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1 Introduction

Century-long evidence indicates an economically significant equity premium, namely, the

expected return from holding equities over short-term debt.1 The source of this equity

premium has been a subject of debate for nearly thirty years.2 One place to look for such

a source is in options data. By holding equity and a put option, an investor can, at least

in theory, eliminate the downside risk in equities. For this reason, it is appealing to explain

both options data and standard equity returns together with a single model.

Such an approach is arguably of particular importance for a class of models that explain

the equity premium through the mechanism of consumption disasters (e.g. Rietz (1988),

Barro (2006) and Weitzman (2007)). In these models, consumption growth rates and thus

equity returns are subject to shocks that are rare and large. Options (assuming away, for

the moment, the potentially important question of counterparty risk), offer a way to hold

equities while eliminating the exposure to disasters. Thus it is of interest to know whether

these models have the potential to explain option prices as well as equity prices.

Option prices are also of interest in their own right because their convex payoff structure

gives more information on the distribution of returns than equities alone. While interna-

tional consumption data used by Barro (2006) and others gives some information on the

probabilities of rare events that U.S. market participants impute into prices, option prices

can potentially offer a second, largely independent source of information. Indeed, a large and

sophisticated literature concludes that large sudden moves in stock returns are important for

explaining option prices.3 In the options literature, these large sudden changes in price are

1See Mehra and Prescott (1985). Siegel (1994) presents historical evidence on equity performance; Camp-

bell (2003) presents international evidence.
2Surveys include Mehra and Prescott (2003) and Kocherlakota (1996).
3One branch of this literature focuses on reduced-form models that link stock returns to option prices

(Bakshi, Cao, and Chen (1997), Bates (2000), Ait-Sahalia, Wang, and Yared (2001), Pan (2002), Broadie,
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called jumps rather than disasters. However, in both literatures, what is being referred to

are events whose size and probability of occurrence renders a normal distribution essentially

impossible.

Motivated by the parallels between these very different literatures, Backus, Chernov, and

Martin (2011) study option prices in a rare events model similar to that of Rietz (1988) and

Barro (2006). They find, however, that the resulting options prices are far from their data

counterparts. They argue that options data appear to be inconsistent with the hypothesis

of large and rare shocks to equity returns. In particular, the implied volatilities resulting

from rare events models are lower than in the data, and are far more downward sloping as a

function of the strike price. Further, they show through the lens of their model, that events

of the magnitude required to explain the equity premium are virtually ruled out by option

prices. These results suggest that rare events are not the source of risk behind the equity

premium.

Like Barro (2006) and Rietz (1988), Backus, Chernov, and Martin (2011) assume that the

probability of a disaster occurring is constant. Such a model can explain the equity premium,

but cannot account for other features of equity markets, such as the volatility. Recent rare

events models therefore introduce dynamics that can account for equity volatility (Gabaix

(2012), Gourio (2012), Wachter (2013)).4 We derive option prices in a model based on that of

Wachter (2013), and in a significant generalization of this model that allows for variation in

the risk of disaster at different time scales. We show that allowing for a stochastic probability

Chernov, and Johannes (2007), Santa-Clara and Yan (2010)). Another branch makes use of the information

in very short-term options to separate out the jump component of stock returns (Carr and Wu (2003),

Bollerslev and Todorov (2011)).
4These models assume an exogenous process for time-variation in the probability of a disaster. However,

time-variation in the probability can also be driven by learning (Veronesi (2004)) and by heterogeneity in

beliefs (Chen, Joslin, and Tran (2012)).
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of disaster has dramatic effects on implied volatilities. Namely, rather than being much lower

than in the data, the implied volatilities are at about the same level. The slope of the implied

volatility curve, rather than being far too great, also matches that of the data. We then

apply the model to understanding other features of option prices in the data, such as time-

variation in the level and slope of the implied volatility curve. We show that the model can

account for these features of the data as well.

We use the fact that our model generalizes the previous literature to better understand

the difference in results. Because of time-variation in the disaster probability, the model

endogenously produces the stock price changes that occur during normal times and that are

reflected in option prices. These changes are absent in iid rare event models, because, during

normal times, the volatility of stock returns is equal to the (low) volatility of dividend growth.

Moreover, by assuming recursive utility, the model implies a premium for assets that covary

negatively with volatility. This makes implied volatilities higher than what they would be

otherwise.

Our findings relate to those of Gabaix (2012), who also reports average implied volatilities

in a model with rare events.5 Our model is conceptually different in that we assume recur-

sive utility and time-variation in the probability of a disaster. Gabaix assumes a linearity-

generating process (Gabaix (2008)) with a power utility investor. In his calibration, the

sensitivity of dividends to changes in consumption is varying; however, the probability of a

disaster is not. There are several important implications of our choice of approach. First,

the tractability of our framework implies that we can use the same model for pricing op-

tions as we do for equities. Moreover, our model nests the simpler one with constant risk of

disaster, allowing us to uncover the reason for the large difference in option prices between

the models. We also show that the assumption of recursive utility is important for the ac-

5Recent work by Nowotny (2011) reports average implied volatilities as well. Nowotny focuses on the

implications of self-exciting processes for equity markets rather than on option prices.
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counting for the average implied volatility curve. Finally, we go beyond the average implied

volatility curve for 3-month options, considering the time series in the level and slope of the

implied volatility curve across different maturities. These considerations lead us naturally

to a two-factor model for the disaster probability.

Other recent work explores implications for option pricing in dynamic endowment economies.

Benzoni, Collin-Dufresne, and Goldstein (2011) derive options prices in a Bansal and Yaron

(2004) economy with jumps to the mean and volatility of dividends and consumption. The

jump probability can take on two states which are not observable to the agent. Their focus

is on the learning dynamics of the states, and the change in option prices before and after

the 1987 crash, rather than on matching the shape of the implied volatility curve. Du (2011)

examines options prices in a model with external habit formation preferences as in Campbell

and Cochrane (1999) in which the endowment is subject to rare disasters that occur with

a constant probability. His results illustrate the difficulty of matching implied volatilities

assuming either only external habit formation, or a constant probability of a disaster. Also

related is the work of Drechsler and Yaron (2011), who focus on the volatility premium (see

Bollerslev, Tauchen, and Zhou (2009)) and its predictive properties. In the work of Drechsler

and Yaron, the equity premium arises from the combined effect of persistent growth rates in

consumption, high risk aversion, and a high elasticity of intertemporal substitution (long-run

risk), as opposed to rare events.

A related strand of research on endowment economies focuses on uncertainty aversion or

exogenous changes in confidence. Drechsler (2012) builds on the work of Bansal and Yaron

(2004), but incorporates dynamic uncertainty aversion. He argues that uncertainty aversion

is important for matching implied volatilities. Shaliastovich (2009) shows that jumps in

confidence can explain option prices when investors are biased toward recency. These papers

build on earlier work by Bates (2008) and Liu, Pan, and Wang (2005), who conclude that it
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is necessary to introduce a separate aversion to crashes to simultaneously account for data on

options and on equities. Buraschi and Jiltsov (2006) explain the pattern in implied volatilities

using heterogenous beliefs. Unlike these papers, we assume a rational expectations investor

with standard (recursive) preferences. The ability of the model to explain implied volatilities

arises from time-variation in the probability of a disaster rather than a premium associated

with uncertainty.

The remainder of this paper is organized as follows. Section 2 discusses a single-factor

model for stochastic disaster risk (SDR). This model turns out to be sufficient to explain why

stochastic disaster risk can explain the level and slope of implied volatilities, as explained

in Section 3, which also compares the implications of the single-factor SDR model to the

implications of a constant disaster risk (CDR) model. As we explain in Section 4, however,

the single-factor model cannot explain many interesting features of options data. In this

section, we explore a multi-factor extension, which we fit to the data in Section 5. We show

that the multi-factor model can explain the time-series variation in the implied volatility

slope. Section 6 concludes.

2 Option prices in a single-factor stochastic disaster

risk model

2.1 Assumptions

In this section we describe a model with stochastic disaster risk (SDR). We assume an

endowment economy with complete markets and an infinitely-lived representative agent.

Aggregate consumption (the endowment) solves the following stochastic differential equation

dCt = µCt− dt+ σCt− dBt + (eZt − 1)Ct− dNt, (1)
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where Bt is a standard Brownian motion and Nt is a Poisson process with time-varying

intensity λt. This intensity follows the process

dλt = κ(λ̄− λt) dt+ σλ
√
λt dBλ,t, (2)

where Bλ,t is also a standard Brownian motion, and Bt, Bλ,t and Nt are assumed to be

independent. For the range of parameter values we consider, λt is small and can therefore be

interpreted to be (approximately) the probability of a jump. We thus will use the terminology

probability and intensity interchangeably, while keeping in mind the that the relation is an

approximate one.

The size of a jump, provided that a jump occurs, is determined by Zt. We assume Zt is a

random variable whose time-invariant distribution ν is independent of Nt, Bt and Bλ,t. We

will use the notation Eν to denote expectations of functions of Zt taken with respect to the

ν-distribution. The t subscript on Zt will be omitted when not essential for clarity.

We will assume a recursive generalization of power utility that allows for preferences over

the timing of the resolution of uncertainty. Our formulation comes from Duffie and Epstein

(1992), and we consider a special case in which the parameter that is often interpreted as the

elasticity of intertemporal substitution (EIS) is equal to 1. That is, we define continuation

utility Vt for the representative agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (3)

where

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log((1− γ)V )

)
. (4)

The parameter β is the rate of time preference. We follow common practice in interpreting

γ as relative risk aversion. This utility function is equivalent to the continuous-time limit

(and the limit as the EIS approaches one) of the utility function defined by Epstein and Zin

(1989) and Weil (1990).
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2.2 Solving for asset prices

We will solve for asset prices using the state-price density, πt.
6 Duffie and Skiadas (1994)

characterize the state-price density as

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (5)

There is an equilibrium relation between utility Vt, consumption Ct and the disaster proba-

bility λt. Namely,

Vt =
C1−γ
t

1− γ
ea+bλt ,

where a and b are constants given by

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ b

κλ̄

β
(6)

b =
κ+ β

σ2
λ

−

√(
κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

. (7)

It follows that

πt = exp

(
ηt− βb

∫ t

0

λsds

)
βC−γt ea+bλt , (8)

where η = −β(a+ 1). Details are provided in Appendix B.1.

Following Backus, Chernov, and Martin (2011), we assume a simple relation between

dividends and consumption: Dt = Cφ
t , for leverage parameter φ.7 Let F (Dt, λt) be the value

of the aggregate market (it will be apparent in what follows that F is a function of Dt and

λt). It follows from no-arbitrage that

F (Dt, λt) = Et

[∫ ∞
t

πs
πt
Ds ds

]
.

6Other work on solving for equilibria in continuous-time models with recursive utility includes Ben-

zoni, Collin-Dufresne, and Goldstein (2011), Eraker and Shaliastovich (2008), Fisher and Gilles (1999) and

Schroder and Skiadas (1999).
7This implies that dividends respond more than consumption to disasters, an assumption that is plausible

given the U.S. data (Longstaff and Piazzesi (2004)).

7



The stock price can be written explicitly as

F (Dt, λt) = DtG(λt), (9)

where the price-dividend ratio G is given by

G(λt) =

∫ ∞
0

exp {aφ(τ) + bφ(τ)λt}

for functions aφ(τ) and bφ(τ) given by:

aφ(τ) =

(
µD − µ− β + γσ2(1− φ)− κλ̄

σ2
λ

(ζφ + bσ2
λ − κ)

)
τ

− 2κλ̄

σ2
λ

log

(
(ζφ + bσ2

λ − κ)
(
e−ζφτ − 1

)
+ 2ζφ

2ζφ

)

bφ(τ) =
2Eν

[
e(1−γ)Z − e(φ−γ)Z

] (
1− e−ζφτ

)
(ζφ + bσ2

λ − κ) (1− e−ζφτ )− 2ζφ
,

where

ζφ =

√
(bσ2

λ − κ)
2

+ 2Eν [e(1−γ)Z − e(φ−γ)Z ]σ2
λ

(see Wachter (2013)). We will often use the abbreviation Ft = F (Dt, λt) to denote the value

of the stock market index at time t.

2.3 Solving for implied volatilities

Let P (Ft, λt, τ ;K) denote the time-t price of a European put option on the stock market

index with strike price K and expiration t+τ . For simplicity, we will abbreviate the formula

for the price of the dividend claim as Ft = F (Dt, λt). Because the payoff on this option at

expiration is (K − Ft+τ )+, it follows from the absence of arbitrage that

P (Ft, λt, T − t;K) = Et

[
πT
πt

(K − FT )+

]
.

Let Kn = K/Ft, the normalized strike price (or “moneyness”), and define

P n(λt, T − t;Kn) = Et

[
πT
πt

(
Kn − FT

Ft

)+
]
. (10)
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We will establish below that P n is indeed a function of λt, time to expiration and moneyness

alone Clearly P n
t = Pt/Ft. Because our ultimate interest is in implied volatilities, and

because, in the formula of Black and Scholes (1973), normalized option prices are functions

of the normalized strike price (and the volatility, interest rate and time to maturity), it

suffices to calculate P n
t .8

Returning to the formula for P n
t , we note that, from (9), it follows that

FT
Ft

=
DT

Dt

G(λT )

G(λt)
. (11)

Moreover, it follows from (8) that

πT
πt

=

(
CT
Ct

)−γ
exp

{∫ T

t

(η − βbλs) ds+ b(λT − λt)
}
. (12)

At time t, λt is sufficient to determine the distributions of consumption and dividend growth

between t and T , as well as the distribution of λs for s = t, . . . , T . It follows that normalized

put prices (and therefore implied volatilities) are a function of λt, the time to expiration,

and moneyness.

8Given stock price F , strike price K, time to maturity T − t, interest rate r, and dividend yield y, the

Black-Scholes put price is defined as

BSP(F,K, T − t, r, y, σ) = e−r(T−t)KN(−d2)− e−y(T−t)FN(−d1)

where

d1 =
log(F/K) +

(
r − y + σ2/2

)
(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t

Given the put prices calculated from the transform analysis, inversion of this Black-Scholes formula gives us

implied volatilities. Specifically, the implied volatility σimp
t = σimp(λt, T − t;Kn) solves

Pnt (λt, T − t;Kn) = BSP
(

1,Kn, T − t, rbt , 1/G(λt), σ
imp
t

)
where rbt is the model’s analogue of the Treasury Bill rate, which allows for a probability of a default in case

of a disaster (see Barro (2006); as in that paper we assume a default rate of 0.4).
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Appendix B.5 describes the calculation of (10). We first approximate the price-dividend

ratio G(λt) by a log-linear function of λt, As the Appendix describes, this approximation

is highly accurate. We can then apply the transform analysis of Duffie, Pan, and Singleton

(2000) to calculate put prices.

The implied volatility curve in the data represents an average of implied volatilities

at different points in time. We follow the same procedure in the model, calculating an

unconditional average implied volatility curve. To do so, we first solve for the implied

volatility as a function of λt. We numerically integrate this function over the stationary

distribution of λt. This stationary distribution is Gamma with shape parameter 2κλ̄/σ2
λ and

scale parameter σ2
λ/(2κ) (Cox, Ingersoll, and Ross (1985)).

2.4 The constant disaster risk model

Taking limits in the above model as σλ approaches zero implies a model with a constant

probability of disaster (Appendix B.2 shows that this limit is indeed well-defined and is

what would be computed if one were to solve the constant disaster risk model from first

principles). We use this model to evaluate the role that stochastic disaster risk plays in the

model’s ability to match the implied volatility data. We refer to this model in what follows

as the CDR (constant disaster risk) model, to distinguish it from the more general SDR

model.

The CDR model is particularly useful in reconciling our results with those of Backus,

Chernov, and Martin (2011). Backus et al. solve a model with a constant probability of

a jump in consumption, calibrated in a manner similar to Barro (2006). They call this

the consumption-based model, to distinguish it from the reduced-form options-based model

which is calibrated to fit options data. While Backus et al. assume power utility, their

model can be rewritten as one with recursive utility with an EIS of one. The reason is that
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the endowment process is iid. In this special case, the EIS and the discount rate are not

separately identified. Specifically, a power utility model has an identical stochastic discount

factor, and therefore identical asset prices to a recursive utility model with arbitrary EIS as

long as one can adjust the discount rate (Appendix B.3).9

3 Average implied volatilities in the model and in the

data

In this section we compare implied volatilities in the two versions of the model we have

discussed with implied volatilities in the data. For now, we focus on three-month options.

Table 1 shows the parameter values for the SDR and the benchmark CDR model. The

parameters in the SDR model are identical to those of Wachter (2013), and thus do not

make use of options data. The parameters for the benchmark CDR model are as in the

consumption-based model of Backus, Chernov, and Martin (2011). That is, we consider a

calibration that is isomorphic to that of Backus, Chernov, and Martin (2011) in which the

EIS is equal to 1. Assuming a riskfree rate of 2% (as in Backus et al.), we calculate a discount

rate of 0.0189 . We could also use the same parameters as in the SDR model except with

σλ = 0; the results are very similar.

9Backus et al. define option payoffs not in terms of the price, but in terms of the total return. In principal

one could correct for this; however the correction requires a well-defined price-dividend ratio. For their

parameters, and a riskfree rate of 2%, the price-dividend ratio is not well-defined (the value of the infinitely-

lived dividend-claim does not converge). One can assess the difference between options on returns and the

usual option definition with higher levels of the riskfree rate, which does lead to well-defined prices. It is small

for ATM and OTM options which are the focus of our (and their) study. In what follows, for consistency

with their study, we use their definition and pricing method when reporting results for the benchmark CDR

calibration.
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The two calibrations differ in their relative risk aversion, in the volatility of normal-times

consumption growth, in leverage, in the probability of a disaster, and of course in whether

the probability is time-varying. The net effect of some of these differences turns out to be

less important than what one may think: for example, higher risk aversion and lower disaster

probability roughly offset each other. We explore the implications of leverage and volatility

in what follows.

The two models also assume different disaster distributions. For the SDR model, the

disaster distribution is multinomial, and taken from Barro and Ursua (2008) based on actual

consumption declines. The benchmark CDR model assumes that consumption declines are

log-normal. For comparison, we plot the smoothed density for the SDR model along with the

density of the consumption-based model in Figure 1. Compared with the lognormal model,

the SDR model has more mass over small declines in the 10–20% region, and more mass over

large declines in the 50-70% region.10

Figure 2 shows the resulting implied volatilities as a function of moneyness, as well as

implied volatilities in the data. Confirming previous results, we find that the CDR model

leads to implied volatilities that are dramatically different from those in the data. First, the

implied volatilities are too low, even though the model was calibrated to match the volatility

of equity returns. Second, they exhibit a strong downward slope as a function of the strike

price. While there is a downward slope in the data, it is not nearly as large. As a result,

10One concern is the sensitivity of our results to behavior in the tails of the distribution. By assuming

a multinomial distribution, we essentially assume that this distribution is bounded, which is probably not

realistic. However, it makes very little difference if we consider a unbounded distribution that matches the

observations in the data. Barro and Jin (2011) suggest this can be done with a power law distribution

with tail parameter of about 6.5. We have tried this version of the model and the results are virtually

indistinguishable. The reason is that, even though low realizations are possible in theory, their probability

is so small as to not affect the model’s results.
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implied volatilities for at-the-money (ATM) options in the CDR model are less than 10%,

far below the option-based implied volatilities, which are over 20%.

In contrast, the SDR model can explain both ATM and OTM (out-of-the-money) implied

volatilities. For OTM options (with moneyness equal to 0.94), the SDR model gives an

implied volatility of 23%, close to the data value of 24%. There is a downward slope, just as

in the data, but it is much smaller than that of the CDR model. ATM options have implied

volatilities of about 21% in both the model and the data. There are a number of differences

between this model and the CDR model. We now discuss which of these differences is

primarily responsible for the change in implied volatilities.

3.1 The role of leverage

In their discussion, Backus, Chernov, and Martin (2011) emphasize the role of very bad con-

sumption realizations as a reason for the poor performance of the disaster model. Therefore,

this seems like an appropriate place to start. The disaster distribution in the SDR bench-

mark actually implies a slightly higher probability of extreme events than the benchmark

CDR model (Figure 1). However, the benchmark CDR model has much higher leverage:

the leverage parameter is 5.1 for the CDR calibration versus 2.6 for the SDR calibration.

Leverage does not affect consumption but it affects dividends, and therefore stock and option

prices. A higher leverage parameter implies that dividends will fall further in the event of a

consumption disaster. It is reasonable, therefore, to attribute the difference in the implied

volatilities to the difference in the leverage parameter.

Figure 3 tests this directly by showing option prices in the CDR model for leverage of

5.1 and for leverage of 2.6 (denoted “lower leverage”) in the figure. Surprisingly, the slope

for the calibration with leverage of 2.6 is slightly higher than the slope for leverage of 5.1.

Lowering leverage results in a downward shift in the level of the implied volatility curve, not

13



the slope. Thus the difference in leverage cannot be the explanation for why the slope in our

model is lower than the slope for CDR.

Why does the change in leverage result in a shift in the level of the curve? It turns out

that in the CDR model, changing normal-times volatility has a large effect. Leverage affects

both the disaster distribution and normal-times volatility. Lowering leverage has a large

effect on normal-times volatility and thus at-the-money options. This is why the level of the

curve is lower, and the slope is slightly steeper.11

3.2 The role of normal shocks

To further consider the role of normal-times volatility, we explore the impact of changing

the consumption volatility parameter σ. In the benchmark CDR comparison, consumption

volatility is equal to the value of consumption volatility over the 1889–2009 sample, namely

3.5%. Most of this volatility is accounted for by the disaster distribution, because, while the

disasters are rare, they are severe. Therefore normal-times volatility is 1%, lower than the

U.S. consumption volatility over the post-war period. The SDR model is calibrated differ-

ently; following Barro (2006), the disaster distribution is determined based on international

macroeconomic data, and the normal-times distribution is set to match postwar volatility in

developed countries. The resulting normal-times volatility is 2%. To evaluate the effect of

this difference, we solve for implied volatilities in the CDR model with leverage of 5.1 and

normal-times volatility of 2%. In Figure 3, the result is shown in the line denoted “higher

normal-times volatility.”

As Figure 3 shows, increasing the normal-times volatility of consumption growth in the

11Yan (2011) shows analytically that, as the time to expiration approaches zero, the implied volatility is

equal to the normal-times volatility in the stock price, while the slope is inversely related to the normal-times

volatility of the stock price.
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CDR model has a noticeable effect on implied volatilities: The implied volatility curve is

higher and flatter. The change in the level reflects the greater overall volatility. The change

in the slope reflects the greater probability of small, negative outcomes. However, the effect,

while substantial, is not nearly large enough to explain the full difference. The level of the

“higher normal-times volatility” smile is still too low and the slope is too high compared

with the data.12

While raising the volatility of consumption makes the CDR model look somewhat more

like the SDR model (though it does not account for the full difference), it is not the case

that lowering the volatility of consumption makes the SDR model more like the CDR model.

Namely, reducing σ to 1% (which would imply a normal-times consumption volatility that is

lower than in the post-war data) has almost no effect on the implied volatility curve of the

SDR model. There are two reasons why this parameter affects implied volatilities differently

in the two cases. First, the leverage parameter is much lower in the SDR model than the

CDR model. Second, volatility in the SDR model comes from time-variation in discount

rates (driven by λt) as well as in payouts (φσ). The first of these terms is much larger than

the second.13

12Note further that leverage of 5.1, combined with a normal-times consumption volatility of 2% means

that normal-times dividend volatility of dividends is 10.2%. However, annual volatility in postwar data is

only 6.5%.
13To be precise, total return volatility in the SDR model equals the square root of the variance due to

λt, plus the variance in dividends. Dividend variance is small, and it is added to something much larger to

determine total variance. Thus the effect of dividend volatility on return volatility is very small, and changes

in dividend volatility also have relatively little effect.
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3.3 The price of volatility risk

One obvious difference between the CDR model and the SDR model is that the SDR model is

dynamic. Because of recursive utility, this affects risk premia on options and therefore option

prices and implied volatilities. As shown in Section 2.2, the state price density depends on

the probability of disaster. Thus risk premia depend on covariances with this probability:

assets that increase in price when the probability rises will be a hedge. Options are such an

asset. Indeed, an increase in the probability of a rare disaster raises option prices, while at

the same time increasing marginal utility.

To directly assess the magnitude of this effect, we solve for option prices using the same

process for the stock price and the dividend yield, but with a pricing kernel adjusted to set

the above effect equal to zero. Risk premia in the model arise from covariances with the

pricing kernel. We replace the pricing kernel in (8) with one in which b = 0.14 Because b

determines the risk premium due to covariance with λt, setting b = 0 will shut off this effect.

Figure 4 shows, setting b = 0 noticeably reduces the level of implied volatilities, though the

difference between the b = 0 model and the SDR is small compared to the difference between

the CDR and the SDR model.

It is worth emphasizing that the assumption of b = 0 does not imply an iid model. This

model still assumes that stock prices are driven by stochastic disaster risk; otherwise the

volatility of stock returns would be equal to that of dividends.

14Note that a and η also depend on b: these expressions are also changed in the experiment. While it may

first appear that b should also affect the riskfree rate, this does not occur in the model with EIS= 1. The

riskfree rate satisfies a simple expression

rt = β + µ− γσ2 + λtEν
[
e−γZ

(
eZ − 1

)]
.
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3.4 The distribution of consumption growth implied by options

Our results show that a model with stochastic disaster risk can fit implied volatilities, thereby

addressing one issue raised by Backus, Chernov, and Martin (2011). Backus et al. raise a sec-

ond issue: assuming power utility and iid consumption growth, they back out a distribution

for the left tail of consumption growth from option prices (we will call this the “option-

implied consumption distribution”).15 Based on this distribution, they conclude that the

probabilities of negative jumps to consumption are much larger, and the magnitudes much

smaller, than implied by the international macroeconomic data used by Barro (2006) and

Barro and Ursua (2008).

The resolution of this second issue is clearly related to the first. For if a model (like the one

we describe) can explain average implied volatilities while assuming a disaster distribution

from macroeconomic data, then it follows that this macroeconomic disaster distribution is

one possible consumption distribution that is consistent with the implied volatility curve.

Namely, the inconsistency between the extreme consumption events in the macroeconomic

data and option prices is resolved by relaxing the iid assumption.

Of course, this reasoning does not imply that the stochastic disaster model is any better

than the iid model with the option-implied consumption distribution. This distribution is,

after all, consistent with option prices, the equity premium, and the mean and volatility of

consumption growth observed in the U.S. in the 1889-2009 period (provided a coefficient of

relative risk aversion equal to 8.7). However, it turns out that this consumption distribu-

tion can be ruled out based on other data: because it assumes that negative consumption

jumps are relatively frequent (as they must be to explain the equity premium), some would

have occurred in the 60-year postwar period in the U.S. The unconditional volatility of con-

15A methodological problem with this analysis is that it assumes that options are on returns rather than

on prices. See footnote 9.
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sumption growth in the U.S. during this period was less than 2%. Under the option-implied

consumption growth distribution, there is less than a 1 in one million chance of observing a

60-year period with volatility this low.16

3.5 Summary

A consequence of stochastic disaster risk is high stock market volatility, not just during

occurrences of disasters, but during normal periods as well. This is reflected in the level

and shallowness of the volatility smile: while the existence of disasters leads to an upward

slope for out-of-the money put options, high normal-period volatility implies that the level

is high for put options that are in the money or only slightly out of the money. The same

mechanism, and indeed the same parameters that allow the model to match the level of

realized stock returns enable the model to match implied volatilities.

Previous work suggests that allowing for stochastic volatility (and time-varying moments

more generally) does not appear to affect the shape of the implied volatility curve.17 How

is it, then, that this paper comes to such a different conclusion? The reason may arise from

16There are multiple additional objections to an iid model for returns. Another that arises in the context

of options and rare disaster is that of Neuberger (2012), who shows that an iid model is unlikely based on

the lack of decay in return skewness as the measurement horizon grows. We discuss this result further in

Section 5.4.
17Backus, Chernov, and Martin (2011) write: “The question is whether the kinds of time dependence we

see in asset prices are quantitatively important in assessing the role of extreme events. It is hard to make a

definitive statement without knowing the precise form of time dependence, but there is good reason to think

its impact could be small. The leading example in this context is stochastic volatility, a central feature of

the option-pricing model estimated by Broadie et al. (2007). However, average implied volatility smiles

from this model are very close to those from an iid model in which the variance is set equal to its mean.

Furthermore, stochastic volatility has little impact on the probabilities of tail events, which is our interest

here.”
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the fact that the previous literature mainly focused on reduced-form models, in which the

jump dynamics and volatility of stock returns are freely chosen. However, in an equilibrium

model like the present one, stock market volatility arises endogenously from the interplay

between consumption and dividend dynamics and agents’ preferences. While it is possible

to match the unconditional volatility of stock returns and consumption in an iid model,

this can only be done (given the observed data) by having all of the volatility occur during

disasters. In such a model it is not possible to generate sufficient stock market volatility

in normal times to match either implied or realized volatilities. While in the reduced-form

literature, the difference between iid and dynamic models principally affects the conditional

second moments, in the equilibrium literature, the difference affects the level of volatility

itself.

4 Option prices in a multi-factor stochastic disaster

risk model

4.1 Why multiple factors?

The previous sections show how introducing time variation into conditional moments can

substantially alter the implications of rare disasters for implied volatilities. The model

presented there was parsimonious, with a single state variable following a square root process.

Closer examination of our results suggests an aspect of options data that may be difficult

to fit to this model. Figure 5 shows implied volatilities for λt equal to the median and for

the 1st and 99th percentile value for put options with moneyness as low as 0.85.18 Implied

18The figure also shows 99th and 1st percentile implied volatilities in the data at each moneyness level.

While the 99th percentile values are high in the model, they are similarly high in the data; thus the single-

factor model can accurately account for the range in implied volatilities. Because this graph is constructed
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volatilities increase almost in parallel as λt increases. That is, ATM options are affected

by an increase in the rare disaster probability almost as much as out-of-the-money options.

The model therefore implies that there should be little variation in the slope of the implied

volatility curve.

Figure 6 shows the historical time series of implied volatilities computed on one month

ATM and OTM options with moneyness of 0.85. Panel C shows the difference in the implied

probabilities, a measure of the slope of the implied volatility curve. Defined in this way, the

average slope is 12%, with a volatility of 2%. Moreover, the slope can rise as high as 18%

and fall as low as 6%. While the SDR model can explain the average slope, it seems unlikely

that it would be able to account for the time-variation in the slope, at least under the current

calibration. Moreover, comparing Panel C with Panels A and B of Figure 6 indicates that

the slope varies independently of the level of implied volatilities. Thus it is unlikely that any

model with a single state variable could account for these data.

The mechanism in the SDR model that causes time-variation in rare disaster probabilities

is identical to the mechanism that leads to volatility in normal times. Namely, when λt is

high, rare disasters are more likely and returns are more volatile. In order to account for the

data, a model must somehow decouple the volatility of stock returns from the probability of

rare events. This is challenging, because volatility endogenously depends on the probability

of rare events. Indeed, the main motivation for assuming time-variation in the probabil-

ity of rare events is to generate volatility in stock returns that seems otherwise puzzling.

Developing such a model is our goal in this section of the paper.

looking at implied volatilities for each moneyness level, it does not answer the important question of whether

the model can explain time-variation in the slope.
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4.2 Model assumptions

In this section, we introduce a mechanism that decouples the volatility of stock returns from

the probability of rare events. We assume the same stochastic process for consumption (1)

and for dividends. We now assume, however, that the probability of a rare event follows the

process

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t, (13)

where ξt solves the following stochastic differential equation

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t. (14)

We continue to assume that all Brownian motions are mutually independent. The process

for λt takes the same form as before, but instead of reverting to a constant value λ̄, λt

reverts to a value that is itself stochastic. We will assume that this value, ξt itself follows a

square root process. Though the relative values of κλ and κξ do not matter for the form of the

solution, to enable an easier interpretation of these state variables, we will choose parameters

so that shocks to ξt die out more slowly than direct shocks to λt. Duffie, Pan, and Singleton

(2000) use the process in (13) and (14) to model return volatility. This model is also related

to multi-factor return volatility processes proposed by Bates (2000) and Gallant, Hsu, and

Tauchen (1999).19 In our study, the process is for jump intensity rather than volatility;

19The purpose of this model is not to provide a better fit than existing two-factor reduced form models;

all else equal it will be easier for a reduced-form model which has fewer restrictions to fit the data than an

equilibrium model. Equilibrium models that highlight the importance of variation across different time scales

include Calvet and Fisher (2007) and Zhou and Zhu (2014). These papers do not discuss the fit to implied

volatilities. Rather than rare disasters, these papers induce fluctuations in asset prices based on time-varying

first and second moments of consumption growth; evidence from consumption growth itself suggests that

this variation is insufficient to produce the observed volatility in stock prices (Beeler and Campbell (2012)).

These papers require simultaneously high risk aversion and a high elasticity of intertemporal substitution;

this model requires neither.
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however, volatility, which arises endogenously, will inherit the two-factor structure. While

we implement a model with two-factors in this paper, our solution method is general enough

to encompass an arbitrary number of factors with linear dependencies through the drift term,

as in the literature on the term structure of interest rates (Dai and Singleton (2002)).

Like the one-factor SDR model, our two-factor extension is highly tractable. In Ap-

pendix C.1, we show that utility is given by

Vt =
C1−γ
t

1− γ
ea+bλλt+bξξt (15)

where

a =
1− γ
β

(
µ− 1

2
γσ2

)
+
bξκξ ξ̄

β
(16)

bλ =
κλ + β

σ2
λ

−

√(
κλ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Zt − 1]

σ2
λ

(17)

bξ =
κξ + β

σ2
ξ

−

√√√√(κξ + β

σ2
ξ

)2

− 2
bλκλ
σ2
ξ

(18)

Equation 5 still holds for the state-price density, though the process Vt will differ. The

riskfree rate and government bill rate are the same functions of λt as in the one-factor model.

In Appendix C.3, we show that the price-dividend ratio is given by

G(λt, ξt) = exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) , (19)

where aφ, bφλ and bφξ solve the differential equations

a′φ(τ) = −β − µ− γ(φ− 1)σ2 + µD + bφξ(τ)κξ ξ̄

b′φλ(τ) = −bφλ(τ)κλ +
1

2
bφλ(τ)2σ2

λ + bλbφλ(τ)σ2
λ + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
b′φξ(τ) = −bφλ(τ)κλ − bφξ(τ)κξ +

1

2
bφξ(τ)2σ2

ξ + bξbφξ(τ)σ2
ξ ,

with boundary condition

aφ(0) = bφλ(0) = bφξ(0) = 0.
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Similar reasoning to that of Section 2.3 shows that for a given moneyness and time to

expiration, normalized option prices and implied volatilities are a function of λt and ξt alone.

To solve for option prices, we approximate G(λt, ξt) by a log-linear function of λt and ξt, as

shown in Appendix C.3.

5 Fitting the multifactor model to the data

5.1 Parameter choices

For simplicity, we keep risk aversion γ, the discount rate β and the leverage parameter φ

the same as in the one-factor model. We also keep the distribution of consumption in the

event of a disaster the same. Note that κλ and σλ will not have the same interpretation in

the two-factor model as κ and σλ do in the one-factor model.

Our first goal in calibrating this new model is to generate reasonable predictions for the

aggregate market and for the consumption distribution. That is, we do not want to allow

the probability of a disaster to become too high. One challenge in calibrating representative

agent models is to match the high volatility of the price-dividend ratio. In the two-factor

model, as in the one-factor model, there is an upper limit to the amount of volatility that

can be assumed in the state variable before a solution for utility fails to exist. The more

persistent the processes, namely the lower the values of κλ and κξ, the lower the respective

volatilities must be so as to ensure that the discriminants in (17) and (18) stay nonnegative.

We choose parameters so that the discrimant is equal to zero; thus there is only one more

free parameter relative to to the one-factor model.

The resulting parameter choices are shown in Table 2. The mean reversion parameter

κλ and volatility parameter σλ are relatively high, indicating a fast-moving component to

the λt process, while the mean reversion parameter κξ and σξ are relatively low, indicating a
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slower-moving component. The parameter ξ̄ (which represents both the average value of ξt

and the average value of λt) is 2% per annum. This is lower than λ̄ in our calibration of the

one-factor model. In this sense, the two-factor calibration is more conservative. However,

the extra persistence created by the ξt process implies that λt could deviate from its average

for long periods of time. To clarify the implications of these parameter choices, we report

population statistics on λt in Panel C of Table 2. The median disaster probability is only

0.37%, indicating a highly skewed distribution. The standard deviation is 3.9% and the

monthly first-order autocorrelation is 0.9858.

Implications for the riskfree rate and the market are shown in Table 3. We simulate

100,000 samples of length 60 years to capture features of the small-sample distribution. We

also simulate a long sample of 600,000 years to capture the population distribution. Statistics

are reported for the full set of 100,000 samples, and the subset for which there are no disasters

(38% of the sample paths). The table reveals a good fit to the equity premium and to return

volatility. The average Treasury Bill rate is slightly too high, though this could be lowered

by lowering β or by lowering the probability of government default.20 The model successfully

captures the low volatility of the riskfree rate in the postwar period. The median value of the

price-dividend ratio volatility is lower than in the data (0.27 versus 0.43), but the data value

is still lower than the 95th percentile in the simulated sample.21 For the market moments,

only the very high AR(1) coefficient in postwar data falls outside the 90% confidence bounds:

it is 0.92 (annual), while in the data, the median is 0.79 and the 95th percentile value is

0.91. As we will show below, there is a tension between matching the autocorrelation in

the price-dividend ratio and in option prices. Moreover, so that utility converges, there is

20As in the one-factor model, we assume a 40% probability of government default.
21The one-factor model, which was calibrated to match the population persistence of the price-dividend

ratio, has a median price-dividend ratio volatility of 0.21 for sample paths without disasters and a population

price-dividend ratio volatility of 0.38.
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a tradeoff between persistence and volatility. One view is that the autocorrelation of the

price-dividend ratio observed in the postwar period may in fact have been very exceptional

and perhaps is not a moment that should be targeted too stringently.

5.2 Simulation results for the two-factor model

We first examine the fit of the model to the mean of implied volatilities in the data. We

ask more of the two-factor model than its one-factor counterpart. Rather than looking

only at 3-month options across a narrow moneyness range, we extend the range to options

of moneyness of 0.85. We also look at 1- and 6-month options, and at moments of implied

volatilities beyond the means. Moreover, rather than looking only at the population average,

we consider the range of values we would see in repeated samples that resemble the data,

namely, samples of length 17 years with no disaster. This is a similar exercise to what was

performed in Table 3, though calculating option prices is technically more difficult than

calculating equity prices.22

Figure 7 shows means and volatilities of implied volatilities for the three option maturities.

We report the averages across each sample path, as well as 90% confidence intervals from

the simulation. We see that this new model is successful at matching the average level of the

implied volatility curve for all three maturities, even with this extended moneyness range,

and even though we are looking at sample paths in which the disaster probability will be

lower than average. In fact the slope in the model is slightly below that in the data. Similarly,

the model’s predictions for volatility of volatility are well within the standard error bars for

22Because of the extra persistence induced by the multi-frequency components in the two-factor model, it

is important to accurately capture the dynamics when λt is near zero. We therefore simulate the model at

a daily interval for 17 years. This simulation is repeated 1000 times for the options calculation, and more

for the (easier) equity calculations. Along each simulation path, we pick monthly observations of the state

variables and calculate option prices for these monthly observations.
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all moneyness levels and for all three option maturities.

One issue that arises in fitting both options and equities with a single model is the very

different levels of persistence in the option and equity markets. This tension is apparent in

our simulated data as well. As Table 3 reports, the annual AR(1) coefficient for the price-

dividend ratio in the data is extremely high: 0.92; just outside of our 10% confidence intervals.

The median value from the simulations is still a very high 0.79; in monthly simulations, this

value is 0.98. Implied volatilities in simulated data have much lower autocorrelations. Median

autocorrelations are roughly the same across moneyness levels, and are in the 0.92 to 0.94

range; substantially below the level for the price-dividend ratio. The AR(1) coefficients in

the data are lower still, though generally within the 10% confidence intervals.23 While the

same two factors drive equity and option prices, they do so to different extents. The model

endogenously captures the greater persistence in equity prices, which represent value in the

longer run than do option prices.

5.3 Implications for the time series

We now return to the question of whether the two-factor model can explain time-variation

in the slope and the level of option prices. Before embarking on this exercise we note that

the matching the time series is not usually a target for general equilibrium models because

these models operate under tight constraints. We expect that there will be some aspects of

the time series that our model will not be able to match.

We consider the time series of one-month ATM and OTM implied volatilities (Figure 6).

For each of these data points, we compute the implied value of λt and ξt. Note that this

exercise would not be possible if the model were not capable of simultaneously matching the

23It is well known that the implied volatility series exhibits long-memory-like properties. Thus the first-

order autocorrelation of volatility may understate the true persistence of the data.
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level and slope of the implied volatility curve for one-month options. We show the resulting

values in Figure 8. For most of the sample period, the disaster probability λt varies between

0 and 6%, with spikes corresponding to the Asian financial crisis in the late 1990s and the

large market declines in the early 2000s. However, the sample is clearly dominated by the

events of 2008-2009, in which the disaster probability rises to about 20%. 24 While we choose

the state variables to match the behavior of one-month options exactly, Figure 9 shows that

the model also delivers a good fit to the time series of implied volatilities from three-month

and six-month options.

The exercise above raises the question of whether the time series of λt and ξt are rea-

sonable given our assumptions on the processes for these variables. Table 4 calculates the

distribution of moments for λt and ξt. With the exception of the first-order autoregressive

coefficients, the data fall well within the 90% confidence intervals. That is, the average values

of the state variables and their volatilities could easily have been observed in 17-year sam-

ples with no disasters. The persistence in the data is somewhat lower than the persistence

implied by the model. This illustrates the same tension between matching the time series of

option prices and the time series of the price-dividend ratio discussed in the previous section.

As discussed in Section 4.1, it is not clear why adding a second state variable would

allow the model to capture the time series variation in both the level and the slope, since

both of these observables would be endogenously determined by both state variables. To

better understand the mechanisms that allow the model to match these data, we consider

the relative contributions of two state variables to the implied volatility curve in Figure 10.

Panel A of Figure 10 fixes ξt at its median value and shows implied volatilities for λt at its

24While this model can formally capture the financial crisis, there is a tension in that the large spike in

λt would be an extremely unlikely event in a model in which state variables are driven by Brownian shocks.

Our methods can easily accomodate Poisson jumps in λt itself, or a third transitory factor that would drive

λt.
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80th percentile value, at its median, and at its 20th percentile value. Panel B of Figure 10

performs the analogous exercise, this time fixing λt but varying ξt. In contrast to its behavior

in the one-factor model, increasing λt both increases implied volatilities and increases the

slope. The state variable ξt has a smaller effect on the level of implied volatilities, but a

greater effect on the slope. Moreover, an increase in ξt lowers the slope rather than raising

it. To summarize, increases in λt raise both the level and the slope of the implied volatility

curve. Increases in ξt slightly raise the level and decrease the slope.

Why does ξt affect the slope of the implied volatility curve? The reason is that ξt has a

relatively small effect on the probability of disasters at the time horizon important for option

pricing, but a large effect on the volatility of stock prices (because of the square root term

on its own volatility). Thus increases in ξt flatten the slope of the implied volatility curve

because they raise the implied volatility for ATM options much more than for OTM options.

The process for λt, on the other hand, has a large effect on OTM implied volatilities because

it directly controls the probability of a disaster. It has a smaller effect on ATM implied

volatilities than in the one-factor model because of its lower persistence.

Finally, we ask what these implied volatilities say about equity valuations.25 Given the

option-implied values of ξ and λ, we can impute a price-dividend ratio using (19). This

price-dividend ratio uses no data on equities, only data on options and the model. Figure

Figure 12 shows the results, along with the price-dividend ratio from data available from

Robert Shiller’s webpage. The model can match the sustained level of the price-dividend

25Other recent empirical work on the relation between options, prices and news is consistent with our

model. Kelly, Pastor, and Veronesi (2014) show that option prices reflect political uncertainty. Gao and

Song (2013) show that rare disaster concerns, as reflected in option prices, is priced in the cross-section.
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ratio, and, most importantly, the time series variation after 2004.26 Indeed, between 2004

and 2013, the correlation between the option-implied price-dividend ratio and the actual

price-dividend ratio is 0.84, strongly suggesting these two markets share a common source

of risk.

5.4 The implied volatility surface

We now take a closer look at what the model says about the implied volatility surface, namely

implied volatilities across moneyness and time to expiration. Figures 11 show the implied

volatilities for one, three and six-month options as a function of moneyness. We show the

average implied volatilities computed using the time series of λt and ξt, and compare these to

the data. Given that we have chosen λt and ξt to match the time series of implied volatilities

on 1-month options, it is not surprising that the model matches these data points exactly.

More interestingly, the model is able to match the three-month and the six-month implied

volatility curves almost exactly, even though it was not calibrated to these curves.

The downward slope in implied volatilities from options expiring in as long as six months

indicates that the risk-neutral distribution of returns exhibits considerable skewness at long

horizons. This is known as the skewness puzzle (Bates (2008)) because the law of large

numbers would suggest convergence toward normality as the time to expiration increases.

Recently, Neuberger (2012) makes use of options data to conclude that the skewness in the

physical distribution of returns is also more pronounced than has been estimated previously.

Neuberger emphasizes the observed negative correlation between stock prices and volatility

(French, Schwert, and Stambaugh (1987)) as a reason why skewness in long-horizon returns

26Not surprisingly, the disaster-risk model is not able to match the run-up in stock prices from the late 90s

until around 2004. It may be that time-varying fears of a disaster will not be able to capture the extreme

optimism that characterized that period.
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does not decay as the law of large numbers in an iid model suggests that it would (see also

Bates (2000)).

Figures 7 and 11 show that our model can capture the downward slope in 6-month implied

volatilities as well as the slope for shorter-term options. Thus stock returns in the model

exhibit skewness at both long and short-horizons. The short-horizon skewness arises from

the existence of rare disasters. Long-horizon skewness, however, comes about endogenously

because of the time-variation in the disaster probability. An increase in the rare disaster

probability leads to lower stock prices, and, at the same time, higher volatilities, thereby

accounting for this co-movement in the data. As a result, returns maintain their skewness at

long horizons, and the model can explain six-month as well as one-month implied volatility

curves.

6 Conclusion

Since the early work of Rubinstein (1994), the implied volatility curve has constituted an

important piece of evidence against the Black-Scholes Model, and a lens through which to

view the success of a model in matching option prices.

The implied volatility curve, almost by definition, has been associated with excess kurtosis

in stock prices. Separately, a literature has developed linking kurtosis in consumption (which

would then be inherited by returns in equilibrium) with the equity premium. However, much

of the work up to now, as exemplified by a recent paper by Backus, Chernov, and Martin

(2011) suggests that, at least for standard preferences, the non-normalities required to match

the equity premium are qualitatively different from those required to match implied volatility.

We have proposed an alternative and more general approach to modeling the risk of

downward jumps that can reconcile the implied volatility curve and the equity premium.

Rather than assuming that the probability of a large negative event is constant, we allow it
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to vary over time. The existence of very bad consumption events leads to both the downward

slope in the implied volatility curve and the equity premium. However, the time-variation in

these events moderates the slope, raises the level and generates the excess volatility observed

in stock prices.

The initial model that we develop in the paper is deliberately simple and parsimonious.

However, there are some interesting features of option and stock prices that cannot be

matched by a model with a single state variable; for example, the imperfect correlation

between the slope and the level of the implied volatility curve. For this reason, we investigate

a more general model that allows for variation in disaster risk to occur at multiple time

scales. This modification naturally produces time-variation in the slope of implied volatilities

because it introduces variation in stock price volatility that can be distinguished from the

risk of rare disasters. Taken together, these results indicate that options data support the

existence of rare disasters in beliefs about the equity premium. Moreover, options data can

provide information about the disaster distribution beyond that offered by stock prices. In

particular, data from options suggest that modeling time-variation in disaster risk occurring

at multiple time scales may be a fruitful avenue for future work.
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Appendix

A Data construction

Our sample consists of daily data on option prices, volume and open interest for European put

options on the S&P 500 index from OptionMetrics. Data are from 1996 to 2012. Options

expire on the Saturday that follows the third Friday of the month. We extract monthly

observations using data from the Wednesday of every option expiration week. We apply

standard filters to ensure that the contracts on which we base our analyses trade sufficiently

often for prices to be meaningful. That is, we exclude observations with bid price smaller

than 1/8 and those with zero volume and open interest smaller than one hundred contracts

(Shaliastovich (2009)).

OptionMetrics constructs implied volatilities using the formula of Black and Scholes

(1973) (generalized for an underlying that pays dividends), with LIBOR as the short-term

interest rate. The dividend-yield is extracted from the put-call parity relation. We wish to

construct a data set of implied volatilities with maturities of 1, 3 and 6 months across a range

of strike prices. Of course, there will not be liquid options with maturity precisely equal to,

say, 3 months, at each date. For this reason, we use polynomial interpolation across strike

prices and times to expiration.27 Specifically, at each date in the sample, we regress implied

volatilities on a polynomial in strike price K and maturity T :

σ(K,T ) = θ0 + θ1K + θ2K
2 + θ3T + θ4T

2 + θ5KT + θ6KT
2 + εK,T

We run this regression on options with maturities ranging from 30 to 247 days, and with

moneyness below 1.1. The implied volatility surface is generated by the fitted values of this

regression.

27See Dumas, Fleming, and Whaley (1998), Christoffersen and Jacobs (2004) and Christoffersen, Heston,

and Jacobs (2009).

32



B Details of calculations for the single-factor model

B.1 The state-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (B.1)

Equation (B.1) shows the state-price density can be expressed in terms of a locally deter-

ministic term and a term that is locally stochastic. To obtain (12), we require both to be

expressed in terms of Ct and λt. We derive the expression for the stochastic term first.

It follows from (4) that

∂

∂C
f (Ct, Vt) = β (1− γ)

Vt
Ct
. (B.2)

Wachter (2013) shows that continuation utility Vt can be expressed in terms of Ct as follows:28

Vt = J(Ct, λt), (B.3)

where

J(Ct, λt) =
C1−γ
t

1− γ
ea+bλt , (B.4)

and

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ b

κλ̄

β
(B.5)

b =
κ+ β

σ2
λ

−

√(
κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

. (B.6)

For future reference, we note that b is a solution to the quadratic equation

1

2
σ2
λb

2 − (κ+ β)b+ Eν
[
e(1−γ)Z − 1

]
= 0. (B.7)

28Wachter (2013) expresses the value function in terms of wealth rather than consumption. Because the

ratio of wealth to consumption is β−1, it is straightforward to go from one expression to the other. The

difference between the expressions is found in the definition of a. In the earlier paper, this expression has

an extra term given by (1− γ) log β.
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Substituting (B.3) and (B.4) into (B.2) implies that

∂

∂C
f (Ct, Vt) = βC−γt ea+bλt . (B.8)

It also follows from (4) that

∂

∂V
f(Ct, Vt) = β(1− γ)

(
logCt −

1

1− γ
log ((1− γ)Vt)

)
+ β.

Substituting in for Vt from (B.3) and (B.4) implies

∂

∂V
f(Ct, Vt) = −β(a+ bλt)− β. (B.9)

Finally, we collect constant terms:

η = −βa− β (B.10)

so that

∂

∂V
f(Ct, Vt) = η − βbλt.

Therefore, from (B.1) it follows that the state-price density can be written as

πt = exp

(
ηt− βb

∫ t

0

λsds

)
βC−γt ea+bλt .

B.2 The iid limit

In this section we compute the limit of the state price density as σλ approaches zero. Note

that b in equation (B.6) can be rewritten as

b =
1

σ2
λ

(
κ+ β −

√
(κ+ β)2 − 2Eν [e(1−γ)Z − 1]σ2

λ

)
.

L’Hopital’s rule implies

lim
σλ→0

b = lim
σλ→0

1

2

(
(κ+ β)2 − 2Eν

[
e(1−γ)Z − 1

]
σ2
λ

)− 1
2 2Eν

[
e(1−γ)Z − 1

]
=

Eν
[
e(1−γ)Z − 1

]
κ+ β

.
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It follows from the equation for a, (B.5), that

lim
σλ→0

(a+ bλt) = lim
σλ→0

(a+ bλ̄)

=
1− γ
β

(
µ− 1

2
γσ2

)
+ (κ+ β)

λ̄

β
lim
σλ→0

b

=
1− γ
β

(
µ− 1

2
γσ2

)
+
Eν
[
e(1−γ)Z − 1

]
λ̄

β
,

where we assume that λ0 = λ̄ and therefore that λt = λ̄ for all t.

We now apply these results to calculate the limit of πt/π0. It follows from (B.1), (B.8)

and (B.9) that

lim
σλ→0

πt
π0

= exp

{(
−β − β lim

σλ→0
(a+ bλ̄)

)
t

}(
Ct
C0

)−γ
= exp

{(
−β − (1− γ)(µ− 1

2
γσ2)− Eν

[
e(1−γ)Z − 1

]
λ̄

)
t

}(
Ct
C0

)−γ
,

which is equivalent to the result one obtains by calculating the state price density in the iid

case. Note that this result is not automatic, but rather holds because we choose the lower

of the two roots of (B.7).29

B.3 An isomorphism with power preferences under the iid assumption

In this section we show that, in an iid model, ratios of the state price density at different

times implied by power utility are the same as those implied by recursive utility assuming

the discount rate is adjusted appropriately. Thus the power utility model and the recursive

utility model are isomorphic when the endowment process is iid.

Let πp,t be the state price density assuming power utility with discount rate βp and

relative risk aversion γ. Then

πp,t
πp,0

= e−βpt
(
Ct
C0

)−γ
.

29This point is also made by Tauchen (2005) for a model with stochastic volatility.
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For convenience, let πt be the state price density for recursive utility (with EIS equal to one).

As shown in Appendix B.2,

πt
π0

= e((1−γ)(−µ+ 1
2
γσ2)−λ̄Eν[e(1−γ)Z−1]−β)t

(
Ct
C0

)−γ
.

It follows that, for β given by

β = βp + (1− γ)

(
−µ+

1

2
γσ2

)
− λ̄Eν

[
e(1−γ)Z − 1

]
,

ratios of the state price densities are the same.

B.4 Approximating the price-dividend ratio

The formula for the price-dividend ratio in the SDR model is derived by Wachter (2013) and

is given by

G(λt) =

∫ ∞
0

exp {aφ(τ) + bφ(τ)λt} dτ,

where aφ(τ) and bφ(τ) have closed-form expressions given in that paper. The algorithm for

computing option prices that we use requires that logG(λ) be linear in λ. Define g(λ) =

logG(λ). For a given λ∗, note that for λt close to λ∗,

g(λ) ' g(λ∗) + (λ− λ∗)g′(λ∗). (B.11)

Moreover,

g′(λ∗) =
G′(λ∗)

G(λ∗)

=
1

G(λ∗)

∫ ∞
0

bφ(τ) exp {aφ(τ) + bφ(τ)λ∗} dτ . (B.12)

The expression (B.12) has an interpretation: it is a weighted average of the coefficients bφ(τ),

where the average is over τ , and the weights are proportional to exp {aφ(τ) + bφ(τ)λ∗}. With

this in mind, we define the notation

b∗φ =
1

G(λ∗)

∫ ∞
0

bφ(τ) exp {aφ(τ) + bφ(τ)λ∗} dτ (B.13)
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and the log-linear function

Ĝ(λ) = G(λ∗) exp
{
b∗φ(λ− λ∗)

}
. (B.14)

It follows from exponentiating both sides of (B.11) that

G(λ) ' Ĝ(λ).

When we apply this method in this paper, we choose λ∗ equal to the long-run mean λ̄.

This log-linearization method differs from the more widely-used method of Campbell

(2003), applied in continuous time by Chacko and Viceira (2005). However, in this appli-

cation it is more accurate over the relevant range. This is not surprising, since we are able

to exploit the fact that the true solution for the price-dividend ratio is known. In dynamic

models with the EIS not equal to one, the solution is typically unknown.

Figure A.1 shows implied volatilities from option prices computed using the loglinear

approximation described above, and from option prices computed by solving the expectation

in (10) directly, using by averaging over simulated sample paths. To keep the computation

tractable, we assume a single jump size of -30%. The implied volatilities are extremely close

in the two cases.

B.5 Transform analysis

The normalized put option price is given as

P n(λt, T − t;Kn) = Et

[
πT
πt

(
Kn − FT

Ft

)+
]
. (B.15)

It follows from (11), (12), and (B.14) that

πT
πt

= exp

{
−
∫ T

t

(βbλs − η)ds− γ log

(
CT
Ct

)
+ b(λT − λt)

}
FT
Ft

= exp

{
φ log

(
CT
Ct

)
+ b∗φ(λT − λt)

}
,
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where η, b and b∗φ are constants defined by (B.10), (7) and (B.13), respectively. Then (B.15)

can be rewritten as

P n(λt, T − t;Kn) = Et

[
e−

∫ T
t (βbλs−η) ds−γ(logCT−logCt)+b(λT−λt)Kn 1{

FT
Ft
≤Kn

}]
− Et

[
e−

∫ T
t (βbλs−η) ds+(φ−γ)(logCT−logCt)+(b+b∗φ)(λT−λt)1{

FT
Ft
≤Kn

}] . (B.16)

Note that

1{
FT
Ft
≤Kn

} = 1{b∗φ(λT−λt)+φ(logCT−logCt)≤logKn}.

Equation (B.16) characterizes the put option in terms of expectations that can be computed

using the transform analysis of Duffie, Pan, and Singleton (2000). This analysis requires only

the solution of a system of ordinary differential equations and a one-dimensional numerical

integration. Below, we describe how we use their analysis.

To use the method of Duffie, Pan, and Singleton (2000), it is helpful to write down the

following stochastic process, which, under our assumptions, is well-defined for a given λt.

Xτ =

 logCt+τ − logCt

λt+τ

 .
Note that the {Xτ} process is defined purely for mathematical convenience. Further define

R(Xτ ) = [0, βb]Xτ − η = βbλt+τ − η

d1 = [−γ, b]>

d2 = [φ, b∗φ]>,

and let

Gp,q(y;X0, T − t) = E
[
e−

∫ T−t
0 R(Xτ )dτep

>XT−t1{q>XT−t≤y}

]
. (B.17)

Note that {Xτ} is an affine process in the sense defined by Duffie et al. It follows that

P n(λ, T − t;Kn) = e−bλKnE
[
e−

∫ T−t
0 R(Xτ )dτ+d>1 XT−t 1d>2 XT−t≤logKn+b∗φλ

]
− e−(b+b∗φ)λE

[
e−

∫ T−t
0 R(Xτ )dτ+(d1+d2)>XT−t 1d>2 XT−t≤logKn+b∗φλ

]
,

38



and therefore

P n(λ, T − t;Kn) = e−bλ
(
KnGd1,d2

(
logKn + b∗φλ,X0, T − t

)
− e−b∗φλ Gd1+d2,d2

(
logKn + b∗φλ,X0, T − t

))
,

where X0 = [0, λ]. The terms written using the function G can then be computed tractably

using the transform analysis of Duffie et al.

C Solution to the multifactor model

C.1 Utility

We conjecture that the value function is given by

J(C, λ, ξ) =
C1−γ

1− γ
ea+bλλ+bξξ. (C.1)

It follows from the form of f(C, V ) that

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log [(1− γ)V ]

)
= β(1− γ)V logC − βV log [(1− γ)V ]

= βV log

(
C1−γ

(1− γ)V

)
= −βV (a+ bλλ+ bξξ),

where the last equation follows from the equilibrium condition that the utility process is

equal to the value function under the optimal policies: Vt = J(Ct, λt, ξt).

By differentiating J(C, λ, ξ), we obtain

∂J

∂C
= (1− γ)

J

C
,

∂2J

∂C2
= −γ(1− γ)

J

C2
,

∂J

∂λ
= bλJ,

∂2J

∂λ2
= b2

λJ,

∂J

∂ξ
= bξJ,

∂2J

∂ξ2
= b2

ξJ. (C.2)
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Applying Ito’s Lemma to J(C, λ, ξ) with conjecture (C.1) and derivatives (C.2):

dVt
Vt−

= (1− γ)(µdt+ σdBt)−
1

2
γ(1− γ)σ2dt

+ bλ

(
κλ(ξt − λt)dt+ σλ

√
λtdBλ,t

)
+

1

2
b2
λσ

2
λλtdt

+ bξ

(
κξ(ξ̄ − ξt)dt+ σξ

√
ξtdBξ,t

)
+

1

2
b2
ξσ

2
ξξtdt+ (e(1−γ)Zt − 1)dNt.

Under the optimal consumption path, it must be that

Vt +

∫ t

0

f(Cs, Vs)ds = Et

[∫ ∞
0

f(Cs, Vs)ds

]
(C.3)

(see Duffie and Epstein (1992)). By the law of iterative expectations, the left-hand side

of (C.3) is a martingale. Thus, the sum of the drift and the jump compensator of (Vt +∫ t
0
f(Cs, Vs)ds) equals zero. That is,

0 = (1− γ)µ− 1

2
γ(1− γ)σ2 + bλκλ(ξt − λt) +

1

2
b2
λσ

2
λλt + bξκξ(ξ̄ − ξt) +

1

2
b2
ξσ

2
ξξt

+ λtEν
[
e(1−γ)Zt − 1

]
− β(a+ bλλt + bξξt). (C.4)

By collecting terms in (C.4), we obtain

0 =

[
(1− γ)µ− 1

2
γ(1− γ)σ2 + bξκξ ξ̄ − βa

]
︸ ︷︷ ︸

=0

+ λt

[
−bλκλ +

1

2
b2
λσ

2
λ + Eν

[
e(1−γ)Zt − 1

]
− βbλ

]
︸ ︷︷ ︸

=0

+ ξt

[
bλκλ − bξκξ +

1

2
b2
ξσ

2
ξ − βbξ

]
︸ ︷︷ ︸

=0

.
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Solving these equations gives us

a =
1− γ
β

(
µ− 1

2
γσ2

)
+
bξκξ ξ̄

β

bλ =
κλ + β

σ2
λ

−

√(
κλ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Zt − 1]

σ2
λ

bξ =
κξ + β

σ2
ξ

−

√√√√(κξ + β

σ2
ξ

)2

− 2
bλκλ
σ2
ξ

,

where we have chosen the negative root based on the economic consideration that when

there are no disasters, λt and ξt should not appear in the value function. Namely, for Zt = 0,

bλ = bξ = 0. Lastly, note that these results verify the conjecture (C.1).

C.2 State-price density

Following the same steps for the SDR model, we can show that

∂

∂C
f (Ct, Vt) = βC−γt ea+bλλt+bξξt

∂

∂V
f (Ct, Vt) = η − βbλλt − βbξξt.

Therefore, it follows that the state-price density can be written as

πt = exp

(
ηt− βbλ

∫ t

0

λsds− βbξ
∫ t

0

ξsds

)
βC−γt ea+bλλt+bξξt . (C.5)

By applying Ito’s Lemma to (C.5), we derive the following stochastic differential equation:

dπt
πt−

=
{
−β − µ+ γσ2 − λtEν

[
e(1−γ)Zt − 1

]}
dt

− γσdBt + bλσλ
√
λtdBλ,t + bξσξ

√
ξtdBξ,t + (e−γZt − 1)dNt.

At equilibrium, the sum of the drift and the jump compensator of the state-price density

growth must equal the riskfree rate multiplied by -1. It thus follows that the riskfree rate is

given by

rt = β + µ− γσ2 + λtEν
[
e(1−γ)Zt − e−γZt

]
.
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C.3 Dividend claim price

Let Ft denote the price of the dividend claim. The pricing relation implies

Ft = Et

[∫ ∞
t

πs
πt
Dsds

]
=

∫ ∞
t

Et

[
πs
πt
Ds

]
ds.

Let H(Dt, λt, ξt, s− t) denote the price of the asset that pays the aggregate dividend at time

s, namely,

H(Dt, λt, ξt, s− t) = Et

[
πs
πt
Ds

]
.

By the law of iterative expectations, it follows that πtHt is a martingale:

πtH(Dt, λt, ξt, s− t) = Et[πsDs].

Conjecture that

H(Dt, λt, ξt, τ) = Dt exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) . (C.6)

Ito’s Lemma implies

dHt

Ht−
=

{
µD + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt + bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

}
dt

+ φσdBt + bφλ(τ)σλ
√
λtdBλ,t + bφξ(τ)σξ

√
ξtdBξ,t + (eφZt − 1)dNt.

42



Combining the SDE for Ht with the one for πt derived in the previous sections, we can derive

the SDE for πtHt:

d(πtHt)

πt−Ht−
=

{
− β − µ+ γσ2 − λtEν

[
e(1−γ)Zt − 1

]
+ µD + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt

+ bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

− γφσ2 + bλbφλ(τ)σ2
λλt + bξbφξ(τ)σ2

ξξt

}
dt

+ (φ− γ)σdBt + (bλ + bφλ(τ))σλ
√
λtdBλ,t + (bξ + bφξ(τ))σξ

√
ξtdBξ,t

+ (e(φ−γ)Zt − 1)dNt.

Since πtHt is a martingale, the sum of the drift and the jump compensator of πtHt equals

zero. Thus:

0 = −β − µ+ γσ2 − λtEν
[
e(1−γ)Zt − 1

]
+ µD + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt

+ bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

− γφσ2 + bλbφλ(τ)σ2
λλt + bξbφξ(τ)σ2

ξξt + λtEν
[
e(φ−γ)Zt − 1

]
. (C.7)
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Collecting terms of (C.7) results in the following equation:

0 =
[
−β − µ+ γσ2 + µD + bφξ(τ)κξ ξ̄ − γφσ2 − a′φ(τ)

]︸ ︷︷ ︸
=0

+ λt

[
−bφλ(τ)κλ +

1

2
bφλ(τ)2σ2

λ + bλbφλ(τ)σ2
λ + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
− b′φλ(τ)

]
︸ ︷︷ ︸

=0

+ ξt

[
bφλ(τ)κλ − bφξ(τ)κξ +

1

2
bφξ(τ)2σ2

ξ + bξbφξ(τ)σ2
ξ − b′φξ(τ)

]
︸ ︷︷ ︸

=0

.

It follows that

a′φ(τ) = µD − µ− β + γσ2(1− φ) + κξ ξ̄bφξ(τ)

b′φλ(τ) =
1

2
σ2
λbφλ(τ)2 + (bλσ

2
λ − κλ)bφλ(τ) + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
(C.8)

b′φξ(τ) =
1

2
σ2
ξbφξ(τ)2 + (bξσ

2
ξ − κξ)bφξ(τ) + κλbφλ(τ).

This establishes that H satisfies the conjecture (C.6). We note that by no-arbitrage,

H(Dt, λt, ξt, 0) = Dt.

This condition provides the boundary conditions for the system of ODEs (C.8):

aφ(0) = bφλ(0) = bφξ(0) = 0.

Recall that once we get aφ(τ), bφλ(τ), and bφξ(τ),

Ft =

∫ ∞
t

Et

[
πs
πt
Ds

]
ds

=

∫ ∞
t

H(Dt, λt, ξt, s− t)ds

= Dt

∫ ∞
t

exp (aφ(s− t) + bφλ(s− t)λt + bφξ(s− t)ξt) ds

= Dt

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ.
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That is, the price-dividend ratio can be written as

G(λt, ξt) =

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ.

C.4 Approximating the price-dividend ratio

Let g(λ, ξ) = logG(λ, ξ). For given λ∗ and ξ∗, the two-dimensional Taylor approximation

implies

g(λ, ξ) ' g(λ∗, ξ∗) +
∂g

∂λ

∣∣∣∣
λ∗,ξ∗

(λ− λ∗) +
∂g

∂ξ

∣∣∣∣
λ∗,ξ∗

(ξ − ξ∗). (C.9)

We note that

∂g

∂λ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∂G

∂λ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∫ ∞
0

bφλ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ.

Similarly, we obtain

∂g

∂ξ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∂G

∂ξ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∫ ∞
0

bφξ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ.

We define the notation

b∗φλ =
1

G(λ∗, ξ∗)

∫ ∞
0

bφλ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ

b∗φξ =
1

G(λ∗, ξ∗)

∫ ∞
0

bφξ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ,

and the log-linear function

Ĝ(λ, ξ) = G(λ∗, ξ∗) exp
{
b∗φλ(λ− λ∗) + b∗φξ(ξ − ξ∗)

}
.

It follows from exponentiating both sides of (C.9) that

G(λ, ξ) ' Ĝ(λ, ξ).

In our analysis, we pick λ∗ and ξ∗ as the stationary mean of λt and ξt, respectively.
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Figure 1: Probability density functions for consumption declines
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Notes: The probability density functions (pdfs) for consumption declines for log-normally

distributed disasters and for the multinomial distribution assumed in the stochastic disaster

risk (SDR) model. In the case of the SDR model, the pdf approximates the multinomial

distribution from Barro and Ursua (2008). The exact multinomial distribution is used to

calculate the results in the paper. The pdfs are for the quantities 1− eZ in each model.
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Figure 2: Average implied volatilities in the SDR and CDR models
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Notes: Average implied volatilities for 3-month options as a function of moneyness for the

stochastic disaster risk (SDR) model, for the constant disaster risk (CDR) model (under the

benchmark calibration given in Table 1) and in the data. Average implied volatilities are

shown as functions of moneyness, defined as the exercise price divided by the asset price.
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Figure 3: Comparative statics for the CDR model
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Notes: Implied volatilities for 3-month options as a function of moneyness in the data and

for three parameterization of the CDR model. The line labeled “CDR” shows the bench-

mark calibration. The line labeled “higher normal-times volatility” raises the volatility of

consumption shocks that are not associated with disasters from 1% to 2% per annum but

keeps all other parameters, including the consumption disaster distribution, the same. The

line labeled “lower leverage” lowers the term multiplying dividends from 5.1 to 2.6, while

keeping all other parameters the same.
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Figure 4: Evaluating the role of recursive utility
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Notes: Implied volatilities for 3-month options as a function of moneyness in the data, in

the CDR model (calibrated as in Table 1) and in the SDR model. Also shown are implied

volatilities in the SDR model computed under the assumption that the premium associated

with time-variation in the disaster probability is equal to zero (SDR model with b = 0).

Note both the benchmark and the b = 0 version of the SDR model are dynamic models with

stochastic moments. The CDR model is iid.
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Figure 5: Implied volatilities for given values of the disaster probability
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Notes: Implied volatilities on 3-month options as a function of moneyness for various per-

centile values of the probability of a disaster in the single-factor SDR model. Also shown

are average implied volatilities in the data, and, for each moneyness value, 99th and 1st

percentile implied volatilities in the data.
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Figure 6: 1-month implied volatility time series
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Notes: Monthly time series of implied volatilities on 1-month options in the data and of the

difference in implied volatilities. Implied volatilities are calculated for at-the-money (ATM)

options and out-of-the-money (OTM) options with moneyness equal to 0.85.
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Figure 7: Mean and volatility of implied volatilities in simulated data
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Notes: We simulate 1000 samples of length 17 years from the two-factor model. For each

sample path, we compute the mean and volatility of implied volatilities at three different

moneyness levels and for three maturities. The dotted line shows the means of these statistics

across sample paths, while the dashed-dotted lines show 95th and 5th percentiles. The solid

line shows the data.
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Figure 8: Fitted values of state variables
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Notes: Fitted state variables in the two-factor SDR model. State variables are fitted to

the time series of 1-month implied volatilities of ATM options and OTM options with

moneyness equal to 0.85. The variable λt represents the (annual) probability of disaster. λt

reverts to a time-varying value ξt.
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Figure 9: 3- and 6-month implied volatility time series

1998 2000 2002 2004 2006 2008 2010 2012
0

0.2

0.4

0.6

0.8

Im
p
lie

d
 V

o
la

ti
lit

y
 (

a
n
n

u
a

l)

Panel A: 3M Implied Volatilities

 

 

0.85 OTM − Data

0.85 OTM − Model

1998 2000 2002 2004 2006 2008 2010 2012
 

 

ATM − Data

ATM − Model

1998 2000 2002 2004 2006 2008 2010 2012
0

0.2

0.4

0.6

0.8

Im
p
lie

d
 V

o
la

ti
lit

y
 (

a
n
n
u
a
l)

Panel A: 6M Implied Volatilities

 

 

0.85 OTM − Data

0.85 OTM − Model

1998 2000 2002 2004 2006 2008 2010 2012
 

 

ATM − Data

ATM − Model

Notes: Monthly time series of implied volatilities on 3- and 6-month options in the data and

in the two-factor SDR model. Implied volatilities are calculated for ATM options and OTM

options with moneyness equal to 0.85. In the model, we compute option prices using state

variables fit to the time series of 1-month ATM and OTM options with moneyness of 0.85.
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Figure 10: Implied volatilities as functions of the state in the two-factor SDR model
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Panel B: Varying ξt
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Notes: Implied volatilities on 3-month options as functions of moneyness. The figures show

the effects of varying the state variables λt (the disaster probability) and ξt (the value to

which λt reverts). Panel A sets ξt equal to its median value and varies λt, while Panel B sets

λt equal to its median value and varies ξt.
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Figure 11: Average implied volatilities from the time series of state variables
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Average implied volatilities on put options in the data and in the two-factor SDR model. In

the model, we compute option prices using state variables fit to the time series of 1-month

ATM and OTM options with moneyness of 0.85. We compute an implied volatility for each

option price and then take the average.
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Figure 12: The price-dividend ratio in the data and in the model
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Notes: The solid line shows the time series of the price-dividend ratio on the data. The red

line shows the price-dividend ratio implied by the model for state prices chosen to fit the

one-month ATM and OTM (0.85 moneyness) put options.
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Figure A.1: Exact versus approximate solution
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Notes: This figure shows implied volatilities when option prices are computed exactly (line

with stars) versus when they are computed using an approximation (line with circles) in the

SDR model. Implied volatilities assume that the disaster probability is fixed at its mean and

that, in the event of disaster, consumption falls by a fixed amount, namely 30%.
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Table 1: Parameter values

SDR CDR

Relative risk aversion γ 3.0 5.19

EIS ψ 1 1

Rate of time preference β 0.0120 0.0189

Average growth in consumption (normal times) µ 0.0252 0.0231

Volatility of consumption growth (normal times) σ 0.020 0.010

Leverage φ 2.6 5.1429

Average probability of a rare disaster λ̄ 0.0355 0.010

Mean reversion κ 0.080 NA

Volatility parameter σλ 0.067 0

Notes: Parameters for stochastic disaster risk (SDR) model and for the benchmark constant

disaster risk (CDR) model, in annual terms.
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Table 2: Parameter values for the two-factor SDR model

Panel A: λ process

Mean reversion κλ 0.2

Volatility parameter σλ 0.1576

Panel B: ξ process

Mean ξ̄ 0.02

Mean reversion κξ 0.1

Volatility parameter σξ 0.0606

Panel C: Population statistics of λ

Median 0.0037

Standard deviation 0.0386

AR(1) coefficient 0.9858

Notes: Parameter values for the two-factor SDR model. The processes are as follows:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t.

Parameter values are expressed in annual terms. Panel C shows population statistics for the

disaster probability λt calculated by simulation at a monthly frequency (so that the AR(1)

coefficient should be interpreted in monthly terms).
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Table 3: Moments for the government bill rate and the market return for the two-factor SDR

model

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.25 1.68 2.96 3.46 -0.47 2.41 3.37 2.02

σ(Rb) 2.75 0.34 1.07 2.71 0.48 2.06 7.14 3.69

E[Rm −Rb] 7.25 5.40 8.01 12.36 5.30 8.49 14.25 9.00

σ(Rm) 17.8 13.24 19.26 27.91 14.59 22.59 34.38 24.13

Sharpe Ratio 0.41 0.32 0.42 0.55 0.26 0.39 0.53 0.37

exp(E[p− d]) 32.5 28.96 40.63 48.88 22.93 36.95 47.41 35.36

σ(p− d) 0.43 0.15 0.27 0.47 0.17 0.33 0.59 0.43

AR1(p− d) 0.92 0.59 0.79 0.91 0.62 0.82 0.92 0.90

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating data from the two-factor stochastic disaster risk

(SDR) model at a monthly frequency for 600,000 years and then aggregating monthly growth

rates to an annual frequency. We also simulate 100,000 60-year samples and report the 5th,

50th and 95th percentile for each statistic, both from the full set of simulations and for the

subset of samples for which no disasters occur. Rb denotes the government bill return, Rm

denotes the return on the aggregate market and p− d denotes the log price-dividend ratio.
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Table 4: Moments of state variables in the two-factor SDR model

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95

E[λ] 1.57 0.11 0.83 4.64 0.13 1.17 7.54

σ(λ) 2.37 0.22 1.18 4.37 0.26 1.53 5.92

AR1(λ) 0.74 0.76 0.93 0.98 0.78 0.94 0.98

E[ξ] 1.70 0.43 1.42 4.29 0.46 1.58 4.95

σ(ξ) 1.06 0.32 0.83 2.02 0.34 0.90 2.22

AR1(ξ) 0.70 0.90 0.96 0.98 0.91 0.96 0.98

Notes: Data moments of state variables are calculated using state variables extracted from

monthly data on option prices from 1996 to 2012. The parameter λt is the probability of a

disaster. The probability of a disaster reverts to the state variable ξt. Means and standard

deviations are in percentage terms. We simulate 100,000 17-year samples at a monthly

frequency and report the 5th, 50th and 95th percentile for each statistic, both from the full

set of simulations and for the subset of samples for which no disasters occur.
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