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1 Introduction

It is well known that linear rational expectations (LRE) models can have an

indeterminate set of equilibria under realistic parameter choices. Lubik and

Schorfheide (2003) provided an algorithm that computes the complete set of

indeterminate equilibrium, but their approach has not yet been implemented

in standard software packages and has not been widely applied in practice.

In this paper, we propose an alternative methodology based on the idea

that a model with an indeterminate set of equilibria is an incomplete model.

We propose to close a model of this kind by treating a subset of the non-

fundamental errors as newly defined fundamentals.

Our method builds on the approach of Sims (2001) who provided a widely

used computer code, Gensys, implemented in Matlab, to solve for the reduced

form of a general class of linear rational expectations (LRE) models. Sims’s

code classifies models into three groups; those with a unique rational expec-

tations equilibrium, those with an indeterminate set of rational expectations

equilibria, and those for which no bounded rational expectations equilibrium

exists. By moving non-fundamental errors to the set of fundamental shocks,

we select a unique equilibrium, thus allowing the modeler to apply standard

solution algorithms. We provide step-by-step guidelines for implementing

our method in the Matlab-based software programs Dynare (Adjemian et al.,

2011) and Gensys (Sims, 2001).

Our paper is organized as follows. In Section 2, we provide a brief liter-

ature survey and in Section 3 we review solution methods for indeterminate

models. In Section 4, we discuss the choice of which expectational errors to

redefine as fundamental and we prove that all possible alternative selections

have the same likelihood. Section 5 compares our method to the work of

Lubik and Schorfheide (2003) and establishes an equivalence result between

the two approaches. In Section 6, we apply our method to a simple New-

Keynesian model, and in Section 7 we use our methodology to replicate the

results of Lubik and Schorfheide (2004). Section 8 provides a brief conclusion.

1



2 Related Literature

Blanchard and Kahn (1980) showed that a LRE model can be written as a

linear combination of backward-looking and forward-looking solutions. Since

then, a number of alternative approaches for solving linear rational expecta-

tions models have emerged (King andWatson, 1998; Klein, 2000; Uhlig, 1999;

Sims, 2001). These methods provide a solution if the equilibrium is unique,

but there is considerable confusion about how to handle the indeterminate

case. Some methods fail in the case of a non-unique solution, for example,

Klein (2000), while others, e.g. Sims (2001), generate one solution with a

warning message.

All of these solution algorithms are based on the idea that, when there is

a unique determinate rational expectations equilibrium, the model’s forecast

errors are uniquely defined by the fundamental shocks. These errors must be

chosen in a way that eliminates potentially explosive dynamics of the state

variables of the model.

McCallum (1983) has argued that a model with an indeterminate set

of equilibria is incompletely specified and he recommends a procedure, the

minimal state variable solution, for selecting one of the many possible equi-

libria in the indeterminate case. Farmer (1999) has argued instead, that we

should exploit the properties of indeterminate models to help understand

data, but with the exceptions of an early piece by Farmer and Guo (1995)

and a more recent literature (Belaygorod and Dueker, 2009; Bhattarai et al.,

2012; Castelnuovo and Fanelli, 2013; Hirose, 2011; Zheng and Guo, 2013;

Bilbiie and Straub, 2013) that follows the approach of Lubik and Schorfheide

(2004), there has not been much empirical work that seeks to formally esti-

mate indeterminate models. That is in contrast to a large body of theoretical

work, surveyed in Benhabib and Farmer (1999), which demonstrates that the

theoretical properties of models with indeterminacy present a serious chal-

lenge to conventional classical and new-Keynesian approaches.

The empirical importance of indeterminacy began with the work of Ben-
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habib and Farmer (1994) who established that a standard one-sector growth

model with increasing returns displays an indeterminate steady state and

Farmer and Guo (1994) who exploited that property to generate business

cycle models driven by self-fulfilling beliefs. More recent New-Keynesian

models have been shown to exhibit indeterminacy if the monetary authority

does not increase the nominal interest rate enough in response to higher in-

flation (see, for example, Clarida et al. (2000); Kerr and King (1996)). Our

estimation method should be of interest to researchers in both literatures.

3 Solving LRE Models

Consider the following -equation LRE model. We assume that  ∈ 

is a vector of deviations from means of some underlying economic variables.

These may include predetermined state variables, for example, the stock of

capital, non-predetermined control variables, for example, consumption; and

expectations at date  of both types of variables.

We assume that  is an × 1 vector of exogenous, mean-zero shocks and
 is a  × 1 vector of endogenous shocks.1 The matrices Γ0 and Γ1 are of

dimension  × , possibly singular, Ψ and Π are respectively,  ×  and ×
 known matrices.

Using the above definitions, we will study the class of linear rational

expectations models described by Equation (1),

Γ0 = Γ1−1 +Ψ +Π (1)

Sims (2001) shows that this way of representing a LRE is very general and

most LRE models that are studied in practice by economists can be written

1Sims (2001) allows  to be autoregressive with non zero conditional expectation. We

assume, instead, that  always has zero conditional mean. That assumption is unrestric-

tive since an autoregressive error can always be written in our form by defining a new state

variable, ̃ and letting the innovation of the original variable, , be the new fundamental

shock.
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in this form. We assume that

−1 () = 0 and −1 () = 0 (2)

We define the  ×  matrix Ω,

−1
³






´
= Ω (3)

which represents the covariance matrix of the exogenous shocks. We refer to

these shocks as predetermined errors, or equivalently, predetermined shocks.

The second set of shocks, , has dimension . Unlike the , these shocks

are endogenous and are determined by the solution algorithm in a way that

eliminates the influence of the unstable roots of the system. In many impor-

tant examples, the  have the interpretation of expectational errors and, in

those examples,

 =  −−1 ()  (4)

3.1 The QZ Decomposition

Sims (2001) shows how to write equation (1) in the form"
11 12

0 22

#"
̃1

̃2

#
=

"
11 12

0 22

#"
̃1−1
̃2−1

#

+

"
Ψ̃1

Ψ̃2

#
 +

"
Π̃1

Π̃2

#
 (5)

where the matrices   , Ψ̃ and Π̃ and the transformed variables ̃ are

defined as follows. Let

Γ0 =   and Γ1 =   (6)
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be the  decomposition of {Γ0Γ1} where  and  are ×  orthonormal

matrices and  and  are upper triangular and possibly complex.

The  decomposition is not unique. The diagonal elements of  and

 are called the generalized eigenvalues of {Γ0Γ1} and Sims’s algorithm
chooses one specific decomposition that orders the equations so that the

absolute values of the ratios of the generalized eigenvalues are placed in

increasing order that is,

||  || ≥ ||  || for    (7)

Sims proceeds by partitioning ,  ,  and  as

 =

"
11 12

0 22

#
  =

"
11 12

0 22

#
 (8)

 =

"
11 12

21 22

#
  =

"
11 12

21 22

#
 (9)

where the first block contains all the equations for which ||  ||  1

and the second block, all those for which ||  || ≥ 1 The transformed
variables ̃ are defined as

̃ =  (10)

and the transformed parameters as

Ψ̃ = Ψ, and Π̃ = Π (11)

3.2 Using the QZ decomposition to solve the model

The model is said to be determinate if Equation (5) has a unique bounded

solution. To establish existence of at least one bounded solution we must

eliminate the influence of all of the unstable roots; by construction, these are
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contained in the second block,

̃2 = −122 22̃2−1 + −122
³
Ψ̃2 + Π̃2

´
 (12)

since the eigenvalues of −122 22 are all greater than one in absolute value.

Hence a bounded solution, if it exists, will set

̃20 = 0 (13)

and

Ψ̃2 + Π̃2 = 0 (14)

Since the elements of ̃2 are linear combinations of 2, a necessary condi-

tion for the existence of a solution to equation (14) is that there are at least

as many non-predetermined variables as unstable generalized eigenvalues. A

sufficient condition is that the columns of Π̃2 in the matrix,h
Ψ̃2 Π̃2

i
 (15)

are linearly independent so that there is at least one solution to Equation

(14) for the endogenous shocks, , as a function of the fundamental shocks,

. In the case that Π̃2 is square and non-singular, we can write the solution

for  as

 = −Π̃−12 Ψ̃2 (16)

More generally, Sims’ code checks for existence using the singular value de-

composition of (15).

To find a solution for ̃1 we take equation (16) and plug it back into the

first block of (5) to give the expression,

̃1 = −111 11̃1−1 + −111
³
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

´
 (17)

Even if there is more than one solution to (14) it is possible that they all
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lead to the same solution for ̃1. Sims provides a second use of the singular

value decomposition to check that the solution is unique. Equations (13)

and (17) determine the evolution of
n
̃

o
as functions of the fundamental

shocks {} and, using the definition of
n
̃

o
from (10), we can recover the

original sequence {}.

3.3 The Indeterminate Case

There are many examples of sensible economic models where the number of

expectational variables is larger than the number of unstable roots of the

system. In that case, Gensys will find a solution but flag the fact that there

are many others. We propose to deal with that situation by providing a

statistical model for one or more of the endogenous errors.

The rationale for our procedure is based on the notion that agents situated

in an environment with multiple rational expectations equilibria must still

choose to act. And to act rationally, they must form some forecast of the

future and, therefore, we can model the process of expectations formation by

specifying how the forecast errors covary with the other fundamentals.

If a model has  unstable generalized eigenvalues and  non-fundamental

errors then, under some regularity assumptions, there will be  =  − 

degrees of indeterminacy. In that situation we propose to redefine  non-

fundamental errors as new fundamental shocks. This transformation allows

us to treat indeterminate models as determinate and to apply standard so-

lution and estimation methods.

Consider model (1) and suppose that there are  degrees of indetermi-

nacy. We propose to partition the  into two pieces,  and  and to

partition Π conformably so that,

Γ0
×


×1

= Γ1
×

−1
×1

+ Ψ
×


×1
+

∙
Π
×

Π
×

¸⎡⎢⎣ 
×1

×1

⎤⎥⎦  (18)
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Here,  is an  × 1 vector that contains the newly defined fundamental
errors and  contains the remaining  non-fundamental errors.

Next, we re-write the system by moving  from the vector of expecta-

tional shocks to the vector of fundamental shocks:

Γ0
×


×1

= Γ1
×

−1
×1

+

∙
Ψ
×

Π
×

¸ e
(+)×1

+ Π
×


×1

 (19)

where we treat

e
(+)×1

=

⎡⎢⎣ 
×1

×1

⎤⎥⎦  (20)

as a new vector of fundamental shocks and  as a new vector of non-

fundamental shocks. To complete this specification, we define Ω̃

Ω̃
(+)×(+)

= −1

⎛⎜⎝
⎡⎢⎣ 

×1

×1

⎤⎥⎦
⎡⎢⎣ 

×1

×1

⎤⎥⎦
⎞⎟⎠ ≡

⎛⎜⎝ Ω
×

Ω
×

Ω
×

Ω
×

⎞⎟⎠  (21)

to be the new covariance matrix of fundamental shocks. This definition

requires us to specify  (+ 1 + 2) 2 new variance parameters, these are

the  (+ 1) 2 elements of Ω , and  new covariance parameters, these

are the elements of Ω . By choosing these new parameters and applying

Sims’ solution algorithm, we select a unique bounded rational expectations

equilibrium. The diagonal elements of Ω̃ that correspond to  have the

interpretation of a pure ‘sunspot’ component to the shock and the covariance

of these terms with  represent the response of beliefs to the original set of

fundamentals.

Our approach to indeterminacy is equivalent to defining a new model

in which the indeterminacy is resolved by assuming that expectations are

formed consistently using the same forecasting method in every period. For

example, expectations may be determined by a learning mechanism as in
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Evans and Honkapohja (2001) or using a belief function as in Farmer (2002).

For our approach to be valid, we require that the belief function is time

invariant and that shocks to that function can be described by a stationary

probability distribution. Our newly transformed model can be written in

the form of Equation (1), but the fundamental shocks in the transformed

model include the original fundamental shocks , as well as the vector of

new fundamental shocks, .

4 Choice of Expectational Errors

Our approach raises the practical question of which non-fundamentals should

we choose to redefine as fundamental. Here we show that, given a relatively

mild regularity condition, there is an equivalence between all possible ways

of redefining the model.

Definition 1 (Regularity) Let  be an indeterminate equilibrium of model

(1) and use the  decomposition to write the following equation connecting

fundamental and non-fundamental errors.

Ψ̃2 + Π̃2 = 0 (22)

Let  be the number of generalized eigenvalues that are greater than or equal

to 1 and let    be the number of non-fundamental errors. Partition 

into two mutually exclusive subsets,  and  such that ∪ =  and

partition Π̃2 conformably so that

Π̃2
×


×1

=

∙
Π̃2
×

Π̃2
×

¸⎡⎢⎣ 
×1

×1

⎤⎥⎦  (23)

The indeterminate equilibrium, , is regular if, for all possible mutually ex-

clusive partitions of , Π̃2 has full rank.
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Regularity rules out situations where there is a linear dependence in the

non-fundamental errors and all of the indeterminate LRE models that we are

aware of, that have been studied in the literature, satisfy this condition.

Theorem 1 Let  be an indeterminate equilibrium of model (1) and let P

be an exhaustive set of mutually exclusive partitions of  into two non-

intersecting subsets; where

⎧⎨⎩p ∈ P | p =
Ã

×1

 
×1

!
⎫⎬⎭. Let p1 and p2 be

elements of P and let Ω̃1 be the covariance matrix of the new set of funda-

mentals,
£
 

¤
associated with partition p1. If  is regular then there is

a covariance matrix Ω̃2, associated with partition 2 such that the covariance

matrix

Ω = 

⎛⎜⎜⎝
⎡⎢⎣ 





⎤⎥⎦
⎡⎢⎣ 





⎤⎥⎦

⎞⎟⎟⎠  (24)

is the same for both partitions. p1 and p2, parameterized by Ω̃1 and Ω̃2, are

said to be equivalent partitions.

Proof. See Appendix A.

Corollary 1 The joint probability distribution over sequences {} is the
same for all equivalent partitions.

Proof. The proof follows immediately from the fact that the joint probability

of sequences {}, is determined by the joint distribution of the shocks.
The question of how to choose a partition p is irrelevant. All partitions

have the same likelihood. However, the partition will matter, if the researcher

imposes zero restrictions on the variance covariance matrix of fundamentals.

A zero cross-correlation under one partition, p will imply a complicated non-

linear cross-equation restriction on all other partitions p For this reason,

we recommend that in practice, the VCV matrix of the shocks ̃ should be

left unrestricted.
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5 Lubik-Schorfheide and Farmer-Khramov-Nicolò

Compared

The two papers by Lubik and Schorfheide, (Lubik and Schorfheide, 2003,

2004), are widely cited in the literature (Belaygorod and Dueker, 2009; Zheng

and Guo, 2013; Lubik and Matthes, 2013) and their approach is the one most

closely emulated by researchers who wish to estimate models that possess

an indeterminate equilibrium. This section compares the Lubik-Schorfheide

method to ours and proves an equivalence result.

We show in Theorem 2 that every LS equilibrium can be implemented as

a Farmer-Khramov-Nicolò (FKN) equilibrium, and conversely, every Farmer-

Khramov-Nicolò (FKN) equilibrium can be characterized using the Lubik-

Schorfheide technique. Because our method can be implemented using stan-

dard algorithms, our method provides an easy way for applied researchers to

simulate and estimate indeterminate models using widely available computer

software. And Theorem 2 shows that the full set of indeterminate equilibria

can be modeled using our approach.

5.1 The Singular Value Decomposition

Determinacy boils down to the following question: Does equation (14), which

we repeat below as equation (25), have a unique solution for the × 1 vector
of endogenous errors,  as functions of the  × 1 vector of fundamental
errors, ?

Ψ̃2
×


×1
+ Π̃2

×

×1

= 0 (25)

To answer this question, LS apply the singular value decomposition to the

matrix Π̃2. The interesting case is when   , for which Π̃2 has  singular

values, equal to the positive square roots of the eigenvalues of Π̃2Π̃

2 . The

singular values are collected into a diagonal matrix 11 The matrices  and

 in the decomposition are orthonormal and  =  −  is the degree of
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indeterminacy.

Π̃2
×
≡ 

×

h
11
×

0
×

i
 

×
 (26)

Replacing Π̃2 in (25) with this expression and premultiplying by 
 leads to

the equation



×
Ψ̃2
×


×1
+
h
11
×

0
×

i
 

×

×1

= 0 (27)

Now partition 

 =

∙
1
×

2
×

¸


and premultiply (27) by −1
11 ,

−1
11

×


×
Ψ̃2
×


×1
+  

1
×


×1

= 0 (28)

Because    this system has fewer equations than unknowns. Lubik and

Schorfheide suggest that we supplement it with the following new  = −

equations,


×


×1
+ 

×

×1

=  
2

×

×1

 (29)

The × 1 vector  is a set of sunspot shocks that is assumed to have mean
zero and covariance matrixΩ and to be uncorrelated with the fundamentals,

.

 [] = 0 
£





¤
= 0 

£





¤
= Ω (30)

Correlation of the forecast errors, , with fundamentals, , is captured by

the matrix. Because the parameters of Ω cannot separately be identified

from the parameters of , LS choose the normalization

 = . (31)

Appending equation (29) as additional rows to equation (28), premulti-
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plying by  and rearranging terms leads to the following representation of

the expectational errors as functions of the fundamentals,  and the sunspot

shocks, 


×1

=

µ
−1
×

−1
11

×

1

×
Ψ̃2
×
+ 2

×

×

¶

×1
+ 2

×

×1

 (32)

This is equation (25) in Lubik and Schorfheide (2003) using our notation for

dimensions and where our  is what LS call ̃ . More compactly


×1

= 1
×


×


×1

+ 2
×


×


×1
+ 2

×

×1

 (33)

where


×
≡ −−1

11
×


1

×
Ψ̃2
×

is a function of the parameters of the model.

5.2 Equivalent characterizations of indeterminate equi-

libria

To define a unique sunspot equilibrium when the model is indeterminate, our

method partitions  into two subsets;  =
©
  

ª
. We refer to  as new

fundamentals. A Farmer-Khramov-Nicolò (FKN) equilibrium is character-

ized by a parameter vector  ∈ Θ which has two parts. 1 ∈ Θ1

1 ≡  (Γ0Γ1ΨΩ)



is a vector of parameters of the structural equations, including the variance

covariance matrix of the original fundamentals. And 2 ∈ Θ2

2 ≡  (Ω Ω)



13



is a vector of parameters that contains the variance covariance matrix of the

new fundamentals and the covariances of these new fundamentals,  , with

the original fundamentals, .

A Farmer-Khramov-Nicolò representation of equilibrium is a vector  ∈
Θ where Θ is defined as,

Θ ≡ {Θ1Θ2} 

Theorem 1 establishes that there is an equivalence class of models, all

with the same likelihood function, in which the ×1 vector  is selected as
a new set of fundamentals and the VCV matrices Ω and Ω are additional

parameters. To complete the model in this way we must add  (+ 1) 2

new parameters to define the symmetric matrixΩ and× new parameters
to define the elements of Ω .

In contrast a Lubik-Schorfheide equilibrium is characterized by a para-

meter vector

Θ ≡ {Θ1Θ3} 

where 3 ∈ Θ3 is defined as

3 ≡  (Ω )

 (34)

These parameters characterize the additional equation,


×


×1
+ 

×1
=  

2
×


×1

 (35)

where equation (35) adds the normalization (31) to equation (29).

The matrix Ω has  × (+ 1) 2 new parameters; these are the vari-

ance covariances of the sunspot shocks and the matrix  has  ×  new

parameters, these capture the covariances of  with . To establish the con-

nection between the two characterizations of equilibrium, we establish the

following lemma.

14



Lemma 1 Let  be a regular indeterminate equilibrium, characterized by

 = {1 2} and let p =
©
 

ª
be an element of the set of partitions,

P. Let  = {1 3} be the parameters of a Lubik-Schorfheide representa-
tion of equilibrium. There is an × matrix , and an ×  matrix ,

where the elements of  and , are functions of 1 and an ×  matrix 


×

=

µ

×

+
×

¶


such that the sunspots shocks in the LS representation of equilibrium are

related to the fundamentals  and the newly defined FKN fundamentals, 

by the equation,


×1

= 
×


×1
− 

×

×1



Proof. See Appendix B.

The following theorem, proved in Appendix C, uses this lemma to estab-

lish an equivalence between the LS and FKN methods.

Theorem 2 Let  and  be two alternative parameterizations of an

indeterminate equilibrium in model (1). For every FKN equilibrium, para-

meterized by  , there is a unique matrix  and a unique VCV matrix

Ω such that 3 =  (Ω )

and {1 3} ∈ Θ defines an equivalent

LS equilibrium. Conversely, for every LS equilibrium, parameterized by ,

and every partition p ∈ P, there is a unique VCV matrix Ω and a unique

covariance matrix Ω such that 2 = (Ω Ω)
 and {1 2} ∈ Θ

defines an equivalent FKN equilibrium.

Proof. See Appendix C.

Next, we turn to an example that shows how to use our results in practice.
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6 Example: A Simple New-Keynesian Model

In this section, we apply our method to a simple form of the New-Keynesian

model, discussed in Lubik and Schorfheide (2004), where we simplify the

model by assuming that there is only one fundamental shock. This model

has three equations:

[+1] + [+1] =  +  (36)

 =  +  (37)

 = [+1] +  (38)

where  is output,  is inflation,  is the interest rate, and  is a funda-

mental interest rate shock. The first equation is a consumption-Euler equa-

tion, the second is a monetary policy rule, and the third is a New-Keynesian

Phillips curve. This model has two forward-looking variables and one funda-

mental shock.

Substituting  into Equation (36), this model can be reduced to the

following system of two equations:

 +  −[+1]− [+1] = − (39)

− +  − [+1] = 0 (40)

Writing the system out in Sims’ notation gives,

Γ0 = Γ1−1 +Ψ +Π (41)
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where the parameter matrices Γ0 Γ1 Ψ and Π are given by the expressions,

Γ0 =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

1  −1 −
− 1 0 −

⎤⎥⎥⎥⎥⎦ Γ1 =
⎡⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦  (42)

Ψ =

⎡⎢⎢⎢⎢⎣
0

0

−
0

⎤⎥⎥⎥⎥⎦  Π =

⎡⎢⎢⎢⎢⎣
1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎦  (43)

and the vector of variables,  is,

 = [  [+1] [+1]]

 (44)

The fundamental and non-fundamental shocks are

 = [] and,  = [1 2]
  (45)

where

1 =  −−1 []  2 =  −−1 []  (46)

6.1 The Determinate Case

The determinacy properties of this example are determined by the roots of

the matrix Γ−10 Γ1, and, in the determinate case, some tedious, but straight-

forward algebra, reveals that the vector of expectational errors is described

by the following function of the fundamental shock:

 = −


 + 1

"
1



#
 (47)
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In this case, the first two equations of system (41), yield the following solution

for  and , "




#
= − 

 + 1

"
1



#
 (48)

Using the symbols 2 and 2 for the variances of  and , and 2, for the

variance of , some further algebra gives,

2 =

µ


 + 1

¶2
2 2 =

µ


 + 1

¶2
22

In this example, when there is a unique determinate equilibrium, the dy-

namics of real variables are completely determined by the dynamics of the

fundamental shock.

6.2 The Indeterminate Case

Suppose instead that the equilibrium is indeterminate, a case which occurs if

0    1 (Lubik and Schorfheide, 2004). When the model is indeterminate,

we propose two new alternative models, described below by equations (49)

and (50)."




#
=

"


+ 1  − 



−


1


#"
−1
−1

#
(49)

+

"
0

−−12 0

#
 +

"
1

− 

−1
++−1
+++1

#
1 +

"


0

#
−1

"




#
=

"


+ 1  − 



−


1


#"
−1
−1

#
(50)

+

"
−−11 0

0

#
 +

"
−−11 2

1

#
2 +

"


0

#
−1
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In this example, the analog of Equation (22) is (51), which links the funda-

mental and non-fundamental errors,

2 = −−12
£
0 + 11

¤
 (51)

and where 0, 1, 2 and  are known functions of the underlying parameters.

This simple example illustrates that the choice of which expectational

error to move to the set of fundamental shocks is irrelevant for identification

purposes. By specifying 1 as fundamental, Equation (51) determines the

variance-covariance properties of 2 with  and 1. By picking 2 as the

fundamental, the same equation determines the variance-covariance proper-

ties of 1. In both cases, the variance of the two expectational shocks and

their covariance with the fundamental shock are linearly related.

Notice however, that the variance of the non-fundamental shock will, in

general, depend on the coefficients 0 1 and 2 which are functions of all of

the other parameters of the model. It follows that, when we place restrictions

on one representation of the model, for example, by setting covariance terms

to zero, those restrictions will have non-trivial implications for the behavior

of the observables.

7 Applying Our Method in Practice: The

Lubik-Schorfheide Example

This Section verifies that the approach proposed by FKN replicates the re-

sults of Lubik and Schorfheide (2004), who provide an algorithm to solve

LRE models under indeterminacy. Section 7.1 implements our methodology

for the New-Keynesian model described in Lubik and Schorfheide (2004) and

Section 7.2 demonstrates that our approach delivers the same parameter es-

timates as theirs. The equivalence of these two sets of parameter estimates

confirms the validity of Theorems 1 and 2 for a practical example.
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7.1 Estimating the LS Model with the FKN Approach

The model of Lubik and Schorfheide (2004) consists of a dynamic IS curve

 =  (+1)−  ( − (+1)) +  (52)

a New Keynesian Phillips curve

 =  (+1) +  ( − )  (53)

and a Taylor rule,

 = −1 + (1− ) [1 + 2 ( − )] +  (54)

The variable  represents log deviations of GDP from a trend path and 

and  are log deviations from the steady state level of inflation and the

nominal interest rate.

The shocks  and  follow univariate AR(1) processes

 = −1 +  (55)

 = −1 +  (56)

where the standard deviations of the fundamental shocks ,  and 

are defined as ,  and , respectively. We allow the correlation between

shocks, ,  and , to be nonzero. The rational expectation forecast

errors are defined as

1 =  −−1 []  2 =  −−1 []  (57)

We define the vector of endogenous variables,

 = [    (+1)   (+1)   ]

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the vectors of fundamental shocks and non-fundamental errors,

z = [  ]

 η =

£
1 2

¤
and the vector of parameters

 =
£
1 2             

¤


This leads to the following representation of the model,

Γ0() = Γ1()−1 +Ψ()z +Π()η (58)

where Γ0 and Γ1 are represented by

Γ0() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0  −1 − −1 0

 −1 0 0  0 −
(1− )2 (1− )1 −1 0 0 0 −(1− )2

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


and,

Γ1() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 − 0 0 0 0

0 0 0 0 0  0

0 0 0 0 0 0 

0 0 0 1 0 0 0

0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


and the coefficients of the shock matrices Ψ and Π are given by,
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Ψ() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

−1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Π() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


The last two rows of this system define the non-fundamental shocks and

it is these rows that we modify when estimating the model with the FKN

approach.

7.1.1 The Determinate Case

When the monetary policy is active, ||  1, the number of expectational

variables, { (+1)   (+1)}, equals the number of unstable roots. The
Blanchard-Kahn condition is satisfied and there is a unique sequence of non-

fundamental shocks such that the state variables are bounded. In this case

the model can be solved using Gensys which delivers the following system of

equations

 = 1()−1 +2()z (59)

where 1() represents the coefficients of the policy functions and 2() is

the matrix which expresses the impact of fundamental errors on the variables

of interest, .

7.1.2 Indeterminate Models

A necessary condition for indeterminacy is that the monetary policy is pas-

sive, which occurs when

0  |1|  1 (60)
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A sufficient condition is that

0  1 +
(1− )


2  1 (61)

This condition is stronger than (60) but the two conditions are close, given

our prior, which sets2

(1− )


2 = 0056

When (61) holds, the number of expectational variables, { (+1)   (+1)},
exceeds the number of unstable roots and there is 1 degree of indeterminacy.

Using our approach, one can specify two equivalent alternative models de-

pending on choice of the partition p.

Fundamental Output Expectations: Model 1 In our first specification,

we choose 1 the forecast error of output, as a new fundamental. We call

this partition p1 and we write the new vector of fundamental shocks

z̃1 =
£
   1

¤


The model is defined as

Γ0() = Γ1()−1 + Ψ̂()z̃1 + Π̂()2 (62)

where

Ψ̂() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 and Π̂() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


2We thank one of the referees for pointing that the Taylor principle must be modified,

when the central bank responds to the output gap as well as to inflation.
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Notice that the matrices Γ0 and Γ1 are unchanged. We have simply redefined

1 as a fundamental shock by moving one of the columns of Π to Ψ. Because

the Blanchard-Kahn condition is satisfied under this redefinition, the model

can be solved using Gensys to generate policy functions as well as the matrix

which describes the impact of the re-defined vector of fundamental shocks on

.

Fundamental Inflation Expectations: Model 2 Following the same

logic there is an alternative partition p2 where the new vector of fundamentals

is defined as

z̃2 =
£
   2

¤


Here, the state equation is described by

Γ0() = Γ1()−1 + Ψ̂()z̃2 + Π̂()1 (63)

where now

Ψ̂() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 and Π̂() =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


Using Gensys, we can find a unique series of non-fundamental shocks 1

such that the state variables are bounded and the state variables  are then

a function of −1 and the new vector of fundamental errors z̃2.
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7.2 Estimation Results using the FKN Approach

Using the LS data we estimated models 1 and 2 in Dynare. The vector of

observables, y = {  }, consists of

1.  the percentage deviations of (log) real GDP per capita from an

HP-trend;

2.  the annualized percentage change in the Consumer Price Index

for all Urban Consumers;

3.  the annualized percentage average Federal Funds Rate.

The measurement equation is given by,

y =

⎡⎢⎣ 0

∗

∗ + ∗

⎤⎥⎦+
⎡⎢⎣1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0

⎤⎥⎦ (64)

where ∗ and ∗ are annualized steady-state inflation and real interest rates

expressed in percentages. The discount factor,  is a function of the annual-

ized real interest rate in steady-state ∗ (i.e.  = (1 + ∗)−14).

Lubik and Schorfheide report estimates of their model for specifications

in which the model is determinate and indeterminate, for sample periods

before and after Volcker took over as Fed Chairman in 1979Q4 and for two

different sets of priors. We replicated all of their results using our approach.

Here we report just our results for the pre-Volcker period using two different

permutations of the error vector and for one choice of priors.

Table 1 reports the prior distributions of the parameters used in our esti-

mation. With the exception of the correlation terms between the fundamental

shocks and the non-fundamental shock, we use the same prior distributions as

Lubik and Schorfheide for the parameters defined under both methodologies.
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Table 1: Prior Distribution for DSGE Model Parameters

Name Range Density Mean Std. Dev. 90% interval

1 +  1.1 0.50 [0.33,1.85]

2 +  0.25 0.15 [0.06,0.43]

 [0 1)  0.50 0.20 [0.18,0.83]

∗ +  4.00 2.00 [0.90,6.91]

∗ +  2.00 1.00 [0.49,3.47]

 +  0.50 0.20 [0.18,0.81]

−1 +  2.00 0.50 [1.16,2.77]

 [0 1)  0.70 0.10 [0.54,0.86]

 [0 1)  0.70 0.10 [0.54,0.86]

 +   0.31 0.16 [0.13,0.50]

 +   0.38 0.20 [0.16,0.60]

 +   1.00 0.52 [0.42,1.57]

 +   0.25 0.13 [0.11,0.40]

 [-1,1]  0.00 0.40 [0.65,0.65]

 [-1,1]  0.00 0.40 [0.65,0.65]

 [-1,1]  0.00 0.40 [0.65,0.65]

Table 2 compares our estimates for this period with the results from Lubik

and Schorfheide, under the assumption that the model displays an indetermi-

nate equilibrium. The first column reports the LS results, columns two and

three are our estimates for two alternative partitions p1 and p2. Partition p1

treats 1 as fundamental and partition p2 treats 2 as fundamental. We

used a random walk Metropolis-Hastings algorithm to obtain 150,000 draws

from the posterior mean and we report 90-percent confidence intervals of the

estimated parameters.

Compare the mean parameter estimates across the three columns. Fifteen

of these parameters are common to all three specifications; these are the

parameters 1 2  
∗ ∗  −1        and . The

remaining four parameters reported in columns 2 and 3,    and
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 and the parameters    and  from column 1, represent

variances and covariances that are not comparable across specifications.

Table 2: Pre-Volcker, Posterior Means and Confidence Intervals

L&S (prior 1) FKN - Model 1 FKN - Model 2

Mean 90% interval Mean 90% interval Mean 90% interval

1 0.77 [0.64,0.91] 1 0.73 [0.53,0.98] 0.77 [0.60,0.97]

2 0.17 [0.04,0.30] 2 0.17 [0.01,0.33] 0.20 [0.02,0.38]

 0.60 [0.42,0.78]  0.85 [0.75,0.96] 0.78 [0.65,0.92]

∗ 4.28 [2.21,6.21] ∗ 3.99 [1.60,6.31] 4.04 [1.56,6.33]

∗ 1.13 [0.63,1.62] ∗ 1.24 [0.58,1.88] 1.18 [0.59,1.76]

 0.77 [0.39,1.12]  0.32 [0.10,0.54] 0.63 [0.27,0.97]

−1 1.45 [0.85,2.05] −1 1.35 [0.71,1.93] 1.63 [0.91,2.28]

 0.68 [0.54,0.81]  0.76 [0.66,0.86] 0.75 [0.66,0.84]

 0.82 [0.72,0.92]  0.64 [0.55,0.73] 0.66 [0.58,0.73]

 0.23 [0.19,0.27]  0.22 [0.19,0.25] 0.22 [0.19,0.24]

 0.27 [0.17,0.36]  0.30 [0.21,0.40] 0.30 [0.21,0.38]

 1.13 [0.95,1.30]  1.36 [1.01,1.71] 1.22 [1.01,1.42]

 0.20+ [0.12,0.27]  0.91+ [0.80,1.01] 0.24+ [0.17,0.31]

 0.14 [-0.40,0.71]  -0.00 [-0.62,0.64] 0.00 [-0.61,0.64]

- - -  0.40 [0.13,0.67] 0.39 [0.16,0.62]

- - -  0.49 [0.34,0.66] 0.48 [0.33,0.64]

 -0.68+ [-1.58,0.23]  -0.34+ [-0.49,-0.19] 0.09+ [-0.21,0.41]

 1.74+ [0.90,2.56]  -0.72+ [-0.93,-0.51] -0.02+ [-0.42,0.35]

 -0.69+ [-0.99,-0.39]  -0.89+ [-0.99,-0.79] 0.27+ [-0.00,0.54]

+Estimates are not comparable as they represent different parameters

With the exception of the parameter  in specification 1, our results all lie

within 90% confidence bounds when point estimates from one specification

are compared to confidence bounds from another. This correspondence in
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parameter estimates across specifications is a consequence of Theorems 1 and

2 of our paper and it confirms that our method can be applied in practice to

replicate the results of an important and influential paper that has become

a benchmark for monetary models of indeterminacy.

8 Conclusion

We have shown how to solve and estimate indeterminate linear rational ex-

pectations models using standard software packages. Our method transforms

indeterminate models by redefining a subset of the non-fundamental shocks

and classifying them as new fundamentals. We illustrated our approach us-

ing the familiar New-Keynesian monetary model and we showed that, when

monetary policy is passive, the new-Keynesian model can be closed in one of

two equivalent ways.

Our procedure raises the question of which non-fundamental shocks to

reclassify as fundamental. Our theoretical results demonstrate that the choice

of parameterization is irrelevant since all parameterizations have the same

likelihood function. We demonstrated that result in practice by estimating

a model due to Lubik and Schorfheide in two different ways and recovering

parameter estimates that are statistically indistinguishable from theirs. We

caution that, in practice, it is important to leave the VCV matrix of errors

unrestricted for our results to apply. Our work should be of interest to

economists who are interested in estimating models that do not impose a

determinacy prior.
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A Appendix A

Proof of Theorem 1. Let 1 and 2 be two orthonormal row operators

associated with partitions p1 and p2;⎡⎢⎣ 

1

1

⎤⎥⎦ = 1

"




#


⎡⎢⎣ 

2

2

⎤⎥⎦ = 2

"




#
 (A1)

We assume that the operators,  have the form

 =

⎡⎣ 
×

0

0 ̃

×

⎤⎦  (A2)

where ̃ is a permutation of the columns of an  identity matrix. Pre-

multiplying the vector [ ]

by the operator  permutes the rows of 

while leaving the rows of  unchanged. Define matrices Ω and Ω for

 ∈ {1 2} to be the new terms in the fundamental covariance matrix,



⎛⎝" 



#"




#⎞⎠ =

"
Ω Ω

Ω Ω

#


Next, use (22) and (23) to write the non-fundamentals as linear functions of

the fundamentals,

 = Θ
 +Θ



 (A3)

where

Θ
 ≡ −Π̃−12 Ψ̃2 and Θ

 ≡ −Π̃−12 Π̃2  (A4)
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and define the matrix 

 =

⎡⎢⎢⎢⎢⎣

×

0
×

0
×


×

Θ


(−)×
Θ


(−)×

⎤⎥⎥⎥⎥⎦  (A5)

Using this definition, the covariance matrix of all shocks, fundamental and

non-fundamental, has the following representation,



⎛⎜⎜⎝
⎡⎢⎣ 





⎤⎥⎦
⎡⎢⎣ 





⎤⎥⎦

⎞⎟⎟⎠ = 

"
Ω Ω

Ω Ω

#
  (A6)

We can also combine the last two row blocks of  and write  as follows

 =

⎡⎢⎣ 
×

0
×


21

×

22

×

⎤⎥⎦  (A7)

where,


21 =

⎡⎢⎣ 0
×
Θ


(−)×

⎤⎥⎦  
22 =

⎡⎢⎣ 
×
Θ


(−)×

⎤⎥⎦  (A8)

Using (A1) and the fact that  is orthonormal, we can write the following

expression for the complete set of shocks

"




#
= 

⎡⎢⎣ 





⎤⎥⎦  (A9)
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Using equations (A6) and (A9), it follows that



⎛⎝" 



#"




#⎞⎠ =    for all p ∈ P (A10)

where

  ≡
"
Ω Ω

Ω Ω

#
 (A11)

and

 ≡  =

"
 0

0 ̃

#"
 0


21 

22

#
=

"
 0


21 

22

#
 (A12)

Using this expression, we can write out equation (A10) in full to give,



⎛⎝" 



#"




#⎞⎠ =

"
 0


21 

22

#"
Ω Ω

Ω Ω

#"
 

21

0 
22

#
 (A13)

We seek to establish that for any partition p, parameterized by matrices

Ω  and Ω that there exist matrices Ω and Ω for all partitions p ∈
P  6= , such that

Ω = 

⎛⎝" 



#"




#⎞⎠ =   =    (A14)

To establish this proposition, we write out the elements of (A13) explicitly.

Since   and  are symmetric we need consider only the upper-triangular
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elements which give three equations in the matrices of Ω and Ω 

Ω11 = Ω

Ω12 = Ω



21 + Ω


22  (A15)

Ω22 = 
21Ω





21 + 2


21Ω


22 +

22Ω

22 

The first of these equations defines the covariance of the fundamental shocks

and it holds for all  . Now define

 =  (Ω)   =  (Ω)   =  (Ω)  (A16)

Using the fact that

 () =
¡
 ⊗

¢
 ()  (A17)

we can pass the  operator through equation (A15) and write the following

system of linear equations in the unknowns  and 



"




#
+   = 

"




#
+   (A18)

 =

" ¡

22 ⊗ 

¢
0¡


22 ⊗


21

¢ ¡

22 ⊗

22

¢ #    =

" ¡

21 ⊗ 

¢¡

21 ⊗

21

¢ #   ∈ { } 
(A19)

It follows from the assumption that the equilibrium is regular that  has full

rank for all  hence for any permutation p parameterized by { }we can
find an alternative permutation p with associated parameterization { } "





#
=
¡

¢−1Ã



"




#
+
£
  −  

¤


!
 (A20)

that gives the same covariance matrix Ω̃ for the fundamental and non-
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fundamental shocks.

B Appendix B

Proof of Lemma 1. We seek to characterize the full set of solutions to

the equation,

Ψ̃2
×


×1
+ Π̃2

×

×1

= 0 (B1)

Let   and 11 characterize the singular value decomposition of Π̃2

Π̃2
×
≡ 

×

h
11
×

0
×

i
 

×
 (B2)

and let  characterize a regular indeterminate equilibrium for some par-

tition p. From Appendix A, equation A3, we write the non-fundamentals

 as functions of the fundamentals, where we omit the superscript  to

reduce notation, and where Θ and Θ are functions of 1


×1

= Θ
×


×1
+ Θ

×

×1

 (B3)

Equation (B3) connects the non-fundamental shocks  to the fundamental

shocks
£
 

¤
in the FKN equilibrium. Equation (33) reproduced below as

(B4), characterizes the additional equations that define an LS equilibrium,


×1

= 1
×


×


×1

+ 2
×


×


×1
+ 2

×

×1

 (B4)

To establish the connection between the LS and FKN representations we

partition  ,


×

=

⎡⎣ 11
×

12
×

21
×

22
×

⎤⎦  1
×
≡
⎡⎣ 11

×
21
×

⎤⎦  2
×
≡
⎡⎣ 21

×
22
×

⎤⎦ 
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and split the equations of (B4) into two blocks,


×1

= 11
×


×


×1
+ 21

×

×


×1
+ 21

×

×1

 (B5)


×1

= 21
×


×


×1
+ 22

×

×


×1
+ 22

×

×1

 (B6)

Using (B3) to replacing  in (B5),⎡⎣ Θ
×


⎤⎦ 
×1

= 1
×


×


×1
−
⎡⎣ Θ

×
0

×

⎤⎦ 
×1
+ 2

×

×


×1
+ 2

×

×1

 (B7)

Premultiplying (B7) by  
2 and exploiting the fact that  is orthonormal,

leads to the equation


×


×1

= 
×


×1
+

×

×1
+ 

×1
 (B8)

where


×

=  
21

×
Θ
×

+  
22

×
 and 

×
=  

2
×

1
×


×
−  

21
×

Θ
×

 (B9)

Rearranging (B8) and defining


×

= 
×

+
×

(B10)

gives


×1

= 
×


×1
− 

×

×1

 (B11)

which is the expression we seek.
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C Appendix C

Proof of Theorem 2. Let  = {1 2} characterize an FKN equilib-
rium. From (B8), which we repeat below,


×


×1

= 
×


×1
+

×

×1
+ 

×1
 (C1)

Post-multiplying this equation by  and taking expectations gives


×

Ω
×

= 
×

Ω
×

+
×

Ω
×

 (C2)

which represents  ×  linear equations in the  ×  elements of  ()

as functions of the elements of ,  and Ω, (these are functions of 1),

and Ω (these are elements of 2). Applying the  operator to (C2), using

the algebra of Kronecker products, and rearranging terms gives the following

solution for the parameters  (),

 ()
(×)×1

=

(Ω ⊗ )
−1

(×)×(×)

" ¡
 ⊗

¢
(×)×(×)

 (Ω)
(×)×1

− ¡ ⊗
¢

(×)×2
 (Ω)

2×1

#
 (C3)

Using equation (C3) we can construct an expression for the elements of  as

functions of 1 and 2. Post-multiplying equation (B11) by itself transposed,

and taking expectations, we have

Ω
×

= 
×

Ω
×



×
− 

×
Ω
×



×
− 

×
Ω
×



×
+ 

×
Ω
×



×
 (C4)

The terms on the RHS of (C4) are all functions of the known elements of

1 and 2. Since the matrix Ω is symmetric, this gives  × (+ 1) 2

equations that determine the parameters of  (Ω). This establishes that

every  ∈ Θ defines a unique parameter vector  ∈ Θ. To prove
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the converse, solve equation (C3) for  (Ω) as a function of 1 and the

elements of  and apply the  operator to (C4) to solve for  (Ω) in

terms of 1 and  (Ω).
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