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ABSTRACT
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1. Introduction

Vaccinations are one of the most cost effective ways of preventing disease
and promoting health. Yet, vaccination rates for several diseases remains low
despite significant government intervention to promote vaccination coverage.
Although some of the low rates of vaccinations especially in developing coun-
tries might be explained by restricted supply or poor availability of health
care, lack of demand for vaccinations also plays an important role (Datar
et al. (2007)). Recent vaccine scares and subsequent drops in vaccination
uptake highlight the importance of this issue in the US and other developed
countries. There is also emerging evidence that individuals might not fully
appreciate the costs and benefits of vaccinations when deciding whether or
not to vaccinate (Gu and Sood (2011), Santibanez et al. (2002), Clark et al.
(2009), Van Essen et al. (1997), O’Reilly et al. (2005), Winston et al. (2006),
Johnson et al. (2008), Logan (2009)). In addition, in our increasingly net-
worked world with instant access to information and the opinions of others,
individuals do not operate in a vacuum; friends’, family, and even strangers’
decisions might influence our behavior. Therefore, it is imperative to un-
derstand how individuals make decisions regarding vaccinations and the im-
plications of alternate decision models or processes on the design of efficient
public health policy to maximize vaccination coverage and reduce the burden
of vaccine preventable diseases.

In this paper, we consider two alternate models of the decision to vac-
cinate. The models differ in how individuals decision to vaccinate are in-
fluenced by the decision of peers to vaccinate. In particular, we consider
two types of peer effects. In the first, rational agents desire to free-ride on
the vaccination decisions of their peers. For example, as an individual sees
the overall vaccination coverage of her peers increasing, she has less desire
to vaccinate herself, as there is less and less chance that she will herself be
infected. In this case, peer effects are non-conforming – an increase in the
vaccination coverage by peers leads to a decrease in an individual’s proba-
bility of vaccinating. In the second type of peer effect, agents desire to copy
what their peers are doing, through the simple desire to avoid being different.
For example, consider an agent surrounded by peers who choose not to vac-
cinate, believing that the vaccine in question carries a very high risk. Such
an agent could face an enormous amount of peer pressure to conform. As a
result, one would expect the desire to copy others’ behavior to play a large
role in the vaccination decision-making process. In this case, peer effects are
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conforming – an increase in vaccination by peers leads to an increase in an
individual’s probability of vaccinating, and vice versa.

The economics literature on standard models of decision making and dis-
cussions of vaccination decisions consider the positive and normative im-
plications of non-conforming peer effects or free-riding (Philipson (2000)).
However, the role of conforming peer effects has largely been ignored despite
a vast literature documenting the existence of conforming peer effects in a
variety of contexts, such as unhealthy behaviors, academic achievement and
productivity (Sacerdote (2001), Lundborg (2006), Evans et al. (1992), Gaviria
and Raphael (2001)). In particular, some recent studies have documented the
presence of conforming peer effects in vaccination decisions; see (Hanratty
et al. (2000), Henderson et al. (2008), May and Silverman (2003), Parker
et al. (2006), Rao et al. (2007), Schmid et al. (2008), Stewart-Freedman and
Kovalsky (2007)) for details. In particular, Rao et al. (2007) looked at flu
vaccination decisions made by undergraduates at a large private university
and examined the role of the social network in health beliefs and vaccination
choices. The authors determine that social effects play a large role in chang-
ing people’s perceptions of the benefits of immunization. Taking advantage
of the random assignment of students to housing, they were further able to
show that the clustering of decisions in a social network were not simply due
to homophily, but rather due to positive peer effects on individuals’ decisions.

In this paper, we develop a theoretical model based on the standard eco-
nomic models of decision-making and incorporate both non-conforming and
conforming peer effects. Using this model, we examine how the introduction
of peer effects affects our understanding of the decision to vaccinate and the
role of public health policy in vaccination markets. We note two important
related papers here: Fu et al. (2010), Bauch (2005), both of which model how
imitation influences the dynamics of epidemics and vaccination uptake. In
Fu et al. (2010), individuals estimate the costs and benefits of vaccination by
learning from others in the population. As agents imitate successful strate-
gies, overall vaccination coverage drops below even the individual optimum.
In Bauch (2005), the authors propose a dynamic model in which individuals
adopt strategies by imitating others while considering the current disease
prevalence. This model leads to regimes in which the vaccination uptake
oscillates, as is often seen in vaccine scares. The model we propose in this
paper explicitly examines the role of conforming and non-conforming peer
effects in determining individually optimal strategies. We further build on
these papers and others mentioned above by looking at the role of these peer
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effects in the effectiveness of various public health policies.
Overall, our results demonstrate that adding conforming peer effects to

the traditional model of vaccination decisions can have important implica-
tions. In the traditional economic model, agents free ride on the decisions
of others and as a result the privately optimal vaccination rate is always
below the socially optimal vaccination rate. In contrast, in the model with
conforming peer effects privately optimal vaccination rates can be above or
below the social optimal. In the fact the model produces several evolutionary
stable equilibria including no vaccination coverage, full vaccination coverage
and a mixed strategy equilibrium. Traditional models also imply that vaccine
subsidies are always optimal and even large subsidies cannot achieve disease
eradication. In contrast, in the model with conforming peer effects subsidies
for vaccination are not always optimal. However, in certain cases, depending
on disease and vaccine parameters, even small subsidies can achieve disease
eradication.

To give a brief overview of this paper, in Section 2, we develop a standard
model of vaccination decisions, where rational economic agents maximize ex-
pected utility or payoffs. We carefully examine the difference between the
individually optimal strategy and the socially optimal level of vaccination
coverage, showing how the parameters of the model will affect the gap be-
tween them. We also highlight the effect of government subsidies on vaccina-
tion uptake and how their effectiveness depends on the cost and risk of the
vaccine and disease in question. In Section 3 we add conforming peer effects
to the standard model and describe the changes in the individually optimal
strategy. With the addition of conforming peer effects, the individually op-
timal strategy may lead to a higher level of vaccination coverage that what
is socially optimal – we discuss the implications of this result and its effect
on public policy in the second half of Section 3.

2. Standard economic model with non-conforming peer effects

In this section we develop a standard economic model of vaccination de-
cisions, where rational economic agents maximize expected utility or payoffs,
based on the models in (Bauch, 2004, Bauch et al., 2003). Vaccination con-
fers immunity against an infectious disease but also may have adverse health
side effects as well as monetary costs. In this model individual vaccination
decisions are linked to decisions of the group as the benefit of vaccination
depends on the prevalence of the infectious disease, which in turn depends
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on the group’s likelihood of vaccination. For example, an increase in vaccina-
tion rate among peers would reduce disease prevalence which in turn would
reduce individual incentives to vaccinate. Thus, in the standard economic
model, peer effects are non-conforming – individual decisions are inversely
related to group decisions. In Section 3 we add conforming peer effects to
the standard model, where an increase in the group’s likelihood to vaccinate
leads to an increase in the individual’s likelihood to vaccinate. Next, we
contrast the normative and positive implications of the two models.

2.1. Payoffs

We start with a model of risk-neutral agents with additively separable
utility in health and consumption. Under this model the expected utility
from vaccination is given by

Evac = h(H − dv) + u(C −m) (1)

where H is an individual’s health endowment, C is consumption, dv is the
morbidity cost of side effects, and m is the marginal cost of producing the
vaccine. If agents are risk-neutral, then the functions h(·) and u(·) are linear
and the payoff from vaccination can be expressed as

Evac = H − dv + θ(C −m) (2)

where θ is the marginal utility of consumption in health units.
In the standard economic model with non-conforming peer effects the

payoff for not vaccinating varies only with the infection probability, which
depends on the total vaccination coverage. If agents are risk-neutral, the
payoff from not vaccinating can be expressed as follows,

Env(p) = (H − di)w(p) +H(1− w(p)) + θC (3)

= H − diw(p) + θC (4)

where di represents the morbidity cost of infection and w(p) is the probability
of being infected when the vaccination coverage is p. We assume that w(p)
is strictly decreasing in p for all p ≤ pcrit. For p ≥ pcrit, w(p) = 0, that
is, pcrit is the critical vaccination threshold above which herd immunity is
achieved and the disease eradicated. Note that in this model, the cost of
not vaccinating only involves a cost of infection; individuals are fully insured
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against medical expenses related to treatment of vaccine preventable disease
and face no other monetary or psychological costs of not vaccinating.

The expected payoff for playing a mixed strategy P (vaccinating with
probability P ) when the vaccination coverage level is p is

Ê[P, p] = H + θC − P [θm+ dv]− (1− P )[diw(p)] (5)

By defining the relative cost as r = (θm+ dv)/di this expected payoff can be
expressed as

E[P, p] =
Ê[P, p]

di
=
H + θC

di
− rP − (1− P )[w(p)] (6)

where the multiplicative constant di will not make any difference in our proofs
or calculations. With the assumption that 0 ≤ θm + dv ≤ di, we have
0 ≤ r ≤ 1.

2.2. Equilibria

In the vaccination game with non-conforming peer effects, individuals seek
to maximize their expected payoff given the current vaccination coverage p.

If p ≥ pcrit, the expected payoff is clearly decreasing in P . As a result, if
the current vaccination coverage is above the critical threshold, individuals
will always choose to never vaccinate (P = 0). Assuming that the game is
played repeatedly (or at least that individuals make decisions assuming that
it is so), this will decrease the total vaccination coverage until p < pcrit and
the probability of infection becomes non-zero.

If p < pcrit, individuals’ strategies will depend on the relative cost and
the probability of infection. When r > w(p) individuals will always choose
to not vaccinate (P = 0), decreasing the total vaccination coverage p, and
increasing w(p) until the point p∗ where the total vaccination coverage sat-
isfies w(p∗) = r.1 When r < w(p), i.e., when the relative cost is sufficiently
small, individuals will always choose to vaccinate (P = 1), increasing the
vaccination coverage and increasing w(p) until the point p∗ where the total
vaccination coverage satisfies w(p∗) = r. See Figure 1 for an illustration of
this solution. This strategy is stable, as stated formally in Lemma 1; we
leave the detailed proof of this lemma to Appendix B.

1Note that if r > w(0), this process will continue to the point where nobody will
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Figure 1: Illustration of stable mixed strategy in vaccination game with non-
conforming peer effects.

Lemma 1. The mixed strategy p∗ that satisfies w(p∗) = r is a weak Nash
Equilibrium and an Evolutionarily Stable Strategy in the vaccination game
with non-conforming peer effects if r = θm+dv

di
< w(0). If r > w(0), the

pure strategy P = 0 is a strict Nash Equilibrium and Evolutionarily Stable
Strategy.

2.3. Social welfare and individually optimum strategies

In many games the equilibrium reached by rational agents may not be
the socially optimal value. In our case, we define the social welfare as the
normalized total utility of the population,

W (p) = pEvac + (1− p)Env(p) (7)

For a general infection probability function w(p) with vaccination thresh-
old pcrit, the socially optimal vaccination coverage popt is the vaccination level
that maximizes the social welfare, i.e.,

popt = argmax
0≤p≤1

W (p) (8)

The social welfare function is decreasing for p > pcrit; in this regime, in-
creasing vaccination coverage reduces the social welfare, as the disease is

vaccinate, p = 0. This is an example of the classic “free-rider” problem, where individuals
rationally choose a strategy where they benefit while not contributing to society, leading
to the point where everyone follows the same strategy and nobody benefits.
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already eradicated and increasing vaccinations provide no benefit but indi-
viduals incur the monetary costs of the vaccine. For p < pcrit, the social
welfare function is increasing in vaccination coverage p under certain condi-
tions.2 If this condition is met, the maximum social welfare will be achieved
at popt = pcrit, the point at which the disease is eradicated. If this condition
is not met, we have popt ≤ pcrit, since the social welfare function is always
decreasing beyond pcrit.

Remark 1. Note that from a policy perspective, often the desired vacci-
nation level is one that achieves herd immunity or disease eradication, so
popt = pcrit, regardless of wherever the minimum of the social welfare func-
tion might be. For example, in 1977 the World Health Organization (WHO)
successfully eradicated smallpox through a worldwide vaccination program
(Fenner, 1988). The rationale is that disease eradication benefits not only the
current generation but also future generations. The social welfare function
we consider in this paper only models the welfare of the current generation
and therefore within the context of our model popt can be lower than pcrit.

Remark 2. As a running example throughout this paper, we will consider
the infection probability w(p) as the steady-state infection probability in a
SIR (Susceptible-Infected-Recovered) model with constant birth and death
rate µ. In this case, w(p) = 1 − 1

R0(1−p) where R0 is the reproduction ratio
of the disease in question. For a detailed description of this model and
how to derive its infection probability function, see Appendix C. For this
model, the disease will be eradicated if the vaccination level is at or above the
critical vaccination threshold: pcrit = 1− 1/R0. In this example, the optimal
vaccination coverage will be popt = pcrit, as the condition in (9) is satisfied
for w(p) = 1− 1

R0(1−p) , as long as r < 1, which is true by assumption.

However, if we assume that individuals are allowed to make their own
vaccination decisions, disease eradication will not be possible, and often the
optimal vaccination coverage is not achieved. The privately optimal strategy

2Differentiating the social welfare function with respect to p, it is easy to see that it is
increasing in p for p ≤ pcrit if

r < w(p)− (1− p)∂w(p)

∂p
. (9)
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p∗ is always less than the critical vaccination threshold, as shown in Figure 1.
Even in the case where the socially optimal vaccination rate is less than the
critical threshold, the privately optimal strategy is still less than the social
optimum. Leaving the proof to Appendix B, we state this result formally,

Theorem 1. The private optimum p∗ ≤ popt in the vaccination game with
non-conforming peer effects.

Exactly how much lower the social welfare is when individuals act selfishly
from the optimal point depends on several factors. The social welfare at the
socially optimal point, dividing by the constant di to obtain an expression in
terms of the relative cost, is

W (popt)

di
=
H + θC

di
− w(popt) + popt[−r + w(popt)]. (10)

The social welfare at the private optimum, again dividing by di, is

W (p∗)

di
=
H + θC

di
− w(p∗) (11)

since w(p∗) = r. We can easily calculate the difference between the two:

W (popt)−W (p∗)

di
= (1− popt)(r − w(popt)) (12)

again using w(p∗) = r. The above equations show that as the cost of the
vaccine (m and dv) increases and as the cost of infection (di) decreases, this
gap in welfare will increase; fewer people will voluntarily choose to vaccinate
and the social welfare will decrease.

2.4. Effect of government subsidies

If the government offers subsides of the monetary cost of the vaccine, in-
dividuals’ expected payoff for vaccinating becomes a function of the subsidy:

Evac(s) = H + θ(C −m(1− s))− dv (13)

where s represents the percentage of the marginal production cost of the vac-
cine that the government is subsidizing. The private optimum, as a function
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of the subsidy,3 becomes

p∗(s) = w−1
(
θm(1− s) + dv

di

)
. (14)

Note that this function is strictly decreasing in its argument, since the original
probability of infection function w(p) is also strictly decreasing. In general,
the effectiveness of the subsidy is inversely related to the morbidity cost of
the disease, di. That is, vaccine subsidies are less effective for more deadly
diseases. However, the effectiveness of the subsidy is directly related to the
morbidity (and monetary) cost of the vaccine, dv – the vaccine subsides are
more effective for more dangerous vaccines. Looking at (14) more closely,
we see that it is an increasing function of s and di, but decreasing in m and
dv. Intuitively, as the government subsidy increases and lowers the monetary
cost of the vaccine (or as the danger of infection increases), more people will
be inclined to buy the vaccine. Similarly, as the cost and risk of the vaccine
increases, less people will be inclined to vaccinate.

Continuing with our running example, we examine the private optimum
as a function of the subsidy for a specific infection probability function w(p) =
1− 1

R0(1−p) . In this case, the private optimum becomes

p∗(s) = 1− 1

R0

(
1− θm(1−s)+dv

di

) (15)

Inspecting the rate of change of the individually optimal strategy with the
subsidy s, we can see that the effectiveness of the subsidy will be higher for
a higher cost and higher risk (larger m and dv) vaccine, whereas for a more
dangerous disease (larger di) the subsidy will not be as effective.

If the goal is to eradicate the disease, we need p∗(s) = pcrit. The subsidy
that achieves disease eradication even when individuals behave selfishly is

sopt = 1 +
dv
θm

(16)

Note that the optimal subsidy here is greater than one – the subsidy must
compensate individuals for more than just the monetary cost of the vaccine

3Recall that the private optimum when subsidies are not present is p∗ = w−1
(
θm+dv
di

)
.

9



in order to eradicate the disease. If we impose the constraint that 0 ≤ s ≤ 1,
the optimal subsidy will be exactly sopt = 1.

The social welfare function, as a function of the subsidy, is

W (p∗(s)) = p∗(s)[H+θ(C−m)−dv]+(1−p∗(s))[H+θC−diw(p∗(s))] (17)

When s = sopt, this simplifies to

W (p∗(sopt)) = H + θ(C − pcritm)− pcritdv. (18)

In contrast, if we look at the social welfare function when there is no
subsidy and individuals behave selfishly, we have

W (p∗) = H + θ(C −m)− dv (19)

which is always less than the social welfare at the optimum. Further, it is
easy to show that W (p∗(s)) > W (p∗) for any s > 0.
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3. Standard Economic Model with Conforming and Non-conforming
Peer Effects

In this section we add conforming peer effects to the standard model in
Section 2, demonstrating the interaction between the desire to behave ratio-
nally and the desire to conform to what others are doing. We follow the same
format as in the previous section, first describing the payoffs and equilibria
of the model and then discussing the differences between the individually
optimal strategies and the socially optimal vaccination coverage, as well as
the effect of government subsides in this new, more realistic model of human
decisions.

3.1. Payoffs

We begin by defining payoff functions for following each strategy: vac-
cinating and not vaccinating. We use a linear combination of the payoff
functions from Section 2 and new payoff functions capturing the reward one
gets by conforming:

Evac(p) = γ′f(p) +H − dv + θ(C −m) (20)

Env(p) = γ′g(p) +H − diw(p) + θC (21)

where γ′ ∈ (0,∞] measures the strength of the desire to conform, f(p) is a
strictly increasing function representing the desire to conform to the vacci-
nating strategy, and g(p) is a strictly decreasing function representing the
desire to conform to the non-vaccinating strategy. Note that this general
formulation can capture bias; for example, a given population might put
more weight on conforming to the non-vaccinating, rather than vaccinating,
strategy. All other variables are the same as defined in Section 2.

We can also describe a simpler game with symmetric linear payoff func-
tions for conformity, as follows. Let f(p) = p and g(p) = 1− p, so that

Evac(p) = γ′p+H − dv + θ(C −m) (22)

Env(p) = γ′(1− p) +H − diw(p) + θC (23)

The expected payoff for playing a mixed strategy P (vaccinating with
probability P ) when the vaccination coverage level is p is

Ê[P, p] = P [γ′f(p) +H + θ(C −m)− dv] + (1− P )[γ′g(p) +H + θC − diw(p)]
(24)

= H + θC − P [θm+ dv − γ′f(p)]− (1− P )[diw(p)− γ′g(p)] (25)
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Again dividing through by di and using the relative cost of the vaccine, we
can express the expected payoff as

E[P, p] =
Ê[P, p]

di
=
H + θC

di
− P [r − γf(p)]− (1− P )[w(p)− γg(p)] (26)

where γ = γ′

di
is just a scaled constant measuring the strength of the desire

to conform. Note that we retain the assumption that 0 ≤ r ≤ 1. For
convenience, let h(p) = g(p) − f(p), a useful strictly decreasing summary
function. We assume

h(0) = α (27)

h(1) = −β. (28)

For reference, we also define the pure conformity game, where payoffs are
only a function of the desire to conform to others, and there are no non-
conforming peer effects.

Evac(p) = γ′f(p) (29)

Env(p) = γ′g(p) (30)

The pure conformity game has two pure strict NE (and ESS’s): P = 0 and
P = 1, which can easily be shown to always exist. It further has a weak NE
at P = p∗ where p∗ is the solution to 0 = γ′h(p∗), but this equilibria is not an
ESS. If we use the symmetric linear conformity payoff functions as described
in (22) and (23), we have

Evac(p) = γ′p (31)

Env(p) = γ′(1− p) (32)

This simple pure conformity game will always have two pure strict NE (and
ESS’s): P = 0 and P = 1. It also has a weak NE at P = p∗ = 1/2, where p∗

is the solution to 0 = h(p∗) = γ′(1 − 2p∗), but this equilibria will not be an
ESS. To illustrate this result, imagine the conformity game with exactly half
of the population vaccinating. As soon as the fraction vaccinating slightly
increases (or decreases), the majority strategy is no longer 50–50, and the
population will converge to the strict NE P = 1, always vaccinating (or
P = 0, never vaccinating).
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3.2. Equilibria

Just as described in Section 2.2, individuals here will seek to maximize
their expected payoff given the current vaccination coverage p. However,
when the game also includes conforming peer effects, individual strategies
become more complicated, reflecting the tension between the desire to con-
form and to free-ride on others’ decisions to vaccinate. In this section, we
show that the vaccination game with both conforming and non-conforming
peer effects can have multiple stable equilibria whose existence and stability
depend on the disease and cost parameters of the model, in contrast to the
vaccination game with only non-conforming peer effects, which only has one
stable equilibrium.

Lemma 2. The pure non-vaccinating strategy P = 0 is a strict Nash Equi-
librium and Evolutionarily Stable Strategy of the vaccination game with con-
forming and non-conforming peer effects if r > w(0)− γα.

Proof. Using Definition 1 from Appendix A, the pure strategy P = 0 (never
vaccinating) is a strict Nash Equilibrium (and thus an evolutionarily stable
strategy) if E(P, P )− E(Q,P ) > 0. Calculating this, we have

E(P, P )− E(Q,P ) = (P −Q)(Ev(P )− Env(P )) (33)

= −Q(Ev(0)− Env(0)) (34)

= −Q(−θm− dv + diw(0)− γ′α) (35)

Thus, E(P, P ) > E(Q,P ) and P = 0 is a strict NE and ESS if

−θm− dv + diw(0)− γ′α < 0, (36)

or equivalently, if r > w(0)− γα.

The above lemma states that if the vaccine is sufficiently costly or has
large side effects relative to the mortality costs of infection, never vacci-
nating will be a stable equilibrium strategy. Alternatively, if the disease is
sufficiently not infectious, that is, w(0) is small, then never vaccinating will
be a stable equilibrium strategy. Note that as γ → 0 and the desire to con-
form goes away, this approaches the condition for never vaccinating when
only non-conforming peer effects are present. However, when γ → ∞, and
the conforming strategy dominates, never vaccinating will always be a stable
equilibrium strategy, as in the pure conformity game.
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Lemma 3. The pure vaccinating strategy P = 1 is a strict Nash Equilibrium
and Evolutionarily Stable Strategy of the vaccination game with conforming
and non-conforming peer effects if r < γβ.

Proof. Using Definition 1 from Appendix A, the pure strategy P = 1 (always
vaccinating) is a strict Nash Equilibrium (and thus an evolutionarily stable
strategy) if E(P, P )− E(Q,P ) > 0. Calculating this, we have

E(P, P )− E(Q,P ) = (P −Q)(Ev(P )− Env(P )) (37)

= (1−Q)(Ev(1)− Env(1)) (38)

= (1−Q)(−θm− dv + γ′β) (39)

since w(1) = 0. Thus, E(P, P ) > E(Q,P ) and P = 1 is a strict NE and ESS
if

−θm− dv + γ′β > 0, (40)

or equivalently, if r < γβ.

The above lemma states that if the vaccine is sufficiently safe, always
vaccinating will be a stable equilibrium strategy. Note that as γ → 0 and
the desire to conform goes away, always vaccinating will never be a stable
equilibrium, as is the case for the vaccination game with only non-conforming
peer effects. However, when γ →∞, and the conforming strategy dominates,
always vaccinating becomes a stable equilibrium strategy, as in the pure
conformity game.

Lemma 4. The mixed strategy p∗ satisfying Ev(p
∗) = Env(p

∗) is a weak Nash
Equilibrium and Evolutionarily Stable Strategy for the vaccination game with
conforming and non-conforming peer effects if

∂w(p)

∂p
< γ

∂h(p)

∂p
(41)

Proof. Consider a population following the mixed equilibrium strategy p∗,
(vaccinating with probability p∗) where p∗ is the solution to the equation

Ev(p
∗) = Env(p

∗) (42)

This strategy is clearly a weak Nash Equilibrium, since

E(p∗, p∗)− E(Q, p∗) = (p∗ −Q)(Ev(p
∗)− Env(p∗)) = 0. (43)
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Using Definition 3 from Appendix A, p∗ will be an evolutionarily stable
strategy if

E(p∗, Q) > E(Q,Q) ⇐⇒ (p∗ −Q)(Ev(Q)− Env(Q)) > 0. (44)

This definition states that vaccinating with probability p∗ is preferable to
some other level Q, given that the current vaccination coverage is Q – the
equilibrium strategy p∗ will be able to successfully “invade” a population
with coverage Q. It turns out that p∗ will be an ESS if Ev(p) − Env(p) is
strictly decreasing in the vaccination coverage p. To see this, consider first
the case where Q > p∗, where the current vaccination coverage is greater than
the equilibrium p∗. If Ev(p)−Env(p) is strictly decreasing in the vaccination
coverage p, then

Ev(Q)− Env(Q) < Ev(p
∗)− Env(p∗) = 0 (45)

and so we have (p∗ −Q)(Ev(Q)− Env(Q)) > 0, and individuals vaccinating
with probability p∗ will obtain a higher expected payoff than the rest of the
population when the coverage level Q is greater than p∗.

Now consider the case where Q < p∗, where the current vaccination cov-
erage is less than the equilibrium p∗. Again, if Ev(p) − Env(p) is strictly
decreasing in the vaccination coverage p, then

Ev(Q)− Env(Q) > Ev(p
∗)− Env(p∗) = 0 (46)

and so we have (p∗ −Q)(Ev(Q)− Env(Q)) > 0, and individuals vaccinating
with probability p∗ will obtain a higher expected payoff than the rest of the
population.

Thus, individuals vaccinating with probability p∗ solving Ev(p
∗) = Env(p

∗)
will have higher expected payoffs than the rest of the population when the
vaccination coverage is at any level Q; i.e., p∗ is not only a weak Nash Equi-
librium, it is also an evolutionarily stable strategy if Ev(p)−Env(p) is strictly
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decreasing in the vaccination coverage p. This condition is equivalent to

∂

∂p
[Ev(p)− Env(p)] < 0

⇐⇒ ∂

∂p
[γ′f(p) +H − dv + θ(C −m)− γ′g(p)−H + diw(p)− θC] < 0

⇐⇒ γ′
∂f(p)

∂p
− γ′∂g(p)

∂p
+ di

∂w(p)

∂p
< 0

⇐⇒ ∂w(p)

∂p
< γ

∂h(p)

∂p
. (47)

For reference, we refer to (47) as the “mixed strategy ESS condition.”

We can explain the “mixed strategy ESS condition” above intuitively.
Both the LHS and RHS of equation (47) are less than zero. The LHS shows
how the probability of infection falls with an increase in vaccination cover-
age. The higher the absolute value of this gradient the greater the incentive
to free-ride on others. The RHS shows how the payoff for conforming to the
non-vaccination strategy relative to the vaccination strategy changes with
an increase in vaccination coverage. The higher the absolute value of this
gradient the greater the desire to conform to the majority vaccination strat-
egy. If the desire to conform is relatively high then it will overpower the
desire to free ride resulting in a corner solution with everyone following the
same strategy, either 100% or 0% vaccinating. The equation shows that a
mixed strategy ESS is only possible as long as the desire to conform does not
completely offset the desire to free-ride.

Note that the vaccination game with conforming and non-conforming peer
effects may have more than one weak Nash Equilibrium, in contrast to the
game in Section 2.2, if (42) has more than one solution. However, in order
for a given weak Nash Equilibrium to also be stable, the mixed strategy ESS
condition in (47) must be satisfied at that point. Thus, depending on the
disease and cost parameters of the model, the game here can have more than
one stable equilibrium.

To illustrate the main results, we give here a specific example of a vac-
cination game with conforming and non-conforming peer effects. Assume
symmetric linear conformity payoff functions:

f(p) = p (48)

g(p) = (1− p). (49)
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For these conformity functions, we have h(0) = 1 and h(1) = −1. The payoff
functions become

Evac(p) = γ′p+H − dv + θ(C −m) (50)

Env(p) = γ′(1− p) +H − diw(p) + θC (51)

and the expected payoff is

Ê[P, p] = H + θC − P [θm+ dv − γ′p]− (1− P )[diw(p)− γ′(1− p)] (52)

In terms of the relative cost, the expected payoff becomes

E[P, p] =
Ê[P, p]

di
=
H + θC

di
− P [r − γp]− (1− P )[w(p)− γ(1− p)] (53)

For this example, let w(p) be the SIR probability of infection: w(p) =
1 − 1

R0(1−p) , as described in Appendix C. The parameter R0 is the basic
reproduction ratio of the disease and will vary for different diseases. Using
the equilibrium strategy analysis from earlier, never vaccinating (P = 0) will
be a pure strict NE (and an ESS) when r > 1−1/R0−γ; i.e., when the vaccine
is sufficiently risky. Similarly, always vaccinating (P = 1) will be a pure strict
NE (and an ESS) when r < γ; i.e., when the vaccine is sufficiently safe. Note
that by making the desire to conform sufficiently strong (increasing γ), we
can achieve the same result. All solutions4 to the equation

Evac(p
∗) = Env(p

∗) (54)

4There are three solutions to the equation in (54), two to the quadratic equation (55)
and one to the linear equation which occurs when p ≥ pcrit and w(p) = 0. They are given
by

q1,2 =

√
R0(3γ + r − 1)±

√
R0(γ − r + 1)2 − 8γ

4
√
R0γ

l =
γ + r

2γ

Using the mixed ESS condition in (47) we see that the linear solution l will never be an
ESS, and when the quadratic solutions exist, only q1 will be an ESS.
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will be weak Nash Equilibria for this example. For p < pcrit this becomes

γ′p∗ +H − dv + θ(C −m) = γ′(1− p∗) +H − di
[
1− 1

R0(1− p∗)

]
+ θC

−r = γ(1− 2p∗)−
(

1− 1

R0(1− p∗)

)
. (55)

However, only one solution of (54) will satisfy the mixed strategy ESS con-
dition in (47). This solution is given by

q∗ =

√
R0(3γ + r − 1) +

√
R0(γ − r + 1)2 − 8γ

4
√
R0γ

. (56)

This solution will exist when

0 ≤ γ ≤ r

1− 2
R0

(57)

or, in terms of r, when

γ

(
1− 2

R0

)
≤ r ≤ 1 + γ − 2

√
2

√
γ

R0

. (58)

Note that as q∗ is the solution to the quadratic equation, it will by necessity
always be less than pcrit. We plot all of the evolutionarily stable strategies
for this example as a function of γ in Figure 2, with R0 = 5 and r = 0.5.
The solid black horizontal line shows the vaccination coverage needed to
eradicate the disease. Examining the figure, we see that for γ = 0, the private
optimum is lower than the social optimum. As we introduce conforming peer
effects and γ increases, the private optimum mixed strategy approaches the
social optimum. However, increasing the strength of conforming peer effects
also leads to the emergence of pure strategies with either no vaccination
coverage (P = 0) or full vaccination coverage (P = 1) as evolutionary stable
equilibria. This means that as conformity begins to dominate we could end
up in a situation where we eradicate the disease but incur excess social costs
due to over vaccination or a situation where no one vaccinates and we incur
mortality and morbidity costs of high disease prevalence.

In Figure 3 we plot all Nash equilibria, both strict and weak. We note
that the weak NE in this example will not be ESS’s, but that they serve
an important role in determining which ESS the system converges to. For
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Figure 2: ESS as a function of γ. The y-axis represents the vaccination
coverage p, while the x-axis represents the normalized conformity strength
γ. The solid blue line is the mixed evolutionarily stable strategy, while the
dashed red and dashed green lines represent the pure non-vaccinating and
pure vaccinating strategies, respectively. Note that there is a small region of
γ for which all three equilibria can exist simultaneously.

example, imagine a case with γ = 0.5 and the current vaccination coverage
at 5%, below the weak NE. In this case, the system will converge to the
pure non-vaccinator equilibrium, P = 0. However, if instead the current
vaccination coverage is 40%, above the weak NE, the system will converge
to mixed ESS, at approximately 70% coverage. Similar examples can be
proposed for convergence to the pure vaccinator equilibrium at P = 1. We
examine this effect in more detail in Section 3.4 in the context of government
subsidies.

In summary, the game with only non-conforming peer effects, as described
in Section 2, has only one unique evolutionarily stable strategy, either a mixed
strategy below the social optimum, or the pure strategy with no vaccination
coverage. In contrast, the game with both non-conforming and conforming
peer effects has a much richer set of equilibria, admitting up to 3 evolution-
arily stable strategies including a mixed strategy equilibrium and two pure
strategy equilibria with either full or no vaccination coverage. The likelihood
of observing pure strategy equilibria with full vaccination coverage increases
with the strength of conforming peer effects and decreases with the relative
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Figure 3: All NE as a function of γ. In this figure, the dotted blue lines
represent the weak Nash Equilibria of the game with conforming and non-
conforming peer effects, plotted as a function of the normalized conformity
strength. Note that these dictate which of the stable equilibria (denoted by
the solid blue and dashed red an green lines) will be observed.

cost of the vaccine. Similarly, the likelihood of observing pure strategy equi-
libria with no vaccination coverage increases with the strength of conforming
peer effects and increases with the relative cost of the vaccine.

3.3. Social welfare and individually optimal strategies

For the game with both conforming and non-conforming peer effects, we
consider the same social welfare as in Section 2, ignoring the additional
utility given by the conformity functions. In other words, we assume that
the value derived by individuals in conforming to a particular strategy does
not have any social value. In theory, it is unclear whether the social value of
utility derived from conforming is zero. We make this assumption as most
policymakers or public health officials in charge of vaccination policy will
likely discount the pure utility from conforming in making policy decisions.
They are likely to only consider the public health impact and monetary costs
of alternate policy options. As a result, we have the same social optimum
as before, popt = pcrit, if the condition in (9) is met; otherwise popt ≤ pcrit.
For our running example with w(p) = 1 − 1

R0(1−p) , we have popt = pcrit, as
discussed in Remark 2 earlier.
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In contrast to the model in Section 2, we note that when conforming peer
effects are present in the standard economic model, the private vaccination
level can be higher or lower than the social optimum. If the entire payoff
function depends on conformity, there will only be two stable equilibria: one
at everyone vaccinating and one at nobody vaccinating, while the social op-
timum remains constant at popt = 1 − 1

R0
. When there is also a desire to

behave “rationally,” the regions where these pure strategy equilibria exist
shrink, and a mixed strategy equilibria appears. This mixed stable strat-
egy will always be less than the socially optimal level, as discussed in the
derivation of the ESS’s in the previous section, i.e., q∗ < popt.

Define pconform as the weak NE (not ESS) of the pure conformity game,
and pnon−conform as the weak NE (ESS) of the vaccination game with non-
conforming peer effects from Section 2.2. Also define pcombo = q∗ as the weak
NE (ESS) of the vaccination game with both conforming and non-conforming
peer effects from the previous section.

In terms of pure strategies, we have that if pconform decreases, we have
a smaller α and a larger β, or more pressure to vaccinate. In this case, the
range for which we have a pure (strict and ESS) NE at P = 1 will grow,
while the range for which the pure strategy P = 0 is a strict NE (and ESS)
shrinks. If we increase pconform, however, increasing α and decreasing β, we
will have more pressure to not vaccinate. In this case, the range for which
we have a pure (strict and ESS) NE at P = 1 will shrink, while the range
for which the pure strategy P = 0 is a strict NE (and ESS) grows.

In the case of mixed strategies, the advantage of having conformity will
depend on the relative values of pnon−conform and pconform. We state the
formal conditions for conformity to provide an advantage in the theorem
below.

Theorem 2. The Evolutionarily Stable Strategy (if it exists) of the vacci-
nation game with both conforming and non-conforming peer effects will be
higher than that of the game with only non-conforming peer effects if and
only if the mixed strict Nash Equilibrium of the vaccination game with non-
conforming peer effects is higher than the mixed weak Nash Equilibrium of
the pure conformity game, i.e.,

pnon−conform > pconform ⇐⇒ pcombo > pnon−conform.
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Proof. For simplicity, let pnon−conform = pnc and pconform = pc.

pnc > pc (59)

⇐⇒ γ′h(pnc) < γ′h(pc) (60)

⇐⇒ γ′h(pnc) < 0 (61)

⇐⇒ γ′h(pnc)− [diw(pnc)− θm− dv] < [γ′h(pcombo)− diw(pcombo) + θm+ dv]
(62)

⇐⇒ γh(pnc)− w(pnc) + r < γh(pcombo)− w(pcombo) + r (63)

⇐⇒ pnc < pcombo (64)

Line (60) come from the fact that h(p) is decreasing in p; line (61) since
h(pc) = 0; and lines (62) and (63) use the equilibrium solutions of the vac-
cination games. The last line follows from the fact that, when pcombo exists,
γh(p)−w(p) increases with p, according to mixed strategy ESS condition.

We can see that under certain conditions, the private optimum achieved
in the game with both conforming and non-conforming peer effects will be
higher than that of the game with only non-conforming peer effects; i.e.,
under certain conditions, conformity “helps,” bringing the private optimum
closer to the socially optimal level. We illustrate this effect with our running
example in Figure 4, plotting the ESS’s as a function of r, for various γ and
R0. The solid horizontal black line plots the coverage required for disease
eradication (popt = 1 − 1

R0
), while the black curved dashed line represents

the mixed equilibrium strategy for the game with only non-conforming peer
effects (Section 2).

As r increases, either through an increase of its monetary cost or risk of
serious side effects, the privately optimal strategy will drop below the socially
optimal level. Depending on the disease and cost parameters, the mixed
strategy may be higher or lower than in the game with only non-conforming
peer effects – we see both cases illustrated in Figures 4a and 4b.

Comparing the mixed strategy ESS with the socially optimal strategy,
we see that pcombo ≤ popt. Exactly how far the individually optimal mixed
strategy is from the social optimum can be easily calculated, as follows. The
welfare at the private optimum, using the social welfare expression from (7)
is

W (pcombo)

di
=
H + θC

di
− r − (1− pcombo)γh(pcombo) (65)
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Figure 4: ESS as a function of r. In both figures, y-axis represents the
vaccination coverage p and the x-axis the relative cost. The solid black line
represent the critical vaccination threshold, pcrit, beyond which the disease is
eradicated, and the dashed black line the mixed stable equilibrium from the
game with only non-conforming peer effects. The solid blue line is the mixed
evolutionarily stable strategy in the combination game, while the dashed red
and dashed green lines represent the pure non-vaccinating and pure vacci-
nating strategies, respectively.

where we have taken advantage of the fact that w(pcombo) = γh(pcombo) + r.
Using this we have the difference between the social welfare at the optimum
(using (10)) and private ESS as

W (popt)−W (pcombo)

di
= (1− popt)(r − w(popt)) + (1− pcombo)γh(pcombo).

(66)

In our running example, popt = pcrit, so the difference becomes

W (popt)−W (pcombo)

di
= (1− popt)r + (1− pcombo)γh(pcombo). (67)

Note that if h(pcombo) > 0, this implies that the difference between the social
optimum and the private optimum will be less than in the game with only
non-conforming peer effects and that pcombo > pnc. In our specific example
with linear symmetric conformity, this holds if pcombo > 1/2.
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We note also that the major difference between this game and that with
only non-conforming peer effects is the existence of the pure 100% vaccinator
stable strategy. Lemma 3 states the formal conditions for this pure strategy
to be stable. In this case, the classic “free-rider effect” does not hold, and
the private optimum is in fact higher than the social optimum.

3.4. Effect of government subsidies

As before, if the government offers subsidies of the monetary cost of the
vaccine, individuals’ expected payoff for vaccinating becomes a function of
the subsidy. However, in contrast to the earlier section, with conforming peer
effects present, it will also be a function of the current coverage:

Evac(p, s) = H + θ(C −m(1− s))− dv + γ′f(p) (68)

where s represents the percentage of the marginal production cost of the
vaccine that the government is subsidizing. Unlike the game with only non-
conforming peer effects, there is no simple way to write the private optimum
as a function of the subsidy, so we instead focus on general effects and the
optimal subsidy in the presence of conforming peer effects.

In general, when the monetary cost of the vaccine is lowered, the vac-
cination coverage will increase, as can be seen by decreasing r and looking
at the mixed ESS in Figure 4. When only non-conforming peer effects are
present, this produces a counter effect – as the vaccination coverage goes up,
individuals’ incentive to vaccinate goes down, as their probability of getting
infected decreases with the coverage. So, the advantage gained by lowering
the monetary cost of the vaccine is mitigated by the non-conforming peer ef-
fects, and subsides are less effective. However, when conforming peer effects
are present, there is a third effect that can play a role – the individual desire
to vaccinate less as more people vaccinate is balanced by the desire to con-
form, resulting in more effective subsidies than when only non-conforming
peer effects are present.

To illustrate these concepts more concretely, we return to our running
example, where f(p) = p, g(p) = 1− p, and w(p) = 1− 1

R0(1−p) . In this case,
the optimal coverage is pcrit, and in order to achieve this level of vaccination,
we solve for the optimal subsidy. It is easily verified (setting Evac(pcrit, sopt) =
Env(pcrit) and solving for sopt) that

sopt = 1 +
dv − γ′

(
1− 2

R0

)
θm

. (69)

24



Comparing this optimal subsidy to that in Section 2.4, we see that if R0 > 2

scomboopt < sncopt (70)

always – we require less subsidy to achieve the same level of vaccination cov-
erage. Examining the optimal subsidy further, we look at when conformity
“helps” and when it can “hurt.” In the original game, the optimal subsidy
was greater than one – individuals needed to be paid extra, not just have
the cost subsidized, in order to eradicate the disease. When conforming peer
effects are present, it is possible to avoid this problem. To see this, look at
the case where sopt ≤ 1. Rearranging and solving for γ′, we see that this is
equivalent to

γ ≥ dv

di

(
1− 2

R0

) (71)

In other words, if the conformity effect is strong enough, individuals do not
need to be paid extra to achieve the social optimum. However, if the con-
formity effect is too strong, we might need to impose a “tax” to bring the
coverage level down to the social optimum. Recall that in this combination
game, a pure NE and ESS exists at P = 1; if the conformity is strong enough
and a subsidy is used, it is possible that individuals would choose to always
vaccinate. This would certainly lead to disease eradication, but the extra cost
incurred would not make this a socially optimal strategy. Formally, sopt ≤ 0
if

γ ≥ r

1− 2
R0

. (72)

In other words, the optimal subsidy will be negative (a tax) if the conforming
peer effects are too strong.

Figure 5 plots all Nash equilibrium (weak and strict) of the vaccination
game with conforming and non-conforming peer effects as a function of r.
Using this figure, we can again see the importance of the starting point and
the weak NE, as discussed at the end of Section 3.2 in the context of γ.
Here, we can see that the subsidy will also play a role. For example, assume
that a new vaccine is being introduced, and so the starting point is at 0%
coverage and suppose r = 0.5. In order to bump up the coverage to the
social optimum, we need to reduce r to approximately r1 = 0.3. However, if
we use too large a subsidy and decrease r to r2 = 0.2, the only equilibrium
will be at 100% coverage, incurring too much extra cost. The weak NE come
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Figure 5: All NE as a function of r. In this figure, the dotted blue lines
represent the weak Nash Equilibria of the game with conforming and non-
conforming peer effects, plotted as function of the relative cost. Note that
these dictate which of the stable equilibria (denoted by the solid blue and
dashed red an green lines) will be observed.

into play if the starting point is somewhere between 0− 100%, as discussed
before. With conforming peer effects, we gain in that the required subsidy
to achieve the social optimum is less, but there is now the possibility to
over-subsidize, leading to over-vaccination. Knowing the current vaccination
level and the value placed on conforming are both key to determining the
appropriate subsidy.
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4. Conclusions

In this paper we contrasted the positive and normative implications of two
alternate models of vaccination decisions. In the first or traditional model,
rational agents desire to free-ride on others’ vaccination decisions. In the
second model, agents have an additional desire to conform to their peers’
vaccination decisions. We demonstrated that adding conforming peer effects
to the traditional model can have important implications for understanding
vaccination decisions and designing public health policy.

Adding conforming peer effects overturns several important results from
traditional vaccination models. In most traditional models, privately optimal
vaccination rates are always below the socially optimal rate. These models
also produce a unique evolutionarily stable equilibrium. In contrast, in the
model with conforming peer effects, privately optimal vaccination rates can
be above or below the social optimum. In fact, the model produces several
evolutionarily stable equilibria including no vaccination coverage, full vacci-
nation coverage and a mixed strategy equilibrium. Since this model produces
several equilibria vaccination rates, the final state not only depends on the
vaccine and disease parameters but also on the initial conditions, implying
that the effect of changes in the cost of vaccines or new side effect information
might depend on the initial equilibrium vaccination rate.

Traditional models also imply that vaccine subsidies are always optimal
since private vaccination rates are below the social optimum. Given the
free-rider problem these models also imply that even when vaccines are free,
coverage required to achieve disease eradication is impossible. In contrast,
in the model with conforming peer effects, subsidies for vaccination are not
always optimal as the privately optimal vaccination coverage might be above
the social optimum. However, in certain cases, depending on the disease and
vaccine parameters, even small subsidies can achieve disease eradication, but
the effects of subsidies can also depend on initial vaccination rates.

Overall, these results suggest that conforming peer effects can have impor-
tant implications for designing effective public health policy and understand-
ing the effectiveness of interventions for improving vaccination coverage. Yet
we know little about the magnitude of conforming peer effects and the extent
to which these peer effects might vary across diseases, geography, and age
group. We also know little about what factors influence peer effects in vac-
cination decisions and whether we can design interventions to change their
magnitude. These are all fruitful avenues for future research.
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Appendix A. Definitions

Within the vaccination game with non-conforming peer effects, we are
interested in equilibrium strategies to determine the behavior of rational
agents. We define a Nash Equilibrium and an Evolutionarily Stable Strategy
(ESS) as given in Hofbauer and Sigmund (1998).

Definition 1. A strategy P is a Nash Equilibrium if for all strategies Q 6= P

E(Q,P ) ≤ E(P, P ). (A.1)

Note that P is referred to a strict NE if the inequality is strict, or as a weak
NE if the equality holds.

Definition 2. Let ptot = εQ+ (1− ε)P represent the total vaccination cov-
erage when ε-fraction of the population deviates from strategy P to Q. A
strategy P is an Evolutionarily Stable Strategy (ESS) if for all Q 6= P

E(Q, ptot) < E(P, ptot) (A.2)

holds for all ε > 0 sufficiently small.

An alternate definition of an ESS is useful for proving when it exists:

Definition 3. A strategy P is an ESS ⇐⇒ for all strategies Q 6= P

(i) E(P, P ) > E(Q,P ), or (A.3)

(ii) E(P, P ) = E(Q,P ) and E(P,Q) > E(Q,Q) (A.4)

Note that the following relations hold for NE and ESS’s:

strict NE =⇒ ESS

ESS =⇒ NE

Appendix B. Proofs

In this section we present formal proofs not included in the main body of
the paper.
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Proof. (Lemma 1) In the context of the vaccination game with only non-
conforming peer effects, the Nash Equilibrium condition from Definition 1
can be rewritten as, for all Q 6= P ,

E(P, P )− E(Q,P ) ≥ 0 (B.1)

⇐⇒ P [Evac] + (1− P )[Env(P )]−Q[Evac]− (1−Q)[Env(P )] ≥ 0 (B.2)

⇐⇒ (P −Q)[Evac − Env(P )] ≥ 0 (B.3)

⇐⇒ (P −Q)[−r + w(P )] ≥ 0. (B.4)

Consider a population following the mixed equilibrium strategy p∗ satisfy-
ing w(p∗) = r. This strategy is clearly a weak NE, since (using the rewritten
NE condition from B.4)

E(p∗, p∗)− E(Q, p∗) = (p∗ −Q)(−r + w(p∗)) = 0. (B.5)

Using Definition 3, p∗ will be an ESS if

E(p∗, Q) > E(Q,Q) ⇐⇒ (p∗ −Q)(−r + w(Q)) > 0. (B.6)

Consider first the case where Q > p∗. In this case, we have p∗ −Q < 0 and

−r + w(Q) < −r + w(p∗) = 0 (B.7)

since by assumption the probability of getting infected w(p) is a strictly
decreasing function with vaccination coverage p (i.e., an individual’s proba-
bility of getting infected goes down as more people choose to vaccinate). As
a result, (p∗ −Q)(−r + w(Q)) > 0.

Now consider the second case where Q < p∗. In this case, we have
p∗ −Q > 0 and

−r + w(Q) > −r + w(p∗) = 0 (B.8)

again since the probability of getting infected w(p) is a strictly decreasing
function with vaccination coverage p. Note however that if r > w(0), we
have

−r + w(Q) < −w(0) + w(Q) < 0 (B.9)

always. Thus, (p∗−Q)(−r+w(Q)) > 0 and the mixed equilibrium is an ESS
only if r < w(0), i.e., if the vaccine is sufficiently inexpensive and safe.5

5In the case where r > w(0) (when the relative cost of vaccination to being infected
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Proof. (Theorem 1) Differentiating the social welfare function when p < pcrit,
we have

∂W (p)

∂p
= [−dv − θm+ diw(p)] + (1− p)

[
−di

∂w(p)

∂p

]
(B.11)

=
∂E[P, p]

∂P
+ (1− p)

[
−di

∂w(p)

∂p

]
︸ ︷︷ ︸
>0 always, since

∂w(p)
∂p

<0

(B.12)

The first term captures the private benefit from increasing vaccination and
the second term captures the societal benefit which arises as increasing vac-
cination reduces the probability of infection for the entire population. At the
private optimum p = p∗, the social welfare will be increasing with p, since
∂E[P,p]
∂P

= 0 for p = p∗. Further, for p < p∗, the social welfare will also be
increasing with p, as

−dv − θm+ diw(p− ε) > −dv − θm+ diw(p∗) = 0 (B.13)

where the inequality comes from the fact that w(p) is decreasing in p. So,
the social welfare function is increasing in p for all p ≤ p∗, and as a result,
since popt = argmaxW (p) and using the analysis above, we have

p∗ ≤ popt ≤ pcrit (B.14)

is smaller than the probability of being infected with zero coverage), there exists a pure
strict NE and ESS at P = 0, nobody vaccinating. In this case,

E(P, P )−E(Q,P ) = (P −Q)(Ev(P )−Env(P )) = −Q(Ev(0)−Env(0)) = −Q(−r+w(0))
(B.10)

Thus, E(Q,P ) < E(P, P ) if w(0) < r. If r = 0 (there is no cost or risk associated with the
vaccine), any strategy P ≥ pcrit will be a weak NE, including the pure strategy P = 1,
everyone vaccinating. However, none of these weak NE will be evolutionarily stable, since
they are not resistant to a decrease in vaccination coverage. As a result, everyone will
converge to the mixed strategy p∗ = pcrit.
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Appendix C. The SIR Model with constant population size and
vaccination

Using the SIR model with constant population model (birth rate = death
rate = µ) in Bauch (2004), often used to model childhood diseases, we have,

dS

dt
= µ(1− p)− βSI − µS (C.1)

dI

dt
= βSI − γI − µI (C.2)

dR

dt
= µp+ γI − µR (C.3)

where p is vaccination uptake, β is the mean transmission rate, 1/γ is the
mean infectious period, and µ is the mean birth and death rate. We can
reduce these equations to the following dimensionless form:

dS

dτ
= f(1− p)−R0(1 + f)SI − fS (C.4)

dI

dτ
= R0(1 + f)SI − (1 + f)I (C.5)

where τ = tγ is time measured in units of the mean infectious period, f = µ/γ
is the infectious period as a fraction of mean lifetime, and R0 = β/(γ + µ) is
the basic reproductive ratio (the average number of secondary cases produced
by a typical primary case in a fully susceptible population). (From Anderson
and May (1991), we have for childhood diseases, f < .001 and R0 ∼ 5− 20.)

The predictions of the SIR model depend on the critical coverage level
that eliminates the disease from the population, pcrit:

pcrit =

{
0 R0 ≤ 1

1− 1
R0

R0 > 1
(C.6)

If p ≥ pcrit, then the system converges to the disease-free state (Ŝ, Î) =
(1 − p, 0), whereas if p < pcrit, it converges to a stable endemic state given
by

Ŝ = 1− pcrit (C.7)

Î =
f

1 + f
(pcrit − p) (C.8)
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Because S and I are constant in this situation, the probability that an un-
vaccinated individual eventually becomes infected can be expressed, using
the above equations, as the proportion of susceptible individuals becoming
infected versus dying in any unit time,

w(p) =
R0(1 + f)ŜÎ

R0(1 + f)ŜÎ + fŜ
= 1− 1

R0(1− p)
. (C.9)

Thus, we have our infection probability:

w(p) =

{
1− 1

R0(1−p) 0 ≤ p ≤ pcrit

0 pcrit < p ≤ 1
(C.10)

Note that w(p) is a decreasing function of p, as shown in Figure C.6.
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