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1 Introduction

The cost pass-through, namely the change in prices resulting from a cost shock, is an important

concept in Economics. In Industrial Organization, the analysis of pass-through sheds light into

a wide range of topics, including the welfare effects of price-discrimination (Aguirre et al., 2010),

merger assessment (Jaffe and Weyl, 2013), or the quantification of cartel damages (Verboven and

van Dijk, 2009); in International Economics, a key question is whether exchange-rate fluctuations

are passed-through to the prices of imported goods (Goldberg and Knetter, 1997); and in Public

Economics, pass-through is central to the theory of tax incidence (Marion and Muehlegger, 2011).

From an empirical perspective, the measurement of pass-through has proved challenging mainly

because marginal costs and markups are typically non-observable. The common approach is to first

estimate demand parameters, and then back-out markups from the first order conditions of profit

maximization. However the implications of modeling choices for pass-through remain an open

empirical question (Goldberg and Hellerstein, 2008). This is particularly relevant in oligopolistic

settings, as under imperfect competition the curvature of demand - and not only its elasticity -

may have a profound effect on the quantification of pass-through (Weyl and Fabinger, 2013).1 In

this paper, we measure and explore the determinants of the pass-through of emissions costs to

electricity prices. We do so using a framework that relies on minimal assumptions on the shape of

the demand curve and on firms’ strategic behavior.

The availability of high frequency and highly disaggregated data make electricity markets a

uniquely suited setting for a pass-through analysis. Electricity markets are organized as auctions,

which enables us to observe not only market clearing prices and quantities, but also the hourly

demand and supply schedules. Furthermore, it is possible to construct reliable engineering-based

marginal cost estimates, given that the electricity production function is well known and fossil fuels

are traded in international markets. Marginal emissions costs can also be measured very accurately,

since these depend on the carbon price and on the emissions rate of the price-setting unit, whose

identity is revealed by the bid data. Last, but not least, the institutions that shape firms’ strategic

behavior in electricity markets are well understood,2 making it possible to construct structural

models that mimic closely the way firms actually compete in these markets.

The cost shocks induced by changes in carbon prices, as opposed to changes in other cost

components, are also particularly suitable for an empirical analysis of pass-through. First, the

effects of carbon prices on the marginal costs of generating electricity are significant and vary both

across time as well as across technologies. And second, fluctuations of emissions permit prices are

a source of plausibly exogenous cost shocks to firms (at least in a partial equilibrium sense) since

pollution permits are traded across many countries and sectors.

In our empirical analysis of pass-through, we use data from the Spanish wholesale electricity

1For instance, see Bulow and Pfleiderer (1983) for an analysis of tax pass-through in the tobacco industry and
the importance of the demand functional form assumptions. More generally, the dependence of mark-up estimates
on the assumed functional forms has been acknowledged by the empirical IO literature (see e.g. Bresnahan (1982,
1989), Reiss and Wolak (2007), and Kim and Knittel (2006), among others).

2See the seminal papers by Green and Newbery (1992) and von der Fehr and Harbord (1993), among others.
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market covering the period in which the European cap-and-trade program for carbon emissions

was introduced.3 We focus on pass-through in the wholesale market given that retail prices are

regulated and therefore invariant, at least in the short-run, to changes in production costs.

We follow an instrumental variables approach to measure the effects of an increase in emissions

costs on electricity market prices. We find the average pass-through in this market to be above

80%, implying that a one euro increase in emissions costs translates, on average, into an increase

in electricity prices of more than eighty cents. If we separate the estimates between hours of low

and high demand, we find that firms are more able to pass-through costs in high demand hours,

when dynamic constraints are less relevant. In fact, this estimate goes up to 100% during peak

times when firms face no start-up costs.4

In the broader pass-through literature, the finding of an almost complete pass-through is the

exception rather than the rule. A great number of studies have measured the pass-through of

exchange-rates to prices of imported goods, and they robustly report pass-through estimates lower

than fifty percent, if not less. For instance, in the beer market, Goldberg and Hellerstein (2013)

document that only 5% of an exchange rate change is transmitted to final prices; similarly, in the

coffee industry, Nakamura and Zerom (2010) report a long-run pass-through elasticity of commodity

prices of 25%.5

Given our finding of an almost complete pass-through, it is natural to ask: Why is the pass-

through so high in electricity markets? Are the channels of price-through incompleteness identified

in other settings not relevant in ours? And, are there other relevant channels?

The pass-through literature has identified three main channels of pass-through incompleteness:

(i) the strategic adjustment of markups due to cost shocks, (ii) the presence of certain costs that

remain unaffected by the observed cost shock (the exchange-rate pass-through literature refers to

these as non-traded costs), and (iii) the presence of price rigidities that restrict firms from adjusting

prices optimally. A robust conclusion of the literature is that non-traded costs are the main source

of incomplete pass-through, followed by markup adjustment (Goldberg and Hellerstein, 2008).

Nominal price rigidities might delay price adjustment, but otherwise have a minor impact on the

long-run pass-through (Nakamura and Zerom, 2010; Goldberg and Hellerstein, 2013).

To the list of potential channels we add an additional one, namely (iv) the mismatch between

observed cost shocks and firms’ actual or opportunity costs. This could be an important source

of incomplete pass-through in the presence of transaction costs in input markets. This mismatch

could also arise if firms are not fully equipped to understand the value of opportunity costs.6 In our

3See Ellerman et al. (2010) for a description of the European cap-and-trade program.
4This evidence is consistent with the results reported in other studies in the context of the European cap-and-trade

program. Sijm et al. (2006) estimate pass-through rates using equilibrium prices and fuel cost data in the German
electricity market, and find pass-through rates that range between 0.60 and 1.17, depending on market conditions.
See the Annex by Keppler in Ellerman et al. (2010) for a review of this and other studies. These studies are based on
market outcomes, in contrast to our analysis, which uses finer micro-level data. See Bushnell et al. (2013) for related
evidence.

5See also Bonnet et al. (2013), Goldberg and Verboven (2001) and Hellerstein (2008), among others.
6Nakamura and Zerom (2010) argue that firms might respond differently to changes in commodity prices versus

fluctuations in exchange rates because of limited information capacity (Mackowiak and Wiederholt, 2012). They
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setting, we show that we can infer firms’ actual costs from their bidding behavior, and separately

identify them from their equilibrium effect on prices.

We propose a variety of tests to quantify the relevance of these channels. Within a structural

framework that is commonly used in the electricity auctions literature (see Wolak (2000) and

Hortaçsu and Puller (2008), among others), we first test if firms’ behavior is consistent with full

internalization of permit prices. We cannot reject that the emissions price reflects the actual

cost of emissions permits. Interestingly this finding shows that the Spanish electricity firms fully

incorporated the opportunity cost of permits, despite the fact that the emissions market had just

been created and firms did not participate very actively in it. This is also consistent with the

allocation of free permits having no distortionary effects in the short run.7

To assess the incentives for markup adjustment, we use the same structural model to develop

a first-order approach that decomposes the pass-through after a one euro increase in emissions

costs. Price changes are driven both by changes in marginal costs and changes in markups. The

high correlation of cost shocks across firms together with the highly inelastic nature of aggregate

demand implies that the incentives to adjust markups are very weak in these markets. As a

consequence, prices tend to move one-to-one with changes in emissions costs.

Next, we show that our measured pass-through is not affected by the presence of other cost

components that do not depend on the emissions price. In our baseline model, we use a linear

specification for the pass-through while controlling for the presence of other costs since (i) emissions

costs enter the cost function in a linear fashion, (ii) we are able to measure these costs with

high precision and (iii) we observe the other components of marginal costs. This implies that

our pass-through estimate is already net of non-emissions costs. Given that we observe total

marginal costs, we can also measure their pass-through to final prices. We find consistent results as

compared to when we measure the pass-through of marginal emissions costs only, thus highlighting

the advantages of having detailed micro-level cost data.

Last, price rigidities might be a source of incomplete pass-through as they might limit firms’

ability to adjust prices optimally (Nakamura and Zerom, 2010; Goldberg and Hellerstein, 2013).

Intuitively, the costs of price adjustment in electricity markets are likely to be small given that

firms have to participate in the electricity auction on a daily basis. However, if there are some

costs of bid preparation, firms might prefer not to update their bids as often as allowed to do so.

A close look at the data reveals the presence of very small price rigidities. Indeed, firms change

their bids frequently, about 80% of the days on average. This frequency is even higher for Mondays

and Saturdays, when the payoffs from bid adjustment are enhanced by weekday-weekend demand

seasonality.

In conclusion, the institutional framework in electricity markets stands as the main factor

acknowledge that such a “cognitive divide” in decision-making may play a role in explaining incomplete pass-through,
but decide to abstract from it.

7See also Reguant and Ellerman (2008), Fowlie (2010) and Kolstad and Wolak (2008) for related evidence on
whether firms internalize emissions costs. The last two report a situation in which short run incentives are distorted,
so that the opportunity cost is not given by the permit price.
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explaining our high measured pass-through. In particular, since electricity is traded through high-

frequency uniform-price auctions for an almost perfectly inelastic demand, firms have weak in-

centives to adjust markups after a cost shock. Furthermore, the costs of price adjustment are

relatively small. The fact that most other markets analyzed in the pass-through literature are

organized through bilateral negotiations contributes to explaining why our measured pass-through

rate is higher than usual. In this sense, the auction mechanism, unlike other market institutions,

proves efficient in almost instantaneously passing through changes in input costs to wholesale prices.

Our results have important policy implications. Since January 2013, full auctioning of emissions

permits has become compulsory for the power sector. The finding that firms internalize the value

of free permits suggests that the short run effects of a system with taxes or without grandfathering

should not differ much from the one with free allowances.8 In contrast with the conventional

wisdom, the use of auctions to allocate permits should not have any additional inflationary effects

on electricity prices, at least in the short run.9

Furthermore, the high measured pass-through rate suggests that the introduction of emissions

regulation implies a wealth transfer from consumers to producers, not only because of the free

allocation of permits, but also due to increased market prices. Full auctioning of emissions permits

will thus not remove these gains from the existing non-polluting technologies.

The paper proceeds as follows. Section 2 describes the context and data of the analysis. In

Section 3, we measure the pass-through rate by means of a reduced-form regression. In Section 4,

we present a structural framework to explore the role of demand, supply and markup adjustments

in explaining the pass-through. We also explore whether and how the cost decomposition affects

the pass-through estimates, and measure the extent of price rigidities in this market. Section 5

concludes.

2 Context and Data

2.1 The Context

We study the pass-through of emissions costs to wholesale electricity prices in the Spanish electricity

market. We focus on the period from January 2004 to February 2006, which comprises the first

phase (2005-2007) of the European cap-and-trade program for carbon, known as the European

Union’s Emissions Trading System (ETS).10 The ETS is currently the largest carbon market in the

8See Fowlie et al. (2012) for a situation in which grandfathering can have long run impacts on investment, entry
and exit decisions.

9A high UK government official stated that “[Auctioning permits] is ultimately going to show up in higher prices
for goods, most obviously higher energy prices,” Harvey and Eaglesham (2008). See also the response by Klemperer
(2008).

10We do not include the period from March 2006 onwards because there was an important regulatory change in the
Spanish electricity market (Royal Decree-Law 3/2006) that distorted the market clearing procedure in the auctions.
It implied that market prices would only be paid to firms’ net sales; more specifically, firms’ production covered by
the purchases of their downstream subsidiaries would be bought and sold at a regulated price. We have experimented
including this period in the sample and the overall conclusions of the analysis hold.
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world, and it is the European Union’s flagship instrument to fight climate change.11

Under cap-and-trade, the total amount of emissions is capped, and emissions permits summing

up to the cap are distributed among pollutants. On a yearly basis, emitters are required to surrender

a permit for each tonne of carbon they emit. For this purpose, they can either use their own permits

or they can trade them in the OTC market or through exchanges. During the first and second phases

of the ETS, emissions permits were distributed almost entirely for free.12

One half of total regulated emissions in Europe come from the power sector as thermal plants

burn fossil fuels (coal, gas and oil) to generate electricity. Under the new emissions regulation

these plants now face the cost of carbon. In Spain, which is the focus of our paper, thermal units

produce approximately 50% of total electricity production during the sample period. The other

technologies for electricity generation are nuclear (20-25%), traditional hydro power (8-11%), and

renewable resources (9-12%), all of which are carbon-free.

There are 89 thermal units subject to emissions control, 36 of which are coal plants, 38 are new

combined cycle gas plants, and 15 are traditional oil and gas plants. The average emissions rate of

coal plants is 0.95 tons/MWh, although this rate varies across units depending on the type of coal

they burn. Combined cycle natural gas units (CCGTs) have much lower emissions rates, averaging

0.35 tons/MWh with little dispersion across plants. Since coal plants typically have lower marginal

costs than CCGTs, on average they operate closer to their full potential (65% versus 37% over the

sample). Finally, traditional oil-fired or gas-fired plants that are more inefficient than newer gas

plants, only operating at 7% of their capacity on average.

During the sample period, the Spanish electricity market was supplied by four vertically in-

tegrated incumbent firms, plus a set of small fringe players. Table 2.1 provides a closer look at

the characteristics of the thermal units owned by these companies. Altogether, the four main in-

cumbents own 61 of the 89 production units affected by the emissions regulation. Additionally,

these firms also own nuclear and hydro plants, specially the two largest firms. In terms of total

production, the market share of these two firms exceeds 80% during this period.

2.2 Overview of Prices

Since we will be measuring the pass-through of emissions costs to electricity prices, it is illus-

trative to provide a first look at their evolution over the sample period. As can be seen from

Figure 2.1, electricity prices are highly volatile as a result of frequent changes in demand and sup-

ply conditions. Movements in demand display strong seasonal components (e.g., winter-summer,

weekday-weekend), and supply conditions vary with the availability of renewable resources (hydro

11The first phase covered only carbon dioxide emissions from energy related industries (combustion installations
with a rated thermal input exceeding 20MW, mineral oil refineries, coke ovens), production and processing of ferrous
metals, the mineral industry (cement clinker, glass and ceramic bricks) and the pulp, paper and board industry.
These activities represent around 40% of CO2 emissions in the European Union. For more details on the EU ETS,
see Ellerman et al. (2007) and Bahringer and Lange (2012).

12A few countries decided to auction a small share of permits, which was capped by law to be at most 5% of
the total amount of permits (Ellerman et al., 2007). Since January 2013 (a period not covered in our analysis), full
auctioning of permits has become compulsory for the power sector.
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Table 2.1: Characteristics of thermal plants of the 4 main firms

Firm 1 Firm 2 Firm 3 Firm 4
Total number of units 23 17 15 6
Avg. emissions rate (tons CO2/MWh) 0.80 0.75 0.86 0.90
Avg. thermal capacity (MW) 7,191 4,933 3,591 1,914
Avg. coal capacity share (MW) 0.65 0.22 0.56 0.81
Avg. CCGT capacity share (MW) 0.15 0.27 0.15 0.19
Avg. oil/gas capacity share (MW) 0.20 0.51 0.30 0.00

Notes: Sample from January 2004 to February 2006, including all thermal units (except nuclear power

plants) in the Spanish electricity market that are active. Average measures are based on hourly values

during the period.

and wind) and with changes in input prices (coal, gas, oil and carbon).

While the figure suggests that emissions costs affected electricity prices, it tells us little about

the magnitude of the pass-through. We next describe the data set that enables us to perform a

rigorous empirical analysis of the magnitude and determinants of the pass-through.

2.3 Supply and Demand Bid Data

We use detailed data on the bids submitted to the Spanish day-ahead electricity market from

January 2004 to February 2006.13 The day-ahead market concentrates approximately 70% of all

electricity traded in Spain. It operates as a multi-unit uniform-price auction, similarly to other

auction-based markets, e.g. the Treasury Bill market.

On a daily basis, electricity producers submit 24 hourly supply functions specifying the minimum

price at which they are willing to produce a given amount of electricity at a given hour of the

following day. Similarly, retailers and large electricity consumers submit 24 hourly demand functions

specifying the price-quantity pairs at which they are willing to purchase electricity. The market

operator orders the individual bids to construct the aggregate supply and demand functions for

every hour, and the intersection of these two curves determines the market clearing price and

quantities allocated to each bidder.14 Sellers (buyers) receive (pay) the market clearing price times

their sales (purchases). Accordingly, for each of the 24 hours of the 790 days in the sample, we

observe the price-quantity pairs submitted by each firm for each of their power plants.15 We also

observe all the price-quantity pairs submitted by the buyers.

Access to such a detailed and high-frequency bid data set presents several advantages. First,

we observe the identity of the production unit that is actually setting the market price. This will

13These data are publicly available at the system and market operator web sites, www.esios.ree.es and www.omie.es.
14These 24 hourly markets clear independently of each other, with one exception, the so-called “Minimum Revenue

Requirement”, which allows bidders to withdraw their bids if their minimum revenue over the day is not above a
given value. See Reguant (2013) for a complete treatment of the market algorithm.

15Supply functions can be made up to 25 price-quantity pairs for each production unit, even though in practice
most units submit at most 5 or 6 steps. For thermal units, the average number of steps is 4.33 and the median is 3.
At the aggregate level, the overall supply function of a big firm in a given hour can still contain over hundred steps.
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Figure 2.1: Evolution of carbon permit prices during our sample
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be crucial throughout the analysis as it enables us to construct the relevant marginal costs and

emissions costs data. Second, we can construct the hourly supply functions submitted by all firms

in the market and the hourly residual demand functions faced by each firm. We can thus measure

the slope of these curves directly so as to understand the role of markup adjustments in determining

the pass-through (Section 4.1). Third, we observe the frequency of bid changes, which allows us to

assess whether nominal price rigidities play any role in this market (Section 4.3).

2.4 Marginal Costs and Emissions Data

The marginal costs incurred by thermal plants can be decomposed into two elements: marginal

input costs and marginal emissions costs. The former depend on the price of the fossil fuel used

and the plant’s “heat rate”, i.e., the amount of energy used per unit of electricity produced. The

latter depend on the carbon price and on the plant’s “emissions rate”, i.e., the amount of carbon

emissions per unit of electricity produced.

To compute engineering estimates of marginal input costs, we use information on heat rates, fuel

types, and variable operating and maintenance costs of all thermal plants in the Spanish electricity

industry.16 We also use publicly available information on coal, gas, and oil prices in international

16This information has been provided to us by the System Operator, which used to be in charge of dispatching
production units according to their reported costs. We have updated this data set to include the new production
units (mainly CCGTs). The same data are also used in Fabra and Toro (2005). The techniques used to compute
engineering estimates of marginal input costs are similar to those in Wolfram (1999) and Borenstein et al. (2002),
among others.
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markets.17 Our marginal cost estimates may contain some measurement error to the extent that

plants’ efficiency may have been upgraded, or the observed commodity costs do not reflect firms’

actual input costs.

In order to estimate marginal emissions costs, we have collected annual information on carbon

emissions at the plant level from the National Registry, for the years 2001-2004. These data are

merged with the emissions data reported during the first phase of the European Trading System

(2005-2007). We have thus estimated emissions rates at the plant level for each year, by dividing

total emissions by total output. Emissions rates do not fluctuate much at the unit level and are

consistent with typical fuel benchmark emissions for the generation plants involved (IEA, 2012).

Among coal units, imported coal plants have the lowest emissions rate, around 0.90 tons/MWh,

whereas lignite units are the dirtiest, with an emissions rate ranging from 1.00 to 1.10 tons/MWh.

Meanwhile, natural gas generators tend to have an emissions rate around 0.35 tons/MWh.

In the empirical estimation, the relevant marginal emissions rate is that of the price-setting

unit. Whenever such a unit is thermal, we use its emissions rate to compute the marginal emissions

cost. If we do not observe the emissions rate of the unit exactly setting the price, we use data

from the System Operator that reports the marginal technology at each hour. The definition of the

marginal technology used by the System Operator is broader than ours, as it takes into account not

only the unit exactly setting the price, but the marginal production units during a given hour. We

set the marginal emissions rate equal to the average emissions rate of coal units if coal is reported

marginal, and the average for gas plants when gas is reported marginal.18

Figure 2.2 reports the average marginal emissions rate in the market, as a function of the

hour of the day. One can see that the marginal emissions rate is highest at night, when coal power

plants are usually producing at the margin. During the day, emissions rates are lower, as demand is

higher and gas plants produce at the margin. Consequently, marginal emissions rates are negatively

correlated with market prices, since they tend to be higher in periods of low demand.

We combine emissions rates and spot permit prices to compute the marginal emissions costs.

We use the spot permit price under the assumption that the emissions market is efficient, i.e.,

permit prices convey all relevant information. This implies that firms cannot make any informed

arbitrage by either hoarding or overselling permits.19 In our application, and given the small share

of Spanish electricity emissions in the overall EU ETS market, we also assume that the Spanish

17For coal units, we use the MCIS Index, for gas units we use the Gazexport-Ruhrgas prices, and for peaking units
we use the F.O.1% CIF NWE prices. All series are in e/te. We have obtained this information from Bloomberg.

18Given that the Market Operator does not necessarily classify all hours as coal or gas only, there still remain
10% of the hours in which the marginal emissions rate is not observed. In the baseline regression, we exclude these
hours from the sample. To complete all observations, we have experimented constructing the marginal technology by
interpolating the marginal technologies reported by the Market Operator. For example, if coal is marginal at 2am
and 4am, and pumped storage is reported marginal at 3am, we would consider that coal is at the margin also at 3am.
Results are similar if we also include these additional observations. See Table A.3 in the Appendix.

19As supporting evidence to this assumption, we collect additional data from the EU ETS Transactions Log Register,
which reports all permit trades during the period. We examine the transactions made by the Spanish electricity firms
in our data set and find that they transacted very few times during the sample period. Had they had additional
information not conveyed in market prices, they would have for instance sold permits before the collapse in prices
that occurred in April 2006, but they did not.
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Figure 2.2: Average Marginal Emissions Rate across the Day
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electricity firms are price takers in the permit market.

3 Measuring the Pass-Through Rate

3.1 Empirical Framework

We use an instrumental variables approach to measure the equilibrium effect of a marginal increase

in emissions costs on electricity market prices. In our baseline specification, the dependent variable

is the hourly price of electricity (pth), whereas the main independent variable is the marginal

emissions cost. Since the pass-through is an equilibrium outcome, we include additional exogenous

demand and supply factors to control for other market forces that could affect market prices.20

The main specification is as follows:

pth = ρτ teth +Xthβ0 +XD
thβ1 +XS

thβ2 + ωth + εth, (3.1)

where ρ identifies the equilibrium cost pass-through. The emissions rate of the unit that sets the

price at a given hour is captured by eth, and τ t represents the price of emissions permits. Therefore,

τ teth is the marginal emissions costs that firms face at a given hour h and day t. The controls Xth,

XD
th, and XS

th stand for exogenous common, demand and supply controls, respectively, and ωth is a

vector of fixed effects.

20Busse et al. (2013) follow a similar approach when measuring the equilibrium effects of gasoline prices on car
prices, while including both demand and supply controls.
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The main specification includes month of sample, day of the week and hour fixed effects to

control for potential trends and fluctuations. In some specifications, we also allow the hourly fixed

effects to be different for every month, due to seasonal changes in sunlight and weather that affect

electricity demand. As common controls, we include fossil-fuel prices (coal, gas and oil). On the

demand side, we include economic activity indicators and weather controls. On the supply side, we

include wind speed due to the presence of significant wind power generation in Spain.

When estimating this equation, it is important to realize that the hourly marginal emissions

cost, τ teth, is likely to be endogenous. Indeed, the identity of the marginal unit, and thus the

marginal emissions rate (eth), is likely to be endogenous, as it is potentially affected by high-

frequency unobserved supply and demand shocks. The main variation in emissions rates comes

from the technology side: coal plants are up to three times dirtier than natural gas plants. In turn,

coal plants also tend to have lower marginal costs than gas plants. Hence, in periods of low demand,

when electricity prices tend to be lower, coal plants are dispatched more often than gas plants, as

already shown in Figure 2.2. If one did not account for the endogeneity of the marginal emissions

rate, one could misleadingly attribute low prices to the higher emissions costs of coal plants. Not

surprisingly, when we regress the market price on the marginal emissions cost, the pass-through

rate is negative, ranging from -0.17 to -0.22.

To address this problem, we can use the emissions price, τ t, to instrument for marginal emissions

costs, τ teth. Conditional on the emissions price being exogenous, we can obtain a consistent estimate

of the cost pass-through in this market. In fact, the emissions price is likely to be exogenous to the

Spanish electricity companies. Emissions permits are traded across several countries and sectors in

the European Union, of which the Spanish electricity sector is only a small part.

In a broader sense, the emissions price could still be endogenous to the Spanish electricity

market due to common macroeconomic trends across the EU and due to general equilibrium effects

of emissions prices on fuel cost and the electricity demanded by other sectors. We address this

potential endogeneity by including a rich set of controls in the regression; notably, commodity

prices. To address the potential concerns that could arise due to omitted variables bias, we also

include month of sample fixed effects in all our specifications.

3.2 Main Results

Table 3.1 reports our estimates of the pass-through rate. Column (1) presents the baseline results,

with a pass-through estimate of 0.862. This implies that a one euro increase in emissions costs

translates, on average, into an eighty-six cents increase in electricity prices. All the other covariates

have the expected signs. On average, temperature is negatively correlated with electricity prices,

with maximum temperature having a positive effect. This is consistent with electricity demand

being higher during winter and in very hot summer days. Wind speed reduces electricity prices due

to the presence of substantial renewable wind power in Spain. This effect is however partly reduced

in very windy days, as wind mills need to be switched off when wind speed is too high. Consistently,

we find a positive correlation between wind speed squared and electricity prices. Finally, coal and
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Table 3.1: Cost Pass-through Regression Results

(1) (2) (3) (4) (5)

Mg. Emissions Costs (ρ) 0.862 0.804 0.835 0.771 0.788
(0.181) (0.175) (0.173) (0.165) (0.161)

Temperature -0.231 0.065 -0.204 0.091 0.102
(0.060) (0.112) (0.057) (0.108) (0.101)

Maximum Temperature 0.137 0.020 0.112 -0.005 -0.030
(0.050) (0.051) (0.047) (0.047) (0.045)

Wind Speed -2.086 -2.086 -2.089 -2.111 -2.152
(0.354) (0.351) (0.333) (0.328) (0.320)

Wind Speed Squared 0.055 0.055 0.054 0.056 0.056
(0.025) (0.024) (0.023) (0.023) (0.022)

Coal 57.477 38.631 57.496 38.438 50.669
(4.035) (4.268) (3.885) (4.086) (8.873)

Gas 5.638 3.331 5.604 3.316 5.525
(0.407) (0.403) (0.391) (0.386) (1.593)

Brent -2.896 -0.952 -2.938 -1.005 -3.160
(0.881) (0.909) (0.834) (0.857) (1.634)

F-test 124.8 122.4 129.9 127.9 127.1

MonthXTemperature N Y N Y Y
MonthXHour FE N N Y Y Y
HourXInput N N N N Y

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. All specifications include month of sample, weekday, and hour fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity), supply controls (wind speed and

wind speed squared); and common controls (commodity prices of coal, gas, and oil). The marginal

emissions cost is instrumented with the emissions price. Robust standard errors in parentheses. Number

of observations: 16, 186.
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natural gas prices are positively correlated with electricity prices, whereas the correlation between

the price of Brent and electricity prices is negative. This latter effect could be capturing some

aggregate macroeconomic effects.

Specifications (2)− (5) introduce several additional controls to the baseline regression. Column

(2) allows the effect of temperature to have a different effect on price depending on the month of

the year. This can be important, as a relatively warm day tends to reduce electricity consumption

during the winter, but to increase it during the summer. Column (3) introduces an hourly fixed

effect for each month of the year to more flexibly control for seasonality due to temperature and also

due to changes in day/night demand differences over the year. Column (4) combines both sets of

controls. Finally, specification (5) allows the effects of commodity prices to be different depending

on the hour of the day. The rationale behind this specification is that coal (gas) plants tend to be

marginal during low (high) demand hours. Pass-through estimates are robust across specifications,

with the pass-through being between 77 and 86%.21

A relevant question is whether the pass-through differs in peak versus off-peak hours. There are

good reasons to suspect this is the case. Generators face several constraints when operating their

plants due to ramping costs (i.e., the speed at which they can change their production), start-up

costs, minimum load, or minimum downtime. This may affect pass-through, as it has an effect

on firms’ opportunity costs and hence on their pricing behavior. For instance, firms might find it

optimal to bid below marginal costs to avoid switching off their plants (Mansur, 2008; Bushnell

et al., 2008). Since these constraints are more likely to be binding during off-peak times, the main

hypothesis is that the pass-through rate should be lower during these hours.

Table 3.2 presents estimates of the cost pass-through rates when allowed to differ for peak and

non-peak hours. In all five specifications, the pass-through rate is approximately 60% during off-

peak hours. The estimates for on-peak hours, on the other hand, are higher than the estimates

in the baseline regression and very close to 100%. These results provide further evidence that the

pass-through in this market was very high, particularly in those hours in which we would expect

firms to price marginally. Except for non-peak hours, we are unable to reject full pass-through in

all specifications.

4 Understanding an Almost Complete Pass-Through

Our finding of an almost complete pass-through of emissions costs to wholesale electricity prices is

the exception, rather than the norm, in the pass-through literature. In this section, we exploit the

richness of our micro-level data to closely explore why cost pass-through is so high in this market.

21The Appendix includes additional regressions that allow for more flexible functional forms for temperature, wind
speed and commodity prices, all of which are consistent with the above results. See Table A.2.
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Table 3.2: Cost Pass-through Regression Results: Peak vs. Non-Peak

(1) (2) (3) (4) (5)

Mg. Emissions Costs - Peak 1.085 1.027 1.055 0.992 1.048
(0.185) (0.178) (0.178) (0.171) (0.169)

Mg. Emissions Costs - Off Peak 0.635 0.581 0.608 0.548 0.439
(0.170) (0.164) (0.164) (0.157) (0.158)

MonthXTemperature N Y N Y Y
MonthXHour FE N N Y Y Y
HourXInput N N N N Y

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. Only peak hours are included (between 8am and 8pm). All specifications include month of

sample, weekday, and hour fixed effects, as well as weather and demand controls (temperature, maximum

temperature, humidity), supply controls (wind speed and wind speed squared); and common controls

(commodity prices of coal, gas, and oil). The marginal emissions cost is instrumented with the emissions

price. Robust standard errors in parentheses. Number of observations: 16, 186.

4.1 Demand, Supply and Markup Adjustments

A standard explanation for incomplete pass-through is the presence of demand, supply and markup

adjustments. In the presence of a cost shock, firms’ incentives to increase or decrease prices are

generally affected by the shape of the demand curve, the shape of marginal costs, other firms’ cost

shocks, and the nature of competition among firms. The contribution of markup adjustments to

pass-through incompleteness has been documented in several studies (see Goldberg and Hellerstein,

2013, for a review).

Thanks to the richness of our bidding data, we can flexibly approximate the contributions

of demand, supply and markup adjustments to pass-through. Instead of posing a fully-fledged

structural model, we perform a structural decomposition using minimal assumptions, some of which

we can test. In particular, we first test whether the cost shocks that we observe are consistent with

firms’ observed strategies. Next, we simulate the changes on firms’ first order conditions triggered

by emissions cost shocks to assess their incentives to adjust markups.

4.1.1 Structural framework

Following the electricity auctions literature, we use a structural model of bidding behavior to derive

firms’ first-order conditions of profit-maximization. The optimality condition takes the general form

of

bidit(qit) = mcit(qit) + markupit(qit). (4.1)

The equation states that firms set bids equal to their marginal cost of production plus a markup.

The marginal cost component, as explained above, is the result of a combination of emissions
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costs and input costs, i.e.,

mcit(qit) = marginal emissions costit(qit) + marginal input costit(qit),

both of which we can measure. Note that these cost components are allowed to differ both across

as well as within firms.

We do not observe the markup component directly in the data, but we can construct it. From

the first order condition of profit maximization,22 the markup is given by,

markupit(qit) =
∣∣∣∂pit(qit)

∂qit

∣∣∣q̃it,
where q̃it is the net quantity sold by the firm, i.e., its production minus its vertical commitments

(Bushnell et al., 2008), and pit is the inverse residual demand a firm faces, i.e., it gives the resulting

market clearing price if the firm produces qit. A firm possesses greater market power the steeper

the inverse residual demand it faces, given that a steep inverse residual demand allows the firm to

raise the price with only a small reduction in output. Furthermore, the bigger the net quantity of

a firm, the more it benefits from the price increase.

Our data enables us to approximate the two main terms of the markup component: firms’ net

quantities and the slopes of their residual demand curves. For the former, we subtract the firm’s

physical and demand side contracts (e.g. purchases of its downstream subsidiary) from its output.23

For the latter, as it is common in the electricity economics literature, we can directly approximate

the slope of the residual demand curves from the observed bid data (see Wolak, 2003; Hortaçsu and

Puller, 2008; among others). Figure 4.1 depicts the residual demand curves faced by each of the

four major firms in the Spanish electricity market. As shown in the graphs, residual demand curves

are complex highly non-linear objects, with elasticities varying substantially along the curves. The

data allow us to estimate the elasticities around the market price with great flexibility.24

4.1.2 Measuring opportunity costs

Once we have constructed all the components of the structural equation, we can test equation (4.1).

More specifically, we estimate the following empirical equation in those hours in which firm i is

setting the market price through its marginal unit j:

bijth = γejτ t + βcjt + θm̂ijth + εijth,

22See Wolfram (1998), Wolak (2003), Borenstein et al. (2002) and Hortaçsu and Puller (2008) for applications
to the British, Australian, Californian and Texas market, respectively. See Reguant (2013) for a derivation in the
context of the Spanish electricity market.

23To the extent that firms have additional financial contracts, the measured net quantity will generally be an upper
bound of the actual net position.

24As in Wolak (2003), we use a non-parametric smoothing Kernel estimator to approximate the slope of the residual
demand curves.
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Figure 4.1: Inverse Residual Demand Data

(a) Sample Inverse Residual Demands for Firm 1 (b) Sample Inverse Residual Demands for Firm 2

(c) Sample Inverse Residual Demands for Firm 3 (d) Sample Inverse Residual Demands for Firm 4

Notes: Inverse residual demands faced by each firm at midday. For better comparison, the sample of

random days is depicted across firms.

15



where bijth is the marginal bid of firm i when setting the price with unit j at hour h and day t, ej

is the emissions rate of unit j, τ t is the daily price of emissions permits, cjt are the unit-specific

marginal input cost estimates, m̂ijth is the approximated markup, and εijth is the error term, which

could arise due to cost shocks at the unit level, modeling error and/or firm optimization error.

We need to make a modeling choice when estimating the structural equation, as the first-order

condition is only valid (i) for units that set the price with positive probability, and (ii) when the

unit’s capacity constraints are not binding. Accordingly, and for the sake of simplicity, we limit

ourselves to those observations in which (i) units set the price ex-post, implying that they were

indeed marginal, and to those observations in which (ii) the bid is not the first nor the last one in

the unit’s supply function, implying that they could indeed adjust their output.25

The main parameters to be estimated are β, γ and θ. Our focus of interest is testing γ = 1,

which would imply that firms, on average, fully internalize the emissions permit price in their

bidding decisions. It is important not to confuse the degree of internalization of permit prices (γ)

with the resulting effect on equilibrium prices or pass-through rate (ρ). The former is a supply-side

object reflected in firms’ strategic behavior, while the latter is an equilibrium outcome resulting

from the interplay of both supply and demand factors.

It is well known that tradable permits have an opportunity cost, namely, the price at which

they can be sold at secondary markets, regardless of whether those permits were allocated for free

or, more generally, regardless of the price paid for them. However, in our particular setting, several

reasons have been put forward for why the price of the permits might not accurately reflect firms’

opportunity costs of emissions. The first two explanations rely on firms being fully rational. For

sellers of permits (which is the relevant case because of grandfathering), the opportunity cost of

emissions is below the permits’ market price (i) in the presence of transaction costs in the emissions

market (Stavins, 1995), or (ii) under the expectation that future permit allocations will be based on

current emissions (Fowlie, 2010). A third explanation rests on firms’ limited information capacity

(Mackowiak and Wiederholt, 2012): (iii) firms might be unable to understand that free permits have

an opportunity cost (Goeree et al., 2010). More broadly, this can be an important test when some

cost shocks are observed, but the way in which they enter the profit function might be unobserved

or measured with error, as γ gives the structural estimate of how firms incorporate this cost shock

in their behavior.

Table 4.1 presents our structural estimates. The estimation is performed at the industry level

and at the firm level. Standard errors are clustered at the unit level.26 All specifications include

marginal cost estimates as a control. To the extent that this variable might not accurately reflect

all relevant costs, we introduce unit fixed effects in specifications (2) to (4). Specifications (3)

to (4) also include seasonal fixed effects. All specifications, except for specification (4), constrain

the markup parameter to be equal to one (θ = 1), as implied by the first order condition. In

25As shown in Reguant (2013), firms use their non-marginal steps very differently in this market due to the
interaction of dynamic costs and minimum and maximum capacity constraints.

26We present alternative clusters in the Appendix (see Table A.4). The implications of our results do not change
substantially as a function of the degree of clustering.
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specification (4), we relax this constraint. Given that the markup depends on market demand

and, thus, it is endogenous, we use weather data (temperature, wind speed, humidity) as residual

demand shifters.

The estimated opportunity cost parameter γ is not distinct from one at the industry level and

for the three largest firms in the industry. This finding is important on two grounds. First, it

highlights the uniqueness of our cost shock for a pass-through analysis. Not only are permit prices

exogenous to firms, but also they capture very accurately the cost shock they suffer. This rules

out the possibility that a potential mismatch between the observed and the actual cost shock is

biasing our pass-through estimates. Second, this finding is relevant from a policy perspective, since

it implies that (i) transaction costs in this market are negligible, (ii) the permit allocation rule

did not distort firms’ short run incentives, and (iii) firms understood that free permits have an

opportunity cost given by the permit price.

In contrast, the parameter estimates for β vary more across specifications and across firms. All

estimates are very sensitive to the inclusion of the unit fixed effect, probably revealing the fact

that the constant is capturing relevant costs not included in our marginal cost variable. Overall,

it seems that firms do not respond at high frequency to changes in fossil fuel prices as they do to

changes in carbon prices. One potential explanation is that, in many cases, fossil fuels are sold

through take-or-pay long term contracts, implying that spot prices do not not always reflect the

true opportunity cost of using the fuel. Similarly, some regulations oblige firms to use a certain

amount of national coal, which again create a mismatch between observed commodity prices and

firms’ actual opportunity costs of burning coal. Last, marginal production costs might not be as

accurately measured as marginal emissions costs. For instance, coal has to be transported from

either the national coal mines or from the harbor to the coal plants, whose locations differ.

Finally, the parameter estimate for θ appears to be broadly consistent with the structural model,

although the relationship between markups and prices is particularly noisy for the smaller firms.

This is in part explained by the fact that markups are much smaller for these firms. Whereas

the residual demand that the two biggest firms face is quite inelastic, the residual demand curve

that the other two firms face is substantially elastic, with average elasticities being 4.5 and 6.5,

respectively. Reassuringly, the noise in the markup estimates has little bearing on the estimates on

the internalization of marginal emissions costs (γ) and marginal input costs (β).

4.1.3 Measuring incentives for markup adjustments

Once we have confirmed that firms fully internalize emissions costs, we explore the implications of

the emissions regulation on firms’ strategies and market outcomes. As pointed out in the literature,

the degree of correlation of cost shocks across firms, as well as the shape of demand and supply

curves can have implications for pass-through. A firm’s incentive to pass-through a cost shock is

weaker if its rivals do not face the same shock. Similarly, if demand responds substantially to price

increases, even a common cost shock across all firms can induce an attenuated pass-through due to

movements along the supply and demand curves, as well as due to markup adjustments.
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Table 4.1: Test based on structural equations

All Firm 1 Firm 2 Firm 3 Firm 4

Emissions cost (γ)

(1) No FE 0.939 0.925 0.998 1.117 0.806
(0.070) (0.039) (0.032) (0.039) (0.073)

(2) Unit FE 0.971 0.947 0.963 1.062 0.803
(0.034) (0.031) (0.039) (0.046) (0.102)

(3) Unit FE + Season 0.957 0.959 0.963 1.008 0.784
(0.034) (0.028) (0.027) (0.053) (0.085)

(4) Spec.3 + Markup (IV) 0.959 1.036 0.962 1.013 0.834
(0.062) (0.058) (0.024) (0.197) (0.101)

Input cost (β)

(1) No FE 0.812 0.476 0.892 0.952 1.037
(0.047) (0.029) (0.021) (0.021) (0.014)

(2) Unit FE 0.598 0.494 0.303 0.821 0.643
(0.064) (0.057) (0.055) (0.037) (0.053)

(3) Unit FE + Season 0.601 0.497 0.348 0.769 0.640
(0.058) (0.047) (0.039) (0.043) (0.027)

(4) Spec.3 + Markup (IV) 0.604 0.487 0.335 0.773 0.683
(0.069) (0.038) (0.060) (0.172) (0.114)

Markup (θ)

(4) Spec.3 + Markup (IV) 0.973 0.515 1.037 0.934 -1.086
(0.398) (0.227) (0.177) (2.411) (6.117)

Obs. 9,257 3,029 1,988 2,805 1,435

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. Standard errors clustered at the unit level.
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To assess these effects, we simulate changes on firms’ best responses following a one euro increase

in the carbon price. We use a first-order approach to simulate how optimal prices change.27 A full

decomposition of the changes of equilibrium price as implied by a change in emissions costs in the

first-order condition can be expressed as follows:

∆p = mc′i(qi) −mci(qi)︸ ︷︷ ︸
Direct cost shock

+mc′i(q
′
i) −mc′i(qi)︸ ︷︷ ︸

Cost shift due to qi︸ ︷︷ ︸
Cost change

+
∣∣∣∂p′(q′i)
∂q′i

∣∣∣(q̃′i − q̃i)︸ ︷︷ ︸
Markup change due to q̃i

+
(∣∣∣∂p′(q′i)

∂q′i

∣∣∣− ∣∣∣∂p(qi)
∂qi

∣∣∣)q̃i.︸ ︷︷ ︸
Markup change due to slope︸ ︷︷ ︸

Markup change

The first term is the direct cost shift from an increase in emissions costs. The second term accounts

for the fact that an increase in costs can change the optimal quantity produced by the firm. Because

marginal costs are not necessarily constant within each firm, this can induce a change in marginal

costs. The third term implies that a change in the firm’s quantity can increase or decrease the

firm’s inframarginal quantity, and thus affect its markup. Finally, the fourth term captures the fact

that the slope of the residual demand can also change, due to two reasons: first, the firm’s quantity

might be different; and second, the residual demand itself may change as a result of an increase in

the emissions costs faced by other firms.

Computing the endogenous changes in these components in a full structural fashion can be a

difficult task, due to the fact that the first-order conditions across all firms are a highly non-linear

system of differential equations. The supply function nature of the game is also known to potentially

suffer from multiple equilibria (Klemperer and Meyer, 1989). Generalizing the computation of such

equilibria is beyond the scope of this paper. Instead, we use a simplified methodology that allows

us to conclude that, in the context of electricity markets, markup adjustments are indeed small.

We proceed by first assuming that markups are unchanged (last two terms), and thus firms only

shift their supply curves by their emissions rates. With that shift, we can endogenously compute

changes in prices due to marginal cost changes (first two terms).28 We then check whether firms’

incentives to adjust markups are indeed small by checking that, at the margin, demand changes

are small, reshuffling of production across firms is limited, and the slopes of the residual demands

do not change significantly.

Table 4.2 shows the changes in quantities, slopes of residual demands and markups, after a

one euro increase in carbon prices. As can be seen in the table, aggregate demand response is

very limited, which is consistent with demand being very inelastic in the short run. Quantities

within the firm also remain very stable, which is consistent with emissions cost shocks being highly

correlated across firms at the margin.

These two facts - inelastic aggregate demand and very correlated cost shocks across firms -

27See Jaffe and Weyl (2013) for a derivation and application of the first-order approach in the context of mergers.
28Figure A.1 in the Appendix shows the perturbed optimal strategies around the equilibrium price. This pertur-

bation of optimal strategies is only valid at the margin. Given that the change in emissions costs is small, we take
participation decisions as given. Characterizing the optimal startup decision is beyond the scope of this paper. See
Reguant (2013) for a computation of optimal best responses in the presence of startup costs.
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Table 4.2: Percent Changes in Quantities, Markups and Slopes

Mean SD P25 P50 P75

Changes in Quantity

Aggregate Demand -0.2% 0.3% -0.2% 0.0% 0.0%

Firm 1 -0.3% 1.3% 0.0% 0.0% 0.0%

Firm 2 -0.2% 0.8% 0.0% 0.0% 0.0%

Firm 3 -0.3% 7.1% 0.0% 0.0% 0.0%

Firm 4 -0.3% 1.2% 0.0% 0.0% 0.0%

Changes in Slope
of Inverse Residual Demand

Firm 1 1.1% 7.1% -2.0% 0.8% 4.1%

Firm 2 0.3% 7.0% -2.5% 0.2% 3.1%

Firm 3 0.9% 7.0% -2.0% 0.6% 3.7%

Firm 4 0.8% 6.8% -1.9% 0.5% 3.5%

Changes in Markup

Firm 1 -0.9% 9.6% -4.5% -1.0% 1.9%

Firm 2 0.1% 10.3% -3.3% -0.3% 2.5%

Firm 3 -0.7% 12.3% -4.2% -0.8% 1.9%

Firm 4 -0.6% 10.1% -3.9% -0.7% 1.9%

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. Table expresses percent changes in quantities, markups and the slope of the inverse residual

demand for a one euro increase in carbon prices. Number of observations: 18,960.
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suggest that firms have limited incentives to adjust markups. In fact, as shown in Table 4.2, the

markups suffer little changes on average, as implied by the small changes in the slopes of the residual

demands and firms’ quantities. Even though the slopes of the residual demands are relatively noisy

and sensitive to the perturbation on the supply schedules, on average the changes are very limited

and the resulting markups change by less than 1%. Since markups tend to be a relatively small

fraction of the price, a 1% change in the markup implies an even smaller price change.

4.2 Emissions Costs vs. Non-Emissions Costs

When measuring the pass-through, the researcher has to identify the cost shock faced by firms as

well as to understand how that cost shock enters into the firms’ cost function. For example, in the

exchange-rate pass-through literature, the cost shock that is observed affects costs multiplicatively

through its impact on the terms of trade. A log-log specification is more suited in these occasions.

However, the researcher typically does not observe the weight of other costs not affected by exchange

rate fluctuations, often called non-traded costs. As stressed in the exchange rate pass-through

literature, the presence of non-traded costs may lead to pass-through incompleteness.29

In the context of electricity markets, emissions costs also represent a small share of total costs,

particularly so in periods of low permit prices. However, our detailed data allows us to observe

emissions costs separately from other non-emissions costs. The structural model and results devel-

oped in the previous section allow us to be confident that the observed emissions costs are the ones

that firms actually take into account. Additionally, in our setting, emissions costs enter linearly

into the cost function.

These factors allow us to use a linear specification for the pass-through regression, while flexibly

controlling for the presence of other costs. This approach does not directly deliver a pass-through

elasticity, but has the advantage of being unaffected by the relative share of unobserved costs.

Indeed, as shown in the second column of Table 4.3, a log-log specification using emissions costs

would reflect an incomplete pass-through. This is consistent with the fact that emissions costs are

only 15-30% of total costs on average during this period.

Alternatively, one could estimate the pass-through using total marginal costs. In such a case,

the log-log estimates would not be affected by non-traded or non-observed costs.30 In our case,

and thanks to our detailed data, we can recover total marginal costs with our engineering marginal

costs. The emissions price is still a valid instrument for total marginal costs, as total marginal costs

are the sum of both input marginal costs and emissions costs.

We present the results for the different specifications in Table 4.3, where we separate peak

and non-peak hours for marginal emissions costs and total marginal costs. The differences across

specifications highlight the advantages of having detailed cost data. The specifications that use

29Goldberg and Hellerstein (2008) report that in existing studies non-traded costs contribute 50 to 78% to incom-
plete pass-through.

30The suitability of this alternative approach might be industry specific and/or data dependent. For example, this
is the approach followed in DeLoecker et al. (2012), who are able to recover total marginal costs using detailed census
data on output, prices and expenditures.
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Table 4.3: Emissions vs. Non-Emissions Costs: Peak vs. Non-Peak

Mg. Emiss. Costs Total Mg. Costs

Linear Logs Linear Logs

Peak Pass-Through 1.045 0.146 0.893 0.799
(0.174) (0.038) (0.120) (0.156)

Off-Peak Pass-Through 0.453 0.094 0.218 0.268
(0.162) (0.036) (0.089) (0.124)

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. Only peak hours are included (between 8am and 8pm). All specifications include month of

sample, weekday, and month-hour fixed effects, as well as weather and demand controls (temperature,

maximum temperature, humidity), supply controls (wind speed and wind speed squared); and hourly

linear (logarithmic) controls for commodity prices of coal, gas, and oil). (Log of) Costs are instrumented

with (the log of) the emissions price. Robust standard errors in parentheses. Number of observations:

13, 536.

total marginal costs (linear or logarithmic) provide relatively similar estimates as those obtained

when emissions costs are used instead (linear case). Furthermore, they do not suffer from downward

bias in the log-log case. The estimates using marginal costs are somewhat smaller, specially for

non-peak hours. This could be partly induced by some potential measurement error in our marginal

costs estimates, as suggested by our findings in Section 4.1. Overall, the estimates are consistent

with the hypothesis of complete pass-through in peak hours, and also suggest that marginal costs

are not fully priced at night, when dynamic production constraints are most binding.

4.3 Price Rigidities

Finally, understanding the potential role of barriers of price adjustment is very important as it

can severely limit firms’ ability and/or their incentives to pass-through cost changes to final prices.

Recent studies have documented that nominal price rigidities can be particularly relevant at the

wholesale level, which is the focus of our study. For instance, Goldberg and Hellerstein (2013)

attribute 31.8% of the incomplete pass-through to the presence of repricing costs in the beer market,

and Nakamura and Zerom (2010) show that menu costs explain the delayed response of coffee prices

to cost shocks, even though their impact on the long-run pass-through is negligible.

Intuitively, one would expect price rigidities to be not particularly relevant in electricity markets,

due to the presence of daily auctions. However, there could be costs of bid preparation that restrain

firms from continuously adjusting prices. A close look at the bid data reveals that firms do not

change their bids on a daily basis, but they do adjust their bids quite frequently. Table 4.4 shows

that the average frequency of bid adjustment per production unit is approximately once every three

days. If one were to look at changes at the company level, instead of the unit level, firms adjust

at least one of their bids between 70 and 90% of the days. Taking into account that demand and

supply conditions might not change vastly on a daily basis, we interpret this number as being high.
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Table 4.4: Frequency of Bid Changes

Previous Day Previous Week Previous Day
Unit-Level Unit-Level Firm-Level

All days 0.375 0.710 0.795

Monday 0.490 0.705 0.907
Tuesday 0.304 0.691 0.774
Wednesday 0.276 0.682 0.719
Thursday 0.277 0.691 0.694
Friday 0.287 0.697 0.713
Saturday 0.605 0.739 0.932
Sunday 0.392 0.764 0.831

Notes: Table reports the average frequency of times in which the average price bid of a given

unit changes. The average bid is defined as the average of prices across the supply function

of a unit. Columns 1 compares the bids with the same hour of the previous day. Columns 2

compares the bids with the same hour and weekday of the previous week. Columns 3 reports

whether any changes occured at the firm level.

The frequency of bid adjustment is even larger for Mondays and Saturdays, the two days in which,

intuitively, the value of adjusting would appear to be the highest because of weekend-weekday

seasonalities. It thus seems that, while present, price rigidities in wholesale electricity markets are

much weaker than in other sectors.31 Thus, this finding also contributes to uncovering the reasons

why our measured pass-through is higher than the ones reported in other studies.

5 Conclusions

We have presented an empirical assessment of the introduction of emissions regulation in the Spanish

electricity market. Overall, we find that the power companies in our data appear to have responded

very closely to changes in emissions permit prices. This led to an almost complete pass-through of

emissions costs to electricity prices.

In order to explain why the pass-through in this market is so high, we have explored whether

and why the channels that lead to partial pass-through in other settings are not present in electricity

markets. For this purpose, the richness of our micro-level data has allowed us to perform a structural

estimation without strong assumptions on the shape of the demand and supply curves. It has also

enabled us to accurately measure firms’ opportunity costs, as well as to observe emissions costs

separately from other cost components.

The analysis reveals that the high measured pass-through is explained by (i) weak incentives

31For instance, for the coffee industry, Nakamura and Zerom (2010) report 1.3 price changes over an 8 year period;
for the beer industry, Goldberg and Hellerstein (2013) report prices remaining constant during several weeks in a row
before they jump to a new level; and for the transport equipment sector, Goldberg and Hellerstein (2009) report that
the average duration of a price change is roughly one month.
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for markup adjustment, which is in turn explained by the high correlation of cost shocks among

firms and by the limited demand elasticity, and (ii) the absence of relevant price rigidities. The

only instances in which we measure incomplete pass-through appear to arise due to the presence

of dynamic costs, which make firms less likely to price in cost changes at night.

From a policy perspective, the finding that firms fully internalize the costs of permits suggests

that auctioning permits should have no inflationary effect on electricity prices, at least in the

short run. The extent of pass-through reported here also demonstrates that electricity producers

benefited from windfall profits due to both free permit allocation and increased market prices, which

specially benefited nuclear and hydro power plants. Indeed, the large windfall profits obtained by

electricity producers in Europe generated great discomfort, and some countries decided to claw back

part of these gains. In our setting, the Spanish government taxed these windfall profits ex-post,

which derived into a lengthy contentious trial.32 Given that our findings are consistent with what

economic theory would predict, an important lesson is that market interventions should take into

account their distributional effects and, if problematic, address them ex-ante through good market

design.
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A Additional Tables and Figures

Table A.1: First Stage for Marginal Emissions Costs

(1) (2) (3) (4) (5)

Emissions Price 0.588 0.595 0.581 0.589 0.589
(0.053) (0.054) (0.051) (0.052) (0.052)

Temperature 0.040 0.104 0.042 0.106 0.106
(0.024) (0.042) (0.024) (0.041) (0.041)

Maximum Temperature -0.029 -0.032 -0.030 -0.032 -0.032
(0.019) (0.021) (0.019) (0.020) (0.020)

Wind Speed 0.053 -0.034 0.035 -0.050 -0.050
(0.142) (0.149) (0.140) (0.147) (0.147)

Wind Speed Squared 0.001 0.007 0.002 0.008 0.008
(0.010) (0.010) (0.010) (0.010) (0.010)

Coal -1.296 -1.931 -1.317 -2.022 -2.022
(1.281) (1.549) (1.295) (1.551) (1.551)

Gas -0.368 -0.384 -0.381 -0.398 -0.398
(0.089) (0.097) (0.087) (0.094) (0.094)

Brent 0.774 0.512 0.760 0.486 0.486
(0.361) (0.387) (0.356) (0.382) (0.382)

MonthXTemperature N Y N Y Y
MonthXHour FE N N Y Y Y
HourXInput N N N N Y

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. All specifications include month of sample, weekday, and hour fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity), supply controls (wind speed and

wind speed squared); and common controls (commodity prices of coal, gas, and oil). Robust standard

errors in parentheses. Number of observations: 16, 186.
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Table A.2: Cost Pass-through Regression - Additional controls

(1) (2) (3) (4)

Mg. Emissions Costs (ρ) 0.788 0.821 0.810 0.823
(0.161) (0.169) (0.170) (0.171)

Temperature 0.102 0.070 -0.085 -0.214
(0.101) (0.102) (0.165) (0.168)

Maximum Temperature -0.030 -0.008 -0.004 -0.010
(0.045) (0.046) (0.045) (0.045)

Temperature Squared 0.013 0.009
(0.009) (0.010)

Wind Speed -2.152 -2.216 -2.181 -1.215
(0.320) (0.324) (0.326) (0.344)

Wind Speed Squared 0.056 0.059 0.057 0.055
(0.022) (0.023) (0.023) (0.023)

Wind Speed X Trend -1.031
(0.107)

Coal 50.669 -0.468 0.441 -13.498
(8.873) (52.938) (52.825) (51.754)

Gas 5.525 11.750 11.667 12.981
(1.593) (1.961) (1.962) (1.990)

Brent -3.160 7.739 7.929 5.465
(1.634) (4.065) (4.046) (4.003)

Coal Squared 34.306 33.465 41.574
(33.280) (33.223) (32.586)

Gas Squared -1.012 -1.005 -1.140
(0.190) (0.189) (0.192)

Brent Squared -1.687 -1.710 -1.347
(0.691) (0.687) (0.678)

F-test 127.1 113.9 111.7 111.2

Quadratic Inputs N Y Y Y
Temperature Squared N N Y Y
Wind Speed Trend N N Y Y

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. All specifications include month of sample, weekday, and hour fixed effects, as well as weather

and demand controls (temperature, maximum temperature, humidity), supply controls (wind speed and

wind speed squared); and common controls (commodity prices of coal, gas, and oil). The marginal

emissions cost is instrumented with the emissions price. Robust standard errors in parentheses. Number

of observations: 16, 186.
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Table A.3: Cost Pass-through Regression Results for different Emissions Assumptions

(1) (2) (3) (4) (5)

Interpolated Emissions Costs 0.894 0.847 0.894 0.847 0.847
Obs. = 18,744 (0.181) (0.179) (0.163) (0.159) (0.151)

Mg. Emissions Costs
(Units & Technologies) 0.862 0.804 0.835 0.771 0.788

Obs. = 16,186 (0.181) (0.175) (0.173) (0.165) (0.161)

Mg. Emissions Costs
(Units Only) 0.861 0.732 0.895 0.720 0.720

Obs. = 14,928 (0.178) (0.168) (0.065) (0.164) (0.160)

MonthXTemperature N Y N Y Y
MonthXHour FE N N Y Y Y
HourXInput N N N N Y

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. All specifications include month of sample, weekday, and hour fixed effects, as well as weather and

demand controls (temperature, maximum temperature, humidity), supply controls (wind speed and wind

speed squared); and common controls (commodity prices of coal, gas, and oil). The marginal emissions

cost is instrumented with the emissions price. Robust standard errors in parentheses.
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Table A.4: Test based on structural equations – Effects of Clustering

All Firm 1 Firm 2 Firm 3 Firm 4

Emissions cost (γ)

(1) Unit 0.971 0.947 0.963 1.062 0.803
(0.034) (0.031) (0.039) (0.046) (0.102)

(2) Robust 0.971 0.947 0.963 1.062 0.803
(0.010) (0.012) (0.013) (0.024) (0.022)

(3) Firm-Day 0.971 0.947 0.963 1.062 0.803
(0.019) (0.023) (0.021) (0.045) (0.029)

(4) Firm-Month of Sample 0.971 0.947 0.963 1.062 0.803
(0.039) (0.061) (0.064) (0.081) (0.082)

Input cost (β)

(1) Unit 0.598 0.494 0.303 0.821 0.643
(0.064) (0.057) (0.055) (0.037) (0.053)

(2) Robust 0.598 0.494 0.303 0.821 0.643
(0.022) (0.027) (0.028) (0.036) (0.115)

(3) Firm-Day 0.598 0.494 0.303 0.821 0.643
(0.037) (0.039) (0.041) (0.058) (0.235)

(4) Firm-Month of Sample 0.598 0.494 0.303 0.821 0.643
(0.062) (0.054) (0.080) (0.103) (0.259)

Obs. 9,257 3,029 1,988 2,805 1,435

Notes: Sample from January 2004 to February 2006, includes all thermal units in the Spanish electricity

market. Regression includes unit fixed effects.
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Figure A.1: Example of Strategy Perturbations

(a) Strategy Perturbations for Firm 1 (b) Strategy Perturbations for Firm 2

(c) Strategy Perturbations for Firm 3 (d) Strategy Perturbations for Firm 4

Notes: Figures depict the shift in supply and inverse residual demand curves as a result of an increase in

the carbon price by one euro. For better comparison, the same day and hour is used for all firms.
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