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1 Introduction

How important is time-varying economic uncertainty and what role does it play in macro-

economic �uctuations? A large and growing body of literature has concerned itself with this

question.1 At a general level, uncertainty is typically de�ned as the conditional volatility of a

disturbance that is unforecastable from the perspective of economic agents. In partial equilib-

rium settings, increases in uncertainty can depress hiring, investment, or consumption if agents

are subject to �xed costs or partial irreversibilities (a �real options�e¤ect), if agents are risk

averse (a �precautionary savings�e¤ect), or if �nancial constraints tighten in response to higher

uncertainty (a ��nancial frictions�e¤ect). In general equilibrium settings, many of these mech-

anisms continue to imply a role for time-varying uncertainty, although some may also require

additional frictions to generate the same e¤ects.

A challenge in empirically examining the behavior of uncertainty, and its relation to macro-

economic activity, is that no objective measure of uncertainty exists. So far, the empirical

literature has relied primarily on proxies or indicators of uncertainty, such as the implied or

realized volatility of stock market returns, the cross-sectional dispersion of �rm pro�ts, stock

returns, or productivity, the cross-sectional dispersion of subjective (survey-based) forecasts, or

the appearance of certain �uncertainty-related�key words in news publications. While most of

these measures have the advantage of being directly observable, their adequacy as proxies for

uncertainty depends on how strongly they are correlated with this latent stochastic process.

Unfortunately, the conditions under which common proxies are likely to be tightly linked

to the typical theoretical notion of uncertainty may be quite special. For example, stock mar-

ket volatility can change over time even if there is no change in uncertainty about economic

fundamentals, if leverage changes, or if movements in risk aversion or sentiment are important

drivers of asset market �uctuations. Cross-sectional dispersion in individual stock returns can

�uctuate without any change in uncertainty if there is heterogeneity in the loadings on common

risk factors. Similarly, cross-sectional dispersion in �rm-level pro�ts, sales, and productivity

can �uctuate over the business cycle merely because there is heterogeneity in the cyclicality of

�rms�business activity.2

This paper provides new measures of uncertainty and relates them to macroeconomic ac-

tivity. Our goal is to provide superior econometric estimates of uncertainty that are as free as

possible both from the structure of speci�c theoretical models, and from dependencies on any

1See for example, Bloom (2009); Arellano, Bai, and Kehoe (2011); Bloom, Floetotto, and Jaimovich (2010);
Bachmann, Elstner, and Sims (2013); Gilchrist, Sim, and Zakrajsek (2010); Schaal (2012) Bachmann and Bayer
(2011); Baker, Bloom, and Davis (2011); Basu and Bundick (2011); Knotek and Khan (2011) Fernández-
Villaverde, Pablo Guerrón-Quintana, and Uribe (2011); Bloom, Floetotto, Jaimovich, Saporta-Eksten, and
Terry (2012); Leduc and Liu (2012); Nakamura, Sergeyev, and Steinsson (2012); Orlik and Veldkamp (2013).

2Abraham and Katz (1986) also suggested that cross-section variation in employment could vary over the
business cycle because of heterogeneity across �rms.
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single (or small number) of observable economic indicators. We start from the premise that

what matters for economic decision making is not whether particular economic indicators have

become more or less variable or disperse per se, but rather whether the economy has become

more or less predictable; that is, less or more uncertain.

To formalize our notion of uncertainty, let us de�ne -period ahead uncertainty in the

variable  2  = (1     )
0, denoted by U(), to be the conditional volatility of the

purely unforecastable component of the future value of the series. Speci�cally,

U() �

s



�
(+ ¬ [+j])2j

�
(1)

where the expectation  (�j) is taken with respect to information  available to economic

agents at time .3 If the expectation today (conditional on all available information) of the

squared error in forecasting + rises, uncertainty in the variable increases. A measure, or

index, of macroeconomic uncertainty can then be constructed by aggregating individual uncer-

tainty at each date using aggregation weights  :

U () � plim!1

X

=1

U() � [U()] (2)

We use the terms macro and aggregate uncertainty interchangeably.

We emphasize two features of these de�nitions. First, we distinguish between uncertainty

in a series  and its conditional volatility. The proper measurement of uncertainty requires

removing the forecastable component[+j] before computing conditional volatility. Failure
to do so will lead to estimates that erroneously categorize forecastable variations as �uncertain.�

Thus, uncertainty in a series is not the same as the conditional volatility of the raw series: it

is important to �rst remove the forecastable component. While this point may seem fairly

straightforward, it is worth noting that almost all measures of stock market volatility (realized

or implied) or cross-sectional dispersion currently used in the literature do not take this into

account.4 We show below that this matters empirically for a large number of series, including

the stock market.

Second, macroeconomic uncertainty is not equal to the uncertainty in any single series .

Instead, it is a measure of the common variation in uncertainty across many series. This is
3A concept that is often related to uncertainty is risk. In a �nance context, risk is often measured by

conditional covariance of returns with the stochastic discount factor in equilibrium models. This covariance can
in turn be driven by conditional volatility in stock returns. Andersen, Bollerslev, Christo¤ersen, and Diebold
(2012) provide a comprehensive review of the statistical measurement of the conditional variance of �nancial
returns. Uncertainty as de�ned here is (see discussion below) distinct from conditional volatility but could be
one of several reasons why the conditional variances and covariances of returns vary.

4Two exceptions are Gilchrist, Sim, and Zakrajsek (2010), who use the �nancial factors developed by Fama
and French (1992) to control for common forecastable variation in their measure of realized volatility, and
Bachmann, Elstner, and Sims (2013), who use subjective forecasts of analysts.
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important because uncertainty-based theories of the business cycle typically require the exis-

tence of common (often countercyclical) variation in uncertainty across large numbers of series.

Indeed, in many models of the literature cited above, macroeconomic uncertainty is either

directly presumed by introducing stochastic volatility into aggregate shocks (e.g., shocks to

aggregate technology, representative-agent preferences, monetary or �scal policy), or indirectly

imposed by way of a presumed countercyclical component in the volatilities of individual �rm-

or household-level disturbances.5 This common variation is critical for the study of business

cycles because if the variability of the idiosyncratic shock were entirely idiosyncratic, it would

have no in�uence on macroeconomic variables. If these assumptions are correct, we would ex-

pect to �nd evidence of an aggregate uncertainty factor, a common component in uncertainty

�uctuations that a¤ects many series, sectors, markets, and geographical regions at the same

time.

The objective of our paper is therefore to obtain estimates of (1) and (2). To make these

measures of uncertainty operational, we require three key ingredients. First, we require an

estimate of the forecast [+j]. For this, we form factors from a large set of predictors

fg,  = 1 2      , whose span is as close to  as possible. Using these factors, we then

approximate [+j] by a di¤usion index forecast ideal for data-rich environments. An

important aspect of this data-rich approach is that the di¤usion indices (or common factors)

can be treated as known in the subsequent analysis. Second, de�ning the -step-ahead forecast

error to be  
+ � + ¬ [+j], we require an estimate of the conditional (on time 

information) volatility of this error, [( 
+)

2j]. For this, we specify a parametric stochastic
volatility model for both the one-step-ahead prediction errors in  and the analogous forecast

errors for the factors. These volatility estimates are used to recursively compute the values of

[( 
+)

2j] for   1. As we show below, this procedure takes into account an important

property of multistep-ahead forecasts, namely that time-varying volatility in the errors of the

predictor variables creates additional unforecastable variation in + (above and beyond that

created by stochastic volatility in the one-step-ahead prediction error), and contributes to its

uncertainty. The third and �nal ingredient is an estimate of macroeconomic uncertainty U ()
constructed from the individual uncertainty measures U(). Our base-case estimate of U


 ()

is the equally-weighted average of individual uncertainties. It is also possible to let the weights

be constructed so that macroeconomic uncertainty is interpreted as the common (latent) factor

in the individual measures of uncertainty.

We estimate measures of macroeconomic uncertainty from two post-war datasets of eco-

nomic activity. The �rst macro dataset is monthly and uses the information in hundreds of

macroeconomic and �nancial indicators. The second �rm level dataset is quarterly and consists

5See, e.g., Bloom (2009), Arellano, Bai, and Kehoe (2011), Bloom, Floetotto, and Jaimovich (2010), Gilchrist,
Sim, and Zakrajsek (2010), Schaal (2012), Bachmann and Bayer (2011)).
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of 155 �rm-level observations on pro�t growth normalized by sales. We will refer to estimates

of macro uncertainty based on the monthly series as common macro uncertainty whereas es-

timates of macro uncertainty based on the quarterly �rm-level dataset will be referred to as

common �rm-level uncertainty.

Our main results may be summarized as follows. We �nd signi�cant independent variation

in our estimates of uncertainty as compared to commonly used proxies for uncertainty. An

important �nding is that our estimates imply far fewer large uncertainty episodes than what

is inferred from all of the commonly used proxies we study. For example, consider the 17

uncertainty dates de�ned in Bloom (2009) as events associated with stock market volatility in

excess of 1.65 standard deviations above its trend. By contrast, in a sample extending from

1959:01 to 2011:12, our measure of macro uncertainty exceeds (or come close to exceeding)

1.65 standard deviations from its mean a total of only four (out of 636) months, each of which

occur during the three deep recession episodes discussed below. Moreover, our estimate of

macroeconomic uncertainty is far more persistent than stock market volatility: the response of

macro uncertainty to its own innovation from an autoregression has a half life of 53 months; the

comparable �gure for stock market volatility is 4 months. Qualitatively, these results are similar

for our measures of common �rm-level uncertainty in pro�t growth rates. Taken together, the

�ndings imply that most movements in common uncertainty proxies, such as stock market

volatility (the most common), and measures of cross-sectional dispersion, are not associated

with a broad-based movement in economic uncertainty as de�ned in (2). This is important

because it suggests that much of the variation in common uncertainty proxies is not driven by

uncertainty.

So how important is time-varying economic uncertainty, and to what extent is it dynamically

correlated with macroeconomic �uctuations? Our estimates of macro uncertainty reveal three

big episodes of uncertainty in the post-war period: the months surrounding the 1973-74 and

1981-82 recessions and the Great Recession of 2007-09. Averaged across all uncertainty forecast

horizons, the 2007-09 recession represents the most striking episode of heightened uncertainty

since 1960, with the 1981-82 recession a close second. Large positive innovations to macro uncer-

tainty lead to a sizable and protracted decline in real activity (production, hours, employment).

These e¤ects are larger and far more persistent and do not exhibit the �overshooting�pattern

found previously when stock market volatility is used to proxy for uncertainty. Using an eleven

variable monthly macro vector autoregression (VAR) and a recursive identi�cation procedure

with uncertainty placed last, we �nd that common macro uncertainty shocks account for up

to 29% of the forecast error variance in industrial production, depending on the VAR forecast

horizon. By contrast, stock market volatility explains at most 7%. To form another basis for

comparison, shocks to the federal funds rate (a common proxy for unanticipated shifts in mone-

tary policy) explain (at most) the same amount of forecast error variance in production as does
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macroeconomic uncertainty, despite uncertainty being placed last in the VAR. Finally, we ask

how much each series�time-varying individual uncertainty is explained by time-varying macro

uncertainty and �nd that the role of the latter is strongly countercyclical, roughly doubling in

importance during recessions.

These results underscore the importance of considering how aggregate uncertainty is mea-

sured when assessing its relationship with the macroeconomy. In particular, our estimates imply

that quantitatively important uncertainty episodes occur far more infrequently than what is

indicated from common uncertainty proxies, but that when they do occur, they display larger

and more persistent correlations with real activity. Indeed, the deepest, most protracted re-

cessions in our sample are associated with large increases in estimated uncertainty, while more

modest reductions in real activity are not. By contrast, common uncertainty proxies are less

persistent and spike far more frequently, often in non-recession periods, or in periods of relative

macroeconomic quiescence. Thus many observed spikes in common proxies are at odds with the

predictions of uncertainty theories, which imply that high uncertainty leads to a contraction in

real activity.

While we �nd that increases in uncertainty are associated with large declines in real activity,

we caution that our results are silent on whether uncertainty is the cause or e¤ect of such

declines. Our goal is to develop a defensible measure of time-varying macro uncertainty that

can be tracked over time and related to �uctuations in real activity and asset markets. Our

estimates do, however, imply that the economy is objectively less predictable in recessions than

it is in normal times. This result is not a statement about changing subjective perceptions of

uncertainty in recessions as compared to booms. Any theory for which uncertainty is entirely

the e¤ect of recessions would need to be consistent with these basic �ndings.

In this way, our estimates provide a benchmark with which to evaluate theories where

uncertainty plays a role in business cycles. Uncertainty as de�ned in this paper only requires

evaluation of the  step ahead conditional expectation and conditional volatility of the variable

in question and so can be computed for any number of endogenous variables in a dynamic,

stochastic, general equilibrium (DSGE) model. Moreover, these statistics can be computed

from within the model regardless of whether the theory implies that uncertainty is the cause

or e¤ect of recessions. A comparison of the uncertainty implied by the model and the data can

be used to evaluate DSGE models that feature uncertainty.

The rest of this paper is organized as follows. Section 2 reviews related empirical literature

on uncertainty in more detail. Section 3 outlines the econometric framework employed in our

study, and describes how our measures of uncertainty are constructed. Section 4 describes

the data and empirical implementation. Section 5 presents our common macro uncertainty

estimates, compares our measure to other proxies of uncertainty used in the literature, and

considers the dynamic relationship between macro uncertainty and variables such as production
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and employment. Section 6 performs a similar analysis for our estimates of common �rm-level

uncertainty. Section 7 summarizes and concludes.

To conserve space, a large amount of supplementary material for this paper appears in

Jurado, Ludvigson, and Ng (2013). This document has two parts. The �rst part provides results

from a large number of robustness exercises designed to check the sensitivity of our results to

various assumptions (see description below). The second part is a data appendix that contains

details on the construction of all data used in this study, including data sources. The complete

dataset used in this study, as well as the uncertainty estimates, are available for download from

the authors�website: http://www.econ.nyu.edu/user/ludvigsons/data.htm.

2 Related Empirical Literature

The literature on measuring uncertainty is still in its infancy. Existing research has primarily

relied on measures of volatility and dispersion as proxies of uncertainty. In his seminal work,

Bloom (2009) found a strong countercyclical relationship between real activity and uncertainty

as proxied by stock market volatility. His VAR estimates suggest that uncertainty has an

impact on output and employment in the six months after an innovation in these measures,

with a rise in volatility at �rst depressing real activity and then increasing it, leading to an

over-shoot of its long-run level, consistent with the predictions of models with uncertainty as

a driving force of macroeconomic �uctuations. Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012) also documented a relation between real activity and uncertainty as proxied

by dispersion in �rm-level earnings, industry-level earnings, total factor productivity, and the

predictions of forecasters. A recurring feature of these studies is that the uncertainty proxies

are strongly countercyclical.

While these analyses are sensible starting places and important cases to understand, we

emphasize here that the measures of dispersion and stock market volatility studied may or may

not be tightly linked to true economic uncertainty. Indeed, one of the most popular proxies for

uncertainty is closely related to �nancial market volatility as measured by the VIX, which has

a large component that appears driven by factors associated with time-varying risk-aversion

rather than economic uncertainty (Bekaert, Hoerova, and Duca (2012)).

A separate strand of the literature focuses on cross-sectional dispersion in  analysts�or

�rms�subjective expectations as a measure of uncertainty:

D
() =

vuut
X

=1




�
(+ ¬ (+j))

2j

�2
where  is the information of agent  at time , and 

 is the weight applied to agent .

One potential advantage of using D
() as a proxy for uncertainty is that it treats the con-
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ditional forecast of + as an observable variable, and therefore does not require estimation

of [+j]. Bachmann, Elstner, and Sims (2013) follow this approach using a survey of

German �rms and argue that uncertainty appears to be more an outcome of recessions than a

cause, contrary to the predictions of theoretical models such as Bloom (2009) and Bloom, Floe-

totto, Jaimovich, Saporta-Eksten, and Terry (2012). While analysts�forecasts are interesting

in their own right, there are several known drawbacks in using them to measure uncertainty.

First, subjective expectations are only available for a limited number of series. For example, of

the 132 monthly macroeconomic series we will consider in this paper, not even one-�fth have

corresponding expectations series. Second, it is not clear that the responses elicited from these

surveys accurately capture the conditional expectations of the economy as a whole. The re-

spondents typically sampled are practitioner forecasters; some analysts�forecasts are known to

display systematic biases and omit relevant forecasting information (So (2012)), and analysts

may have pecuniary incentives to bias their forecasts in a way that economic agents would not.

Third, disagreement in survey forecasts could be more re�ective of di¤erences in opinion than

of uncertainty (e.g., Diether, Malloy, and Scherbina (2002); Mankiw, Reis, and Wolfers (2003)).

As discussed above, it could also re�ect di¤erences in �rm�s loadings on aggregate shocks in the

absence of aggregate or idiosyncratic time-varying volatility. Fourth, Lahiri and Sheng (2010)

show that, even if forecasts are unbiased, disagreement in analysts�point forecasts does not

equal (average across analysts) forecast error uncertainty unless the variance of accumulated

aggregate shocks over the forecast horizon is zero. They show empirically using the Survey

of Professional Forecasters that the variance of the accumulated aggregate shocks can drive a

large wedge between uncertainty and disagreement in times of important economic change, or

whenever the forecast horizon is not extremely short. Bachmann, Elstner, and Sims (2013)

acknowledge these problems and are careful to address them by using additional proxies for

uncertainty, such as an ex-post measure of forecast error variance based on the survey expecta-

tions. A similar approach is taken in Scotti (2012) who studies series for which real-time data

are available. Whereas these studies focus on variation in outcomes around subjective survey

expectations of relatively few variables, we focus on uncertainty around objective statistical

forecasts for hundreds of economic series.

Our uncertainty measure is also di¤erent from proxies based on the unconditional cross-

section dispersion of a particular variable:

D
 =

vuut 1



X

=1

�
( ¬

1



X



)2
�

(3)

where  is a variable indexed by  (e.g., �rm-level pro�ts studied in Bloom (2009)) for

�rm , and  is the sample size of �rms reporting pro�ts. Notably, this dispersion has no

forward looking component; it is the same for all horizons. This measure su¤ers from the same
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drawback as D
() namely that it can �uctuate without any change in uncertainty if there is

heterogeneity in the cyclicality of �rms business activity.

Carriero, Clark, and Marcellino (2012) consider common sources of variation in the residual

volatilities of a Bayesian Vector Autoregression (VAR). This investigation di¤ers from ours in

several ways: their focus is on small-order VARs (e.g., 4 or 8 variables) and residual volatility,

which corresponds to our de�nition of uncertainty only when  = 1; our interest is in measuring

the prevalence of uncertainty across the entire macroeconomy. Their estimation procedure

presumes that individual volatilities only have common shocks, and it is not possible for some

series to have homoskedastic shocks while others have heteroskedastic ones. We �nd a large

idiosyncratic component in individual volatilities, the magnitude of which varies across series.

An important unresolved issue for empirical analysis of uncertainty concerns the persistence

of uncertainty shocks. In models studied by Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012), for example, recessions are caused by an increase in uncertainty, which in

turn causes a drop in productivity growth. But other researchers who have studied models

where uncertainty plays a key role (e.g., Schaal (2012)) have argued that empirical proxies

for uncertainty, such as the cross-sectional dispersion in �rms�sales growth, are not persistent

enough to explain the prolonged levels of unemployment that have occurred during and after

some recessions, notably the 2007-2009 recession and its aftermath. Here we provide new

measures of uncertainty and its persistence, �nding that they are considerably more persistent

than popular proxies such as stock market volatility and measures of dispersion.

3 Econometric Framework

We now turn to a description of our econometric framework. A crucial �rst step in our analysis

is to replace the conditional expectation in (1) by a forecast, from which we construct the

forecast error that forms the basis of our uncertainty measures. In order to identify a true

forecast error, it is important that our predictive model be as rich as possible, so that our

measured forecast error is purged of predictive content. A standard approach is to select a set

of  predetermined conditioning variables given by the  � 1 vector , and then estimate

+1 = �
0 + �+1 (4)

by least squares. The one period forecast is b+1j = �̂
0
 where �̂ is the least squares estimate

of �. An omitted-information bias may arise if economic agents such as �nancial market partic-

ipants have more information than that in the conditioning variables. Indeed, recent work �nds

that forecasts of both real activity and �nancial returns are substantially improved by augment-

ing best-�tting conventional forecasting equations with common factors estimated from large
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datasets.6 This problem is especially important in our exercise since relevant information not

used to form forecasts will lead to spurious estimates of uncertainty and its dynamics.

To address this problem, we use the method of di¤usion index forecasting whereby a rel-

atively small number of factors estimated from a large number of economic time series are

augmented to an otherwise standard forecasting model. The omitted information problem is

remedied by including estimated factors, and possibly non-linear functions of these factors or

factors formed from non-linear transformations of the raw data, in the forecasting model. This

eliminates the arbitrary reliance on a small number of exogenous predictors and enables the use

of information in a vast set of economic variables that are more likely to span the unobservable

information sets of economic agents. Di¤usion index forecasts are increasingly used in data

rich environments. Thus we only generically highlight the forecasting step and focus instead

on construction of uncertainty, leaving details about estimation of the factors to the on-line

supplementary �le.

3.1 Construction of Forecast Uncertainty

Let  = (1     )
0 generically denote the predictors available for analysis. It is assumed

that  has been suitably transformed (such as by taking logs and di¤erencing) so as to render

the series stationary. We assume that  has an approximate factor structure taking the form

 = �
 0
  +   (5)

where  is an  � 1 vector of latent common factors, �
 is a corresponding  � 1 vector of

latent factor loadings, and  is a vector of idiosyncratic errors. In an approximate dynamic

factor structure, the idiosyncratic errors  are permitted to have a limited amount of cross-

sectional correlation. Importantly, the number of factors  is signi�cantly smaller than the

number of series,  .

Let  generically denote a series that we wish to compute uncertainty in and whose value

in period  � 1 is estimated from a factor augmented forecasting model

+1 = �

 () +   ()̂ +   () + +1 (6)

where � ()   (), and   () are �nite-order polynomials in the lag operator  of orders 

  and  , respectively, the elements of the vector ̂ are consistent estimates of a rotation

of , and the  dimensional vector  contains additional predictors that are non-linear

functions of ̂ or factors formed from non-linear functions of the . An important feature

of our analysis is that the one-step-ahead prediction error of +1 and of each factor +1

and additional predictor+1 are permitted to have time-varying volatility �

+1, �


+1, �


+1

respectively. This feature generates time-varying uncertainty in the series .

6See, for example, Stock and Watson (2002b, 2004), , and Ludvigson and Ng (2007, 2009).
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When the factors have autoregressive dynamics, a more compact representation of the sys-

tem above is the factor augmented vector autoregression (FAVAR). Let  � (̂ 0  
0
)
0 be a

 =  +  vector which collects the  estimated factors and  additional predictors, and

de�ne Z � ( 0     
0
¬+1)

0. Also let  = ( ¬1     ¬+1)
0. Then forecasts for any

  1 can be obtained from the FAVAR system, stacked in �rst-order companion form:

�
Z


�
(+1)�1

=

0

BB@

�Z

�
0

�
�0
�

�


�

1

CCA

�
Z¬1
¬1

�
+

�
VZ
V

�
(7)

Y = �Y Y¬1 + VY

where �0 and �

 are functions of the coe¢ cients in the lag polynomials in (6), �Z stacks

the autoregressive coe¢ cients of the components of Z.7 By the assumption of stationarity,

the largest eigenvalue of �Y is less than one and, under quadratic loss, the optimal -period

forecast is the conditional mean:

Y+ = (�Y )Y

The forecast error variance at  is


Y() � 

�
(Y+ ¬ Y+) (Y+ ¬ Y+)0

�


Time variation in the mean squared forecast error in general arises from the fact that shocks

to both  and the predictors  may have time-varying variances. We now turn to these

implications. Note �rst that when  = 1,


Y(1) = (VY+1VY 0+1) (8)

For   1, the forecast error variance of Y+ evolves according to


Y() = �
Y
 


Y
(¬ 1)�Y 0 + (VY+V

Y 0
+) (9)

As !1 the forecast is the unconditional mean and the forecast error variance is the uncon-

ditional variance of Y. This implies that 
Y() is less variable as  increases.

We are interested in the expected forecast uncertainty of the scalar series + given in-

formation at time , denoted U(). This is the square-root of the appropriate entry of the
forecast error variance 
Y(). With 1 being a selection vector,

U() =
q
10


Y
()1 (10)

7The above speci�cation assumes that the coe¢ cients are time-invariant. Cogley and Sargent (2005) among
others have found important variation in VAR coe¢ cients. Dynamic factor models are somewhat more robust-
ness against temporal parameter instability than small forecasting models (Stock and Watson (2002a)). The
reason is that such instabilities can �average out�in the construction of common factors if the instability is
su¢ ciently dissimilar from one series to the next. Nonetheless, as a robustness check, an uncertainty measure
is also constructed using recursive out-of-sample forecasts errors and will be discussed below.
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To estimate macro (economy-wide) uncertainty U (), we form weighted averages of indi-

vidual uncertainty estimates:

U () =
X

=1

U()

A simple weighting scheme is to give every series the equal weight of 1. If individual

uncertainty has a factor structure, the weights can be de�ned by the eigenvector corresponding

to the largest eigenvalue of the� covariance matrix of the matrix of individual uncertainty.

3.2 Time-varying Uncertainty: A Statistical Decomposition

In this subsection, we show how stochastic volatility in the predictors  and in  contribute to

its  period ahead uncertainty. Consider �rst the factors  (the argument for  is similar).

Suppose that each  is serially correlated and well represented by a univariate AR(1) model

(dropping the subscript that indexes the factor in question for simplicity):

 = �
¬1 +  

If  was a martingale di¤erence with constant variance (� )2, the forecast error variance


 () = 
 ( ¬ 1) + (� )2(¬1)(� )2 increases with  but is the same for all . We allow the

shocks to  to exhibit time-varying stochastic volatility, ie  = �  where log volatility has

an autoregressive structure:

log(� )
2 = � + � log(�¬1)

2 + ��  �
�(0 1)

The stochastic volatility model allows for a shock to the second moment that is independent of

the �rst moment, consistent with theoretical models of uncertainty. The model implies

(�

+)

2 = exp

�
�

¬1X

=0

(� ) +
(� )2

2

¬1X

=0

(� )2() + (� ) log(� )
2

�


Since �
�(0 1) by assumption, (


+)

2 = (�

+)

2. This allows us to compute the   1

forecast error variance for  using the recursion



 () = (�

 )

 (¬ 1)� 0 + (


+

 0
+)

with 

 (1) = (


+)

2. The  period ahead predictor uncertainty at time  is the square root

of the -step forecast error variance of the predictor:

U () =
q
10



 ()1

where 1 is an appropriate selection vector. It follows from the determinants of (�+)
2

that -period-ahead uncertainty of  has a level-e¤ect attributable to � (the homoskedastic

variation in ), a scale e¤ect attributable to � , with persistence determined by �
 .
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To understand how uncertainty in the predictors a¤ect uncertainty in the variable of interest

, suppose that the forecasting model for  only has a single predictor  and is given by:

+1 = �

 +   ̂ + +1

where +1 = �

+1


+1 with +1

�(0 1) and

log(�+1)
2 = � + �


 log(�


)

2 + � �+1 �+1
�(0 1)

When  = 1,  
+1 coincides with the innovation +1 which is uncorrelated with the one-step-

ahead error in forecasting +1, given by  
+1 = +1. When  = 2, the forecast error for the

factor is  
+2 = �

 
+1 + +2. The corresponding forecast error for  is:

 
+2 = +2 + �





+1 +    

+1

which evidently depends on the one-step-ahead forecasting errors made at time , but  
+1 and

 
+1 are uncorrelated. When  = 3, the forecast error is

 
+3 = +3 + �





+2 +    

+2

which evidently depends on  
+2 and  

+2. But unlike the  = 2 case, the two components

 
+2 and  

+2 are now correlated because both depend on  
+1.

Therefore, returning to the general case when the predictors are  = ( 0  
0
)
0 and its lags,

-step-ahead forecast error variance for + admits the decomposition:



() = �


 



(¬ 1)� 0



autoregressive

+
Z(¬ 1)

Predictor

+ (V+V 0+)

stochastic volatility 

+ 2�
 


 Z
 (¬ 1)

covariance

(11)

where 
 Z
 () = cov(V+VZ+) The terms in (V+V 0+) are computed using the fact

that (

+)

2 = (�

+)

2, (

+)

2 = (�

+)

2 and (

+)

2 = (�

+)

2.

Time variation in uncertainty can thus be mathematically decomposed into four sources:

an autoregressive component, a common factor (predictor) component, a stochastic volatility

component, and a covariance term. Representation (11), which is equivalent to (9) for the

subvector , makes clear that predictor uncertainty plays an important role via the second term


Z (¬ 1). It is time-varying because of stochastic volatility in the innovations to the factors

and is in general non-zero for multi-step-ahead forecasts, i.e.,   1. The role of stochastic

volatility in the series  comes through the third term, with the role of the covariance between

the forecast errors of the series and the predictors coming through the last term. Computing

the left-hand-side therefore requires estimates of stochastic volatility in the residuals of every

series  and in every predictor variable 
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4 Empirical Implementation and Macro Data

Our empirical analysis forms forecasts and common uncertainty from two datasets spanning

the period 1959:01-2011:12. The �rst dataset, denoted , is an updated version of the 132

mostly macroeconomic series used in Ludvigson and Ng (2010). The 132 macro series in  are

selected to represent broad categories of macroeconomic time series: real output and income,

employment and hours, real retail, manufacturing and trade sales, consumer spending, housing

starts, inventories and inventory sales ratios, orders and un�lled orders, compensation and labor

costs, capacity utilization measures, price indexes, bond and stock market indexes, and foreign

exchange measures. The second dataset, denoted  , is an updated monthly version of the of

147 �nancial time series used in Ludvigson and Ng (2007). The data include valuation ratios

such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends

and prices, default and term spreads, yields on corporate bonds of di¤erent ratings grades,

yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market,

and momentum portfolio equity returns. A detailed description of the series is given in the

Data Appendix of the online supplementary �le.

We combine the macro and �nancial monthly datasets together into one large �macroeco-

nomic dataset�() to estimate forecasting factors in these 132+147=279 series. However, we

estimate macroeconomic uncertainty U () from the individual uncertainties in the 132 macro

series only. Uncertainties in the 147 �nancial series are not computed because  already

includes a number of �nancial indicators. To obtain a broad-based measure of uncertainty, it is

desirable not to over-represent the �nancial series, which are far more volatile than the macro

series and can easily dominate the aggregate uncertainty index.8

The stochastic volatility parameters � � �  are estimated from the least square residuals

of the forecasting models using Markov chain Monte Carlo (MCMC) methods.9 In the base-

case, the average of these model parameters over the MCMC draws are used to estimate U().
Simple averaging is used to obtain an estimate of  period macro uncertainty denoted

U () =
1



X

=1

bU() (12)

This measure of average uncertainty does not impose any structure on the individual uncer-

tainties above and beyond the assumed assumptions on the latent volatility process.

8The macro dataset already contains some 25 �nancial indicators. If we include the additional 147 indicators
in our uncertainty index, their greater volatility will dominate the uncertainty measure and we will get back a
aggregate �nancial market volatility variable as uncertainty.

9We use the stochvol package in R, which implements the ancillarity-su¢ ciency interweaving strategy as
discussed in Kastner and Fruhwirth-Schnatter (2013) which is less sensitive to whether the mean of the volatility
process is in the observation or the state equation. Earlier versions of this paper implements the algorithm of
Kim, Shephard, and Chib (1998) using our own MATLAB code.

13



As an alternative weighting scheme for constructing macro uncertainty, we also construct

a latent common factor estimate of macro uncertainty as the �rst principal component of

the covariance matrix of individual uncertainties, denoted U(). To ensure that the latent

uncertainty factor is positive, the method of principal components is applied to the logarithm

of the individual uncertainty estimates and then rescaled. Its construction is detailed in the

on-line supplementary �le.

Throughout, the factors in the forecasting equation are estimated by the method of static

principal components (PCA). Bai and Ng (2006) show that if
p

 ! 0, the estimates ̂ can

be treated as though they were observed in the subsequent forecasting regression. The de�ning

feature of a model with  factors is that the  largest population eigenvalues should increase

as  increases, while the  ¬  eigenvalues should be bounded. The criterion of Bai and Ng

(2002) suggests  = 12 forecasting factors  for the combined datasets  and  explaining

about 54% of the variation in the 279 series, with the �rst three factors accounting for 37%,

8%, 3%, respectively. The �rst factor loads heavily on stock market portfolio returns (such as

size and book-market portfolio returns), the excess stock market return, and the log dividend-

price ratio. The second factor loads heavily on measures of real activity, such as manufacturing

production, employment, total production and employment, and capacity utilization. The third

factor loads heavily on risk and term spreads in the bond market.

The potential predictors in the forecasting model are ̂ = (̂1    ̂ )
0 and , where 

consists of squares of the �rst component of ̂, and factors in2
 collected into the�1 vector

̂. These quadratic terms in  are used to capture possible non-linearities and any e¤ect

that conditional volatility might have on the conditional mean function. Following Bai and Ng

(2008), the predictors ultimately used are selected so as to insure that only those likely to have

signi�cant incremental predictive power are included. To do so, we apply a hard thresholding

rule using a conservative  test to retain those  and that are statistically signi�cant.10 The

most frequently selected predictors are ̂2, a �real�factor highly correlated with measures of

industrial production and employment, ̂12¬1, highly correlated with lagged hours, ̂4, highly

correlated with measures of in�ation, and ̂10, highly correlated with exchange rates. Four lags

of the dependent variable are always included in the predictive regressions.

Before describing the results, we comment brie�y on the question of whether it is desirable for

our objective to use so-called �real-time�data, which would restrict the forecasting information

set to observations on  that coincide with the estimated value for this series available at time

 from data collection agencies. Such a dataset di¤ers from the �nal �historical�data on 

10Speci�cally, we begin with a set of candidate predictors that includes all the estimated factors in  (the
̂), the �rst estimated factor in 2 (̂1), and the square of the �rst factor in  (̂ 21). We then chose subsets
from these by running a regression of +1 on a constant, four lags of the dependent variable, ̂ ̂ 21, and
̂1 (no lags). Regressors are retained if they have a marginal  statistic greater than 2.575 in the multivariate
forecasting regression of +1 on the candidate predictors known at time .
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because initial estimates of a series are available only with a (typically one month) delay, and

earlier available estimates of many series are revised in subsequent months as better estimates

become available. In this paper we use the �nal revised, or historical, data in our estimation, for

two reasons. The �rst is a practical one: our approach calls for a summary statistic of forecasts

and therefore uncertainty across many series, requiring far more series than what is in practice

available on a real-time data basis.

Second, and more fundamentally, we are interested in forming the most historically accurate

estimates of uncertainty at any given point in time in our sample. Restricting information

to real-time data is not ideal for this objective because it is likely to be overly restrictive,

underestimating the amount of information agents actually had at the time of the forecast.

Economic modeling is replete with examples of why this could be so. In representative-agent

models, agents typically observe the current aggregate economic state as it occurs. In practice,

individuals know their own consumption, incomes, the prices they pay for consumption goods,

and probably a good deal about the output of the �rm and industries they work in, long

before data collection agencies report on these. Even forecasting practitioners can predict a

large fraction of a future data release based on current information. In this sense, except

for data from asset markets, many of what is called real-time data is not really real-time

news, but instead represents newly released information on events that had occurred. Even in

heterogeneous-agent models where individuals directly observe only their own economic state

variables, the aggregate state upon which their optimization problems depend can typically

be well summarized by a few �nancial market returns that are observable on a timely basis.

Partly for this reason, our forecasting equations always include a large number of �nancial

indicators as conditioning variables. The 147 �nancial data series include many empirical risk-

factors for stocks and bonds that we expect to be immediately responsive to any genuine news

contained in data releases. These �nancial indicators can also be expected to respond in real

time to disaster-like events (wars, political shocks, natural disasters) that invariably increase

uncertainty.11

5 Estimates of Macro Uncertainty

We present estimates of macro uncertainty for three horizons:  = 1 3 and 12months. Figure 1

plots U () over time for  = 1 3 and 12, along with the NBER recession dates. The matching

horizontal bars correspond to 1.65 standard deviations above the mean for each series. Figure 1

shows that macro uncertainty is clearly countercyclical: the correlation of U () with industrial
production growth is -0.62, -0.61, and -0.57 for  = 1 3 and 12, respectively. While the level

11Baker and Bloom (2013) use disaster-like events as instruments for stock market volatility with the objective
of sorting out the causal relationship between uncertainty and economic growth.
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of uncertainty increases with  (on average), the variability of uncertainty decreases because

the forecast tends to the unconditional mean as the forecast horizon tends to in�nity. Macro

uncertainty exhibits spikes around the 1973-74 and 1981-82 recessions, as well as the Great

Recession of 2007-09.

Looking across all uncertainty forecast horizons  = 1, 3, and 12, the 2007-09 recession

clearly represents the most striking episode of heightened uncertainty since 1960. The 1981-82

recession is a close second, especially for forecast horizons  = 3 and 12. Indeed, for these

horizons, these are the only two episodes for which macro uncertainty exceeds 1.65 standard

deviations above its mean in our sample. Inclusive of  = 1, the three episodes are the only

instances in which U () exceeds, or comes close to exceeding, 1.65 standard deviation above its
mean, implying far fewer uncertainty episodes than other popular proxies for uncertainty, as we

show below. Heightened uncertainty is broad-based during these three episodes as the fraction

of series with U() exceeding their own standard deviation over the full sample are .42, .61,
and .51 for 1 3 and 12 respectively. Further investigation reveals that the three series with the

highest uncertainty between 1973:11 and 1975:03 are a producer price index for intermediate

materials, a commodity spot price index, and employment in mining. For the 1980:01 and

1982:11 episode, uncertainty is highest for the Fed funds rate, employment in mining, and the

3 months commercial paper rate. Between 2007:12 and 2009:06, uncertainty is highest for the

monetary base, non-borrowed reserves and total reserves. These �ndings are consistent with

the historical account of an energy crisis around 1974, a recession of monetary policy origin

around 1981, and a �nancial crisis around 2008 that created challenges for the operation of

monetary policy.

Table 1 reports summary statistics of U (1)12 The table reports the �rst-order autocorrela-
tion coe¢ cient, estimates of the half-life of an aggregate uncertainty innovation from a univari-

ate autoregression (AR) for U (1), estimates of skewness, and kurtosis, and the maximum of

IP-Corr(k) over , where IP-Corr(k)= jcorr(U (1)�+)j is the (absolute) cross-correlation
of U (1) with industrial production growth at di¤erent leads and lags, . The same statistics

are reported for other uncertainty proxies, discussed below. Several statistical facts about the

estimate of aggregate uncertainty U (1) stand out in Table 1.
First, the estimated half life of a shock to aggregate uncertainty is 53 months. By compar-

ison, the estimated half life of a shock to stock market volatility (VXO) is 4 months. Thus,

macro uncertainty is much more persistent than the most common proxy for uncertainty, a �nd-

ing relevant for theories where uncertainty is a driving force of economic downturns, including

those with more prolonged periods of below-trend economic growth. Second, the skewness of

U (1) is similar to that for VXO, but the kurtosis of U


 (1) is lower than VXO. This implies that

there are more extreme values in VXO, consistent with the visual inspection of the two series.

12The statistics for U(3) and U

(12) (not reported) are very similar.
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Third, aggregate uncertainty is strongly countercyclical and has a contemporaneous correlation

with industrial production of -0.62. Moreover, a substantial part of the comovement between

aggregate uncertainty and production is attributable to uncertainty leading real activity. The

maximum of IP-Corr(k) conditional on   0 is -0.67 and occurs at  = 3. But there is also a

substantial component of the comovement in which uncertainty lags real activity. At negative

values of , the maximum of IP-Corr(k) is -0.59 and occurs at  = ¬1. Of course, these uncon-
ditional correlations are uninformative about the causal relation between uncertainty and real

activity. All that can be said is that there is a strong coherence between uncertainty and real

activity.

Uncertainty in a series is de�ned above as the volatility of a purely unforecastable error of

that series. It is potentially in�uenced by macro uncertainty shocks and idiosyncratic uncer-

tainty shocks. To assess the relative importance of macro uncertainty U () in total uncertainty
(summed over all series), we compute, for each of the 132 series in the macro dataset

2
� () =

var� (̂� ()U


 ())

var� ( bU())
 (13)

where ̂� () is the coe¢ cient from a regression of bU

() on U



 (). Thus 2
� () is the fraction

of variation in U() explained by macro uncertainty U

 () in the subsample. The statistic is

computed for  = 1 3 and 12, for the full sample, for recession months, and for non-recession

months.13 The larger is 2
 () � 1



P

=1 2
(), the more important is macro uncertainty in

explaining total uncertainty.

Table 2 shows that the importance of macro uncertainty grows as the forecast horizon 

increases. On average across all series, the fraction of series uncertainty that is driven by

common macro uncertainty is much higher for  = 3 and  = 12 than it is for  = 1. Table

2 also shows that macro uncertainty U () accounts for a quantitatively large fraction of the
variation in total uncertainty in the individual series. For example, when the uncertainty

horizon is  = 3 months, estimated macro uncertainty explains an average (across all series)

of 16% of the variation in uncertainty over the non-recession sample. But it explains a much

larger 26% in recessions. The results are similar for the  = 12 case. Results in the right

panel of the table based on the common uncertainty factor U() constructed by the method of

principal components reinforce the point that macro uncertainty accounts for a larger fraction

of the variation in total uncertainty during recessions.

13Recession months are de�ned by National Bureau of Economic Research dates. Macro uncertainty is
estimated over the full sample even when the 2 statistics are computed over subsamples.
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5.1 The Role of the Predictors

We have emphasized the importance of removing the predictable variation in a series so as not

to attribute its �uctuations to a movement in uncertainty. How important are these predictable

variations in our estimates? Our forecasting regression is

+1 = �

 () +   ()̂ +   () + �


+1+1

The future values of our predictors  and  are unknown and each predictor is forecasted

by an AR(4) model. As explained above, time-varying volatility in their forecast errors also

contributes to -step-ahead uncertainty in the variable  whenever   1. Figure 2 plots

predictor uncertainty U() for several estimated ̂ that display signi�cant stochastic volatil-

ity and that are frequently chosen as predictor variables according to the hard thresholding

rule. These are, ̂1 (highly correlated with the stock market), ̂2 (highly correlated with

measures of real activity such as industrial production and employment), ̂4 (highly correlated

with measures of in�ation), ̂5 (highly correlated with the Fama-French risk factors and bond

default spreads). This �gure also displays estimates of uncertainty for two predictors in  :

the squared value of the �rst factor ̂ 2
1 and for the �rst factor formed from observations 2

,

which we denote ̂1. These results suggest that uncertainty in the predictor variables is an

important contributor to uncertainty in the series + to be forecast.

In addition to the stochastic volatility e¤ect, the predictors directly a¤ect the level of the

forecast. An important aspect of our uncertainty measure is a forecasting model that exploits as

much available information as possible to control for the economic state, so as not to erroneously

attributing forecastable variations (as re�ected in ̂ and ) to uncertainty in series +.

Most popular measures of uncertainty do not take these systematic forecasting relationships

into account. To examine the role that this information plays in our estimates, we re-estimate

the uncertainty for each series based on the following (potentially misspeci�ed) simple model

with constant conditional mean:

+1 = �+ ~�+1~+1 (14)

Figure 3 plots the resulting estimates of one-step ahead uncertainty U(1) using this possibly
misspeci�ed model and compares it to the corresponding estimates using the full set of chosen

predictors (chosen using the hard thresholding rule described above), for several key series

in our dataset: total industrial production, employment in manufacturing, non-farm housing

starts, consumer expectations, M2, CPI-in�ation, the ten-year/federal funds term spread, and

the commercial paper/federal funds rate spread. Figure 3 shows that there is substantial

heterogeneity in the time-varying uncertainty estimates across series, suggesting that a good

deal of uncertainty is series-speci�c. But Figure 3 also shows that the estimates of uncertainty in
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these series are signi�cantly in�uenced by whether or not the forecastable variation is removed

before computing uncertainty: when it is removed, the estimates of uncertainty tend to be

lower, much so in some cases. Speci�cally, uncertainty in each of the eight variables shown

in this �gure is estimated to be lower during the 2007-09 recession when predictive content is

removed than when not, especially for industrial production, employment, and the two interest

rate spreads. The di¤erence over time between the two estimates for these variables is quite

pronounced in some periods, suggesting that much of the variation in these series is predictable

and should not be attributed to uncertainty.14

Since stock market volatility is the most commonly used proxy for uncertainty, we further

examine in Figure 4 how estimates of stock market uncertainty are a¤ected by whether or not

the purely forecastable variation in the stock market is removed before computing uncertainty.

This �gure compares (i) the estimate of uncertainty in the log di¤erence of the & 500

index for a case where the conditional mean is assumed constant, implying as in (14) that no

predictable variation is removed, with (ii) a case in which only autoregressive terms are included

to forecast the stock market, as in

+1 = e�() + ~�+1~+1

with (iii) a case in which all selected factors (using the hard thresholding rule) estimated

from the combined macro and �nancial dataset with 279 indicators are used as predictors.

Notice that the �rst case (constant conditional mean) is most akin to estimates of stock market

volatility such as the VXO index studied by Bloom (2009)15 and discussed further below. We

emphasize that stock market volatility measures do not purge movements in the stock market of

its predictable component and are therefore estimates of conditional volatility, not uncertainty.

Of course, if there were no predictable component in the stock market, these two estimates would

coincide. But Figure 4 shows that there is a substantial predictable component in the log change

in the & price index, which, once removed, makes a quantitatively large di¤erence in the

estimated amount of uncertainty over time.16 Uncertainty in the stock market is substantially

lower in every episode when these forecastable �uctuations are removed compared to when they

are not, and is dramatically lower in the recession of 2007-09 compared to what is indicated by

ex-post conditional stock market volatility.

14We have also re-estimated common macro uncertainty, U () without removing predictable �uctuations.
The spikes appear larger than the base case that removes the forecastable component in each series before
computing uncertainty. This is especially true for the  = 1 case, where presumably the predictive information
is most valuable.
15This measure is unavailable before 1986 so Bloom (2009) uses realized volatility in the log di¤erence of the

S&P 500 Price Index during this period. We still refer to this composite measure as the �VXO Index.�
16Evidence for predictability of stock returns is not hard to �nd. Cochrane (1994) found an important

transitory component in stock prices. Ludvigson and Ng (2007) found substantial predictive information for
excess stock market returns in the factors formed from the �nancial dataset  . For more general surveys of
the predictable variation in stock market returns, see Cochrane (2005) and Lettau and Ludvigson (2010).
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If we examine more closely our measure of stock market uncertainty, (given by the baseline

estimate in Figure 4) and compare it to macro uncertainty U (Figure 1), we see there are
important di¤erences over time in the two series. In particular, there are many (more) large

spikes in stock market uncertainty that are not present for macro uncertainty. Unlike macro

uncertainty, several of the spikes in �nancial uncertainty occur outside of recessions. Because

stock market volatility is arguably the most common proxy for uncertainty, we further examine

the distinction between uncertainty and stock market volatility in the next section.

5.2 Uncertainty Versus Stock Market Volatility

In an in�uential paper, Bloom (2009) emphasizes a measure of stock market volatility as a proxy

of uncertainty.17 This measure is primarily based on the VXO Index, which is constructed by

the Chicago Board of Options Exchange from the prices of options contracts written on the

S&P 100 Index. In this subsection we compare our macro uncertainty estimates with stock

market volatility as a proxy for uncertainty. We update this stock market volatility series to

include more recent observations, and plot it along with our estimated macro uncertainty U ()
for  = 1 in Figure 5. To construct his benchmark measure of uncertainty �shocks�(plausibly

exogenous variation in his proxy of uncertainty), Bloom selects 17 dates (listed in his Table

A.1) which are associated with stock market volatility in excess of 1.65 standard deviations

above its HP-detrended mean. These 17 dates are marked by vertical lines in the �gure. As

emphasized above and seen again in Figure 5, U (1) exceeds 1.65 standard deviations above
its unconditional mean in only three episodes, suggesting far fewer episodes of uncertainty than

that indicated by these 17 uncertainty dates.18

While U (1) is positively correlated with the VXO Index, with a correlation coe¢ cient

around 0.5, the VXO Index is itself substantially more volatile than U (1), with many sharp
peaks that are not correspondingly re�ected by the macro uncertainty measure. For example,

the large spike in October 1987 re�ects �Black Monday,�which occurred on the 19th of the

month when stock markets experienced their largest single-day percentage decline in recorded

history. While this may accurately re�ect the sudden increase in �nancial market volatility

that occurred on that date, our measure of macroeconomic uncertainty barely increases at all.

Indeed, it is di¢ cult to imagine that the level of macro uncertainty in the economy in October

1987 (not even a recession year) was on par with the recent �nancial crisis. Nevertheless, when

17A number of other papers also use stock market volatility to proxy for uncertainty; these include Romer
(1990), Leahy and Whited (1996), Hassler (2001), Bloom, Bond, and Van Reenen (2007), Greasley and Madsen
(2006), Gilchrist, Sim, and Zakrajsek (2010), and Basu and Bundick (2011)
18Bloom (2009) counts uncertainty episodes by the number of times the stock market volatility index exceeds

1.65 standard deviations above its Hodrick-Prescott �ltered trend, rather than its unconditional mean. If we
do the same for U (1), we �nd 5 episodes of heightened uncertainty: one in the early mid 1970s (1973:09 and
1974:11), one during the twin recessions in the early 1980s (1980:02 and 1982:02), 1990:01, 2001:10, and 2008:07.
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the VXO index is interpreted as a proxy for uncertainty, this is precisely what is implied. Other

important episodes where the two measures disagree include the recessionary period from 1980-

1982, where our measure of uncertainty was high but the VXO index was comparatively low,

and the stock market boom and bust of the late 1990s and early 2000s, where the VXO index

was high but uncertainty was low.

5.3 Macro Uncertainty and Macroeconomic Dynamics

Existing empirical research on uncertainty has often found important dynamic relationships

between real activity and various uncertainty proxies. In particular, these proxies are counter-

cyclical and VAR estimates suggest that they have a large impact on output and employment

in the months after an innovation in these measures. A key result is that a in rise some proxies

(notably stock market volatility) at �rst depresses real activity and then increases it, leading to

an over-shoot of its long-run level, consistent with the predictions of some theoretical models

on uncertainty as a driving force of macroeconomic �uctuations.

We now use VARs to investigate the dynamic responses of key macro variables to innovations

in our uncertainty measures and compare them to the responses to innovations in the VXO

index as a proxy for uncertainty. For brevity in discussing the results, we will often refer to

these innovations to uncertainty or stock market volatility (in the case of the VXO index) as

�shocks.�·As is the case of all VAR analyses, the impulse responses and variance decompositions

depend on the identi�cation scheme, which in our case is based on the ordering of the variables.

A question arises as to which variables to include in the VAR. As a starting point, we choose a

macro VAR similar to that studied in Christiano, Eichenbaum and Evans (2005, CEE hereafter).

This VAR a¤ords the advantage of containing a set of variables whose dynamic relationships

have been the focus of extensive macroeconomic research. Since CEE use quarterly data and we

use monthly data, we do not use exactly the same VAR, but instead include similar variables

so as to roughly cover the same sources of variation in the economy.19 We estimate impulse

responses from a eleven-variable VAR, hereafter referred to as VAR-11. The ordering mimics

19Speci�cally, monthly industrial production and the PCE de�ator are substituted for quarterly Gross Do-
mestic Product GDP and its de�ator, hours is used instead of labor productivity, average hourly earnings is for
the manufacturing sector only because the aggregate measure does not go back to 1960, and the S&P 500 stock
market index is substituted for quarterly corporate pro�ts.
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that of CEE: 2
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
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(VAR-11)

Four versions of VARs-11 with twelve lags are considered with  taken to be either

U (1)  U (3), U


 (12)  or the VXO Index. The main di¤erence from the CEE VAR is the

inclusion of a stock price index and uncertainty. It is important to include the stock market

index for understanding the dynamics of uncertainty since it is natural to expect the two

variables to be dynamically related. In all cases, we place the measure of uncertainty last in

the VAR. The shocks to which dynamic responses are traced are identi�ed using a Cholesky

decomposition, with the same timing assumptions made in CEE that allows identi�cation of

federal funds rate shocks.20

In addition to VAR-11, it is also of interest to compare the dynamic correlations of our

uncertainty measures with common uncertainty proxies using a VAR that has been previously

employed in the uncertainty literature. To do so, we estimate impulse responses from a eight-

variable model as in Bloom (2009), hereafter referred to as VAR-8:
2

66666666664
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log(industrial production)

3

77777777775

 (VAR-8)

Following Bloom (2009), VAR-8 uses twelve lags of industrial production, wages, hours. Unlike

VAR-11, VAR-8 uses employment for the manufacturing sector only. Bloom (2009) considers a

15-point shock to the error in the VXO equation. This amounts to approximately 4 standard

deviations of the identi�ed error. We record responses to 4 standard deviation shocks in U (),
so the magnitudes are comparable with those of VXO shocks. However, we make one departure

20We have con�rmed that the dynamic responses of the non-uncertainty variables to a federal funds rate shock
(interpreted by CEE as a monetary policy shock) in a VAR that does not include any uncertainty measure are
qualitatively and quantitatively very similar to those reported in CEE. These results are available upon request.
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from the estimates in Bloom (2009). We do not detrend any variables using the �lter of Hodrick

and Prescott (1997), while Bloom did so for every series except the VXO index. Because the

HP �lter uses information over the entire sample, it is di¢ cult to interpret the timing of an

observation.21

Figure 6 shows the dynamic responses of output and employment in VAR-11. Shocks to

U () sharply reduce production and employment, with the e¤ects persisting well past the
60 month horizon depicted. The last row of this �gure compares the responses when the

VXO index is used as a proxy for uncertainty. Both the magnitude and the persistence of the

responses of production and employment are much smaller. The responses to U () are far more
protracted than those to the VXO Index, which underscores the greater persistence of these

measures as compared to popular uncertainty proxies. Indeed, the response of employment

to a VXO disturbance is barely statistically di¤erent from zero shortly after the shock and

outright insigni�cant at other horizons. The response of production to a VXO shock is also only

marginally di¤erent from zero for the �rst 3 months, becoming zero thereafter. An important

di¤erence in these results from those reported in Bloom (2009) is that shocks to any of these

measures (including VXO) do not generate a �volatility overshoot,� namely, the rebound in

real activity following the initial decline after a positive uncertainty shock. This �nding echoes

those in Bachmann, Elstner, and Sims (2013). Unlike the �ndings in Bachmann, Elstner, and

Sims (2013), however, the short-run (within 10 months) responses to our uncertainty shocks

are sizable.

Figure 7 shows the dynamic responses of output and employment in VAR-8. The responses of

these variables, both in terms of magnitude and persistence, to the macro uncertainty measures

U () are similar to those reported in Figure 6 using VAR-11. Disturbances to the VXO index
appear to have larger and somewhat more persistent e¤ects in VAR-8 than in VAR-11. But the

responses to VXO shocks even in this VAR are not as large or persistent as those to innovations

in macro uncertainty U (). Again, there is no volatility overshoot in response to any of the
uncertainty measures, including VXO. The overshoot found by Bloom (2009) appears to be

sensitive to whether the VXO data are HP �ltered.22

To study the quantitative importance of uncertainty shocks for macroeconomic �uctuations,

Table 3 reports forecast error variance decomposition for production, employment and hours and

compares them with the decompositions when VXO is used instead as the proxy for uncertainty

in the VAR-11. We use  here to distinguish the VAR forecast horizon from the uncertainty

forecast horizon . The table shows the fraction of the VAR forecast error variance that is

attributable to common macro uncertainty shocks in U () over several horizons, including the
21Results using HP �ltered data and the original Bloom VAR are reported in the on-line supplementary

material �le for this paper.
22After a careful inspection of the code kindly provided by Bloom, we �nd that contrary to a statement in

the paper, Bloom (2009) HP �lters all data in the VAR for these impulse responses except the VXO index.
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horizon  for which shocks to the uncertainty measure U (1) or VXO are associated with the
greatest fraction of VAR forecast error variance (denoted  =max in the table).

From Table 3 we can see that uncertainty shocks are associated with much larger fractions

of real activity explained than are VXO shocks. Shocks to U (12), for example, are associated
with a maximum of 29% of the forecast error variance in production, 31% of the forecast error

variance in employment, and 12% of the forecast error variance in hours. By contrast, the cor-

responding numbers for VXO shocks are 6.9%, 7.6%, and 2.3%, respectively. Thus, uncertainty

shocks are associated with over four times the variation in production and employment and

over �ve times the variation in hours compared to VXO shocks.

To put the results of Table 3 into perspective, Table 4 shows what fraction of the variation

in these variables is attributable to monetary policy shocks, identi�ed here, following CEE,

by a shock to the federal funds rate in the VAR-11. Interestingly, in the VAR-11 where

U (12) is included as the measure of uncertainty, shocks to the federal funds rate account
for roughly the same amount of variation in production, employment, and hours as do shocks

to macro uncertainty measures U (12). Shocks to the federal funds rate are associated with a
maximum of 29% of the forecast error variance in production, 32% of the forecast error variance

in employment, and 10% of the forecast error variance in hours. These are almost identical to

the fraction explained by shocks to U (12). These results suggest that the dynamic relationship
of uncertainty with the real economy may be as quantitatively important as monetary policy

shocks.

We can use the same variance decompositions to ask how much of uncertainty variation is

associated with variation in innovations of the other variables in the system. These results are

not reported in the table, but we discuss a few of them here. At the  =1 horizon, we �nd that

stock return innovations are associated with the largest fraction of variation in U (12), equal
to 15.26%, followed by price level innovations (11.9%) and innovations to industrial production

(9.56%). These numbers are roughly of the same order of magnitude as those for the fraction of

forecast error variance in production growth explained by U (12) for  =1 (equal to 15.75%).

These variance decompositions are of course speci�c to the ordering of the variables used in

the analysis. But as uncertainty is placed last in the VAR, the e¤ects of uncertainty shocks

on the other variables in the system are measured after we have removed all the variation in

uncertainty that is attributable to shocks to the other endogenous variables in the system. That

the e¤ects of uncertainty shocks are still non-trivial is consistent with the view that uncertainty

has important implications for economic activity.

These variance decomposition results are similar if we instead use VARs that include both

VXO and our uncertainty measures U (). From such VARs, we �nd that the big driver of

VXO are shocks to VXO, not uncertainty. This reinforces the conclusion that stock market

volatility is driven largely by shocks other than those to broad-based economic uncertainty,

24



suggesting researchers should be cautious when using this measure as a proxy for uncertainty.

We have reported results only for the base-case estimates described above. An on-line sup-

plementary �le provides additional results designed to check the sensitivity of our results to

various assumptions made above. These exercises are based on (i) alternative weights used to

aggregate individual uncertainty series; (ii) alternative location statistics of stochastic volatility

to construct individual uncertainty series; (iii) alternative conditioning information based on

recursive (out-of-sample) forecasts to construct di¤usion index forecasts (iv) alterative measures

of volatility of individual series such as GARCH and EGARCH.23 The key �ndings are qualita-

tively and quantitatively similar to the ones reported here. We note one �nding in particular,

namely that the results above are not sensitive to whether we use out-of-sample (recursive) or

in-sample forecasts; indeed the correlation between the resulting uncertainty measures is 0.98.24

5.4 Comparison with Measures of Dispersion

This subsection compares the time-series behavior of U () with four cross-sectional uncertainty
proxies studied by Bloom (2009). These are:

1. The cross-sectional dispersion of �rm stock returns. This is de�ned as the within-month

cross-sectional standard deviation of stock returns for �rms with at least 500 months of

data in the Center for Research in Securities Prices (CRSP) stock-returns �le. The series

is also linearly detrended over our sample period (1960:07-2011:12).

2. The cross-sectional dispersion of �rm pro�t growth. Pro�t growth rates are normalized

by average sales on a monthly basis, so that this measure captures the quarterly cross-

sectional standard deviation pro�ts. We formulate a year-over-year version to minimize

seasonal variation equal to pro�ts¬pro�ts¬ 4
05(sales+sales¬ 4)

 where  = 1 2      indexes the �rms and

 denotes the total number of �rms observed in month . The sample is restricted to

�rms with at least 150 quarters of data in the Compustat (North America) database.

3. The cross-sectional dispersion of GDP forecasts from the Philadelphia Federal Reserve

Bank�s biannual Livingston Survey. This is de�ned as the biannual cross-sectional stan-

23Results based on the GARCH/EGARCH estimates indicate the number and timing of big uncertainty
episodes, as well as the persistence of uncertainty, is very similar to what is found using our base-case measure of
macro uncertainty. What is di¤erent is the real e¤ect of uncertainty innovations from a VAR, once orthogonalized
shocks are analyzed. This is to be expected because GARCH type models (unlike stochastic volatility) have
a shock to the second moment that is not independent of the �rst moment, a structure inconsistent with the
assumptions of an independent uncertainty shock presumed in the uncertainty literature. Using a GARCH-based
uncertainty index thus creates additional identi�cation problems that are beyond the scope of this paper.
24Note also that, in the recursive forecast estimation the parameters of the forecasting relation change every

period, so this speaks directly to the question of the role played by parameter stability in our estimates,
suggesting that parameter instability is not important in our FAVAR.
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dard deviation of forecasts of nominal GDP one year ahead. The series is also linearly

detrended over our sample period (1960:07-2011:12).

4. The cross-sectional dispersion of industry-level total factor productivity (TFP). This is

de�ned as the annual cross-sectional standard deviation of TFP growth rates within SIC

4-digit manufacturing industries, calculated using the �ve-factor TFP growth data com-

puted by Bartelsman, Becker, and Gray as a part of the NBER-CES Manufacturing

Industry Database (http://www.nber.org/data/nbprod2005.html).25

These updated series, along with U (1) are displayed in Figure 8. As was true in the case
of stock market volatility in the previous subsection, these measures exhibit quite di¤erent

behavior from macroeconomic uncertainty. Stock return dispersion tells a story roughly similar

to the VXO Index, with a particularly large increase in uncertainty leading up to the 2001

recession that is not present in our measure of macro uncertainty. Firm pro�t dispersion

actually suggests a relatively low level of uncertainty during the 1980-82 recessions when macro

uncertainty was high, with a sharp increase towards the end of the 1982 recession, by which time

macro uncertainty had declined. GDP forecast dispersion points to a level of uncertainty during

each of the 1969-70 and 1990 recessions which is on par with the level of uncertainty during

the 2007-09 recession. Again, this contrasts with macro uncertainty which is at a record high

in the 2007-09 recession but was not high in the previous episodes. Industry TFP dispersion

shows almost no increase in uncertainty during the 1980-82 recessions. and displays the largest

increase during the recent �nancial crisis.

It is instructive to consider the di¤erent statistical properties of these dispersion measures

as they compare to those for the estimated aggregate uncertainty index. Table 1 provides the

statistics. To match the frequency of the dispersion measure, we aggregate our monthly series

U () using averages over the desired period.
The statistics using these proxies for uncertainty paint a similar picture to that obtained

using the VXO Index. In particular, the responses of U (1) to its own shock from an autore-

gression are far more prolonged than those of the dispersion proxies. For example, the response

of the dispersion in �rm-level stock returns to its own shock has a half-life of 1.9 months,

compared to 52.5 months for U(1).
We also consider impulse responses of production and employment for the eleven-variable

VAR, but using these measures of dispersion as the proxy for uncertainty. These results are

reported in Figure 9 and can be summarized as follows. The dynamic responses using dispersions

to proxy for uncertainty do not in general display the intuitive pattern that production and

25There is a jump in the 1997 industry TFP dispersion measure that occurs purely because of a move from
NAICS to SIC industry classi�cation codes. We therefore drop this year and interpolate to obtain the continuous
panel.
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employment should fall as a result of an uncertainty shock. Production falls the most on impact

in response to shocks to the cross-sectional dispersion in industry-level TFP, but the response

of employment is more muted. In the case of stock return dispersion, we see no statistically

signi�cant response in production or employment to an innovation. Shocks to the dispersion

in �rm pro�ts lead to an increase in production and employment, as do shocks to the cross-

sectional dispersion in subjective GDP forecasts.

Overall, these results show that, like the VXO proxy, increases in measures of cross-sectional

dispersion do not necessarily coincide with increases in broad-based macro uncertainty, where

the latter is associated with a large and persistent decline in real activity. Like stock market

volatility over time, measures of dispersion may vary for many reasons that are unrelated to

broad-based macroeconomic uncertainty.

6 Results: Firm-Level Common Uncertainty

In this section we turn from our analysis of common macroeconomic uncertainty to examine

common variation in uncertainty at the �rm level. Rather than studying uncertainty across

many di¤erent variables, we now study uncertainty on the same variable across many di¤erent

�rms. Speci�cally, we measure uncertainty in the pro�t growth of individual �rms. For the

�rm-level dataset, the unit of observation is the change in �rm pre-tax pro�ts , normalized by

a two-period moving average of sales,  following Bloom (2009). Given the seasonality in this

series, we instead form a year-over-year version of this measure, as detailed in the data appendix.

After converting to a balanced panel, we are left with 155 �rms from 1970:Q1-2011:Q2 without

missing values.26 For each �rm, the series to be forecast is normalized pretax pro�ts, so again

 = . For the �rm-level results, as for the macro results, we form forecasting factors  from

the panel fg

=1 , as well as f2
g



=1 where  = 155, the number of cross-sectional �rm-

level observations. We �nd evidence of two factors in fg

=1 and one factor in f2
g



=1 . The

 vector of additional predictors includes the macro factors estimated from the macro data

set. As before, a conservative  test is used to include only the predictors that are statistically

signi�cant.

One important consideration that is relevant to this microeconomic context is the construc-

tion of our panel. Since we need a reasonable number of time series observations to estimate

the stochastic volatility processes, we require that the panel be balanced. This leads us to drop

about 400 �rms per quarter on average. In particular, many of the �rms operating towards

the beginning of our sample are excluded, because they do not survive until 2011:Q2. This

26A limitation with Compustat data is that its coverage is restricted to large publicly traded �rms. The
Census Bureau�s ASM data are more comprehensive, but limited to annual observations. Similarly, (industry
level) total factor productivity may be preferred over pro�ts as the source of uncertainty, but these industry
level data eliminate much of the uncertainty at the �rm level (Schaal (2012)).
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eliminates a large fraction of the cross-sectional variation before 1995. Because of this survivor-

ship bias, it is di¢ cult to conclude that our estimated aggregate �rm-level uncertainty measure

represents a comprehensive measure of the uncertainty facing �rms since 1970. But note that

we will compute the cross-sectional standard deviation of �rm pro�ts within this same balanced

panel and compare it to our estimate of common �rm-level uncertainty from the panel. Since

the two measures are computed over the same panel of �rms, any di¤erences between them

cannot be attributable to survivorship bias.

Figure 10 displays the estimated common uncertainty in �rm-level pro�ts U () over time
for  = 1 3, and 4 quarters. Like the measure of macroeconomic uncertainty analyzed above,

these estimates point to a rise in uncertainty surrounding the 1973-75,1980-82 recessions, but

not of the same magnitude. Instead, there are larger increases in common �rm-level uncertainty

surrounding the 2000-01 and 2007-09 recessions. However, this type of aggregate uncertainty

is less countercyclical: the correlation of each of these measures with industrial production

growth is negative, but smaller in absolute value than is the correlation of the macro uncertainty

measures with production growth. This �gure also compares our measures of common �rm-level

uncertainty U () to the popular proxy for common �rm-level uncertainty given by on the cross-
sectional dispersion in �rm pro�t growth normalized by sales, denoted D

 (see equation (3)).

As the �gure shows, the two measures behave quite di¤erently, with many more spikes in D


than in common �rm-level uncertainty. Indeed, the dispersion measure exceeds 1.65 standard

deviations above its mean dozens of times, while common �rm-level uncertainty measures only

do so a handful of times. Like the VXO index, there appear to be many movements in the

cross-sectional standard deviation of �rm pro�t growth that are not driven by common shocks

to uncertainty across �rms.

To assess the relative importance of macro uncertainty U () in total uncertainty, we again
compute, for each of the 155 �rms in the �rm-level dataset, and for  = 1 to 6, the 2

()

as de�ned in (13), averaged over . As above, this exercise is performed for the full sample,

for recession months, and for non-recession months. Table 4 shows that common �rm-level

uncertainty comprises a larger fraction of the variation in total uncertainty during recessions

that during non-recessions, as was the case for common macroeconomic uncertainty. Indeed,

the common �rm-level common uncertainty we estimate explains an average of 18% of the

variation in total uncertainty for an uncertainty horizon of  = 4 quarters in non-recessions,

but it explains double that in recessions. These results echo those using the macro uncertainty

measures. Other results (using VARs for example) are qualitatively similar and omitted to

conserve space.
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7 Conclusion

In this paper we have introduced new time series measures of macroeconomic uncertainty. We

have strived to ensure that these measures be comprehensive and as free as possible from both

the restrictions of theoretical models and/or dependencies on a handful of economic indicators.

We are interested in macroeconomic uncertainty, namely uncertainty that may be observed

in many economic indicators at the same time, across �rms, sectors, markets, and geographic

regions. And we are interested in the extent to which this macroeconomic uncertainty is asso-

ciated with �uctuations in aggregate real activity and �nancial markets.

Our measures of macroeconomic uncertainty �uctuate in a manner that is often quite distinct

from popular proxies for uncertainty, including the volatility of stock market returns (both over

time and in the cross-section), the cross-sectional dispersion of �rm pro�ts, productivity, or

survey-based forecasts. Indeed, our estimates imply far fewer important uncertainty episodes

than do popular proxies such as stock market volatility, a measure that forms the basis for the

17 uncertainty dates identi�ed by Bloom (2009). By contrast, we uncover just three big macro

uncertainty episodes in the post-war period: the months surrounding the 1973-74 and 1981-82

recessions and the Great Recession of 2007-09, with the 2007-09 recession the most striking

episode of heightened uncertainty since 1960. These �ndings and others reported here suggest

that there is much variability in the stock market and in other uncertainty proxies that is not

generated by a movement in genuine uncertainty across the broader economy. This occurs both

because these proxies over-weight certain series in the measurement of macro uncertainty, and

because they erroneously attribute forecastable �uctuations to a movement in uncertainty.

Our estimates nevertheless point to a quantitatively important dynamic relationship be-

tween uncertainty and real activity. In an eleven variable monthly macro VAR, common macro

uncertainty shocks have e¤ects on par with monetary policy shocks and are associated with a

much larger fraction of the VAR forecast error variance in production and hours worked than are

stock market volatility shocks. Our estimates also suggest that macro uncertainty is strongly

countercyclical, explaining a much larger component of total uncertainty during recessions than

in non-recessions, and far more persistent than common uncertainty proxies.

In this paper we have deliberately taken an atheoretical approach, in order to provide a

model-free index of macroeconomic uncertainty that can be tracked over time. Such an in-

dex can be used as a benchmark for evaluating any DSGE model with (potentially numerous)

primitive stochastic volatility shocks. Our measure of uncertainty conveniently aggregates un-

certainty in the economy derived from all sources into one summary statistic. In some cases, it

may be useful to construct sub-indices. These can be easily constructed using our framework.
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Uncertainty measured by
Statistic (Monthly) VXO D(Returns) U (1)
AR(1) coe¢ cient 0.85 0.70 0.99
Half Life 4.13 1.92 52.58
Skewness 2.18 1.30 1.81
Kurtosis 11.05 5.51 7.06
IP-Corr(0) -0.32 -0.45 -0.62
max0IP-Corr(k) -0.43 -0.47 -0.67
At lag  = 6 2 3

max0IP-Corr(k) -0.30 -0.43 -0.59
At lag  = -1 -1 -1

Statistic (Quarterly) D(Pro�ts) U (1)
AR(1) coe¢ cient 0.76 0.93
Half Life 2.55 10.23
Skewness 0.36 1.77
Kurtosis 2.47 6.75
IP-Corr(0) -0.37 -0.64
max0IP-Corr(k) -0.34 -0.70
At lag  = 1 1

max0IP-Corr(k) -0.37 -0.53
At lag  = -1 -1

Statistic (Semi-Annual) D(Forecasts) U (1)
AR(1) coe¢ cient 0.45 0.85
Half Life 0.86 4.18
Skewness 0.24 1.74
Kurtosis 2.19 6.41
IP-Corr(0) -0.41 -0.64
max0IP-Corr(k) -0.34 -0.68
At lag  = 1 1

max0IP-Corr(k) -0.35 -0.40
At lag  = -1 -1

Statistic (Annual) D(TFP) U (1)
AR(1) coe¢ cient 0.33 0.61
Half Life 0.63 1.40
Skewness 1.71 1.76
Kurtosis 8.56 6.24
IP-Corr(0) -0.55 -0.69
max0IP-Corr(k) -0.33 -0.47
At lag  = 1 1

max0IP-Corr(k) -0.24 -0.24
At lag  = -26 -26

Table 1: Summary Statistics. This table displays a number of summary statistics characterizing various
proxies. IP-Corr(k) is the absolute cross-correlation coe¢ cient between a measure of uncertainty  and 12
month moving average of industrial production growth in period + , ie. IP-Corr(k)=jcorr(�ln+)j. A
positive  means uncertainty is correlated with future IP. Half-lifes are based on estimates from a univariate
AR(1) model for each series. The maximum correlation, at di¤erent leads/lags, with the growth rate of IP
(12 month moving average) is also reported. U (1) denotes base case estimated aggregate uncertainty. D(�)
represents dispersion, i.e. the cross-sectional standard deviation. Monthly series are aggregated to quarterly,
semi-annual, and annual series by averaging monthly observations over each larger period.



Average 2 From Regressions of Individual Uncertainty on Macro Uncertainty
U() = 1



P

=1
bU() U() =

P

=1 
bU()

 full sample recession non-recession full sample recession non-recession
1 0.18 0.19 0.12 0.17 0.17 0.12
2 0.22 0.24 0.15 0.22 0.24 0.15
3 0.24 0.26 0.16 0.23 0.25 0.16
4 0.25 0.26 0.17 0.23 0.24 0.16
5 0.26 0.27 0.18 0.24 0.25 0.16
6 0.27 0.28 0.19 0.25 0.26 0.16
7 0.28 0.29 0.19 0.25 0.27 0.17
8 0.29 0.30 0.20 0.25 0.27 0.17
9 0.29 0.30 0.20 0.25 0.28 0.17
10 0.29 0.31 0.21 0.25 0.28 0.17
11 0.30 0.31 0.21 0.25 0.29 0.17
12 0.30 0.31 0.21 0.25 0.29 0.17

Table 2: Cross-sectional averages of 2 values from regressions of U() on U


 () or U


 () over di¤erent
subsamples. Uncertainty estimated from the monthly, macro dataset. Recession months are de�ned according
to the NBER Business Cycle Dating Committee.



Relative Importance of Uncertainty in VAR-11

Production:
U (1) U (3) U (12) VXO

 = 1 0.00 0.00 0.00 0.00
 = 3 1.78 2.08 2.13 0.48
 = 12 11.29 15.79 15.22 0.91
 =1 7.87 8.79 15.76 6.93
max  174 171 174 184
 = max 17.02 20.86 28.54 6.93

Employment:
U (1) U (3) U (12) VXO

 = 1 0.00 0.00 0.00 0.00
 = 3 0.90 0.98 0.86 1.06
 = 12 9.15 13.23 13.08 1.11
 =1 6.66 7.51 14.25 7.64
max  105 106 107 184
 = max 16.40 20.06 31.00 7.64

Hours:
U (1) U (3) U (12) VXO

 = 1 0.00 0.00 0.00 0.00
 = 3 1.76 1.88 1.26 0.12
 = 12 8.11 11.36 10.53 1.16
 =1 7.38 8.98 11.93 2.15
max  21 16 37 43
 = max 9.21 11.96 12.34 2.32

Table 3: Decomposition of variance in production, employment and hours due to uncertainty in VAR-11. The
VAR uses variables in the following order: log(industrial production), log(employment), log(real consumption),
log(implicit consumption de�ator), log(real value new orders, consumption and non-defense capital goods),
log(real wage), hours, federal funds rate, log(S&P 500 Index), growth rate of M2, and uncertainty that is either
VXO Index or U (). Real variables are obtained by dividing nominal values by the PCE de�ator. We estimate
separate VARs in which uncertainty is either one of U (),  = 1 3 12 or the VXO index. Each panel shows
the fraction of forecast-error variance of the variable given in the panel title at VAR forecast horizon  that is
explained by the uncertainty measure named in the column. The row denoted �max �gives the horizon  for
which the uncertainty variable named in the column explains the maximum fraction of forecast error variance.
The row denoted � = �max gives the fraction of forecast error variance explained at max . The data are
monthly and span the period 1960:07-2011:12.



Relative Importance of FFR in VAR-11

Production:
FFR-U (1) FFR-U (3) FFR-U (12) FFR-VXO

 = 1 0.00 0.00 0.00 0.00
 = 3 0.06 0.04 0.02 0.01
 = 12 5.86 5.27 4.00 7.17
 =1 33.67 31.39 28.96 39.07
max  1 1 1 1
 = max 33.67 31.39 28.96 39.07

Employment:
FFR-U (1) FFR-U (3) FFR-U (12) FFR-VXO

 = 1 0.00 0.00 0.00 0.00
 = 3 0.06 0.03 0.01 0.02
 = 12 6.99 6.33 4.87 8.26
 =1 36.02 33.14 31.89 39.47
max  185 190 357 148
 = max 41.30 39.35 34.83 52.74

Hours:
FFR-U (1) FFR-U (3) FFR-U (12) FFR-VXO

 = 1 0.00 0.00 0.00 0.00
 = 3 0.44 0.48 0.56 0.72
 = 12 4.58 4.30 3.54 6.36
 =1 12.92 12.08 9.79 17.21
max  1 1 1 1
 = max 12.92 12.08 9.79 17.21

footnoteTable 4: Decomposition of variance in production, employment and hours due to
FFR in VAR-11.



Average 2 From regressions of Firm-Level Uncertainty on Common Uncertainty
U() U()

 full sample recession non-recession full sample recession non-recession

1 0.15 0.29 0.14 0.12 0.27 0.11
2 0.18 0.34 0.16 0.16 0.32 0.14
3 0.19 0.35 0.17 0.17 0.33 0.15
4 0.20 0.36 0.18 0.18 0.33 0.16
5 0.21 0.36 0.18 0.18 0.33 0.16
6 0.21 0.36 0.19 0.18 0.32 0.16

Table 4: Cross-sectional averages of 2 values from regressions of U() on U


 () or bU

 () over di¤er-

ent subsamples. Uncertainty estimated from the quarterly �rm-level dataset with observations on �rm pro�t
growth rates normalized by sales. Recession months are de�ned according to the NBER Business Cycle Dating
Committee. The data are quarterly and span the period 1970:Q1-2011:Q2.
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Figure 1: Aggregate Uncertainty: U () for  = 1 3 12. Horizontal lines indicate 1.65 standard
deviations above the mean of each series. Industrial Production (IP) growth is computed as
the 12-month moving average of monthly growth rates (in percent). The data are monthly and
span the period 1960:07-2011:12.
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Figure 2: Predictor Uncertainty: This plot displays uncertainty estimates for 6 of the 14
predictors contained in the vector  � ( 0  

0
)
0.  denotes the 12 factors estimated from ,

and � ( 2
1 1)

0, where 1 is the �rst factor estimated from 2
. Titles represent the types

of series which load most heavily on the factor plotted; �FF Factors�means the Fama-French
factors (HML, SMB, UMD). The sample period is 1960:01-2011:12.
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Figure 3: The Role of Predictors: These plots display two estimates of U(1) for several
key series in our data set. The �rst is constructed using the full set of predictor variables
(�Baseline�); the second is constructed using no predictors (�No predictors�). The data are
monthly and span the period 1960:07-2011:12.
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Figure 4: Uncertainty in the S&P 500 Index. These plots show estimates of U500(1) for the
S&P 500 Index based on three di¤erent forecasting models. �No Predictors�indicates that no
predictors were used, �AR only� indicates that only a fourth-order autoregressive model was
used to generate forecast errors, and �Baseline�indicates that the full set of predictor variables
was used to generate forecast errors. The sample period is 1960:01-2011:12.
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Figure 5: Stock Market Implied Volatility and Uncertainty: This plot shows U (1) and the
VXO index, expressed in standardized units. The vertical lines correspond to the 17 dates
in Bloom (2009) Table A.1, which correspond to dates when the VXO index exceeds 1.65
standard deviations above its HP (Hodrick and Prescott, 1997) �ltered mean. The horizontal
line corresponds to 1.65 standard deviations above the unconditional mean of each series (which
has been normalized to zero). The data are monthly and span 1960:07-2011:12.
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Figure 6: Impulse response of production and employment from estimation of VAR-11 using
U () or VXO as uncertainty
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Figure 7: Impulse response of production and employment from estimation of VAR-8 using
U () or VXO as uncertainty
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Figure 8: Cross-sectional Dispersion and Uncertainty: This plot shows U (1) and four
dispersion-based proxies, expressed in standardized units. The proxies are (in clockwise or-
der from the northwest panel) the cross-sectional standard deviation of: monthly �rm stock
returns (CRSP), quarterly �rm pro�t growth (Compustat), yearly SIC 4-digit industry total
factor productivity growth (NBER-CES Manufacturing Industry Database), and half-yearly
GDP forecasts (Livingston Survey).
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Figure 9: Impulse response of production and employment from estimation of VAR-11 using
four dispersion measures D as uncertainty: (i) �Returns�is the cross-sectional standard devia-
tion of �rm stock returns; (ii) �Pro�ts�is the cross-sectional standard deviation of �rm pro�ts;
(iii) �Forecasts�is the cross-sectional standard deviation of GDP forecasts from the Livingston
Survey; (iv) �TFP�is the cross-sectional standard deviation of industry-level total factor pro-
ductivity.
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Figure 10: Firm-level Uncertainty: U () for  = 1 2 4. Horizontal lines indicate 1.65 standard
deviations above the mean of each series. The thin solid line marked �Dispersion in �rm
pro�ts�is the cross-sectional standard deviation of �rm pro�t growth, normalized by sales, and
denoted D

 . The dispersion is taken after standardizing the pro�t growth data. Industrial
Production (IP) growth is computed as the 12-month moving average of monthly growth rates
(in percent). The data are monthly and span the period 1970:Q1-2011:Q2.


