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1 Introduction

How can we measure and improve the quality of teaching in primary schools? One prominent but
controversial method is to evaluate teachers based on their impacts on their students’ test scores,
commonly termed the “value-added” (VA) approach.! School districts from Washington D.C. to
Los Angeles have begun to calculate VA measures and use them to evaluate teachers. Advocates
argue that selecting teachers on the basis of their VA can generate substantial gains in achievement
(e.g., Gordon, Kane, and Staiger 2006, Hanushek 2009), while critics contend that VA measures
are poor proxies for teacher quality (e.g., Baker et al. 2010, Corcoran 2010). The debate about
teacher VA stems primarily from two questions. First, do the differences in test-score gains across
teachers measured by VA capture causal impacts of teachers or are they biased by student sorting?
Second, do teachers who raise test scores improve their students’ outcomes in adulthood or are
they simply better at teaching to the test?

This paper addresses the first of these two questions.?

Prior work has reached conflicting
conclusions about the degree of bias in VA estimates (Kane and Staiger 2008, Rothstein 2010,
Kane et al. 2013). Resolving this debate is critical for policy because biased VA measures may
incorrectly reward or penalize teachers based on the mix of students they get.

We develop new methods to estimate the degree of bias in VA estimates and implement these
methods empirically using information from two administrative databases. The first is a dataset
on test scores and teacher assignments in grades 3-8 from a large urban school district in the
U.S. These data cover more than 2.5 million students and 18 million tests for math and English
(reading) spanning 1989-2009. The second is selected data from United States tax records spanning
1996-2011. These data contain information on parent characteristics such as household income,
retirement savings, and mother’s age at child’s birth. We match 90% of the observations in the
school district data to the tax data.

We begin our analysis by estimating VA for each teacher in our data. We model the estimation

of teacher VA as a forecasting problem. We form the best linear predictor of test score gains for

students of a given teacher based on the scores of students in other classrooms taught by that

'Value-added models of teacher quality were pioneered by Hanushek (1971) and Murnane (1975). More recent
examples include Rockoff (2004), Rivkin, Hanushek, and Kain (2005), Aaronson, Barrow, and Sander (2007), and
Kane and Staiger (2008).

2We address the second question in our companion paper (Chetty, Friedman, and Rockoff 2013). There are also
other important concerns about VA. Most importantly, as with other measures of labor productivity, the signal in
value-added measures may be degraded by behavioral responses if high-stakes incentives are put in place (Barlevy
and Neal 2012).



teacher. To separate the teacher’s impact from (observable) student selection, we control for
various pre-determined student characteristics, such as prior test scores and demographic variables,
when constructing this forecast. We consider a variety of control vectors to determine which
controls play the largest role in reducing selection bias. Importantly, the controls we consider all
come from the school district data and are similar to those used in prior work (e.g., McCaffrey et
al. 2004, Kane and Staiger 2008, Kane, Rockoff, and Staiger 2008, Jacob, Lefgren and Sims 2010,
Goldhaber and Theobald 2013). Hence, the models we estimate here can be replicated using data
already available to school districts.

We deviate from existing VA models in one important respect. Existing models assume that
each teacher’s quality is fixed over time and thus place equal weight on test scores in all classes
taught by the teacher when forecasting. In practice, we find that test scores from more recent
classes are a better predictor of current teacher quality, implying that teacher effects drift over
time. Such drift may occur because of transitory fluctuations in teaching quality or changes in the
types of classes a teacher is assigned. It is especially important to account for drift in our setting
because we use a much longer panel (up to 18 years) to estimate and forecast teacher quality than

3 We account for drift by estimating the autocovariance of scores across classrooms

prior studies.
taught by a given teacher non-parametrically and using the estimated autocovariance vector to
form the best linear predictor. Intuitively, prior studies estimate VA by regressing scores in year
t on average scores across prior years, thereby imposing the assumption that the coefficients on
all the lags are equal. In contrast, we permit the coefficients to vary non-parametrically across
different lags. Our VA model implies that a 1 standard deviation improvement in teacher VA
raises normalized test scores by approximately 0.14 in math and 0.1 in English, slightly larger than
the estimates in prior studies that do not account for drift.

With these value-added estimates in hand, we turn to the central question of the paper: are the
VA measures we construct “unbiased” predictors of teacher quality? To answer this question, we
first formalize two notions of bias that have been discussed in the prior literature. To define the
first measure, suppose we randomly assign a group of students to teachers and compare mean test
scores across classrooms, as in Kane and Staiger (2008). Let A denote the mean test score impact
of being randomly assigned to a teacher who is rated one unit higher in VA based on prior data.

We define the degree of “forecast bias” in a VA model as B = 1 — X\ and say that it is “forecast

$Goldhaber and Hansen (2010, 2013) also observe that the correlation of single-year VA estimates decreases with
longer time lags. Here, we account for such drift in the estimation of VA itself.



unbiased” if B = 0. An alternative definition, which we term “teacher-level bias,” asks whether
the VA estimate for a given teacher converges to her true quality as estimation error vanishes, as
in Rothstein (2009). While both notions are of interest, we focus on forecast bias because it is
directly relevant for our goal of evaluating the mean impacts of policies that change the value-added
of teaching staff.

We develop two methods to estimate the degree of forecast bias in VA estimates. The first
approach evaluates the degree of selection on observable characteristics excluded from the VA
model. We implement this test using parent characteristics such as family income from the tax
records, which are unavailable to school districts and thus omitted from VA models. These parent
characteristics are well suited to testing for bias because they are strong predictors of test scores even
conditional on the school district data used to estimate the VA model. We estimate the forecast bias
that arises from omitting parent characteristics by predicting student test scores based on parent
characteristics and regressing the predicted scores on teacher VA. For our baseline VA model —
which controls for a rich set of prior student, class, and school level scores and demographics — we
find that forecast bias from omitting parent characteristics is at most 0.3% at the top of the 95%
confidence interval. Using a similar approach, we find that forecast bias from omitting twice-lagged
scores from the VA model is at most 2.6%.

While these results indicate that forecast bias due to sorting on certain observable predictors
of student achievement is minimal, bias due to other unobservable characteristics could still be
substantial. To obtain a more definitive estimate of forecast bias that accounts for unobservables,
we turn to a second approach. We develop a quasi-experimental analog of the ideal randomized
experiment one would use to estimate forecast bias that exploits teacher turnover for identification.
To understand the quasi-experimental design, suppose a high-VA 4th grade teacher moves from
school A to another school in 1995. Because of this staff change, students entering grade 4 in
school A in 1995 will have lower quality teachers on average than those in the prior cohort. If VA
estimates have predictive content, we would expect 4th grade test score gains for the 1995 cohort to
be lower on average than the previous cohort. In practice, we find sharp breaks in test scores using
event studies of such teacher arrivals and departures at the school-grade-cohort level. Building
on this idea, we estimate the degree of forecast bias by comparing changes in average test scores
across consecutive cohorts of children within a school to changes in the mean value-added of the

teaching staff.* We find that the forecasted changes in mean scores closely match observed changes

4This research design is related to recent studies of teacher turnover (e.g., Rivkin, Hanushek, and Kain 2005,



in mean scores. The point estimate of forecast bias in our preferred specification is 2.6% and is
not statistically distinguishable from 0. The upper bound on the 95% confidence interval for the
degree of bias is 9.1%.

The quasi-experimental design rests on the identification assumption that high-frequency teacher
turnover within school-grade cells is uncorrelated with student and school characteristics. This
assumption is plausible insofar as parents are unlikely to immediately switch their children to a
different school simply because a single teacher leaves or arrives. Moreover, we show that changes
in mean teacher quality in a given subject (e.g., math) are uncorrelated with both prior scores
in that subject and contemporaneous scores in the other subject (e.g., English), supporting the
validity of the research design.

Although it rests on stronger identifying assumptions than a randomized experiment, our quasi-
experimental approach has two practical advantages. First, it can be implemented with existing
school district administrative records, and thus provides a simple, low cost technique for school
districts and education researchers to validate their own value-added models.” As value-added
becomes a part of high-stakes teacher evaluation systems, researchers and policymakers will have
to evaluate bias on an ongoing basis, and our quasi-experimental methodology provides a simple
tool for doing so. Second, our quasi-experimental approach yields more precise estimates of the
degree of bias than prior experiments (Kane and Staiger 2008, Kane et al. 2013).

Based on the findings from the two methods, we conclude that forecast bias in VA estimates is
minimal when we use a rich control vector similar to that employed by Kane, Rockoff, and Staiger
(2008). We investigate which of the controls is most important to account for student sorting by
estimating several commonly used value-added specifications and calculating forecast bias using
our quasi-experimental approach. We find that simply controlling for a student’s own lagged test
scores generates a point estimate of forecast bias of 5% that is not significantly different from 0.
In contrast, models that omit lagged test score controls generate forecast bias exceeding 40%. We
conclude that most of the sorting of students to teachers that is relevant for future test achievement
is captured by prior test scores. This result is reassuring for the application of VA models because
virtually all value-added models proposed to date condition on prior scores.

Finally, having isolated teachers’ causal effects, we analyze whether the quality of teaching

Jackson and Bruegmann 2009, Ronfeldt et al. 2011), but is the first direct test of whether the VA of teachers who
enter or exit affects mean test scores across cohorts. We discuss how our approach differs from this earlier work in
Section 6.1.

’Stata code to implement this technique is available at http://obs.rc.fas.harvard.edu/chetty/va_bias_code.zip



differs systematically across schools and students. We find that more than 85% of the variance in
teacher VA is within rather than between schools. Better performing students get better teachers
in subsequent grades: students who score 1 SD higher in the previous grade have teachers whose VA
is 0.01 units higher. Similarly, students from higher income families have slightly better teachers
on average. However, there is no correlation between parent income and teacher VA conditional
on lagged test scores, consistent with our results on bias. The differences in teacher quality we
document explain a small share of the achievement gap between high- and low-SES students. We
estimate that the correlation between parent income and 8th grade test scores is amplified by at
most 3% because of differences in teacher quality from grades K-8. This is not because teachers are
unimportant — one could close most of the achievement gap by assigning highly effective teachers
to low-SES students — but rather because teacher VA does not differ substantially across schools
in the district we study.

As we discuss in greater detail below, our results reconcile the findings of experimental studies
(Kane and Staiger 2008; Kane et al. 2013) with Rothstein’s (2010) findings on bias in VA estimates.
We replicate Rothstein’s finding that there is small but statistically significant grouping of students
on lagged test score gains and show that this particular source of selection results in minimal forecast
bias. Based on his findings, Rothstein warns quite appropriately that selection on unobservables
could potentially generate substantial bias. We directly evaluate the degree of forecast bias due
to unobservables using a quasi-experimental analog of Kane and Staiger’s (2008) experimental
analysis. Like Kane and Staiger, we find no evidence of forecast bias due to unobservables.
Hence, we conclude that VA estimates which control for prior test scores exhibit little bias despite
the grouping of students on lagged gains documented by Rothstein.

The paper is organized as follows. In Section 2, we formalize how we construct VA estimates and
define concepts of bias in VA estimates. Section 3 describes the data sources and provides summary
statistics. We construct teacher VA estimates in Section 4. Sections 5 and 6 present estimates
of forecast bias for our baseline VA model using the two methods described above. Section 7
compares the forecast bias of alternative VA models. Section 8 documents the variation in teacher

quality across schools and students. Section 9 concludes.

6 Unlike some prior studies of VA, we obtain a “global ranking” of all teachers in the school district by constructing
test score residuals using within-teacher variation in the control variables. This allows us to compare teacher quality
across schools and students with different characteristics. We discuss this issue in greater detail in Section 2.



2 Statistical Framework and Methods

In this section, we develop an estimator for teacher VA and formally define two notions of bias in

VA estimates. We begin by setting up a simple static model of test scores.

2.1 Model

School principals assign student 4 in school year ¢ to a classroom ¢ = ¢(i,t) based on observed
and unobserved determinants of student achievement. Principals then assign a teacher j to each
classroom ¢ based on classroom characteristics. For simplicity, assume that each teacher teaches
one class per year, as in elementary schools.

Let j = j(c(i,t)) denote student 4’s teacher in year ¢. Let u;, represent teacher j’s “value-
added” in year t, i.e. the impact of teacher j on test scores. We scale teacher VA so that the
average teacher has value-added 1, = 0 and the effect of a 1 unit increase in teacher VA on end-
of-year test scores is 1. The parameter 11;, represents the causal impact of changing the teacher of
class c from a teacher of average quality (p;; = 0) to a teacher with quality p1;,. This reduced-form
treatment effect combines various structural parameters in a model of the education production
function (e.g., Todd and Wolpin 2003). For instance, students assigned to a better teacher may
get less help on their homework from parents. Although p; is not a structural primitive, it is
sufficient to answer certain policy-relevant questions. In particular, the ultimate test score impacts
of switching a child to a higher VA teacher or retaining specific teachers on the basis of their VA
both depend upon ;.

Student 4’s test score in year ¢, A7, is given by

(1) Al = BXi+vy

(2) where vit = +0:+ it

Here, X;; denotes observable determinants of student achievement, such as lagged test scores,
peer scores, and family characteristics. We decompose the error term v;; into three components:
teacher value-added p;, exogenous class shocks 6., and idiosyncratic student-level variation €;;. Let
git = 0. + € denote the unobserved error in scores unrelated to teacher quality. We distinguish
teacher effects from &;; by observing teachers over many school years. Because students and teachers
are not randomly assigned to classrooms, X;; and ¢;; may be correlated with Mt Accounting for

such selection is the key challenge in obtaining unbiased estimates of ;.



The model in (1) assumes that teacher value-added p;, is fixed across students, ruling out the
possibility that teacher value-added depends upon the characteristics of the students assigned to

T However, it permits

the teacher (e.g., high vs. low achieving students, 4th vs. 5th graders, etc.).
teacher quality to fluctuate stochastically over time. We do not place any restrictions on the

stochastic processes that 1, and g follow except for the following assumption.

Assumption 1 [Stationarity] Teacher value-added and student achievement follow a stationary

process:
(3) Bl |t] = Blew|t] = 0, Cov(pjt, phj145) = Ous, and Cov(eit, €,4+5) = 0es for all ¢

Assumption 1 requires that (1) mean teacher quality does not vary across calendar years and (2)
the correlation of teacher quality, class shocks, and student shocks across any pair of years depends
only on the amount of time that elapses between those years. This assumption simplifies the
estimation of teacher VA by reducing the number of parameters to be estimated. Note that the

variance of teacher effects, ai = Var(u;;), is constant across periods under stationarity.

2.2 Estimating Teacher Value-Added

We are interested in predicting each teacher’s value-added in year ¢ (,ujt) given observational data
on teacher assignments and test scores in previous years for a panel of students.® Let ﬁ;t denote
the vector of past values of value-added. Since uj; — E [ujt \ ﬁ);t} represents an unforecastable
component of realized teacher value-added in year ¢, our target is to estimate fi;, = [ [,ujt \ ﬁ)j_t},
the teacher’s “expected value-added” in year ¢.

We develop an estimator for fi;, based on mean test scores in prior classes taught by teacher j.
Our approach closely parallels existing estimators for value-added (e.g., Kane and Staiger 2008),
except that it accounts for drift in teacher quality over time. To simplify exposition, we derive the
estimator for the case in which data on prior test scores is available for T" years for all teachers,
where all classes have n students, and where each teacher teaches one class per year. In Appendix
A, we provide a step-by-step guide to implementation (along with corresponding Stata code) that
accounts for differences in class size, multiple classrooms per year, and other technical issues that

arise in practice.

"One could interpret 6. as value-added which is specific to a particular class-teacher match, but this component
is not identified separately from other class-level shocks.

¥To maximize statistical power, we use data from all other years — both in the past and future — to predict VA in
year t in our empirical implementation. To simplify exposition, in this section we derive an estimator for the case of
predicting VA based only on prior data.



We construct our estimator in three steps. First, we regress test scores A}, on X;; and compute
test score residuals adjusting for observables. Next, we estimate the best linear predictor of mean
test score residuals in classrooms in year ¢ based on mean test score residuals in prior years, using
a technique analogous to an OLS regression. Finally, we use the coefficients of the best linear
predictor to predict each teacher’s expected VA in year t. We now describe these steps formally.

Let the residual student test score after removing the effect of observable characteristics be

denoted by
(4) Ait = Ajy — BXit = pjy + i

We estimate [ using variation across students taught by the same teacher using an OLS regression

of the form
(5) it = aj + BXu

where «; is a teacher fixed effect. Our approach of estimating 8 using within teacher variation
differs from prior studies, which typically use both within- and between-teacher variation to estimate
B (e.g., Kane and Staiger 2008, Kane, Rockoff, and Staiger 2008, Jacob, Lefgren and Sims 2010).
If teacher VA is correlated with X, estimates of 8 in a specification without teacher fixed effects
overstate the impact of the X’s because part of the teacher effect is attributed to the covariates.”
For example, suppose X includes school fixed effects. Estimating § without teacher fixed effects
would attribute all the test score differences across schools to the school fixed effects, leaving mean
teacher quality normalized to be the same across all schools. With school fixed effects, estimating 3
within teacher requires a set of teachers to teach in multiple schools, as in Mansfield (2013). These
switchers allow us to identify the school fixed effects independent of teacher effects and obtain a
cardinal global ranking of teachers across schools.

Let fljt = % Y ic (i1 (6,t)=3} A;+ denote the mean residual test score in the class teacher j teaches

N
in year t. Let A;t denote the vector of mean residual scores prior to year ¢ in classes taught

_ —
by teacher j. Our estimator for teacher j’s VA in year t is 1i;;, = E* {Ajt | Aj_t], the best linear

9Teacher fixed effects account for correlation between X;: and mean teacher VA. If X;; is correlated with fluctu-
ations in teacher VA across years due to drift, then one may still understate teachers’ effects even with fixed effects.
We show in Table 6 below that dropping teacher fixed effects when estimating (5) yields VA estimates that have
a correlation of 0.98 with our baseline estimates because most of the variation in Xj; is within classrooms. Since
sorting to teachers based on their average impacts turns out to be quantitatively unimportant in practice, sorting
based on fluctuations in those impacts is likely to have negligible effects on VA estimates.



predictor of fljt based on prior scores:
t—1
ﬁjt = Z wsAjS'
s=1
We choose the vector of coefficients ¢ = {1/11, e wt_l} to minimize the mean-squared error of the
forecasts of test scores:

t—1 2
(6) S arg{ min Z (Ajt — ZUJSAJ-S>
s=1

¢17"'7wt—1 ]

The resulting coefficients 1) are equivalent to those obtained from an OLS regression of f_ljt on
Zj_t. In particular, ¢ = EZlfy where v = (Cov(4jt, Aj1), ..., Cov(Ajt, Aji—1)) is the vector of
auto-covariances of mean test scores for classes taught by a given teacher and Y 4 is the variance-
covariance (VCV) matrix of Z;t The diagonal elements of ¥4 are the variance of mean class
scores 03‘. The off-diagonal elements are the covariance of mean test scores of different classes
taught by a given teacher C’ov(fljt, flj,t,s). Note that Cov(fljt, flj’t,s) = 0 45 depends only on the

time lag s between the two periods under the stationarity assumption in (3).

Finally, using the estimates of 1, we predict expected VA for teacher j in period t as
~ 11—t
(7) e =1 A i

Special Cases. The formula for 7i;, in (7) nests two special cases that help build intuition for

the general case. First, consider predicting a teacher’s impact in year ¢ using data from only the

TALL
2
TA

previous year ¢t — 1. In this case, v = 04,1 and 221 = U% Hence, ¢ simplifies to and
A

(8) ﬁjt = zbf_lj7t,1.

The shrinkage factor ¢ in this equation incorporates two forces that determine 1 in the general
case. First, because past test scores are a noisy signal of teacher quality, the VA estimate is shrunk
toward the sample mean (,ujt = 0) to reduce mean-squared error. Second, because teacher quality
drifts over time, the predicted effect differs from past performance. For instance, if teacher quality
follows a mean-reverting process, past test scores are further shrunk toward the mean to reduce
the influence of transitory shocks to teacher quality.

Second, consider the case where teacher quality is fixed over time and the student and class
level errors are i.i.d. This is the case considered by most prior studies of value-added. Here,

Cov(Aji, Aji—s) = Cov(pj, pj) = ai for all s # t and 0% = ai + 0% + 0%/n. In this case, (7)



simplifies to

0.2

9 T, =7. = At s
9) Hit = H; J aﬁ+(a§+a§/n)/T

where flj_t is the mean test score in classes taught by teacher j in years other than t and ¥ =

o2

W is the “reliability” of the VA estimate. This formula coincides with equation 5 in

Kane and Staiger (2008) in the case with constant class size. Here, the signal to noise ratio ¥ does
not vary across years because teacher performance in any year is equally predictive of performance
in year t. Because years are interchangeable, VA depends purely on mean test scores over prior
years, again shrunk toward the sample mean to reduce mean-squared error.!’

Importantly, /’ljt = E* [[ljt | Z;t} simply represents the best forecast of the future test scores of
students assigned to teacher j in observational data. This forecast does not necessarily reflect the
causal effect of teacher j on students’ scores, E [,ujt | Zj_t}, because part of the test-score forecast

could be driven by systematic sorting of students to teachers. We now turn to evaluating the

degree to which ﬁjt measures a teacher’s causal impact.

2.3 Definitions of Bias

Suppose that a principal randomly assigns students to teachers in year ¢ instead of following his
usual assignment rule. Let ji;, denote the estimate of expected value-added for teacher j from
observational data in other years as constructed above. We define two notions of bias in VA
estimates based on this experiment in year t.

Forecast Bias. One intuitive definition of bias is to ask whether one accurately predicts differ-
ences in the mean test scores of students who are randomly assigned to teachers with different VA
estimates. Consider an OLS regression of residual test scores on fij; in the randomized cohort of

students, as in Kane and Staiger (2008):
(10) Ait = o+ My + X

Because E [6% | ﬁjt] = 0 under random assignment, the regression coefficient A measures the rela-

"Kane and Staiger (2008) derive (9) using an Empirical Bayes approach instead of a best linear predictor. If
teacher VA, class shocks, and student errors follow independent Normal distributions, the posterior mean of u;,
coincides with (9). Analogously, (7) can be interpreted as the posterior expectation of i, when teacher VA follows
a multivariate Normal distribution whose variance-covariance matrix controls the drift process.

10



tionship between true teacher effects p;, and estimated teacher effects i

Cov (Aitaﬁjt) _ Cov (thaﬁjt)
Var (ﬁjt) Var (ﬁjt) ’

We define a notion of bias in VA estimates based on this regression coefficient as follows.

(11) A

Definition 1. The amount of forecast bias in a VA estimator i, is B (ﬁjt) =1-\

Forecast unbiasedness is of interest because a policy that increases teacher quality by Afij,
raises student test score achievement by (1 — B) A, units. If B = 0, 1i;, provides an unbiased
forecast of teacher quality in the sense that an improvement in estimated VA Afzij;, has the same
causal impact on test scores as an increase in true teacher quality A, of the same magnitude.

Teacher-Level Bias. An alternative definition of bias concerns the error in the VA estimate at

the teacher level.ll

Let H (fi;;) = limyg,(c;,)—0 fij; denote the value to which the VA estimate for
teacher j in year t converges as noise due to student and class shocks vanishes in prior periods.

The asymptotic bias in the estimate of teacher j’s VA in year ¢ as estimation error vanishes is
(12) wit = H (fij) = fije,

where i, = B [th | ﬁ)]_t] denotes teacher j’s expected value-added in year ¢, integrating over the
distribution of unforecastable innovations in period ¢. We define a second notion of bias in VA

estimates based on w;; as follows.
Definition 2. Value-added estimates are unbiased at the teacher-level if Var(w;;) = 0.

In principle, one can identify the magnitude of teacher-level bias Var(wj;) from the covariance
of forecast errors for a given teacher across classrooms. Suppose we randomly assign a classroom to
each teacher in year t. Let fl}t denote mean test scores for students of teacher j in this experiment.
Now suppose we repeat the experiment, taking an independent draw from the stochastic processes
governing teacher and student quality.'?> Let A?t denote mean test scores for students of teacher

7 in this second experiment. The covariance of forecast errors within-teacher across classrooms is

(13) Cov (Azlt - (ﬁjt) VAL — H (ﬁgt)) = Cov (ﬂjt - (ﬁjt) sy — H (ﬁ]t)) = Var(wj)

We thank Jesse Rothstein for drawing our attention to the distinction between these two definitions of bias.
Rothstein (2009) discusses teacher-level bias in the case without drift, where teacher-level bias can be defined as
Var(limi—eo fi;,— p;). With drift, we require different asymptotics because additional information from prior years
does not eliminate estimation error in expected VA.

2Tn particular, we require that both the student level errors Z;; and the unforecasted innovation in teacher quality
due to drift p;, — E [th | ﬁ);t} are independent across the two experiments.

11



Intuitively, the degree of teacher-level bias is determined by the extent to which we systematically
mispredict a given teacher’s performance when students are randomly assigned to her when VA is
estimated without sampling error.

Forecast vs. Teacher-Level Bias. Teacher-level unbiasedness is a stronger requirement than
forecast unbiasedness of the asymptotic VA estimate (B (H (ﬁ]t)) = 0). To see this, observe that
by definition
Cov (Au.H ()

Var(H (ﬁjt))

Var (/?th) + Cov (/]jt, wit)
Var (fi;;) + Var (wji) — 2Cov ([, wje)

1= B (1) =

where the second step follows because Cov (Az-t — [y, H (ﬁjt)) = 0 under random assignment in
year t. Hence,

B(H (ﬁjt)) =0« Var(wjt) + Cov (,&jt,wjt) =0.

It follows that Var(wj) =0= B (H (ﬁjt)) =0, but the converse need not hold.'® In particular,
if Cov ([th,wj-t) < 0, VA estimates could be biased at the teacher level even if forecasts based on
VA are accurate on average. Intuitively, if the teacher-level bias is negatively correlated with true
value-added, then the covariance of VA estimates with true scores is reduced, but the variance of
VA estimates also falls. If the two forces cancel out, VA estimates could exhibit no forecast bias
even if they are biased at the teacher level.

Estimating the degree of forecast bias is simpler than teacher-level bias for two reasons. First,
estimating B requires random (or quasi-random) assignment of one classroom of students per
teacher, whereas estimating Var(wj;) requires random assignment of students to two classrooms
per teacher. Second, and more importantly, forecast bias can be directly estimated using finite-
sample estimates of ﬁjt without any additional inputs. In contrast, estimating teacher-level bias
requires accounting for the impacts of estimation error on ﬁjt to construct the limit H (ﬁjt), which

is a non-trivial problem.'*

Y3 Teacher-level unbiasedness implies forecast unbiasedness of the asymptotic teacher VA estimate H(pij,). Tt does
not guarantee that the finite sample i, produced by the same value-added model is forecast unbiased, as the degree
of forecast bias will in general vary with estimation error.

"1f one were to implement (13) using a finite-sample estimate fi;; rather than H(fi,;), the resulting covariance of
forecast errors would be positive even if Var(w;:) = 0 for two reasons. First, estimation error in fi,, mechanically
induces correlation in forecast errors. This problem can be resolved by using two samples to obtain two independent
estimates of fi;,. Second, Ji,, is shrunk toward zero relative to true expected VA fi,;, as shown in (9). This produces
correlated forecast errors even with independent estimates of 7i;;. One must account for the covariance due to this
latter effect to identify Var(w;:).
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The appropriate definition of bias depends upon the policy question one seeks to answer. Fore-
cast bias is relevant for evaluating the mean impact of changes in the value-added of teaching staff.
Conditional on B, teacher-level bias Var(wj;) does not have any bearing on the expected gains
from replacing a teacher with lower estimated VA with a teacher with higher 7i;;. Moreover, we
show in our second paper that forecast unbiasedness is precisely the condition needed to identify
the mean long-term impacts of improving teachers’ test-score VA using existing VA estimates.
Teacher-level bias is relevant for determining whether a value-added model treats all teachers eq-
uitably. If Var(w;;) > 0, some teachers could be systematically overrated relative to others even
though forecasts based on VA estimates are correct on average. Because our goal is to identify
the mean impacts of improving teacher VA, we focus on estimating forecast bias in this paper and

defer estimation of teacher-level bias to future research.

3 Data

We draw information from two databases: administrative school district records and federal income
tax records. This section describes the two data sources and the structure of the linked analysis

dataset and then provides descriptive statistics.

3.1 School District Data

We obtain information on students, including enrollment history, test scores, and teacher assign-
ments from the administrative records of a large urban school district. These data span the school
years 1988-1989 through 2008-2009 and cover roughly 2.5 million children in grades 3-8. For sim-
plicity, we refer below to school years by the year in which the spring term occurs (e.g., the school
year 1988-1989 is 1989).

Test Scores. 'The data include approximately 18 million test scores. Test scores are available
for English language arts and math for students in grades 3-8 in every year from the spring of 1989
to 2009, with the exception of 7th grade English scores in 2002.1°

The testing regime varies over the 20 years we study. In the early and mid 1990s, all tests
were specific to the district. Starting at the end of the 1990s, the tests in grades 4 and 8 were
administered as part of a statewide testing system, and all tests in grades 3-8 became statewide in

2006 as required under the No Child Left Behind law. All tests were administered in late April

15We also have data on math and English test scores in grade 2 from 1991-1994, which we use only when evaluating
sorting on lagged test score gains. Because these observations constitute a very small fraction of our sample, excluding
them has little impact on our results.
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or May during the early and mid 1990s, and students were typically tested in all grades on the
same day throughout the district. Statewide testing dates varied to a greater extent, and were
sometimes given earlier in the school year (e.g., February) during the latter years of our data.

Because of this variation in testing regimes, we follow prior work by normalizing the official
scale scores from each exam to have mean zero and standard deviation one by year and grade. The
within-grade variation in achievement in the district we examine is comparable to the within-grade
variation nationwide, so our results can be compared to estimates from other samples.'® We also
estimate models that account for the variation in test dates below to ensure that our conclusions
are not sensitive to this variation.

Demographics. The dataset contains information on ethnicity, gender, age, receipt of special
education services, and limited English proficiency for the school years 1989 through 2009. The
database used to code special education services and limited English proficiency changed in 1999,
creating a break in these series that we account for in our analysis by interacting these two measures
with a post-1999 indicator. Information on free and reduced price lunch is available starting in
school year 1999. These missing data issues are not a serious problem in practice because our
estimates of forecast bias are insensitive to excluding demographic characteristics from the VA
model entirely.

Teachers. The dataset links students in grades 3-8 to classrooms and teachers from 1991
through 2009.'7 This information is derived from a data management system which was phased
in over the early 1990s, so not all schools are included in the first few years of our sample. In
addition, data on course teachers for middle and junior high school students—who, unlike students
in elementary schools, are assigned different teachers for math and English—are more limited.
Course teacher data are unavailable prior to the school year 1994, then grow in coverage to roughly
60% by school year 1998 and 85% by 2003. Even in the most recent years of the data, roughly
15 percent of the district’s students in grades 6 to 8 are not linked to math and English teachers
because some middle and junior high schools still do not report course teacher data.

The missing teacher links raise two potential concerns. First, our estimates (especially for

'6The standard deviation of 4th and 8th grade English and math achievement in this district ranges from roughly
95 percent to 105 percent of the national standard deviation on the National Assessment of Educational Progress,
based on data from 2003 and 2009, the earliest and most recent years for which NAEP data are available. Mean
scores are significantly lower than the national average, as expected given the urban setting of the district.

'75% of students switch classrooms or schools in the middle of a school year. We assign these students to the
classrooms in which they took the test to obtain an analysis dataset with one observation per student-year-subject.
However, when defining class and school-level means of student characteristics (such as fraction eligible for free lunch),
we account for such switching by weighting students by the fraction of the year they spent in that class or school.
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grades 6-8) apply to a subset of schools with more complete information reporting systems and
thus may not be representative of the district as a whole. Reassuringly, we find that these schools
do not differ significantly from the sample as a whole on test scores and other observables. Second,
and more importantly, missing data could generate biased estimates. We evaluate the impacts of
missing data in Table 5 below and show that our conclusions remain very similar in a subsample
of school-grade-subject cells with no missing data.

Sample Restrictions. Starting from the raw dataset, we make a series of restrictions that parallel
those in prior work to obtain our primary school district sample. First, because our estimates of
teacher value-added always condition on prior test scores, we restrict our sample to grades 4-8,
where prior test scores are available. Second, we exclude the 6% of observations in classrooms
where more than 25 percent of students are receiving special education services, as these classrooms
may be taught by multiple teachers or have other special teaching arrangements. We also drop the
2% of observations where the student is listed as receiving instruction at home, in a hospital, or in
a school serving solely disabled students. Third, we drop classrooms with less than 10 students
or more than 50 students as well as teachers linked with more than 200 students in a single grade,
because such students are likely to be mis-linked to classrooms or teachers (0.5% of observations).
Finally, when a teacher is linked to students in multiple schools during the same year, which occurs
for 0.3% of observations, we use only the links for the school where the teacher is listed as working

according to human resources records and set the teacher as missing in the other schools.

3.2 Tax Data

We obtain information on parent characteristics from U.S. federal income tax returns spanning
1996-2011.'%  The school district records were linked to the tax data using an algorithm based on
standard identifiers (date of birth, state of birth, gender, and names) described in Appendix B,
after which individual identifiers were removed to protect confidentiality. 88.6% of the students
and 89.8% of student-subject-year observations in the sample used to estimate value-added were
matched to the tax data. Students were then linked to parents based on the earliest 1040 form
filed between tax years 1996 and 2011 on which the student was claimed as a dependent. We
identify parents for 97.6% of the observations in the analysis dataset conditional on being matched

to the tax data.!?

!8Here and in what follows, the year refers to the tax year, i.e. the calendar year in which income is earned. In
most cases, tax returns for tax year ¢ are filed during the calendar year ¢ + 1.

Y The remaining students are likely to have parents who did not file tax returns in the early years of the sample
when they could have claimed their child as a dependent, making it impossible to link the children to their parents.
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In this paper, we use the tax data to obtain information on five time-invariant parent charac-
teristics, defined as follows. We define parental household income as mean Adjusted Gross Income
(capped at $117,000, the 95th percentile in our sample) between 2005 and 2007 for the primary
filer who first claimed the child.?’ For years in which parents did not file a tax return, they are
assigned an income of 0. We measure income in 2010 dollars, adjusting for inflation using the
Consumer Price Index.

We define marital status, home ownership, and 401(k) saving as indicators for whether the first
primary filer who claims the child ever files a joint tax return, makes a mortgage interest payment
(based on data from 1040’s for filers and 1099’s for non-filers), or makes a 401(k) contribution
(based on data from W-2’s) between 2005 and 2007.

We define mother’s age at child’s birth using data from Social Security Administration records
on birth dates for parents and children. For single parents, we define the mother’s age at child’s
birth using the age of the filer who first claimed the child, who is typically the mother but is

sometimes the father or another relative.2!

When a child cannot be matched to a parent, we
define all parental characteristics as zero, and we always include a dummy for missing parents in

regressions that include parent characteristics.

3.3 Summary Statistics

The linked school district and tax record analysis dataset has one row per student per subject
(math or English) per school year, as illustrated in Appendix Table 1. Each observation in
the analysis dataset contains the student’s test score in the relevant subject test, demographic
information, teacher assignment, and time-invariant parent characteristics. We organize the data
in this format so that each row contains information on a treatment by a single teacher conditional
on pre-determined characteristics. We account for the fact that each student appears multiple
times in the dataset by clustering standard errors as described in Section 4.

After imposing the sample restrictions described above, the linked dataset contains 10.7 million

student-year-subject observations. We use this “core sample” of 10.7 million observations to con-

Note that this definition of parents is based on who claims the child as a dependent, and thus may not reflect the
biological parent of the child.

20Because the children in our sample vary in age by over 25 years whereas the tax data start only in 1996, we
cannot measure parent characteristics at the same age for all children. For simplicity, we instead measure parent
characteristics at a fixed time. Measuring parent income at other points in time yields very similar results (not
reported).

2'We set the mother’s age at child’s birth to missing for 78,007 observations in which the implied mother’s age
at birth based on the claiming parent’s date of birth is below 13 or above 65, or where the date of birth is missing
entirely from SSA records.
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struct quasi-experimental estimates of forecast bias, which do not require any additional controls.
9.1 million records in the core sample have information on teacher assignment and 7.6 million have
information on teachers, lagged test scores, and the other controls needed to estimate our baseline
VA model.

Table 1 reports summary statistics for the 7.6 million observation sample used to estimate value-
added. Note that the summary statistics are student-school year-subject means and thus weight
students who are in the district for a longer period of time more heavily, as does our empirical
analysis. There are 1.37 million students in this sample and each student has 5.6 subject-school
year observations on average.

The mean test score in the sample used to estimate VA is positive and has a standard deviation
below 1 because we normalize the test scores in the full population that includes students in special
education classrooms and schools (who typically have lower test scores). The mean age at which
students are observed is 11.4 years. 80% of students are eligible for free or reduced price lunches.
1.7% of the observations are for students who are repeating the current grade.

For students whom we match to parents, mean parent household income is $40,800, while
the median is $31,700. Though our sample includes more low income households than would a
nationally representative sample, it still includes a substantial number of higher income households,
allowing us to analyze the impacts of teachers across a broad range of the income distribution. The

standard deviation of parent income is $34,300, with 10% of parents earning more than $100,000.

4 Value-Added Estimates

We estimate teacher VA using the methodology in Section 2.2 in three steps: (1) construct student
test score residuals, (2) estimate the autocovariance of scores across classes taught by a given
teacher, and (3) predict VA for each teacher in each year using test score data from other years.
Test Score Residuals. We construct test score residuals A;; by estimating separate models for
each subject (math and English) in elementary and middle schools. Within each of these four
groups, we estimate test score residuals by regressing raw standardized test scores A}, on a vector
of covariates X;; with teacher fixed effects, as in (5). In our baseline analysis, we use a control
vector X;; similar to that used by Kane, Rockoff, and Staiger (2008). In particular, we control for
prior test scores using a cubic polynomial in prior-year scores in math and a cubic in prior-year
scores in English. We interact these cubics with the student’s grade level to permit flexibility

in the persistence of test scores as students age. We also control for the following student level
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characteristics: ethnicity, gender, age, lagged suspensions and absences, and indicators for grade
repetition, special education, and limited English. We also include the following class-level controls:
(1) class size and class-type indicators (honors, remedial), (2) cubics in class and school-grade means
of prior-year test scores in math and English each interacted with grade, (3) class and school-year

means of all the individual covariates X;;, and (4) grade and year dummies.??

Importantly, the
control vector consists entirely of variables from the school district dataset. We adopt this approach
because our goal is to assess properties of typical value-added models that are estimated without
access to information available in tax data.

Auto-Covariance Vector. Next, we estimate the auto-covariance of mean test score residuals
across classes taught in different years by a given teacher. We estimate four separate autocovari-
ance vectors, one for each subject in elementary and middle schools. Exploiting the stationarity
assumption in (3), we use all available classrooms with a time span of s years between them to
estimate 045 = C’ov(f_ljt, fljt,s), weighting by the total number of students in each pair of classes.
In middle school, where teachers teach multiple classes per year, we estimate o 45 after collapsing
the data to the teacher-year level by calculating precision-weighted means across the classrooms as
described in Appendix A.

Figure 1 plots the autocorrelation vector {rs} = {C;—%S}iil for each subject and school level,
the values underlying this figure along with the associated covariances are reported in Panel A

of Table 2. If one were using data only from year s, the VA estimate for teacher j in year ¢

would simply be 1i;, = 75A4;;—s, since rg = 1 = ‘;*‘%S, as shown in (8). Hence, ry represents the
“reliability” of mean class test scores for predicting teacher quality s years later. The reliability
of VA estimates decays over time: more recent test scores are better predictors of current teacher
performance. In elementary school, reliability declines from r; = 0.43 in the first year to 7 = 0.25
in math after seven years, and remains roughly stable for s > 7. In English, reliability falls from
r1 = 0.30 to 77 = 0.15 over the same horizon and again stabilizes for s > 7. Decay in reliability
is steeper in middle school, especially in later periods: r; = 0.48 and r7 = 0.20 in math, while
r1 = 0.23 and r7 = 0.06 in English. The stability of r, in the long run combined with the decay
over a period of 5-7 years implies that teacher quality consists of a permanent component coupled
with a transitory component that exhibits persistent fluctuations, e.g. due to variation in teaching

assignments, curriculum, or skill (Goldhaber and Hansen 2010, Jackson 2010).2

22To avoid estimating VA based on very few observations, we follow Kane, Rockoff, and Staiger (2008) and exclude
classrooms that have fewer than 7 observations with test scores and lagged scores (2% of observations).
23 Prior studies, which do not account for drift, typically estimate reliability as the correlation between mean scores
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In middle school, we can also estimate the within-year covariance of test score residuals o 49
because teachers teach multiple classes per year. This within-year covariance corresponds to the
variance of teacher effects under the assumption that class and student level shocks are i.i.d.. The
standard deviation of teacher effects, o, = /0 40, is 0.098 in English and 0.134 in math in middle
school, as shown in Table 2, Panel B.2* In elementary school, o 4¢ is unidentified because teachers
teach only one class per year. Conceptually, we cannot distinguish the variance of idiosyncratic
class shocks from the unforecasted innovations in teacher effects when teachers teach only one class
per year. Recognizing that 049 > 041, we can obtain a lower bound on o, of \/o41. This
bound implies that o, is at least 0.113 in English and at least 0.149 in math in elementary school
(second-to-last row of Panel B of Table 2). To obtain a rough point estimate, we fit a quadratic
function to the log of the first seven covariances within each subject in elementary school (listed
in Table 2, Panel A) and extrapolate to 0 to estimate 0 49. This method yields estimates of o, of
0.124 in English and 0.163 in math, as shown in the final row of Table 2, Panel B.?2> The point
estimates are close to the lower bounds because the rate of drift across one year is small. Note that
our estimates of the standard deviations of teacher effects are slightly larger than those in prior
studies (e.g., Kane, Rockoff, and Staiger 2008, Chetty, Friedman, and Rockoff 2011b) because the
earlier estimates were attenuated by drift.

Prediction of VA. We use the estimated autocovariance vectors in Table 2 to predict teacher
VA. Since there is no trend in reliability after 7 periods and because the precision of the estimates
falls beyond that point, we fix reliability rs = r7 for s > 7 in all subject and school levels when
estimating VA.?% We predict each teacher’s VA in each year ¢ using test score residuals from all
other years (both in the past and the future) ezcept year t. For example, when predicting teachers’
effects on student outcomes in year ¢ = 1995 (1i; 1995), We estimate value-added based on all years
of the sample excluding 1995. We construct these estimates using the formula in (7) with an

adjustment for the variation in the number of students per class and the number of classes per year

for a random pair of classes in different years (e.g., Kane and Staiger 2008, Chetty, Friedman, and Rockoff 2011b).
That method yields an estimate of the mean value of rs over the years available in the dataset. A recent summary
(McCaffrey et al. 2009) finds reliability in the range of 0.2-0.5 for elementary school and 0.3-0.7 for middle school
teachers, consistent with the estimates in Figure 1.

24 As is standard in the literature, in this paper we scale value-added in units of student test scores, i.e., a 1 unit
increase in value-added refers to a (hypothetical) teacher whose VA is predicted to raise student test scores by 1 SD.

5 Applying the same quadratic extrapolation to the middle school data yields estimates of o, of 0.134 in math
and 0.079 in English. These estimates are fairly close to the true values estimated from the within-year covariance,
supporting the extrapolation in elementary school.

26We have evaluated the robustness of our results to changing this cutoff to s = 10 and find no detectable change in
our estimates. This is because the correlation between these new VA estimates and our baseline estimates is greater
than 0.999.
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(for middle school) as described in Appendix A.

Our VA estimates are leave-year-out (jackknife) measures of teacher quality, similar to those
in Jacob, Lefgren and Sims (2010) but with an adjustment for drift. Leave-year-out measures
are natural from a forecasting perspective: one cannot include data from year ¢ in constructing a

t.27  Because our

VA estimate if the goal is to evaluate its ability to forecast outcomes in year
primary goal is to evaluate forecasts based on VA, we only construct VA estimates for teachers who
teach in two or more years between 1991 and 2009.2® We cannot evaluate whether a VA estimate
is biased predictor of teacher quality for teachers whom we only see in one year because at least
one more year is necessary to measure forecast errors. Among the classrooms with the requisite
controls to estimate value-added (e.g., lagged test scores), we are unable to predict teacher VA for
9% of student-subject-year observations because their teachers are observed in the data for only
one year.?’

The empirical distributions of our teacher VA estimates are plotted in Appendix Figure 1.
The standard deviation of 7i;, is 0.116 in math and 0.080 in English in elementary school; the
corresponding SD’s are 0.092 and 0.042 in middle school. The standard deviations are smaller
than the true SD of teacher effects because the best linear predictor shrinks VA estimates toward
the sample mean to minimize mean-squared-error.

Out-of-Sample Forecasts. Under the stationarity assumption in (3), an OLS regression of A;; on
//th — the best-linear predictor of A;; — should yield a coefficient of 1 by construction. We evaluate
whether this is the case in Column 1 of Table 3, which reports estimates from a univariate OLS
regression of test score residuals A; on 1ij, in the sample used to estimate the VA model. We

include fixed effects for subject (math vs. English) by school-level (elementary vs. middle) in this

and all subsequent regressions to obtain a pooled regression coeflicient across the four cells that is

*"Regressing student outcomes on teacher VA without using a leave-out mean effectively introduces the same
estimation errors on both the left and right hand side of the regression, yielding biased estimates of teachers’ causal
impacts. This is the reason that Rothstein (2010) finds that “fifth grade teachers whose students have above average
fourth grade gains have systematically lower estimated value-added than teachers whose students underperformed
in the prior year.” Students who had unusually high fourth grade gains due to idiosyncratic, non-persistent factors
(e.g., measurement error) will tend to have lower than expected fifth grade gains, making their fifth grade teacher
have a lower VA estimate.

28 A leave-year out estimate is not necessary if one simply seeks to measure teacher effects without evaluating their
out-of-sample properties (e.g., Rockoff 2004, Kane, Rockoff, and Staiger 2008). However, with drift, one must still
specify the year in which one is measuring teacher quality, as “teacher quality” is no longer a constant.

29 Average test scores in the first year for teachers who leave after one year are approximately 0.026 SD lower than
mean first-year scores of those who stay for more years. Hence, the mean first-year performance of the subset of
teachers in our sample is only 0.0026 SD higher than mean first-year performance in the population, suggesting that
our estimates of forecast bias are likely to be representative of teacher effects in the full population.
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based purely on variation within the subject-by-school-level cells.?* The dependent variables in this
and subsequent regressions have a correlated error structure because students within a classroom
face common class-level shocks and because our analysis dataset contains repeat observations on
students in different grades. One natural way to account for these two sources of correlated
errors is to cluster standard errors by both student and classroom (Cameron, Gelbach, and Miller
2011). Unfortunately, implementing two-way clustering on a dataset with 6 million observations
was infeasible due to computational constraints at the Internal Revenue Service. We instead cluster
standard errors at the school-by-cohort level in all specifications, which adjusts for correlated errors
across classrooms and repeat student observations within a school.?!

The point estimate of the coefficient on 7i;, is 0.998, with a standard error of 0.006. The
confidence interval spans [0.986,1.010] and we cannot reject the hypothesis that the coefficient
on ﬁjt equals 1. Figure 2a plots the relationship between A;; and /’ljt non-parametrically. We
construct this binned scatter plot by dividing the VA estimates ﬂjt into twenty equal-size groups

32 The conditional expectation function

(vingtiles) and plotting the mean value of A;; in each bin.
is almost perfectly linear: teacher VA has a 1-1 relationship with test score residuals throughout the
distribution. Note that this binned scatter plot provides a non-parametric representation of the
conditional expectation function but does not show the underlying variance in the individual-level
data. The regression coefficient and standard error reported in this and all subsequent figures are
estimated on the micro data, with standard errors clustered by school-cohort as described above.
The relationship between i;, and students’ test scores in Figure 2a could reflect either the
causal impact of teachers on achievement or persistent differences in student characteristics across
teachers. For instance, ﬁjt may forecast students’ test scores in other years simply because some
teachers are always assigned students with higher income parents. In the next two sections, we

estimate the degree to which the relationship in Figure 2a reflects teachers’ causal effects vs. bias

due to student sorting.

30By construction, test score residuals have mean 0 in all four cells. The VA estimates are also centered near 0,
with slight deviations because of imbalances in weights. Thus, in practice, including these fixed effects has little or
no impact on the estimates. Nevertheless, we always include them to ensure that our estimates in subsamples are
identified from within subject by school-year variation. Note that the estimates we report equal what one would
obtain by running separate regressions within the four subject-by-school-level cells and taking weighted means of the
coefficients.

#1Tn the working paper version (Chetty, Friedman, and Rockoff 2011b), we evaluated the robustness of our results to
alternative forms of clustering in Appendix Table 7. We found that school-cohort clustering yields more conservative
confidence intervals than the more computationally intensive techniques.

32In this and all subsequent scatter plots, we first demean the x and y variables within subject by school level
groups to isolate variation within these cells, as in the regressions.
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5 Estimating Bias Using Observable Characteristics

We defined forecast bias in Section 2.3 under the assumption that students were randomly assigned
to teachers in the forecast year t. School districts typically cannot randomly assign students
to teachers simply to evaluate VA models. As a practical alternative, we develop methods of
estimating forecast bias using observational data, i.e., when the school follows the same (non-
random) assignment rule for teachers and students in the forecast period ¢ as in previous periods.

In this section, we estimate forecast bias by measuring the degree of selection using observable
characteristics that were excluded from the VA model. We first derive an estimator for forecast

bias and then implement it using data on parent characteristics and lagged test score gains.

5.1 Methodology

To begin, note that because ﬁjt is the best linear predictor of test scores A;; based on past infor-
mation on the teacher,

Cov (Ag, ﬁjt) _ Cov (ujt, ﬁjt) + Cov (eit, ﬁjt)

= — =1.
Var (th) Var (th)

It follows that

Cov (i1, i)
Var ()

Intuitively, the degree of forecast bias can be quantified by the extent to which students are sorted to

(14) B (i) =

teachers based on unobserved determinants of achievement ;. A simple but important implication
of (14) is that VA estimates can be forecast-unbiased even if children with certain characteristics
(e.g., those with higher ability) are systematically assigned to certain teachers. Forecast unbiased-
ness only requires that the observable characteristics X;; are sufficiently rich that any remaining
unobserved heterogeneity in test scores €;; is balanced across teachers with different VA estimates.

Equation (14) implies that one way to estimate B is to evaluate the correlation between the
error in student scores €;; and teacher VA estimates directly. We cannot observe ¢;, but we can
obtain information on components of ¢;; using variables that predict student test score residuals
Aji, such as parent income. Let P} denote a vector of such characteristics and P;; denote the
residuals obtained after regressing the elements of P on the baseline controls X;;. Decompose the
error in score residuals e;; = pPj; + ¢}, into the component that projects onto Py and the remaining

(unobservable) error €),. To gauge forecast bias using P, we make the following assumption of
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selection on excluded observables.

Assumption 2 [Selection on Excluded Observables| Students are sorted to teachers purely
on excluded observables P:
B [E{L‘t | j] =E [Eg‘t]

COU(l)Pitvﬁjt)
Var(fe)
OLS regression of A;; on Py with teacher fixed effects:

Under this assumption, B = As in (5), we estimate the coefficient vector p using an

(15) Aiyp = aj + pPy

This leads to the feasible estimator
Cov (AY, T
(16) p, = Cov (A i)
Var (th)
where AY, = pP; is estimated using (15). Importantly, B, provides a point estimate of forecast
bias under the assumption that selection occurs purely on the basis of the excluded characteristics
P. Hence, a small value of B, should be viewed as a necessary but not sufficient condition for

forecast unbiasedness.

5.2 Results

We apply the method above to estimate forecast bias using two variables that are excluded from
standard VA models: parent characteristics and lagged test score gains.

Parent Characteristics. We define a vector of parent characteristics P;; that consists of the
following variables: mother’s age at child’s birth, indicators for parent’s 401(k) contributions and
home ownership, and an indicator for the parent marital status interacted with a quartic in parent

33 We construct residual parent characteristics Py by regressing each element

household income.
of P}, on the baseline control vector X;; and teacher fixed effects, as in (5). We then regress A; on
Py, again including teacher fixed effects, and calculate predicted values A?, = pP;;. We fit separate
models for each subject and school level (elementary and middle) as above when constructing the

residuals P;; and predicted test scores Aft.

In Column 2 of Table 3, we regress A?, on Hjt, including subject-by-school-level fixed effects as

33We code the parent characteristics as 0 for the 12.3% of students whom we are unable to match to a parent either
because we could not match the student to the tax data (10.1%) or because we could not find a parent for a matched
student (2.2%). We include indicators for missing parent data in both cases. We also code mother’s age at child’s
birth as 0 for observations where we match parents but do not have valid data on the parent’s age, and include an
indicator for such cases.
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above. This regression yields an estimate of forecast bias due to selection on Pj, as shown in (16).
The coefficient in this regression is B, = 0.002, i.e. the degree of forecast bias due to selection on
parent characteristics is 0.2%. The upper bound on the 95% confidence interval for Bj, is 0.25%.
Figure 2b presents a non-parametric analog of this linear regression. It plots A%, vs. teacher VA
Hj; using a binned scatter on the same scale as in Figure 2a. The relationship between predicted
scores and teacher VA is nearly flat throughout the distribution.

Another intuitive way to assess the degree of selection on parent characteristics — which corre-
sponds to familiar methods of assessing omitted variable bias —is to control for P;; when estimating
the impact of ﬁjt on test scores, as in Kane and Staiger (2008, Table 6). To implement this ap-
proach using within-teacher variation to construct residuals, we first regress raw test scores A, on
the baseline control vector used in the VA model X;;, parent characteristics P}, and teacher fixed
effects, as in (5). Again, we fit a separate model for each subject and school level (elementary and
middle). We then regress the residuals from this regression (adding back the teacher fixed effects)
on 1i;, including subject-by-school-level fixed effects as in Column 1. Column 3 of Table 3 shows
that the coefficient on VA falls to 0.996 after controlling for parent characteristics. The difference
between the point estimates in Columns 1 and 3 is 0.002. This difference coincides exactly with
our estimate of B, in Column 2 because A%, is simply the difference between test score residuals
with and without controlling for parent characteristics.

The magnitude of forecast bias due to selection on parent characteristics is statistically signifi-
cant but quantitatively very small for two reasons. First, a large fraction of the variation in test
scores that project onto parent characteristics is captured by lagged test scores and other controls
in the school district data. The standard deviation of class-average predicted score residuals based
on parent characteristics is 0.014. Intuitively, students from high income families have higher
test scores not just in the current grade but in previous grades as well, and thus previous scores
capture a large portion of the variation in family income. However, because lagged test scores are
noisy measures of latent ability, parent characteristics still have significant predictive power for test
scores even conditional on X;;. The F-statistic on the parent characteristics in the regression of
test score residuals A;; on Py is 84, when run at the classroom level (which is the variation relevant
for detecting class-level sorting to teachers). This leads to the second reason that forecast bias is
so small: the remaining variation in parent characteristics after conditioning on Xj; is essentially
unrelated to teacher VA. The correlation between A}, and fi;, is 0.014. If this correlation were 1

instead, the bias due to sorting on parent characteristics would be 0.149. This shows that there
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is substantial scope to detect sorting of students to teachers based on parent characteristics even
conditional on the school district controls. Such sorting turns out to be quite small in magnitude
in practice, leading to minimal forecast bias.

Importantly, the small degree of bias from sorting on parent characteristics does not imply that
students from higher vs. lower socioeconomic status families get teachers of the same quality. The
finding is that controlling for the observables available in school district databases is adequate to
account for sorting of students to teachers based on parent characteristics. We return to this issue
in Section 8 below and show that unconditionally, students from higher income families do have
higher VA teachers on average, but this correlation vanishes once we control for lagged test scores.

Prior Test Scores. Another natural set of variables to evaluate bias is prior test scores (Roth-
stein 2010). Value-added models typically control for A;; 1, but one can evaluate sorting on
A;+—9 (or, equivalently, on lagged gains, A;;—1 — A;;—2). The question here is effectively whether
controlling for additional lags substantially affects VA estimates once one controls for A;; ;. For
this analysis, we restrict attention to the subsample of students with data on both lagged and
twice-lagged scores, essentially dropping 4th grade from our sample. We re-estimate VA ﬁjt on
this sample to obtain VA estimates on exactly the sample used to evaluate bias.

We assess forecast bias due to sorting on lagged score gains using the same approach as with
parent characteristics. Column 4 of Table 3 replicates Column 2, using predicted score residuals
based on A;;_2, which we denote by Aét, as the dependent variable. The coefficient on ﬁjt is 0.022,
with a standard error of 0.002. The upper bound on the 95% confidence interval for forecast bias
due to twice lagged scores is 0.026. Figure 2c plots predicted scores based on twice-lagged scores
(Aﬁt) against teacher VA, following the same methodology used to construct Figure 2b. Consistent
with the regression estimates, there is a slight upward-sloping relationship between VA and Aﬁt
that is small relative to the relationship between VA and test score residuals in year t.

Forecast bias due to omitting A;;_o is small for the same two reasons as with parent charac-
teristics. The baseline control vector X;; captures much of the variation in A;;_o: the variation
in class-average predicted score residuals based on A;; o is 0.048. The remaining variation in
A;—2 is not strongly related to teacher VA: the correlation between A;; o and ﬂjt is 0.037. If
this correlation were 1, forecast bias would be 0.601, again implying that sorting on lagged gains
is quite minimal relative to what it could be.

We conclude that selection on two important predictors of test scores excluded from standard

VA models — parent characteristics and lagged test score gains — generates negligible forecast bias
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in our baseline VA estimates.

6 Estimating Bias Using Teacher Switching Quasi-Experiments

The evidence in Section 5 does not rule out the possibility that students are sorted to teachers
based on unobservable characteristics orthogonal to parent characteristics and lagged score gains.
The ideal method to assess bias due to unobservables would be to randomly assign teachers to
classrooms and estimate the relationship between test scores and VA estimates (from pre-existing
observational data) under random assignment. Kane and Staiger (2008) and Kane et al. (2013)
implement such experiments. The point estimates from these experiments indicate little forecast
bias, but the 95% confidence intervals are consistent with a large amount of bias (e.g., up to 50%
in some cases) because of constraints on sample size and compliance. ~Moreover, because the
experiments included only a small subset of teachers and schools within the participating school
districts, the external validity of the findings is debated (Rothstein 2010).

Motivated by these limitations, we develop a quasi-experimental method of estimating forecast
bias that exploits naturally occurring teacher turnover in lieu of an experiment. Our approach
yields more precise estimates of the degree of bias on a representative sample of a school district’s
student population. The cost of our approach is that it relies on stronger identification assumptions,

which we describe and evaluate in detail below.

6.1 Methodology

Adjacent cohorts of students within a school are frequently exposed to different teachers. In our
core sample, 30.1% of teachers switch to a different grade within the same school the following year,
6.1% of teachers switch to a different school within the same district, and another 5.8% switch out
of the district entirely.?® We exploit this teacher turnover to obtain a quasi-experimental estimate
of forecast bias.

To understand our research design, consider a school with three 4th grade classrooms. Suppose
one of the teachers leaves the school in 1995 and is replaced by a teacher whose VA estimate in
math is 0.3 higher. Assume that the distribution of unobserved determinants of scores ¢;; does not
change between 1994 and 1995. If B = 0, this change in teaching staff should raise average 4th

grade math scores in the school by 0.3/3 = 0.1. More generally, we can estimate B by comparing

31 Although teachers switch grades frequently, only 4.5% of students have the same teacher for two consecutive
years.
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the change in mean scores across cohorts to the change in mean VA driven by teacher turnover

provided that student quality is stable over time.3

To formalize this idea, let ﬁj_t{t’t_l} denote the VA estimate for teacher j in year ¢ constructed
as above using data from all years except ¢ — 1 and ¢. Similarly, let ﬁ;ﬁ’ffl} denote the VA
estimate for teacher j in year ¢ — 1 based on data from all years except ¢ — 1 and ¢. Let Qg

41} across teachers in school s in grade g. We define

denote the (student-weighted) mean of 11,
the change in mean teacher value-added from year ¢ — 1 to year ¢ in grade g in school s as AQgq =
Qsgt — Qsg,t—1- Note that by leaving out both years ¢ and ¢ — 1 when estimating VA, we ensure
that the variation in AQsg is driven purely by changes in the teaching staff and not by changes

6

in VA estimates.?¢ This leave-out technique is analogous to using data outside year ¢ to evaluate

the properties of VA forecasts in year t. Here, we leave out two years to eliminate any correlation

between changes in mean test scores across cohorts ¢ and ¢ — 1 and estimation error in Angt.37
Let Agy¢ denote the mean value of A;; for students in school s in grade g in year ¢ and define

the change in mean student score residual as AAgy = Aggr — Asgt—1. We estimate the degree of

forecast bias B by regressing changes in mean test scores across cohorts on changes in mean teacher

value-added:
(17) A145915 =a+ bAngt + Angt

The coefficient in (17) identifies the degree of forecast bias B =1 — X as defined in (10) under the

following identification assumption.

Assumption 3 [Teacher Switching as a Quasi-Experiment] Changes in teacher quality across
cohorts within a school-grade are orthogonal to changes in other determinants of student scores

Ax 4 across cohorts:
(18) Cov (Angta Angt) = 0.

Under Assumption 3, the regression coefficient in (17) measures the degree of forecast bias in VA

3By analyzing student outcomes at the school-grade-subject level, we do not exploit information on classroom
assignment, thus overcoming the non-random assignment of students across classrooms.

30Part of the variation in Afigyy comes from drift. Even for a given teacher, predicted VA will change because our
forecast of VA varies across years. Because the degree of drift is small across a single year, drift accounts for 5.5%
of the variance in Afi,,,. As a result, isolating the variation due purely to teacher switching using an instrumental
variables specification yields very similar results (not reported).

37Formally, not using a two-year leave out would immediately violate Assumption 3 below, because unobserved
determinants of scores €sg¢ Or £44,+—1 would appear directly in AQsgt.
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estimates: b = A =1 — B(ﬁ;{t’tfl}).?’g Intuitively, (17) is a quasi-experimental analog of the
regression in (10) used to define forecast bias in experimental data, differencing and averaging
across cohorts.

Assumption 3 could potentially be violated by endogenous student or teacher sorting. In
practice, student sorting at an annual frequency is minimal because of the costs of changing schools.
During the period we study, most students would have to move to a different neighborhood to switch
schools, which families would be unlikely to do simply because a single teacher leaves or enters a
given grade. While endogenous teacher sorting is plausible over long horizons, the sharp changes
we analyze are likely driven by idiosyncratic shocks such as changes in staffing needs, maternity
leaves, or the relocation of spouses. Hence, we believe that (18) is a plausible assumption at high
frequencies in our data and we present evidence supporting this assumption below.

Note that if observable characteristics X;; are also orthogonal to changes in teacher quality
across cohorts (i.e., satisfy Assumption 3), we can implement (17) simply by regressing the change
in raw test scores AA7, on AQsg. If the quasi-experiment is a good approximation to a true
experiment, one would expect the controls to be balanced across cohorts as well. We therefore
begin by analyzing changes in raw test scores AA7 , across cohorts and then confirm that changes
in control variables across cohorts are uncorrelated with AQg4:.. Because we do not need controls,
in this section we use the core sample described in Section 3.3 rather than the subset of observations
that have lagged scores and the other controls needed to estimate the VA model.

Our research design is related to recent work analyzing the impacts of teacher turnover on
student achievement, but is the first to use turnover to validate VA models directly. Rivkin,
Hanushek, and Kain (2005) identify the variance of teacher effects from differences in variances
of test score gains across schools with low vs. high teacher turnover. We identify the impacts
of teachers from first moments — the relationship between changes in mean scores across cohorts

39 Jackson and Bruegmann (2009)

and mean teacher value-added — rather than second moments.
analyze whether the VA of teachers who enter or exit affects the test scores of other teachers’
students in their school-grade cell, but do not compare changes in mean test scores by cohort to

the predictions of VA models.*°

38 To be precise, 1 — b is the degree of forecast bias in the leave-two-year-out VA estimate B(ﬁ]-_t{t’t_l}).

39Rivkin, Hanushek, and Kain are unable to implement the teacher switcher design we develop here because they
do not have class assignment data and thus cannot estimate each teacher’s individual effect p1;, which is necessary to
construct the school-grade-cohort level mean of teacher quality.

The peer effects documented by Jackson and Bruegmann could in principle affect our validation of VA using
the switcher design. However, peer learning effects are likely to be smaller with teacher exits than entry, provided
that knowledge does not deteriorate very rapidly. We find that teacher entry and exit yield broadly similar results,
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6.2 Event Studies

To illustrate our research design, we begin with event studies of scores around the entry and exit
of high and low VA teachers in Figure 3. Let year 0 denote the school year that a teacher enters
or exits a school-grade-subject cell and define all other school years relative to that year (e.g., if
the teacher enters in 1995, year 1992 is -3 and year 1997 is +2). We define an entry event as
the arrival of a teacher who did not teach in that school-grade-subject cell for the three preceding
years; analogously, we define an exit event as the departure of a teacher who does not return to the
same school-grade-subject cell for at least three years. To obtain a balanced sample, we analyze
events for which we have data on average test scores at the school-grade-subject level for at least
three years before and three years after the event.?!

We define a teacher as “high VA” if her estimated VA in the year of entry is in the top 5% of
the distribution of all entrants in her subject. Analogously, a “low VA” teacher has an estimated
VA in the year of exit in the bottom 5% of the distribution of those who exit in her subject.*?
We estimate VA for each teacher in the year of entry or exit using only data outside the six-year

43 Because VA is measured with error, some teachers who are

window used for the event studies.
classified as “high VA” are those who had very good students by chance. Thus, if one were to
define a “high VA” teacher as one whose students scored highly within the event window, one would
spuriously find a relationship between test scores and the entry of such a teacher even if she had
no causal impact on student performance.

Figure 3a plots the impact of the entry of a high-VA teacher on mean test scores. The solid
series plots school-grade-subject-year means of test scores in the three years before and after a
high-VA teacher enters the school-grade-subject cell. The dashed line in Figure 3a plots test scores
in the previous school year (i.e., the previous grade) for the same cohorts of students. We include

year fixed effects to eliminate any secular trends.* To facilitate interpretation of the scale, we

normalize both current and previous scores to 0 in the first year of the event study. We do not

suggesting that spillovers across teachers are not a first-order source of bias for our technique.

*'Tn school-grade-subject cells with multiple events (e.g. entries in both 1995 and 1999), we include all such events
by stacking the data and using the three years before and after each event.

42Tn cases where multiple teachers enter or exit at the same time, we use the teachers’ mean VA to decide whether
the event falls in the top or bottom 5% of the relevant VA distribution.

13 More precisely, we estimate VA for each teacher in each year excluding a five year window (two years prior, the
current year, and two years post). Coupled with our definitions of entry and exit — which require that the teacher
not be present in the school-grade-subject cell for 3 years before or after the event — this ensures that we do not use
any data from the relevant cell between event years -3 and +2 to compute teacher VA.

44We remove year effects in this and all other event study graphs by regressing mean test scores on year dummies
and plotting the residuals.
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condition on any other covariates in this figure: each point simply shows average test scores for
different cohorts of students within a school-grade-subject cell adjusted for year effects.

When a high-VA teacher arrives, end-of-year test scores in the subject and grade taught by that
teacher rise immediately. But test scores in the prior grade remain stable, as one would expect:
the entry of a high-VA teacher in grade 5 should have no impact on the same cohort’s 4th grade test
scores. The stability of prior test scores supports the identification assumption in (18) that school
quality and student attributes are not changing sharply around the entry of a high-VA teacher.*®

The mean test score in the grade in which the high VA teacher enters rises by 0.042 from year
-1 to 0, while the mean lagged test score changes by 0.008. Hence, the entry of a high VA teacher
increases mean test score gains by 0.035. The null hypothesis that this change is 0 is rejected
with p < 0.001, with standard errors clustered by school-cohort as above. More importantly, the
magnitude of the increase in mean test score gains is very similar to the change in mean teacher
VA in the school-grade-subject cell of 0.042.%6 The hypothesis that the observed impact on mean
score gains equals the increase in mean VA is not rejected (p = 0.34), consistent with the view that
VA measures are forecast unbiased.

The remaining panels of Figure 3 repeat the event study in Panel A for other types of arrivals
and departures. Figure 3b examines current and lagged test scores around the departure of a high-
VA teacher. In this figure, we normalize both current and lagged mean scores to 0 in the final year
of the event study to facilitate interpretation. There is a smooth negative trend in both current
and lagged scores, suggesting that high-VA teachers leave schools with declining scores. However,
scores in the grade taught by the teacher drop sharply relative to prior scores in the event year,
showing that the departure of the high value-added teacher lowers the achievement of subsequent
cohorts of students. Figures 3c and 3d analyze the arrival and departure of low VA teachers. Test
scores in the grade taught by the teacher fall sharply relative to prior scores when low VA teachers
enter a school-grade cell and rise sharply when low VA teachers leave.

In every case, the change in test score gains is significantly different from 0 with p < 0.01 but
is not significantly different from what one would forecast based on the change in mean teacher
VA. Together, these event studies provide direct evidence that deselecting low VA teachers and

retaining high-VA teachers improves the academic achievement of students.

45We also find that class size does not change significantly around the entry and exit events we study.

40When computing this change in mean VA, we weight teachers by the number of students they teach. For teachers
who do not have any VA measures from classrooms outside the leave-out window, we impute VA as 0 (the sample
mean). We discuss the robustness of our results to imputation below.
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6.3 Estimates of Forecast Bias

The event studies focus on the tails of the teacher VA distribution and thus exploit only a small
fraction of the variation arising from teacher turnover in the data. We now exploit all the variation
in teacher quality across cohorts due to teaching staff changes to obtain a broader and more precise
estimate of forecast bias. To do so, we first estimate VA for each teacher using data excluding a
given pair of adjacent years, ¢ —1 and t. We then calculate the change in mean teacher VA for each
school-grade-subject-year cell and define AQ,y: as mean teacher VA in year ¢ minus mean teacher
VA in year t — 1, as described in Section 6.1.

Figure 4a plots the changes in mean raw test scores across cohorts AA7 , against changes in
mean teacher value-added AQg4, weighting by the number of students in each cell. As in the
event studies, we include year fixed effects so that the estimate is identified purely from differential
changes in teacher value-added across school-grade-subject cells over time. For comparability with
the estimates in Table 2, we restrict the sample to the subsample of classrooms with non-missing
teacher value-added estimates. Changes in the quality of the teaching staff strongly predict changes
in test scores across consecutive cohorts of students in a school-grade-subject cell. The estimated
coefficient on AQgq is 0.974, with a standard error of 0.033 (Table 4, Column 1). The implied
forecast bias of 2.6% is our preferred estimate of forecast bias. This estimate is not statistically
distinguishable from 0 — i.e., we cannot reject forecast unbiasedness of VA measures — and the
upper bound of the 95% confidence interval for forecast bias is 9.1%.

The conclusion that VA measures exhibit little forecast bias rests on the validity of the identifi-
cation assumption underlying our quasi-experimental design in (18). One natural concern is that
improvements in teacher quality may be correlated with other improvements in a school — such as
better resources in other dimensions — that also contribute to test score gains and thus lead us to
underestimate forecast bias. To address this concern, Column 2 of Table 4 replicates the baseline
specification in Column 1 including school by year fixed effects instead of just year effects. In
this specification, the only source of identifying variation comes from differential changes in teacher
quality across subjects and grades within a school in a given year. The coefficient on AQq
remains virtually unchanged relative to the baseline estimate that pools all sources of variation.
Column 3 further accounts for secular trends in subject- or grade-specific quality by controlling for
the change in mean teacher VA in the prior and subsequent year as well as cubics in the change

in prior-year mean own-subject and other-subject scores across cohorts. Including these variables
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has little impact on the coefficient. This result shows that sharp annual changes in teacher quality
relative to trend in specific grades and subjects lead to nearly 1-for-1 changes in test score gains,
consistent with the event studies in Figure 3.

We further evaluate (18) using a series of placebo tests. Column 4 of Table 4 replicates the
specification in Column 2, replacing the change in actual scores with the change in predicted scores
based on parent characteristics. The predicted score is based on an OLS regression of A}, on the
five parent characteristics P;; used in Section 5, with no other control variables. The estimated
effected predicted test scores is not significantly different from 0, and the upper bound on the
95% confidence interval is 0.013. Figure 4b presents a binned scatter plot corresponding to this
regression. There is little relationship between changes in mean teacher VA and mean predicted
scores throughout the distribution. These results support the assumption that changes in the
quality of the teaching staff are unrelated to changes in student quality at an annual level.

Next, we use contemporaneous test scores in the other subject (math or English) to evaluate
changes in student quality. In this placebo test, it is important to distinguish between elementary
and middle schools. In middle school, students have different teachers for math and English.
Therefore, if (18) holds, we would expect changes in mean math teacher VA to have little impact
on English test scores, holding fixed the quality of English teachers.*” We test this hypothesis
in Column 5 of Table 4 by regressing changes in mean scores on A4 in both the same subject
and the other subject. The estimated effect on test scores in the other subject is 0.038 and is not
statistically distinguishable from 0 (p = 0.64).

Figure ba presents a non-parametric analog of this regression by plotting changes in mean test
scores across cohorts vs. changes in mean teacher VA in the other subject. To partial out the
effect of changes in mean teacher VA in the same subject in this figure, we regress both the x and
y variables on changes in mean teacher VA in the own subject and compute residuals. We then
bin the x-axis residuals into 20 equal sized groups (vingtiles) and plot the mean of the y residuals
within each bin. Consistent with the regression estimate, there is no relationship between changes
in teacher VA and scores in the other subject throughout the distribution. We view this result as
strong evidence supporting (18), as it is unlikely that changes in student-level unobservables €4
would have no impact on scores in the other subject.

In elementary school, students have one teacher for both math and English. Because elementary

4TIf math teacher quality directly affects English scores (or vice versa), one will obtain a positive coefficient in this
regression even if (18) holds. Hence, this test is a sufficient but not necessary condition for (18).
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school teachers’ math and English VA are highly correlated (r = 0.6) and because VA is measured
with error, changes in teacher VA in one subject have signal content for teaching quality in the
other subject. Therefore, in elementary school, we should expect mean teacher VA to have non-
zero effects on scores in the other subject. Figure 5b replicates Figure 5a for elementary school
and shows that this is indeed the case. A 1 unit improvement in mean teacher VA raises scores in
the other subject by 0.237 (Column 6 of Table 4). As one would expect, the coefficient on VA in
the other subject is much smaller than 1.

Together, these tests imply that any violation of (18) would have to be driven by selection on
unobserved determinants of test scores that (1) are uncorrelated with parent characteristics, (2)
are unrelated to prior test scores and test scores in the other subject for the affected students, and
(3) occur differentially across grades within a school at an annual frequency. We believe that such
selection is implausible given the information available to teachers and students and the constraints

they face in sorting across schools at high frequencies.

6.4 Additional Robustness Checks

In Table 5, we further assess the robustness of our quasi-experimental estimates to alternative spec-
ifications and sample selection criteria. Our preceding specifications pool all sources of variation in
teacher quality — including switches across grades, between schools, and out of the district. While
all of these sources of variation are plausibly orthogonal to changes in student quality at an annual
frequency, one may argue that the decision to leave a school entirely is least likely to be correlated
with annual fluctuations in student quality within a school. In Column 1 of Table 5, we isolate the
variation in teacher quality due to switches out of a school. We instrument for the change in mean
teacher value added AQ) 44+ with the fraction of students in the prior cohort taught by teachers who
leave the school, multiplied by the mean VA among school-leavers (with the instrument defined

as 0 for cells with no school-leavers).*®

We include year fixed effects in this specification, as in
Column 1 of Table 4. This specification yields a coefficient on AQs4; of 1.045, very similar to our
baseline estimate of 0.974.

The preceding estimates all use the subsample of students for whom we have estimates of teacher

VA. While this corresponds directly to the sample used to estimate VA, restricting the sample to

classrooms with non-missing VA estimates could lead to violations of the identification assumption

4 For example, suppose the previous cohort had four equally sized classrooms, one taught by a school-leaver with
ﬁj_t{t’t_l} = 0.2. The value of our instrument would be 0.25%0.2 = 0.05. This is the expected loss in mean VA across
cohorts due to school-leavers. The first stage coefficient on this variable is -0.97 (t-statistic = —53).
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in (18) because we do not use the entire school-grade-subject cohort for identification.*’ To evaluate
the importance of bias due to missing data within cohorts, we replicate the baseline specification
(Column 1 of Table 4) using all students in our dataset in Column 2 of Table 5. We impute teacher
VA as the sample mean (0) for the 16% of observations for whom we have no leave-two-year-out
VA estimate, either because we have no teacher information or because the teacher taught for only
those two years in the district. The coefficient on AQgy with this imputation procedure in the
full sample is 0.877, which is lower than our baseline estimate of 0.974. This is to be expected
because the imputation of teacher VA generates measurement error in average teaching quality,
leading to attenuation bias. For example, if a highly effective teacher enters the district for only
a single year, so that we are not able to calculate VA from other years of data, our imputation
procedure will treat this teacher as being average, leading to measurement error in mean VA in the
school-grade-subject cell.

To assess whether measurement error due to imputation is responsible for the smaller coefficient,
we restrict the sample to school-grade-subject-year cells in which the fraction of observations with
imputed teacher VA estimates is less than 25% in both the current and preceding year. Unlike
the sample restrictions imposed in Table 4, restrictions at the school-grade-subject level cannot
generate violations of (18) due to selection bias because we exclude entire cohorts rather than
individual classrooms. In this subsample, the fraction of observations with non-missing teacher
VA information is 94%. Accordingly, the coefficient on AQ,q rises to 0.952, as shown in Column
3 of Table 5. In Column 4, we further restrict the sample to school-grade-subject-year cells with
no missing teacher VA observations in the current and preceding year. In this sample, we obtain
an estimate on AQsq of 0.990, implying forecast bias of 1.0%. We conclude based on these

quasi-experimental results that there is little or no forecast bias in our baseline VA estimates.

7 Comparing Bias Across VA Models

Our preceding analysis evaluates bias in a value-added specification that includes a very rich set
of school district controls. Which of these controls are most important in obtaining unbiased
estimates of VA? This section explores this question and explains how our findings reconcile the

debate in prior work about bias in VA models.

¥To take an extreme example, suppose teacher information is reported for only one of 5 classrooms in a given
school-grade-subject cell. In this case, comparisons of mean scores across students in two cohorts with non-missing
teacher information is equivalent to comparing mean scores across a single classroom in two different years. This
could violate the identifying assumption of our quasi-experimental design if assignment to classrooms is non-random.
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Table 6 reports estimates of bias for various VA models. Each row considers a different VA
specification. Column 1 reports correlations between the VA estimates obtained from each model
and the baseline estimates. Column 2 reports estimates of forecast bias using our preferred quasi-
experimental specification (Column 1 of Table 4), using all students for whom we have teacher VA
estimates.

The first row of the table replicates our baseline VA model above as a reference. For com-
parability, we estimate all the remaining models on the same sample of observations used in this
row.

In row 2, we follow the traditional approach used in prior work of constructing student test-score
residuals by regressing raw scores A, on controls X;; in a specification without teacher fixed-effects,
unlike in (5). As discussed in Section 6.4, this method exploits variation both within and across
teachers to identify the coefficients on the control vector and thus can understate teacher effects by
over-attributing test score growth to covariates if there is sorting. In practice, this turns out to be
a minor concern: VA estimates constructed from test score residuals that are identified using the
traditional approach have a correlation of 0.979 with our baseline VA estimates. Correspondingly,
they exhibit forecast bias of 2.2%, very similar to our baseline model. This is because sorting is
relatively minimal in practice and most of the variation in the controls Xj; is within rather than
between teachers.

As noted above, the testing regimes vary across our 20 year sample. City-level tests were given in
April or May while state-level tests were generally administered earlier, sometimes in February. We
evaluate whether this variation in testing regimes affects VA estimates by interacting the cubics
in student-level prior test scores with indicators for having the prior-year test administered in
February. We find that permitting different coefficients on the February state-level tests has little
impact: the correlation with the baseline VA estimates is 0.998 and forecast bias remains low at
2.6%, as shown in row 3.

The remaining rows of the table strip out elements of the baseline control vector to determine
which controls matter most for forecast bias. In row 4, we include only the controls that are
based on prior-year test scores: cubic polynomials in student, classroom, and school-grade math
and English scores interacted with grade level. These VA estimates remain highly correlated with
the baseline estimates and continue to exhibit relatively small and statistically insignificant forecast
bias of 3.8%.

In row 5, we further reduce the controls to include only the student-level prior math and
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English test scores. Forecast bias is 4.8%, somewhat higher than with our much richer baseline
control vector. Nevertheless, even with this very parsimonious control vector, we do not reject
the hypothesis that the VA estimates are forecast unbiased. In row 6, we control only for prior
test scores in the same subject using a cubic polynomial. Forecast bias rises to 10.2% in this
specification, showing that prior test scores in the other subject are useful in accounting for sorting.

In row 7, we control for all variables in the baseline model ezcept those based on prior test
scores. Here, the degree of forecast bias jumps sharply to 45.4%. Finally, row 8 estimates VA
without any controls at all, i.e., using raw mean test scores by teacher. These VA estimates are
very poorly correlated with the other VA measures and are biased by nearly 66%.

The main lesson of this analysis is that controlling for prior student-level test scores is the key
to obtaining VA estimates that provide unbiased forecasts of teachers’ causal impacts. Additional
controls further reduce bias, but the vast majority of sorting is accounted for by lagged student-level
test scores. One intuitive explanation for this finding is that classroom assignments in this large
school district are made primarily on the basis of prior-year scores. The remaining unobserved
factors used to sort students to teachers have little predictive power for future achievement con-
ditional on lagged scores. Of course, all of these conclusions depend upon the class and teacher
assignment rules a school district uses. Replicating Table 6 using data from other school districts
would be very valuable to understand the generality of these results.

Relationship to Prior Work. Our finding that VA measures that control for lagged scores exhibit
little forecast bias helps reconcile the conflicting results of prior work, including Kane and Staiger
(2008), Rothstein (2009, 2010), Koedel and Betts (2011), Kinsler (2012), Goldhaber and Chaplin
(2012), and Kane et al. (2013). Rothstein (2010) reports two important results, both of which
we replicate in our data. First, there is significant grouping of students into classrooms based on
twice-lagged scores (lagged gains), even conditional on once-lagged scores (Rothstein 2010, Table
4). Second, this grouping on lagged gains generates minimal bias in VA estimates: controlling
for twice-lagged scores does not have a significant effect on VA estimates (Rothstein 2010, Table
6; Kane and Staiger 2008, Table 6).°° The results of our tests in Table 3 are consistent with

Rothstein’s conclusions. Therefore, the literature is in agreement that VA measures do not suffer

50 An interesting question is how Rothstein’s two findings are consistent with each other. There are two explanations
for this pattern. First, the degree of grouping that Rothstein finds on A;g4,.—2 has small effects on residual test score
gains because the correlation between A;g:—2 and A;g: conditional on A;g:—1 is relatively small. Second, if the
component of Ay ¢—2 on which there is grouping is not the same as the component that is correlated with A; ., VA
estimates may be completely unaffected by grouping on A;:—2. For both reasons, one cannot infer from grouping
on A;:—2 that VA estimates are significantly biased by selection on A;:—2. See Goldhaber and Chaplin (2012) for
further discussion of these and related issues.
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from substantial bias due to selection on lagged score gains.
Rothstein quite appropriately emphasizes that his findings raise serious concerns about the

°l Kane and Staiger’s

potential for bias due to selection on unobservable student characteristics.
(2008) and Kane et al.’s (2013) point estimates from randomized experiments suggest that selection
on unobservables is relatively small. Our quasi-experimental tests based on teaching staff changes
confirm that the bias due to selection on unobservables turns out to be negligible with greater
precision in a more representative sample. In future work, it may be useful to explore why the
grouping on lagged gains documented by Rothstein is not associated with significant selection on
unobservables in practice. However, the findings in this paper and prior work are sufficient to

conclude that standard estimates of teacher VA can provide accurate forecasts of teachers’ average

impacts on students’ test scores.

8 Differences in Teacher Quality Across Schools and Students

Having developed what appears to be an unbiased measure of teacher quality, it is interesting to
understand how teacher quality varies across environments. Are high VA teachers systematically
assigned to certain schools or types of students? Do differences in teacher quality contribute to
gaps in achievement across schools and students from different backgrounds?

We are able to answer these questions in this paper because our method of constructing student
test score residuals in (5) only exploits within-teacher variation. Prior studies that estimate VA
typically construct test score residuals using both between- and within-teacher variation and thus
do not necessarily obtain a global ranking. For example, suppose schools with higher SES students
have better teachers. By residualizing test scores with respect to student SES before computing
teacher VA, one would attribute the differences in outcomes across these schools to differences
in student SES rather than teacher quality. As a result, one only obtains a relative ranking
of teachers conditional on student SES and cannot compare teacher quality across students with
different characteristics. Using within-teacher variation to estimate the coefficients on the control
vector X;; resolves this problem and yields a global ranking of teachers across the school district.

Differences in Teacher Quality Across Schools. We begin by calculating how much of the
variation across schools in test scores in grade 8, the final grade in our data, can be attributed

to differences in teacher quality up to that point. The standard deviation of mean test scores

51To be clear, this was the original lesson from Rothstein (2010). In personal correspondence, Rothstein notes
that his findings are “neither necessary nor sufficient for there to be bias in a VA estimate” and that “if the selection
is just on observables, the bias is too small to matter. The worrying scenario is selection on unobservables.”
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across schools in 8th grade (pooling math and English) is 0.417 in the sample used to estimate the
baseline VA model. To calculate what this standard deviation would be if teacher quality were
equated across all schools, we must take a stance on how teachers’ impacts cumulate over time.
In our companion paper, we estimate that 1 unit improvement in teacher VA in a given grade
raises achievement by approximately 0.53 units after 1 year, 0.36 after 2 years, and stabilizes at
approximately 0.25 after 3 years. Under the assumption that teacher effects are additive across
years, these estimates of fade-out imply that a 1 unit improvement in teacher quality in all grades
K-8 would raise 8th grade test scores by 3.4 units. Let AZ 4—s denote student ¢’s observed score in
grade 8 and Ag, g—s What his score would have been if he had teachers of average quality (10 = 0)
from grades K-8. We estimate A; g=s = Al ;g — 3.4 x V A;, where V A; denotes the mean VA of
teachers that student ¢ had over the sample.’? The resulting standard deviation of mean adjusted
scores A’i,g:g across schools is 0.387.°2  Hence, differences in teacher quality account for only

— % = 7% of the test score differences in 8th grade scores between schools. This finding is
consistent with the results of Mansfield (2012), who concludes that teacher quality explains a small
share of differences in student outcomes across schools by estimating the structural primitives of
an education production function.

The fact that teacher quality explains a small share of the variation in achievement across
schools does not imply that improving teacher quality in low-performing schools would have little
impact on achievement gaps. The key point is not that teachers do not matter but rather that the
quality of teachers is similar across schools in the current environment. The standard deviation
of teacher effects within schools is 0.085, compared with 0.034 between schools. This implies that
between-school differences account for less than 15% of the total variance in teacher quality.

If one were to systematically attract high VA teachers to low performing schools, one could
close a substantial portion of the achievement gap. As an illustration, suppose that we reassigned
existing teachers across schools such that the best teachers went to the school with the lowest

average student scores, the next-best teachers went to the next-worst schools, and so on. Formally,

a school with mean scores at the pth percentile would receive teachers from the 1 — pth percentile.’*

52We cannot simply use mean teacher VA in student #’s school for this calculation because students attend different
elementary and middle schools.

3 This calculation should be viewed as a rough approximation for two reasons. First, we can only measure teacher
quality in grades 4-8, and so we assume that each student’s average teacher quality in these 5 grades is the same as
his average teacher quality in grades K-3. Second, because we are missing teacher quality in some grades for many
students, we multiply V A; by 3.4 rather than accounting for the impact of actual VA in each grade separately.

4Schools differ in size, making this reallocation slightly more complicated in practice. If the school with the lowest
average scores had C classrooms, one would allocate the best C; teachers to that school. The school with the next
lowest average scores (with Cs classrooms) would receive the next best Cs teachers, and so on.
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Pooling across the four subject-by-school-year cells, the mean SD of the VA estimates i;, shown in
Appendix Figure 1 is 0.083. Hence, the reassignment of the teachers with the highest VA estimates
to the lowest-performing schools would reduce the across-school standard deviation of 8th grade
test scores by 3.4 x 0.083/0.387 = 73% relative to the case with no differences in teacher quality
across schools.

Differences in Teacher Quality by Student Characteristics. Next, we assess sorting of students
to teachers based on observable characteristics. Table 7 reports estimates from OLS regressions of
our baseline VA estimates 1i;, on various observables, with standard errors clustered at the teacher
level to account for correlated errors in the assignment process of classrooms to teachers.

We begin in Column 1 by regressing ﬁjt on lagged test scores Azt_l. Better students are
assigned slightly better teachers: students who score 1 unit higher in the previous grade get a
teacher whose VA is 0.0078 better on average. Such sorting could occur either because of the
assignment mechanism that principals use or because high quality teachers tend to sort towards
better performing students (Hanushek et al. 2004, Jackson 2009). Whatever the mechanism,
the tracking of better students to better teachers magnifies gaps in achievement, although the
magnitude of this amplification effect is small relative to other determinants of the variance in
student achievement.

Column 2 shows that special education students are assigned teachers with 0.002 lower VA on
average. Again, this effect is statistically different from zero, but is quantitatively small. Relative
to other students with similar prior test scores, special education students receive slightly higher
VA teachers (not reported).

In Column 3, we regress Ji;, on parent income. A $10,000 (0.3 SD) increase in parent income
raises teacher VA by 0.00054, with the null hypothesis of 0 correlation rejected with p < 0.0001.
Consistent with the preceding findings, this correlation explains a small share of the gap in achieve-

ment by family income. In our data, a $10,000 increase in parental income is associated with

3.4x0.00054

0.065 = 3% of the income-score

a 0.065 SD increase in 8th grade test scores. Hence, only
gradient can be attributed to differences in teacher quality from grades K-8. Once again, however,
a sequence of good teachers can close a significant portion of the achievement gap. If teacher
quality for low income students were improved by 0.1 units in all grades from K-8, 8th grade scores
would rise by 0.34, enough to offset more than a $50,000 difference in family income.

Column 3 shows that there is an unconditional correlation between teacher VA and parent

income. Column 4 demonstrates that controlling for a student’s lagged test score entirely eliminates
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the correlation between teacher VA and parent income. The fact that the relationship between
parent income and teacher VA runs through lagged test scores explains why we found that VA
estimates are unbiased even though better teachers get higher income students.

Column 5 analyzes the correlation between teacher VA and ethnicity. Mean teacher quality is
no different on average across minority (Hispanic or Black) vs. non-minority students. However,
71.6% of students are minorities in the district we study. It is possible that in populations with
lower minority share one would find greater sorting on this dimension.

Finally, Columns 6 and 7 analyze the relationship between teacher value-added and school-level
demographics. One might expect that sorting across schools based on parental income or ethnicity
is stronger than within-schools. In practice, however, the relationship between mean parent income
in a school and teacher quality remains quite small (Column 6) and there is no relationship between
fraction minority and school quality.

In sum, we find that higher SES and better-performing students are typically tracked to slightly
better teachers, but the degree of sorting explains a small share of the achievement gaps documented
in prior work. Together with other evidence on achievement gaps at very young ages (Fryer and
Levitt 2004, Heckman 2006), these findings support the view that existing achievement gaps are
largely driven by factors other than teacher quality. Nevertheless, a sequence of good teachers can

significantly raise test scores and thus primary school is not too late to close achievement gaps.

9 Conclusion

The main lesson of this study is that value-added models that control for a student’s prior-year test
scores provide accurate forecasts of teachers’ mean impacts on student achievement. This result
shows that existing test score data can help identify teachers who substantially improve student
achievement. Teachers’ impacts are substantial and improving teacher quality could raise the
performance of low-scoring students significantly. However, differences in teacher quality are not
the primary reason that high SES students currently do much better than their low SES peers,
because most of the variation in teacher value-added is within schools and is unrelated to student
demographics.

From a methodological perspective, our analysis demonstrates that teacher turnover provides a
source of quasi-experimental variation that can be used to validate metrics for teacher performance
and personnel evaluation. Any school district can easily apply the techniques here to evaluate its

own VA models. In future work, it would be valuable to develop richer measures of teacher quality
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that go beyond mean test score impacts. For example, it would be useful to develop VA measures
at various percentiles of the test score distribution and for specific demographic subgroups. Are
some teachers better with certain subgroups — e.g., boys vs. girls, high achievers vs. low achievers,
or students learning English as a second language? One can also use teacher turnover to validate
other measures of teacher quality, such as principal evaluations or ex-ante credentials. When a
teacher with good evaluations switches into a school, do outcomes improve? More broadly, the
tools developed here could be applied to assess the accuracy of personnel evaluation metrics in a
variety of professions beyond teaching.

In this paper, we established that value-added measures can successfully identify which teachers
have the greatest ability to raise students’ test scores. One cannot conclude from this result that
teacher VA is a good measure of teacher “quality,” however, as test scores are not the ultimate
outcome of interest. Do high VA teachers also improve students’ long-term outcomes, or are they

simply better at teaching to the test? We turn to this question in the next paper in this volume.
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Online Appendix A: Value-Added Estimation Methods

In this appendix, we provide a step-by-step guide to implementing our method of estimating
VA in the presence of drift. In practice, we cannot follow exactly the method described in Section
2.2 because data availability varies across teachers. For instance, there are different numbers of
students per class and teachers have a different number of past and future classes from which to
construct value-added in any given year. We calculate value-added in three steps, separately for
each subject (math and English) and school level (elementary and middle).

Step 1 [Residualization of Test Scores]: We begin by residualizing student scores A7, with respect
to controls X;; by running an OLS regression with teacher fixed effects of the form

AZ} = Odj + ﬁXth

and constructing residuals
Ay = Ajy — BXir

Step 2 [Estimation of Variance Components|: Next, we estimate the individual-level variance
of residual test scores, 02 = Var(ey), as

N-1
&EZMSE*<NKC+1>

where M SE is the variance of the within-classroom deviations of A;;, IV is the total number of
students, C' is the total number of classrooms, and K is the number of control variables in the X;;
control vector. The scaling term is required to correct the degrees of freedom for the fact that we
have already estimated K parameters to form the residual A;. We also estimate Var(A;), the
total variance of A;;, again accounting for the prior estimation of B when calculating the degrees
of freedom correction.

At this point, we collapse the data to the classroom-level by constructing the average residualized
score A for each classroom ¢ and proceed to use class-level means for the remaining steps. In
middle school, teachers teach more than one class per year. We handle such cases by collapsing the
data to the teacher-year level. We do so by constructing precision-weighted averages of classroom-
average scores within a teacher-year. The weight for classroom c in year ¢ is

1
hct =

2
034— <

1%
Tt

where &g is an estimate of the class-level variance component and n. denotes the number of
students in the classroom. We construct this estimate as c}g = Var(Ay) — (}g — 0 A0, Where 6 49
is our estimate of the within-teacher-year between-class covariance in average scores, reflecting the
teacher-level component of the variance. To simplify computation, we follow Kane and Staiger
(2008) and randomly sort classrooms within each teacher-year cell; we then estimate the covariance
640 based on the covariance of the test scores of adjacent classrooms in each teacher-year cell,
weighting each pair of classrooms by the sum of students taught.

We next estimate the covariances between mean scores across years within teacher, denoted
0 As, in both elementary and middle schools. We allow a separate covariance for each possible time
lag s € {1,2,...} denoting the separation between the two years in which the classes were taught.
We weight each teacher-year pair by the sum of students taught. We set all covariances for lags
greater than 7 equal to the estimated covariance for the 7th lag.
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Step 3: [Construction of VA Estimates| In this step, we use the parameter estimates to construct
a VA estimate for each teacher j in each year ¢ that she appears in the data. Denote by A j ~! the
vector of all teacher-year-mean scores used in a given value-added prediction. Let Nj; denote the
length of this vector, so that we are using N;; other years to project scores in year t. We construct
the best linear predictor of teacher quality in year ¢ as

I —

ﬁjt = (2;1;%1) Aj_t

N
where vt 18 a Nj¢ x 1 vector and EA is a Nj; X Nj; matrix. We denote the weights on scores Aj_t
by ¢, = EA .Vjt- 1f the mth and nth element of the scores vector A are Ajs and Ajy, the mth

element of tﬁe diagonal of X4, in middle school is

1
2 cefeij(cy=i} fres’

[ZAjt]mm = OA-AO +

where the denominator of the second term is the sum of precisions for the classes taught by a
teacher in year s, which is the precision of the teacher-year mean in year s. In elementary
school, where teachers teach one class per year, we cannot estimate 649 but we can estimate

640+ 65 = Var(Ay) — 62 Here, the mth element of the diagonal of Ya,, is

[EAjt]m (O'AU + 0'9) + nf
In both elementary and middle school, the mnth off-diagonal element of ¥4, is

[ZAjt] mn = &A7‘S—Sl|

and the mth element of v, is
[’th] m = a-A’|t_'9| :

Because the distribution of other years in which data are available varies both across teachers j
and across the years ¢ within a teacher, both the matrix ¥4, and the vector v;; will vary across j
and t. We therefore construct these elements separately for each teacher-year in the data. Note
that we can use this algorithm even if data on test scores for teacher j’s students are missing in
year t, since those data are not required to estimate ﬁjt.

Online Appendix B: Matching Algorithm

We follow the matching algorithm developed in Chetty et al. (2011) to link the school district
data to tax records. The algorithm was designed to match as many records as possible using
variables that are not contingent on ex post outcomes. Date of birth, gender, and last name
in the tax data are populated by the Social Security Administration using information that is
not contingent on ex post outcomes. First name and ZIP code in tax data are contingent on
observing some ex post outcome. First name data derive from information returns, which are
typically generated after an adult outcome like employment (W-2 forms), college attendance (1098-
T forms), or mortgage interest payment (1098 forms). The ZIP code on the claiming parent’s
1040 return is typically from 1996 and is thus contingent on the ex post outcome of the student
not having moved far from her elementary school for most students in our analysis sample.

Chetty et al. (2011) show that the match algorithm outlined below yields accurate matches

46



for approximately 99% of cases in a school district sample that can be matched on social security
number. Note that identifiers were used solely for the matching procedure. After the match was
completed, the data were de-identified (i.e., individual identifiers such as names were stripped) and
the statistical analysis was conducted using the de-identified dataset.

Step 1 [Date of Birth, Gender, Last Name]: We begin by matching each individual from the
school-district data to Social Security Administration (SSA) records. We match individuals based
on exact date of birth, gender, and the first four characters of last name. We only attempt to
match individuals for which the school records include a valid date of birth, gender, and at least one
valid last name. SSA records all last names ever associated in their records with a given individual;
in addition, there are as many as three last names for each individual from the school files. We
keep a potential match if any of these three last names match any of the last names present in the
SSA file.

Step 2 [Rule Out on First Name]: We next check the first name (or names) of individuals from
the school records against information from W2 and other information forms present in the tax
records. Since these files reflect economic activity usually after the completion of school, we use
this information in Step 2 only to “rule out” possible matches in order to minimize selection bias.
In particular, we disqualify potential matches if none of the first names on the information returns
match any of the first names in the school data. As before, we use only the first four characters of
a first name. For many potential matches, we find no first name information in the tax information
records; at this step we retain these potential matches. After removing potential matches that are
mismatched on first name, we isolate students for whom only one potential match remains in the
tax records. We declare such cases a match and remove them from the match pool. We classify
the match quality (MQ) of matches identified at this stage as MQ = 1.

Step 3 [Dependent ZIP code]: For each potential match that remains, we find the household
that claimed the individual as a dependent (if the individual was claimed at all) in each year. We
then match the location of the claiming household, identified by the 5-digit ZIP code, to the home
address ZIP code recorded in the school files. We classify potential matches based on the best ZIP
code match across all years using the following tiers: exact match, match within 10 (e.g., 02139
and 02146 would qualify as a match), match within 100, and non-match. We retain potential
matches only in the highest available tier of ZIP code match quality. For example, suppose there
are b potential matches for a given individual, and that there are no exact matches on ZIP code,
two matches within 10, two matches within 100, and one non-match. We would retain only the
two that matched within 10. After this procedure, we isolate students for whom only one potential
match remains in the tax records. We declare such cases a match and remove them from the match
pool. We classify the match quality of matches identified at this stage as M Q = 2.

Step 4 [Place of Birth|: For each potential match that remains, we match the state of birth
from the school records with the state of birth as identified in SSA records. We classify potential
matches into three groups: state of birth matches, state of birth does not match but the SSA state
is the state where the school district is, and mismatches. Note that we include the second category
primarily to account for the immigrants in the school data for whom the recorded place of birth is
outside the country. For such children, the SSA state-of-birth corresponds to the state in which
they received the social security number, which is often the first state in which they lived after
coming to the country. We retain potential matches only in the best available tier of place-of-birth
match quality. We then isolate students for whom only one potential match remains in the tax
records. We declare such cases a match and remove them from the match pool. We classify the
match quality of matches identified at this stage as M Q) = 3.

Step 5 [Rule In on First Name]: After exhausting other available information, we return to
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the first name. In step 2 we retained potential matches that either matched on first name or for
which there was no first name available. In this step, we retain only potential matches that match
on first name, if such a potential match exists for a given student. We also use information on
first name present on 1040 forms filed by potential matches as adults to identify matches at this
stage. We then isolate students for whom only one potential match remains in the tax records.
We declare such cases a match and remove them from the match pool. We classify the match
quality of matches identified at this stage as M Q) = 4.

Step 6 [Fuzzy Date-of Birth]: In previous work (Chetty et al. 2011), we found that 2-3% of
individuals had a reported date of birth that was incorrect. In some cases the date was incorrect
only by a few days; in others the month or year was off by one, or the transcriber transposed the
month and day. To account for this possibility, we take all individuals for whom no eligible matches
remained after step 2. Note that if any potential matches remained after step 2, then we would
either settle on a unique best match in the steps that follow or find multiple potential matches even
after step 5. We then repeat step 1, matching on gender, first four letters of last name, and fuzzy
date-of-birth. We define a fuzzy DOB match as one where the absolute value of the difference
between the DOB reported in the SSA and school data was in the set {1,2,3,4,5,9,10, 18,27} in
days, the set {1,2} in months, or the set {1} in years. We then repeat steps 2 through 5 exactly as
above to find additional matches. We classify matches found using this fuzzy-DOB algorithm as
M@ = 5.X, where X is the corresponding M@ from the non-fuzzy DOB algorithm. For instance,
if we find a unique fuzzy-DOB match in step 3 using dependent ZIP codes, then M @Q = 5.2.

The following table shows the distribution of match qualities for all students. We match 88.6%
of students and and 89.8% of student-subject observations in the analysis sample used to calculate
VA. Unmatched students are split roughly evenly among those for whom we found multiple matches
and those for whom we found no match.

Match Quality (MQ) | Frequency | Percent | Cumulative Match Rate

1 650002 | 47.55% 47.55%

2 511363 | 37.41% 84.95%

3 24296 1.78% 86.73%

4 10502 | 0.77% 87.50%

5.1 14626 1.07% 88.57%

5.2 779 | 0.06% 88.63%

5.3 96 | 0.01% 88.63%

5.4 31 0.01% 88.64%
Multiple Matches 75010 |  5.49%
No Matches 80346 | 5.88%

Total 1367051 88.64%
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TABLE 1
Summary Statistics for Sample Used to Estimate Value-Added Model

Variable Mean Std. Dev. Observations
(€] 2 3)
Student Data:

Class size (not student-weighted) 27.3 5.6 391,487

Number of subject-school years per student 5.6 3.0 1,367,051
Test score (SD) 0.2 0.9 7,639,288
Female 50.8% 7,639,288
Age (years) 11.4 15 7,639,288
Free lunch eligible (1999-2009) 79.6% 5,021,163
Minority (black or hispanic) 71.6% 7,639,288
English language learner 4.8% 7,639,288
Special education 1.9% 7,639,288
Repeating grade 1.7% 7,639,288
Matched to parents in tax data 87.7% 7,639,288

Parent Characteristics:

Household income 40,773 34,270 6,695,982
Owned a house 32.9% 6,695,982
Contributed to a 401k 30.9% 6,695,982
Married 42.7% 6,695,982
Age at child birth 29.2 8.0 6,617,975
Predicted score 0.17 0.26 7,639,288

Notes: All statistics reported are for the sample used in estimating the baseline value-added model, as described in
Section 3.3. This sample includes only students who have non-missing lagged test scores and other requisite
controls to estimate the VA model. Student data are from the administrative records of a large urban school district in
the U.S. Parent characteristics are measured between 2005-2007 from federal income tax data. All monetary values
are expressed in real 2010 dollars. All ages refer to the age of an individual as of December 31 within a given year.
Test score is based on standardized scale scores, as described in Section 3.1. Free lunch is an indicator for
receiving free or reduced-price lunches. We link students to their parents by finding the earliest 1040 form from 1996-
2011 on which the student is claimed as a dependent. Conditional on being matched to the tax data, we are unable
to link 2.4% of students to their parents; the summary statistics for parents exclude these observations. Parent
income is average adjusted gross income during the tax-years 2005-2007. For parents who do not file, household
income is defined as zero. Home ownership is defined as reporting mortgage interest payments on a 1040 or 1099
form in any year between 2005-2007. Contributed to a 401(k) is an indicator for ever contributing to a 401(k) between
2005-2007. Marital status is measured by whether the claiming parent files a joint return at any point between 2005-
2007. Parent age at child birth is the difference between the age of the mother (or father if single father) and the
student. Predicted score is predicted from a regression of scores on parent characteristics using the estimating
equation in Section 5.



TABLE 2
Teacher Value-Added Model Parameter Estimates

Samole: Elem. School Elem. School Middle School Middle School
ple: English Math English Math
1) 2 3) 4
Panel A: Autocovariance and Autocorrelation Vectors
Lag 1 0.013 0.022 0.005 0.013
(0.0003) (0.0003) (0.0002) (0.0002)
[0.305] [0.434] [0.234] [0.476]
Lag 2 0.011 0.019 0.004 0.011
(0.0003) (0.0003) (0.0002) (0.0003)
[0.267] [0.382] [0.186] [0.396]
Lag 3 0.009 0.017 0.003 0.009
(0.0003) (0.0004) (0.0003) (0.0003)
[0.223] [0.334] [0.156] [0.339]
Lag 4 0.008 0.015 0.002 0.007
(0.0004) (0.0004) (0.0003) (0.0004)
[0.190] [0.303] [0.097] [0.269]
Lag 5 0.008 0.014 0.002 0.006
(0.0004) (0.0005) (0.0004) (0.0005)
[0.187] [0.281] [0.096] [0.217]
Lag 6 0.007 0.013 0.002 0.006
(0.0004) (0.0006) (0.0004) (0.0006)
[0.163] [0.265] [0.084] [0.221]
Lag 7 0.006 0.013 0.001 0.005
(0.0005) (0.0006) (0.0005) (0.0006)
[0.147] [0.254] [0.060] [0.201]
Lag 8 0.006 0.012 0.001 0.005
(0.0006) (0.0007) (0.0005) (0.0007)
[0.147] [0.241] [0.030] [0.210]
Lag 9 0.007 0.013 0.001 0.004
(0.0007) (0.0008) (0.0006) (0.0008)
[0.165] [0.248] [0.051] [0.162]
Lag 10 0.007 0.012 0.001 0.005
(0.0008) (0.0010) (0.0007) (0.0012)
[0.153] [0.224] [0.062] [0.179]
Panel B: Within-Year Variance Components
Total SD 0.537 0.517 0.534 0.499
Individual Level SD 0.506 0.473 0.513 0.466
Class+Teacher Level SD 0.117 0.166 0.146 0.178
Class-Level SD 0.108 0.116
Teacher SD 0.098 0.134
Estimates of Teacher SD:
Lower Bound based on Lag 1 0.113 0.149 0.068 0.115
Quadratic Estimate 0.124 0.163 0.079 0.134

Notes: Panel A reports the estimated autocovariance, the standard error of that covariance estimate clustered at the
teacher level (in parentheses), and the autocorrelation (in brackets) of average test score residuals between classrooms
taught by the same teacher. We measure these statistics at time lags ranging from one (i.e. two classrooms taught one
year apart) to ten years (i.e., two classrooms taught ten years apart), weighting by the sum of the relevant pair of class
sizes. Each covariance is estimated separately for English and math and for elementary and middle school classrooms.
Panel B reports the raw standard deviation of test score residuals and decomposes this variation into components driven
by idiosyncratic student-level variation, classroom shocks, and teacher-level variation. The variances in rows 2 and 3 of
Panel B sum to that in row 1; the variances in rows 4 and 5 sum to that in row 3. In middle school, we estimate the
standard deviation of teacher effects as the square root of the covariance of mean score residuals across a random pair
of classrooms within the same year. In elementary schools, we cannot separately identify class-level and teacher-level
standard deviations because we observe only one classroom per year. We use the square root of the autocovariance
across classrooms at a one year lag to estimate a lower bound on the within-year standard deviation for elementary
schools. We also report an estimate of the standard deviation by regressing the log of first seven autocovariances in
Panel A on the time lag and time lag squared and extrapolating to O to estimate the within-year covariance.



TABLE 3
Estimates of Forecast Bias Using Parent Characteristics and Lagged Scores

. Pred. Score . Pred. Score
Score in : Score in )
Dep. Var.: using Parent using Year t-2
Year t Year t
Chars. Score
(1) (2) 3 (4)
Teacher VA 0.998 0.002 0.996 0.022
(0.0057) (0.0003) (0.0057) (0.0019)
Parent Chars. Controls X
Observations 6,942,979 6,942,979 6,942,979 5,096,518

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-
cohort in parentheses. The regressions are run on the sample used to estimate the baseline VA model,
restricted to observations with a non-missing leave-out teacher VA estimate. There is one observation for
each student-subject-school year in all regressions. Teacher VA is scaled in units of student test score
standard deviations and is estimated using data from classes taught by the same teacher in other years,
following the procedure in Sections 2.2 and 4. Teacher VA is estimated using the baseline control vector,
which includes: a cubic in lagged own- and cross-subject scores, interacted with the student's grade level;
student-level characteristics including ethnicity, gender, age, lagged suspensions and absences, and
indicators for grade repetition, special education, and limited English; class size and class-type indicators;
cubics in class and school-grade means of lagged own- and cross-subject scores, interacted with grade
level; class and school-year means of all the student-level characteristics; and grade and year dummies. In
Columns 1 and 3, the dependent variable is the student’s test score in a given year and subject. In Column
2, the dependent variable is the predicted value generated from a regression of test score on mother's age at
child's birth, indicators for parent's 401(k) contributions and home ownership, and an indicator for the
parent's marital status interacted with a quartic in parent household income, after residualizing all variables
with respect to the baseline control vector. In Column 4, the dependent variable is the predicted value
generated in the same way from twice-lagged test scores. See Section 5.2 for details of the estimating
equation for predicted scores.



TABLE 4
Quasi-Experimental Estimates of Forecast Bias

. A Score A Score A Score A Predicted A Other Subj. A Other Sub;.
Dependent Variable:
Score Score Score
1) 2 3 4) 5) (6)
Changes in Mean Teacher 0.974 0.957 0.950 0.004 0.038 0.237
VA across Cohorts (0.033) (0.034) (0.023) (0.005) (0.083) (0.028)
Year Fixed Effects X X X
School x Year Fixed Effects X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X
Other-Subject Change in Mean Teacher VA X X
Grades 4108 4108 4108 4108 Middle Sch.  Elem. Sch.
Number of School x Grade x Subject x Year Cells 59,770 59,770 46,577 59,323 13,087 45,646

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in parentheses. The regressions are
estimated on a dataset containing school-grade-subject-year means from the core sample described in Section 3.3, excluding classrooms in which we
cannot construct the leave-two-year-out VA estimate described below. All regressions are weighted by the number of students in the school-grade-subject-
year cell. We calculate changes in mean teacher VA across consecutive cohorts within a school-grade-subject cell as follows. First, we calculate teacher
VA for each teacher in a school-grade-subject cell in each adjacent pair of school years using information excluding those two years. We then calculate
mean VA across all teachers, weighting by the number of students they teach. Finally, we compute the difference in mean teacher VA (year t minus year t-
1) to obtain the independent variable. The dependent variables are defined by calculating the change in the mean of the dependent variable (year t minus
year t-1) within a school-grade-subject cell. In Columns 1-3, the dependent variable is the change in mean test scores within subject (English or math). In
Column 4, it is the change in the predicted score, constructed based on parental characteristics, as described in the notes to Table 3. In Columns 5 and 6,
the dependent variable is the change in the score in the other subject (e.g. math scores for English teachers). Column 5 restricts the sample to middle
schools, where different teachers teach math and English; Column 6 restricts the sample to elementary schools, where the same teacher teaches the two
subjects. Column 1 includes only year fixed effects and no other controls. Columns 2 and 4 include school-by-year fixed effects. In Column 3, we add a
cubic in the change in mean lagged scores to the specification in Column 2, as well as controls for the lead and lag change in mean teacher value-added.
Columns 5 and 6 control for the change in mean teacher VA in the other subject as well as year fixed effects.



TABLE 5
Quasi-Experimental Estimates of Forecast Bias: Robustness Checks

Specification: Teacher Full <25% 0%
" Exit Only Sample  Imputed VA Imputed VA
Dependent Variable: A Score A Score A Score A Score
) (2) 3 4
Changes in Mean Teacher 1.045 0.877 0.952 0.990
VA across Cohorts (0.107) (0.026) (0.032) (0.045)
Year Fixed Effects X X X X
Number of School x Grade x Subject x Year Cells 59,770 62,209 38,958 17,859
Percent of Obs. with Non-Imputed VA 100.0 83.6 93.8 100.0

Notes: Each column reports coefficients from a regression with standard errors clustered by school-cohort in
parentheses. The regressions are estimated on a dataset containing school-grade-subject-year means from the
core sample described in Section 3.3. The dependent variable in all specifications is the change in the mean test
scores (year t minus year t-1) within a school-grade-subject cell. The independent variable is the change in mean
teacher VA across consecutive cohorts within a school-grade-subject cell; see notes to Table 4 for details on the
construction of this variable. All regressions are weighted by the number of students in the school-grade-subject-
year cell and include year fixed effects. In column 1, we report 2SLS estimates, instrumenting for changes in mean
teacher VA with the fraction of students in the prior cohort taught by teachers who leave the school multiplied by the
mean-VA among these school-leavers. Columns 2-4 replicate the specification in Column 1 of Table 4, varying the
way in which we handle classrooms with missing teacher VA. Column 2 includes all classrooms, imputing the
sample mean VA (0) to classrooms with missing teacher VA. Column 3 replicates Column 2, excluding entire
school-grade-subject-year cells in which more than 25% of student observations have missing teacher VA. Column
4 restricts to entire school-grade-subject-year cells with no missing teacher VA. The last row reports the
percentage of students for whom teacher VA is not imputed in each estimation sample.



TABLE 6
Comparisons of Forecast Bias Across Value-Added Models

Correlation with Quasi-Experimental

Base;lme VA Estimate of Bias (%)
Estimates
@ 2)

(1) Baseline 1.000 2.58
(3.34)

(2) Baseline, no teacher FE 0.979 2.23
(3.50)

(3) February test interaction 0.998 2.61
(3.35)

(4) Prior test scores 0.962 3.82
(3.30)

(5) Student's lagged scores in 0.868 4.83
both subjects (3.29)

(6) Student's lagged score in 0.787 10.25
same subject only (3.17)

(7)  Non-score controls 0.662 45.39
(2.26)

(8) No controls 0.409 65.58
(3.73)

Notes: In this table, we estimate seven alternative VA models and report correlations of the
resulting VA estimates with the baseline VA estimates in Column 1. In Column 2, we report quasi-
experimental estimates of forecast bias for each model, defined as 1 minus the coefficient in a
regression of the cross-cohort change in scores on the cross-cohort change in mean teacher VA.
These coefficients are estimated using exactly the specification in Column 1 of Table 4. All the VA
models are estimated on a constant sample of students for whom all the variables in the baseline
control vector are non-missing. All models are estimated separately by school level and subject;
the correlations and estimates of forecast bias pool VA estimates across all groups. Each model
only varies the control vector used to estimate student test score residuals in equation (4); the
remaining steps of the procedure used to construct VA estimates (described in Appendix A) are the
same for all the models. All models include grade and school year fixed effects. Model 1 replicates
the baseline model as a reference; see notes to Table 3 for definition of the baseline control vector.
The estimated forecast bias for this model coincides with that reported in Column 1 of Table 4.
Model 2 uses all of the baseline controls but omits teacher fixed effects when estimating equation
(4), so that the coefficients on the controls are identified from both within- and between-teacher
variation as in traditional VA specifications. Model 3 replicates the baseline specification, permitting
different coefficients on tests given earlier in the school year by interacting prior test scores with
indicators for February testing dates. Model 4 includes only student, class and school level test
score controls from the baseline control vector. Model 5 includes only student-level test score
controls (i.e., a cubic polynomial in prior-year scores in math and English interacted with the
student's grade level). Model 6 includes only a cubic polynomial for prior scores in the own subject.
Model 7 removes all controls related to test scores from the baseline specification, leaving only non-
score controls at the student, class, and school level (e.g., demographics, free lunch participation,
etc.). Model 8 drops all controls (except grade and year fixed effects).



TABLE 7

Differences in Teacher Quality Across Students and Schools

Dependent Variable:

Teacher Value-Added

(1) (2) (3) 4) (5) (6) (7)
Lagged Test Score 0.0078 0.0079
(0.0004) (0.0004)
Special education student -0.002
(0.001)
Parent Income ($10,000s) 0.00054 0.00001
(0.00009) (0.00007)
Minority (black or hispanic) student -0.001
(0.001)
School Mean Parent Income ($10,000s) 0.0010
(0.0005)
School Fraction Minority 0.002
(0.002)

Observations 6,942,979 6,942,979 6,094,498 6,094,498 6,942,979 6,942,979 6,942,979

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by teacher in parentheses. Teacher VA,
which is the dependent variable in all columns, is scaled in units of student test score standard deviations. Teacher VA is estimated using
data from classes taught by the same teacher in other years, following the procedure in Sections 2.2 and 4 and using the baseline control
vector (see notes to Table 3 for more details). The regressions are run at the student-subject-year level on the sample used to estimate
the baseline VA model. Columns 3 and 4 restrict the sample to students whom we are able to link to parents in the tax data. Each
specification includes the student-level covariate(s) listed at the left hand side of the table and no additional control variables. See notes
to Table 1 for definitions of these independent variables. In Columns 6-7, the independent variable is the school-mean of the independent
variables in Columns 3 and 5, respectively. We calculate these means as the unweighted mean across all student-subject-year
observations with non-missing data for the relevant variable in each school.



APPENDIX TABLE 1
Structure of Analysis Dataset

Matched
to Tax Parent
Student Subject Year Grade Class Teacher TestScore Data? Income

Bob Math 1992 4 1 Jones 0.5 1 $95K
Bob English 1992 4 1 Jones -0.3 1 $95K
Bob Math 1993 5 2 Smith 0.9 1 $95K
Bob English 1993 5 2 Smith 0.1 1 $95K
Bob Math 1994 6 3 Harris 1.5 1 $95K
Bob English 1994 6 4 Adams 0.5 1 $95K
Nancy Math 2002 3 5 Daniels 0.4 0
Nancy English 2002 3 5 Daniels 0.2 0
Nancy Math 2003 4 6 Jones -0.1 0
Nancy English 2003 4 6 Jones 0.1 0

Notes: This table illustrates the structure of the core sample, which combines information from the school
district database and the tax data. There is one row for each student-subject-school year. Students who were
not linked to the tax data have missing data on parent characteristics. The values in this table are not real data
and are for illustrative purposes only.



FIGURE 1
Drift in Teacher Value-Added Across Years

a) Autocorrelation Vector in Elementary School for English and Math Scores
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Notes: These figures show the correlation between mean test-score residuals across classes taught by the same teacher in
different years. Panels A and B plot autocorrelation vectors for elementary and middle school. To calculate these vectors,
we first residualize test scores using within-teacher variation with respect to our baseline control vector (see notes to Table
3). We then calculate a (precision-weighted) mean test score residual across classrooms for each teacher-year. Finally, we
calculate the autocorrelation coefficients as the correlation across years for a given teacher, weighting by the sum of students
taught in the two years. See Appendix A for more details on the estimation procedure for these and other parameters of the
value-added model.



FIGURE 2
Effects of Teacher Value-Added on Actual and Predicted Scores

a) Actual Score
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Notes: These figures pool all grades and subjects and are constructed using the sample used to estimate the VA model, which
has one observation per student-subject-school year. The three panels are binned scatter plots of actual scores, predicted
scores based on parent characteristics, and predicted scores based on twice-lagged test scores vs. teacher VA. These plots
correspond to the regressions in Columns 1, 2, and 4 of Table 3 and use the same sample restrictions and variable definitions.
To construct these binned scatter plots, we first residualize the y-axis variable with respect to the baseline control vector
(defined in the notes to Table 3) separately within each subject by school-level cell, using within-teacher variation to estimate
the coefficients on the controls as described in Section 2.2. We then divide the VA estimates [1;; into twenty equal-sized groups
(vingtiles) and plot the means of the y-variable residuals within each bin against the mean value of [i;; within each bin. The
solid line shows the best linear fit estimated on the underlying micro data using OLS. The coefficients show the estimated
slope of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.



FIGURE 3

Impacts of Teacher Entry and Exit on Test Scores

a) High Value-Added Teacher Entry b) High Value-Added Teacher Exit
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Notes: These figures plot event studies of current scores (solid line) and scores in the previous school year (dashed line) by
cohort as teachers enter or leave a school-grade-subject cell in year ¢ = 0. Panels A and B analyze the entry and exit of a
high-VA teacher (teachers with VA in the top 5% of the distribution); Panels C and D analyze the entry and exit of a low-VA
(bottom 5%) teacher. All panels are plotted using the core sample collapsed to school-grade-subject-year means, as described
in Section 6.2. To construct each panel, we first identify the set of teachers who entered or exited a school-grade-subject cell
and define event time as the school year relative to the year of entry or exit. We then estimate each teacher’s value-added
in event year t = 0 using data from classes taught excluding event years t € [—3,2]. In Panel A, we identify the subset of
teachers with VA estimates in the top 5% of the distribution among entering teachers. We then plot mean current and lagged
scores in the relevant school-grade-subject cell for the event years before and after the entry of such a teacher. Panels B-D are
constructed analogously. We demean test scores by school year to eliminate secular time trends and normalize the residual
scores to zero at event year t = —3 for teacher entry and at event year t = 2 for teacher exit. Each panel reports the change in
mean score gains (current minus lag scores) from ¢ = —1 to ¢ = 0 and the change in mean estimated VA. We report p-values
from F tests of the hypotheses that the change in score gains from ¢t = —1 to ¢t = 0 equals the change in mean VA and that the
change in score gains equals 0. Mean teacher VA is calculated using a student-weighted average, imputing the sample mean
VA (0) for teachers who do not have data outside the ¢ € [—3, 2] window necessary to compute a leave-out VA estimate.



FIGURE 4
Effects of Changes in Teaching Staff on Scores Across Cohorts

a) Changes in Actual Scores
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b) Changes in Predicted Scores Based on Parent Characteristics

0.1

0.05

Changes in Predicted Scores
0
>
>
L
L
>
L
L
L
L

-0.05

Coef. = 0.004
(0.005)

-0.1

-0.1 -0.05 0 0.05 0.1
Changes in Mean Teacher Value-Added

Notes: This figure plots changes in average test scores across cohorts versus changes in average teacher VA across cohorts,
generalizing the event study in Figure 3 to include all changes in teaching staff. Panel A is a binned scatterplot of changes in
actual scores vs. changes in mean VA, corresponding to the regression in Column 1 of Table 4. Panel B is a binned scatterplot
of changes in predicted scores based on parent characteristics vs. changes in mean VA, corresponding to the regression in
Column 4 of Table 4. See notes to Table 4 for details on variable definitions and sample restrictions. Both panels are plotted
using the core sample collapsed to school-grade-subject-year means, as described in Section 6.3. To construct these binned
scatter plots, we first demean both the x- and y-axis variables by school year to eliminate any secular time trends. We then
divide the observations into twenty equal-size groups (vingtiles) based on their change in mean VA and plot the means of
the y variable within each bin against the mean change in VA within each bin, weighting by the number of students in each
school-grade-subject-year cell. The solid line shows the best linear fit estimated on the underlying micro data using a weighted
OLS regression as in Table 4. The coefficients show the estimated slope of the best-fit line, with standard errors clustered at
the school-cohort level reported in parentheses.



FIGURE 5
Effects of Changes in Teaching Staff on Scores in Other Subject

a) Changes in Other-Subject Scores: Middle Schools
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b) Changes in Other-Subject Scores: Elementary Schools
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Notes: This figure plots changes in average test scores in the other subject across cohorts versus changes in average teacher VA,
controlling for changes in other-subject VA. Panel A restricts the sample to middle schools, corresponding to the regression
in Column 5 of Table 4. Panel B restricts the sample to elementary schools, corresponding to the regression in Column 6 of
Table 4. See notes to Table 4 for details on variable definitions and sample restrictions. Both panels are plotted using the
core sample collapsed to school-grade-subject-year means, as described in Section 6.3. To construct these binned scatter plots,
we first regress both the x- and y-axis variables on changes in mean teacher VA in the other subject as well as year fixed
effects and compute residuals, weighting by the number of students in each school-grade-subject-year cell. We then divide the
x residuals into twenty equal-size groups (vingtiles) and plot the means of the y residuals within each bin against the mean of
the x residuals within each bin, again weighting by the number of students in each school-grade-subject-year cell. The solid
line shows the best linear fit estimated on the underlying micro data using a weighted OLS regression as in Table 4. The
coefficients show the estimated slope of the best-fit line, with standard errors clustered at the school-cohort level reported in
parentheses.



APPENDIX FIGURE 1
Empirical Distributions of Teacher VA Estimates
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Notes: This figure plots kernel densities of the empirical distribution of teacher VA estimates fi;: for each subject (math and
English) and school-level (elementary and middle school). The densities are weighted by the number of student test score
observations used to construct the teacher VA estimate and are estimated using a bandwidth of 0.01. We also report the
standard deviations of these empirical distributions of VA estimates. Note that these standard deviations are smaller than the
standard deviation of true teacher effects reported in Table 2 because VA estimates are shrunk toward the mean to account
for noise and obtain unbiased forecasts.
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