
NBER WORKING PAPER SERIES

EARNINGS ADJUSTMENT FRICTIONS:
EVIDENCE FROM THE SOCIAL SECURITY EARNINGS TEST

Alexander M. Gelber
Damon Jones

Daniel W. Sacks

Working Paper 19491
http://www.nber.org/papers/w19491

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 20163, Revised April 2017

We thank Raj Chetty, Jim Cole, Mark Duggan, John Friedman, Bill Gale, Hilary Hoynes, Henrik 
Kleven, Camille Landais, Olivia Mitchell, Daniel Reck, Emmanuel Saez, Chris Walters, and 
numerous seminar participants for helpful comments. We are extremely grateful to David 
Pattison for generously running the code on the data. We acknowledge financial support from the 
Wharton Center for Human Resources and the Wharton Risk and Decision Processes Center, 
from NIH grant #1R03 AG043039-01, from a National Science Foundation Graduate Research 
Fellowship, and from support from the U.S. Social Security Administration through grant 
#5RRC08098400-05-00 to the National Bureau of Economic Research (NBER) as part of the 
SSA Retirement Research Consortium. The findings and conclusions expressed are solely those 
of the authors and do not represent the views of SSA, any agency of the Federal Government, or 
the NBER. The research uses data from the Census Bureau's Longitudinal Employer Household 
Dynamics Program, which was partially supported by the following National Science Foundation 
Grants: SES-9978093, SES-0339191 and ITR-0427889; National Institute on Aging Grant 
AG018854; and grants from the Alfred P. Sloan Foundation. All results have been reviewed to 
ensure that no confidential information is disclosed. All errors are our own.

At least one co-author has disclosed a financial relationship of potential relevance for this 
research. Further information is available online at http://www.nber.org/papers/w19491.ack

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2013 by Alexander M. Gelber, Damon Jones, and Daniel W. Sacks. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Earnings Adjustment Frictions: Evidence from the Social Security Earnings Test 
Alexander M. Gelber, Damon Jones, and Daniel W. Sacks
NBER Working Paper No. 19491
October 2013, Revised April 2017
JEL No. H20,H31,J14,J26

ABSTRACT

Recent literature has documented that individuals face frictions in adjusting their earnings with 
respect to policy, but this literature has not yet developed a method for estimating earnings 
adjustment costs. We introduce a method for estimating the cost of adjusting earnings, as well as 
the elasticity of earnings with respect to the incentive to earn. Our method uses information on 
the amount of bunching in the earnings distribution at convex budget set kinks before and after 
policy changes in the earnings incentives around the kinks: the larger is the adjustment cost, the 
smaller is the absolute change in bunching from before to after the policy change. We apply this 
method in the context of the convex kink created by the Social Security Annual Earnings Test 
(AET). Using a one percent sample of earnings histories from Social Security Administration 
micro-data, we show that individuals continue to bunch at the kink formerly created by the AET 
even when they are no longer subject to the AET, indicating that they must face adjustment 
frictions. We estimate in a baseline case that the earnings elasticity with respect to the implicit 
net-of-tax share is 0.35, and the fixed cost of adjustment is around $280. Our results demonstrate 
that the short-run impact of changes in the effective marginal tax rate can be substantially 
attenuated, which can inform projections of the timing of earnings responses to tax and transfer 
policies.
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1 Introduction

In a traditional model of workers’ earnings or labor supply choices, individuals optimize their behavior

frictionlessly. Recently, several papers have found that individuals face frictions in adjusting their behavior

with respect to policy (Chetty, Looney, and Kroft, 2009; Chetty, Friedman, Olsen, and Pistaferri, 2011;

Chetty, Guren, Manoli, and Weber, 2012; Chetty, 2012; Chetty, Friedman, and Saez, 2013; Kleven and

Waseem, 2013). Adjustment frictions, which we interpret broadly to encompass factors preventing individuals

from adjusting their earnings, may reflect a variety of elements including a lack of knowledge of a tax regime,

the cost of negotiating a new contract with an employer, or the time and financial cost of job search. These

frictions could impede immediate or long-term adjustments to tax policy changes. Such adjustment frictions

can also affect the welfare consequences of taxation. For example, if taxes are not fully salient, this must be

measured to calculate the welfare costs of taxation (Chetty et al., 2009; Farhi and Gabaix, 2015). Adjustment

frictions also help to explain heterogeneity across contexts in the observed elasticity of earnings with respect

to the net-of-tax rate (Chetty et al., 2011, 2012b; Chetty, 2012).1 Frictions in adjusting earnings may underlie

other patterns in the data, such as the slow rise in retirement at age 62 subsequent to the introduction of the

Social Security Early Retirement Age (Gruber and Wise, 2013), or the lack of “bunching” in the earnings

distribution at many convex kink points in budget sets that lead to an incentive for many to locate near the

kink (Chetty et al., 2011). Policy-makers often wish to estimate the magnitude and timing of the earnings or

labor supply reaction to changes in tax and transfer policies (e.g. Congressional Budget Offi ce, 2009), which

could be greatly affected by adjustment frictions. However, the existing literature has not yet developed a

method for estimating earnings adjustment costs.

We make three main contributions to understanding adjustment frictions in the earnings context. First,

we introduce a method for documenting earnings adjustment frictions. In the absence of adjustment frictions,

the removal of a convex kink in the effective tax schedule should result in the immediate dissolution of

bunching at the former kink; thus, any observed delay in reaching zero bunching should reflect adjustment

frictions.

Second, formalizing and generalizing this insight, we specify a model of earnings adjustment that allows

us to estimate a fixed adjustment cost and the elasticity of earnings with respect to the effective net-of-tax

rate. Adding adjustment frictions to the model of Saez (2010), we develop tractable methods that allow the

estimation of elasticities and adjustment costs with kinked budget sets. When tax rates change around a

kink in our framework, ceteris paribus the absolute change in the amount of bunching is decreasing in the

adjustment cost, while the initial amount of bunching is increasing in the elasticity. Our method complements

Kleven and Waseem (2013), who innovate a method to estimate elasticities and the share of the population

that is inert in the presence of a notch in the budget set (but do not estimate adjustment costs). To our

knowledge, our method is the first to allow the estimation of both elasticities and adjustment costs using

1The net-of-tax rate is defined as one minus the marginal tax rate (MTR). Labor economics literature examines hours constraints
in the context of labor supply (e.g. Cogan, 1981; Altonji and Paxson, 1990, 1992; Dickens and Lundberg, 1993).
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bunching in earnings. The elasticity and adjustment cost are both necessary for welfare calculations in many

applications (Chetty et al., 2009), as the adjustment cost can be used to perform counterfactual exercises

across different contexts, whereas the inert share can vary across populations even holding the adjustment

cost fixed. Our method is also applicable in a different context than that of Kleven and Waseem (2013):

ours relies on bunching at kinks, rather than notches, to perform the estimates. Indeed, such kinks are

common, and Kleven’s (2016) survey of bunching papers argues that our method can be broadly applicable

in such contexts. In fact, the method we develop has been used subsequently by follow-on papers to estimate

elasticities in other tax and transfer contexts (Gudgeon and Trenkle, 2016; He, Peng, and Wang, 2016;

Zaresani, 2016). Finally, we present a dynamic version of our model, which extends current bunching

techniques beyond the typical static approach and allows us to address gradual adjustment in bunching over

time.

Our method builds on insights in Chetty (2012), who derives bounds on the “structural”elasticity as a

function of the elasticity observed empirically, the size of the price change used for identification, and the

degree of optimization frictions. Chetty (2012) uses these theoretical results, in combination with estimates

of observed elasticities from prior empirical literature, to calculate bounds on the structural labor supply

elasticity given an assumption about the utility cost of ignoring policy, but that paper does not document

frictions or introduce methods for estimating structural elasticities and adjustment costs. That exercise

naturally leads to the question of how to estimate structural elasticities and adjustment costs using data;

our paper is the first in this literature to introduce a method that accomplishes this. Similarly, Chetty et

al. (2011) model earnings adjustment frictions and document evidence consistent with their existence, but

they do not estimate adjustment costs or structural elasticities, or develop methods for doing so.

Third, we apply our methods to document and estimate earnings adjustment costs, as well as elasticities.

The U.S. Social Security Annual Earnings Test (AET) represents a promising environment for studying these

questions, providing an illustration of our broadly applicable methods. The AET reduces Social Security Old

Age and Survivors Insurance (OASI) benefits in a given year as a proportion of an OASI claimant’s earnings

above an exempt amount in that year. For example, for OASI claimants aged 62 to 65 in 2017, current

OASI benefits are reduced by one dollar for every two dollars earned above $16,920. The AET may lead to

large benefit reduction rates (BRRs) on earnings above the exempt amount, creating a strong incentive for

many individuals to bunch at the convex budget set kink at the exempt amount (Burtless and Moffi tt, 1985;

Friedberg, 1998, 2000; Song and Manchester, 2007; Engelhardt and Kumar, 2014).

The AET is an appealing context for studying earnings adjustment for at least three reasons. First,

bunching at the AET kink is easily visible on a graph, allowing credible documentation of behavioral re-

sponses.2 Second, the AET represents one of the few known kinks at which bunching in earnings (outside

self-employment earnings) occurs in the U.S.; indeed, our paper represents the first study to find robust evi-

dence of sharp bunching among the non-self-employed at any kink in the U.S.3 Third, the AET is important

2Many other papers have examined bunching in the earnings schedule, including Blundell and Hoynes (2004) and Saez (2010).
3Chetty et al. (2012) find evidence of diffuse earnings responses to the Earned Income Tax Credit among the non-self-employed.

2



to policy-makers in its own right, as it is a significant factor affecting the earnings of older Americans.

We begin by documenting clear evidence of adjustment frictions: after individuals no longer face the AET

after age 69 in 1990 to 1999, they continue to bunch around the location of the former exempt amount. This

demonstrates that earnings adjustment frictions exist in the U.S. Next, we apply our estimation method

to data spanning the decrease in the AET BRR from 50 percent to 33.33 percent in 1990 for those aged

66 to 69, as well as moving from age 69 to ages 70 and older in 1990 to 1999. In a baseline specification

examining the 1990 change, we estimate that the fixed adjustment cost is around $280 (in 2010 dollars).

We also estimate that the earnings elasticity with respect to the net-of-tax share is 0.35.4 This specification

examines data on individuals in 1989 and 1990; thus, our estimated adjustment cost represents the cost of

adjusting earnings in the year of the policy change. Other strategies– including the version of our method

that allows for gradual, dynamic adjustment– show results in the same range. Immediately following the

reduction in the kink in 1990, if we constrain the adjustment cost to be zero and thus fail to account for

excess bunching following the policy change due to inertia, we instead estimate a statistically significantly

higher earnings elasticity of 0.58. The constrained estimate is 66 percent higher than the unconstrained

estimate.

Our estimates suggest that although adjustment costs are modest in our setting, they have the potential

to change earnings elasticity estimates significantly, illustrating that it can be important to incorporate

adjustment costs when estimating earnings elasticities. It is particularly striking that we find evidence

of adjustment frictions even among those initially bunching at kinks, whose initial bunching may indicate

flexibility. By demonstrating that earnings adjustment frictions exist and substantially change elasticity

estimates even in this setting, our results suggest the importance of taking them into account in other

settings.

Moreover, our results show that even modest adjustment costs can have important implications for the

timing of earnings reactions even to large policy changes. Simulations based on our elasticity and adjustment

cost estimates show that the adjustment frictions we estimate can greatly attenuate the short-run earnings

reaction even to a large change in the effective marginal tax rate, frustrating the goal of affecting short-run

earnings as envisioned in many recent discussions of tax policy. This could have implications, for example,

for policy-makers’projections of the time frame over which earnings choices may respond to changes in tax

and transfer policies.

Our paper follows a large existing literature on adjustment costs in areas outside labor and public eco-

nomics. For example, adjustment costs have long been studied in inventory theory (e.g. Arrow et al., 1951,

and subsequent literature), macroeconomics (e.g. Baumol, 1952, and subsequent literature), firm investment

(e.g. Abel and Eberly, 1994), durable good consumption (e.g. Grossman and Laroque, 1990), pricing and

inflation (e.g. Sheshinski and Weiss, 1977), and other settings. Relative to this literature, we make several

4 For consistency with the previous literature on kink points that has focused on the effect of taxation, we sometimes use “tax” as
shorthand for “tax-and-transfer,” while recognizing that the AET reduces Social Security benefits and is not administered through the
tax system. The “effective” marginal tax rate is potentially affected by the AET BRR, among other factors.
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contributions. First, we explore these issues in the context of earnings determination, and we exploit changes

in policies creating effective tax rates.5 Second, we offer new, transparent evidence for earnings adjustment

frictions by showing that bunching persists after a kink has been removed. This method for documenting the

presence of adjustment frictions is broadly applicable in other economic contexts in which budget set kinks

are removed. Such non-linear budget set kinks occur not only in the context of earnings determination but

have also been studied in other economic applications with non-linear pricing, including electricity demand

(e.g. Reiss and White, 2005) or subsidized retirement savings (Bernheim, Fradkin, and Popov, forthcom-

ing). Third, we introduce methods for estimating adjustment costs and elasticities by exploiting bunching

at non-linear budget set kinks. We argue that the changes in bunching at kinks in response to changes in

incentives can be transparently mapped to elasticity and adjustment cost estimates.

The primary focus of the paper relates to developing methods for studying adjustment frictions, illus-

trating their implementation, and drawing insights from this. A secondary contribution is to provide new

evidence on the effects of the AET in particular. We use SSA administrative data with a main sample of

376,431 observations, building on previous studies of the AET that use survey data. Our study is the first

to estimate bunching at the AET kink through a method similar to Saez (2010) or Chetty et al. (2011).

The remainder of the paper is structured as follows. Section 2 describes the policy environment. Section

3 describes our empirical strategy for quantifying bunching. Section 4 describes our data. Section 5 presents

empirical evidence on the earnings response to changes in the AET. Section 6 specifies a tractable model of

earnings adjustment. Section 7 estimates the fixed adjustment cost and elasticity simultaneously. Section 8

uses these estimates to demonstrate through simulations that due to the adjustment frictions we estimate,

even large changes in the effective marginal tax rate can lead to little short-run response. Section 9 concludes.

2 Policy Environment

Figure 1 shows key features of the AET rules from 1961 to 2009. The AET became less stringent over this

period. The dashed lines and right vertical axis show the BRR. From 1961 to 1989, an additional dollar of

earnings above the exempt amount reduced OASI benefits by 50 cents (until OASI benefits reached zero).

In 1990 and after, the BRR fell to 33.33 percent for beneficiaries at or older than the Normal Retirement

Age (NRA); this change had been scheduled since the 1983 Social Security Amendments. The NRA, the age

at which workers can claim their full OASI benefits, is 65 for those in the 1983 to 1999 period that we focus

on. During this period, the AET applied to OASI beneficiaries aged 62-69.6 The solid lines and left vertical

axis show the real exempt amount. Starting in 1978, beneficiaries younger than NRA faced a lower exempt

amount than those at NRA or above.

When current OASI benefits are lost to the AET, future scheduled benefits are increased in some circum-

stances, which is sometimes called “benefit enhancement.”This can reduce the effective tax rate associated

5Within public finance, Marx (2015) also examines bunching in the reporting of revenue by charities within a dynamic context, while
Werquin (2015) derives a continuous-time, “s-S”model of taxable earnings in the presence of adjustment costs. The former paper does
not feature adjustment frictions, while the latter abstracts from kinks in the tax schedule and bunching in earnings.

6Prior to 1983, the AET applied to beneficiaries aged 62 to 71.
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with the AET. For beneficiaries subject to the AET aged NRA and older, a one percent Delayed Retirement

Credit (DRC) was introduced in 1972, meaning that each year of foregone benefits led to a one percent

increase in future yearly benefits. The DRC was raised to three percent in 1982 and gradually rose to eight

percent for cohorts reaching NRA from 1990 to 2008 (though the AET was eliminated in 2000 for those older

than the NRA). An increase in future benefits between seven and eight percent is approximately actuarially

fair on average, meaning that an individual with no liquidity constraints and average life expectancy should

be indifferent between either claiming benefits now or delaying claiming and receiving higher benefits once

she begins to collect OASI (Diamond and Gruber, 1999).

OASI claimants’ future benefits are only raised due to the DRC when annual earnings are suffi ciently

high that the individual loses an entire month’s worth of OASI benefits due to the reductions associated with

the AET (Friedberg, 1998; Social Security Administration, 2012a). In particular, an entire month’s benefits

are lost– and benefit enhancement occurs– once the individual earns z∗ +(MB/τ) or higher, where z∗ is the

annual exempt amount, MB is the monthly benefit, and τ is the AET BRR. With a typical monthly benefit

of $1,000 and a BRR of 33.33 percent, one month’s benefit enhancement occurs when the individual’s annual

earnings are $3,000 (=$1,000/0.3333) above the exempt amount. As a result, benefit enhancement is only

relevant to an individual considering earning substantially in excess of the exempt amount. Although the

AET withholds benefits at the monthly level, the AET is generally applied based on annual earnings– the

object we observe in our data. We model the AET as creating a positive implicit marginal tax rate for

some individuals– reflecting the reduction in current benefits– consistent with both the empirical finding

that some individuals bunch at AET kinks and with the practice in previous literature.

For individuals considering earning in a region well above the AET exempt amount, thus triggering benefit

enhancement, the AET could also affect decisions for several reasons. The AET was roughly actuarially fair

only beginning in the late 1990s. Furthermore, those whose expected life span is shorter than average

should expect to collect OASI benefits for less long than average, implying that the AET is more financially

punitive. Liquidity-constrained individuals or those who discount faster than average could also reduce work

in response to the AET. Finally, many individuals also may not understand the AET benefit enhancement

or other aspects of OASI (Liebman and Luttmer 2012; Brown, Kapteyn, Mitchell, and Mattox, 2013). We

follow previous work and do not distinguish among these potential reasons for a response to the AET in our

main analysis (Gelber, Jones, and Sacks 2013 analyze certain reasons for the response).

For beneficiaries under NRA, the actuarial adjustment raises future benefits whenever an individual earns

over the AET exempt amount (Social Security Administration, 2012, Section 728.2; Gruber and Orszag,

2003), by 0.55 percent per month of benefits withheld. Thus, beneficiaries in this age range do not face a

pure kink in the budget set at the exempt amount. To address this, we limit the sample to ages above NRA

in our estimates of elasticities and adjustment costs.
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3 Initial Bunching Framework

As a preliminary step, we begin with a model with no frictions to illustrate our technique for estimating

bunching, which is also suited to measuring the bunching at the kink arising in a model with frictions. This

model is well-known and described in detail in Saez (2010), but we briefly describe it in preparation for our

initial descriptive evidence.7 Agents maximize utility u (c, z; a) over consumption c and pre-tax earnings z

(where greater earnings are associated with greater disutility due to the cost of effort), subject to a budget

constraint c = (1− τ) z+R, where R is virtual income.8 Agents can adjust earnings, for example, through a

change in hours worked or effort, or in principle though a change in the reporting of earnings. The first-order

condition, (1− τ)uc + uz = 0, implicitly defines an earnings supply function z ((1− τ) , R; a).

The parameter a reflects heterogeneous “ability,” i.e. the trade-off between consumption and earnings

supply. Following previous literature, we assume rank preservation in earnings as a function of a.9 Thus, a

is isomorphic to the level of earnings that would occur in the absence of any tax.10 Ability, a, is distributed

according a smooth CDF. Under a constant marginal tax rate of τ0, this implies a smooth distribution of

earnings H0 (·), with pdf h0 (·).

Starting with a linear tax at a rate of τ0, suppose the AET is additionally introduced, so that the marginal

net-of-tax rate decreases to 1− τ1 for earnings above a threshold z∗, where τ1 > τ0. Individuals earning in

the neighborhood above z∗ reduce their earnings. If ability is smoothly distributed, a range of individuals

initially locating between z∗ and z∗ +4z∗ will “bunch”exactly at z∗, due to the discontinuous jump in the

marginal net-of-tax rate at z∗. In practice, previous literature finds empirically that individuals locate in

the neighborhood of z∗ (rather than exactly at z∗).

To quantify the amount of bunching, i.e. “excess mass,” we use a technique similar to Chetty et al.

(2011) and Kleven and Waseem (2013). For each earnings bin zi of width δ we calculate pi, the proportion

of all people with annual earnings in the range [zi−δ/2, zi+δ/2). We then estimate the following regression:

pi =
D∑
d=0

βd(zi − z∗)d +
k∑

j=−k
γj1{zi − z∗ = j · δ}+ ui (1)

This expresses the annual earnings distribution as a degree D polynomial, plus a set of indicators for each

bin with a midpoint within kδ of the kink.

Our measure of excess mass, or bunching, is B̂ =
∑k
j=−k γ̂j , the estimated excess probability of locating

at the kink (relative to the polynomial fit). To obtain a measure of excess mass that is comparable across

different kinks, we scale by the counterfactual density at z∗, i.e. ĥ0 (z∗) = β̂0/δ. Thus, our estimate of

7 Saez (2010) follows earlier work on estimation of labor supply responses on nonlinear budget sets, including Burtless and Hausman
(1978) and Hausman (1981). Moffi tt (1990) surveys these methods.

8Generally, we can write c = z − T (z), where T (z) is a general, nonlinear tax schedule. As in the public finance literature (e.g.
Hausman, 1981) we rewrite the budget constraint in linearized form, c = (1− τ) z + R, where τ ≡ T ′ (z) is the marginal tax rate and
R ≡ T ′ (z) · z − T (z) is virtual income, i.e. the intercept of a linear budget set that passes through the point (z, T (z)). Hausman
(1981) shows that the optimal earnings response to this linearized tax schedule and the nonlinear tax schedule are locally equivalent.

9Rank preservation is an implication of the Spence-Mirrlees, single-crossing assumptions generally made in the optimal tax literature.
1 0 For example, if we assume a standard isoelastic and quasilinear utility function, u (c, z; a) = c − (a/ (1 + 1/ε)) (z/a)1+1/ε, the

optimal level of earnings is z ((1− τ) , R; a) = a (1− τ)ε. Thus, when τ = 0, we have z = a.
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“normalized excess mass” is b̂ = B̂
/
ĥ0 (z∗) = δB̂

/
β̂0 . In our empirical application, we choose D = 7,

δ = 800 and k = 4 as a baseline, implying that our estimate of bunching is driven by individuals with annual

earnings within $3,600 of the kink. We also show our results under alternative choices of D, δ, and k. We

estimate bootstrapped standard errors.

4 Data

We use a one percent random sample of Social Security numbers from the restricted-access Social Security

Administration Master Earnings File (MEF), linked to the Master Beneficiary Record (MBR). The data

contain a complete longitudinal earnings history with information on earnings in each calendar year since

1951; year of birth; the year (if any) that claiming began; date of death; and sex (among other variables).

Separate information is available on self-employment earnings and non-self-employment earnings. Starting

in 1978, the earnings measure reflects total wage compensation, as reported on Internal Revenue Service

forms. In a calendar year, “age”is defined as the highest age an individual attains in that calendar year.

In choosing our main sample, we take into account a number of considerations. It is desirable to show a

constant sample in making comparisons of earnings densities. Meanwhile, the AET only affects people who

claim OASI, and thus we wish to focus on claimants. However, many individuals claim OASI at ages older

than the Early Entitlement Age (EEA) of 62. Thus, to investigate a constant sample, we cannot simply limit

the sample to claimants at each age, as many people move from not claiming to claiming. To balance these

considerations, our main sample at each age and year consists of individuals who have ultimately claimed at

an age less than or equal to 65. In our main analysis we exclude person-years with positive self-employment

income. Because we focus on the intensive margin response, in our main analysis we further limit the sample

in a given year to observations with positive earnings in that year.11

Several features of the data are notable. First, these administrative data allow large sample sizes and are

subject to little measurement error. Second, earnings (as measured in the dataset) are taken from W-2 tax

forms and are not subject to manipulation through tax deductions, credits, or exemptions. Third, because

earnings are taken fromW-2s, they are subject to third-party reporting among the non-self-employed. Fourth,

the data do not contain information on hours worked or job amenities.

Table 1 shows summary statistics in our main sample, 62 to 69 year-olds in 1990 to 1999. The sample

has 376,431 observations. 57 percent of the sample is male. Median earnings, $14,555.56, is not far from the

AET exempt amount, which averages $16,738 for those NRA and older and $11,650 for those younger than

NRA over this period. Mean earnings (conditional on positive earnings) is $28,892.63.

Our second data source is the Longitudinal Employer Household Dynamics (LEHD) of the U.S. Census

(Abowd et al., 2009), which longitudinally follows workers’ earnings. In covered states, the data have

information on around nine-tenths of workers and their employers. We are only able to use data on a 20

percent random subsample of these individuals from 1990 to 1999. We use these data primarily because the

1 1We explore extensive margin decisions in Gelber, Jones, Sacks, and Song (2016).
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sample size in the LEHD is much larger than in the SSA data. We use the LEHD only in the context of one

figure for which the larger sample is helpful; all of the other analysis is based on the SSA data.12

5 Documenting Earnings Adjustment Frictions

We first examine the pattern of bunching across ages, documenting several pieces of evidence for adjustment

frictions. We focus on the period 1990 to 1999, when the AET applied from ages 62 to 69. The policy

changes at ages 62 and 70– when the AET is imposed and removed, respectively, for OASI claimants–

would be anticipated by those who have knowledge of the relevant policies. Figure 2 Panel A plots earnings

histograms for each age from 59 to 73 (connected dots), along with the estimated smooth counterfactual

polynomial density (smooth line). Earnings are measured along the x-axis, relative to the exempt amount,

which is shown by a vertical line. For ages younger than 62, we define the (placebo) kink in a given year

as the kink that applies to pre-NRA individuals in that year. For individuals 70 and older, we define the

(placebo) kink in a given year as the kink that applies to post-NRA individuals in that year.

Figure 2 Panel A shows clear visual evidence of substantial bunching from ages 62 to 69, when the AET

applies to claimants’OASI benefits, and no excess mass at earlier ages. At ages 70 and 71, which are not

subject to the AET, there is still clear visual evidence of bunching in the region of the kink. Figure 2 Panel

B plots the estimates of normalized excess mass at each age. Bunching is statistically significantly different

from zero at each age from 62 to 71 (p < 0.01 at all ages). Normalized excess mass rises from 62 to 63 and

remains around this level until age 69 (with a dip at age 65 that we discuss below). We estimate that there

is substantial excess mass at ages 70 and 71, which are not subject to the AET. Thus, “de-bunching”does

not occur immediately for some individuals, where “de-bunching”refers to movement away from the former

kink among those initially bunching at the kink.13

Figure 3 shows spikes near the exempt amount in the mean percentage change in earnings from ages 69 to

70 and 70 to 71, consistent with de-bunching from age 69 to 70, and from age 70 to 71, among those initially

near the kink. This shows that bunchers are returning to higher earnings, as predicted by theory, and that

this process continues at least until age 71. It is striking that we document adjustment frictions even among

the group bunching prior to age 70, who were evidently able to adjust earnings to the kink initially.

We classify claimants as age 70 when they attain age 70 during that calendar year. As a result, some

individuals will be classified as age 70 but will have been subject to the AET for a portion of the year (in the

extreme case of a December 31 birthday, for all but one day). In principle, this is one potential explanation

for continued bunching at age 70 that does not rely on earnings adjustment frictions. However, other evidence

is suffi cient to document earnings adjustment frictions, namely: (1) the continued bunching at age 71, which

cannot be explained through the coarse measure of age; (2) the continued adjustment away from the kink

1 2The LEHD lacks information on whether a given individual is claiming OASI, but the importance of this is limited because we use
the LEHD to study earnings from ages 69 to 71. In our SSA data, 94 percent of individuals claim by age 69.
1 3 Figure 2 shows that more individuals appear to “bunch”below the exempt amount than above it. Appendix A.1 explains using sim-

ulations how this can arise under our parameter estimates in combination with a downward sloping counterfactual earnings distribution
similar to what we observe in our data. This is corroborated by a simulated distribution presented in Appendix Figure B.1.
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from age 70 to age 71 documented in Figure 3 Panel B; and (3) the spike in the elasticity estimated using

the Saez (2010) approach in 1990, documented in Figure 9 and explained below. Moreover, Appendix Table

B.1 shows that those born in January to March– who are subject to the AET for only a small portion of

the calendar year when they turn age 70– also show statistically significant bunching at ages 70 (p<0.05)

and 71 (p<0.10) from 1983 to 1999.14 Finally, when we pool data from 1983 to 1999 in Figure 4– giving us

more power than in our baseline sample over 1990 to 1999 when the AET does not change– bunching above

age 70 is even more visually apparent, and excess mass at age 71 is highly significant and clearly positive.

The data also show additional patterns consistent with adjustment frictions. Figure 2 Panel B shows

that bunching is substantially lower at age 65 than surrounding ages. The location of the kink changes

substantially from age 64 to age 65; as Figure 1 shows, during this period the exempt amount is much higher

for individuals NRA and older than for individuals younger than NRA. Individuals may have diffi culty

adjusting to the new location of the kink within one year. This delay suggests that individuals also face

adjustment frictions in this context. This interpretation of the patterns around ages 64 and 65 is consistent

with Figure 5, which shows that conditional on age 64 earnings near the age 64 exempt amount, the age 65

earnings density shows a large spike at the kink that prevailed at age 64 and a smaller spike at the current,

age 65 kink. Also, conditional on age 65 earnings near the age 65 exempt amount, the density of age 64

earnings shows a spike near the exempt amount for age 64.15

In our context, the only “appearance”of a new kink that we observe is the appearance of a kink at age

62. The amount of time since the appearance of the kink at age 62 is correlated with age, and elasticities

and adjustment costs could also be correlated with age– thus confounding analysis of the time necessary to

adjust to the appearance of a kink. While recognizing this caveat, it is worth noting that the amount of

bunching slowly rises from age 62 to 63, again suggesting gradual adjustment.16

We interpret the continued bunching at ages 70 and 71 as reflecting frictions preventing adjustment. If

this is the case, those bunching after the kink is removed should have been bunching prior to the removal (and

those bunching before the kink is removed should be disproportionately represented among those bunching

after the removal). A degree of such inertia has already been shown at ages 64 and 65 in Figure 5. Figure

6 further shows that indeed, conditional on earnings at ages 70 or 71 within $1,000 of the exempt amount,

the density of earnings at age 69 spikes at the exempt amount (and conditional on earnings at age 69 within

$1,000 of the exempt amount, the density of age 70 or age 71 earnings spikes near the exempt amount).

Each of these several pieces of evidence points to adjustment frictions. In Appendix Table B.2, we probe

the robustness of our results by varying the bandwidth, the degree of the polynomial, and the excluded

region. We also conduct several additional analyses in Gelber, Jones, and Sacks (2013), including varying
1 4 Limiting the sample only to those born in January yields insignificant and imprecise results.
1 5 In principle, our coarse measure of age could affect these patterns: individuals turning 65 in a given calendar year face the age-65

exempt amount for only the part of the calendar year after they turn 65, which could serve as a partial explanation for continued
bunching at age 65 at the exempt amount applying to age 64. However, we would then expect the age 64 and age 65 exempt amounts
to display equal amounts of bunching, which is not the case.
1 6 In principle, this could also relate to the fact that these graphs show the sample of those who have claimed by age 65, and the

probability of claiming at a given age (conditional on claiming by age 65) rises from age 62 to 63. To address this issue, Appendix
Figure B.2 shows that when the sample at a given age consists of those who have claimed by that age, we still find a substantial increase
in bunching from 62 to 63.
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the time period examined. Overall, these additional analyses generally show similar patterns.

We find no evidence of adjustment in anticipation of future changes in policy, as those younger than 62

do not bunch. If the cost of adjustment in each year rose with the size of adjustment and this relationship

were convex, we would expect anticipatory adjustment. Other literature on earnings adjustment frictions

has shown that firms are important in coordinating bunching responses to taxation in Denmark (Chetty et

al., 2011), by documenting bunching among individuals not subject to the taxes. In our context, individuals

younger than 62– who are not subject to the AET– do not show noticeable bunching at the kink, nor do

those 72 and older (Figure 2). Although we cannot rule out that firms play some role in our context, the

available evidence in our sample does not directly support this hypothesis. Thus, we interpret continued

bunching at ages 70 and 71 as relating to individuals’– not firms’– choices.

6 Method for Estimating Elasticities and Adjustment Costs

The results thus far suggest a role for adjustment frictions in individuals’earnings choices. To develop a

method to estimate such adjustment costs as well as earnings elasticities, we build upon the frictionless Saez

(2010) model described in Section 3. There we considered a transition from a linear tax schedule with a

constant marginal tax rate (MTR) τ0 to a schedule with a convex kink, where the MTR below the kink

earnings level z∗ is τ0, and the MTR above z∗ is τ1 > τ0. We refer to this kink at z∗ as K1. Next, as in

our empirical context, consider a decrease in the higher MTR above z∗ to τ2 < τ1. We refer to this less

sharply bent kink as K2. In the presence of a kink Kj with marginal tax rate τ0 below z∗ and τ j above z∗,

j ∈ {1, 2}, the share of individuals bunching at z∗in the frictionless model will be:

B∗j =

∫ z∗+∆z∗j

z∗
h0 (ζ) dζ (2)

For small tax rate changes, we can relate the elasticity of earnings with respect to the net-of-tax rate to the

earnings change 4z∗j for the individual with the highest ex ante earnings who bunches ex post :

ε =
4z∗j /z∗

dτ j/ (1− τ0)
(3)

where dτ j = τ j − τ0 and ε is the elasticity of pre-tax earnings with respect to the net-of-tax rate, ε ≡

− (∂z/ z) / (∂τ/ (1− τ)) .

6.1 Fixed Cost of Adjustment

We now extend the model to include a fixed cost of adjusting earnings. Following recent public finance

literature on bunching including Saez (2010) and Kleven and Waseem (2013), our model is stylized to

illustrate the relevant forces as transparently as possible. We assume that to change earnings from an initial

level, individuals must pay a fixed utility cost of φ, similar to Chetty et. al. (2011). This could represent the

information costs associated with navigating a new tax-and-transfer regime if, for example, individuals only

make the effort to understand their earnings incentives when the utility gains from doing so are suffi ciently
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large (e.g. Simon, 1955; Chetty et al., 2007; Hoopes, Reck, and Slemrod, 2015). Alternatively, this cost may

represent frictions such as the cost of negotiating a new contract with an employer or the time and financial

cost of job search, assuming that these costs do not depend on the size of the desired earnings change.

Our model of fixed costs relates to labor economics literature on constraints on hours worked, as well

as public finance literature that explores frictions in earnings. One common feature of models of earnings

frictions in labor economics (e.g. Cogan, 1981; Altonji and Paxson, 1990, 1992; Dickens and Lundberg, 1993)

and public finance (e.g. Chetty et al., 2011; Chetty, 2012) is that the decision-making setting is generally

static. We begin by adopting this modeling convention.

There is an extensive literature on fixed costs and adjustment in other fields, including the “s-S”literature

(see literature reviews in Leahy, 2008, or Stokey, 2008). In “s-S”models, agents adjust behavior when the

value of a state variable falls outside a “region of inactivity” around its “target” level, within a dynamic

optimization problem. Our model shares a similar process, but unlike existing literature, we develop our

model in the context of kinked budget sets and the determination of earnings.

6.2 Bunching in a Single Cross-Section with Adjustment Costs

Figure 7 Panel A illustrates how a fixed adjustment cost attenuates the level of bunching, relative to equation

(2), and obscures the estimation of ε in a single cross-section that is possible in the Saez (2010) model.

The figure shows the budget set before and after the kink, K1, is introduced, as well as indifference curves

through key earnings levels. Consider the individual at point 0, who initially earns z1 along the linear budget

constraint with tax rate τ0. This individual faces a higher marginal tax rate after the kink is introduced,

which increases the marginal tax rate to τ1 above earnings level z∗. Because she faces an adjustment cost, she

may decide to keep her earnings at z1 and locate at point 1. Alternatively, with a suffi ciently low adjustment

cost, she incurs the adjustment cost and reduces her earnings to z∗ (point 2).

We assume that the benefit of relocating to the kink is increasing in the distance from the kink for

initial earnings in the range [z∗, z∗ + ∆z∗1 ]. This requires that the size of the optimal adjustment in earnings

increases in a at a rate faster than the decrease in the marginal utility of consumption.17 This is true, for

example, if utility is quasilinear, which is assumed in related recent public finance literature (e.g. Saez, 2010;

Chetty et al., 2011; Kleven and Waseem, 2013; Kleven, Landais, Saez, and Schultz, 2014).

These assumptions imply that above a threshold level of initial earnings, z1, individuals adjust their

earnings to the kink, and below this threshold individuals remain inert. In Figure 7, this individual is the

marginal buncher who is indifferent between staying at the initial level of earnings z1 (point 1) and moving

to the kink earnings level z∗ (point 2) by paying the adjustment cost φ.

Panel B of Figure 7 shows that the level of bunching is attenuated due to the adjustment cost. Panel

1 7To see this, note that the utility gain from reoptimizing is u ((1− τ1) z1 + R1, z1; a) − u ((1− τ1) z0 + R1, z0; a) ≈ uc ·
(1− τ1) [z1 − z0] + uz · [z1 − z0] = uc · (τ1 − τ0) [z0 − z1], where in the first expression, we have used a first-order approximation
for utility at ((1− τ0) z0 + R0, z0) , and in the second expression we have used the first order condtion uz = −uc (1− τ0). The gain in
utility is approximately equal to an expression that depends on the marginal utility of consumption, the change in tax rates, and the
size of the earnings adjustment. The first term, uc, is decreasing as a (and therefore initial earnings z0) increases. Thus, in order for
the gain in utility to be increasing in a, we need the size of earnings adjustment [z0 − z1] to increase at a rate that dominates.
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B plots the counterfactual density of earnings, i.e. under a linear tax τ0. Only individuals with initial

earnings in the range [z1, z
∗ + ∆z1] bunch at the kink K1 (areas ii, iii, iv, and v)– whereas in the absence

of an adjustment cost, individuals with initial earnings in the range [z∗, z∗ + ∆z∗1 ] bunch (areas i, ii, iii, iv,

and v). Bunching is given by the integral of the initial earnings density, h0 (·), over the range [z1, z
∗ + ∆z∗1 ]:

B1(τ 1, z
∗; ε, φ) =

∫ z∗+∆z∗1

z1

h0 (ζ) dζ, (4)

where τ 1 = (τ0, τ1) measures the tax rates below and above z∗. The lower limit of the integral, z1, is

implicitly defined by the indifference condition shown in Figure 7, Panel A:

φ = u ((1− τ1)z∗ +R1, z
∗; a1)− u ((1− τ1)z1 +R1, z1; a1) (5)

where R1 is virtual income and a1 is the ability level of this marginal buncher.
18

Bunching therefore depends on the preference parameters ε and φ, the tax rates below and above the

kink, τ 1 = (τ0, τ1), and the density h0 (·) near the exempt amount z∗. With only one kink and without

further assumptions, we cannot estimate both ε and φ, as the level of bunching depends on both parameters.

6.3 Estimation Using Variation in Kink Size

We can estimate elasticities and adjustment costs when we observe bunching at a kink both before and after

a change in dτ , as we observe in our empirical applications. Suppose we observe a population that moves

from facing a more pronounced kink K1, with a marginal tax rate τ1 above z∗, to facing a less pronounced

kink K2, with a marginal tax rate of τ2 < τ1 above z∗. To make progress, we assume that ability a is fixed

over time from K1 to K2. Some individuals will remain bunching at the kink, even though they would prefer

to move away from the kink in the absence of an adjustment cost, because the gain from de-bunching is not

large enough to outweigh the adjustment cost. The fixed adjustment cost therefore attenuates the reduction

in bunching, relative to a frictionless case.19

Attenuation in the change in bunching is driven by those in area iv of Panel B in Figure 7. Under a

frictionless model, individuals in this range do not bunch underK2. To see this, note that their counterfactual

earnings are greater than z∗ +4z∗2 , i.e. the highest level of initial earnings among bunchers at K2 when

there are no frictions. However, when moving from K1 to K2 in the presence of frictions, those in area iv

continue to bunch, as shown in Panel C of Figure 7. At point 0, we show an individual’s initial earnings

z̄0 ∈ [z∗, z∗ + ∆z∗1 ] under a constant marginal tax rate of τ0. We now introduce the first kink, K1. The

individual responds by bunching at z∗ (point 1), since z̄0 > z1. Next, we transition to the less pronounced

kink K2. Since z̄0 > z∗ +4z∗2 , this individual would have chosen earnings z̄2 > z∗ (point 2) under K2 in a

frictionless setting. However, to move to point 2, this individual must pay a fixed cost of φ. We have drawn

1 8The threshold level of earnings z1 is an increasing function of φ. If adjustment costs are large enough, we may have z1 > z∗+4z∗1 ,
in which case frictions eliminate bunching entirely. Since we observe bunching in our empirical setting, we ignore this case.
1 9 If dτ2 > dτ1 instead — i.e. the kink becomes larger — then additional individuals will be induced to bunch, but the change in

bunching will in general still be attenuated (due to the adjustment cost). This is governed by an analogous set of formulas to the case
dτ2 < dτ1 that we explore.
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this individual as the marginal buncher who is indifferent between staying at z∗ and moving to z̄2. Similarly,

all individuals with initial earnings in the range [z∗ + ∆z∗2 , z̄0] remain at the kink.

Thus, bunching under K2 is:

B̃2(τ̃ 2, z
∗; ε, φ) =

∫ z̄0

z1

h0 (ζ) dζ, (6)

where τ̃ 2 = (τ0, τ1, τ2) reflects the tax rate below z∗, the initial tax rate above z∗, and the final tax rate

above z∗, respectively, and the “∼”indicates that K2 was preceded by a larger kink K1. The critical earnings

levels for the marginal buncher, z̄0 and z̄2, are implicitly defined by these conditions:20

−uz (c2, z̄2; ā2)

uc (c2, z̄2; ā2)
= (1− τ2)

u ((1− τ2) z̄2 +R2, z̄2; ā2)− u ((1− τ2) z∗ +R2, z
∗; ā2) = φ

−uz (c0, z̄0; ā2)

uc (c0, z̄0; ā2)
= (1− τ0) . (7)

The first line indicates that z̄2 is the optimal, frictionless level of earnings chosen by the top buncher in the

presence ofK2, where z̄2 > z∗. The second line requires that when facingK2, this agent is indifferent between

remaining at z∗, or moving to z̄2 and paying the adjustment cost. The third line defines z̄0 as the initial level

of earnings that this individual chooses when facing a constant marginal tax rate of τ0 and no kink. The

earnings elasticity is again related to the potential adjustment of the marginal buncher: ε = z̄0−z̄2
z̄2

(1−τ0)
dτ2

.

The equations in (4), (5), (6) and (7) together pin down four unknowns (4z∗1 , z1, z̄0 and z̄2), each of

which is in turn a function of ε and φ. Bunching at each kink is therefore jointly determined by ε and φ.

Ultimately, we draw on two empirical moments in the data, B1 and B̃2, to identify our two key parameters,

ε and φ. We refer to this estimation strategy as the “comparative static method.”

Relative to the frictionless case in the Saez (2010) model, the change in bunching from the more pro-

nounced kink K1 to the less pronounced kink K2 is now attenuated by the adjustment cost. As noted above,

in the Saez (2010) model, bunching decreases by areas iv and v in Figure 7 when moving from K1 to K2.

When moving sequentially from K1 to K2 in the presence of an adjustment cost, areas ii, iii, iv, and v bunch

under K1, whereas areas ii, iii, and iv bunch under K2. Thus, bunching decreases only by area v, rather

than by both areas iv and v as in the frictionless case.

The features of the data that help drive our estimates of the elasticity and adjustment cost are intuitive.

In the frictionless model of Saez (2010), bunching at a convex kink is approximately proportional to dτ ; thus,

when dτ falls in this model, bunching at the kink falls proportionately. In our model, adjustment costs help

to explain deviations from this pattern. As we move from the more sharply bent kink to the less sharply

bent kink in our model with adjustment costs, bunching falls by a less-than-proportional amount– consistent

with our empirical observation that individuals continue to bunch at the location of a former kink. In the

extreme case in which a kink has been eliminated, we can attribute any residual bunching to adjustment

costs. Moreover, we show in Gelber, Jones, and Sacks (2013) that the absolute value of the decrease in

2 0We additionally require that z̄0 ≤ z∗ +4z∗1 . When this inequality is binding, none of the bunchers move away from the kink at z∗

when the kink is reduced from K1 to K2. Since we observe a reduction in bunching in our empirical setting, we ignore this inequality.
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bunching from K1 to K2 is decreasing in the adjustment cost– z̄0 is increasing in the adjustment cost, and

therefore area v is decreasing in the adjustment cost. As in the frictionless case, the amount of bunching at

K1 is still increasing in the elasticity, ceteris paribus.21

6.4 Dynamic Version of Model

By applying our approach thus far to study adjustment over a given time frame, the resulting parameters

should be interpreted as meaning that bunching in this given time frame can be predicted if individuals

behaved as if they faced the indicated adjustment cost and elasticity– in the spirit of Friedman (1953), who

argued that economic models should predict behavior “as if” individuals followed the model. In practice,

we apply our model to study the nature of immediate adjustment to a policy change, so the parameters we

estimate pertain to the frictions faced in immediately adjusting to a policy change. This framework may be

applied in each period to yield “as if”estimates separately for each period.

However, the comparative static model does not give an account of how bunching may evolve over time.

Section 5 shows evidence of lagged adjustment up to two years following a change in incentives. To capture

such features of the data, we can nest our comparative static model within a framework incorporating more

dynamic elements that allow us to account for this subsequent adjustment. We use a Calvo (1983) or

“CalvoPlus” framework (e.g. Nakamura and Steinsson, 2010), in which there is a positive probability in

each period of facing a finite, fixed adjustment cost.

Thus, we will assume that the adjustment cost in any period is drawn from a discrete distribution {0, φ}.

This generates a gradual response to policy, as agents may adjust only when a suffi ciently low value of

the fixed cost is drawn. This element of the model is necessarily stylized, for the sake of tractability and

consistency with previous literature. Such variation over time in the size of the adjustment cost from this

discrete distribution could capture, for example, the job search process following a recent policy change:

when a job offer arrives exogenously, the adjustment cost reaches zero, but when it is not available, search

costs are positive and equal to φ. Alternatively, this discrete distribution could capture the slow diffusion

of information regarding a recent policy change: when information becomes available to an individual, the

adjustment cost reaches zero, but when it is not available, it is positive and equal to φ. Future work could

generalize this or other aspects of the model.22

How we model dynamics is also influenced by a key feature observed in the data: the lack of an anticipatory

response to policy changes. In Appendix A.2, we solve a completely forward-looking model in which agents

anticipate a policy change. This model which nests the models presented in the main text. In this forward-

looking model, the key results are less parsimonious, and the identification of the key parameters is less

transparent. In practice, the data drive this unrestricted version of the model to place little to no weight on

2 1 It would be possible to apply the method of Andrews, Gentzkow, and Shapiro (2016) to demonstrate more formally that such
moments identify our model.
2 2We have alternatively modeled intertemporal shocks via a time-varying ability, a. This model will likewise generate delayed

response, as agents will only reoptimize when the ability draw generates a preferred level of earnings far enough away from current
earnings to justify paying the fixed cost of adjustment. Analogously, agents in our model reoptimize when they draw a low enough cost
of adjustment.
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the future by estimating discount factors of zero or near zero. If agents were to place weight on the future

in our forward-looking model, they should begin to bunch in anticipation of facing a kink, and they should

begin to de-bunch in anticipation of the disappearance of a kink– neither of which we have observed in the

data, as shown for example in Figure 2.

Meanwhile, we observe a degree of delayed response to policy changes. We can capture both of these

features of the data by assuming that a stochastic process determines whether an agent faces the cost of

adjustment, but agents do not anticipate the policy change. In general, this could either be because agents

are forward-looking but the change is unanticipated even for agents who are fully informed, or because agents

are not forward looking. We therefore focus on the case without anticipatory behavior in the main text, as it

is suffi cient to explain the patterns in our data. In our particular context, the lack of anticipatory behavior

can be rationalized, for example, if agents are myopic or only learn about the AET through experience with

it, consistent with the results in Gelber, Isen, and Song (2016).23

Formally, our main dynamic model (without anticipatory behavior) extends the notation from above as

follows. As before, we assume that agents begin with their optimal frictionless level of earnings in period

0. Flow utility in each period is v (ca,t, za,t; a, za,t−1) = u (ca,t, za,t; a) − φ̃t · 1 (za,t 6= za,t−1), where 1 (·) is

the indicator function. Individuals are again indexed by a time-invariant heterogeneity parameter, a, which

captures ability. In each period, an individual draws a cost of adjustment, φ̃t, from a discrete distribution,

which equals φ with probability πt−t∗ and equals 0 with probability 1 − πt−t∗ . To capture the observed

features of the data, in which the probability of adjusting (conditional on initially locating at the kink)

appears to vary over time, we allow the probability πt−t∗ to be potentially a function of the time lapsed

since the most recent policy change, i.e. t− t∗.

Individuals make decisions over a finite horizon. In period 0, individuals face a linear tax schedule,

T0 (z) = τ0z, with marginal tax rate τ0. In period 1, a kink, K1, is introduced at the earnings level z∗.

This tax schedule is implemented for T1 periods, after which the tax schedule features a smaller kink, K2,

at the earnings level z∗. As before, the kink Kj , j ∈ {1, 2}, features a marginal tax rate of τ j for earnings

above z∗. For simplicity, we abstract from income effects, to focus on the dynamics created by the presence

of adjustment costs. In particular, u (c, z; a) = c − a
1+1/ε

(
z
a

)1+1/ε
, as in Saez (2010), Chetty et al. (2011),

Kleven and Waseem (2013), or Kleven, Landais, Saez, and Schultz (2014). In each period, individuals draw

a cost of adjustment, φ̃t, and then maximize flow utility, v (c a,t, za,t; a, za,t−1) subject to a per-period budget

constraint za,t−Tj (za,t)−ca,t ≥ m, where j = 1 (t ≥ 1)+1 (t > T1), and m reflects a borrowing constraint.24

These assumptions generate a simple decision rule for agents in each period. Let z̃a,t be the optimal

frictionless level of earnings for an individual with ability a in period t, which is a function of the tax

schedule in that period. An agent will choose this level of earnings provided that the utility gain of moving

2 3Our model without anticipatory adjustment can be interpreted as meaning that bunching can be predicted if individuals behaved
as if they faced the estimated parameters, in the spirit of Friedman (1953). Moreover, our static model can be interpreted as consistent
with a degree of forward-looking behavior, if people take into account their future earnings when they consider adjusting.
2 4The quasilinearity assumption implies that the borrowing constraint does not directly affect the earnings decision. However, when

agents are not forward looking, the borrowing constraint is necessary to rule out infinite borrowing.
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from za,t−1 to z̃a,t exceeds the currently-drawn cost of adjustment, φ̃t. Otherwise, the agent remains at

za,t−1. The agent only considers current payoffs because we have abstracted from anticipatory behavior.

The model yields two types of transitions following a policy change. First, there are agents who adjust

immediately following a policy change, because the gain in utility exceeds the highest possible adjustment

cost, φ. These are the same agents who adjust in our model in Section 6.3. Second, there are agents who

only adjust once a zero cost of adjustment is drawn, which happens in each period with probability 1−πt−t∗ .

We can now generalize our expressions for bunching under K1 and K2, (4) and (6). Denote Bt1 as

bunching at K1 in period t ∈ [1, T1]. We have the following dynamic version of (4):

Bt1 =

∫ z∗+∆z∗1

z1

h0 (ζ) dζ +
(
1−Πt

j=1πj
) ∫ z1

z∗
h0 (ζ) dζ

= Πt
j=1πj ·B1 +

(
1−Πt

j=1πj
)
B∗1 (8)

where h0 (·) is again the density of earnings under a linear tax τ0, z1 is implicitly defined in equation (5),

B1 is defined in (4) and B∗1 is the frictionless level of bunching defined in (2) when j = 1. We see on the

first line of (8) that bunching in period t at K1 is composed of two parts. First, there are individuals who

immediately adjust in period 1, i.e. areas ii to v in Figure 7, Panel B. Second, there are individuals in area

i of Figure 7, who only adjust if they have drawn a zero cost of adjustment. The probability that this occurs

by period t is 1−Πt
j=1πj . Finally, we see in the second line of (8) that as t grows, Πt

j=1πj converges to zero,

and bunching converges to the frictionless level of bunching B∗1 , i.e. areas i to v in Figure 7, Panel B.

We can similarly derive an expression for Bt2, bunching at K2 in period t > T1:

Bt2 =

∫ z∗+∆z∗2

z1

h0 (ζ) dζ + Πt−T1
j=1 πj ·

∫ z̄0

z∗+∆z∗2

h0 (ζ) dζ

+
(

1−Πt−T1
j=1 πj ·Π

T1
j=1πj

)∫ z1

z∗
h0 (ζ) dζ

= Πt−T1
j=1 πj ·

[
B̃2 +

(
1−ΠT1j=1πj

)
[B∗1 −B1]

]
+
(

1−Πt−T1
j=1 πj

)
B∗2 (9)

where z̄0 is implicitly defined in (7), B̃2 is defined in (6), and B∗2 is the frictionless level of bunching defined

in (2) when j = 2. In the first two lines, bunching in period t at K2 consists of three components. First,

there are individuals who immediately bunched in period 1, and remain bunching at the smaller kink, i.e.

areas ii to iii in Figure 7, Panel B. Second, there are “excess bunchers”who immediately bunched in period

1, and now “de-bunch”when a zero cost of adjustment is drawn, i.e. individuals in area iv of the same

figure. The probability of not having drawn a zero cost of adjustment between periods T1 + 1 and t is

Πt−T1
j=1 πj . Finally, there are individuals who would like to bunch under both K1 and K2, but will only do

so once a zero cost of adjustment is drawn, i.e. those in area i of Figure 7, Panel B. A fraction of these

agents,
(

1−ΠT1j=1πj

)
, have drawn a zero cost of adjustment by period T1, and of the remaining ΠT1j=1πj ,

the probability of drawing a zero cost from period T1 + 1 to t is
(

1−Πt−T1
j=1 πj

)
, yielding a total share of(

1−ΠT1j=1πj

)
+ΠT1j=1πj ·

(
1−Πt−T1

j=1 πj

)
=
(

1−Πt−T1
j=1 πj ·Π

T1
j=1πj

)
. On the third line, we once again see that
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as the time between period t and T1 grows, Πt−T1
j=1 πj converges to zero, and the level of bunching converges

to the frictionless amount, B∗2 , i.e. areas i to iii in Figure 7, Panel B.

This dynamic version of the model nests the comparative static model from Sections 6.2-6.3. When

πj = 1,∀j, (8) shows that Bt1 = B1, and (9) shows that Bt2 = B̃2. Furthermore, when πj = 0,∀j, or φ = 0,

the model returns the predictions from the frictionless, Saez (2010) model.

Relative to the comparative static model, the dynamic model has both strengths and weaknesses. The

comparative static model transparently illustrates the basic forces determining the elasticity and adjustment

cost. The estimation of the more dynamic model requires more moments from the data to estimate additional

parameters. We assume that ability is fixed throughout the window of estimation, which may be more

plausible in the case of the comparative static model– when we only use two cross-sections from adjacent

time periods– than when we use a dynamic model and study a longer time frame. However, this affords us

tractability in the dynamic model, while allowing us to account for the time pattern of bunching.

6.5 Extensions

Our framework can be extended, including by allowing for heterogeneity in our key parameters, or by allowing

for frictions to affect the distribution of earnings in the initial period. We also discuss the claiming decision.

In Gelber, Jones, and Sacks (2013), we discuss estimation of a model with a cost of adjustment that has

both a fixed cost component and a component that is linear in the size of the earnings adjustment.

6.5.1 Heterogeneity in Elasticities and Costs of Adjustment

The previous analysis assumed homogeneous elasticities and adjustment costs, but we can extend the model

to accommodate heterogeneity. In our static model, suppose (εi, φi, ai) is jointly distributed according to

a smooth CDF, which translates into a smooth, joint distribution of elasticities, fixed adjustment costs,

and earnings in the presence of a linear tax, h∗0 (ε, φ, z0). In Appendix A.3 we derive generalized formulae

for bunching that allow us to interpret our estimates as average parameters among the set of bunchers.

Appendix A.3.2 further discusses how the dynamic model can be interpreted in the presence of heterogeneity

in these parameters and the vector πi.

Our estimates of elasticities and adjustment costs, and our earlier descriptive evidence documenting the

speed of adjustment, are specific to the population that is observed bunching at the kinks. At the same time,

note that for any value of φi, there exists a value of εi that generates positive bunching. Thus, although

our estimates are local to the observed set of bunchers, they need not be confined to a subpopulation with

small values of φi– for example, if εi and φi are positively correlated. Nevertheless, there may be a set of

individuals for whom εi is small enough relative to φi to preclude bunching under either K1 or K2, and who

therefore do not contribute to our parameter estimates.

Although our estimates are local in this sense, with suffi ciently large variation in tax rates it may be

possible to estimate population average parameters. Our estimation procedure relies on estimating bunching

at more than one kink; over all such kinks, the limits of the integrals used to calculate bunching could jointly
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cover much of the earnings distribution. Loosely speaking, the greater the variation in tax rates, the more of

the population we will observe who bunch at kinks and therefore contribute to our estimates. In that light,

our policy variation is useful because it varies over a large range of BRRs (from 50 percent to 33.33 percent

to zero percent). Moreover, it is perhaps reassuring that we will find similar elasticity and adjustment cost

estimates when we examine a larger change in the BRR (from 33.33 percent to zero percent) as when we

examine a smaller change (from 50 percent to 33.33 percent). Extrapolating our estimates from bunchers to

non-bunchers would require assumptions on the joint distribution of ε and φ.

Special cases of our model have implications for other moments of the earnings distribution, but it is not

possible to use these moments without more stringent distributional assumptions. As an example of such

implications, in our model in Section 6.3, the set of non-bunchers (e.g. area i in Figure 7, Panel B) will tend

to overlap with relatively high earners (those to the right of area v) who adjust down just to the right of

the kink K1 after it is introduced. This will tend to generate excess mass just above z∗ and a sharp drop

in the ex post density at z1. However, if the observed earnings distribution is averaged over subpopulations

with different values of z1 under the heterogeneity described in this section, the predicted excess mass just

above z∗ will tend to be smoothed. Thus, such additional predictions from the comparative static model

with homogenous ε and φ are not as robust as our use of the amount of bunching for estimation.

6.5.2 Frictions in Initial Period

Our model above assumes that initial earnings under τ0 are located at the frictionless optimum. However, it

is also possible to assume that individuals may find themselves away from their frictionless optimum in period

0, due to the same adjustment costs that attenuate bunching under K1 and K2. In Appendix A.4, we specify

an extended model that allows for individuals to be arbitrarily located in a neighborhood of their frictionless

optimum. As in Chetty (2012), we only require that earnings are close enough to the optimum to preclude

any further utility gains that outweigh the adjustment cost φ∗. We derive generalized versions of equations

(4) and (6) that hold for arbitrary initial conditions consistent with a fixed adjustment cost. We then show

that estimation now requires structure on the distribution of initial earnings within the neighborhood of

the frictionless optimum. We demonstrate how our estimator is amended and report estimates under this

method below.

6.5.3 Accounting for the Claiming Decision

In our model and estimation we abstract from the claiming decision by examining a sample of those who have

already claimed OASI (i.e. our estimates use a sample of those older than age 65 who had claimed by age 65);

our model thus applies more broadly to understanding responses to kink points where the claiming decision

is not relevant (as in, for example, most other tax or transfer contexts, including those where Gudgeon and

Trenkle (2016), He, Peng, and Wang (2016), and Zaresani (2016) have applied our method). In the context

of the AET, this modeling choice follows previous literature such as Friedberg (1998, 2000).

This decision is only a trivial abstraction in our context because nearly everyone has claimed by the ages
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we study in our main evidence, 69 to 71, implying minimal scope for the claiming decision– or conditioning

on those who have claimed by 65, as we do in our primary estimates– to affect our results. By age 69, fully

94 percent of the sample has claimed OASI, and nearly everyone has claimed by 71. Moreover, the bunching

we observe at ages after the AET ceases to apply is a tell-tale sign of adjustment frictions, regardless of the

fraction claiming at these ages. By ages 66 to 68, which we later examine in the context of the 1990 change in

the AET BRR, 92 percent have claimed OASI on average across ages in the time period we study. Moreover,

over the period we examine from before to after 1990, the proportion claiming is stable at 92 percent in each

year separately from 1988 to 1992, implying that the results should not be materially affected by changes

in claiming over time. As the percent of the sample claiming approaches 100, our bunching estimates– and

therefore the resulting parameter estimates using our estimator explained below– will converge to those we

have calculated conditional on claiming. Consistent with this, we estimate very similar, and insignificantly

different, elasticities and adjustment costs when bunching is estimated from the sample of only those who

have claimed, as when the sample includes both claimants and non-claimants.

Moreover, empirically our evidence suggests the claiming decision during our ages of interest does not

appear to interact notably with the AET. In particular, we add to previous literature by showing in Appendix

Figure B.3 that the hazard of claiming at year t+1 is smooth around the exempt amount at year t, indicating

no evidence that claimants come disproportionately from close to or far from the kink. Building on these

results, Gelber, Jones, Sacks, and Song (2016) are studying claiming responses in greater depth (as studied

using a different strategy in Gruber and Orszag, 2003).25

6.6 Econometric Estimation of the Model

6.6.1 Comparative Static Model

We estimate the model we have described using a minimum distance estimator. We begin by describing our

econometric estimation procedure under our basic comparative static model of Sections 6.2 and 6.3. Let

B = (B1, B2, . . . , BL) be a vector of (estimated) bunching amounts, using the method described in Section

3. Let τ = (τ 1, . . . , τL) be the tax schedule at each kink. The triplet τ l = (τ0,l, τ1,l, τ2,l) denotes the tax

rate below the kink (τ0,l), above the kink (τ1,l), and the ex post marginal tax rate above the kink after

it has been reduced (τ2,l), as in Section 6.3. Let z∗ = (z∗1 , . . . , z
∗
L) be the earnings levels associated with

each kink. In principle, it would be possible to estimate bunching separately for each age group at a given

kink. In practice and for simplicity, we pool across a constant set of ages to estimate bunching at a given

kink– for example, when examining the 1990 policy change we examine 66-68 year-olds both before and after

the change. Thus, the bunching amounts are not indexed by age.26

In our baseline, we use a non-parametric density for the counterfactual earnings distribution, H0. OnceH0

2 5 In Gelber, Jones, and Sacks (2013), we discuss further extensions of the model, including certain assumptions under which we can
express the elasticity and adjustment cost as functions of observed levels of bunching that can be easily solved in closed form.
2 6Analogously, when we examine bunching at each age around 70 when the AET is eliminated, we pool across calendar years (namely

1990-1999) to estimate bunching, so that we do not also have to index the bunching amounts by calendar year. We find comparable
results when we estimate bunching separately at each age and year.
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is known, we use (4) and (6) to obtain predicted bunching from the model. To recover H0 non-parametrically

we take the empirical earnings distribution for 72 year-olds in $800 bins as the counterfactual distribution.

72 year-olds’earnings density represents a reasonable counterfactual because they no longer face the AET,

no longer show bunching, and are close in age to those aged 70 or 71. Letting zi index the bins, our estimate

of the distribution is Ĥ0(zi) =
∑
j≤i Pr(z ∈ zj). This function is only defined at the midpoints of the bins, so

we use linear interpolation for other values of z. In a robustness check, we instead assume that the earnings

distribution over the range [z∗, z∗ + ∆z] is uniform, a common assumption in the literature (e.g. Chetty et

al., 2011, Kleven and Waseem, 2013). Using the nonparametrically-estimated distribution of earnings from

age 72 is helpful because it does not entail distributional assumptions, but relative to assuming a uniform

distribution, using the age-72 distribution comes at the cost of using a different age (i.e. 72) to generate the

earnings distribution.

To estimate (ε, φ), we seek the values of the parameters that make predicted bunching B̂ and actual (es-

timated) bunching B as close as possible on average. Letting B̂(ε, φ) ≡ (B̂(τ 1, z
∗
1 , ε, φ), . . . , B̂(τL, z

∗
L, ε, φ)),

our estimator is: (
ε̂, φ̂
)

= argmin(ε,φ)

(
B̂(ε, φ)−B

)′
W
(
B̂(ε, φ)−B

)
, (10)

where W is a K ×K identity matrix. This estimation procedure runs parallel to our theoretical model, as

the bunching amounts B̂ are those predicted by the theory (and the estimated counterparts B are found

using the procedure outlined in Section 3).27 When we pool data across multiple time periods, we assume

that ε and φ are constant across these time periods.

We obtain our estimates by minimizing (10) numerically. Solving this problem requires evaluating

B̂ at each trial guess of (ε, φ).28 Our estimator assumes a quasilinear utility function, u(c, z; a) = c −
a

1+1/ε

(
z
a

)1+1/ε
, following Saez (2010), Chetty et al. (2011) and Kleven and Waseem (2013). Note that

because we have assumed quasilinearity, ∆z1,l = z∗l

((
1−τ1,l
1−τ0,l

)ε
− 1
)
and a = z (τ) / (1− τ)

ε, where z (τ)

are the optimal, interior earnings under a linear tax of τ . Typically there is no closed form solution for z1,l

or z̄0,l. Instead, given ε and φ, we find z1,l and z̄0,l numerically as the solution to the relevant indifference

conditions in (5) and (7). For example, z1,l is defined implicitly by:

u((1− τ1,l)z
∗
l +R1,l, z

∗
l ; z1,l/(1− τ0,l)

ε)︸ ︷︷ ︸
utility from adjusting to kink

− u((1− τ1,l)z1,l +R1,l, z1,l; z1,l/(1− τ0,l)
ε)︸ ︷︷ ︸

utility from not adjusting

= φ, (11)

This equation is continuously differentiable and has a unique solution for z1,l.
29

2 7Without loss of generality, we use normalized bunching, b̂ = δB̂/h0 (z∗), so that the moments are identical to what is reported
elsewhere in the text.
2 8 In solving (10), we impose that φ ≥ 0. When φ < 0, every individual adjusts her earnings by at least some arbitrarily small amount,

regardless of the size of φ. This implies that φ is not identified if it is less than zero.
2 9Note that some combinations of τ l, z

∗
l , ε, and φ imply z1,l > z∗l +4z1,l. In this case, the lowest-earning adjuster does not adjust

to the kink. Whenever this happens, we set B̂l = 0.
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6.6.2 Dynamic Model

Our estimation method is easily amended to accommodate the dynamic extension of our model in Section

6.4. As in (8) and (9), the bunching expressions in the dynamic model are weighted sums of B1 and B̃2,

which are calculated as in Section 6.6.1, and two measures of frictionless bunching, B∗1 and B
∗
2 . Frictionless

bunching under either kink can be calculated conditional on H0 and ε using (2).

We must also estimate the probability of drawing a positive fixed cost as a function of the time since the

last policy shock, πt−t∗ .30 For given values of ε, φ, and the vector π of πt−t∗’s, we can evaluate (8) and (9).

Our vector of predicted bunching, B̂, will now be a function of these additional parameters, as well as the

relevant time indices: B̂(ε, φ,π) ≡ (B̂(τ 1, z
∗
1 , t1, T1,l, ε, φ,π), . . . , B̂(τL, z

∗
L, tL, T1,L, ε, φ,π)), where tl is the

time elapsed since the first kink, K1,l, was introduced, and T1,l is the length of time before the second kink,

K2,l, is introduced. Once again we use the minimum distance estimator (10).

Equations (8) and (9) illustrate how we estimate the elasticity and adjustment cost in this richer setting.

We require as many observations of bunching as the parameters, (ε, φ, π1, ..., πJ), and these moments must

span a change in dτ .31 Suppose we observe the pattern of bunching over time around two or more different

policy changes. Loosely speaking, the π’s are estimated relative to one another from the time pattern of

bunching over time: a delay in adjustment in a given period will generally correspond to a higher probability

of facing the adjustment cost (all else equal). Note that the relationship is linear; the degree of “inertia”in

bunching in (for example) period 1 increases linearly in π1. Meanwhile, a higher φ implies a larger amount of

inertia in all periods until bunching has fully dissipated (in a way that depends on the earnings distribution,

the elasticity, and the size of the tax change). Finally, a higher ε will correspond to a larger amount of

bunching once bunching has had time to adjust fully to the policy changes. Intuitively, these features of the

data help us to identify the parameters using our dynamic model.

6.7 Inference and Identification

We again estimate bootstrapped standard errors to perform inference about our parameters. For example,

in our comparative static model, the estimated vector of parameters (ε̂, φ̂) is a function of the estimated

amount of bunching. We use the bootstrap procedure of Chetty et al. (2011) to obtain 200 bootstrap samples

of B. For each bootstrap sample, we compute ε̂ and φ̂ as the solution to (10). We determine whether an

estimate of φ is significantly different from zero by assessing how frequently the constraint φ ≥ 0 binds in

our estimation. This share is doubled in order to construct p-values from a two-sided test.

We have already discussed the features of the data that intuitively help us identify the parameters in the

comparative static and dynamic models. It is also possible to demonstrate identification more formally. In

Appendix A.5 we give formal conditions for identification in both the comparative static and dynamic cases,

and we show that these conditions hold in our data in both cases. These conditions essentially require that

3 0We have also tried using a flexible, logistic functional form, πj = exp (α+ β · j) / (1 + exp (α+ β · j)), and we found comparable
results (available upon request).
3 1The number of moments is not itself suffi cient. We also require non-trivial variation in bunching before and after the tax change

in order to point identify φ. As in footnote 20, this requires z̄0 < z∗ +4z∗1 .
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we have suffi cient tax variation relative to the adjustment cost. Intuitively, without suffi cient tax variation,

there will not be any bunching or de-bunching, and so we cannot identify the parameters– a case that is not

relevant in our data, as we observe both bunching and de-bunching.

7 Estimates of Elasticity and Adjustment Cost

7.1 Estimates using the Comparative Static Method

To estimate ε and φ using our “comparative static”method, we first examine the reduction in the rate in

1990 and next turn to the elimination of the AET at ages 70 and older. We use the 1990 change as a baseline

because this allows us to compare our method to the Saez (2010) method, whereas we cannot apply the Saez

method at age 70 or later because the BRR is zero above the exempt amount.

We begin with Figure 8, a graphical depiction of the patterns driving the parameter estimates for the

1990 change. We follow a group of 66-68 year-olds, so that we can examine an age group that moved over

time from being affected by the 50 percent tax rate before the policy change to the 33.33 percent tax rate

after the policy change.32 Figure 8 shows bunching among 66-68 year-olds, for whom the BRR fell from 50

percent to 33.33 percent in 1990. Bunching fell negligibly from 1989 to 1990 but fell more subsequent to

1990.

Estimating these parameters requires estimates of the implicit marginal tax rate: both the “baseline”

marginal tax rate, τ0– the rate that individuals near the AET threshold face in the absence of the AET due

to federal and state taxes– and the implicit marginal tax rate associated with the AET. We begin by using

a marginal tax rate incorporating the AET BRR as well as the average federal and state income and payroll

marginal tax rates, calculated using the TAXSIM calculator of the National Bureau of Economic Research

(Feenberg and Coutts, 1993) and information on individuals within $2,000 of the kink in the Statistics of

Income data in the years we examine.

Table 2 presents estimates of our static model, examining 66-68 year-olds in 1989 and 1990. We estimate

an elasticity of 0.35 in Column (1) of Table 2 and an adjustment cost of $278 in Column (2), both significantly

different from zero (p < 0.01). This specification examines data in 1989 and 1990; thus, our estimated

adjustment cost represents the cost of adjusting earnings in the first year after the policy change. We

interpret our estimates as meaning that when considering a given time frame (in this particular case, from

1989 to 1990), bunching amounts can be predicted if individuals behaved as if they had the estimated

elasticity and adjustment cost (in this particular case, 0.35 and $278, respectively).

When we constrain the adjustment cost to zero using 1990 data in Column (3), as most previous literature

has implicitly done, we estimate a substantially larger elasticity of 0.58.33 Consistent with our discussion

3 2Although 69 year-olds are also sub ject to the AET, an individual who is 69 in 1989 would have turned 70 by 1990 and therefore
would not have been affected by the 33.33 percent tax rate in 1990– preventing us from examining those age 69 if we wish to examine
a constant age group. Examining a constant age group (i.e. those aged 66-68 in each calendar year) is crucial because different age
groups have persistently different amounts of bunching, which we do not wish to confound with the effect of the policy change.
3 3 Friedberg (2000) finds uncompensated elasticity estimates of 0.22 and 0.32 in different samples. However, differences in the

estimation strategies imply that these results are not directly comparable to ours.
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above, the estimated elasticity is higher when we do not allow for adjustment costs than when we do, because

adjustment costs keep individuals bunching at the kink even though tax rates have fallen. The difference

in the constrained and unconstrained estimates of the elasticity is substantial (66 percent higher in the

constrained case) and statistically significant (p < 0.01).

Other specifications in Table 2 show similar results. We adjust the marginal tax rate to take account of

benefit enhancement, following the calculations of the effective OASI tax rate net of benefit enhancement in

Coile and Gruber (2001). This raises the estimated elasticity but yields similar qualitative patterns across

the constrained and unconstrained estimates. The next rows show that our estimates are similar under other

specifications: excluding FICA taxes from the baseline tax rate; using a locally uniform density; other band-

widths; and other years of analysis. Returning to the baseline specification, the point estimates in Appendix

Table B.3 show that across groups, elasticities tend to be similar, but women have higher adjustment costs

than men, those with low prior lifetime real earnings have higher adjustment costs than those with high

prior earnings, and those with high and low volatility of prior earnings have similar adjustment costs.34 In

Appendix Table B.4 we apply our method to the 1990 policy change but allow individuals to be initially

located away from their frictionless optimum, as described above and in Appendix A.4. We again estimate

similar results to the baseline.35

In Table 2, the variation driving our identification is not confounded with age variation, because we

hold ages constant from before to after the policy change (examining 66-68 year-olds in both cases). Our

identification rests on a comparison of bunching over time; we believe that three additional observations

make this identification strategy credible. First, Figure 8 shows that in a “control group”of 62-64 year-olds

who do not experience a policy change in 1990, bunching is very stable in the years before and after 1990,

suggesting that the 66-68 year-old group will be suffi cient to pick up changes in bunching due to the policy

change. Appendix Table B.5 verifies that in a “differences-in-differences specification”comparing 66-68 year-

olds to 62-64 year-olds, bunching among 66-68 year-olds falls insignificantly in 1990 relative to before 1990,

bunching is significantly smaller among 66-68 year-olds in years after 1990, and these estimates are very

similar to the time series estimates comparing only 66-68 year-olds over time.

Second, Table 3 shows comparable evidence of frictions when we examine the removal of the kink at

age 70 (pooling years 1990-1999), in which case the results cannot be driven by shocks across ages because

there is no reason for bunching at ages over 70 except delayed adjustment to the removal of the kink. When

comparing adjustment at age 70 to adjustment in 1990, a key pattern in the data consistent with our model

is that the decrease in normalized excess mass from 1989 to 1990 shown in Figure 8 is much smaller in

absolute and percentage terms than the decrease in normalized excess mass from age 69 to age 70 shown in

Figure 2 Panel B. With an adjustment cost preventing immediate adjustment as in our model, normalized

excess mass should fall less when the jump in marginal tax rates at the kink falls less (in the change from

3 4The estimates by group are comparable for the dynamic model estimated below.
3 5Gelber, Jones, and Sacks (2013) find similar estimates when examining the 1990 policy change but assuming that bunching in 1989

is not attenuated by adjustment frictions, under the rationale that bunching could have reached a “steady state” in 1989.
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a 50 percent to a 33.33 percent BRR in 1990) than when the jump in marginal tax rates at the kink falls

more (in the change from a 33.33 percent to a 0 percent BRR at age 70). Table 4 verifies that we estimate

similar results when we pool data from the ages 69 to 71 transition with the 1989 to 1990 transition.

Third, Figure 9 shows that the elasticity we estimate among 66-68 year-olds using the Saez (2010)

method– constraining the adjustment cost to be zero– shows a sharp, sudden upward spike in bunching in

1990 but subsequently reverts to near its previous level. This relates directly to our theory, which predicts

that following a reduction in the change in the MTR at the kink, there may be excess bunching due to inertia

(reflected in area iv in Figure 7, Panel B). Once we allow for an adjustment cost, this excess bunching is

attributed to optimization frictions.36 Thus, the spike in 1990 is consistent with the excess bunching in 1990

reflecting delayed adjustment to the policy change, rather than another shock.

7.2 Estimates using the Dynamic Method

Table 5 shows the estimates of the dynamic model described in Sections 6.4 and 6.6.2. There are several

parameters to estimate– ε, φ, and the vector of observed πt−t∗’s– but a limited number of years in the

data with useful variation in bunching. Namely, bunching varies little from year to year prior to the policy

changes in 1990 or at age 70, and bunching fully dissipates by at most three years after the policy changes.

As in Table 4, we pool data on bunching at ages 67, 68, 69, 70, 71, and 72 (pooling 1990 to 1999), with

data on bunching among 66-68 year-olds in 1987, 1988, 1989, 1990, 1991, and 1992.37 This gives us twelve

moments (six moments for each of two policy changes) with which to estimate seven parameters (ε, φ, π1,

π1π2, π1π2π3, π1π2π3π4, and π1π2π3π4π5).38 We pool the 1990 and age 70 transitions so that we have a

suffi cient number of moments to estimate the parameters.39

In the baseline dynamic specification, we estimate ε = 0.36 and φ = $243. The estimates of ε are

remarkably similar– usually within several percent for a given specification– under the static and dynamic

models applied to comparable data, i.e. Table 4 and Table 5, respectively. The estimates of φ are also

in the same range. The point estimate of π1 varies across specifications from 0.64 in the baseline to 1,

indicating that at most a minority of individuals are able to adjust in the year of the policy change. This

mirrors our earlier finding that while some individuals adjust in the year of a policy change, particularly to

the change from age 69 to 70, there are still many who do not (both from age 69 to 70 and from 1989 to

1990). The point estimate of π1π2 varies across specifications from 0.00 to 0.47 (with an estimate of 0.22

in the baseline), indicating that a majority of individuals are able to adjust by the year following a policy

change. Again, this mirrors our earlier finding that substantial adjustment occurs from 1990 to 1991. In all

3 6This figure also serves as additional evidence that adjustment frictions drive our results, rather than the probability of claiming.
To explain the 1990 spike in the Saez (2010) elasticity using changes in the probability of claiming, this probability would also have to
spike in 1990, but it is constant at 92 percent before, during, and after 1990.
3 7Both at age 70 and in 1990, individuals experienced the previous policy change several years earlier (e.g. at age 65, or in 1983)

and therefore had ample time to adjust fully.
3 8Note that π1, π2, π3, π4, and π5 are not all separately identified; only the cumulative probabilities are identified, i.e. π1, π1π2,

π1π2π3, π1π2π3π4, and π1π2π3π4π5. The reason is that once one of π1, π2, π3, π4, or π5 equals zero, none of the subsequent
probabilities is identified. For example, if π1 = 0, then any value of π2 leads to the same predicted level of bunching.
3 9The age 70 and 1990 transitions are slightly different contexts and thus could be governed by different parameters; our pooled

estimates will be influenced by variation around both policy changes. However, in both cases, we are examining a change that is
anticipated long in advance.
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specifications, π1π2π3 is estimated to be zero, with confidence intervals that rule out more than a modest

positive value. Thus, our estimates indicate that individuals are fully able to adjust by the third year after

a policy change. Again, this mirrors our earlier finding that adjustment has fully taken place by three years

after the policy change, both in 1990 and at age 70. It therefore makes sense that π1π2π3π4 and π1π2π3π4π5

are also estimated to be zero, with confidence intervals that rule out more than modest positive values.

Given our estimates of the πj’s, it makes sense that we estimate comparable results from the static

and dynamic models. If, hypothetically, adjustment were completely constrained in years 1 and 2 after

the policy change and subsequently completely unconstrained, then we should estimate essentially identical

results in the static and dynamic models because the static model effectively assumes that the only barrier

to adjustment is the adjustment cost φ (effectively similar to assuming that πj = 1 for the periods over

which adjustment is estimated). The dynamic model shows results that are not very different from this

hypothetical scenario: π1 is well over 50 percent, and π1π2 is substantial but under 50 percent. Meanwhile,

subsequent probabilities of facing the adjustment cost are zero. Thus, the immediate adjustment to policy

in the first one to two years is substantially constrained, and our estimates of the static model during this

time frame should show results that are not far from the dynamic model– as the estimates bear out.

8 Simulations of the Effect of Policy Changes

Our parameter estimates imply that incorporating adjustment costs into the analysis can have important

implications for predicting the short-run impact of policy changes on earnings, as policy-makers often seek

to do. In particular, the adjustment costs we estimate greatly attenuate the predicted short-run impact of

policy changes on earnings.

We use our estimates of the static model, using the year before through the year after a policy change as in

our baseline, to simulate the effect in our data of two illustrative policy changes. Further details are provided

in Appendix A.6 and Appendix Table B.6. Reducing the marginal tax rate above the kink by 50 percentage

points (as could be implied by a policy like eliminating the AET for 62-64 year-olds) would cause a large, 23.4

percent rise in earnings at the intensive margin. However, a less large change– in particular, any cut in the

marginal tax rate of 17.22 percentage points or smaller above the exempt amount– would cause no change

in earnings within a one-year time horizon because the potential gains from adjusting are not large enough

to outweigh the adjustment cost. Although this result relies on the extreme assumption of a homogeneous

elasticity and adjustment cost, it illustrates the principle that because the gains to relocation are second-

order near the kink, even a modest adjustment cost around $280 can prevent individuals’adjustment– and

even following a substantial cut in marginal tax rates (up to 17.22 percentage points). Moreover, the lack of

response predicted with a change of 17.22 percentage points makes sense in light of the empirical patterns

we observe, in particular the negligible change in bunching seen in the data from 1989 to 1990 when the

marginal tax rate falls by 17 percentage points.

These estimates are intended to suggest the potential for adjustment costs to be important in the analysis
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of the earnings effects of tax changes in such contexts. This conclusion is robust to other assumptions that

we discuss in the Appendix. Under our estimates of the dynamic model we would still find that the short-run

reaction even to large taxes changes is greatly attenuated, since the dynamic model estimates show that most

individuals are constrained from adjusting immediately.

9 Conclusion

We introduce a new method for documenting adjustment frictions: examining the speed of adjustment to

the disappearance of convex kinks in the effective tax schedule. We document delays in earnings adjustment

to the Social Security Earnings Test, consistent with the existence of earnings adjustment frictions in the

U.S. The lack of immediate response suggests that the short-run impact of changes in the effective marginal

tax rate can be substantially attenuated, even with large policy changes like the 1990 change in the benefit

reduction rate from 50 to 33 percent that was accompanied by little immediate change in bunching.

Next, we develop a method to estimate earnings elasticities and adjustment costs, using transparent

identification relying on bunching at convex budget set kinks, which are commonly encountered in public

programs and other economic applications. Examining data in the year of a policy change, we estimate that

the elasticity is 0.35 and the adjustment cost is around $280. When we constrain adjustment costs to zero

in the baseline specification, the elasticity of 0.58 we estimate in 1990 is substantially (66 percent) larger,

demonstrating the potential importance of taking account of adjustment costs. We extend our methods to

a dynamic context and continue to find comparable results.

Our estimates demonstrate the applicability of the methodology and the potential importance of allowing

for adjustment costs when estimating elasticities. The method we develop has subsequently been applied

outside our particular setting, and adjustment costs and elasticities may be different in other contexts.

For example, individuals may pay particular attention to policy rules in the context of Social Security and

retirement, particularly given that the 50 percent BRR may be very salient. The finding that adjustment

costs matter even among those flexible enough to bunch at the kink, and even in the context of a salient

policy, suggests the importance of taking frictions into account in other contexts.

As demonstrated by the data showing little immediate reaction even to large policy changes, even mod-

est fixed adjustment costs– like the $280 cost we estimate in our baseline– can greatly impede short-run

adjustment to large reforms because the costs of deviating from the frictionless optimum are second order.

Adjustment costs can therefore make a dramatic difference in the predictions, as our simulations confirm.

This could frustrate the goal of immediately impacting short-run earnings, as envisioned in many recent

policy discussions, and could have important implications for policy-makers’projections of the magnitude

and timing of the earnings reaction to changes in tax and transfer policies.

Further analysis could enrich our findings. First, we consider our framework for estimating elasticities

and adjustment costs to be a natural first step (following papers such as Saez, 2010; Chetty et al., 2009, 2011,

2012a,b; Chetty, 2012; and Kleven and Waseem, 2013), but a next step could involve estimating a model
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that incorporates additional dynamic considerations (including the potential for anticipatory behavior as we

have begun to model). Second, following most previous literature, in our formal model we have treated the

adjustment cost as a “black box,”without modeling the process that underlies this cost, such as information

acquisition or job search. Further work distinguishing among the possible reasons for reaction to the AET,

including misperceptions, remains an important issue. Third, further investigation of claiming responses

to the AET would be valuable, as Gelber, Jones, Sacks, and Song (2016) are investigating. Finally, an

important outstanding question, also suggested by Best and Kleven (forthcoming), is why bunching does not

take long to disappear after the removal of the kink, despite the existence of frictions.
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Figure 1: Key Earnings Test Rules, 1961-2009

Notes: The right vertical axis measures the benefit reduction rate (BRR) in OASI payments for every dollar earned beyond

the exempt amount. The left vertical axis measures the real value of the exempt amount over time.
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Figure 2: Earnings Histograms and Normalized Excess Mass by Age

A. Histograms by Age

B. Normalized Excess Mass by Age

Notes: The sample is a one percent random sample of all Social Security numbers, among individuals who claim OASI

benefits by age 65, over calendar years 1990 to 1999. We exclude person-years with self-employment income or with zero

non-self-employment earnings. The bin width is $800. In Panel A, the earnings level zero, shown by the vertical lines, denotes

the kink. The dots show the histograms using the raw data, and the polynomial curves show the estimated counterfactual

densities estimated using data away from the kink. Panel B shows normalized bunching at the AET kink, calculated as

described in Section 3. Dashed lines denote 95% confidence intervals. The vertical lines show the ages at which the AET first

applies (62) and ceases to apply (70). 31



Figure 3: Mean Percentage Change in Earnings from Age t to t+1, by Earnings at Age t, 1990-1998

A. Growth from Age 69 to 70

B. Growth from Age 70 to 71

Notes: The figure shows the mean percentage change in earnings from age t to age t (y-axis), against earnings at age t (x-axis).

In Panel A, t=69, and in Panel B, t=70. Dashed lines denote 95 percent confidence intervals. Earnings are measured relative

to the kink, shown at zero on the x-axis. The data are a 20 percent random sample of 69-year-olds in the LEHD in 1990-1998.

We exclude 1999 as a base year in this and similar graphs because the AET is eliminated for those older than NRA in 2000.

Higher earnings growth far below the kink reflects mean reversion visible in this part of the earnings distribution at all ages.
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Figure 4: Normalized Excess Mass of Claimants, Ages 69 to 72, 1983 to 1999

Note: See notes from Figure 2. Panel A of this figure differs from Figure 2 because here we pool 1983 to 1999 to gain extra

statistical power. The continued bunching at age 71 is more evident. In the main sample, we pool only 1990 to 1999 because

the BRR was constant over this period, avoiding issues relating to the transition to a lower BRR in 1990. Panel B of the

figure shows normalized excess mass by age, demonstrating that excess normalized mass remains significant until age 71 and

smoothly decreases from age 69 to age 72.
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Figure 5: Inertia in Bunching from 64 to 65

Notes: Panel A of the figure shows that when they are age 65, those previously bunching at age 64 tend to either (a) remain

near the age 64 exempt amount or (b) move to the age 65 exempt amount. A greater fraction remains near the age 64 exempt

amount than the fraction that moves to the age 65 exempt amount. Panel B of the figure shows that those bunching at age 65

were usually bunching at age 64 in the previous year (or were near the age 65 exempt amount in the previous year). Having

earnings “near the kink”at a given age is defined as having earnings within $1,000 of the kink at that age; in other words,

“near kink at 64”means that the individual has age 64 earnings within $1,000 of the exempt amount applying at age 64, and

“near kink at 65”means that the individual has age 65 earnings within $1,000 of the exempt amount applying at age 65. The

first vertical line at zero shows the location of the age 64 exempt amount (normalized to zero), and the second vertical line

shows the average location of the age 65 exempt amount (relative to the age 64 exempt amount that has been normalized to

zero). The years of data used are 1990 to 1999.
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Figure 6: Inertia in Bunching from 69 to 70 and 71

Notes: Using data from 1990 to 1999, the figure shows that those bunching at age 69 tend to remain near the kink at ages 70

and 71, and that those bunching at ages 70 and 71 were also bunching at age 69. Specifically, the figure shows the density of

earnings at age 69 conditional on having earnings near the kink at age 70 (Panel A), the density of earnings at age 69

conditional on having earnings near the kink at age 71 (Panel B), the density of earnings at age 70 conditional on having

earnings near the kink at age 69 (Panel C), and the density of earnings at age 71 conditional on having earnings near the kink

at age 69 (Panel D). Having earnings “near the kink” is defined as having earnings within $1,000 of the exempt amount

applying to that age. See also notes from Figure 5.

35



Figure 7: Bunching Responses to a Convex Kink, with Fixed Adjustment Costs

Note: See Section 6 for an explanation of the figures.
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Figure 8: Comparison of Normalized Excess Mass Among 62-64 Year-Olds and 66-68 Year-Olds, 1982-1993

Notes: The figure shows normalized bunching among 62-64 year-olds and 66-68 year-olds in each year from 1982 to 1993.

See other notes from Figure 2.

Figure 9: Elasticity Estimates by Year, Saez (2010) Method, 1982-1993

Notes: The figure shows elasticities estimated using the Saez (2010) method, by year from 1982 to 1993, among 66-68

year-old OASI claimants. Dashed lines denote 95 percent confidence intervals. We use our methods for estimating normalized

excess mass but use Saez’(2010) formula to calculate elasticities, under a constant density. This method yields the following

formula: ε =
[
log
(
b
z∗ + 1

)]/ [
log
(

1−τ0
1−τ1

)]
.
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Table 1: Summary Statistics, Social Security Administration Master Earnings File

Ages 62-69

Mean Earnings 28,892.63
(78,842.99)

10th Percentile 1,193.64
25th Percentile 5,887.75
50th Percentile 14,555.56
75th Percentile 35,073.00
90th Percentile 64,647.40

Fraction Male 0.57

Observations 376,431

Notes: The data are taken from a one percent random sample of the SSA Master Earnings File and Master Beneficiary

Record. The data cover those in 1990-1999 who are aged 62-69, claim by age 65, do not report self-employment earnings, and

have positive earnings. Earnings are expressed in 2010 dollars. Numbers in parentheses are standard deviations.

Table 2: Estimates of Elasticity and Adjustment Cost: Variation Around 1990 Policy Change

(1) (2) (3) (4)

ε φ ε|φ = 0

1990 1989

Baseline 0.35 $278 0.58 0.31
[0.31, 0.43]*** [58, 391]*** [0.45, 0.73]*** [0.24, 0.39]***

Uniform Density 0.21 $162 0.36 0.19
[0.18, 0.24]*** [55, 211]*** [0.30, 0.43]*** [0.16, 0.23]***

Benefit Enhancement 0.58 $151 0.87 0.52
[0.50, 0.72]*** [17, 226]*** [0.69, 1.11]*** [0.41, 0.66]***

Excluding FICA 0.49 $318 0.74 0.42
[0.44, 0.59]*** [60, 364]*** [0.58, 0.94]*** [0.33, 0.54]***

Bandwidth = $400 0.45 $103 0.62 0.43
[0.36, 0.58]*** [0, 478]* [0.47, 0.81]*** [0.32, 0.56]***

Bandwidth = $1,600 0.33 $251 0.55 0.30
[0.29, 0.43]*** [34, 407]*** [0.43, 0.72]*** [0.23, 0.40]***

Notes: The table shows estimates of the elasticity and adjustment cost using the method described in Section 6.3, investi-

gating the 1990 reduction in the AET BRR from 50 percent to 33.33 percent. We report bootstrapped 95 percent confidence

intervals in parentheses. The baseline specification uses a nonparametric density taken from the age 72 earnings distribution,

calculates the effective MTR by including the effects of the AET BRR and federal and state income and FICA taxes, uses data

from 1989 and 1990, and calculates bunching using a bin width of $800. The estimates that include benefit enhancement use
effective marginal tax rates due to the AET based on the authors’calculations relying on Coile and Gruber (2001) (assuming

that individuals are considering earning just enough to trigger benefit enhancement), which imply the BRR falls from 36% to

24% due to the 1990 policy change. Columns (1) and (2) report joint estimates with φ ≥ 0 imposed (consistent with theory),
while Columns (3) and (4) impose the restriction φ = 0. The constrained estimate in Column (3) only uses data from 1990,

Column (4) uses only data from 1989. *** indicates that the left endpoint of the 99% confidence interval (CI) is greater than

zero, ** the 95% CI and * the 90% CI.
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Table 3: Estimates of Elasticity and Adjustment Cost: Disappearance of Kink at Age 70

(1) (2) (3)

ε φ ε|φ = 0, Age 69

Baseline 0.42 $90 0.38
[0.35, 0.53]*** [20, 349]*** [0.32, 0.47]***

Uniform Density 0.28 $90 0.25
[0.24, 0.33]*** [21, 238]*** [0.22, 0.30]***

Benefit Enhancement 0.62 $59 0.58
[0.53, 0.77]*** [13, 205]*** [0.49, 0.71]***

Excluding FICA 0.53 $83 0.49
[0.45, 0.66]*** [19, 305]*** [0.42, 0.61]***

Bandwidth = $400 0.39 $62 0.36
[0.31, 0.48]*** [25, 133]*** [0.28, 0.45]***

Bandwidth = $1,600 0.45 $100 0.41
[0.37, 0.56]*** [20, 444]*** [0.33, 0.49]***

68-70 year-olds 0.44 $42 0.43
[0.38, 0.58]*** [0.49, 267]** [0.37, 0.50]***

69, 71 year-olds 0.45 $175 0.38
[0.36, 0.86]*** [30, 1053]*** [0.32, 0.47]***

Born January-March 0.48 $86 0.49
[0.36, 0.76]*** [10, 1008]*** [0.37, 0.71]***

Notes: The table estimates parameters using the removal of the AET at age 70, using data on 69-71 year-olds in 1990-1999.

The estimates of bunching at age 70 are potentially affected by the coarse measure of age that we use, as explained in the

main text. Thus, we use both age 70 and age 71 in estimating these results, and alternatively use only ages 69 and 71, which

shows very similar results. The final row shows the results only for those born in January to March, again to address this

issue. For this sample, we pool 1983-1989 and 1990-1999 (accounting for the different benefit reduction rates in each period)

to maximize statistical power. See also notes from Table 2.

Table 4: Estimates of Elasticity and Adjustment Cost: Pooling 69/70 Transition and 1989/1990 Transition

(1) (2)

ε φ

Baseline 0.39 $160
[0.34, 0.46]*** [59, 362]***

Uniform Density 0.22 $105
[0.20, 0.25]*** [47, 185]***

Benefit Enhancement 0.62 $100
[0.55, 0.75]*** [33, 211]***

Excluding FICA 0.41 $67
[0.37, 0.56]*** [9, 192]***

Bandwidth = $400 0.46 $94
[0.39, 0.56]*** [25, 399]***

Bandwidth = $1,600 0.37 $135
[0.32, 0.45]*** [43, 299]***

Notes: This table implements our “comparative static”method, applied to pooled data from two policy changes: (1) around

the 1989/1990 transition analyzed in Table 2, and (2) around the age 69/70 transition analyzed in Table 3. The table shows

extremely similar results to the dynamic specification in Table 5, where we also pool data from around these two policy

changes. See also notes from Tables 2 and 3.

39



T
ab
le
5:
E
st
im
at
es
of
E
la
st
ic
it
y
an
d
A
dj
us
tm
en
t
C
os
t
U
si
ng
D
yn
am
ic
M
od
el

(1
)

(2
)

(3
)

(4
)

(5
)

ε
φ

π
1

π
1
π

2
π

1
π

2
π

3

B
as
el
in
e

0.
36

$2
43

0.
64

0.
22

0.
00

[0
.3
4,
0.
40
]*
**

[3
4,
67
1]
**
*

[0
.3
9,
1.
00
]*
**

[0
.0
0,
0.
94
]*

[0
.0
0,
0.
14
]*

U
ni
fo
rm

D
en
si
ty

0.
21

$8
1

1.
00

0.
31

0.
00

[0
.2
0,
0.
23
]*
**

[3
1,
18
3]
**
*

[0
.7
2,
1.
00
]*
**

[0
.0
0,
0.
92
]*
**

[0
.0
0,
0.
16
]*
**

B
en
efi
t
E
nh
an
ce
m
en
t

0.
59

$5
3

1.
00

0.
37

0.
00

[0
.5
4,
0.
64
]*
**

[1
8,
16
9]
**
*

[0
.7
6,
1.
00
]*
**

[0
.0
0,
1.
00
]*
**

[0
.0
0,
0.
08
4]
**
*

E
xc
lu
di
ng
F
IC
A

0.
40

$5
5

1.
00

0.
00

0.
00

[0
.3
7,
0.
43
]*
**

[9
,
16
5]
**
*

[1
.0
0,
1.
00
]*
**

[0
.0
0,
0.
00
]*
**

[0
.0
0,
0.
00
]*
**

B
an
dw
id
th
=
$4
00

0.
40

$7
4

1.
00

0.
47

0.
00

[0
.3
6,
0.
44
]*
**

[2
0,
27
1]
**
*

[0
.7
4,
1.
00
]*
**

[0
.0
94
,
0.
94
]*
**

[0
.0
0,
0.
20
]*
**

B
an
dw
id
th
=
$1
,6
00

0.
36

$9
9

0.
88

0.
52

0.
00

[0
.3
4,
0.
39
]*
**

[1
9,
40
1]
**
*

[0
.4
0,
1.
00
]*
**

[0
.0
43
,
1.
00
]*
**

[0
.0
0,
0.
07
1]
**
*

N
ot
es
:
T
h
e
ta
b
le
sh
ow
s
es
ti
m
at
es
of
th
e
el
as
ti
ci
ty
an
d
ad
ju
st
m
en
t
co
st
u
si
n
g
th
e
d
yn
am
ic
m
et
h
od

d
es
cr
ib
ed
in
S
ec
ti
on
7.
T
h
e
ta
b
le
re
p
or
ts
th
e
el
as
ti
ci
ty
ε,
th
e
ad
ju
st
m
en
t

co
st
φ
,
an
d
th
e
cu
m
u
la
ti
ve
p
ro
b
ab
il
it
y
in
ea
ch
p
er
io
d
t
of
h
av
in
g
d
ra
w
n
φ
t
>

0
fo
r
ea
ch
p
er
io
d
fo
ll
ow
in
g
th
e
p
ol
ic
y
ch
an
ge
,
i.
e.
π

1
as
w
el
l
as
π

1
π

2
.
T
h
e
m
od
el
is
es
ti
m
at
ed

by
m
at
ch
in
g
p
re
d
ic
te
d
an
d
ob
se
rv
ed
b
u
n
ch
in
g,
u
si
n
g
b
u
n
ch
in
g
on
66
-6
8
ye
ar
-o
ld
s
(p
oo
le
d
)
fo
r
ea
ch
ye
ar
19
87
-1
99
2,
an
d
b
u
n
ch
in
g
on
19
90
-1
99
9
(p
oo
le
d
)
fo
r
ea
ch
ag
e
67
-7
2.

E
st
im
at
es
of
π

1
π

2
π

3
ar
e
st
at
is
ti
ca
ll
y
si
gn
ifi
ca
nt
ly
d
iff
er
en
t
fr
om

ze
ro
,
ev
en
th
ou
gh
th
e
re
p
or
te
d
p
oi
nt
es
ti
m
at
es
ar
e
0.
00
,
b
ec
au
se
th
e
p
oi
nt
es
ti
m
at
es
ar
e
p
os
it
iv
e
b
u
t
ro
u
n
d

to
ze
ro
.
π

1
π

2
π

3
π

4
an
d
π

1
π

2
π

3
π

4
π

5
ar
e
al
w
ay
s
es
ti
m
at
ed
to
0.
00
,
w
it
h
a
co
n
fi
d
en
ce
in
te
rv
al
th
at
ru
le
s
ou
t
m
or
e
th
an
a
sm
al
l
va
lu
e
(r
es
u
lt
s
av
ai
la
b
le
u
p
on
re
qu
es
t)
.
T
h
e

re
su
lt
s
ar
e
co
m
p
ar
ab
le
w
h
en
w
e
in
ve
st
ig
at
e
on
ly
th
e
19
89
/1
99
0
or
69
/7
0
p
ol
ic
y
ch
an
ge
s
al
on
e
u
si
n
g
th
e
d
yn
am
ic
sp
ec
ifi
ca
ti
on
(r
es
u
lt
s
av
ai
la
b
le
u
p
on
re
qu
es
t)
.
**
*
in
d
ic
at
es

p<
0.
01
;*
*p
<
0.
05
;
*
p<
0.
10
.

40



A Appendix (for online publication)
A.1 Explaining Bunching Below and Above the Kink
Figure 2 shows an intriguing pattern: bunching appears asymmetric around the exempt amount. In particu-
lar, it is evident that more excess mass appears just below the exempt amount, relative to just above it. We
show in this appendix that our current model can explain this pattern. In particular, the observed pattern
can result simply from a downward-sloping counterfactual density and symmetric noise in realized earnings,
relative to desired earnings.
We demonstrate this in a simple model without adjustment costs or heterogeneity. In the upper-left

panel of Appendix Figure B.1, we show the earnings density prior to the introduction of a kink and partition
earners into three groups: A, B, and C. In the bottom-left panel, the kink has been introduced. Group A,
who earns below z∗, does not respond. Group B is the set of bunchers, who locate near z∗. Finally, group C
is comprised of earners who reduce their earnings in response to the kink, but do not bunch at z∗. To match
the data, we assume that bunching is diffuse around z∗, rather than occurring only at z∗– i.e. realized
earnings are equal to desired earnings plus some random, mean-zero noise (Friedberg, 2000). As can be seen,
the downward slope of the initial density causes the ex-post density, net of bunchers, to be much higher just
below the exempt amount, relative to just above the it. As a result, when the set of bunchers create excess
mass near z∗, it appears that more excess mass is located just below the exempt amount, relative to just
above it.
We confirm this in the right panel of Appendix Figure B.1, where we have plotted a counterfactual density

and a simulated earnings density. We use the age 72 earnings density as the counterfactual density under
a linear budget set, as in our main results. Next, we simulate the density that would be predicted at age
69 with the baseline elasticity of 0.36 from our dynamic model. We ignore the adjustment cost under the
assumption– for illustrative purposes– that we are operating in a steady state in which enough time has
elapsed for full adjustment to take place, which is plausible by age 69. Finally, we assume, for illustrative
purposes, that relative to desired earnings, a normally distributed, mean-zero error is added, with a standard
deviation equal to $1,800, i.e. half of the baseline excluded region above and below the exempt amount.
This ensures that among those intending to locate at the exempt amount, over 99 percent locate within the
baseline excluded region of $3,600 on either side of the exempt amount.40

It is evident in Appendix Figure B.1 that more excess mass appears just below the exempt amount than
just above it, consistent with the observed pattern at age 69 in Figure 2. Indeed, we can calculate measures
of excess mass in the regions below and above the exempt amount, respectively. We do so by estimating
excess mass, limiting the sample only to observations below and above the exempt amount, respectively. This
calculation on the actual density for age 69 shows that normalized excess mass below the exempt amount
accounts for 63 percent of the total amount of excess mass (in the bins centered below, at, and above the
exempt amount). This is insignificantly different from the 55 percent predicted in the simulation. Note
that in both the actual and simulated distributions, the percent bunching in the bin centered at the kink
is substantial and includes some individuals who have earnings below the kink (but still within the central
bin’s width).
These qualitative conclusions are robust to alternative assumptions about the parameters (results avail-

able upon request). Thus, we can reproduce the patterns of bunching below and above the kink using only
the fact that the counterfactual density is downward sloping, and following previous literature in adding
noise to realized earnings, relative to desired earnings.

A.2 Dynamic Model with Forward-Looking Behavior
We present in this appendix a version of the dynamic model in Section 6.4 in which we allow for forward-
looking behavior. The key difference in implications is that in addition to a gradual, lagged response to policy
changes, this version of the model also predicts anticipatory adjustment by agents when policy changes are
anticipated in advance. We have essentially the same setting as in Section 6.4, except that we will alter
three of the assumptions. First, in each period, an individual draws a cost of adjustment, φ̃t, from a discrete
distribution, which takes a value of φ with probability π and a value of 0 with probability 1− π.41 Second,
40The results are comparable throughout a range of assumptions about this standard deviation.
41For expositional purposes, we constrain the probability of drawing a nonzero fixed costs to be π in all periods. Thus,

the terms from Section 6.4 of the form
∏
πj simplify to πj in this appendix. All results go through with the more flexible
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individuals make decisions over a finite horizon, living until Period T . In period 0, the individuals face a
linear tax schedule, T0 (z) = τ0z, with marginal tax rate τ0. In period 1, a kink, K1, is introduced at the
earnings level z∗. This tax schedule is implemented for T1 periods, after which the tax schedule features a
smaller kink, K2, at the earnings level z∗. The smaller kink is present until period T2, after which we return
to the linear tax schedule, T0. As before, the kink Kj , j ∈ {1, 2}, features a top marginal tax rate of τ j for
earnings above z∗.42 Finally, in each period, individuals solve this maximization problem:

max
(ca,t,za,t)

v (ca,t, za,t; a, za,t−1) + δVa,t+1 (za,t, Aa,t) , (A.1)

where v (ca,t, za,t; a, za,t−1) ≡ u (ca,t, za,t; a)− φ̃t · 1 (za,t 6= za,t−1), δ is the discount factor, and Va,t+1 is the
value function moving forward in Period t+ 1:

Va,t+1 (ζ,Aa,t) = Eφ
[

max
(ca,t+1,za,t+1)

v (ca,t+1, za,t+1; a, ζ) + δVa,t+2 (za,t+1, Aa,t+1)

]
. (A.2)

Va,t+1 is a function of where the individual has chosen to earn in Period t and assets Aa,t. The expectation
Eφ [·] is taken over the distribution of φ̃t. The intertemporal budget constraint is:

Aa,t = (1 + r) (Aa,t−1 + za,t − T (za,t)− ca,t) . (A.3)

We assume that δ (1 + r) = 1. Because individuals have quasilinear preferences, this implies that con-
sumption can be set to disposable income in each period: ca,t = za,t−T (za,t). We therefore use the following
shorthand:

uja (z) = u (z − Tj (z) , z; a)

Va,t (z) = Va,t (z,Aa,t−1) (A.4)

Next, we define two operators that measure the utility gain (or loss) following a discrete change in earnings:

4uja (z, z′) = uja (z)− uja (z′)

4Va,t (z, z′) = Va,t (z)− Va,t (z′) (A.5)

In each case above, the utility and utility differential depend on the tax schedule. We define zja as the optimal
level of earnings under a frictionless, static optimization problem, facing the tax schedule Tj . We will refer
to the frictionless, dynamic optimum in any given period as z̃a,t.43 This is the optimal level of earnings when
there is a fixed cost of zero drawn in the current period, but a nonzero fixed cost may be drawn in future
periods. We will also make a distinction between two types of earnings adjustments: active and passive.
An active earnings adjustment takes place in the presence of a nonzero fixed cost, while a passive earnings
adjustment takes place only when a fixed cost of zero is drawn. We solve the model recursively, beginning in
the regime after time T2, when the smaller kink, K2, has been removed, continuing with the solution while
the kink K2 is present between times T1 and T2, and finally considering the first regime when the kink K1

is present between time period 1 and T1.44

A.2.1 Earnings between T2 and T
We will now derive the value function Va,T2+1 (z). We begin with the following result: If an individual with
initial earnings z makes an active adjustment in period t > T2 + 1, then it must be the case that

1− (δπ)
T1+1−t

1− δπ 4u0
a

(
z0
a, z
)
≥ φ. (A.6)

distribution of adjustment costs in Section 6.4.
42 In Section 6.4, we do not specify time T2, when the smaller kink, K2, is removed, as it is not relevant to the case where

individuals are not forward-looking.
43 In a model with no forward-looking behavior, zja = z̃a,t.
44Our recursive method can be extended to the case of multiple, successive kinks. The effect on bunching of a sequence of

more kinks depends on the relative size of the successive kinks.
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We demonstrate this result with a constructive proof, showing the result for periods T and T −1. Because
the tax schedule is constant throughout this terminal period, the frictionless, dynamic optimum is equal to
the static optimum: z̃a,t = z0

a. First, consider an agent in period T , with initial earnings z, who is considering
maintaining earnings at z or paying the fixed cost φ and making an active adjustment to z0

a, the frictionless,
dynamic optimum in period T . The agent will make the adjustment if:

4u0
a

(
z0
a, z
)
≥ φ

=
1− δπ
1− δπφ. (A.7)

Rearranging terms, we have satisfied the inequality in (A.6).
Now consider agents in period T − 1 with initial earnings z. There are two types, those who would

make an active adjustment to z0
a in period T if the earnings z are carried forward and those who would

not. Consider those who would not. If the agent remains with earnings of z, then utility will be u0
a (z) +

δVa,T (z) = u0
a (z) + δ

[
π
(
u0
a (z)

)
+ (1− π)u0

a

(
z0
a

)]
. If the agent actively adjusts to z0

a, then utility will be
u0
a

(
z0
a

)
− φ+ δu0

a

(
z0
a

)
. The agent will actively adjust in period T − 1 if:

4u0
a

(
z0
a, z
)
≥ 1

1 + δπ
φ

=
1− δπ

1− (δπ)
2φ. (A.8)

Once again, rearranging terms confirms that (A.6) holds. Finally, consider agents who would actively adjust
from z to z0

a if earnings level z is carried forward. In this case, the agent’s utility when remaining at z is:

u0
a (z) + δVa,T (z) = u0

a (z) + δ
[
π
(
u0
a

(
z0
a

)
− φ

)
+ (1− π)u0

a

(
z0
a

)]
(A.9)

= u0
a (z) + δ

(
u0
a

(
z0
a

)
− πφ

)
.

Intuitively, the agent will receive the optimal level of utility in the next period, and with probability π the
agent will have to pay the fixed cost to achieve it. Similarly, the agent’s utility after actively adjusting to z0

a

in period T − 1 is u0
a

(
z0
a

)
− φ+ δu0

a

(
z0
a

)
. The agent will therefore adjust in period T if:

4u0
a

(
z0
a, z
)
≥ (1− δπ)φ. (A.10)

However, we know from (A.7) that this already holds for the agent who actively adjusts in period T . Finally,
note that (A.7) implies (A.8). It follows that in period T − 1, adjustment implies (A.7). We can similarly
show the result for earlier periods by considering separately: (a) those who would actively adjust in the
current period, but not in any future period; and (b) those who would adjust in some future period. Both
types will satisfy the key inequality. As a corollary, note that if an individual with initial earnings z makes
an active adjustment in period t > T2 + 1, then she will also find it optimal to do so in any period t′, where
T2 < t′ < t. To see this, note that if (A.6) holds for t, then it also holds for t′ < t. It follows that the agent
would also actively adjust in period t′.
Now consider an agent who earns z in period T2. Note that our results above imply that any active

adjustment that takes place after T2 will only happen in period T2 + 1. These agents will receive a stream

of discounted payoffs of u0
a

(
z0
a

)
for T − T2 periods, i.e.

∑T −T2−1
j=0 δju0

a

(
z0
a

)
= 1−δT−T2

1−δ u0
a

(
z0
a

)
, and pay a

fixed cost of φ in period T2 with probability π. Otherwise, an agent will adjust to the dynamic frictionless
optimum z0

a only when a fixed cost of zero is drawn. In the latter case, the agent receives a payoff of u
0
a (z)

until a fixed cost of zero is drawn, after which, the agent receives u0
a

(
z0
a

)
. We can therefore derive the

following value function:45

Va,T2+1 (z) =

 1−δT−T2
1−δ u0

a

(
z0
a

)
− πφ if 1−(δπ)T−T2

1−δπ 4u0
a

(
z0
a, z
)
≥ φ

1−δT−T2
1−δ u0

a

(
z0
a

)
− π 1−(δπ)T−T2

1−δπ 4u0
a

(
z0
a, z
)
otherwise

. (A.11)

45The expected utility for passive adjusters is constructed recursively, working backward from period T to period T2 + 1.
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To gain some intuition for (A.6), note that the left side of (A.6) is the net present value of the stream of
the utility differential once the agent adjusts from z to z0

a. If this exceeds the up-front cost of adjustment, φ,
then the agent actively adjusts. The discount factor for j periods in the future, however, is (δπ)

j , instead of
only δj . The reason is that current adjustment only affects future utility j periods from now if j consecutive
nonzero fixed costs are drawn, which happens with probability πj . To better understand our second result
regarding the timing of active changes, note that if the gains from adjustment over T − t periods exceed the
up-front cost, then the agent should also be willing to adjust in period t′ < t and accrue T − t′ periods of
this gain, for the same up-front cost of φ.

A.2.2 Earnings between T1 and T2

We now derive the value function Va,T1+1 (z). In this case, the dynamic frictionless optimum in each period,
z̃a,t, is not constant. Intuitively, the agent trades off the gains from adjusting earnings in response to K2

with the effect of this adjustment on the value function Va,T2+1. In general, the optimum is defined as:

z̃a,t = arg max
z∈[z2a,z

0
a]

1− (δπ)
T2+1−t

1− δπ u2
a (z) + δT2+1−tπT2−tVa,T2+1 (z) . (A.12)

We restrict the maximization to the interval
[
z2
a, z

0
a

]
, since reducing earnings below z2

a or raising earnings
above z0

a weakly reduces utility in any current and all future periods for t > T1. From (A.11), we know that
Va,T2+1 is continuous, and thus the solution in (A.12) exists.46 We present two results analogous to those in
Section A.2.1, without proof. The proofs, nearly identical to those in the previous section, are available upon
request. First, if an individual with initial earnings z makes an active adjustment in period t, T1 < t ≤ T2,
then:

1− (δπ)
T2+1−t

1− δπ 4u2
a (z̃a,t, z) + δT2+1−tπT2−t4Va,T2+1 (z̃a,t, z) ≥ φ. (A.13)

Furthermore, if an individual with initial earnings z makes an active adjustment in period t, T1 < t ≤ T2,
then she will also find it optimal to do so in any period t′, where T1 < t′ < t.
The condition in (A.13) differs from that in (A.6) because the effect of adjustment on the utility beyond

period T2 is taken into account, in addition to the up-front cost of adjustment, φ. Any adjustment in this
time interval, active or passive, will be to the dynamic, frictionless optimum for the current period, z̃a,t.
As before, (A.13) implies that all active adjustment occurring between T1 + 1 and T2 takes place in period
T2 + 1. Those who adjust in period T2 + 1 will earn z̃a,T1+1. Thereafter, they only adjust to z̃a,t when a fixed
cost of zero is drawn. Likewise, those who only adjust passively earn za,T1 in period T1 + 1, and thereafter

46Technically, we can see from (A.11) that while the function Va,P2+1 is continuous, it is kinked, which creates a nonconvexity.
Thus, the solution in (A.12) may not always be single-valued. In such cases, we define z̃a,t as the lowest level of earnings that
maximizes utility.
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adjust to z̃a,t when a fixed cost of zero is drawn. We can therefore derive the following value function:

Va,T1+1 (z) =



T2−T1−1∑
j=0

δju2
a (z̃a,T1+1+j) + δT2−T14Va,T2+1 (z̃a,T2)

−
T2−T1−2∑
j=0

(δπ)T2−T1

πj+1 4Va,T2+1 (z̃a,T1+2+j , z̃a,T1+1+j)

−
T2−T1−2∑
j=0

1−(δπ)T2−T1−1−j

1−δπ δj+1π4u2
a (z̃a,T1+2+j , z̃a,T1+1+j)

−πφ

if (A.13) is satisfied
when t = T1 + 1

T2−T1−1∑
j=0

δju2
a (z̃a,T1+1+j) + δT2−T14Va,T2+1 (z̃a,T2)

−
T2−T1−2∑
j=0

(δπ)T2−T1

πj+1 4Va,T2+1 (z̃a,T1+2+j , z̃a,T1+1+j)

−
T2−T1−2∑
j=0

1−(δπ)T2−T1−1−j

1−δπ δj+1π4u2
a (z̃a,T1+2+j , z̃a,T1+1+j)

−π
{
T2−T1−1∑
j=0

(δπ)
j4u2

a (z̃a,T1+1, z)

− δT2−T1πT2+1−T14Va,T2+1 (z̃a,T1+1, z)

}
otherwise

(A.14)
The first case in (A.14) applies to those who actively adjust in period T1 + 1 and passively adjust thereafter.
The first line is the utility that would accrue if a fixed cost of zero were drawn in each period. The next
two lines represent the deviation from this stream of utility, due to nonzero fixed costs potentially drawn
in periods T1 + 1 through T2. The final line represents the fixed cost that is paid in period T1 + 1 with
probability π. The second case in (A.14) applies to those who only passively adjust. The first three lines
remain the same. The final two lines represent a loss in utility attributed to fact that earnings in period
T1 + 1 may not be z̃a,T1+1. Note that earnings in period T1 can only affect utility through this last channel.

A.2.3 Earnings between Period 1 and T1

Earnings during the first period, when the kink K1 is present, can be derived similarly. The dynamic,
frictionless optimum is now defined as:

z̃a,t = arg max
z∈[z1a,z

0
a]

1− (δπ)
T1+1−t

1− δπ u1
a (z) + δT1+1−tπT1−tVa,T1+1 (z) .47 (A.15)

Similar to the other cases, if an individual with initial earnings z makes an active adjustment in period t,
0 < t ≤ T1, then it must be the case that

1− (δπ)
T1+1−t

1− δπ 4u1
a (z̃a,t, z) + δT1+1−tπT1−t4Va,T1+1 (z̃a,t, z) ≥ φ. (A.16)

Furthermore, if an individual with initial earnings z makes an active adjustment in period t, 0 < t ≤ T1,
then she will also find it optimal to do so in any period t′, where 0 < t′ < t. Again, this implies that all
active adjustment will take place in period 1. Since individuals begin with earnings of z0

a, we know that all
active adjustment will be downward. Thereafter, it can be shown that z̃a,t is weakly increasing, and upward
adjustment will occur passively.

A.2.4 Characterizing Bunching

Given these results, we can now derive expressions for excess mass at z∗ analogous to (8) and (9). For
notational convenience, we define Aj (z) as the set of individuals, a, with initial earnings z who actively

47Note, the objective function now features two potential nonconvexities. In cases where the solution is multi-valued, we
again define z̃a,t as the lowest earnings level from the set of solutions.
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adjust in period j. Again, denote Bt1 as bunching at K1 in period t ∈ [1, T1]. We have the following
generalized version of (8):

Bt1 =

∫ z∗+4z∗1

z∗

[
1 {z̃a,1 = z∗, a ∈ A1 (ζ)}

+
t∑

j=1

(
1− πj

)
πt−j1 {sup { l| l ≤ t, z̃a,l = z∗} = j, a /∈ A1 (ζ)}

−
t−1∑
j=1

(
1− πt−j

)
1 {sup { l| l ≤ t, z̃a,l = z∗} = j, a ∈ A1 (ζ)}

]
h0 (ζ) dζ.

(A.17)

We have partitioned the set of potential bunchers into three groups in (A.17). In the first line, we have the
set of active bunchers in period 1. In the second line, we capture individuals who are passive bunchers, i.e.
a /∈ A1

(
z0
a

)
. For j ∈ [1, t− 1], the indicator function selects the individual who has z̃a,j = z∗ but z̃a,j+1 6= z∗.

Since z̃a,t is weakly increasing, the optimal earnings for this individual is z∗ in periods 1 through j − 1. The
probability that the individual bunches by period j is 1 − πj . Thereafter, the individual will de-bunch if a
fixed cost of zero is drawn. The probability of only drawing nonzero fixed costs thereafter is πt−j . For j = t,
the indicator function selects agents for whom z̃a,t = z∗. Their probability of passively bunching by period
t is 1− πt. The third line captures the outflow of active bunchers, for whom z̃a,t ceases to be z∗ starting in
period j. The probability of having drawn a nonzero fixed cost and de-bunching since period j is 1− πt−j .
Equation (A.17) differs from (8) in three key ways. First, the set of active bunchers in period 1 is

different, as can be seen by comparing (A.16) and the relevant condition for active bunchers in Section
6.4, 4u1

a

(
z∗, z0

a

)
≥ φ. The utility gain accrues for multiple periods in the forward-looking case, increasing

the probability of actively bunching, but the effect of adjustment on future payoffs via Va,T1+1 may either
reinforce or offset this incentive. Furthermore, passive bunchers are (weakly) less likely to remain bunching,
as they de-bunch in anticipation of policy changes in future periods. To see this, note that the πt−j factor
is decreasing in t. Finally, the set of active bunchers similarly de-bunch passively, in anticipation of future
policy changes. The model therefore predicts a gradual outflow from the set of bunchers, in anticipation of
the shift from K1 to K2. Nonetheless, the overall net change in bunching over time is ambiguous.
We now turn to bunching starting in period T + 1. It can be shown, similarly to the cases above, that

if an agent would be willing to actively bunch in period T1 + 1, she will also be willing to actively bunch in
earlier periods. Thus, the only active adjustment occurring that affects bunching will be de-bunching. The
set of individuals who actively de-bunch, AT1+1 (z∗), are those for whom (A.13) is satisfied, when evaluated
at t = T1+1 and z = z∗. The remaining changes in bunching between T1 and T2 consist of passive adjustment
among those who were bunching at the end of period T1. We can thus characterize Bt2, bunching at K2 in
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period t ∈
[
T1 + 1, T

]
, in a manner analogous to (9):48

Bt2 =

∫ z∗+4z∗1

z∗

[
1 {a /∈ AT1+1 (z∗)}

×
{
πt−T11 {z̃a,T1+1 6= z∗}+

t∑
j=T1+1

πt−j1 {sup { l| l ≤ t, z̃a,l = z∗} = j}
}

×
{
1 {z̃a,1 = z∗, a ∈ A1 (ζ)}

+

T1∑
j=1

(
1− πj

)
πT1−j1 {sup { l| l ≤ T1, z̃a,l = z∗} = j, a /∈ A1 (ζ)}

−
T1−1∑
j=1

(
1− πT1−j

)
1 {sup { l| l ≤ T1, z̃a,l = z∗} = j, a ∈ A1 (ζ)}

}]
h0 (ζ) dζ.

(A.18)

The first line of this expression selects only those agents who do not actively de-bunch immediately in period
T1 + 1. The second line selects the set of agents who would like to passively de-bunch beginning at some
period j > T1 + 1. They are weighted by the probability of continuing to bunch due to consecutive draws
of nonzero fixed costs. The final three lines select agents from the set of bunchers at the end of period T1.
As with our simpler model in Section 6.4, bunching gradually decreases following a reduction in the size of
the kink from K1 to K2. However, in this case, the reduction is due to both fixed costs of adjustment and
anticipation of the removal of the kink K2 in period T2 + 1.
As in Section 6.4, the richer model in this appendix nests the dynamic model without forward looking

behavior when we set δ = 0, collapses to the comparative static model of Sections 6.2-6.3 if we additionally
assume that π = 1 and is equivalent to the frictionless model when either φ = 0 or π = 0.

A.3 Derivation of Bunching Formulae with Heterogeneity
A.3.1 Comparative Static Model

Under heterogenous preferences, our estimates can be interpreted as reflecting average parameters among
the set of bunchers (as in Saez, 2010, and Kleven and Waseem, 2013). As described in Section 6.5.1, suppose
(εi, φi, ai) is jointly distributed according to a smooth CDF, which translates to a smooth, joint distribution
of elasticities, fixed costs and earnings. Let the joint density of earnings, adjustment costs and elasticities
be h∗0 (z, ε, φ) under a linear tax of τ0. Assume that the density of earnings is constant over the interval
[z∗, z∗ + ∆z∗], conditional on ε and φ. When moving from no kink to a kink, we derive a formula for bunching
at K1 in the presence of heterogeneity as follows:

B1 =

∫∫∫ z∗+∆z∗1

z1

h∗0 (ζ, ε, ϕ) dζdεdϕ

=

∫∫
[z∗ + ∆z∗1 − z1]h∗0 (z∗, ε, ϕ) dεdϕ

= h0 (z∗) ·
∫∫

[z∗ + ∆z∗1 − z1]
h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

= h0 (z∗) · E [z∗ + ∆z∗1 − z1] , (A.19)

where we have used the assumption of constant h∗0 (·) in line two, h0 (z∗) =
∫∫

h∗0 (z∗, ε, ϕ) dεdϕ, and ζ, ε
and ϕ are dummies of integration. The expectation E [·] is taken over the set of bunchers, under the various
combinations of ε and φ throughout the support. It follows that normalized bunching can be expressed as

48When T1 = 1, we set the very last summation to zero.
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follows:
b1 = z∗ + E [∆z∗1 ]− E [z1] . (A.20)

Under heterogeneity, the level of bunching identifies the average behavioral response, ∆z∗, and threshold
earnings, z1, among the marginal bunchers under each possible combination of parameters ε and φ. Under
certain parameter values, there is no bunching, and thus, the values of the elasticity and adjustment cost in
these cases do not contribute our estimates.
When we move sequentially from a larger kink, K1 to a smaller kink, K2, our formula for bunching under

K2 in the presence of heterogeneity is likewise derived as follows:

B̃2 =

∫∫∫ z̄0

z1

h∗0 (ζ, ε, ϕ) dζdεdϕ

=

∫∫
[z̄0 − z1]h∗0 (z∗, ε, ϕ) dεdϕ

= h0 (z∗) ·
∫∫

[z̄0 − z1]
h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

= h0 (z∗) · E [z̄0 − z1] . (A.21)

Similarly, normalized bunching can now be expressed as follows:

b̃2 = E [z̄0]− E [z1] . (A.22)

Once again, the expectations are taken over the population of bunchers.
Following the approach in Kleven and Waseem (2013, pg. 682), the average value of the parameters ∆z∗1 ,

z1 and z̄0 can then be related to ε and φ, assuming a quasi-linear utility function and using (5) and (7) and
the identities 4z∗1 = εz∗dτ1/ (1− τ0) and z̄0 − z̄2 = εz̄2dτ2/ (1− τ0).

A.3.2 Dynamic Model

A similar interpretation of our results holds when we turn to our more dynamic framework in Section 6.4.
Suppose now that (εi, φi, ai,πi) is jointly distributed according to a smooth CDF, which results in a smooth,
joint distribution of elasticities, fixed costs, earnings, and probabilities of drawing a positive fixed cost. In
order to gain tractability, we assume that the profile πi is independent of the parameters (εi, φi, ai). The
result is that the joint density of these parameters, under a linear tax of τ0, can be expressed as a product
of two densities: h∗0 (z, ε, φ) g (πi). We maintain the assumption that the density of earnings is constant over
the interval [z∗, z∗ + ∆z∗], conditional on ε and φ. Bunching at K1 in period t ∈ [1, T1] will now be:

Bt1 =

∫∫∫∫ z∗+∆z∗1

z1

h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

+

∫∫∫∫ z1

z∗

(
1−Πt

j=1πj
)
h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

=

∫∫
[z∗ + ∆z∗1 − z1]h∗0 (z∗, ε, ϕ)

(∫
g (π) dπ

)
dεdϕ

+

∫∫
[z1 − z∗]h∗0 (z∗, ε, ϕ)

(∫ (
1−Πt

j=1πj
)
g (π) dπ

)
dεdϕ

= h0 (z∗)

{∫∫
[z∗ + ∆z∗1 − z1]

h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

+
(
1− E

[
Πt
j=1πj

]) ∫∫
[z1 − z∗]

h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

}
= h0 (z∗)

{
z∗ + E [∆z∗1 ]− E [z1] +

(
1− E

[
Πt
j=1πj

])
(E [z1]− z∗)

}
= h0 (z∗)

{
E [∆z∗1 ]− E

[
Πt
j=1πj

]
(E [z1]− z∗)

}
, (A.23)
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where now h0 (z∗) =
∫∫∫

h∗0 (z∗, ε, ϕ) g (π) dεdϕdπ. In the second line, we have again made use of a constant
h∗0 (·) and also the independence of πi. Normalized bunching at K1 in period t will then be:

bt1 = E [∆z∗1 ]− E
[
Πt
j=1πj

]
(E [z1]− z∗) . (A.24)

Using similar steps, we can show that bunching in period t > T1 at K2, when moving sequentially from
K1, can be written as:

Bt2 =

∫∫∫∫ z∗+∆z∗2

z1

h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

+

∫∫∫∫ z̄0

z∗+∆z∗2

(
Πt−T1
j=1 πj

)
h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

+

∫∫∫∫ z1

z∗

(
1−Πt−T1

j=1 πj ·Π
T1
j=1πj

)
h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

= h0 (z∗)

{(
1− E

[
Πt−T1
j=1 πj

])
E [∆z∗2 ] + E

[
Πt−T1
j=1 πj

]
E [z̄0]

−E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
E [z1]−

(
E
[
Πt−T1
j=1 πj

]
− E

[
Πt−T1
j=1 πj ·Π

T1
j=1πj

])
z∗
}
.

(A.25)

Likewise, normalized bunching at K2 will be:

bt2 =
(

1− E
[
Πt−T1
j=1 πj

])
E [∆z∗2 ] + E

[
Πt−T1
j=1 πj

]
E [z̄0]− E

[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
E [z1]

−
(
E
[
Πt−T1
j=1 πj

]
− E

[
Πt−T1
j=1 πj ·Π

T1
j=1πj

])
z∗. (A.26)

The levels of bunching at the kink before and after the transition are now functions of average behavioral
responses, (∆z∗1 ,∆z

∗
2), the average thresholds for marginal bunchers, (z1, z̄0), and average survival proba-

bilities,
(

Πt
j=1πj ,Π

t−T1
j=1 πj ·Π

T1
j=1πj

)
. Relative to our baseline dynamic model in Section 6.4, the number

of intermediate parameters to be identified is increasing in the number of post-transition periods, due to

the terms of the form E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
. A suffi cient condition that allows us to retain identification

while only using two transitions in kinks is that the expectation of this product simplifies to a product of

expectations: E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
= E

[
Πt−T1
j=1 πj

]
E
[
ΠT1j=1πj

]
. There are two cases of interest that satisfy

this condition. First, if πj = 0 for some j < T1, then ΠT1j=1πj = 0, and the condition holds. This empirically
appears to be the case in our context: adjustment takes roughly two years, while T1 ≥ 3 in our two main
applications. Second, if there is no heterogeneity in π across agents, the condition also holds.

If we relax the assumption that E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
= E

[
Πt−T1
j=1 πj

]
E
[
ΠT1j=1πj

]
, we will require addi-

tional transitions in kinks in order to achieve identification. Furthermore, if we relax the assumption that the
profile πi is independent of (εi, φi, ai), identification is more complicated, as the expectations in the above
expressions will then feature weights that vary with t. In that case, more parametric structure on the joint
distribution of (εi, φi, ai,πi) is needed to achieve identification. We discuss identification further in section
A.5 of the Appendix.

A.4 Allowing for Frictions in Initial Earnings
In the initial period 0 (prior to the policy change), under a linear tax of τ0, we have assumed that individuals
are located at their frictionless optimum, while we have assumed in subsequent periods adjustment costs
may preclude individuals from reaching their exact, interior optimum. Here, we extend the model to allow
for agents to be away from their optimum in period 0, in a way that is consistent with our model of a fixed
adjustment cost.
We now analyze the thought experiment previously discussed in Section 6.3. That is, we demonstrate

this extension in the context of the “comparative static”model. From a linear tax of τ0 in period 0, in
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period 1 we introduce a kink, K1, at z∗, and let the marginal tax rate increase to τ1 for earnings above z∗.
Finally, in period 2 we replace the first kink with a second, smaller kink, K2, at z∗, where the marginal tax
rate only increases to τ2.
Again, agents are indexed by a. Let za,j be actual earnings for individual a in period when facing tax

schedule Tj (z), and let z̃a,j be the optimal level of earnings she would choose in the absence of adjustment
frictions. As in Chetty (2012), assume that earnings are not “too far” from the frictionless optimum; that
is, assume that earnings are within a set such that the utility gain of adjusting to the optimum does not
exceed the adjustment cost. Formally:

za,j (z̃a,0) ∈
[
z−a,j (z̃a,0) , z+

a,j (z̃a,0)
]
,

where z−a,t ≤ z̃a,j ≤ z+
a,t

and u (z̃a,j − Tj (z̃a,j) , z̃a,j ; a)− φ∗ = u
(
z−a,j − Tj

(
z−a,j
)
, z−a,j ; a

)
= u

(
z+
a,j − Tj

(
z+
a,j

)
, z+
a,j ; a

)
(A.27)

where Tj (·) represents a linear tax of τ0 in period 0, reflects the kink K1 in period 1, and reflects the kink
K2 in period 2. In words, z

−
a,j and z

+
a,j are the lowest and highest level of earnings, respectively, that would

be acceptable before an individual chooses to adjust to their optimal earnings level. Note that we have
defined za,j (z̃a,0) as a function of the optimal level of earnings for individual a in period 0 for notational
convenience. Let the actual earnings, conditional on optimal earnings in period 0, be distributed according to
the cumulative distribution function Fa,j (za,j |z̃a,0 ), with probability density function fa,j (za,j |z̃a,0 ). Thus,
individuals are distributed around their frictionless optimum in period 0.
First, consider the level of bunching at K1. Relative to our baseline model with frictions (that assumes

individuals are initially located at their frictionless optimum), there will be two differences in who bunches.
First, individuals in Figure 7 Panel B area i did not bunch in the baseline because they were suffi ciently
close to the kink. These are agents for whom z∗ < z̃a,0 < z1. Now, with some probability, a fraction of these
agents will be suffi ciently far from z∗ in period 0 to justify moving to the kink in Period 1– formally, those
for whom za,0 ∈

[
z+
a,1, z

+
a,0

]
. Their initial earnings are above their interior optimum in period 0, but not far

enough to outweigh the fixed cost of adjustment in Period 0. Now that the optimum in period 1 has moved
to z∗, the utility gain to readjusting exceeds the fixed cost of adjustment. These individuals will now bunch
under K1. The second difference in this version of the model relative to our baseline model is that some
individuals who had bunched under K1 in the baseline model, i.e. areas ii, iii, iv, and v in Figure 7, may
find themselves already close enough to z∗ in period 0 that they do not bunch at z∗ in period 0 (because
relocating to z∗ in period 0 does not have suffi cient benefit to outweigh the fixed adjustment cost). Formally,
these are individuals for whom za,0 < z+

a,1. These cases are illustrated in Appendix Figure B.4.
Define bunching under this modified model as B′1. Bunching under K1 can be expressed as:

B′1 =

∫ z∗+4z∗1

z∗

[∫ z+n,0

z+n,1

fa,0 (v |ζ ) dv

]
h0 (ζ) dζ

=

∫ z∗+4z∗1

z∗

[
1− Fa,0

(
z+
a,1 |ζ

)]
h0 (ζ) dζ

=

∫ z∗+4z∗1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h0 (ζ) dζ

where ν and ζ are dummies of integration.
We now turn to bunching in period 2, underK2. Note that because this kink is smaller, anyone suffi ciently

close to z∗ that they did not bunch under K1 will continue not to bunch under K2. Thus, the only change
in bunching in period 2 will be those who now move away from the kink. Under the baseline model, these
were individuals for whom z̄0 ≤ z̃a,0 ≤ z∗ +4z∗1 , i.e. area v in Figure 7, Panel B. These individuals will
still find it worthwhile to move away from the kink, but the difference from the baseline model is that only
a subset of them bunched in period 1. Thus, the decrease in bunching will be related to the share of people
in area v who actually bunched under K1. What remains are those individuals with z∗ ≤ z̃a,0 ≤ z̄0 who
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actually bunched in period 1. Formally, bunching in period 2 under K2 can be expressed as follows:

B̃′2 =

∫ z̄0

z∗

[∫ z+n,0

z+n,1

fa,0 (v |ζ ) dv

]
h0 (ζ) dζ

=

∫ z̄0

z∗

[
1− Fa,0

(
z+
a,1 |ζ

)]
h0 (ζ) dζ

=

∫ z̄0

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h0 (ζ) dζ

We can rewrite the level of bunching in this setting in terms of bunching amounts derived above:

B′1 =

∫ z∗+4z∗1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h (ζ) dζ

=

∫ z∗+4z∗1

z∗
h (ζ) dζ ·

∫ z∗+4z1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
) h (ζ)∫ z∗+4z1

z∗
h (ζ) dζ

dζ

= B∗1 ·
∫ z∗+4z∗1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h (ζ|z∗ < ζ ≤ z∗ +4z∗1) dζ

= B∗1 · E
[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
where B∗1 =

∫ z∗+4z∗1
z∗

h0 (ζ) dζ is defined in equation (2) when j = 1. This is the bunching that would occur
in a model of no frictions under K1, i.e. areas i− v in Figure 7, Panel B. Likewise, we have:

B̃
′

2 =

∫ z̄0

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h0 (ζ) dζ

=
[
B̃2 +B∗1 −B1

]
· E
[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
where B̃2 is defined in equation (6), and B1 is defined in equation (4). It follows that B̃2 + B∗1 − B1 =∫ z̄0
z∗
h0 (ζ) dζ, i.e. areas i− iv in Figure 7.
Without further restrictions on the distribution of optimal earnings under a linear tax, H0 (z), or dis-

tribution of earnings about the frictionless optimum in period 0, Fa,j (za,j |z̃a,0 ), we cannot make further
simplifications of these expressions. However, if we assume that the initial actual earnings level is distributed
uniformly about optimal earnings in period 0, following Chetty et al. (2011) or Kleven and Waseem (2013),
then we have:

za,0 ∼ U
[
z−a,0, z

+
a,0

]
which implies that:

Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)

= min

(
z+
a,0 (ζ)− z+

a,1 (ζ)

z+
a,0 (ζ)− z−a,0 (ζ)

, 1

)
Using our definitions above for z+

a,0 (·), z−a,0 (·) and z+
a,1 (·) we can calculate this probability conditional on

initial frictionless earnings in period 0, the elasticity ε and the adjustment cost φ. Note that the uniform
distribution of actual earnings is not generally centered at the optimal earnings level in period 0, since the
lower and upper limits of the support in period 0, i.e.

[
z−a,0, z

+
a,0

]
, will tend to be different distances from the

frictionless optimum. We can also calculate B∗1 , B1, and B̃2, conditional on the counterfactual distribution
H0 (z) and a value of ε and φ. We are therefore able to calculate predicted values for B′1 and B̃

′

2 and use
these in amodified version of the estimation procedure outlined in Section 6.6.1.
Although it is not necessary for our estimation procedure, if we further assume that the optimal earnings

density, h0 (·), is constant over the range [z∗, z∗ +4z∗1 ], as is common in the literature (e.g., Chetty et al.
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2011 or Kleven and Waseem 2013), then we have the following:

B
′

1 = B∗1 · E
[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
= 4z∗1h0 (z∗) · E

[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
and likewise:

B
′

2 =
[
B̃2 +B∗1 −B1

]
· E
[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
= [z̄0 − z∗]h0 (z∗) · E

[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
It also follows that bunching normalized by the height of the density at the kink will be:

b
′

1 = 4z∗1 · E
[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
b
′

2 = [z̄0 − z∗] · E
[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
A.5 Identification
Our estimator is a minimum distance estimator (MDE); Newey and McFadden (1994) give conditions for
identification, consistency, and asymptotic normality. An MDE is defined as:

θ̂ = arg min
θ
Q̂(θ)

Q̂(θ) = [B −m(θ)]′Ŵ [B −m(θ)]

In our case, B is a vector of L estimated bunching amounts from before and after a policy change, and
m(θ) is a vector of predicted bunching amounts. Ŵ is a weighting matrix. We consider our comparative
static, and dynamic, models, in turn.

A.5.1 Comparative Static Model

We focus on the exactly identified case with two bunching moments, which is relevant in our empirical
application of the comparative static model. We have:

m(θ) = (B1(ε, φ), B̃2(ε, φ))

B1 =

∫ z∗+∆z∗1

z1

h(ξ)dξ

B̃2 =

∫ z̄0

z1

h(ξ)dξ

where B1 and B̃2 refer to bunching before and after the policy change, and θ ≡ (ε, φ).
The upper cutoff in B1 is defined as

z∗ + ∆z∗1 = z∗
(

1− τ0

1− τ1

)ε
.

A necessary condition for identification is that solutions for z1 and z̄0 exist; if they do not, then no
bunching occurs. It is straightforward to show that a solution for z1 exists if

z∗
[
(1− τ1)−

(
1− τ0

1− τ1

)ε
((1− τ1)− ε (τ1 − τ0))

]
> φ (ε+ 1) .

This ensures that the “top”buncher wants to adjust to the kink. A solution for z̄0 exists as long as some
debunching occurs. It is straightforward to show that this requires that:
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z∗

[
(1− τ2)

ε+1 − (1− τ1)
ε+1

(1− τ1)
ε

]
> φ (ε+ 1) .

As long as τ0 < τ2 < τ1, ε > 0, and φ > 0, there exists a range of values of ε and φ for which these
inequalities hold.
Provided that z̄0 and z1 exist, identification requires that m(θ) = B has a unique solution. Following

previous literature (e.g. Kline and Walters 2016), we establish local uniqueness by linearizing m (·) around
a solution m(θ0) = B. Let θ0 be a solution to m(θ) = B. Linearizing m (·) around θ0, we have:

m(θ) ≈ m(θ0) +∇m(θ0)(θ − θ0).

It follows that a unique solution requires Jm(θ0) to have full rank, where Jm(θ0) is the Jacobian of m (·)
evaluated at θ0:

Jm(θ0) =

[
∂B1

∂ε
∂B1

∂φ
∂B̃2

∂ε
∂B̃2

∂φ

]
.

We calculate the elements of this matrix analytically by differentiating the expressions above for B1 and B̃2,
which is straightforward.49 Thus, given θ̂, z1, and z̄0, we can calculate the Jacobian analytically (although
z1 and z̄0 must be found numerically).
Jm has full rank only if it has a non-zero determinant. We find in all of our bootstrap iterations that

det(Jm) < 0, demonstrating that the determinant is significantly different from zero. We have also shown
analytically that the determinant is generically non-zero (results available upon request).

A.5.2 Dynamic Model

To identify the dynamic model, we need to observe at least as many moments as the number of parameters
we seek to estimate. In our case this means that we must observe bunching across multiple policy changes,
specifically the reductions in the BRR above the exempt amount in 1990 and at age 70. Let l index different
such policy changes (in our case, l ∈ {1990, 70}). Let Bt1,l be bunching at kink l and period t before the
policy change, let Bt2,l be bunching at kink l and period t after the policy change, let time t measure the
time since the introduction of the first kink, K1,l, and let the policy change at kink l take place at time T1,l.
The parameter vector θ now consists of (ε, φ, π1, π2,..., π5) .We match 12 bunching amounts in our estimates:
1987 to 1992 (pooling 66 to 68 year olds) and ages 67 to 72 (pooling years 1990 to 1999).
Bunching before the policy change is

Bt1,l = Πt
j=1πj ·B1,l + (1−Πt

j=1πj)B
∗
1,l

where B1,l =
∫ z∗l +∆z∗1,l
z1,l

h(ξ)dξ and B∗1,l =
∫ z∗l +∆z∗1,l
z∗l

h(ξ)dξ, and the limits of integration are defined similarly

to the static case (but with the additional subscript l to allow for analysis across multiple policy changes, as
in our empirical application of the dynamic model). If the policy change happens T1,l periods after the kink
is initially introduced, then bunching under the new policy in period t is

Bt2,l = Π
t−T1,l
j=1 πj · B̃2,l +

(
1−Π

t−T1,l
j=1 πj

)
B∗2,l + Π

t−T1,l
j=1 πj

(
1−Π

T1,l
j=1πj

) (
B∗1,l −B1,l

)
where B̃2,l =

∫ z̄0,l
z1,l

h(ξ)dξ, B∗2,l =
∫ z∗l +∆z∗2,l
z∗l

h(ξ)dξ, and the limits of integration again are defined similarly

to the static case but with the additional subscript l.
We calculate the elements of the resulting Jacobian analytically by differentiating the expressions above

for Bt1,l and B
t
2,l with respect to ε, φ, π1, π2, π3, π4, and π5, which is again straightforward. Thus, given θ̂,

z1,l and z̄0,l, we can again calculate the Jacobian analytically.

49We can specify functions implicitly defining the lower and upper cutoffs z1 and z̄0, respectively, as functions of the other
parameters, given our quasilinear and isoelastic case. These enter the expressions for each element of the Jacobian (more details
are available upon request).
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Identification requires that this Jacobian have full rank. To test for full rank of the Jacobian, we use
the method of Kleibergen and Papp (2006). We use the bootstrap to obtain an estimate of V ar[Jm(θ̂)]. In
each iteration of our bootstrap, we also calculate Jm(θ̂), and we estimate V ar[Jm(θ̂)] from the bootstrap
variance-covariance matrix. The RK test easily rejects under-identification, with p < 0.001.

A.6 Policy Simulations
In this Appendix, we describe how we simulate the effect of various policy changes on earnings. These
calculations are designed to be illustrative of the attenuation of earnings responses to policy changes that
can result from incorporating adjustment frictions in the analysis. Nonetheless, we highlight that these
calculations are done in the context of a highly stylized model making a number of assumptions, as well as
a particular sample of earners. One key (extreme) assumption is that everyone has the same elasticity and
adjustment cost. Moreover, these estimates are specific to a particular context, and they are not intended to
be an exhaustive account of the implications of adjustment costs for earnings responses to taxation. Rather,
they are intended simply to illustrate the attenuation of earnings responses to policy changes that can result
from incorporating adjustment frictions in the analysis in such contexts.
We assume that utility is isoelastic and quasi-linear with elasticity ε. Individuals must pay an adjustment

cost φ to change their earnings. Individuals are heterogeneous in their ability ni. Individuals are therefore
distributed according to their “counterfactual”earnings z0i that they would have under a linear tax schedule.
(Despite the absence of heterogeneity in the elasticity and adjustment cost, there is still heterogeneity in the
gains from re-optimizing earnings, due to heterogeneity in z0i.) We use the 1989 earnings distribution for 60-
61 year-olds (from the MEF data) as the counterfactual earnings distribution, i.e. the earnings distribution
under a linear tax schedule in the region of the exempt amount. We incorporate the key features of the
individual income tax code, including individual federal income taxes, state income taxes, and FICA (all
from Taxsim applied in 1989), and the AET. Our estimates of elasticities and adjustment costs apply to a
population earning near the exempt amount; to avoid extrapolating too far out of sample, our simulations
examine only those whose counterfactual earnings is from $10,000 under to $10,000 over the exempt amount
(and is greater than $0). (While the AET should only affect people whose counterfactual earnings are over
the exempt amount, we also include the group earning up to $10,000 under the exempt amount in order to
illustrate the fact that some individuals could be unaffected by a policy change.)
We consider two periods, 1 and 2. In period 1, in the region of the AET exempt amount, the mean tax

rate below the exempt amount is 27.21 percent, and the mean tax rate above the exempt amount is 77.21
percent. Note that these tax rates mimic those faced by 62-64 year-old OASI claimants.50 In period 2, the
tax rate below the exempt amount remains 27.21 percent, but the tax rate above the exempt amount changes
according to the policy changes we specify below. (We assume that in the counterfactual individuals face a
linear schedule with a mean tax rate of 27.21 percent.)
For a given counterfactual earnings level z0i, we calculate optimal frictionless earnings z∗1i in period 1, and

we calculate whether the individual with counterfactual earnings z0i wishes to adjust her earnings from the
frictionless optimum because the gains from doing so outweigh the adjustment cost. (Optimal “frictionless”
earnings refers to the individual’s optimal earnings in the absence of adjustment costs.) We then determine
the individual’s optimal frictionless earnings z∗2i under the new tax schedule in period 2. We assess whether
given the adjustment cost, the individual obtains higher utility by staying at her period 1 earnings level, or
by paying the adjustment cost and moving to a new earnings level in period 2.
We perform these calculations alternatively under the assumptions that (a) the elasticity ε is 0.35 and

the adjustment cost φ is $280 (our baseline estimates); or (b) the elasticity ε is 0.35 and the adjustment cost
φ is zero. Thus, our simulations illustrate the difference between incorporating adjustment costs and not
incorporating them, holding the elasticity constant.
Under these alternative assumptions, we can perform a number of experiments to simulate the effects of

changing the effective tax schedule. These calculations are shown in Appendix Table B.6 below.
We calculate that if the marginal tax rate above the exempt amount were reduced by 17.22 percentage

points, so that the tax rate above the exempt amount were reduced from 77.21 percent to 59.99 percent,

50As we note elsewhere, 62-64 year-olds technically face a notch in the budget constraint at the exempt amount, as opposed
to a kink. However, we find no evidence that they behave as if they faced a notch, as the earnings distribution for this age
group 1) does not show bunching just above the exempt amount and 2) does not show a "hole" in the earnings distribution
just under the exempt amount.
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mean earnings in the population under consideration would be unchanged at $9,371.9 under our baseline
estimates of the elasticity and adjustment cost. In this case, adjustment is not optimal for anyone when we
assume the adjustment cost. In fact, earnings would be unchanged for any reduction in the marginal tax rate
above the exempt amount up to 17.22 percentage points; 17.22 percentage points is the largest percentage
point marginal tax rate decrease above the exempt amount for which there is no adjustment. Since the gains
are second-order near the kink, even a modest adjustment cost of $280 prevents adjustment with an 17.22
percentage point (or smaller) cut in marginal tax rates. By contrast, when assuming ε=0.35 and φ=0, we
predict that mean earnings would rise from $9,340.3 to $10,166.3, an increase of 8.84 percent.
At the same time we calculate that if the 50 percent AET above the exempt amount were eliminated, so

that the tax rate above the exempt amount were reduced from 77.21 percent to 27.21 percent, mean earnings
in the population under consideration would rise from $9,371.9 to $11,566.7.7, or 23.4 percent, under our
baseline estimates of the elasticity and adjustment cost. When assuming ε=0.35 and φ=0, we predict that
mean earnings would rise from $9,340.3 to $11,639.2, a nearly identical increase of 24.6 percent. The slight
discrepancy between the two estimates arises because there are individuals whose counterfactual earnings is
just above the exempt amount who choose to adjust without adjustment costs, but for whom the gains from
adjustment do not outweigh the adjustment cost when we assume the friction.
It is worth noting an additional caveat to these results: they apply to those with counterfactual earnings in

the range from $10,000 below to $10,000 above the exempt amount. If we allowed unbounded counterfactual
earnings, there would be some individuals with very large counterfactual earnings for whom the gains from
adjustment would outweigh the adjustment cost, even in the presence of adjustment costs. However, this is
less relevant to the AET because as we have noted, the OASI benefit phases out entirely at very high earnings
levels. Moreover, considering such individuals would involve extrapolating the estimates much farther out
of sample. Finally, the results are qualitatively robust to considering other earnings ranges within the range
we measure in our study, such as the range of individuals earning from $10,000 below to $30,000 above
the exempt amount. In fact, under all of the other choices we have explored, the results always show that
the maximum tax cut that leads to no earnings change is quite substantial (and larger than the changes in
marginal tax rates envisioned in most tax reform proposals)– including when we use other ages to specify the
counterfactual earnings density; use a different baseline marginal tax rate; and use the constrained estimate
of the elasticity (0.58) when performing the simulations (which actually leads to still starker results).
All of these simulations use the static model. If we were to use our estimates of the dynamic model

instead to perform these simulations, we would still find that the immediate reaction even to large taxes
changes is greatly attenuated, since the estimates of the dynamic model still show that most individuals are
constrained from adjusting immediately.
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B Appendix: Additional Empirical Results (for online publica-
tion)

Figure B.1: Simulated earnings distribution at age 69

Note: The left-hand side shows how a downward sloping, counterfactual density can lead to apparently asymmetric bunching

when bunching is diffuse. The right-hand side shows a simulated distribution of earnings at age 69, given the estimated model

parameters. The y-axis shows the simulated density of earnings in each bin, and the x-axis shows the distance to the exempt
amount. The figure demonstrates that we simulate more excess mass below the exempt amount than above it, consistent with

the empirical distribution of earnings at age 69 (and other ages) shown in Figure 2. See Appendix A.1 for details.
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Figure B.2: Normalized Excess Mass of Claimants, Ages 59 to 73, 1990 to 1999

Note: See notes to Figure 2 Panel B. This figure differs from Figure 2 Panel B because here the sample in year t consists only
of people who have claimed OASI in year t or before (whereas in Figure 2 Panel B it consists of those who claimed by age 65).
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Figure B.3: Probability of claiming OASI in year t+1 among 61-68 year-olds in year t who are not claiming,
1990-1998

Note: The figure shows the probabiliy that an individual claims OASI in year t+ 1, conditional on not claiming OASI in year
t, for those ages 61-68 in year t from 1990 to 1998.
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Figure B.4: Bunching Response to a Convex Kink, with Frictions in Initial Earnings

Note: See Section A.4 for an explanation of the figure.
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Table B.3: Heterogeneity in Estimates of Elasticity and Adjustment Cost across Samples

(1) (2) (3) (4)

p-value p-value
ε for ε equality φ for φ equality

Men 0.44 0.39 $62 0.00
[0.38, 0.52]*** [14, 167]***

Women 0.42 $489
[0.32, 0.50]*** [165, 720]***

High lifetime earnings 0.48 0.05 $24 0.00
[0.41, 0.58]*** [2, 90]***

Low lifetime earnings 0.44 $538
[0.32, 0.51]*** [217, 688]***

High lifetime earnings variability 0.39 0.25 $116 0.16
[0.35, 0.46]*** [37, 315]***

Low lifetime earnings variability 0.38 $178
[0.33, 0.46]*** [55, 378]***

Notes: This table implements our “comparative static”method separately in each of several groups shown in each row.

“High/low lifetime earnings” refers to the group of individuals with mean real earnings from 1951 (when the data begin) to

1989 that are above/below the median level in our study population. “High/low lifetime earnings variability” refers to the

group of individuals for whom the standard deviation of real earnings from 1951 to 1989 is above/below the median level in

our study population. Columns 2 and 4 show the p-values for the two-sided test of equality in the estimates between each set
of groups (i.e. men vs. women, high vs. low lifetime earnings, and high vs. low earnings variability), for ε and φ, respectively.
We pool data from two policy changes: (a) around the 1989/1990 transition analyzed in Table 2, and (b) around the age

69/70 transition analyzed in Table 3. We pool the transitions because this gives us the maximum power to detect differences

across groups. The results are generally comparable when we investigate each transition separately. See also notes from Tables

2 and 3.
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Table B.4: Estimates of Elasticity and Adjustment Cost 1990 Policy Change, Assuming Pre-Period Bunching
may not be at Frictionless Optimum

(1) (2) (3) (4)

ε φ ε|φ = 0

1990 1989

Baseline 0.28 $187.78 0.43 0.24
[0.25, 0.43]*** [58.97, 1303.68]*** [0.36, 0.54]*** [0.20, 0.28]***

Uniform Density 0.24 $162.26 0.39 0.22
[0.22, 0.39]*** [55.27, 1556.01]*** [0.33, 0.48]*** [0.18, 0.25]***

Benefit Enhancement 0.40 $86.45 0.59 0.37
[0.36, 0.53]*** [20.31, 561.81]*** [0.49, 0.73]*** [0.30, 0.43]***

Excluding FICA 0.33 $139.03 0.50 0.30
[0.29, 0.41]*** [38.30, 525.91]*** [0.42, 0.62]*** [0.25, 0.35]***

Bandwidth = $400 0.26 $104.10 0.38 0.24
[0.22, 0.33]*** [7.01, 440.80]*** [0.30, 0.50]*** [0.19, 0.30]***

Note: The table examines the 1990 policy change, using data from 1989 and 1990, but assumes that bunching in 1989 may

not be at the frictionless optimum, as described in the text. See also notes to Table 2.
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Table B.5: Estimates of Changes in Bunching Around 1990

Old only, DD, separate
Sample Old only linear trend DD linear trend

old x 1990 dummy 28.9 -165.1 -107.3 -69.2
(249.1) (411.0) (306.7) (411.7)

old x 1991 dummy -1728.9 -1966.0 -1824.5 -1777.9
(249.1)*** (500.6)*** (306.7)*** (481.3)***

old x 1992 dummy -1648.8 -1928.9 -1130.2 -1075.1
(249.1)*** (594.9)*** (306.7)*** (558.1)*

old x 1993 dummy -2123.8 -2447.1 -2131.2 -2067.6
(249.1)*** (692.1)*** (306.7)*** (639.7)***

Ages 66-68 66-68 62-64, 66-68 62-64, 66-68
Year FE? No No Yes Yes
Linear time trend (in year) No Yes No No
Separate linear trend for “old” No No No Yes

Notes: The table shows that the estimated change in bunching amounts from before to after 1990 in the age 66-68 age group

are similar under several specifications. The dummy variable “old” indicates the older age group (66-68). The sample in

Columns (1) and (2) includes only 66-68 year-olds, and in Columns (3) and (4) it also includes 62-64 year-olds. Additional

controls include a linear time trend (in year) in column (2), year fixed effects in columns (3) and (4), and the linear time trend

interacted with the “old”dummy in column (4). Robust standard errors are in parentheses. Under all the specifications, the

coeffi cient on old x 1990 is insignificantly different from zero: bunching in 1990 is not significantly different from prior

bunching, indicating that adjustment does not immediately occur. However, the coeffi cients on old x 1991, old x 1992, old x

1993 are negative and significant, indicating that bunching falls significantly after 1990– i.e. a reduction in bunching does

eventually occur (but not immediately in 1990). The fact that the results are similar under all these various specifications

indicates that the results are little changed by controlling for a linear trend (Column 2), comparing 66-68 year-olds to a

reasonable control group of 62-64 year-olds (Column 3), and additionally controlling for a separate linear trend for the older

group (Column 4). In Columns 1 and 3, the standard errors are the same across all of the interaction coeffi cients shown

because there is only one observation underlying each dummy, and the dummies are exactly identified. See also notes from

Table 2.
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Table B.6: Policy Simulations

(1) (2)

Panel A: Eliminate AET for 62-64 year olds

With adjustment costs Without adjustment costs

Period 1 mean earnings $9,371.9 $9,340.1
Mean earnings change $2,194.8 $2,298.9
Share affected 50.4 50.4
Share who adjust 41.9 50.4
Mean change among adjusters $5,239.6 $4,563.7
Percent change among adjusters 42.6 37.3

Panel B: Reduce AET BRR by 17.22 percentage points

With adjustment costs Without adjustment costs

Period 1 mean earnings $9,371.9 $9,340.3
Mean earnings change $0 $826.0
Percent earnings change 50.4 50.4
Share who adjust 0.0 37.4
Mean change among adjusters 0.0 $2,207.6
Percent change among adjusters 0.0 17.7

Note: Each panel shows the results of a different policy simulation. Column 1 shows the results when we assume ε = 0.35
and φ = $280, and Column 2 shows the results when we assume ε = 0.35 and φ = 0. “Mean earnings change” refers to the
change in mean earnings from Period 1 to Period 2 predicted in the full study population (i.e. the population with

counterfactual earnings between -$10,000 below and $10,000 above the exempt amount). “Percent earnings change” is the

percent change in mean earnings predicted in the full study population. “Share who adjust” refers to the percent of the full

study population whose earnings does not change in response to the policy change. Note that only 50.4 percent of the full

study population has counterfactual earnings above the exempt amount and therefore has incentives that are potentially

affected by the policy change in our model. “Mean change among adjusters” refers to the change in mean earnings predicted

among those who change earnings in response to the policy change. “Percent change among adjusters” refers to the percent

change in mean earnings among those who change earnings in response to the policy change. See Appendix A.6 for further

explanation.
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