 11.59 9.68
SR 0.01 0.17 0.37 0.41 0.04 0.15 0.32 0.30 0.06 0.14 0.25 0.22
s.e. [0.16] [0.16] [0.16] [0.16] [0.16] [0.16] [0.17] [0.17] [0.16] [0.17] [0.17] [0.18]

rx(10),∗ Mean 2.82 2.12 -0.13 -2.95 2.60 1.66 0.56 -2.05 2.48 1.30 1.01 -1.47
s.e. [0.64] [0.68] [0.81] [0.79] [0.72] [0.77] [0.92] [0.87] [0.84] [0.94] [1.01] [0.87]
Std 4.12 4.33 5.17 5.09 4.69 5.12 5.85 5.33 5.17 6.06 6.31 5.45
SR 0.68 0.49 -0.02 -0.58 0.55 0.32 0.10 -0.38 0.48 0.21 0.16 -0.27
s.e. [0.16] [0.16] [0.16] [0.16] [0.17] [0.16] [0.16] [0.15] [0.19] [0.18] [0.16] [0.15]

rx(10),$ Mean 2.95 3.49 3.45 0.50 3.01 2.90 3.86 0.85 3.20 2.58 3.87 0.67
s.e. [1.78] [1.46] [1.71] [1.59] [1.85] [1.60] [1.89] [1.77] [1.91] [1.66] [2.03] [1.75]
Std 11.33 9.34 10.82 10.06 12.09 9.91 11.68 10.95 12.85 10.44 13.01 11.70
SR 0.26 0.37 0.32 0.05 0.25 0.29 0.33 0.08 0.25 0.25 0.30 0.06
s.e. [0.16] [0.16] [0.16] [0.16] [0.16] [0.16] [0.17] [0.16] [0.16] [0.17] [0.18] [0.16]

rx(10),$ − rx(10),US Mean 0.44 0.99 0.94 0.50 0.48 0.37 1.33 0.85 0.64 0.01 1.31 0.67
s.e. [1.77] [1.55] [1.88] [1.59] [1.70] [1.71] [2.16] [1.77] [1.99] [1.78] [2.32] [1.75]

Notes: The table reports the average change in exchange rates (∆s), the average interest rate difference (f −s), the average
currency excess return (rxFX), the average foreign bond excess return on 10-year government bond indices in foreign
currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average foreign bond excess return in
U.S. dollars and the average U.S. bond excess return (rx(10),$ − rxUS). For the excess returns, the table also reports their
annualized standard deviation (denoted Std) and their Sharpe ratios (denoted SR). The annualized monthly log returns
are realized at date t + k , where the horizon k equals 1, 3, and 12 months. The balanced panel consists of Australia,
Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The countries are sorted by the level
of their short term interest rates into three portfolios. The standard errors (denoted s.e. and reported between brackets)
were generated by bootstrapping 10,000 samples of non-overlapping returns.
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rates (Portfolio 3) that we had inferred from the foreign currency risk premia. Furthermore,

it appears that these are not offset by equivalent decreases in the entropy of the permanent

component of the foreign pricing kernel.

Therefore, the monotonically decreasing pattern in term risk premia is direct evidence in

favor of a risk-based explanation of foreign currency returns. Bond markets are in agreement

with currency markets that there is more risk in the local pricing kernel of low interest rate

currencies. Furthermore, combining the information from the two markets suggests that the

cross-section of SDF entropy largely reflects the cross-section of the entropy of the temporary

component of the SDF. In that case, temporary shocks to the pricing kernel play a major role

as drivers of currency risk premia. In a lognormal world, the term premium is determined by

one-half of the variance of the temporary component of the pricing kernel plus a covariance

term. To the extent that the currency risk premia are driven by the variance of the temporary

component, it is not surprising that low interest rate currencies have low term premia and high

currency premia.

The decline in the local currency bond risk premia partly offsets the increase in currency

risk premia. As a result, the average excess return on the foreign bond expressed in U.S. dollars

measured in Portfolio 3 is only 0.91% per annum higher than the average excess returns measured

in Portfolio 1. The Sharpe ratio on a long-short position in bonds of Portfolio 3 and Portfolio 1

is only 0.11. U.S. investors cannot simply combine the currency carry trade with a yield carry

trade, because these risk premia roughly offset each other. Interest rates are great predictors of

currency excess returns and local currency bond excess returns, but not of dollar excess returns.

To receive long-term carry trade returns, investors need to load on differences in the quantity

of permanent risk, as shown in Equation (3). The cross-sectional evidence presented here does

not lend much support to these differences in permanent risk.

Table 2 shows that the results are essentially unchanged in the post-Bretton-Woods sample.

The Sharpe ratio on the currency carry trade is 0.41, achieved by going long in Portfolio 3 and

short in Portfolio 1. However, there is a strong decreasing pattern in local currency bond risk

premia, from 2.82% per annum in Portfolio 1 to −0.13% in the Portfolio 3. As a result, there is
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essentially no discernible pattern in dollar bond risk premia.

Figure 5 presents the cumulative one-month log returns on investments in foreign Treasury

bills and foreign 10-year bonds. Most of the losses are concentrated in the 1970s and 1980s,

and the bond returns do recover in the 1990s. In fact, between 1991 and 2012, the difference is

currency risk premia at the one-month horizon between the Portfolio 1 and the Portfolio 3 was

4.54%, while the difference in the local term premia was only 1.41% per annum. As a result, the

un-hedged carry trade in 10-year bonds still earned about 3.13% per annum over this sample.

However, this difference of 3.13% per annum has a standard error of 1.77% and, therefore, is

not statistically significant.

As we increase holding period k from 1 to 3 and 12 months, the differences in local bond risk

premia between portfolios shrink, but so do the differences in currency risk premia. Even at the

12-month horizon, there is no evidence of statistically significant differences in dollar bond risk

premia across the currency portfolios.

Robustness Checks: Developed Countries and Whole Sample In the robustness tests,

very similar patterns or risk premia emerge using larger sets of countries. In the sample of

developed countries, we sort currencies in four portfolios. Switzerland and Japan (after 1970)

are funding currencies in Portfolio 1, while Australia and New Zealand are carry trade investment

currencies in Portfolio 4. Credit risk seems to be concentrated in Portfolios 3 and 4. Essentially,

the results are very similar to those obtained on the benchmark sample of developed countries.

There is no economically or statistically significant carry trade premium at longer maturities.

The 2.98% spread in the currency risk premia is offset by the negative 3.03% spread in local

term premia at the one-month horizon against the carry trade currencies.

In the sample of developed and emerging countries, the pattern in returns is strikingly similar,

but the differences are larger. At the one-month horizon, the 6.66% spread in the currency risk

premia is offset by a 5.15% spread in local term premia. A long-short position in foreign bonds

delivers an excess return of 1.51% per annum, which is not statistically significantly different

from zero. At longer horizons, the differences in local bond risk premia are much smaller, but

so are the carry trade returns.
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Figure 5: The Carry Trade and Term Premia – The figure presents the cumulative one-month log returns
on investments in foreign Treasury bills and foreign 10-year bonds. The benchmark panel of countries includes
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. Countries are
sorted every month by the level of their one-month interest rates into three portfolios. The returns correspond to
a strategy going long in the Portfolio 3 and short in Portfolio 1. The sample period is 12/1950–12/2012.
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As in the previous samples, the rate at which the high interest rate currencies depreciate

(2.99% per annum) is not high enough to offset the interest rate difference of 6.55%. Similarly,

the rate at which the low interest rate currencies appreciate (0.43% per annum) is not high

enough to offset the low interest rates (3.52% lower than the U.S. interest rate). Uncovered

interest rate parity fails in the cross-section. However, the bond return differences (in local

currency) are closer to being offset by the rate of depreciation. The bond return spread is 4.63%

per annum for the last portfolio, compared to an annual depreciation rate of 6.55%, while the

spread on the first portfolio is −0.29%, compared to depreciation of −0.43%. In Figure 6, we

plot the rate of depreciation against the interest rate (bond return) differences with the U.S.

The vertical distance from the 45-degree line is an indication of how far exchange rates are from

the uncovered interest rate parity or long-run uncovered bond parity. As in Figure 4, the size

of the marker indicates the number of the portfolio. Especially for the first and last portfolios,

long-run uncovered bond parity is a much better fit for the data than the uncovered interest

rate parity. The currency exposure hedges the interest rate exposure in the bond position. High

returns are offset by higher depreciations. As a result, foreign bond portfolios are almost hedged

against foreign country-specific interest rate risk, while Treasury bill portfolios are not.

Overall, the evidence presented here suggests that investors in high interest rate countries

are less exposed to overall pricing kernel risk than those in low interest countries, but these

differences are mostly about temporary pricing kernel risk, not persistent pricing kernel risk.

3.4 The Term Structure of Currency Carry Trade Risk Premia

The previous results focus on the 10-year maturity and show that currency risk premia offset

local currency term premia for coupon bond returns. We now turn to a full set of returns in

the maturity spectrum, using the zero-coupon bond dataset. Table 3 reports summary statistics

on one-quarter holding period returns on zero-coupon bond positions with maturities from 4 (1

year) to 60 quarters (15 years).

The term structure of currency carry trade risk premia is downward sloping: currency carry

trade strategies that yield positive risk premia for short-maturity bonds yield lower (or even
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Figure 6: Uncovered Interest Rate Parity and Uncovered Bond Return Parity: All Sample
Countries Sorted by Interest Rates – This figure presents, with red diamonds, the average exchange rate changes
in five portfolios against the average interest rate differences between the foreign country and the U.S. for the same five
portfolios. The size of the marker indicates the number of the portfolio (where a small marker corresponds to Portfolio 1).
The figure also presents, with blue circles, the average exchange rate changes in five portfolios against the local currency
bond return spread with the US, defined as the difference between the average bond return in foreign currency and the
U.S. bond return in U.S. dollars. Countries are sorted by their short-term interest rates and allocated into five portfolios.
The portfolios are rebalanced every month. The monthly returns are annualized. The sample period is 12/1950–12/2012.
The sample includes developed and emerging countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, India, Ireland, Italy, Japan, Mexico, Malaysia, the Netherlands, New Zealand, Norway, Pakistan, the
Philippines, Poland, Portugal, South Africa, Singapore, Spain, Sweden, Switzerland, Taiwan, Thailand, and the U.K.

negative) risk premia for long-maturity bonds. This is due to the offsetting relationship between

currency premia and term premia. As we move from the 4-quarter maturity to the 60-quarter

maturity, the difference in the dollar term premium between Portfolio 1 (flat yield curve) cur-

rencies and Portfolio 3 (steep yield curve) currencies decreases from 2.69% to −1.77%. While

investing in flat yield curve currencies and shorting steep yield curve currencies provides signif-

icant gains in the short end of the term structure, it yields negative returns in the long end.

Figure 7 shows the local currency excess returns (in logs) in the top panel, and the dollar
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excess returns (in logs) in the bottom panel. The top panel in Figure 7 shows that countries

with the steepest local yield curves (Portfolio 3, on the right-hand side) exhibit local bond excess

returns that are higher, and increase faster with the maturity than the flat yield curve countries

(Portfolio 1, on the left-hand side). This effect is strong enough to undo the effect of the level

differences in yields at the short end: the steep-slope currencies are typical funding currencies

with low yields in levels at the short end of the maturity curve while the flat-slope currencies

typically have high yields at the short end. At the 4-quarter maturity, Table 3 reports a −0.31%

interest rate difference with the U.S. in Portfolio 3, compared to a 3.15% interest rate difference

with the U.S. in Portfolio 1. Thus, ignoring the effect of exchange rates, investors should invest

in the bonds of steep yield curve currencies.

However, considering the effect of currency fluctuations by focusing on dollar returns radically

alters the results. Figure 7 shows that the dollar excess returns of Portfolio 1 are higher than

those of Portfolio 3 at the short maturity end, consistent with the carry trade results of Ang and

Chen (2010). Yet, an investor that would attempt to replicate the short-maturity carry trade

strategy at the long end of the maturity curve would incur losses on average: the long-maturity

excess returns of flat yield curve currencies are lower than those of steep yield curve currencies,

as currency risk premia more than offset term premia. The term structure of currency carry

trade risk premia slopes downwards.

4 Time-Series Tests of the Uncovered Bond Return Parity

We first examine the correlation and volatility of foreign bond returns and then test the uncov-

ered bond return parity condition.

4.1 The Correlation and Volatility of Dollar Bond Returns

If international risk sharing is mostly due to countries sharing their permanent pricing kernel

fluctuations, holding period returns on zero-coupon bonds, once converted to a common cur-

rency (the U.S. dollar, in particular), should become increasingly similar as bond maturities

approach infinity. To determine whether this hypothesis has merit, Figure 8 reports the cor-
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Figure 7: Term Structure of Dollar Bond Risk Premia — The figure shows the local currency log excess
returns in the top panel, and the dollar log excess returns in the bottom panel as a function of the bond maturities. The left
panel focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the right panel reports Portfolio 3 (steep yield
curve currencies) excess returns. The right panels also report the Portfolio 1 excess returns in dashed lines for comparison.
The unbalanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and
the United Kingdom. The countries are sorted by the slope of their yield curves into three portfolios. The slope of the yield
curve is measured by the difference between the 10-year yield and the one-month interest rate at date t. The holding period
is one quarter. The returns are annualized. Data are monthly, from the zero-coupon dataset, and the sample window is
4/1985–12/2012.

relation coefficient between three-month returns on foreign zero-coupon bonds (either in local

currency or in U.S. dollars) and corresponding returns on U.S. bonds for bonds of maturity

ranging from 1 year to 15 years. All foreign currency yield curves exhibit the same pattern:

correlation coefficients for U.S. dollar returns start from very low (often negative) values and

increase monotonically with bond maturity, tending towards one for long-term bonds. The clear

monotonicity is not observed on local currency returns. The local currency three-month return

correlations do not exhibit any discernible pattern with maturity, implying that the convergence

of U.S. dollar return correlations towards the value of one results from exchange rate changes

that partially offset differences in local currency bond returns. Similar results hold true for

volatility ratios (instead of correlations); we report those in the Online Appendix.
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Figure 8: The Maturity Structure of Bond Return Correlations — The figure presents the correlation
of foreign bond returns with U.S. bond returns. The time-window is country-dependent. Data are monthly. The holding
period is three-months.

In sum, the behavior of U.S. dollar bond returns and local currency bond returns differs

markedly as bond maturity changes. While U.S. dollar bond returns become more correlated

and roughly equally volatile across countries as the maturity increases, the behavior of local

currency returns do not appear to change when bond maturity changes.

4.2 Testing Uncovered Bond Return Parity in the Time-Series

We now turn to tests of the bond return parity condition in the time series. To the extent the

10-year bond is a reasonable proxy for the infinite-maturity bond, uncovered long-bond parity

implies that the domestic and foreign 10-year bond returns are not statistically different across

countries, once converted into a common currency. To determine whether exchange rate changes
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completely eliminate differences in countries’ permanent SDF components, nominal U.S. dollar

holding period returns on 10-year foreign bonds are thus regressed on the corresponding U.S.

dollar returns on 10-year U.S. bonds:

r
(10),$
t+1 = α+ βr

(10)
t+1 + εt+1,

where small letters denote the log of their capital letter counterpart. Uncovered long bond

parity implies α = 0 and β = 1. Table 4 also reports regressions results obtained with each

component of the dollar return, i.e., the local currency bond return r
(10),∗
t+1 and the change in the

log exchange rate. The sum of the local currency bond return beta and the exchange change

beta equals the total dollar bond return beta. Section I of Table 4 uses discount bonds, while

Section II uses zero-coupon bonds.

Individual Countries Panel A of Table 4 reports the results for the benchmark sample of

discount bonds. The slope coefficient for dollar returns is positive and, with the exception

of New Zealand, statistically significant for all the countries in the benchmark sample. The

slope coefficient ranges from 0.08 (New Zealand) to 0.69 (Canada); on average, it is 0.38. The

cross-sectional average of the exchange rate coefficient is 0.11, so it accounts for almost one-

third of the overall effect. Hence, exchange rates actively enforce long-run uncovered bond

return parity: when U.S. bond returns are high, the dollar tends to depreciate relative to

other currencies, whereas when dollar returns are low, the U.S. dollar tends to appreciate.

Interestingly, the exceptions are the Australian dollar and the New Zealand dollar: we find

negative slope coefficients for those two currencies. These are positive carry currencies (with

high average interest rates) of countries that are commodity exporters. To the extent that

high U.S. bond returns are associated with a run to quality in times of global economic stress,

the depreciation of the Australian and New Zealand dollars is consistent with the model of

Ready, Roussanov, and Ward (2013), which illustrates the relative riskiness of the currencies of

commodity-producing countries.
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Currency Portfolios Panels B and C of Table 4 report the regression coefficients for yield-

curve-slope-sorted and interest-rate-sorted currency portfolios, respectively. There are interest-

ing differences in the slope coefficient across these portfolios. As evidenced in Panel B, the

bond returns of countries with flat yield curves have lower dollar betas than the returns of steep

yield curve countries. Furthermore, Panel C reveals that the long-maturity bond returns of low

interest rate countries comove more with U.S. bond returns than the returns of high interest

rate countries. Thus, it looks like that there is more sharing of permanent innovations between

the U.S. and countries with low interest rates and steep yield curves.

Time Variation To understand the time-variation in the regression coefficients, we expand

the sample period. Specifically, we consider an equally-weighted portfolio of all the currencies in

the benchmark sample and regress its dollar return and its components on the U.S. bond return

from 1950 to 2012. We run the following regressions of local returns, exchange rate changes and

dollar returns on U.S. bond returns over rolling 60-month windows:

1

N

∑
i

r
(10),∗
i,t+1 = α+ βlocalr

(10)
t+1 + εt+1,

1

N

∑
i

−∆si,t+1 = α+ βfxr
(10)
t+1 + εt+1,

1

N

∑
i

r
(10),$
i,t+1 = α+ βdollarr

(10)
t+1 + εt+1.

Figure 9 plots the 60-month rolling window of the regression coefficients. We note large

increases in the dollar beta after the demise of the Bretton-Woods regime, mostly driven by

increases in the exchange rate betas. The same is true around the early 1990s. Furthermore,

there is a secular increase in the local return beta over the entire sample.

The exchange rate coefficient is positive during most of our sample period, providing evidence

that the currency exposure hedges the interest rate exposure of the foreign bond position. There

are two main exceptions: the Long Term Capital Management (LTCM) crisis in 1998 and

the recent financial crisis. During these episodes, the dollar appreciated, despite the strong

performance of the U.S. bond market, weakening the comovement between foreign and local
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Table 4: Tests of the Uncovered Bond Return Parity Condition

Return in dollars (r$) Return in local currency (r∗) Change in exchange rate (−∆s) Obs.

β s.e. R2(%) β s.e. R2(%) β s.e. R2(%)

Section I: Discount Bonds

Panel A: Individual Countries

Australia 0.32 [0.08] 3.77 0.37 [0.06] 16.93 -0.05 [0.07] -0.08 493

Canada 0.69 [0.06] 31.19 0.68 [0.04] 57.58 0.01 [0.04] -0.19 493

Germany 0.62 [0.08] 14.16 0.38 [0.03] 25.97 0.23 [0.07] 2.61 493

Japan 0.51 [0.09] 8.09 0.24 [0.04] 8.46 0.27 [0.06] 3.55 493

New Zealand 0.08 [0.10] -0.02 0.16 [0.05] 1.87 -0.08 [0.08] 0.11 493

Norway 0.19 [0.07] 1.83 0.11 [0.03] 3.06 0.08 [0.06] 0.23 493

Sweden 0.28 [0.08] 3.55 0.16 [0.04] 5.25 0.12 [0.07] 0.63 493

Switzerland 0.43 [0.08] 7.39 0.15 [0.02] 15.97 0.28 [0.08] 3.21 493

United Kingdom 0.29 [0.07] 4.02 0.18 [0.03] 8.81 0.11 [0.07] 0.62 493

Panel B: Slope-sorted Portfolios

Portfolio 1 0.27 [0.07] 4.45 0.21 [0.03] 14.38 0.06 [0.06] 0.05 493

Portfolio 2 0.45 [0.06] 13.79 0.30 [0.03] 30.02 0.15 [0.06] 1.82 493

Portfolio 3 0.42 [0.06] 11.05 0.30 [0.03] 28.31 0.12 [0.05] 1.04 493

Panel C: Interest-rate-sorted Portfolios

Portfolio 1 0.47 [0.07] 11.98 0.27 [0.02] 28.97 0.20 [0.06] 2.89 493

Portfolio 2 0.39 [0.05] 11.90 0.29 [0.03] 29.92 0.10 [0.05] 0.77 493

Portfolio 3 0.28 [0.07] 4.48 0.25 [0.03] 16.13 0.03 [0.06] -0.15 493

Section II: Zero-Coupon Bonds

Panel A: Individual Countries

Australia 0.54 [0.11] 12.39 0.77 [0.10] 37.78 -0.23 [0.07] 2.96 308

Canada 0.72 [0.09] 33.56 0.81 [0.06] 65.07 -0.10 [0.05] 1.30 321

Germany 0.63 [0.08] 24.21 0.46 [0.04] 37.57 0.17 [0.06] 2.79 477

Japan 0.69 [0.12] 20.00 0.36 [0.06] 21.76 0.33 [0.09] 7.36 333

New Zealand 0.77 [0.10] 21.76 0.84 [0.07] 45.21 -0.08 [0.10] -0.03 273

Norway 0.38 [0.12] 5.81 0.44 [0.07] 18.70 -0.06 [0.14] -0.37 177

Sweden 0.61 [0.11] 15.39 0.68 [0.09] 34.34 -0.07 [0.10] -0.09 238

Switzerland 0.61 [0.09] 18.43 0.37 [0.05] 25.79 0.23 [0.10] 3.01 297

United Kingdom 0.58 [0.08] 18.44 0.52 [0.07] 28.97 0.06 [0.06] 0.22 405

Panel B: Slope-sorted Portfolios

Portfolio 1 0.68 [0.11] 21.22 0.56 [0.07] 32.98 0.12 [0.08] 0.96 333

Portfolio 2 0.53 [0.07] 21.03 0.51 [0.06] 39.19 0.02 [0.07] -0.24 333

Portfolio 3 0.74 [0.07] 35.03 0.57 [0.06] 47.61 0.17 [0.08] 3.35 333

Panel C: Interest-rate-sorted Portfolios

Portfolio 1 0.70 [0.09] 28.34 0.44 [0.05] 40.44 0.26 [0.07] 6.81 333

Portfolio 2 0.70 [0.07] 32.73 0.60 [0.07] 51.72 0.10 [0.09] 0.88 333

Portfolio 3 0.60 [0.09] 20.76 0.60 [0.07] 39.94 0.00 [0.08] -0.30 333

Notes: The table reports regression results obtained when regressing the log return on bonds in dollars r$, or
the log return in local currency r∗, or the log change in the exchange rate ∆s on the log return on U.S. bonds in
dollars. Section I uses discount bonds. Returns are monthly and the sample period is 12/1971–12/2012. Standard
errors are obtained with a Newey-West approximation of the spectral density matrix with two lags. Section II
uses zero-coupon bonds. Returns are quarterly (sampled monthly) and the sample period is 12/1971–12/2012 (or
available subsample) for individual currencies and 4/1985–12/2012 for currency portfolios. Standard errors are
obtained with a Newey-West approximation of the spectral density matrix with 6 lags.
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Figure 9: Foreign Bond Return Betas — This figure presents the 60-month rolling window estimation of beta
with respect to US bond returns for the equal-weighted average of log bond returns in local currency, the log change in the
exchange rate and the log dollar bond returns for the benchmark sample of countries. The unbalanced panel consists of
Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands,
New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. The sample is 12/1950–12/2012.
The dark shaded areas represent the 1987 crash, the 1998 LTCM crisis and the 2007-2008 U.S. financial crisis.

Robustness Check To check the robustness of our results, we run the bond return parity

regressions on zero-coupon bonds. The results are reported in the Section II of Table 4. They

are broadly consistent with the previous findings. Specifically, the cross-sectional average of

the dollar return slope is 0.61, implying significant comovement between foreign and U.S. dollar

bond returns. This is due to the fact that the dataset is biased towards the recent period, when

dollar betas are historically high, as shown in Figure 9. Furthermore, during the sample period

the exchange rate slope does not contribute significantly to the dollar return comovement, as the
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cross-sectional mean of the exchange rate slope is only 0.03. Notably, the exchange rate slope is

negative for Australia, Canada, New Zealand, Norway, and Sweden. Again, those findings are

consistent with Figure 9, which documents a sharp reduction of the exchange rate slope during

the LTCM crisis and the financial crisis. Since the exchange rate mechanism has been weak

recently, we would expect that sorting on variables that predict exchange rate returns may not

have a large impact on the dollar return slope coefficients in our currency portfolio sample, which

starts at 1985. This is exactly what we find: although our results remain qualitatively the same,

their quantitative importance is reduced. Specifically, we find that steep slope currencies have

higher dollar return betas than flat slope currencies, but not by much. Furthermore, dollar bond

returns of high interest rate currencies comove with U.S. bond returns less than the returns of

low interest rate currencies; the dollar slope coefficient is 0.70 for the low interest rate portfolio

and 0.60 for the high interest rate portfolio.

5 The Properties of Exchange Rate and SDF Components

The rejection of the long-term bond parity in the time-series implies that the permanent com-

ponent of exchange rate changes exists and is volatile. In this section, we decompose exchange

rate changes into their transitory and permanent components and report their properties. The

volatilities and correlation of these components provide insights on the SDF components. The

decomposition offers a new perspective on international risk-sharing.

5.1 The Properties of Exchange Rate and SDF Components

Alvarez and Jermann (2005) show that asset prices are almost exclusively determined by the

properties of the permanent SDF component, which accounts for almost all of the variation of

the nominal SDF. Our results indicate that this is not true for exchange rates. Table 5 shows

that the internationally unshared parts of the two components of the nominal SDF contribute

roughly equally to the volatility of the nominal SDF. The annualized volatility of the 3-month

exchange rate changes ranges from 7% to 12%. Although the two exchange rate components

contribute to exchange rate volatility about equally, the transitory component tends to be the
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relatively smoother component, with its volatility ranging from 6% to 12%. The permanent

component is slightly more volatile than the overall exchange rate, ranging in volatility from

10% to 16%.

As a result, the two components are negatively correlated for all exchange rates. Across

the countries of the benchmark sample, the unconditional correlation of the two exchange rate

components ranges from -0.38 to -0.73. In unreported results, a similar decomposition of 6-month

and 12-month exchange rate changes produces quantitatively similar results. This implies that

changes in the unshared part of the permanent, asset-pricing component of the SDF are partly

offset by changes in the unshared part of the transitory component. This offsetting does not

affect asset prices, since the permanent SDF component is an order of magnitude larger than the

transitory component. However, it can potentially have large effects in the behavior of exchange

rates, as the size of the internationally non-shared parts of the two SDF components does not

differ much.

Given that the permanent exchange rate component is quantitatively larger than the transi-

tory component, but partly offset by it, it is not surprising that overall exchange rate changes are

largely uncorrelated with their transitory component, but highly correlated with their permana-

nent component. Cross-sectionally, the correlation between overall exchange rate changes and

their transitory component ranges from -0.14 to 0.30, whereas the correlation between exchange

rate changes and their permanent component is much higher, ranging from 0.68 to 0.81.

In unreported results, proxying the infinite maturity bond with the 15-year bond delivers

substantially similar findings, indicating that our results are robust to alternative proxies for

the infinite maturity bond.

5.2 The Implications for International Risk Sharing

Our findings imply that fluctuations in the permanent SDF component are internationally shared

to a significantly larger extent than fluctuations in the transitory SDF component. For each

country’s transitory SDF component, we calculate the annualized standard deviation and the

correlation coefficient with the transitory component of the U.S. SDF and report the results in
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Table 5: Properties of SDF and Exchange Rate Components

Moment DEM GBP JPY CAD AUD CHF NZD SEK NOK

Panel A: Exchange rate changes, ∆s

Mean -0.02 0.01 -0.04 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02

Std 0.12 0.11 0.12 0.07 0.12 0.12 0.12 0.12 0.12

Skewness 0.08 0.65 -0.39 0.30 1.02 0.15 0.34 0.64 1.03

Kurtosis 3.02 5.53 3.35 7.20 8.99 2.75 5.30 4.99 7.04

AR(1) coef. 0.70 0.72 0.70 0.66 0.72 0.70 0.76 0.69 0.70

Panel B: Transitory exchange rate changes, ∆sT

Mean -0.00 0.01 -0.04 0.00 0.02 -0.04 0.01 0.01 -0.01

Std 0.10 0.12 0.09 0.06 0.09 0.08 0.08 0.09 0.09

Skewness 0.24 0.55 0.39 -0.12 0.70 -0.10 0.14 -0.22 0.37

Kurtosis 4.30 5.48 5.11 3.44 4.92 3.41 4.16 4.52 3.75

AR(1) coef. 0.63 0.55 0.58 0.55 0.59 0.64 0.64 0.68 0.56

Panel C: Permanent exchange rate changes, ∆sP

Mean -0.01 -0.00 0.00 -0.02 -0.04 0.02 -0.02 -0.02 -0.01

Std 0.14 0.16 0.14 0.10 0.14 0.12 0.13 0.13 0.14

Skewness -0.01 -0.09 -0.40 0.56 0.08 0.32 0.36 0.13 0.35

Kurtosis 3.23 4.68 4.56 4.22 3.96 3.03 3.33 3.15 4.10

AR(1) coef. 0.65 0.65 0.63 0.62 0.62 0.63 0.67 0.66 0.65

Panel D: Exchange Rate Correlations

corr(∆s,∆sT) 0.15 0.00 0.13 -0.14 0.15 0.30 0.18 0.18 0.14

corr(∆s,∆sP) 0.74 0.68 0.75 0.81 0.74 0.77 0.78 0.75 0.75

corr(∆sT,∆sP) -0.55 -0.73 -0.55 -0.70 -0.55 -0.38 -0.48 -0.52 -0.55

Transitory SDF

Std 0.09 0.12 0.08 0.10 0.12 0.07 0.11 0.11 0.09
s.e. [0.00] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01]

corr(mT,US ,mT,∗) 0.61 0.54 0.47 0.81 0.62 0.51 0.67 0.59 0.44
s.e. [0.04] [0.06] [0.07] [0.02] [0.05] [0.06] [0.04] [0.07] [0.07]

Notes: The table reports the mean, standard deviation, skewness, kurtosis, and autocorrelation of 3-month
changes in exchange rates, as well as the moments of the transitory and permanent components of exchange rates.
The 10-year zero-coupon bonds are used as proxy of infinite-maturity bonds in order to decompose exchange rate
changes into their permanent and transitory components. Means and standard deviations are annualized. The
last panel reports the standard deviations of the transitory component of the SDF, along with its correlation with
the transitory component of the U.S. SDF. The returns are monthly. Block bootstrap standard errors with block
equal to four periods. Zero-coupon bond dataset. Monthly data from 12/1971 to 12/2012, or subset available.
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Table 5. We also report the bootstrap standard error for each moment.

Table 5 shows that for all countries, the annualized standard deviation of the transitory

SDF component is significantly smaller than the typically calculated Hansen-Jagannathan lower

bound of total SDF volatility. For the 3-month pricing kernel changes, the volatility ranges from

7% (for Switzerland) to 12% (for a number of countries), whereas conventional estimates of the

SDF lower bound exceed 50%. Those results are consistent with the Alvarez and Jermann (2005)

findings that the transitory SDF component is second-order. However, by Brandt, Cochrane, and

Santa-Clara (2006) logic, the much smaller volatility of the transitory SDF component, coupled

with the fact that the transitory component of exchange rate changes is about as volatile as the

total exchange rate changes, implies that the cross-country correlation of the transitory SDF

component is significantly lower than the cross-country correlation of the overall SDF. Indeed,

the last panel of Table 5 reports that, for 3-month pricing kernel changes, correlations range from

0.44 (between the U.S. and Norway) to 0.81 (between the U.S. and Canada). Those correlation

coefficients represent much smaller common variation than the almost perfectly correlated SDFs

reported in Brandt, Cochrane, and Santa-Clara (2006). It follows that there is much more

internationally common variation regarding the permanent SDF component than the transitory

SDF component. In unreported results, we find that our conclusions are robust for six-month

and 12-month pricing kernel changes.

6 Conclusion

In this paper, we derive a novel uncovered bond return parity condition. If permanent shocks

to the pricing kernels are perfectly shared, then long-term bond returns, once expressed in a

common currency, should be equalized across countries. If permanent shocks are not perfectly

shared, then the difference between the domestic and foreign long-term bond risk premia, again

expressed in a common currency, reflects the difference in the entropy of the permanent com-

ponents of the stochastic discount factor. Our results are preference-free and rely only on the

absence of arbitrage.

In the cross-section, we find that the term structure of currency risk premia is downward
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sloping. While carry trade strategies based on the three-month Treasury bills are highly prof-

itable, carry trade strategies using long-maturity bonds are not. On average, the excess returns

obtained by going long bonds in high interest rate currencies and short in low interest rate cur-

rencies do not offer significant excess returns. The same is true for investment strategies that go

long in countries whose yield curves are flat and short in countries whose yield curves are steep.

The downward-sloping term structure of carry trade risk premia implies that the permanent

component of the stochastic discount factor has similar entropy across countries. While Alvarez

and Jermann (2005) find that domestic equity and bond markets’ risk premia imply that the

pricing kernel is mostly driven by permanent shocks, our findings suggest that a large share of

these permanent shocks is already well-shared across countries. We confirm this insight in the

time-series by decomposing exchange rate changes into a component that reflects cross-country

differences in permanent pricing kernel innovations and one that encodes differences in transitory

innovations. It appears that the shocks not shared in international financial markets are much

less persistent than the overall shocks driving pricing kernels in asset markets.
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Online Appendix for “The Term Structure
of Currency Carry Trade Risk Premia”

—Not For Publication—

Section A reports the proofs of the theoretical results presented in the main text. The
decomposition of the SDF in two affine term structure models is reported in Section B. Additional
empirical results on the cross-section of currency and risk premia are given in Section C.

A Proofs

• Proof of Proposition 1:

Proof. Backus, Foresi, and Telmer (2001) show that the foreign currency risk premium is
equal to:

(ft − st)− Et[∆st+1] = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
.

To see this, consider a foreign investor who enters a forward position in the currency
market with payoff St+1 − Ft. The Euler equation is:

Et

(
Λ∗t+1

Λ∗t
(St+1 − Ft)

)
= 0.

Dividing by St+1 and applying the no arbitrage condition:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

,

we get (in logs):

ft − st = logEt

(
Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
.

Assuming no arbitrage, the expected log exchange rate change is:

Et[∆st+1] = Et

(
log

Λt+1

Λt

)
− Et

(
log

Λ∗t+1

Λ∗t

)
.

Therefore, the foreign currency risk premium is:

(ft−st)−Et[∆st+1] = logEt

(
Λt+1

Λt

)
−Et

(
log

Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
+Et

(
log

Λ∗t+1

Λ∗t

)
.

Using the definition of conditional entropy yields the desired expression.

Furthermore, Alvarez and Jermann (2005) establish that:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et log

[
R

(∞)
t+1

Rft

]
.
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To see this, first note that since the permanent component of the pricing kernel is a
martingale, it holds that:

Lt

(
ΛP
t+1

ΛP
t

)
= −Et

(
log

ΛP
t+1

ΛP
t

)
.

The entropy of the SDF can be decomposed as follows:

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

ΛT
t+1

ΛT
t

ΛP
t+1

ΛP
t

)

or, using the expression above:

Lt

(
Λt+1

Λt

)
= − logRft − Et

(
log

ΛT
t+1

ΛT
t

)
+ Lt

(
ΛP
t+1

ΛP
t

)
.

Thus, to establish the Alvarez and Jermann (2005) result all we need to show is that:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1.

Under the assumption that 0 < lim
k→∞

P
(k)
t

δk
<∞ for all t, we can write:

lim
k→∞

R
(k)
t+1 = lim

k→∞

Et+1

(
Λt+k

Λt+1

)
Et

(
Λt+k

Λt

) =
limk→∞

Et+1Λt+k/δ
k

Λt+1

limk→∞
EtΛt+k/δk

Λt

=

ΛP
t+1

Λt+1

ΛP
t

Λt

= ΛT
t /Λ

T
t+1.

The final result follows immediately from the Backus, Foresi, and Telmer (2001) and
Alvarez and Jermann (2005) results.

• Proof of Proposition 2:

Proof. Alvarez and Jermann (2005) establish that the return of the infinite maturity bond
reflects the transitory SDF component:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1

The result of this proposition follows directly from the no-arbitrage expression for the spot
exchange rate when markets are complete.

• Proof of Proposition 3

Proof. Alvarez and Jermann (2005) establish a lower bound for the entropy of the perma-
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nent component of the SDF:

Lt

(
ΛP
t+1

ΛP
t

)
≥ Et (logRt+1)− Et

(
logR

(∞)
t+1

)
.

To construct this bound, we first use the concavity of the logarithmic function to show
that for any return Rt+1 it holds that:

Et

(
log

Λt+1

Λt

)
+ Et (logRt+1) = Et

(
log

Λt+1

Λt
Rt+1

)
≤ logEt

(
Λt+1

Λt
Rt+1

)
= 0,

where the last equality follows from the assumption of no arbitrage. Then, we use this
inequality to establish a bound for SDF entropy:

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
≥ Et (logRt+1)− logRft .

In the proof of Proposition 1, we show that SDF entropy can be decomposed as follows:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
logR

(∞)
t+1

)
− logRft .

Combining this decomposition with the SDF entropy bound above yields the bound on
the entropy on the permanent SDF component.

We can use this bound to construct a bound for the covariance of the log permanent
component of two countries’ SDF as follows. First, by the definition of the permanent
component of exchange rates, it holds that:

vart

(
log

ΛP
t+1

ΛP
t

− log
ΛP,∗
t+1

ΛP,∗
t

)
= vart

(
SP
t+1

SP
t

)
,

so we can use the expression for the variance of the difference of two random variables to
get:

covt

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
=

1

2

[
vart

(
log

ΛP,∗
t+1

ΛP,∗
t

)
+ vart

(
log

ΛP
t+1

ΛP
t

)
− vart

(
log

SP
t+1

SP
t

)]
.

Given the assumption of conditional lognormality of the permanent component of pricing
kernels, we can rewrite this expression in terms of conditional entropy as follows:

covt

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
= Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
+ Lt

(
ΛP
t+1

ΛP
t

)
− 1

2
vart

(
log

SP
t+1

SP
t

)
.

The covariance bound in the Proposition follows from combining the expression above with

the Alvarez and Jermann (2005) bound for Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
and Lt

(
ΛP
t+1

ΛP
t

)
.

For the unconditional version of Proposition 3, we first follow Alvarez and Jermann (2005)
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and establish the following unconditional entropy bound:

L

(
ΛP
t+1

ΛP
t

)
≥ E (logRt+1)− E

(
logR

(∞)
t+1

)
.

Specifically, we start with the decomposition of the conditional SDF entropy

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
logR

(∞)
t+1

)
− logRft

and apply unconditional expectations on both sides of the equation, using the following
property of entropy: for any admissible random variable X, it holds that

E [Lt(Xt+1)] = L(Xt+1)− L [Et(Xt+1)] .

After some algebra, we get:

L

(
Λt+1

Λt

)
= L

(
ΛP
t+1

ΛP
t

)
+ L

(
1

Rft

)
+ E

(
log

R
(∞)
t+1

Rft

)
,

where we use the fact that the permanent component of the pricing kernel is a martingale:

L

(
Et

ΛP
t+1

ΛP
t

)
= 0.

Furthermore, we can apply unconditional expectations on the two sides of the previously
established conditional SDF entropy inequality condition

Lt

(
Λt+1

Λt

)
≥ Et (logRt+1)− logRft

and get

L

(
Λt+1

Λt

)
≥ L

(
1

Rft

)
+ E

(
log

Rt+1

Rft

)
.

Using the unconditional entropy decomposition, we have:

L

(
ΛP
t+1

ΛP
t

)
+ L

(
1

Rft

)
+ E

(
log

R
(∞)
t+1

Rft

)
≥ L

(
1

Rft

)
+ E

(
log

Rt+1

Rft

)
.

The Alvarez and Jermann (2005) bound for the entropy of the permanent SDF component
follows immediately. Considering the unconditional covariance of the domestic and foreign
permanent SDF components and using this bound yields the unconditional expression of
Proposition 3:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ Et

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
.
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For this result, we use the assumption that
ΛP
t+1

ΛP
t

and
ΛP,∗
t+1

ΛP,∗
t

are unconditionally lognormal

and use the entropy property

L(X) =
1

2
var(logX)

for any lognormal random variable X.

B Factorization in Affine Term Structure Models

In this Section, we analyze the Cox, Ingersoll, and Ross (1985) and Lustig, Roussanov, and
Verdelhan (2011) models presented in the main text of the paper.

B.1 Cox, Ingersoll, and Ross (1985) Model

The Cox, Ingersoll, and Ross (1985) model (denoted CIR) is defined by the following two equa-
tions:

− logMt+1 = α+ χzt +
√
γztut+1, (4)

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

where M denotes the stochastic discount factor.

Bond Prices Log bond prices are affine in the state variable z:

p
(n)
t = −Bn

0 −Bn
1 zt.

The price of a one period-bond is:

P (1) = Et(Mt+1) = e−α−(χ− 1
2
γ)zt .

Bond prices are defined recursively by the Euler equation: P
(n)
t = Et(Mt+1P

(n−1)
t+1 ). Thus the

bond price coefficients evolve according to the following second-order difference equations:

Bn
0 = α+Bn−1

0 +Bn−1
1 (1− φ)θ, (5)

Bn
1 = χ− 1

2
γ +Bn−1

1 φ− 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 .

Decomposition The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

P
(n)
t

= lim
n→∞

βt+neB
n
0 +Bn

1 zt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
n→∞

P
(n)
t

βn
<∞.
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The limit of Bn
0 − B

n−1
0 is finite: limn→∞B

n
0 − B

n−1
0 = α + B∞1 (1 − φ)θ, where B∞1 is defined

implicitly in a second-order equation above. As a result, Bn
0 grows at a linear rate in the limit.

We choose the constant β to offset the growth in Bn
0 as n becomes very large. Setting

β = e−α−B
∞
1 (1−φ)θ

guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied. The temporary pricing
component of the SDF is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞
1 (zt+1−zt) = βeB

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1].

As a result, the martingale component of the SDF is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1]. (6)

Bond Risk Premia The holding period return on a zero-coupon bond of maturity n between

date t and t + 1 is R
(n)
t+1 = P

(n−1)
t+1 /P

(n)
t . Let r

(n)
t+1 denote the corresponding log holding period

return.

r
(n)
t+1 = Bn

0 −Bn−1
0 −Bn−1

1 zt+1 +Bn
1 zt,

= Bn
0 −Bn−1

0 −Bn−1
1 (1− φ)θ

+ [χ− 1

2
γ − 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt

+ Bn−1
1 σ

√
ztut+1.

Hence it follows that the log holding period return in excess of the risk-free rate is given by:

rx
(n)
t+1 = r

(n)
t+1 − α− (χ− 1

2
γ)zt,

= [−1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt +Bn−1
1 σ

√
ztut+1.

The expected log excess return is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt.

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(B∞1 )2 σ2 + σ

√
γB∞1 ]zt,

= [B∞1 (1− φ)− χ+
1

2
γ]zt.

The −1
2 (B∞1 )2 σ2 is a Jensen term. The term premium is driven by σ

√
γB∞1 zt, where B∞1 is
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defined implicitly in the second order equation B∞1 = χ− 1
2γ +B∞1 φ− 1

2 (B∞1 )2 σ2 + σ
√
γB∞1 .

No Permanent Shocks Consider the special case of B∞1 (1 − φ) = χ. In this case, the

expected term premium is simply Et[rx
(∞)
t+1 ] = 1

2γzt, which is equal to one-half of the variance
of the log stochastic discount factor.

Foreign Pricing Kernel Suppose that the foreign pricing kernel is specified as in Equation
(5) with the same parameters. However, the foreign country has its own factor z?. As a result,
the difference between the domestic and foreign log term premia is equal to the log currency
risk premium, which is given by Et[rx

FX
t+1] = 1

2γ(zt − z∗t ). In other words, the expected foreign
log holding period return on a foreign long bond converted into U.S. dollars is equal to the U.S.

term premium: Et[rx
(∞),∗
t+1 ] + Et[rx

FX
t+1] = 1

2γzt.
This special case corresponds to the absence of permanent shocks to the SDF: when B∞1 (1−

φ) = χ, the permanent component of the stochastic discount factor is constant. To see this
result, let us go back to the implicit definition of B∞1 in (6):

0 =
1

2
(B∞1 )2 σ2 + (1− φ− σ√γ)B∞1 − χ+

1

2
γ,

0 =
1

2
(B∞1 )2 σ2 − σ√γB∞1 +

1

2
γ,

0 = (σB∞1 −
√
γ)2 .

In this special case, B∞1 =
√
γ/σ. Using this result in expression 6, the permanent component

of the SDF reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1] = β−1e−α−χθ,

which is a constant.
The same structure exists in the foreign economy. All foreign variables are denoted with a ∗.

We do not impose the parameters to be the same. We define the log changes in exchange rates
as the log difference in the SDFs.

B.2 Lustig, Roussanov, and Verdelhan (2011) Model

Suppose we have a version of the CIR model with two common components: a persistent and a
transitory component. This model is defined by the following set of equations:

− logMt+1 = α+ χzt +
√
γztut+1 + τzPt +

√
δzPt u

P
t+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

zPt+1 = (1− φP)θP + φpzPt − σP
√
zPt u

P
t+1,

where zt is the transitory factor, and zPt is the permanent factor.
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Bond Prices The nominal log zero-coupon yield of maturity n months in the currency of
country i is given by the standard affine expression:

y
(n),$
t = − 1

n

(
Ãn + B̃nzt + C̃nz

P
t

)
,

where the coefficients satisfy the second-order difference equation:

Ãn = −α+ Ãn−1 + B̃n−1 (1− φ) θ + C̃n−1

(
1− φP

)
θP, (7)

B̃n = −
(
χ− 1

2
γ

)
+ B̃n−1 (φ+ σ

√
γ) +

1

2

(
B̃n−1σ

)2
,

C̃n = −
(
τ − 1

2
δ

)
+ C̃n−1

(
φP + σP

√
δ
)

+
1

2

(
C̃n−1σ

p
)2
.

The nominal log zero-coupon price of maturity n months in the currency of country i is given
by the standard affine expression

p
(n),$
t =

(
Ãn + B̃nzt + C̃nz

P
t

)
.

Bond prices are defined recursively by the Euler equation: P
(n)
t = Et(Mt+1P

n−1
t+1 ), and the price

of a one period-bond is given by:

P (1) = Et(Mt+1) = e−α−(χ− 1
2
γ)zt−(τ− 1

2
δ)zPt ,

which implies that the nominal risk-free interest rate (in logarithms) is given by this affine
function of the persistent component and the transitory component:

rft = α+

(
χ− 1

2
γ

)
zt +

(
τ − 1

2
δ

)
zPt .
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Bond Risk Premia The log of the holding period return on a zero-coupon bond of maturity
n between date t and t+ 1 is :

r
(n)
t+1 = −An +An−1 +Bn−1zt+1 −Bnzt + Cn−1z

P
t+1 − CnzPt

= −An +An−1 +Bn−1[(1− φ)θ + φzt − σ
√
ztut+1] + Cn−1[(1− φP)θP + φPzPt − σP

√
zPt ut+1]

− [−
(
χ− 1

2
γ

)
+ B̃n−1 (φ+ σ

√
γ) +

1

2

(
B̃n−1σ

)2
]zt,

− [−
(
τ − 1

2
δ

)
+ C̃n−1

(
φP + σP

√
δ
)

+
1

2

(
C̃n−1σ

P
)2

]zPt

= −An +An−1 +Bn−1
1 (1− φ)θ + Cn−1(1− φP)θP

+

[(
χ− 1

2
γ

)
− B̃n−1 (φ+ σ

√
γ)− 1

2

(
B̃n−1σ

)2
]
zt,

+

[(
τ − 1

2
δ

)
− C̃n−1

(
φP + σP

√
δ
)
− 1

2

(
C̃n−1σ

p
)2
]
zpt

− Bn−1σ
√
ztut+1 − Cn−1σ

P
√
zpt u

P
t+1.

Thus, the log holding period return minus the risk-free rate is:

rx
(n)
t+1 = r

(n)
t+1 − (α+

(
χ− 1

2
γ

)
zt +

(
τ − 1

2
δ

)
zPt ),

= −An +An−1 +Bn−1(1− φ)θ + Cn−1(1− φP)θP − α

−
[
B̃n−1 (σ

√
γ) +

1

2

(
B̃n−1σ

)2
]
zt − Cn−1

1 σ
√
ztut+1,

−
[
C̃n−1

(
σP
√
δ
)

+
1

2

(
C̃n−1σ

p
)2
]
zPt − Cn−1

1 σ
√
zPt u

P
t+1.

The expected log excess return on an n-maturity zero coupon bond is thus:

Et[rx
(n)
t+1] = −

[
1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1

]
zt,

−
[

1

2

(
Cn−1

1

)2
(σP)2 + σ

√
γCn−1

1

]
zPt .

The expected log excess return on an infinite maturity bond is thus:

Et[rx
(∞)
t+1 ] = −

[
1

2
(B∞1 )2 σ2 + σ

√
γB∞1

]
zt,

−
[

1

2
(C∞1 )2 (σP)2 + σ

√
γC∞1

]
zPt .
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Using the expression for B∞1 and C∞1 implicit in (8), this equation can be restated as follows:

Et[rx
(∞)
t+1 ] = −

[
(B∞1 ) (1− φ) + χ− 1

2
γ

]
zt,

−
[
(C∞1 ) (1− φP) + τ − 1

2
δ

]
zPt .

To give content to the notion that zt is transitory, we impose that B∞1 (1 − φ) = χ. This
restriction implies that the permanent component of the pricing kernel is not affected by the
transitory factor zt, as can easily be verified: Using this result in expression 6, the permanent
component of the stochastic discount factor reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χzt−
√
γztut+1−τzPt−

√
δzpt u

P
t+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1]

× e
−C∞1

[
(φP−1)(zPt−θP)−σP

√
zPt ut+1

]
= β−1e−α−χθe

−C∞1
[
(φP−1)(zPt−θP)−σP

√
zPt ut+1

]
,

which does not depend on zt. Given this restriction, the bond risk premium is given by:

Et[rx
(∞)
t+1 ] =

1

2
γzt −

[
τ − 1

2
δ + (C∞1 ) (1− φp)

]
zPt .

Foreign Pricing Kernel Both factors are common across countries, but we allow for het-
erogeneous factor loadings on these common or global factors following Lustig, Roussanov, and
Verdelhan (2011). The foreign SDF is given by:

− logM∗t+1 = α+ χzt +
√
γ∗ztut+1 + τzPt +

√
δ∗zPt u

P
t+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

zPt+1 = (1− φP)θP + φPzPt − σP
√
zPt u

P
t+1

where zt is the transitory factor, and zPt is the permanent factor. As can easily be verified, the
log currency risk premium is given by: Et[rx

FX
t+1] = 1

2(γ − γ∗)zt + 1
2(δ− δ∗)zPt . This implies that

the expected foreign log holding period return on a foreign long bond converted into U.S. dollars
is :

Et[rx
(∞),$
t+1 ] = Et[rx

(∞),∗
t+1 ] + Et[rx

FX
t+1],

=
1

2
γzt −

[
τ − 1

2
δ +

(
C∞,∗1

)
(1− φP)

]
zPt

where C̃∞,∗ is defined by the following equation C̃∞,∗ = −
(
τ − 1

2δ
∗) + C̃∞,∗

(
φP + σP

√
δ∗
)

+

1
2

(
C̃∞,∗σ

P
)2

. Hence, the difference between the foreign and the domestic term premium is
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given by:
(
C∞,∗1 − C∞1

)
(1 − φP)zPt . In the symmetric case in which δ = δ∗, the foreign term

premium in dollars equals the domestic term premium. If γ > γ∗, there is a large positive foreign
currency risk premium Et[rx

FX
t+1] = 1

2(γ − γ∗)zt, but that is exactly offset by a smaller foreign
term premium.

C Additional Empirical Results

This Section reports empirical results not reported in the main text of the paper.

C.1 Results on the Cross-section of Long Term Bond Returns

Here, we report additional results on the cross-section of long term bond returns. Thus, this
Subsection complements Section 3 in the main text.

Sorting Currencies by the Slope of the Yield Curve Table 6 reports the results of sorting
on the yield curve slope on the sample of developed countries, whereas Table 7 reports the results
obtained from using the entire cross-section of countries, including emerging countries.

Sorting Currencies by Interest Rates Figure 10 plots the composition of the three interest
rate-sorted portfolios of the currencies of the benchmark sample, ranked from low to high interest
rate currencies. Table 8 reports the results of sorting the developed country currencies into
portfolios based on the level of their interest rate, ranked from low to high interest rate currencies.
Figure 11 plots the composition of the four interest rate-sorted currency portfolios. Finally, Table
9 reports the results of sorting all the currencies in our sample, including those of emerging
countries, into portfolios according to the level of their interest rate, ranked from low to high
interest rate currencies.
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Figure 10: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of
portfolios of 9 currencies sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are
monthly, from 12/1950 to 12/2012.

C.2 Results on Time-Series Tests of the Uncovered Bond Return Parity

This Subsection reports material that complements the results of Section 4.

The Volatility of Bond Returns To further test whether USD bond returns of different
countries become increasingly similar as bond maturity increases, Figure 12 reports the ratio
of foreign to domestic U.S. dollar bond returns; the k-year maturity volatility ratio is given

by: V olR(k),$ = σ
(
r

(k),∗
t+1 −∆st+1

)
/σ
(
r

(k)
t+1

)
obtained on three-month returns. For compari-

son, Figure 12 reports also the corresponding volatility ratio for local currency returns, given

by V olR(k) = σ
(
r

(k),∗
t+1

)
/σ
(
r

(k)
t+1

)
for k = 1, 2, ...15 years. The pattern is unambiguous: the

unconditional volatility of the U.S. dollar 3-month foreign returns is much higher than that of
the corresponding volatility of U.S. bond returns for small maturities, but the volatility ratio
falls sharply for higher maturities and is close to one for 15-year bonds. In contrast with the

observed pattern for V olRk, the local currency volatility ratio V olR
(k)
k is virtually flat with

maturity, implying that the convergence in U.S. dollar return bond volatility is due to the prop-
erties of the nominal exchange rate. Of course, even if exchange rates followed a random walk
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Figure 11: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of
portfolios of 20 currencies sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are
monthly, from 12/1950 to 12/2012.

and exchange rate innovations are uncorrelated with returns, we could still observe this pat-
tern, simply the exchange rates account for a smaller share of overall return volatility at longer
maturities. However, we show that exchange rates actually hedge interest rate risk.

The results are robust to an increase of the holding period. Specifically, in unreported
results, 6-month and 12-month returns produce the same patterns: for both holding periods
and for virtually all currencies, there is an almost monotonic relationship between correlation
coefficients of U.S. dollar returns and bond maturity. Furthermore, 6-month and 12-month local
currency return correlations are not sensitive to maturity, the U.S. dollar return volatility ratio
is very high for short maturities, but quickly converges towards one, and the local currency
return volatility ratio is flat with maturity.
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Figure 12: The Maturity structure of Bond Return Volatility — Volatility of Foreign and U.S. bond
returns. The time-window is country-dependent. Data are monthly. The holding period is 3-months.
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