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1 Introduction

It is well known that linear rational expectations (LRE) models can have an

indeterminate set of equilibria under realistic parameter choices. Lubik and

Schorfheide (2003) provided an algorithm that computes the complete set of

indeterminate equilibrium, but their approach has not yet been implemented

in standard software packages and has not been widely applied in practice.

In this paper, we propose an alternative methodology based on the idea

that a model with an indeterminate set of equilibria is an incomplete model.

We propose to close a model of this kind by treating a subset of the non-

fundamental errors as newly defined fundamentals.

Our method builds on the approach of Sims (2001) who provided a widely

used computer code, Gensys, implemented in Matlab, to solve for the reduced

form of a general class of linear rational expectations (LRE) models. Sims’s

code classifies models into three groups; those with a unique rational expec-

tations equilibrium, those with an indeterminate set of rational expectations

equilibria, and those for which no bounded rational expectations equilibrium

exists. By moving non-fundamental errors to the set of fundamental shocks,

we select a unique equilibrium, thus allowing the modeler to apply standard

solution algorithms. We provide step-by-step guidelines for implementing

our method in the Matlab-based software programs Dynare (Adjemian et al.,

2011) and Gensys (Sims, 2001).

Our paper is organized as follows. In Section 2, we provide a brief liter-

ature survey and in Section 3 we review solution methods for indeterminate

models. In Section 4, we discuss the choice of which expectational errors to

redefine as fundamental and we prove that all possible alternative selections

have the same likelihood. Section 5 compares our method to the work of Lu-

bik and Schorfheide (2003) and establishes an equivalence result between the

two approaches. In Section 6, we apply our method to the New-Keynesian

model described in Lubik and Schorfheide (2004) and we show how to apply

our method using Gensys to simulated data. Section 7 provides step-by-step
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guidelines for implementing our method in the popular software package,

Dynare,1 and Section 8 provides a brief conclusion.

2 Related Literature

Blanchard and Kahn (1980) showed that a LRE model can be written as a

linear combination of backward-looking and forward-looking solutions. Since

then, a number of alternative approaches for solving linear rational expecta-

tions models have emerged (King andWatson, 1998; Klein, 2000; Uhlig, 1999;

Sims, 2001). These methods provide a solution if the equilibrium is unique,

but there is considerable confusion about how to handle the indeterminate

case. Some methods fail in the case of a non-unique solution, for example,

Klein (2000), while others, e.g. Sims (2001), generate one solution with a

warning message.

All of these solution algorithms are based on the idea that, when there is

a unique determinate rational expectations equilibrium, the model’s forecast

errors are uniquely defined by the fundamental shocks. These errors must be

chosen in a way that eliminates potentially explosive dynamics of the state

variables of the model.

McCallum (1983) has argued that a model with an indeterminate set of

equilibria is incompletely specified and he recommends a procedure, the mini-

mal state variable solution, for selecting one of the many possible equilibria in

the indeterminate case. Farmer (1999) has argued instead, that we should ex-

ploit the properties of indeterminate models to help understand data. Farmer

and Guo (1995) took up that challenge by studying a model where indeter-

minacy arises from a technology with increasing returns-to-scale, and Lubik

and Schorfheide (2004), developed methods for distinguishing determinate

from indeterminate models which they applied to a New-Keynesian mone-

1Dynare is a Matlab-based software platform for handling a wide class of economic mod-

els, in particular dynamic stochastic general equilibrium (DSGE). Visit www.dynare.org

for details.
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tary model. There is a growing body of literature, see, for example, Belay-

gorod and Dueker (2009); Bhattarai et al. (2012); Fanelli (2012); Castelnuovo

and Fanelli (2014); Hirose (2011); Zheng and Guo (2013); Bilbiie and Straub

(2013), that directly tackles the econometric challenges posed by indetermi-

nacy. This literature offers the possibility for the theoretical work, surveyed

in Benhabib and Farmer (1999), to be directly compared with conventional

classical and new-Keynesian approaches in which equilibria are assumed to

be locally unique.

The empirical importance of indeterminacy began with the work of Ben-

habib and Farmer (1994) who established that a standard one-sector growth

model with increasing returns displays an indeterminate steady state and

Farmer and Guo (1994) who exploited that property to generate business

cycle models driven by self-fulfilling beliefs. More recent New-Keynesian

models have been shown to exhibit indeterminacy if the monetary authority

does not increase the nominal interest rate enough in response to higher in-

flation (see, for example, Clarida et al. (2000); Kerr and King (1996)). Our

estimation method should be of interest to researchers in both literatures.

3 Solving LRE Models

Consider the following -equation LRE model. We assume that  ∈ 

is a vector of deviations from means of some underlying economic variables.

These may include predetermined state variables, for example, the stock of

capital, non-predetermined control variables, for example, consumption; and

expectations at date  of both types of variables.

We assume that  is an × 1 vector of exogenous, mean-zero shocks and
 is a  × 1 vector of endogenous shocks.2 The matrices Γ0 and Γ1 are of

2Sims (2001) allows  to be autoregressive with non zero conditional expectation. We

assume, instead, that  always has zero conditional mean. That assumption is unre-

strictive since an autoregressive error can be written in our form by defining a new state

variable, ̃ and letting the innovation of the original variable, , be the new fundamental
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dimension  × , possibly singular, Ψ and Π are respectively,  ×  and ×
 known matrices.

Using the above definitions, we will study the class of linear rational

expectations models described by Equation (1),

Γ0 = Γ1−1 +Ψ +Π (1)

Sims (2001) shows that this way of representing a LRE is very general and

most LRE models that are studied in practice by economists can be written

in this form. We assume that

−1 () = 0 and −1 () = 0 (2)

We define the  ×  matrix Ω,

−1
³






´
= Ω (3)

which represents the covariance matrix of the exogenous shocks. We refer to

these shocks as predetermined errors, or equivalently, predetermined shocks.

The second set of shocks, , has dimension . Unlike the , these shocks

are endogenous and are determined by the solution algorithm in a way that

eliminates the influence of the unstable roots of the system. In many impor-

tant examples, the  have the interpretation of expectational errors and, in

those examples,

 =  −−1 ()  (4)

shock.
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3.1 The QZ Decomposition

Sims (2001) shows how to write equation (1) in the form

z }| {"
11 12

0 22

# ̃z }| {"
̃1

̃2

#
=

z }| {"
11 12

0 22

# ̃−1z }| {"
̃1−1
̃2−1

#

+

Ψ̃z }| {"
Ψ̃1

Ψ̃2

#
 +

Π̃z }| {"
Π̃1

Π̃2

#
 (5)

where the matrices   , Ψ̃ and Π̃ and the transformed variables ̃ are

defined as follows. Let

Γ0 =   and Γ1 =   (6)

be the  decomposition of {Γ0Γ1} where  and  are ×  orthonormal

matrices and  and  are upper triangular and possibly complex.

The  decomposition is not unique. The diagonal elements of  and

 are called the generalized eigenvalues of {Γ0Γ1} and Sims’s algorithm
chooses one specific decomposition that orders the equations so that the

absolute values of the ratios of the generalized eigenvalues are placed in

increasing order that is,

||  || ≥ ||  || for    (7)

Sims proceeds by partitioning ,  ,  and  as

 =

"
11 12

0 22

#
  =

"
11 12

0 22

#
 (8)
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 =

"
11 12

21 22

#
  =

"
11 12

21 22

#
 (9)

where the first block contains all the equations for which ||  ||  1

and the second block, all those for which ||  || ≥ 1 The transformed
variables ̃ are defined as

̃ =  (10)

and the transformed parameters as

Ψ̃ = Ψ, and Π̃ = Π (11)

3.2 Using the QZ decomposition to solve the model

The model is said to be determinate if Equation (5) has a unique bounded

solution. To establish existence of at least one bounded solution we must

eliminate the influence of all of the unstable roots; by construction, these are

contained in the second block,

̃2 = −122 22̃2−1 + −122
³
Ψ̃2 + Π̃2

´
 (12)

since the eigenvalues of −122 22 are all greater than or equal to one in absolute

value. Hence a bounded solution, if it exists, will set

̃20 = 0 (13)

and

Ψ̃2 + Π̃2 = 0 (14)

Since the elements of ̃2 are linear combinations of 2, a necessary condi-

tion for the existence of a solution to equation (14) is that there are at least

as many non-predetermined variables as unstable generalized eigenvalues. A
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sufficient condition is that the columns of Π̃2 in the matrix,h
Ψ̃2 Π̃2

i
 (15)

are linearly independent so that there is at least one solution to Equation

(14) for the endogenous shocks, , as a function of the fundamental shocks,

. In the case that Π̃2 is square and non-singular, we can write the solution

for  as

 = −Π̃−12 Ψ̃2 (16)

More generally, Sims’ code checks for existence using the singular value de-

composition of (15).

To find a solution for ̃1 we take equation (16) and plug it back into the

first block of (5) to give the expression,

̃1 = −111 11̃1−1 + −111
³
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

´
 (17)

Even if there is more than one solution to (14) it is possible that they all

lead to the same solution for ̃1. Sims provides a second use of the singular

value decomposition to check that the solution is unique. Equations (13)

and (17) determine the evolution of
n
̃

o
as functions of the fundamental

shocks {} and, using the definition of
n
̃

o
from (10), we can recover the

original sequence {}.

3.3 The Indeterminate Case

There are many examples of sensible economic models where the number of

expectational variables is larger than the number of unstable roots of the

system. In that case, Gensys will find a solution but flag the fact that there

are many others. We propose to deal with that situation by providing a

statistical model for one or more of the endogenous errors.

The rationale for our procedure is based on the notion that agents situated

7



in an environment with multiple rational expectations equilibria must still

choose to act. And to act rationally, they must form some forecast of the

future and, therefore, we can model the process of expectations formation by

specifying how the forecast errors covary with the other fundamentals.

If a model has  unstable generalized eigenvalues and  non-fundamental

errors then, under some regularity assumptions, there will be  =  − 

degrees of indeterminacy. In that situation we propose to redefine  non-

fundamental errors as new fundamental shocks. This transformation allows

us to treat indeterminate models as determinate and to apply standard so-

lution and estimation methods.

Consider model (1) and suppose that there are  degrees of indetermi-

nacy. We propose to partition the  into two pieces,  and  and to

partition Π conformably so that,

Γ0
×


×1

= Γ1
×

−1
×1

+ Ψ
×


×1
+

∙
Π
×

Π
×

¸⎡⎢⎣ 
×1

×1

⎤⎥⎦  (18)

Here,  is an  × 1 vector that contains the newly defined fundamental
errors and  contains the remaining  non-fundamental errors.

Next, we re-write the system by moving  from the vector of expecta-

tional shocks to the vector of fundamental shocks:

Γ0
×


×1

= Γ1
×

−1
×1

+

∙
Ψ
×

Π
×

¸ e
(+)×1

+ Π
×


×1

 (19)

where we treat

e
(+)×1

=

⎡⎢⎣ 
×1

×1

⎤⎥⎦  (20)

as a new vector of fundamental shocks and  as a new vector of non-
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fundamental shocks. To complete this specification, we define Ω̃

Ω̃
(+)×(+)

= −1

⎛⎜⎝
⎡⎢⎣ 

×1

×1

⎤⎥⎦
⎡⎢⎣ 

×1

×1

⎤⎥⎦
⎞⎟⎠ ≡

⎛⎜⎝ Ω
×

Ω
×

Ω
×

Ω
×

⎞⎟⎠  (21)

to be the new covariance matrix of fundamental shocks. This definition

requires us to specify  (+ 1 + 2) 2 new variance parameters, these are

the (+ 1) 2 elements of Ω , and× new covariance parameters, these
are the elements of Ω . By choosing these new parameters and applying

Sims’ solution algorithm, we select a unique bounded rational expectations

equilibrium. The diagonal elements of Ω̃ that correspond to  have the

interpretation of a pure ‘sunspot’ component to the shock and the covariance

of these terms with  represent the response of beliefs to the original set of

fundamentals.

Our approach to indeterminacy is equivalent to defining a new model

in which the indeterminacy is resolved by assuming that expectations are

formed consistently using the same forecasting method in every period. For

example, expectations may be determined by a learning mechanism as in

Evans and Honkapohja (2001) or using a belief function as in Farmer (2002).

For our approach to be valid, we require that the belief function is time

invariant and that shocks to that function can be described by a stationary

probability distribution. Our newly transformed model can be written in

the form of Equation (1), but the fundamental shocks in the transformed

model include the original fundamental shocks , as well as the vector of

new fundamental shocks, .

4 Choice of Expectational Errors

Our approach raises the practical question of which non-fundamentals should

we choose to redefine as fundamental. Here we show that, given a relatively
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mild regularity condition, there is an equivalence between all possible ways

of redefining the model.

Definition 1 (Regularity) Let  be an indeterminate equilibrium of model

(1) and use the  decomposition to write the following equation connecting

fundamental and non-fundamental errors.

Ψ̃2 + Π̃2 = 0 (22)

Let  be the number of generalized eigenvalues that are greater than or equal

to 1 and let    be the number of non-fundamental errors. Partition 

into two mutually exclusive subsets,  and  such that ∪ =  and

partition Π̃2 conformably so that

Π̃2
×


×1

=

∙
Π̃2
×

Π̃2
×

¸⎡⎢⎣ 
×1

×1

⎤⎥⎦  (23)

The indeterminate equilibrium, , is regular if, for all possible mutually ex-

clusive partitions of , Π̃2 has full rank.

Regularity rules out situations where there is a linear dependence in the

non-fundamental errors and all of the indeterminate LRE models that we are

aware of, that have been studied in the literature, satisfy this condition.

Theorem 1 Let  be an indeterminate equilibrium of model (1) and let P

be an exhaustive set of mutually exclusive partitions of  into two non-

intersecting subsets, where

⎧⎨⎩p ∈ P | p =
Ã

×1

 
×1

!
⎫⎬⎭. Let p1 and p2 be

elements of P and let Ω̃1 be the covariance matrix of the new set of funda-

mentals,
£
 

¤
associated with partition p1. If  is regular then there is

a covariance matrix Ω̃2, associated with partition 2 such that the covariance
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matrix

Ω = 

⎛⎜⎜⎝
⎡⎢⎣ 





⎤⎥⎦
⎡⎢⎣ 





⎤⎥⎦

⎞⎟⎟⎠  (24)

is the same for both partitions. p1 and p2, parameterized by Ω̃1 and Ω̃2, are

said to be equivalent partitions.

Proof. See Appendix A.

Corollary 1 The joint probability distribution over sequences {} is the
same for all equivalent partitions.

Proof. The proof follows immediately from the fact that the joint probability

of sequences {}, is determined by the joint distribution of the shocks.
The question of how to choose a partition p is irrelevant since all par-

titions have the same likelihood. However, the partition will matter, if the

researcher imposes zero restrictions on the variance covariance matrix of fun-

damentals.

Why does this matter? Suppose that the researcher choose one of two

possible partitions, call this p1, by specifying one of two expectational errors

from the original model as a new fundamental. Under partition p1 the co-

variance parameters of the second expectational error with the fundamentals

will be complicated functions of all of the parameters of the model.

Suppose instead, that the researcher chooses the second expectational

error to be fundamental, call this partition p2. In this case, it is the covari-

ance parameters of the first expectational error that will depend on model

parameters. Because the researcher cannot know in advance, which of these

specifications is the correct one, we recommend that in practice, the VCV

matrix of the augmented shocks, ̃ should be left unrestricted.

Lubik and Schorfheide (2004) refer to ‘belief shocks’ which they think

of as independent causal disturbances that influence all of the endogenous
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variables at each date. Their belief shocks are isomorphic to what Cass and

Shell (1983) refer to as ‘sunspots’ and what Azariadis (1981) and Farmer and

Woodford (1984, 1997) call ‘self-fulfilling prophecies’.

In Section 5, we prove that Lubik and Schorfheide’s representation of a

belief shock can be represented as a probability distribution over the forecast

error of a subset of the variables of the model. Farmer (2002) shows how a

self-fulfilling belief of this kind can be enforced by a forecasting rule, aug-

mented by a sunspot shock. If agents use this rule in every period, and if

their current beliefs about future prices are functions of the current sunspot

shock, those beliefs will be validated in a rational expectations equilibrium.

5 Lubik-Schorfheide and Farmer-Khramov-Nicolò

Compared

The two papers by Lubik and Schorfheide, (Lubik and Schorfheide, 2003,

2004), are widely cited in the literature (Belaygorod and Dueker, 2009; Zheng

and Guo, 2013; Lubik and Matthes, 2013) and their approach is the one most

closely emulated by researchers who wish to estimate models that possess

an indeterminate equilibrium. This section compares the Lubik-Schorfheide

method to the Farmer-Khramov-Nicolò technique (which we denote by LS

and FKN) and proves an equivalence result.

We show in Theorem 2 that every LS equilibrium can be implemented as

a FKN equilibrium, and conversely, every FKN equilibrium can be character-

ized using the LS technique. Because our method can be implemented using

standard algorithms, our method provides an easy way for applied researchers

to simulate and estimate indeterminate models using widely available com-

puter software. And Theorem 2 shows that the full set of indeterminate

equilibria can be modeled using our approach.
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5.1 The Singular Value Decomposition

Determinacy boils down to the following question: Does equation (14), which

we repeat below as equation (25), have a unique solution for the × 1 vector
of endogenous errors,  as functions of the  × 1 vector of fundamental
errors, ?

Ψ̃2
×


×1
+ Π̃2

×

×1

= 0 (25)

To answer this question, LS apply the singular value decomposition to the

matrix Π̃2. The interesting case is when   , for which Π̃2 has  singular

values, equal to the positive square roots of the eigenvalues of Π̃2Π̃

2 . The

singular values are collected into a diagonal matrix 11 The matrices 1

and  in the decomposition are orthonormal and  = −  is the degree of

indeterminacy.

Π̃2
×
≡ 1

×

h
11
×

0
×

i
 

×
 (26)

Replacing Π̃2 in (25) with this expression and premultiplying by 

1 leads to

the equation


1

×
Ψ̃2
×


×1
+
h
11
×

0
×

i
 

×

×1

= 0 (27)

Now partition 

 =

∙
1
×

2
×

¸


and premultiply (27) by −1
11 ,

−1
11

×

1

×
Ψ̃2
×


×1
+  

1
×


×1

= 0 (28)

Because    this system has fewer equations than unknowns. LS suggest

that we supplement it with the following new  = −  equations,


×


×1
+ 

×

×1

=  
2

×

×1

 (29)
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The × 1 vector  is a set of sunspot shocks that is assumed to have mean
zero and covariance matrixΩ and to be uncorrelated with the fundamentals,

.

 [] = 0 
£





¤
= 0 

£





¤
= Ω (30)

Correlation of the forecast errors, , with fundamentals, , is captured by

the matrix. Because the parameters of Ω cannot separately be identified

from the parameters of , LS choose the normalization

 = . (31)

Appending equation (29) as additional rows to equation (28), premulti-

plying by  and rearranging terms leads to the following representation of

the expectational errors as functions of the fundamentals,  and the sunspot

shocks, 


×1

=

µ
−1
×

−1
11

×

1

×
Ψ̃2
×
+ 2

×

×

¶

×1
+ 2

×

×1

 (32)

This is equation (25) in Lubik and Schorfheide (2003) using our notation for

dimensions and where our  is what LS call ̃ . More compactly


×1

= 1
×


×


×1

+ 2
×


×


×1
+ 2

×

×1

 (33)

where


×
≡ −−1

11
×


1

×
Ψ̃2
×

is a function of the parameters of the model.

14



5.2 Equivalent characterizations of indeterminate equi-

libria

To define a unique sunspot equilibrium when the model is indeterminate, our

method partitions  into two subsets;  =
©
  

ª
. We refer to  as new

fundamentals. A FKN equilibrium is characterized by a parameter vector

 ∈ Θ which has two parts. 1 ∈ Θ1

1 ≡  (Γ0Γ1ΨΩ)



is a vector of parameters of the structural equations, including the variance

covariance matrix of the original fundamentals. And 2 ∈ Θ2

2 ≡  (Ω Ω)



is a vector of parameters that contains the variance covariance matrix of the

new fundamentals and the covariances of these new fundamentals,  , with

the original fundamentals, .

A FKN representation of equilibrium is a vector  ∈ Θ where

Θ is defined as,

Θ ≡ {Θ1Θ2} 

Theorem 1 establishes that there is an equivalence class of models, all

with the same likelihood function, in which the ×1 vector  is selected as
a new set of fundamentals and the VCV matrices Ω and Ω are additional

parameters. To complete the model in this way we must add  (+ 1) 2

new parameters to define the symmetric matrixΩ and× new parameters
to define the elements of Ω .

In contrast a LS equilibrium is characterized by a parameter vector

Θ ≡ {Θ1Θ3} 

15



where 3 ∈ Θ3 is defined as

3 ≡  (Ω )

 (34)

These parameters characterize the additional equation,


×


×1
+ 

×1
=  

2
×


×1

 (35)

where equation (35) adds the normalization (31) to equation (29).

The matrix Ω has  × (+ 1) 2 new parameters; these are the vari-

ance covariances of the sunspot shocks and the matrix  has  ×  new

parameters, these capture the covariances of  with . To establish the con-

nection between the two characterizations of equilibrium, we establish the

following two lemmas.

Lemma 1 Let  be a regular indeterminate equilibrium, characterized by

 = {1 2} and let p =
©
 




ª
be an element of the set of par-

titions, P. Let  = {1 3} be the parameters of a Lubik-Schorfheide
representation of equilibrium. There is an × matrix , and an × 

matrix , where the elements of  and , are functions of 1 and an ×
matrix 



×
=

µ


×
+

×

¶
 (36)

such that the sunspots shocks in the LS representation of equilibrium are

related to the fundamentals  and the newly defined FKN fundamentals, 



by the equation,


×1

= 

×

×1
− 

×

×1

 (37)

Proof. See Appendix B.

Lemma 1 connects the LS sunspots to the FKN definition of fundamen-

tals. Lemma 2, described below, provides a way of mapping between the
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original fundamental shocks and the newly defined fundamentals under two

alternative partitions p and p.

Lemma 2 Let  be a regular indeterminate equilibrium, characterized by

 = {1 2} and let p =
©
 




ª
and p =

©


 




ª
be two ele-

ments of the set of partitions, P. There exists an × matrix , an ×

matrix , an  × matrix , and an  ×  matrix , where the ele-

ments of , ,  and  are functions of 1 The new FKN fundamentals

under partition p, 

, are related to the fundamentals  and the new FKN

fundamentals under partition p, 

 by the equation,


×1

=
¡

¢−1

×

"


×




×1
−
µ


×
− 

×

¶

×1

#
 (38)

Proof. Follows immediately from Equations (36) and (37) and the fact that

 is non-singular for all .

Equation (38) defines the equivalence between alternative FKN defini-

tions of the fundamental shocks, without reference to the LS definition. The

following theorem, proved in Appendix C, uses Lemma 1 to establish an

equivalence between the LS and FKN definitions.

Theorem 2 Let  and  be two alternative parameterizations of an

indeterminate equilibrium in model (1). For every FKN equilibrium, para-

meterized by  , there is a unique matrix  and a unique VCV matrix

Ω such that 3 =  (Ω )

and {1 3} ∈ Θ defines an equivalent

LS equilibrium. Conversely, for every LS equilibrium, parameterized by ,

and every partition p ∈ P, there is a unique VCV matrix Ω and a unique

covariance matrix Ω such that 2 = (Ω Ω)
 and {1 2} ∈ Θ

defines an equivalent FKN equilibrium.

Proof. See Appendix C.

Next, we turn to an example that shows how to use our results in practice.
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6 Applying Our Method in Practice: The

Lubik-Schorfheide Example

In this Section we generate data from the model described in Lubik and

Schorfheide (2004) and we use our method to recover parameter estimates

from the simulated data. By using simulated data, rather than actual data,

we avoid possible complications that might arise from mis-specification. For

the simulated data, we know the true data generation process.

Section 6.1 explains how to implement our method for the case of the

New-Keynesian model and in Section 6.2 we establish two results. First,

we take Lubik and Schorfheide’s (2004) parameter estimates for the pre-

Volcker period, and we treat these parameter estimates as truth. Using the

LS parameters, we simulate data under two alternative partitions of our

model, and we verify that, using the same random seed, the simulated data

are identical for both partitions. Second, we estimate the parameters of the

model in Dynare, for the two alternative specifications, and we verify that

the parameter estimates from two different partitions are the same.

6.1 The LS Model with the FKN Approach

The model of Lubik and Schorfheide (2004) consists of a dynamic IS curve

 =  (+1)−  ( − (+1)) +  (39)

a New Keynesian Phillips curve

 =  (+1) +  ( − )  (40)

and a Taylor rule,

 = −1 + (1− ) [1 + 2 ( − )] +  (41)
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The variable  represents log deviations of GDP from a trend path and 

and  are log deviations from the steady state level of inflation and the

nominal interest rate.

The shocks  and  follow univariate AR(1) processes

 = −1 +  (42)

 = −1 +  (43)

where the standard deviations of the fundamental shocks ,  and 

are defined as ,  and , respectively. We allow the correlation between

shocks, ,  and , to be nonzero. The rational expectation forecast

errors are defined as

1 =  −−1 []  2 =  −−1 []  (44)

We define the vector of endogenous variables,

 = [    (+1)   (+1)   ]


the vectors of fundamental shocks and non-fundamental errors,

z = [  ]

 η =

£
1 2

¤
and the vector of parameters

 =
£
1 2             

¤


This leads to the following representation of the model,

Γ0() = Γ1()−1 +Ψ()z +Π()η (45)
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where Γ0 and Γ1 are represented by

Γ0() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0  −1 − −1 0

 −1 0 0  0 −
(1− )2 (1− )1 −1 0 0 0 −(1− )2

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


and,

Γ1() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 − 0 0 0 0

0 0 0 0 0  0

0 0 0 0 0 0 

0 0 0 1 0 0 0

0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


and the coefficients of the shock matrices Ψ and Π are given by,

Ψ() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

−1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Π() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


The last two rows of this system define the non-fundamental shocks and

it is these rows that we modify when estimating the model with the FKN

approach.
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6.1.1 The Determinate Case

When the monetary policy is active, |1|  1, the number of expectational

variables, { (+1)   (+1)}, equals the number of unstable roots. The
Blanchard-Kahn condition is satisfied and there is a unique sequence of non-

fundamental shocks such that the state variables are bounded. In this case

the model can be solved using Gensys which delivers the following system of

equations

 = 1()−1 +2()z (46)

where 1() represents the coefficients of the policy functions and 2() is

the matrix which expresses the impact of fundamental errors on the variables

of interest, .

6.1.2 Indeterminate Models

A necessary condition for indeterminacy is that the monetary policy is pas-

sive, which occurs when

0  |1|  1 (47)

A sufficient condition is that

0  1 +
(1− )


2  1 (48)

This condition is stronger than (47) but the two conditions are close, given

our prior, which sets3

(1− )


2 = 0056

When (48) holds, the number of expectational variables, { (+1)   (+1)},
exceeds the number of unstable roots and there is 1 degree of indeterminacy.

3We thank one of the referees for pointing that the Taylor principle must be modified,

when the central bank responds to the output gap as well as to inflation.
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Using our approach, one can specify two equivalent alternative models de-

pending on choice of the partition p, for  = 1 2.

Fundamental Output Expectations: Model 1 In our first specification,

we choose 1 the forecast error of output, as a new fundamental. We call

this partition p1 and we write the new vector of fundamental shocks

z̃1 =
£
   1

¤


The model is defined as

Γ0() = Γ1()−1 +Ψ()z̃1 +Π()2 (49)

where

Ψ() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 and Π() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


Notice that the matrices Γ0 and Γ1 are unchanged. We have simply redefined

1 as a fundamental shock by moving one of the columns of Π to Ψ. Because

the Blanchard-Kahn condition is satisfied under this redefinition, the model

can be solved using Gensys to generate policy functions as well as the matrix

which describes the impact of the re-defined vector of fundamental shocks on

.

Fundamental Inflation Expectations: Model 2 Following the same

logic there is an alternative partition p2 where the new vector of fundamentals

is defined as
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z̃2 =
£
   2

¤


Here, the state equation is described by

Γ0() = Γ1()−1 +Ψ()z̃2 +Π()1 (50)

where now

Ψ() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 and Π() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


Using Gensys, we can find a unique series of non-fundamental shocks 1

such that the state variables are bounded and the state variables  are then

a function of −1 and the new vector of fundamental errors z̃2.

6.2 Simulation and Estimation using the FKN approach

In this Section, we simulate data from the New-Keynesian model using the

parameter estimates of Lubik and Schorfheide (2004) for the case when the

model is indeterminate. In light of Theorem 2 and Lemma 2, data generated

from the two partitions is identical, a result that we verify computationally.

In Section 6.2.2, we use our simulated data to estimate the model parameters

under the two representations and we confirm that the posterior modes from

each representation are, in most cases, equal to two decimal places and that

all of the estimates lie well within the 90% probability bounds of the alterna-
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tive specification.4 These results demonstrate how to apply our theoretical

results from sections 4 and 5 in practice.

6.2.1 Simulation

In this section, we generate data for the observables, y = {  },
in two different ways. These variables are defined as,

1.  the percentage deviations of (log) real GDP per capita from an

HP-trend;

2.  the annualized percentage change in the Consumer Price Index

for all Urban Consumers;

3.  the annualized percentage average Federal Funds Rate.

As described in Lubik and Schorfheide (2004), the measurement equation

is given by,

y =

⎡⎢⎣ 0

∗

∗ + ∗

⎤⎥⎦+
⎡⎢⎣1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0

⎤⎥⎦ (51)

where ∗ and ∗ are annualized steady-state inflation and real interest rates

expressed in percentages. The parameter values that we use to run the

simulation of the New-Keynesian model in Lubik and Schorfheide (2004) are

the posterior estimates that the authors report for the pre-Volcker period

and that we reproduce in Table 2. We feed the model with shocks using the

FKN method for two alternative partitions.

We take the LS estimates of the standard deviation of the sunspots shock,

, and the ×  matrix  and we treat these estimates as the truth. By

4The estimates are not identical because of sampling error that arises from the use of a

finite number of draws when we approximate posterior distributions with the Metropolis-

Hastings algorithm. We did not see an obvious way of setting the same random seed

within Dynare and hence we used different draws for each specification.
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applying Lemma 1 to the LS parameters, we obtain corresponding values5

for the standard deviation of the newly defined fundamental,  under the

two partitions, p,  ∈ {1 2} 

Ω


×
=

µ


×

¶−1 "
2

×
+ 

×
Ω
×

¡

¢

×

#Ã ¡

¢

×

!−1
 (52)

and for the covariance of the fundamentals z with the newly defined funda-

mental 

Ω


×
=
¡

¢−1

×


×
Ω
×

 (53)

The details on the construction of the matrices ,  and  are described

in Appendix D.

Having defined the new vector of fundamentals z̃ =
£
   

¤
we construct the following variance-covariance matrix

Ω

(+)×(+)
≡ 

¡
z̃ z̃




¢
 (54)

Next, we perform the Cholesky decomposition of the matrixΩ =  ()

,

where  is a lower triangular (+) × (+) matrix. After defining a

(+) × 1 vector of shocks  such that () = 0(+)×1 and (

 ) =

(+), we rewrite z̃ as z̃ = 

The purpose of the Cholesky decomposition is to simplify the estimation

procedure in Dynare6 which we use to estimate the (+) × [(+)− 1]
parameters of the matrix  rather than the variance-covariance terms of the

5We derive both equation (52) and (53) from the result in Lemma 1 and by recalling

that the vector of sunspot shocks  is now a scalar which, as described in Section 5.1, has

the following properties,  [] = 0 
£





¤
= 0 and 

h





i
= 2 

6In particular, the estimation of the (+) × [(+)− 1] elements of the lower
triangular matrix  substantially reduces issues related to the convergence of the posterior

estimates relative to the case of performing the estimation exercise by estimating the

elements of the variance-covariance matrix Ω.
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matrix Ω. Equation (55) reports the matrix Ω for  = 1 2

Ω1 =

⎡⎢⎢⎢⎢⎣
0.05 - - -

0 0.07 - -

0 0.04 1.27 -

-0.03 0.10 0.11 0.17

⎤⎥⎥⎥⎥⎦  Ω2 =
⎡⎢⎢⎢⎢⎣
0.05 - - -

0 0.07 - -

0 0.04 1.27 -

-0.01 0.13 -2.37 4.60

⎤⎥⎥⎥⎥⎦  (55)

and equation (56) is the corresponding Cholesky decomposition  for  =

1 2

1 =

⎡⎢⎢⎢⎢⎣
0.23 0 0 0

0 0.27 0 0

0 0.15 1.11 0

-0.14 0.37 0.04 0.10

⎤⎥⎥⎥⎥⎦  2 =
⎡⎢⎢⎢⎢⎣
0.23 0 0 0

0 0.27 0 0

0 0.15 1.11 0

-0.05 0.04 -2.12 0.26

⎤⎥⎥⎥⎥⎦  (56)

Given a draw of , we obtain the new vector of fundamentals z̃ = 

for partition p and we construct the corresponding draws of the vector

z̃ =
£
   

¤
. Using Lemma 2, Equation (38), which we re-

produce below as equation (57), we derive the non-fundamental shock which

is included as fundamental under partition p for  6= ,





×1
=
¡

¢−1

×

"


×

×1
−
µ


×
− 

×

¶
z
×1

#
 (57)

By feeding the two alternative models with the corresponding new vectors

of fundamentals z̃1 and z̃2, using the same random seed, we obtain identical

simulated data7.

7The code is available in the online Appendix and the results are obtained simulating

the data by using both Gensys and Dynare.
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6.2.2 Estimation Results

Next, we estimate the parameters of the model on the simulated data and

we demonstrate that the posterior estimates of the model parameters are

equivalent under two alternative model specifications. Table 1 reports the

prior distributions of the parameters used in our estimation. With the ex-

ception of priors over the elements of , the prior distributions for the other

parameters are the same as in Lubik and Schorfheide (2004)8.

Table 2 compares the posterior estimates of the model parameters. While

the first column reports the parameter values used to simulate the data,

columns two and three are the estimates for two alternative partitions p1

and p2. Partition p1 treats 1 as fundamental and partition p2 treats

2 as fundamental. We used a random walk Metropolis-Hastings algorithm

to obtain 150,000 draws from the posterior mean and we report 90-percent

probability intervals of the estimated parameters9.

Compare the mean parameter estimates across the three columns. Fifteen

of these parameters are common to all three specifications; these are the

parameters 1 2  
∗ ∗  −1   11 22 33 21 31 and 32. The

remaining four parameters reported in columns 2 and 3, 
41 


42 


43 and


44 represent the elements of the 

 matrix that are not comparable across

specifications.

8The only difference with respect to Lubik and Schorfheide (2004) is that we use a

flatter prior for the parameter . While the authors set a gamma distribution with mean

05 and standard deviation 02, our prior sets the standard deviation to 035, leaving the

mean unchanged. Choosing a flatter prior avoids facing an issue in the convergence of the

parameter which arises with a relatively tight prior as in Lubik and Schorfheide (2004).

Also, Table 1 reports the mean, the standard deviation and the 90-percent probability

interval for each parameter. Note that we were unable to replicate the probability intervals

in Lubik and Schorfheide (2004) and we report the 5-th and the 95-th percentiles of each

distribution. However, the differences with Lubik and Schorfheide (2004) in the values for

the probability intervals are small.
9To run the estimation exercise, we consider a sample of 1,000 observations from the

simulated data, run 6 chains of 50,000 draws each and we finally discard half of the draws.

The acceptance ratio for all the chains are between 25% and 33%.
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Table 1: Prior Distribution for DSGE Model Parameters

Name Range Density Mean Std. Dev. 90% interval

1 R+  1.1 0.50 [0.42,2.03]

2 R+  0.25 0.15 [0.06,0.53]

 [0 1)  0.50 0.20 [0.17,0.82]

∗ R+  4.00 2.00 [1.36,7.75]

∗ R+  2.00 1.00 [0.68,3.87]

 R+  0.50 0.35 [0.09,1.17]

−1 R+  2.00 0.50 [1.25,2.88]

 [0 1)  0.70 0.10 [0.54,0.85]

 [0 1)  0.70 0.10 [0.54,0.85]

11 R+  0.2 0.15 [0.07,0.44]



22 R+  0.3 0.2 [0.12,0.64]



33 R+  1 0.3 [0.61,1.55]



21  0 0.1 [-0.16,0.16]

31  0 0.1 [-0.16,0.16]

32  0.15 0.1 [-0.01,0.31]

141  0 0.2 [-0.32,0.32]

142  0.3 0.2 [-0.02,0.62]

143  0 0.2 [-0.32,0.32]

144  0.1 0.2 [-0.22,0.42]

241  0 0.2 [-0.32,0.32]

242  0 0.2 [-0.32,0.32]

243  -2 0.5 [-2.82,-1.18]

244  0.3 0.2 [-0.02,0.62]
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Table 2: Posterior Means and Probability Intervals

L&S (prior 1) FKN - Model 1 FKN - Model 2

Mean Mean 90% interval Mean 90% interval

1 0.77 0.77 [0.73,0.81] 0.77 [0.73,0.81]

2 0.17 0.21 [0.08,0.33] 0.22 [0.08,0.35]

 0.60 0.61 [0.59,0.63] 0.61 [0.59,0.63]

∗ 4.28 4.44 [4.17,4.71] 4.43 [4.16,4.70]

∗ 1.13 1.18 [1.10,1.25] 1.17 [1.10,1.25]

 0.77 0.67 [0.47,0.89] 0.71 [0.51,0.91]

−1 1.45 1.63 [1.41,1.85] 1.61 [1.39,1.82]

 0.68 0.66 [0.62,0.70] 0.66 [0.62,0.70]

 0.82 0.83 [0.81,0.84] 0.83 [0.81,0.85]

11 0.23 0.23 [0.22,0.24] 0.23 [0.22,0.24]

22 0.27 0.25 [0.21,0.29] 0.25 [0.21,0.29]

33 1.11 1.14 [0.90,1.37] 1.10 [0.87,1.30]

21 0 -0.01 [-0.03,0.009] -0.01 [-0.03,0.009]

31 0 0.02 [-0.09,0.14] 0.003 [-0.09,0.09]

32 0.15 0.14 [0.01,0.27] 0.14 [0.04,0.25]

141 -0.14 -0.15 [-0.18,-0.13] - -

142 0.37 0.36 [0.34,0.37] - -

143 0.04 0.02 [-0.02,0.07] - -

144 0.10 0.10 [-0.20,0.42] - -

241 -0.05 - - -0.07 [-0.25,0.11]

242 0.04 - - 0.03 [-0.17,0.22]

243 -2.12 - - -2.09 [-2.16,-2.01]

244 0.26 - - 0.30 [-0.02,0.62]

Our results show not only that under both models the posterior point

estimates are remarkably close to the parameter values which we use to sim-

ulate the data, but also that both the posterior point estimates and the
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probability intervals are statistically indistinguishable when comparing the

two alternative models. This correspondence in parameter estimates across

specifications is a consequence of Theorems 1 and 2 of our paper.

7 Implementing our Procedure in Dynare

This section provides a practical guide to the user who wishes to implement

our method in Dynare. Consider the New-Keynesian model described in

Section 6, which we repeat below for completeness,

 = [+1]− ( −[+1]) +  (58)

 = [+1] +  +  (59)

 = −1 +  (60)

 = −1 +  (61)

The model is determinate when monetary policy is active, |1|  1 In this

case Dynare finds the unique series of non-fundamental errors that keeps the

state variables bounded and Table 3 reports the code required to estimate

the model in this case.

In the case of the indeterminate models described in Section 6.1.2, run-

ning Dynare with the code from Table 3 produces an error with a message

“Blanchard-Kahn conditions are not satisfied: indeterminacy.” For regions of

the parameter space where the code produces that message, we provide two

alternative versions of the model that redefine one of the non-fundamental

shocks as new fundamental. Following the notation in Section 6.1.2, we refer

to these cases as Model 1, where 1 = −−1[] is a fundamental shock,

and Model 2, where it is 2 = −−1[] and we present the Dynare code

to estimate the two indeterminate cases.
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Table 3: Determinate Model

Variable Definitions var    ;

varexo _ _ _;

Parameter Definitions parameters   _ _ _ 1

2;

Model equations model(linear);

 =  (+1)−  ∗ (−  (+1)) + ;

 = 097 ∗  (+1) +  ∗ (− );

 = _ ∗ (−1) + (1− _) ∗
(1 ∗ + 2 ∗ (− )) + _;

 = _ ∗ (−1) + _;

 = _ ∗ (−1) + _;

end;

Tables 4 and 5 present the amended code for these cases. In Table 4, we

show how to change the model by redefining 1 as fundamental and Table

5 presents an equivalent change to Table 3 in which 2 becomes the new

fundamental. We have represented the new variables and new equations in

that table using bold typeface.

The following steps explain the changes in more detail. First, we define a

new variable, xs ≡  [+1] and include it as one of the endogenous variables

in the model. This leads to the declaration:

    xs; (62)

which appears in the first line of Table 4. Next, we add an expectational

shock, which we call sunspot, to the set of fundamental shocks, _, _

and _. This leads to the Dynare statement

 _ _ _ sunspot; (63)

which appears in row 2. Then we replace  (+1) by xs in the consumption-
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Euler equation, which becomes,

 = xs−  ∗ (−  (+1)) + ; (64)

and we add a new equation that defines the relationship between xs,  and

the new fundamental error:

− xs (−1)= sunspot; (65)

Table 4: Indeterminate Model 1: 1 =  −−1 [] is new fundamental

Variable Definitions var    xs;

varexo _ _ _ sunspot;

Parameter Definitions parameters   _ _ _ 1

2   ;

Model equations model(linear);

 = xs−  ∗ (−  (+1)) + ;

 = 097 ∗  (+1) +  ∗ (− );

 = _ ∗ (−1) + (1− _) ∗
(1 ∗ + 2 ∗ (− )) + _;

 = _ ∗ (−1) + _;

 = _ ∗ (−1) + _;

− xs (−1) = sunspot;
end;

Similar steps apply in the case of Model 2, but with 2 taking the role

of 1 Note that, by substituting expectations of forward-looking variables

(+1) in Model 1, and (+1) in Model 2, with xs and pis, respectively,

we decrease the number of forward-looking variables by one. Since these

variables are no longer solved forwards, we must add an equation — this

appears as Equation (65) — to describe the dynamics of the new fundamental

shock.
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Table 5: Indeterminate Model 2: 2 =  −−1 [] is new fundamental

Variable Definitions var    pis;

varexo _ _ _ sunspot;

Parameter Definitions parameters   _ _ _ 1

2   ;

Model equations model(linear);

 = (+1)−  ∗ (−  (+1)) + ;

 = 097 ∗ pis+  ∗ (− );

 = _ ∗ (−1) + (1− _) ∗
(1 ∗ + 2 ∗ (− )) + _;

 = _ ∗ (−1) + _;

 = _ ∗ (−1) + _;

− pis (−1) = sunspot;
end;

How can a researcher know, in advance, if his model is determinate. The

answer provided by Lubik and Schorfheide (2004), is that determinate and

indeterminate models are alternative representations of data that can be

compared either by Likelihood ratio tests or by Bayesian model comparison.

The Lubik-Schorfheide approach assumes that the researcher can identify,

a priori, determinate and indeterminate regions of the parameter space. For

models where that is difficult or impossible, Fanelli (2012) and Castelnuovo

and Fanelli (2014) propose an alternative method that may be used to test

the null hypothesis of determinacy.

8 Conclusion

Our paper provides a method to solve and estimate indeterminate linear ra-

tional expectations models using standard software packages. Our method
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transforms indeterminate models by redefining a subset of the non-fundamental

shocks and classifying them as new fundamentals. Our approach to handling

indeterminate equilibria is more easily implementable than that of Lubik and

Schorfheide and, one might argue, is also more intuitive. We illustrated our

approach using the familiar New-Keynesian monetary model and we showed

that, when monetary policy is passive, the new-Keynesian model can be

closed in one of two equivalent ways.

Our procedure raises the question of which non-fundamental shocks to re-

classify as fundamental. Our theoretical results demonstrate that the choice

of parameterization is irrelevant since all parameterizations have the same

likelihood function. We demonstrated that result in practice by estimating a

model due to Lubik and Schorfheide (2004) in two different ways and recov-

ering parameter estimates that are statistically indistinguishable between the

two. We caution that, in practice, it is important to leave the VCV matrix

of errors unrestricted for our results to apply. Our work should be of interest

to economists who are interested in estimating models that do not impose a

determinacy prior.
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A Appendix A

Proof of Theorem 1. Let 1 and 2 be two orthonormal row operators

associated with partitions p1 and p2;⎡⎢⎣ 

1

1

⎤⎥⎦ = 1

"




#


⎡⎢⎣ 

2

2

⎤⎥⎦ = 2

"




#
 (A1)

We assume that the operators,  have the form

 =

⎡⎣ 
×

0

0 ̃

×

⎤⎦  (A2)

where ̃ is a permutation of the columns of an  identity matrix. Pre-

multiplying the vector [ ]

by the operator  permutes the rows of 

while leaving the rows of  unchanged. Define matrices Ω and Ω for

 ∈ {1 2} to be the new terms in the fundamental covariance matrix,



⎛⎝" 



#"




#⎞⎠ =

"
Ω Ω

Ω Ω

#


Next, use (22) and (23) to write the non-fundamentals as linear functions of

the fundamentals,

 = Θ
 +Θ



 (A3)

where

Θ
 ≡ −

³
Π̃
2

´−1
Ψ̃2 and Θ

 ≡ −
³
Π̃
2

´−1
Π̃
2  (A4)
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and define the matrix 

 =

⎡⎢⎢⎢⎢⎣

×

0
×

0
×


×

Θ


(−)×
Θ


(−)×

⎤⎥⎥⎥⎥⎦  (A5)

Using this definition, the covariance matrix of all shocks, fundamental and

non-fundamental, has the following representation,



⎛⎜⎜⎝
⎡⎢⎣ 





⎤⎥⎦
⎡⎢⎣ 





⎤⎥⎦

⎞⎟⎟⎠ = 

"
Ω Ω

Ω Ω

#
  (A6)

We can also combine the last two row blocks of  and write  as follows

 =

⎡⎢⎣ 
×

0
×


21

×

22

×

⎤⎥⎦  (A7)

where,


21 =

⎡⎢⎣ 0
×
Θ


(−)×

⎤⎥⎦  
22 =

⎡⎢⎣ 
×
Θ


(−)×

⎤⎥⎦  (A8)

Using (A1) and the fact that  is orthonormal, we can write the following

expression for the complete set of shocks

"




#
= 

⎡⎢⎣ 





⎤⎥⎦  (A9)
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Using equations (A6) and (A9), it follows that



⎛⎝" 



#"




#⎞⎠ =    for all p ∈ P (A10)

where

  ≡
"
Ω Ω

Ω Ω

#
 (A11)

and

 ≡  =

"
 0

0 ̃

#"
 0


21 

22

#
=

"
 0


21 

22

#
 (A12)

Using this expression, we can write out equation (A10) in full to give,



⎛⎝" 



#"




#⎞⎠ =

"
 0


21 

22

#"
Ω Ω

Ω Ω

#"
 

21

0 
22

#
 (A13)

We seek to establish that for any partition p, parameterized by matrices

Ω  and Ω that there exist matrices Ω and Ω for all partitions p ∈
P  6= , such that

Ω = 

⎛⎝" 



#"




#⎞⎠ =   =    (A14)

To establish this proposition, we write out the elements of (A13) explicitly.

Since   and  are symmetric we need consider only the upper-triangular
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elements which give three equations in the matrices of Ω and Ω 

Ω11 = Ω

Ω12 = Ω



21 + Ω


22  (A15)

Ω22 = 
21Ω





21 + 2


21Ω


22 +

22Ω

22 

The first of these equations defines the covariance of the fundamental shocks

and it holds for all  . Now define

 =  (Ω)   =  (Ω)   =  (Ω)  (A16)

Using the fact that

 () =
¡
 ⊗

¢
 ()  (A17)

we can pass the  operator through equation (A15) and write the following

system of linear equations in the unknowns  and 



"




#
+   = 

"




#
+   (A18)

 =

" ¡

22 ⊗ 

¢
0¡


22 ⊗


21

¢ ¡

22 ⊗

22

¢ #    =

" ¡

21 ⊗ 

¢¡

21 ⊗

21

¢ #   ∈ { } 
(A19)

It follows from the assumption that the equilibrium is regular that  has full

rank for all  hence for any permutation p parameterized by { }we can
find an alternative permutation p with associated parameterization { } "





#
=
¡

¢−1Ã



"




#
+
£
  −  

¤


!
 (A20)

that gives the same covariance matrix Ω̃ for the fundamental and non-
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fundamental shocks.

B Appendix B

Proof of Lemma 1. We seek to characterize the full set of solutions to

the equation,

Ψ̃2
×


×1
+ Π̃2

×

×1

= 0 (B1)

Let 1  and 11 characterize the singular value decomposition of Π̃2

Π̃2
×
≡ 1

×

h
11
×

0
×

i
 

×
 (B2)

where we partition the matrix  as

 =

∙
1
×

2
×

¸


Let  characterize a regular indeterminate equilibrium for some partition

p and we partition  into two mutually exclusive subsets, 

 and 


 such

that  ∪  = . From Appendix A, equation A3, we write the non-

fundamentals  as functions of the fundamentals and where Θ

 and Θ


 are

functions of 1


×1

= Θ


×

×1
+ Θ


×


×1

 (B3)

Equation (B3) connects the non-fundamental shocks  to the fundamental

shocks
£
 




¤
in the FKN equilibrium. Equation (33) reproduced below as

(B4), characterizes the additional equations that define an LS equilibrium,


×1

= 1
×


×


×1

+ 2
×


×


×1
+ 2

×

×1

 (B4)
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where  ≡ −−1
11 


1 Ψ̃2. To establish the connection between the LS and

FKN representations we split the equations of (B4) into two blocks


×1

=  
1

×

×


×1
+  

2
×


×


×1
+  

2
×


×1

(B5)


×1

=  
1

×

×


×1
+  

2
×


×


×1
+  

2
×


×1

(B6)

where for  = 1 2, the matrices  
 and 


 are composed of the row vectors

of  which, according to partition p, correspond to the non-fundamental

shocks included as fundamental, , and those that are still non-fundamental,

.

Using (B3) to replacing  in (B5) and combining with (B6)⎡⎣ Θ


×


⎤⎦ 
×1

=  
1

×

×


×1
−
⎡⎣ Θ


×
0

×

⎤⎦ 
×1
+  

2
×


×


×1
+  

2
×


×1

 (B7)

where

 


×
≡

⎡⎢⎣  


×
 


×

⎤⎥⎦ 
Premultiplying (B7) by ( 

2 )

and exploiting the fact that  is orthonor-

mal, leads to the equation



×

×1

= 

×

×1
+

×

×1
+ 

×1
 (B8)

where



×
≡ ¡

 
2

¢
×

⎡⎣ Θ


×


⎤⎦
×

 and 

×
≡ ¡

 
2

¢
×

 
1

×

×
− ¡

 
2

¢
×

⎡⎣ Θ


×
0

×

⎤⎦
×



(B9)
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Rearranging (B8) and defining



×
≡ 

×
+

×
(B10)

gives


×1

= 

×

×1
− 

×

×1

 (B11)

which is the expression we seek.

C Appendix C

Proof of Theorem 2. Let  = {1 2} characterize an FKN equilib-
rium. From (B8), which we repeat below omitting the superscript  to reduce

notation,


×


×1

= 
×


×1
+

×

×1
+ 

×1
 (C1)

Post-multiplying this equation by  and taking expectations gives


×

Ω
×

= 
×

Ω
×

+
×

Ω
×

= 
×

Ω
×

 (C2)

which represents  ×  linear equations in the  ×  elements of  ()

as functions of the elements of ,  and Ω, (these are functions of 1),

and Ω (these are elements of 2). Applying the  operator to (C2), using

the algebra of Kronecker products, and rearranging terms gives the following

solution for the parameters  (),

 ()
(×)×1

=

(Ω ⊗ )
−1

(×)×(×)

"
( ⊗)

(×)×(×)
 (Ω)
(×)×1

− ( ⊗)
(×)×2

 (Ω)
2×1

#
 (C3)
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Using equation (C3) we can construct an expression for the elements of  as

functions of 1 and 2. Post-multiplying equation (B11) by itself transposed,

and taking expectations, we have

Ω
×

= 
×

Ω
×



×
− 

×
Ω
×



×
− 

×
Ω
×



×
+ 

×
Ω
×



×
(C4)

= 
×

Ω
×



×
− 

×
Ω
×



×

where the last equality is obtained using (C2). The terms on the RHS of

(C4) are all functions of the known elements of 1 and 2. Since the matrix

Ω is symmetric, this gives  × (+ 1) 2 equations that determine the

parameters of  (Ω). This establishes that every  ∈ Θ defines a

unique parameter vector  ∈ Θ. To prove the converse, solve equation

(C3) for  (Ω) as a function of 1 and the elements of  and apply the

 operator to (C4) to solve for  (Ω) in terms of 1 and  (Ω).

D Appendix D

To run the simulation of the New-Keynesian model in Lubik and Schorfheide

(2004) under indeterminacy, we need to compute the matrices ,   and

. We proceed as follows. First, we apply the QZ decomposition to the

representation of the model

Γ0() = Γ1()−1 +Ψ()z +Π()η (D1)

where Γ0(), Γ1(),Ψ() and Π() are described in Section 3. Let

Γ0 =   and Γ1 =   (D2)
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be the  decomposition of {Γ0Γ1} where  and  are  ×  orthonor-

mal matrices and  and  are upper triangular and possibly complex. The

resulting transformed parameters are

Ψ̃ = Ψ, and Π̃ = Π (D3)

which then allow us to define the equation connecting fundamental and non-

fundamental errors

Ψ̃2
×


×1
+ Π̃2

×

×1

= 0 (D4)

where Ψ̃2 and Π̃2 are described in Section 3. For the New-Keynesian model

in Lubik and Schorfheide (2004) the degree of indeterminacy  = (− )

equals 1 since the number of non-fundamental shocks is  = 2, while the

number of generalized eigenvalues that are greater than or equal to 1 is  = 1.

Second, we follow Lubik and Schorfheide (2004) and apply the singular

value decomposition as described in Section 5

Π̃2
×
≡ 1

×

h
11
×

0
×

i
 

×
 (D5)

and we compute


×
≡ −−1

11
×


1

×
Ψ̃2
×

(D6)

Third, we partition  into two mutually exclusive subsets,  and  such

that  ∪  =  and partition Π̃2 conformably so that

Π̃2
×


×1

=

"
Π̃
2

×
Π̃
2

×

#⎡⎢⎣ 
×1

×1

⎤⎥⎦  (D7)
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For the New-Keynesian model we are considering there are two possible par-

titions  = {1 2} for which we include the non-fundamental shock 1 =

 − −1 [] or 2 =  − −1 [] respectively as fundamental shock. We

then compute the matrices Θ
 and Θ


 as defined in (A4) and which we report

here

Θ
 ≡ −

³
Π̃
2

´−1
Ψ̃2 and Θ

 ≡ −
³
Π̃
2

´−1
Π̃
2 (D8)

Fourth, we partition 

 =

∙
1
×

2
×

¸
 (D9)

and define the matrices

 


×
≡

⎡⎢⎣  


×
 


×

⎤⎥⎦  (D10)

where the matrices  
 and 


 are composed of the row vectors of  which,

according to partition p, correspond to the non-fundamental shocks included

as fundamental, , and those that are still non-fundamental, 

.

Finally, we use the definitions of  and  



×
≡ ¡

 
2

¢
×

⎡⎣ Θ


×


⎤⎦
×

 and 

×
≡ ¡

 
2

¢
×

 
1

×

×
− ¡

 
2

¢
×

⎡⎣ Θ


×
0

×

⎤⎦
×



(D11)

for each partition  = {1 2}. Therefore, we obtain the matrix



×
= 

×
+

×
 (D12)

where the×matrix captures the correlation of the forecast errors with

the fundamentals in Lubik and Schorfheide (2004) as explained in Section 5.1.
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