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Abstract

We examine the impact of increased health insurer competition on negotiated hospital prices.

Insurer competition can lead to lower premiums and reduced industry surplus, thereby depress-

ing hospital prices; however, hospitals may also leverage fiercer insurer competition when bar-

gaining in order to negotiate higher prices. We rely on a theoretical bargaining model to derive

a regression equation relating negotiated prices to the degree of insurer competition, and use

the presence of Kaiser Permanente in a hospital’s market as a measure of insurer competition.

We estimate a model of consumer demand for hospitals and use it to derive many of the other

independent variables specified in the regression equation. Leveraging a unique dataset on ne-

gotiated prices between hospitals and commercial insurers in California in 2004, we find that

increased insurer competition reduces hospital prices on average, but has a positive and empir-

ically meaningful effect on the prices of attractive and high utility generating hospitals. This

heterogeneous effect across hospitals—which has not been emphasized in the recent literature

on hospital-insurer bargaining—provides incentives for hospital investment and consolidation,

and implies that hospital market power can lead to high input prices even in markets where

many insurers are present.

Keywords: health insurer competition, hospital prices, bargaining

JEL: I11, L13, L40

1 Introduction

Competition between health insurers has been a focus of policymakers in recent years. One of the

main objectives of the Health Insurance Exchanges to be established under the Patient Protection

and Affordable Care Act of 2010 is to facilitate insurer competition, with the goal of generat-

ing reduced premiums to employers and enrollees and increased coverage and quality of care.1

∗We thank Patricia Foo for exceptional research assistance; Allan Collard-Wexler, Leemore Dafny, and David
Dranove for suggestions; and seminar participants at Columbia, the FTC, Harvard, Johns Hopkins, Kellogg, LSE,
NBER Summer Institute, Northwestern, NYU, and SMU for helpful comments. All errors are our own.
†Columbia University and NBER, kh2214@columbia.edu.
‡New York University Stern School of Business, rslee@stern.nyu.edu.
1In addition, exchanges will provide a forum where consumers who do not have access to large- or small-group

health insurance plans through their employers can access insurance. They will also play a role in spreading risk so
that the costs of high-need enrollees are shared more broadly across large groups.
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Commentators and hospital executives have argued that this competition at the insurer level may

reduce hospital prices because increased insurer competition would constrain premiums and in-

dustry surplus, limit insurers’ ability to pass-through rate increases, and generate a downward

pressure on provider prices.2 However, this argument ignores the fact that the input market for

health services is imperfectly competitive, and health providers—such as hospitals and physician

groups—utilize their market power to negotiate reimbursement prices with insurers. As insurer

competition increases, consumers become more likely to switch insurers if a particularly attractive

hospital is dropped and insurers’ bargaining outside options are reduced. This allows hospitals to

“play” insurers off one another and provides them with greater leverage to negotiate higher rates.

This offsetting positive price effect, which mitigates some of the benefits of insurer competition,

is a variant of the countervailing power hypothesis that greater downstream concentration (i.e.,

less insurer competition) can lead to lower negotiated input prices from upstream firms (Galbraith

(1952)).

This paper empirically investigates the magnitude and direction of the impact of insurer com-

petition on negotiated hospital prices, focusing on the extent to which the effect varies across

hospitals. We leverage a unique admissions and claims dataset provided by a public agency with

more than one million insured individuals, which contains actual negotiated transaction prices paid

by two of the largest commercial insurers in California to hospitals in 2004. We also observe the

precise hospital networks offered by these two insurers. Though previous papers have found evi-

dence that negotiated hospital prices can rise in response to increased insurer competition (Moriya

et al. (2010), Melnick et al. (2010)), our study emphasizes the potential heterogeneous impact of

such competition across different hospitals. We expect the most attractive hospitals to have the

greatest ability to negotiate higher prices when insurer market power is low; other hospitals may

see smaller price increases, or even price reductions, because the effect of insurer competition on

premiums outweighs the offsetting effect. Both theoretically and empirically, such heterogeneity is

crucial to consider and, to our knowledge, has not been examined in the previous literature.

We primarily study negotiated hospital prices and note that they directly affect consumer sur-

plus through their impact on insurer premiums. In addition, changes in these prices and transfers

from insurers to health providers may encourage further provider consolidation, benefit some hos-

pitals more than others, and lead to potential distortions in investment incentives.

We begin by developing a theoretical model of bargaining between hospitals and insurers; this

provides a framework for a regression equation relating negotiated prices to measures of insurer

competition. The model indicates that the negotiated price between a hospital and an insurer is

related to changes in the following when the hospital is dropped from the insurer’s network: (i)

the insurer’s premiums, demand, and payments to other hospitals, and (ii) the hospital’s costs and

2 This is consistent with arguments such as: “...non-Kaiser [hospital] systems recognized the need to contain
costs to compete with Kaiser [Permanente]—that is, the need to keep their own demands for rate increases rea-
sonable enough that the premiums of non-Kaiser insurers can remain competitive with Kaiser.” (“Sacramento,” CA
Health Care Almanac, July 2009 accessed at http://www.chcf.org/~/media/MEDIA%20LIBRARY%20Files/PDF/A/PDF%
20AlmanacRegMktBriefSacramento09.pdf). See also arguments put forth by Sutter Health, a large hospital system
based in Northern CA (http://www.sutterhealth.org/about/healthcare_costs.html accessed on July 29, 2013).
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reimbursements from other insurers. Several of our regressors control for the outside options of

each hospital and insurer, and require predicting utilization patterns if a hospital is dropped from

a given insurer’s network. We do this by estimating a model of consumer demand for hospitals,

based on Ho (2006). The demand model allows us to predict hospitals’ patient flows conditional

on patient characteristics (including diagnosis and location) and insurer networks. However the

primary dependent variables of interest, which relate to insurer competition, cannot be directly

predicted using our hospital demand model. These comprise changes in the insurer’s demand and

premiums, as well as changes in the hospital’s payments from other insurers, when a given hospital

is dropped from an insurer’s network. We proxy for these variables with measures of (i) the degree

of insurer competition within a hospital’s local market, and (ii) consumers’ willingness-to-pay for

access to that hospital in an insurer’s network. These measures are the key variables in our pricing

equation.

Our primary strategy to identify the impact of insurer competition on negotiated prices uses

the intuition of a natural experiment, and focuses on the locations of Kaiser Permanente hospitals,

most of which were established more than a decade before the time period in question. Kaiser is the

largest insurer in California (and the largest managed care organization—MCO—in the US), with

a HMO enrollee market share of approximately 40%. Kaiser is vertically integrated: i.e., it owns a

network of providers and rarely refers patients to hospitals outside its network. Since non-Kaiser

enrollees do not access Kaiser hospitals, and Kaiser enrollees do not access non-Kaiser hospitals,

Kaiser affects the bargaining process between a non-Kaiser hospital and another commercial insurer

only through insurer competition for enrollees. Furthermore, Kaiser’s competitiveness, with respect

to another insurer, depends crucially on the proximity of potential enrollees to one of the 27 Kaiser

hospitals that were active in California in 2004. This varies considerably within a given market

area, which would not be the case for another insurer that contracts with hundreds of hospitals.

We use the share of a given hospital’s patients who live within 3 miles of a Kaiser Permanente

hospital as our measure of insurer competition: this variable captures the extent to which consumers

may switch insurers to Kaiser if that hospital is dropped from a network. The intuition is: if an

insurer, such as Blue Shield (BS), loses a hospital from its network, BS will see a greater reduction

in enrollment if that hospital’s patients live closer to a Kaiser hospital than if they do not. In other

words, proximity to a Kaiser hospital makes the alternative option of enrolling in Kaiser more

desirable. Thus, hospitals whose patients are close to Kaiser hospitals may negotiate higher prices

with BS than they would if Kaiser insurance were not a viable alternative.3

As our theoretical bargaining model makes clear, the degree of competition between an insurer

and Kaiser may also affect negotiated prices along other dimensions. The main offsetting effect is

that, when Kaiser is present, more intense premium competition may reduce insurer markups and

therefore reduce the loss faced by an insurer upon losing a hospital from its network. This tends to

3This also motivates our focus on Kaiser. If the presence of Kaiser affects the price that a hospital negotiates with
BS, this effect must be due to insurer competition for enrollees. In contrast, measures based on consumer proximity
to other insurers would be less “clean” and easy to interpret because they often have their own contracts with the
hospital and, therefore, affect the hospital-BS bargaining process through multiple channels.
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reduce hospital prices.4 We investigate the relative magnitudes of the competing effects by including

a measure of hospital “quality” in the regression and interacting it with our insurer competition

variable. We use a prediction of how consumers’ willingness-to-pay (WTP) for an insurer’s network

changes when a particular hospital is removed from the network (Capps et al. (2003)). This

“∆WTP” variable, developed in the previous literature on hospital-insurer bargaining, is computed

from the estimated hospital demand system.5 Our Kaiser variable measures both the extent to

which consumers may view Kaiser as a possible substitute for their current insurer, and Kaiser’s

negative effect on premiums, while ∆WTP captures the extent to which consumers wish to find a

substitute when a particular hospital is dropped. An interaction term between these two variables

helps disentangle the heterogeneous effects of insurer competition. For example, if consumers only

choose to switch away from an insurer that drops a very attractive hospital from its network (e.g.,

if switching costs between insurers are substantial), the impact of Kaiser’s presence on negotiated

prices may be negative for most hospitals but positive for the most attractive hospitals (as measured

by ∆WTP ). However, our specification is flexible enough to allow for other relationships between

the variables of interest.

Our analysis relies on the exogeneity of Kaiser hospital locations with respect to other variables

we have not controlled for that can influence negotiated prices. We use market and insurer-level

fixed effects and zipcode-level demographic controls, and also re-estimate our model using only

locations of Kaiser hospitals built prior to 1995 to address the possibility that recent Kaiser hospitals

located in response to unobserved demand conditions. We argue that variation in employer choice

sets and the competitiveness of other commercial insurers are likely to be well captured by market

controls and are unlikely to vary systematically at the same 3-mile radii used to measure Kaiser

attractiveness. We also argue that our ∆WTP variable adequately controls for any potential

differences in hospital quality that may be correlated with proximity to a Kaiser hospital.

We view our approach as a direct way to demonstrate that insurer competition is important,

without requiring the assumptions or data needed to estimate a model of insurer demand and

premium-setting. We wish to provide evidence that plausibly exogenous differences in insurer

competitiveness across hospitals have an economically significant effect on negotiated prices. If

insurer competition did not matter (for example if consumers were captive to an insurer and did

not switch in response to hospital network changes, or if firms did not internalize this possibility),

then we would not expect to find any impact of our Kaiser competitiveness variable on prices.6

4Increased insurer competition may limit each insurer’s ability to pass-through negotiated hospital prices via
higher premiums. Also the attractiveness of Kaiser as an option affects not only the outside option of an insurer,
but also that of the hospital. For example, if a hospital is dropped from BS, some consumers may switch from BS
to another insurer that still contracts with the hospital; however, if consumers switch to Kaiser, they cannot access
that hospital. This channel may depress negotiated prices. Finally, if a hospital negotiates with several commercial
insurers, the impact of Kaiser’s presence on each of these individual bilateral bargains will have reinforcing effects
across all bargains.

5The previous hospital bargaining literature uses ∆WTP as a proxy for the change in insurer premiums when a
hospital is dropped from the network. When consumers are not captive and can switch insurance plans, it can also
proxy for the change in insurer demand on the extensive margin.

6We could estimate a significant effect of the ∆WTP variable, even if consumers were captive to an insurer, for
example if insurers acted as perfect agents for their enrollees and therefore adjusted their premiums in response to a
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Our results support the hypothesis that insurer competition is an important determinant of

hospital prices and has an heterogeneous effect across hospitals. The average effect of Kaiser’s

presence on a hospital’s negotiated prices is negative for most hospitals. However, for the most

attractive hospitals, the effect is positive: e.g., in the top quartile and decile of our ∆WTP measure,

increasing the proportion of patients with local access to a Kaiser hospital by just 10% results in an

increase in the negotiated price per admission of approximately $31 and $120 respectively; this effect

increases to $300, or 5% of the average hospital price per admission in our data, for hospitals above

the 95th percentile of ∆WTP . By showing that the effect of insurer competition on negotiated

prices can be substantial, we conclude that a complete analysis of the impact of health insurer

competition should take into account the significant potential impact on hospital prices.

1.1 Related Literature

This paper is related to the previous literature considering the relationship between insurer com-

petition and provider prices. One of the most recent of these papers, Moriya et al. (2010), uses

a reduced-form structure-conduct-performance approach with Medstat data to analyze the impact

of both insurer and hospital market power on negotiated prices. The authors regress prices on

hospital and insurer concentration (measured by Herfindahl indices), use the panel structure of

their data to difference out market and firm fixed effects, and find that within-market increases

in insurer concentration over time are significantly associated with decreases in hospital prices. A

hypothetical merger between two of five equally sized insurers is estimated to decrease hospital

prices by 6.7%. However they note that their estimating equation is not derived from any formal

model of the bargaining process, but rather “is best thought of as an empirical exploration of the

idea” that concentration among buyers and sellers should be reflected in prices. Melnick et al.

(2010) conduct a very similar analysis using estimated prices from hospital revenue data, and find

that hospital prices in the most concentrated health plan markets considered are approximately 12

percent lower than in more competitive health plan markets.

Another related section of the literature focuses on how hospital prices are determined through

insurer-hospital bargaining. Early papers including Town and Vistnes (2001) and Capps et al.

(2003) estimate the determinants of negotiated hospital prices using specifications that are consis-

tent with an underlying bargaining model; however, they do not specify the particular bargaining

model employed, nor the effect of insurer competition on the bargaining outcome.7 Gowrisankaran

et al. (2013) and Lewis and Pflum (2013) both estimate fully-specified bargaining models; the for-

mer paper considers the impact of hospital mergers on negotiated prices, while the latter focuses

on the consequences of bargaining for hospital systems’ prices. Dranove et al. (2008) develops

a dynamic model of the bargaining process. Though these papers consider important aspects of

insurer-hospital bargaining, they rule out insurer competition (e.g., by assuming consumers can-

network change.
7Sorensen (2003) provides reduced form evidence that insurers with a better ability to channel patients to certain

hospitals negotiate lower prices.
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not switch plans in response to an insurer network change or bargaining disagreement). This is

primarily in response to data limitations and modeling complexities. In contrast, Ho (2006, 2009)

relaxes this assumption and estimates a model of consumer demand for hospitals and insurers given

the network of hospitals offered, as an input to a model of hospital network formation (assuming

a take-it-or-leave-it offers model to determine hospital prices). Lee and Fong (2012) contains a

dynamic bargaining model that allows consumers to switch insurers. However, these three papers

do not estimate the magnitude of the effect of insurer competition on input prices.

Our contribution is to bring the finding of the first set of papers—that insurer competition

has a demonstrable effect on provider prices—into the formal bargaining framework developed

and employed in the second set. By explicitly controlling for multiple complex bargaining ef-

fects and formally decomposing the offsetting effects of increased insurer competition, we are able

to show theoretically and empirically that insurer competition for patients and hospitals has an

economically-relevant and heterogeneous impact on negotiated prices.

Our research is also related to recent work finding that insurer market power can affect pre-

miums. Dafny et al. (2012) find that greater concentration resulting from a merger of insurers is

associated with a modest increase in premiums. This suggests that if insurers are able to negotiate

lower prices after a merger, they are not passing cost savings on to their enrollees;8 Dafny (2010)

finds evidence consistent with this. Our finding that the input price effect of insurer competition

is heterogeneous across hospitals provides another angle to interpret these premium increases: as

we find that only very attractive hospitals’ prices increase substantially with insurer competition,

if the insurance market becomes less competitive and more concentrated, the resulting reduction

in these hospital payments may not be large enough (or even present) to outweigh the impact of

reduced insurer competition on premiums.

Finally, our analysis contributes to the large literature on countervailing power and bargaining

in bilateral oligopoly, and the impact of changes in concentration via merger or entry on negotiated

prices (e.g., Horn and Wolinsky (1988), Stole and Zweibel (1996), Chipty and Snyder (1999), Inderst

and Wey (2003)).9

2 Theoretical Model

In this section we develop a simple bargaining model that predicts how hospital prices are de-

termined via bilateral negotiations between insurers (also known as managed care organizations,

or MCOs) and hospitals. The model highlights how increased insurer competition can affect ne-

gotiated prices, and why the net impact is ambiguous. Insights from the model will inform our

empirical approach and provide the basis of our estimating equation.

8Dafny et al. (2012) also find evidence that increases in insurer concentration due to a large national merger
reduced annual wages and employment for physicians.

9In a related industry, recent empirical work by Ellison and Snyder (2010) finds that larger drugstores secure lower
prices from competing suppliers of antibiotics.
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2.1 A Simple Bargaining Model

Consider a given market that contains a set of hospitals H and insurers M. Let the current

“network” of hospitals and MCOs be G ⊆ {0, 1}|H|×|M|: i.e., a consumer who is enrolled in MCO

j ∈M can only visit hospitals in j’s network, which we denote Gj . Equivalently, let Gi denote the

set of insurers that have contracted with hospital i. Let pij ∈ p denote the price paid to hospital i

by MCO j for caring for one of j’s patients.

In any period, for a given network G we assume the following timing:

1. All insurers and hospitals ij ∈ G engage in simultaneous, bilateral bargaining to determine

hospital prices p, where each firm only knows the set of prices it has negotiated;

2. Given the network and negotiated prices p, MCOs set premiums φ ≡ {φj}∀j to downstream

consumers to maximize their expected profits;

3. Given hospital networks and premiums, consumers then choose an insurance plan;

4. Patients become sick wih diagnosis l ∈ L with some probability γl; those that are sick visit

some hospital in their network. (In our empirical application, we will allow for heterogeneous

consumers who become sick with different diagnoses with different probabilities; consumers

will have different preferences for hospitals depending on their diagnosis and type.)

We define profits for MCO j to be:

πj,M(p,G) = Dj(φ(p,G),G)

φj(p,G)−
∑
h∈Gj

σhj(G)phj


where Dj is MCO j’s demand (number of enrollees), and σhj(G) is the share of MCO j’s enrollees

who choose hospital h. We define σhj(G) ≡
∑

l γlσhj|l, where σij|l(G) is the share of MCO j’s

enrollees who choose hospital h conditional on becoming sick with diagnosis l. Similarly, we define

profits for hospital i to be:

πi,H(p,G) =
∑
n∈Gi

Dn(φ(p,G),G)σin(G)(pin − cin)

where cin is hospital i’s average cost per admission for a patient from MCO n.

Implicit in the construction of these profit functions is the assumption that consumer choices

only respond to the prices that hospitals charge insurers through their response to premiums φ(·);
i.e., once enrolled with an MCO, consumers are not influenced by hospital prices in choosing which

hospital to visit, and the quantity and composition of consumer types who visit hospitals is not

directly affected by p conditional on premiums. This assumption requires that (i) insurers are

unable to steer patients to certain (e.g., lower cost) hospitals, and (ii) consumers do not respond

to hospital prices when selecting where to go (e.g., zero co-insurance rates or no transparency of
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hospital prices to consumers). Second, we assume that hospitals are reimbursed according to an

average price per admission, as opposed to a diagnosis-specific price. Consistent with this, in our

empirical application we will construct an average resource-intensity-adjusted price per admission

for each insurer-hospital pair.

Consider hospital i ∈ H bargaining with MCO j ∈M. We assume prices pij ∈ p are negotiated

for all ij ∈ G via simultaneous bilateral Nash bargaining, so that each price pij maximizes each

pair’s Nash product:

pij ∈ arg max [πj,M(p,G)− πj,M(p−ij ,G \ ij)]τM × [πi,H(p,G)− πi,H(p−ij ,G \ ij)]τH ∀ij ∈ G (1)

That is, each price pij maximizes MCO j and hospital i’s bilateral Nash product, given all other

prices p−ij , where πj,M(p−ij ,G \ ij) and πi,H(p−ij ,G \ ij) represent MCO j and hospital i’s dis-

agreement payoffs (or outside options) upon disagreement. As each bilateral bargain happens

simultaneously, we assume that if hospital i comes to a disagreement with MCO j, the new net-

work is G \ ij, and all other prices are not immediately renegotiated (and, thus, remain fixed at

p−ij).
10 This determination of prices was proposed in Horn and Wolinsky (1988), and also used

in applied work, including Crawford and Yurukoglu (2012), Grennan (2013), Gowrisankaran et al.

(2013), Lee and Fong (2012).11 Finally, we assume that Nash bargaining parameters {τM , τH} for

MCOs and hospitals are the same across agents of the same type, and that τM + τH = 1.

To simplify our analysis, we make one more assumption: premiums do not respond to (small)

changes in negotiated prices pij so that ∂φk/∂pij ≈ 0 for all j, k ∈ M, i ∈ H. Since we assume

prices are privately observed by each insurer-hospital pair, changes in equilibrium prices pij will

not affect premiums for other insurers −j. The additional assumption that small changes in one

particular hospital’s prices do not affect premiums is consistent with individual hospital market

shares being small at the level of aggregation where premiums are set.12 Our model does allow for

the possibility that premiums can be adjusted if the network G changes (holding prices fixed): that

is, φ(p,G) may be different from φ(p−ij ,G \ ij). Furthermore, levels of premiums (both before and

after disagreement) may still be influenced by the degree of insurer competition.

Under the assumptions we have made, the first-order-condition (FOC) of the maximization

10We show below that our main results are also robust to allowing insurers to bargain simultaneously with hospital
systems, where each system can threaten to remove all of its hospitals upon disagreement.

11Collard-Wexler et al. (2013) provide a non-cooperative foundation for this bargaining solution in bilateral
oligopoly.

12Allowing ∂φk/∂pij 6= 0 would allow the pass-through of negotiated prices to also be influenced by insurer compe-
tition. Though this effect is abstracted away from in this formulation, we discuss its implications later when discussing
our estimates and results.
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problem, given by (1), implies the following linear equation for prices:

p∗ij =τH

Djφj − D̃jφ̃j
Djσij

−

∑h∈Gj\ij p
∗
hj(σhj −

D̃j

Dj
σ̃hj)

σij

 (2)

+ τM

[
cij −

∑
n∈Gi\ij(Dnσin − D̃nσ̃in)(p∗in − cin)

Djσij

]
.

where we have dropped the arguments of Dj , φj , and σij for expositional convenience, and have

used (̃·) to denote functions that take as arguments G \ ij (and potentially p−ij): for example,

φ̃j ≡ φj(p−ij ,G \ ij). These represent disagreement outcomes for these functions, as we have

assumed disagreement between hospital i and insurer j results in i’s removal from j’s network.13

We rearrange (2) and multiply through by σij (the fraction of MCO j’s enrollees that visit hospital

i) so that the left-hand-side (LHS) of the equation is in terms of payment from j to i per enrollee

rather than per admission:

p∗ijσij︸ ︷︷ ︸
hospital price / enrollee

=τH


(
Djφj − D̃jφ̃j

Dj

)
︸ ︷︷ ︸
(i) ∆ MCO revenues

−

 ∑
h∈Gj\ij

p∗hj(σhj − σ̃hj +
Dj − D̃j

Dj
σ̃hj)


︸ ︷︷ ︸

(ii) ∆ MCO j payments to other hospitals

 (3)

+ τM

 c̄iσij︸︷︷︸
(iii) hospital costs / enrollee

−
∑

n∈Gi\ij

(Dnσin − D̃nσ̃in)

Dj
(p∗in − c̄i)︸ ︷︷ ︸

(iv) ∆ Hospital i profits from other MCOs


+ εij

where c̄i represents hospital i’s average cost of an admission, and εij represents the deviation from

average costs for a given MCO j. Define ωij ≡ cij − c̄i, which implies εij will be a function of ωij

and the following demand parameters:

εij ≡ τM

ωijσij +
∑

n∈Gi\ij

(Dnσin − D̃nσ̃in)

Dj
ωin

 (4)

We assume ωij is a mean zero, independently distributed cost shock, which represents the difference

between the hospital’s average cost per patient and its perceived cost of treating a patient from

MCO j. This difference could be due to long-term relationships with particular MCOs, for example,

or to complementarities in information systems with some insurers.

13In Section 4.1, we also allow for hospital systems to remove all of their hospitals upon disagreement.
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Discussion Equation (3) expresses the price paid from MCO j to hospital i in terms of the change

in each firm’s outside options due to disagreement. The first line represents changes to MCO j’s

gains from trade. Term (i) represents j’s changes in premium revenue upon losing hospital i due to

fewer patients being enrolled and lower premiums; the greater the loss, the higher is p∗ij . Since this

term is a function of both demand and premiums, it allows the impact of insurer competition to have

both of the offsetting effects discussed earlier. On the one hand, a competitive insurance market can

reduce the loss in revenues faced by an insurer upon losing a hospital, since premium markups are

already low; this reduces hospital prices. On the other hand, the loss of a very attractive hospital

can cause a larger change in an insurer’s enrollment if there are alternative insurers present; this

increases hospital prices.

Term (ii) represents the change in payments per enrollee that j makes to other hospitals in its

existing network upon losing i. The first part of (ii),
∑

h∈Gj\ij p
∗
hj(σhj − σ̃hj), is negative, as the

patients enrolled in j who used to visit i now move to other hospitals in the network. The second

part of (ii),
∑

h∈Gj\ij p
∗
hj(

Dj−D̃
Dj

σ̃hj), adjusts for the fact that fewer patients are now enrolled in j.

Term (ii) indicates that if j’s enrollees visit higher-cost hospitals in j’s network if i is dropped, then

p∗ij will be higher.

The second line of (3), representing changes to hospital i’s gains from trade upon disagreement

with MCO j, is also composed of 2 terms. Term (iii) represents hospital costs per enrollee; every

unit increase in costs results in a τM unit increase in p∗ij . Finally, (iv) represents the change in

hospital i’s reimbursements from other insurers n 6= j. The more that consumers from other MCOs

visit hospital i if j drops i (which can occur if consumers switch away from j to another MCO in

order to access i), then the greater is D̃n −Dn > 0 and hence the higher are negotiated prices p∗ij .

This term also highlights the externalities across bargains: the higher hospital i’s negotiated prices

with MCO n, the higher will be i’s prices with MCO j if j and n are substitutable.

It is worth noting that if enrollees were captive to their MCOs and they did not switch insurers

upon any network change (or there were limited insurer competition), so that Dn(G\ij, ·) = Dn(G, ·)
for all i, j, n, then (3) would be well approximated only by:

p∗ijσij =τH

(φj − φ̃j)−
 ∑
h∈Gj\ij

p∗hj(σhj − σ̃hj)

+ τM [c̄iσij ] + εij . (5)

Thus, finding a relationship between prices and terms on the right-hand-side (RHS) of (3), but not

(5), would suggest that employers and/or their enrollees are not captive to their MCOs, and, thus,

insurer competition is relevant for bargaining.

Matrix Notation For each link a ∈ G, let aH be the associated hospital and aM be the associated

MCO. We can express (3) in vector/matrix notation as:

p� σ = τH [φ∆︸︷︷︸
(i)

−Σ∆p︸ ︷︷ ︸
(iia)

−D∆ � (Σp)︸ ︷︷ ︸
(iib)

] + τM [c� σ︸ ︷︷ ︸
(iii)

−ΣD(p− c)︸ ︷︷ ︸
(iv)

] + ε (6)
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where � is the Hadamard (element-by-element) product; p,σ, c, ε are N × 1 vectors over all links

a ∈ G, where N = |G| (the number of contracts between all insurers and hospitals); φ∆ and D∆

are N × 1 vectors with:

φ∆
a =

DaM (G, ·)φaM (G, ·)−DaM (G \ a)φaM (G \ a, ·)
DaM (G, ·)

,

D∆
a =

DaM (G, ·)−DaM (G \ a)

DaM (G, ·)
;

and Σ,Σ∆, and ΣD are N ×N matrices with:

Σa,b =σbH ,aM (G \ a) if aM= bM ; 0 otherwise

Σ∆
a,b =(σbH ,aM (G)− σbH ,aM (G \ a)) if aM= bM , aH 6= bH ; 0 otherwise

ΣD
a,b =

DbM (G, ·)σaH ,bM (G)−DbM (G \ a, ·)σaH ,bM (G \ a)

DaM (G, ·)
if aM 6= bM ; 0 otherwise.

The elements of (6), labelled (i) − (iv), correspond to the elements of (3), where (ii) has been

decomposed into two different parts, (iia) and (iib). Equation (6) will inform our estimation

approach in the next section. Since negotiated prices enter both sides of (6), we will estimate this

system of equations using instruments.

3 Empirical Application

We use the price equation in (6) to generate a regression equation, with the primary goal of

identifying the impact of insurer competition on negotiated hospital prices. Some of the inputs

to the equation (i.e., prices and hospital costs) are observed in our data. We estimate a model of

hospital demand and use it, together with data on hospital and insurer characteristics, to predict as

many of the other inputs as possible (i.e., the LHS and terms (iia) and (iii) of the equation). However

the remaining terms—i.e., those that relate to the change in insurer demand, and insurer premiums,

when a hospital is dropped—cannot be predicted so easily. These are the key terms for our analysis,

since they capture the impact of insurer competition. Controlling for them explicitly would involve

estimating a model of insurer demand and premium-setting, and then using estimates to predict

counterfactual market shares and premiums. We choose not to adopt this approach because we

do not have access to all the data needed to credibly estimate insurer demand. For example, we

cannot credibly estimate preferences over many large insurers, such as Health Net and Pacificare,

as they are not observed in our data. Similarly, only limited data on premiums are available, and

there is significant (unobserved) variation across employers in whether they are self-insured and

the level of employee contributions.

Instead we use our measure of the competitiveness of Kaiser Permanente in the hospital’s mar-

ket as the primary variable that captures changes in insurer demand when a hospital is dropped.

Specifically, we use the share of each hospital’s patients who live within 3 miles of a Kaiser Per-
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manente hospital. The second measure is the change in consumer willingness to pay for MCO j’s

network if hospital i is removed. This term, ∆WTPij , was introduced in Capps et al. (2003), and

accounts for both the “quality” of a hospital relative to others in the market and the existence of

a viable substitute in the network. The idea behind including these variables in the price equation

is that, the closer patients are to a Kaiser hospital, the more likely they are to switch insurers if a

hospital is dropped from MCO j’s network. Also the more attractive the hospital, the more likely

they are to switch insurers if it is dropped. Both these terms, as well as their interaction, should

therefore affect how an insurer’s demand Dj and premium φj would change, subsequent to a dis-

agreement with a hospital. The coefficients on the Kaiser terms are the key parameters of interest.

The interaction of our Kaiser variable with ∆WTPij will help us disentangle the differential price

effects of insurer competition, since hospitals that are more attractive to consumers may have a

greater ability to leverage the resulting reduction in the insurer’s outside option.

In this section we first discuss the data, from which negotiated prices, average hospital costs,

and insurer-hospital networks can be inferred. We then briefly describe the model of consumer

demand for hospitals, from which we predict the share of consumers who visit any hospital h from

MCO j after a change in the observed network (i.e., {σhj(G \ ij)}∀i,h∈Gj,M;j∈M), and the ∆WTPij

variable. Finally, we describe the variables relating to Kaiser in more detail and, in Section 3.5,

present the estimating equation based on (6) and our constructed variables.

3.1 Data

Our main dataset comprises 2004 claims information for enrollees covered by the California Public

Employees’ Retirement System (CalPERS), an agency that manages pension and health benefits

for more than one million California public employees, retirees, and their families. The claims are

aggregated into hospital admissions and assigned a Medicare diagnosis-related group (DRG) code.

In 2004, CalPERS offered access to a Blue Shield HMO (BS), a Blue Cross PPO (BC), and a Kaiser

HMO plan. For enrollees in BS and BC, we observe hospital choice, diagnosis, and total prices

paid by each insurer to a given medical provider for the admission. We have 35,289 admissions

in 2004 for enrollees in BS and BC; we do not observe prices or claims information for Kaiser

enrollees. We use this admissions-level data to estimate a model of consumer demand (described in

the next section), conditional on the set of hospitals in the BS and BC networks (obtained directly

from these insurers for 2004). We divide each price by the admission’s 2004 DRG Medicare weight

to account for differences in relative values across diagnoses and find the average adjusted price

for each insurer-hospital pair.14 We address price measurement error concerns by including only

hospital-insurer price observations for which we observe 10 or more admissions in 2004; we also

winsorize the data at the 5% level to control for outliers before constructing average prices.

14Hospital contracts with commercial insurers are typically negotiated as some combination of per-diem and case
rates, and payments are not necessarily made at the DRG level. At the same time, Medicare DRG weights serve as
an approximate means of controlling for variation in casemix and resource utilization across hospitals in constructing
comparable average prices. See also the discussion in Gowrisankaran et al. (2013).
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We use hospital characteristics, including location and costs, for hospitals from the American

Hospital Association (AHA) survey.15 We use demographic information from the 2000 Census.

We base our market definition on the California Office of Statewide Health Planning and De-

velopment (OSHPD) health service area (HSA) definitions. There are 14 HSAs in California. We

exclude from our analysis hospitals in the BS and BC networks that are located in the 3 HSAs

containing San Francisco, Oakland, and Los Angeles. These regions have high concentrations of

Kaiser Hospitals but are also much more urban than other regions in our data and probably differ-

ent from other areas in unobserved ways, and we are concerned that hospital pricing in these areas

may be subject to unobservables that are difficult to control for.16 Our final sample contains 233

hospital-insurer price observations (136 from BC, 97 from BS), comprising 149 unique hospitals.

3.2 Consumer Demand for Hospitals

Our model of consumer demand for hospitals closely follows Ho (2006). That paper estimates

demand for hospitals using a discrete choice model that allows for observed differences across

consumers. With some probability, consumer k (with type defined by age, gender, and zip code of

residence) becomes ill. His utility from visiting hospital i, given diagnosis l, is given by:

uk,i,l = δi + ziυk,lβ + εDk,i,l

where δi are captured by hospital fixed effects, zi are observed hospital characteristics, υk,l are

observed characteristics of the consumer such as diagnosis and location, and εDk,i,l is an idiosyncratic

error term assumed to be iid Type 1 extreme value. Hospital characteristics include location, the

number of beds, the number of nurses per bed, and an indicator for for-profit hospitals. The terms

ziυk,l include the distance between the hospital and the patient’s home zip code, and interactions

between patient characteristics (seven diagnosis categories, income, and a PPO dummy variable)

and hospital characteristics (teaching status, a FP indicator, the number of nurses per bed, and

variables summarizing the cardiac, cancer, imaging and birth services provided by the hospital).

There is no outside option, since our data includes only patients who are sick enough to go to a

hospital for a particular diagnosis.17 We estimate this model using standard maximum likelihood

techniques and our micro (encounter-level) data from CalPERS. We observe the network of each

insurer and, therefore, can accurately specify the choice set of each patient. We assume that the

enrollee can choose any hospital in his HSA that is included in his insurer’s network.

The model predicts that consumer k, who lives in market m, is enrolled in MCO j, and has

15Our measure of costs is average payroll per admission; using total expenses per admission and weighting by the
average DRG weight per admission by hospital did not significantly change our results (or estimates for any non-cost
terms).

16We show below that our findings are robust to the inclusion of all markets as well.
17The WTP variable incorporates the probability of admission to hospital for each diagnosis, conditional on age

and gender, separately from the hospital demand estimates.
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diagnosis l, visits hospital i with probability:

σkijm|l(G) =
exp(δi + ziυk,lβ)∑

f∈Gjm exp(δf + zfυk,l)

(where ziυk,l again includes individual, diagnosis, and hospital interactions, including distance).

Consequently, by taking a weighted average over the commercially insured population of the market,

we obtain the share of MCO j’s enrollees who visit hospital i in market m:

σijm(G) =
∑
k∈m

Nkm

Nm
γak
∑
l∈L

γklσkijm|l(G)

where Nk,m is the commercially-insured population of market m in age-gender-zip code group

k, γak is the probability that consumer k is admitted to any hospital (conditional on age and

gender) and γk,l is the probability of diagnosis l, conditional on admission, age, and gender. We

compute the probabilities {γak}∀k by comparing the total number of admissions from commercial

insurers in California, by age and gender, from OSHPD discharge data 2003 to Census data on the

total population commercially insured.18 Probabilities {γk,l}∀k,l are the realized probabilities for

commercially insured patients in California, taken from OSHPD discharge data for 2003.

Further details on the demand model, together with estimates, are given in Appendix A.

3.3 Willingness-to-Pay

We follow previous papers, such as Capps et al. (2003) and Farrell et al. (2011), by using a measure

of consumer willingness-to-pay (WTP ) for a hospital in a particular network as a proxy for the

change in consumer surplus when the hospital is dropped from a network. We use the estimated

demand model to predict the ∆WTP variable for our application, which is the change in consumer

WTP when a hospital is added to the network observed for Blue Shield or Blue Cross in 2004.

Given the assumption on the distribution of εDk,i,l, individual k’s expected utility from the hospital

network offered by plan j when he has diagnosis l can be expressed as:

EUk,j,l(Gj,m) = log

 ∑
h∈Gj,m

exp(δ̂h + zhυk,lβ̂)


where Gj,m is the set of hospitals offered to enrollees in plan j in market m. The change in expected

utility from having hospital i ∈ Gj,m (for a given diagnosis l) in the network is then given by:

∆EUk,i,j,l = EUk,j,l(Gj,m)− EUk,j,l(Gj,m \ ij)
18An alternative method, using CalPERS data for both numerator and denominator, generated similar results.
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Prior to enrolling in insurer j’s plan (and, thus, prior to knowing whether or not he will be sick),

individual k’s expected benefit from having i in network is given by:

∆WTPk,i,j = γak
∑
l

γk,l∆EUk,i,j,l

Following the same approach as the construction of σijm(G), we take a weighted average over the

commercially insured population of the market to generate the following measure we use in our

analysis:

∆WTPi,j,m =
∑
k∈m

Nk,m

Nm
∆WTPk,i,j

It is worth stressing that although we refer to ∆WTPi,j,m as the change in consumers’ willingness-

to-pay for insurer j’s network upon losing hospital i, it is measured in utils, not dollars, in this

specification. Nonetheless, the relative differences across hospitals’ ∆WTPi,j,m values is informa-

tive. In particular, this value measures both hospital quality and substitutability. For example, a

hospital with a larger value of δi will tend to have a higher value of ∆WTPi,j,m. However, this is

mitigated if insurer j has a hospital i′ with similar fixed effect δi′ and characteristics zi′ , since i

and i′ are then closer substitutes for one another.19

We note that the estimated demand model is valuable for this application for three reasons.

First, as in Capps et al. (2003), Ho (2006), and other papers, it generates a micro-founded measure

of the attractiveness of each hospital to insurer j. Second, because we observe enrollees’ choice

sets, we are able to obtain estimates for the actual population of interest (Blue Shield and Blue

Cross HMO and PPO enrollees), rather than estimating demand for a different population (e.g.,

indemnity enrollees, who have unconstrained choice sets) and assuming that preferences are fixed

across populations, conditional on observables, as in many previous papers. Finally, allowing

expected utility to vary explicitly by age and gender, through the ziυk,l terms, enables us to

account for changes in selection of particular types of patients across other hospitals, when hospital

i is dropped. For example, the predicted change in insurer payments to other hospitals (term

(iia) in the main regression equation) accounts for predicted changes in the proportions of different

enrollee types visiting each hospital and their probabilities of admission, after this network change.

3.4 Measure of Insurer Competition: Kaiser Permanente

Our measure of insurer competition is intended to capture the extent to which insurer j’s demand,

Dj , is affected by losing a given hospital i from its network. We use the proximity of consumers to

a hospital owned by Kaiser Permanente. Kaiser is a vertically integrated MCO based in California.

It was originally established to provide insurance for construction, shipyard, and steel mill workers

for the Kaiser industrial companies in the 1930s, and was opened to the public in 1945. It has been

19We weight by the commerically insured population (from the Census data), as opposed to the population onboard
each insurer (which can be estimated from our data), for two main reasons: (i) some age-sex-zip code bins are not
well populated in our data, and (ii) weighting by the market population will ensure our average ∆WTP measure is
invariant to the potential selection of observable consumer types onto insurance plans.
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Figure 1: Exposure to Kaiser Hospitals

10mi

Kaiser
>20 %
>10 %
> 5 %
< 5 %

Notes: Kaiser (diamonds) and non-Kaiser (circles) hospitals near (clockwise from top-left): Orange County, Sacra-

mento, Fresno, and Stockton. Non-Kaiser hospitals in LA county are not displayed. Percentages indicate the share

of hospital discharges of patients from zip codes within 3 miles of a Kaiser hospital.

extremely successful and is now the largest MCO in the US; it had 37% of the HMO market in

California in 2004.

The idea behind our identification strategy is that, the closer hospital i’s patients are to a

Kaiser hospital, the more likely they are to switch to Kaiser insurance on losing access to hospital

i. This requires Kaiser to be a viable substitute for other commercial MCOs in the relevant markets.

The assumption seems reasonable based on enrollment data from CalPERS: there is little evidence

that Kaiser enrollees are observably different from consumers who select into other MCOs. The

average salary of CalPERS employees who were enrolled in Kaiser in 2004 was $48,305 (standard

deviation $19,390) compared to an average of $50,357 (standard deviation $19,918) for Blue Shield

and $55,707 (standard deviation $23,706) for the largest Blue Cross plan.20 The average family

size for all three plans was between 2.12 and 2.40 (with Kaiser in the middle at 2.19), and the

mean age of the primary employee was 51.5 in Kaiser, compared to 47.6 in BS and 51.4 in BC

choice. The summary statistics in Section 4 demonstrate that Kaiser hospitals are also similar

to non-Kaiser hospitals on most observable dimensions. Historically Kaiser may not have been

considered a viable substitute for other commercial insurers by some consumers, but many details

of its service offerings and its enrollee characteristics are now very similar to those of other plans.

Our Kaiser variable measures the share of hospital i’s patients who come from zip codes that are

20Salary data were provided by CalPERS in 16 salary bands. These numbers are imputed average salaries in each
insurer.
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within 3 miles of a Kaiser Permanente hospital (though our results are robust for other distances

and using travel times instead of distance-based measures). Specifically, we use the OSHPD 2003

data to define the catchment area of each hospital as the set of zip codes from which its commercially

insured patients travel. We then construct a weighted average across the catchment area using the

number of commercial admissions from that zip code in the OSHPD data. This variable takes

advantage of the fact that Kaiser’s convenience to patients differs substantially across geographic

areas, since it is a vertically integrated insurer with only 27 hospitals in California in 2004, and

it rarely offered access to hospitals outside its own organization. We hypothesize that consumers

living in zip codes within easy reach of a Kaiser hospital will be much more willing to switch to

Kaiser than other consumers. Our empirical approach is based on this hypothesis, and it also

assumes that consumer willingness to switch to other insurers (which are not explicitly controlled

for in our regression) varies less discretely across zip codes and can be accounted for using HSA

fixed effects.

Eleven out of 149 unique hospitals in our sample have greater than 20% of their discharged

patients from zip codes within 3 miles of a Kaiser hospital; 15 have between 10-20% share; and 17

are between 5-10%. Figure 1 displays this variation in 4 different geographic areas of California

(Orange County, Sacramento, Fresno, and Stockton) by plotting locations of Kaiser and non-Kaiser

hospitals, with different levels of “exposure” to Kaiser being designated by different shaded circles.

Note that although physical proximity of a non-Kaiser hospital to a Kaiser hospital is correlated

with our Kaiser variable (and indeed, our analysis is robust to this alternative definition of exposure

to Kaiser), our variable captures more than just physical distance. For example, in Fresno, although

there are two hospitals near the center of the city (designated by two light grey circles) that are

closer in distance to the Kaiser hospital (designated by a black diamond) than another hospital to

their east (designated by a dark grey circle), this further hospital to the east has a greater share of

patients who live close by the Kaiser hospital.

3.5 Regression Equations

Equations (3)-(6), from the bargaining model developed in the previous section, motivate our main

regression equation:

Pij︸︷︷︸
p̂ij σ̂ij

= α1 Costij︸ ︷︷ ︸
c̄iσ̂ij

+α2 ∆Pmtj,\ij︸ ︷︷ ︸∑
h∈Gj\ij

p̂hj( ˆσhj−ˆ̃σhj)

(7)

+α3∆WTPij + α4Kaiseri + α5Kaiseri ×∆WTPij

+ Pmtj,\ij︸ ︷︷ ︸∑
h∈Gj\ij

p̂hj(˜̂σhj)

[α6 + α7Kaiseri + α8Kaiseri ×∆WTPij ]

+HSAm +BSj + β × demogsi + εij .
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Here Pij ≡ p̂ij σ̂ij is the dependent variable in (6) and corresponds to the observed payment made

to hospital i by MCO j per enrollee.21,22

Two of the right-hand-side variables in equation (6) are included explicitly in the regression:

these are hospital i’s average cost per enrollee of MCO j (Costij ≡ c̄iσ̂ij), and the change in MCO j’s

payments per enrollee to other hospitals when hospital i is dropped from j’s network (∆Pmtj,\ij).

The cost term, like the prices, is weighted by σ̂ij so that it represents the hospital’s predicted cost

per MCO enrollee (generated using i’s share of j’s enrollees taken from the demand model) rather

than per admission. ∆Pmtj,\ij uses the demand system to infer other-hospital market shares when

i is dropped from j’s network, and combines these estimates with prices from the CalPERS data.

It is worth noting that {α1, α2} correspond to {τM ,−τH}, the insurer and hospital bargaining

parameters, in (6). We later test and cannot reject the restriction α1 − α2 = 1, thereby providing

a check on our model specification.

The second and third lines in (7) contain variables that serve as proxies for the terms in (6)

involving changes in insurer demand (Dj(G, ·)−Dj(G\ij, ·)) and premiums (φj(G)−φj(G\ij)) upon

disagreement: that is, terms (i), (iib), and (iv). The terms in the second line proxy for the change

in MCO j’s revenues, and the change in payments to hospital i from other insurers, when j drops

i. In order, they are ∆WTPij ; our measure of Kaiser competitiveness Kaiseri; and an interaction

term.23,24 The third line controls for the change in MCO j’s payments to other hospitals, and

takes advantage of the fact that one element of this change (Pmtj,\ij) can be predicted directly

from the hospital demand estimates. We also include HSA fixed effects HSAm, an indicator

that distinguishes between insurers BSj , and demographic controls for the hospital’s zip code,

demogsi.
25 We discuss the role of these control variables in the following section.

3.6 Estimation and Identification

The econometric error in (7) εij ≡ εij + νij includes two sources of error. The first, εij , is the

MCO-hospital-specific cost shock defined in (4). The second, νij , represents the error introduced

by using proxies for terms (i), (iib), and (iv) in our estimating equation. It will contain any elements

21As in the construction of our ∆WTP measure, we construct σ̂ij using weighted averages over age groups and
diagnoses.

22We omit the interaction term Pmtj,\ij×∆WTPij in our main specification. Including it does not yield a significant
coefficient and does not significantly change any other estimate in both OLS and IV specifications. Furthermore,
there is a weak instrument concern when this variable is included.

23We drop the market subscript m in ∆WTPij with the understanding that this term remains market-specific.
24Much of the previous literature on hospital-insurer bargaining has used ∆WTPij to proxy for a MCO’s premium

change when a hospital is removed from the network, absent insurer competition effects (Capps et al. (2003) and
Gowrisankaran et al. (2013)). Note that this requires a somewhat different insurer objective function than that
assumed in our paper. For example insurers could be assumed to be perfect agents for their enrollees; in that case
removing a hospital from the network will lead to a premium reduction, even if enrollees cannot change plans in
response. However, as already noted, this variable is likely also to help capture the extent to which an insurer’s
demand is influenced by the network change.

25We have data for only 2 insurers, so our insurer fixed effects comprise an indicator for BS only. Demographic
controls include population per square mile in the hospital’s county and the following variables (measured both in
the hospital’s zip code and also as a weighted average across zips in its catchment area): median income, percent
white, percent black, percent Hispanic, and percent of the population aged 55-64.

18



of these which are not controlled for by the observables on the last three lines of equation (7). In

essence, νij captures unobserved differences in how consumers substitute across insurers, and other

variation in demand and/or costs, that we have not explicitly controlled for and that could affect

prices.

Identification of Kaiser Terms

Identification relies on the plausible exogeneity of Kaiseri with respect to νij . We take several steps

to account for a number of different possible unobservables. We first consider the possibility that

Kaiser could have responded to local demand shocks when choosing locations for its hospitals, and

these demand shocks could also have affected prices. Table 11 in the Appendix provides information

on the history of the 27 Kaiser hospitals in California that were open in 2004. Most of the hospitals

were new constructions (rather than acquisitions) that were opened during or before the 1970s.

Only 4 of the 27 were opened after 1990. Given this long history, and the fact that 10- or 15-year

lagged hospital locations are unlikely to be correlated with 2004 demand shocks, it seems unlikely

that our results are caused by endogenous location choices for Kaiser hospitals. As a robustness

test, we repeat the analysis using the location of Kaiser hospitals in 1995, rather than the 2004

locations used in the main analysis; this test has little effect on our estimates.

It is also possible that the location and characteristics of non-Kaiser hospitals responded to

the presence of Kaiser hospitals. We assume that the ∆WTPij variable in our regression equation

adequately controls for any such effects. As it is derived from a detailed model of consumer

demand for hospitals, the ∆WTPij variable captures the impact of any hospital characteristics

that consumer choice responds to, as well as the extent to which a hospital is substituted for

another within any particular insurer’s network.

Other unobserved factors that are likely to have an impact on prices include the availability of

other insurers and the size of the menu of insurance plans offered by employers in the area. As

noted in Dafny et al. (2013), employers’ plan menus are often small. Indeed, in their national data

in 2004 only around 25% of large employers offered more than 2 plans to their employees. While

employers can change their menus in response to changes in hospital networks, variation in current

menus across employers will clearly affect the ability of consumers to switch plans. Thus, if either

other-insurer presence, or employer plan menus, are correlated with Kaiser presence, they will affect

the interpretation of our estimates. We assume that employer menus are sufficiently fixed within-

market that the variation is captured by our HSA fixed effects and demographic controls. The HSA

fixed effects are also assumed to control for levels of competition from other insurers. This amounts

to an assumption that Kaiser’s attractiveness within an HSA is much more localized than that of

other insurers, because other insurers contract with hundreds of hospitals in California as opposed

to just 27 for Kaiser. Furthermore it is unlikely that any within-HSA variation in other-insurer

attractiveness to consumers is correlated with the 3 mile radii used to identify Kaiser attractiveness

in our analysis.

Finally, we note that Kaiseri will be correlated with prices p∗in negotiated by hospital i, with
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other insurers n in (2). Consequently, we interpret the impact of Kaiseri on prices between hospital

i and insurer j as the net effect across all of i’s bargains.

Selection Concerns

Another potential concern is that Kaiser could select particular types of enrollees, leaving other

types to be treated by nearby non-Kaiser hospitals; this may affect the interpretation of our results.

We address the possibility that Kaiser could select based on enrollee sickness level by using DRG-

adjusted admission prices to control for differences in resource utilization across patients. We

also note that the correlation between average hospital DRG weights and our Kaiser measure is

low (0.08), implying that there does not seem to be significant selection on sickness level in our

sample. Furthermore, including hospital costs in the regression equation controls for the possibility

that Kaiser selects enrollees with a particularly high or low preference for service, leaving nearby

non-Kaiser hospitals to treat the remaining selected sample.

One additional selection story is that Kaiser selects enrollees based on price sensitivity, implying

an effect on optimal non-Kaiser prices. We note above that Kaiser and non-Kaiser enrollees in our

data do not differ on average on demographics such as income, age, and family size, making such

a story seem fairly unlikely. In addition, such selection seems more likely to affect premiums than

hospital prices, since the former are the primary prices faced by the enrollee. We acknowledge that

hospital prices could be affected in cases where the insurer charges a co-insurance rate, rather than

a fixed copay (i.e., some fixed proportion of the hospital price is paid by the patient). Since in our

data Blue Cross uses co-insurance rates while Blue Shield uses only copays, we run our analysis

using only Blue Shield prices and enrollees and find that our results are robust, thereby mitigating

this concern.

Instruments for the Price Terms

We estimate (7) using generalized method of moments (GMM) under the assumption E[ε|Z] = 0,

where Z is a vector of instruments. Since prices are endogenous, we include in Z only RHS

variables in (7) that are not functions of prices: that is, we exclude any variable that is a function

of ∆Pmtj,\ij or Pmtj,\ij . We also include the following instruments for the price terms:∑
h∈Gj\ij

c̄h(σ̂hj − ˆ̃σhj),
∑

h∈Gj\ij

c̄h(ˆ̃σhj),

∑
h∈Gj\ij

∆WTPhj(σ̂hj − ˆ̃σhj),
∑

h∈Gj\ij

∆WTPhj(ˆ̃σhj),

interacted with a constant, ∆WTPij , Kaiseri, and ∆WTPij ×Kaiseri.26 These excluded instru-

ments, which comprise functions of costs and ∆WTPhj of other hospitals (h 6= i) in an insurer’s

26We use two measures of costs in our instruments, comprising average payroll and average total expenditures
per admission computed from the AHA survey data. Interactions with these costs and ∆WTP measures for other
hospitals on a network provide 24 excluded instruments in Z.
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Table 1: Summary Statistics

Mean S.D.

Pij($ per enrollee) 25.10 38.17
∆WTP 0.11 0.21
∆Pmtj\ij ($) -25.03 34.03
Pmtj\ij ($) 348.16 97.17
Costij ($ per enrollee) 20.77 26.79
Blue Shield 0.42 0.49
(3mi) Kaiseri (2004) 0.05 0.10
(3mi) Kaiseri (1995) 0.04 0.08
N 233

Notes: Summary statistics on the dataset used to run price regressions. N=233 hospital-insurer pairs. All costs and

prices are rescaled to $ per enrollee (accounting for probability of admission to hospital, conditional on age and

gender)

network, will be correlated with an insurer’s payments to other hospitals.27

Recall that εij ≡ εij + νij , which are defined at the beginning of Section 3.6. As we have

assumed that ωij ≡ cij − c̄i is independent and mean zero, εij (defined as a function only of ωij

in (4)), will be orthogonal to non-price variables on the RHS of (7) and our set of instruments.

Furthermore, we argue that functions of other hospital costs and ∆WTP s have little additional

explanatory power (after controlling for the existing regressors in (7)) for the terms (i), (iib), and

(iv) comprising MCO j’s change in demand and premiums upon losing a hospital i. Hence, these

functions are uncorrelated with νij , implying the validity of our instruments.

4 Estimation Results

We begin with summary statistics of our data in Table 1. The average price paid per enrollee is

$25.10 (standard deviation 38.17); this corresponds to an average price per patient of $5978 (and an

average probability that an enrollee is admitted to a particular hospital of 0.004). When hospital

j is dropped from the network, the insurer pays other hospitals an additional $25.03, on average,

and total other hospital payments increase to $348.16. We use payroll expenses per admission as

our hospital cost measure: we regard this as a reasonable proxy for resource use on the particular

patient. The mean expense per enrollee is $20.77 (standard deviation $26.79). Finally the mean

∆WTPij is 0.11 (standard deviation 0.21), and the mean fraction of a hospital’s patients that are

within 3 miles of a Kaiser hospital is .05 (standard deviation .10) in 2004.

Table 2 compares the characteristics of Kaiser hospitals to those of the hospitals included in our

regressions. We exclude from this comparison both non-Kaiser and Kaiser hospitals located in San

Francisco, Oakland, and Los Angeles because these HSAs are not included in our baseline regression

analysis. The table indicates that there are some differences on average between the remaining 12

27Angrist-Pischke first-stage F-statistics for all instrumented variables are greater than 23 except for Pmtj\ij (7.5);
exclusion of this term yielded no statistically significant different estimates for any coefficient in any OLS or IV
specification reported in Tables 3-4.
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Table 2: Characteristics of Kaiser and Other Hospitals

Non-Kaiser Hospitals Kaiser Hospitals

Number of beds 168.5 (126.1) 214.3 (112.6)
Nurses per bed 1.25 (0.53) 1.81 (0.66)
Physicians per bed 0.04 (0.09) 0.52 (0.65)
Offer CT scans 0.64 (0.48) 0.64 (0.50)
Offer PET scans 0.10 (0.30) 0.18 (0.40)
Have a NICU 0.28 (0.45) 0.36 (0.50)
Offer angioplasty 0.28 (0.45) 0.09 (0.30)
Offer oncology services 0.44 (0.50) 0.55 (0.52)

Notes: Summary statistics comparing the hospitals in our price regressions to the Kaiser hospitals in our data. N=149

non-Kaiser hospitals and 12 Kaiser hospitals. Providers located in San Francisco, Oakland and Los Angeles HSAs

are excluded. Characteristics taken from the American Hospital Association data 2003-4.

Kaiser hospitals and the others in our data. Kaiser hospitals are larger, with 214 beds on average,

compared to 169 for other hospitals. They have more nurses per bed and more physicians per bed.

Their service provision is similar to that of other hospitals in many cases: for example, 64% of

both Kaiser and non-Kaiser hospitals provide CT scans. Some services are provided less frequently

by Kaiser hospitals (angioplasty is one example). However the equivalent numbers for Positron

Emission Tomography, one of the highest-tech imaging services listed in our data, are 18% and

10% respectively. Birthing services are also provided in substantially more Kaiser hospitals: 36%

of Kaiser facilities in our data have a neonatal intensive care unit, for example, compared to 28%

of other hospitals. We conclude that there is no clear evidence in our data that Kaiser should be

regarded as a poor substitute for other health insurers.

Tables 3-4 contain our regression results. Standard errors are clustered by hospital.28 Table 3

begins our build-up to the complete equation (7). It excludes the terms that contain Kaiseri and

its interactions, but includes all market, insurer, and demographic controls. We begin in Model

1 of Table 3 by including ∆WTP and hospital i’s predicted cost per enrollee. Our findings are

consistent with the previous literature: we estimate positive and significant coefficients on both

∆WTP and cost variables. When we add ∆Pmtj,\ij in Model 2, it has the expected negative

coefficient (but is insignificant without instrumenting); all coefficients do not significantly change

from Model 1. The signs on all estimates are consistent with the predictions of our bargaining

model laid out in (3).

Model 3 in Table 3 contains our first test of the importance of insurer competition. We add

Pmtj,\ij , which occurs in two places in equation (3): in ∆Pmtj,\ij , and (separately) in an interaction

with ((Dj− D̃j)/Dj). We infer that this term should be significant, conditional on ∆Pmtj,\ij , only

if insurers lose patients upon dropping a hospital. Our OLS results support this, since the coefficient

on Pmtj,\ij is negative and significant. However, the coefficient is small, positive, and insignificant

once instruments are used.

28Clustering by insurer-market resulted in slightly different (due to GMM estimation) but broadly similar estimates,
with the main findings still statistically significant.
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Table 3: Base Price Regressions

(1) (2) (3) (4) (5)
Model 1 Model 2 Model 2 IV Model 3 Model 3 IV

∆WTPij 61.57∗∗∗ 58.06∗∗∗ 53.12∗∗∗ 52.24∗∗∗ 55.14∗∗∗

(10.98) (19.22) (7.498) (18.48) (8.775)

Costij 0.859∗∗∗ 0.791∗∗∗ 0.534∗∗∗ 0.720∗∗ 0.556∗∗∗

(0.119) (0.290) (0.150) (0.281) (0.159)

∆Pmtj\ij -0.0780 -0.324∗∗∗ -0.168 -0.296∗∗

(0.328) (0.125) (0.321) (0.141)

Pmtj\ij -0.0599∗∗∗ 0.0117
(0.0209) (0.0272)

Observations 233 233 233 233 233

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Results for regression equation (7). Dependent variable is expected price per enrollee paid by insurer j to

hospital i. ∆ Pr ice is the change in expected payments to other hospitals, per enrollee, if hospital i is dropped from

the network. “Hospital cost” is the cost of hospital i weighted by the average probability that an enrollee in insurer

j will be admitted to hospital i. ∆WTP is the consumer willingness-to-pay for hospital i to be added to insurer

j’s network; see Section 2 for details. Standard errors are clustered by hospital. All regressions include market and

insurer fixed effects and demographic controls.

Main Results and Magnitudes. Table 4 reports our main results when we add additional

terms meant to proxy for insurer competition. We begin by adding Kaiseri (the share of hospital

i’s patients who live within 3 miles of a Kaiser hospital) and its interaction with Pmtj,\ij . We

hypothesize that the offsetting effects of insurer competition may imply differential effects across

hospitals. We thus add a term interacting ∆WTPij (hospital i’s contribution to MCO j’s network)

with Kaiseri, as well as a triple interaction with both Kaiseri and Pmtj,\ij . The interaction terms

allow the insurer competition effect to differ across hospitals. For example, the effect of Kaiser’s

presence on insurers’ outside options may be greater for more attractive hospitals, perhaps because

consumers face switching costs such as the need to change primary physicians and therefore change

insurers only if very attractive hospitals are dropped.

The columns labeled Model 4 and Model 4 IV in the table report our main results for the OLS

and IV specifications respectively. Both sets of estimates are consistent with our hypothesis. The

Kaiseri ∗∆WTPij coefficient is positive, while its interaction with Pmtj,\ij is negative, and both

are significant at the 1% level. The combined effect of the estimated coefficients (largely driven by

the negative coefficient on Kaiseri) is a negative effect of competition from Kaiser on negotiated

prices for most hospitals. If we consider the hospitals above the 25th or 50th percentile of ∆WTPij ,

increasing the share of patients who have access to a Kaiser hospital within 3 miles of their zip code

by one standard deviation (.10) reduces prices by $400 or $125 on average, respectively (compared to

a mean price of $5978 in our sample). However, due to the positive coefficient on Kaiseri∗∆WTPij ,
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Table 4: Price Regressions including Insurer Competition Measure

(1) (2)
Model 4 Model 4 IV

∆WTPij 45.74∗∗ 49.84∗∗∗

(18.47) (6.231)

Costij 0.733∗∗ 0.328∗∗∗

(0.286) (0.0980)

∆Pmtj\ij -0.196 -0.463∗∗∗

(0.317) (0.0759)

Pmtj\ij -0.0486∗∗ -0.00596
(0.0201) (0.0190)

(3mi) Kaiseri -157.8∗ -299.5∗∗∗

(90.43) (78.23)

(3mi) Kaiseri ∗ Pmtj\ij 0.410 0.816∗∗∗

(0.254) (0.225)

(3mi) Kaiseri ∗∆WTPij 1017.5∗∗∗ 1330.8∗∗∗

(215.4) (195.5)

(3mi) Kaiseri ∗∆WTPij ∗ Pmtj\ij -2.815∗∗∗ -3.556∗∗∗

(0.624) (0.537)

Observations 233 233

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Results for regression equation (7). Standard errors are clustered by hospital. All regressions include market

and insurer fixed effects and demographic controls.

the effect becomes positive for the most attractive hospitals. The average effect for hospitals above

the 75th percentile of ∆WTPij is a price increase of $31 per admission, which increases to $120 for

hospitals above the 90th percentile of ∆WTPij and to $299 for hospitals above the 95th percentile.

Model 4 IV also reports statistically significant coefficients on Costij and ∆Pmtj,\ij . As dis-

cussed earlier, the coefficients on these terms correspond to the bargaining weights {τM ,−τH} of

MCOs and hospitals from our bargaining model in (3). The sum of the absolute values of these

two estimated coefficients equaling 1 cannot be statistically rejected, which is consistent with our

model.

4.1 Robustness

We now discuss the results of several robustness tests.

Alternative Distances. Table 5 reports results from using our full model specification (Model

4 IV) but varying the distance by which the Kaiseri variable is defined: that is, Kaiseri is the

share of hospital i’s patients who live within x miles of a Kaiser hospital. The column labeled 3mi
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Table 5: Price Regressions with Alternative Distances

(1) (2) (3) (4) (5) (6)
2 mi 3 mi 4 mi 5 mi 7 mi 10 mi

∆WTPij 49.23∗∗∗ 49.84∗∗∗ 42.69∗∗∗ 44.66∗∗∗ 40.17∗∗∗ 42.47∗∗∗

(7.497) (6.231) (7.140) (6.702) (7.660) (8.286)

Costij 0.321∗∗∗ 0.328∗∗∗ 0.282∗∗∗ 0.292∗∗∗ 0.269∗∗ 0.278∗∗∗

(0.0989) (0.0980) (0.101) (0.105) (0.106) (0.0996)

∆Pmtj\ij -0.502∗∗∗ -0.463∗∗∗ -0.553∗∗∗ -0.535∗∗∗ -0.578∗∗∗ -0.586∗∗∗

(0.0789) (0.0759) (0.0799) (0.0813) (0.0812) (0.0733)

Pmtj\ij 0.000145 -0.00596 -0.0156 -0.0150 -0.0237 -0.0321∗

(0.0175) (0.0190) (0.0177) (0.0182) (0.0188) (0.0191)

Kaiseri -260.7∗ -299.5∗∗∗ -196.2∗∗∗ -110.5∗∗∗ -74.16∗∗∗ -42.15∗∗∗

(144.1) (78.23) (53.93) (32.23) (21.84) (12.68)

Kaiseri ∗ Pmtj\ij 0.702∗ 0.816∗∗∗ 0.552∗∗∗ 0.298∗∗∗ 0.207∗∗∗ 0.119∗∗∗

(0.404) (0.225) (0.157) (0.0942) (0.0652) (0.0387)

Kaiseri ∗∆WTPij 1477.4∗∗∗ 1330.8∗∗∗ 914.4∗∗∗ 481.3∗∗∗ 317.1∗∗∗ 153.0∗∗∗

(513.8) (195.5) (189.5) (159.1) (99.96) (57.12)

Kaiseri ∗∆WTPij ∗ Pmtj\ij -4.241∗∗∗ -3.556∗∗∗ -2.536∗∗∗ -1.341∗∗∗ -0.909∗∗∗ -0.488∗∗∗

(1.342) (0.537) (0.502) (0.392) (0.244) (0.139)

Observations 233 233 233 233 233 233

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: GMM results for regression equation (7), instrumenting for all price terms, where Kaiseri is the share of

hospital i’s patients who live within x miles of a Kaiser hospital. Standard errors are clustered by hospital. All

regressions include market and insurer fixed effects and demographic controls.

in Table 5 corresponds to column (2) in Table 4. For all reported distances (2, 3, 5, 7, and 10

miles), all the coefficients of interest are statistically significant and have the same sign as in the

baseline specification. We find that the estimated impact of Kaiser is generally mitigated as the

distance increases, but our main result—that high ∆WTPij hospitals negotiate higher prices and

lower ∆WTPij hospitals negotiate lower prices when Kaiser is more competitive—is robust. For

example, as noted above, the average effect of increasing the share of a hospital’s patients within 3

miles of a Kaiser hospital by 10% is a price increase of $299 for hospitals above the 95th percentile

of ∆WTPij . The corresponding effects are price increases of $35 and $6 when the distances are 5

and 7 miles, respectively. Similarly, the average effect for hospitals above the 25th percentile is a

price reduction of $400 at 3 miles, and $242 and $81 at 5 and 7 miles, respectively.

Drive Times. Table 6 reports results where we use a different measure of distance: the drive

time from the patient’s zipcode to the hospital.29 We consider drive times between 10 minutes and

29Drive times are computed by Google from the centroid of each zipcode to each hospital.
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Table 6: Price Regressions with Drive Times

(1) (2) (3) (4) (5)
10 mins 15 mins 20 mins 25 mins 30 mins

∆WTPij 44.39∗∗∗ 42.39∗∗∗ 33.93∗∗∗ 15.31 17.98
(6.871) (7.119) (10.65) (16.66) (16.21)

Costij 0.395∗∗∗ 0.291∗∗∗ 0.290∗∗∗ 0.399∗∗∗ 0.362∗∗∗

(0.111) (0.107) (0.0975) (0.0993) (0.106)

∆Pmtj\ij -0.493∗∗∗ -0.554∗∗∗ -0.601∗∗∗ -0.595∗∗∗ -0.611∗∗∗

(0.0835) (0.0818) (0.0696) (0.0688) (0.0697)

Pmtj\ij -0.00484 -0.0183 -0.0435∗∗ -0.0464∗∗ -0.0251
(0.0179) (0.0181) (0.0199) (0.0216) (0.0215)

Kaiseri -154.7∗∗ -86.17∗∗∗ -46.09∗∗∗ -27.12∗∗ -11.93
(71.07) (27.19) (14.90) (13.17) (12.78)

Kaiseri ∗ Pmtj\ij 0.423∗∗ 0.243∗∗∗ 0.123∗∗∗ 0.0643 0.0212
(0.203) (0.0826) (0.0469) (0.0432) (0.0408)

Kaiseri ∗∆WTPij 474.7∗∗ 321.8∗∗∗ 185.3∗∗∗ 202.8∗∗∗ 163.7∗∗∗

(234.3) (119.1) (45.43) (35.81) (35.63)

Kaiseri ∗∆WTPij ∗ Pmtj\ij -1.553∗∗∗ -0.925∗∗∗ -0.554∗∗∗ -0.600∗∗∗ -0.480∗∗∗

(0.599) (0.286) (0.116) (0.107) (0.103)

Observations 233 233 233 233 233

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: GMM results for regression equation (7), instrumenting for all price terms, where Kaiseri is the share of

hospital i’s patients who live within x minutes’ drive time of a Kaiser hospital. Standard errors are clustered by

hospital. All regressions include market and insurer fixed effects and demographic controls.

30 minutes. The results in every specifcation are comparable to the main specification in that the

Kaiser coefficient is again negative and significant, and its interaction with ∆WTPij positive and

significant.30 As with our linear distance measures, the magnitude of Kaiser’s impact on price is

generally mitigated as drive times increase. Finally, we find that for most drive times, our main

results hold: increasing the share of a hospital’s patients who live within a 15 minute drive time

of a Kaiser hospital by 10%, for example, leads to an average price reduction of $58 or $37 for

hospitals above the 25th or 50th percentile of ∆WTPij . For hospitals above the 95th and 99th

percentile, prices increase by $6 and $161, respectively.

Other Robustness Tests. Table 7 reports the results of several other robustness tests. The

first column contains estimates from the baseline model specification using hospital prices from all

14 HSAs (i.e., not omitting LA, SF, and Oakland); this provides 341 hospital-insurer observations,

representing 213 unique hospitals. Our finding that the impact of Kaiser is most positive for

30Our results are also robust to using drive distances, again computed by Google, instead of drive times.
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Table 7: Additional Robustness Tests

(1) (2) (3)
All Mkts 95 Kaiser Systems

∆WTPij 48.61∗∗∗ 49.98∗∗∗ 46.31∗∗∗

(7.170) (5.971) (5.399)

Costij 0.266∗∗∗ 0.292∗∗∗ 0.397∗∗∗

(0.0580) (0.0988) (0.0995)

∆Pmtj\ij -0.515∗∗∗ -0.493∗∗∗ -0.459∗∗∗

(0.0573) (0.0771) (0.0725)

Pmtj\ij 0.00171 0.000902 0.00520
(0.0166) (0.0186) (0.0184)

(3mi) Kaiseri -103.4∗ -155.4∗∗ -146.1∗∗

(56.35) (72.87) (61.27)

(3mi) Kaiseri ∗ Pmtj\ij 0.274∗ 0.408∗ 0.389∗∗

(0.159) (0.211) (0.175)

(3mi) Kaiseri ∗∆WTPij 713.9∗∗∗ 1018.5∗∗∗ 1049.7∗∗∗

(174.9) (182.6) (145.3)

(3mi) Kaiseri ∗∆WTPij ∗ Pmtj\ij -1.561∗∗∗ -2.697∗∗∗ -2.795∗∗∗

(0.417) (0.511) (0.414)∑
h∈Si\i Phj -0.0125

(0.0102)∑
h∈Si\i Costhj 0.0501∗∗

(0.0238)

Observations 341 233 233

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Columns (1)-(2) report GMM results for regression equation (7), and Column (3) reports GMM results for

regression equation (10) (in the Appendix). All specifications instrument for all price terms, where Kaiseri is the

share of hospital i’s patients who live within 3 miles of a Kaiser hospital. Column (1) includes all HSAs in CA;

Column (2)-(3) omits LA, SF, and Oakland HSAs. Column (2) uses only Kaiser hospitals opened prior to 1995 in

defining distance measures. Column (3) allows hospital systems to bargain jointly, and redefines terms ∆Pmtj\ij ,

Pmtj\ij , and ∆WTPij to reflect that disagreement between hospital i and MCO j results in all hospitals in i’s

system (denoted Si) being removed from j’s network. Standard errors are clustered by hospital. All regressions

include market and insurer fixed effects and demographic controls.

the highest ∆WTP hospitals is robust to this change in sample. However now the estimated

distribution of the insurer competition effect is shifted up relative to the baseline specification. The

estimates imply that increasing exposure to Kaiser by 10% leads to an average price reduction for

very low-∆WTPij hospitals; the average effect for hospitals above the 10th percentile of ∆WTPij

is a price reduction of $304. However the same increase in Kaiser exposure leads to an average

price increase of $232 for hospitals above the 50th percentile of ∆WTPij , and an increase of $429
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for those above the 95th percentile of ∆WTPij . We surmise this may be due to consumers in

the markets we added being more willing to switch to Kaiser upon losing access to a hospital,

thereby emphasizing the positive outside option effect of bargaining when we include these urban

markets. This difference in consumer behavior could be due to Kaiser’s longer history in LA,

SF, and Oakland, which may generate greater consumer familiarity with its insurance products.

Alternatively, Kaiser’s greater attractiveness may be due to its higher density of hospitals and

facilities in these markets, providing enrollees with access to multiple Kaiser locations.

To account for the possibility that recently opened Kaiser hospitals might have located based

on demand shocks that could influence hospital prices, column 2 of Table 7 repeats our analysis

using Kaiseri variables constructed from locations of Kaiser hospitals active in 1995. As discussed

in Section 3.6, using lagged locations would be appropriate if current demand unobservables could

not be anticipated more than a decade in advance. There were 26 active Kaiser hospitals in 1995

and 25 of these were active in both 1995 and 2004.31 Column (2) of Table 7 reports the results of

this robustness test using the same (3 mile) definition of Kaiser proximity as before. The estimates

imply very similar effects to our main specification. The average effect of increasing proximity to

Kaiser by 10% is a price reduction of $124 for hospitals above the 50th percentile of ∆WTPij , and

an average price increase of $249 for those above the 95th percentile of ∆WTPij .

Our final robustness test allows for the possibility that hospitals jointly negotiate as part of a

system, and that disagreement between an MCO and a hospital system S results in all hospitals

in that system being removed from the MCO’s network. If this is the case, misspecification of the

outside options in our baseline bargaining model might bias our main findings. In Section B of the

Appendix, we discuss how the model in Section 2 can be modified to allow for hospital systems

jointly negotiating with insurers, and we derive a regression equation similar to (7). The main dif-

ferences require (i) redefining terms ∆Pmtj\ij , Pmtj\ij , and ∆WTPij to reflect that disagreement

between hospital i and MCO j results in all hospitals in i’s system (denoted Si) being removed from

j’s network; and (ii) including two additional terms,
∑

h∈Si\i Phj and
∑

h∈Si\iCosthj , to control

for the reduction in profits of other hospitals in hospital i’s system if i and j come to a disagree-

ment. Using the same logic as our other price instruments, we instrument for
∑

h∈Si\i Phj using∑
h∈Si\i ∆WTPhj .

Results from this specification are reported in column (3) of Table 7. Adding the impact of

negotiating as a system changes our estimates very little. The coefficients on ∆WTPij , Kaiseri

and the interaction term, in particular, are statistically indistinguishable from those in column (2)

of Table 4. The other estimated coefficients are also very similar. The estimates imply that the

average effect of increasing proximity to Kaiser by 10% is a price reduction of $73 for hospitals above

the 50th percentile of ∆WTPij , and a price increase of $256 for those above the 95th percentile of

∆WTPij .

31One facility was converted into medical offices only by 2004, and two had opened.
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5 Discussion

Our estimates in all specifications indicate that insurance competition from Kaiser affects negotiated

hospital prices in an economically significant way. The average price impact is negative for most

hospitals but positive for the most attractive hospitals (as measured by ∆WTPij).

One potential explanation for our findings is that stronger competition leads to greater premium

reductions among insurers, thereby shrinking the surplus to be divided between insurer and hospi-

tals and lowering hospital prices.32 However, for the most attractive hospitals, Kaiser’s impact on

an insurer’s loss in enrollment when a hospital is dropped outweighs this negative premium effect.

While less attractive hospitals may be inframarginal for most consumers—for example, dropping

them from a network may not change most consumers’ choice of insurer, even if they live near a

Kaiser hospital—this may not be the case for the most attractive hospitals, as an insurer may lose

a large share of its patients if it competes closely with Kaiser and one of the best hospitals leaves

its network.33,34

To further unpack the mechanism through which Kaiser and insurer competition influence

negotiated prices, we would ideally wish to explicitly model the impact of insurer competition on

the pass-through of hospital prices. This is an additional effect of insurer competition, and capturing

it in the bargaining model would require relaxing our maintained assumption that premiums do

not respond to small changes in negotiated prices: that is, ∂φk/∂pij ≈ 0. Unfortunately, if we

explicitly account for the influence of the pass-through of negotiated prices on premiums, we can

no longer separate the price paid by MCO j to hospital i from other terms in the bargaining

first order condition in (2). Thus, including this effect would require a different approach than

the straightforward regression analysis used here. However, this effect is captured in our empirical

analysis. Insofar as there is a negative impact of insurer competition on the ability of insurers to pass

hospital price increases through to premiums, this effect will also be picked up in the estimated

Kaiser coefficient in our equation. This is still consistent with our interpretation that Kaiser’s

impact on prices occurs via the insurer competition channel, with any negative impact occurring

through Kaiser’s negative effect on premiums (both reducing the change in the insurer’s revenues

when a hospital is dropped—the main effect we have discussed—and also the pass-through effect).

Thus, the overall effect of Kaiser, as interpreted through the recovered regression coefficients, still

provides information on whether, for particular types of hospitals, the negative effect of insurer

competition on premiums outweighs other effects and consequently depresses negotiated input

32That is, since premium competition is already fiercer in markets where Kaiser is present, the change in insurer
revenues upon losing a hospital (term (i) in equation (3)) may be smaller.

33This is consistent with the existence of switching costs for consumers across insurers.
34We also note two reasons why competition from Kaiser, in particular, could have a smaller or more negative

effect on prices than competition from other insurers. First, by considering Kaiser rather than a different insurer, we
lose the effect of consumers switching plans specifically in order to access a particular hospital that has been dropped
from their plan’s network. Instead a potentially smaller number of enrollees may switch because, given that they
cannot access that hospital, they prefer to choose an entirely different insurer and set of providers. Second, since the
hospital loses patients who switch to Kaiser, it is also worse off if it is dropped from the Blue Shield network. This
might not be the case if we considered a different insurer which itself had a contract with the relevant hospital.
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prices.

6 Concluding Remarks

This paper specifies a theoretical model of hospital-insurer bargaining that allows consumers to

switch insurers in response to the removal of hospitals from an insurer’s network. We use this

model to develop a price regression equation and estimate it using claims data that contains actual

prices paid to hospitals. Our results provide strong evidence that realized prices are consistent

with the bargaining theory: almost every term in the equation has the expected sign, and most are

statistically significant. They also demonstrate that insurer competition to attract enrollees has a

substantial and heterogeneous impact on hospital prices. Though most hospitals negotiate lower

prices when Kaiser is present and offers services nearby, very attractive hospitals (as measured by

their expected utility contribution to an insurer’s network) are able to extract higher payments.

These findings have clear implications for hospital incentives. Hospitals benefit more from

consolidation and from investing in services that are attractive to consumers when insurers are

less concentrated and more competitive. Our results also imply that, contrary to the arguments

made by industry commentators and by some providers, very attractive hospitals may be able to

negotiate high prices even in markets with many insurers. In fact, equilibrium negotiated prices

for such hospitals can be the highest when insurer competition is the most fierce. We conclude

that policy promoting competition between health insurers should take into account the potential

impact on negotiated prices with providers and, in particular, exercise caution in markets with

highly concentrated or extremely desirable health providers.
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A Demand Estimation: Further Details

Our consumer demand model is outlined in Section 3.2. We follow the method in Ho (2006),

estimating demand for hospitals using a discrete choice model that allows for observed differences

across consumers.

We define 5 diagnosis categories using ICD-9-CM codes and MDC (Major Diagnosis Category)

codes, as shown in Table 8. The categories are cardiac, cancer, labor, digestive diseases, and

neurological diseases. The sixth category, ‘other diagnoses,’ includes all other categories in the

data other than newborn babies (defined as events with MDC 15 where the patient is less than 5

years old). The hospital ‘service’ variables are defined using American Hospital Association data

for 2003-2004 (if observations are missing for a particular hospital in one year we fill them in from

the other). These variables summarize the services offered by each hospital; they cover cardiac,

imaging, cancer, and birth services. Each hospital is rated on a scale from 0 to 1, where 1 implies

that the hospital offers the least common of a list of relevant services and 0 implies that it offers

none of the services. Details are given in Table 9.

Table 8: Definition of Diagnosis Categories

Category MDC or ICD-9-CM codes

Cardiac MDC: 05 (and not cancer)
ICD-9-CM: 393-398; 401-405; 410-417; 420-249

Cancer ICD-9-CM: 140-239
Neurological MDC: 19-20

ICD-9-CM: 320-326; 330-337; 340-359
Digestive MDC: 6 (and not cancer or cardiac)

ICD-9-CM: 520-579
Labor MDC 14-15 (and aged over 5)

ICD-9-CM: 644; 647; 648; 650-677; V22-V24; V27

Notes: Patient diagnoses were defined using MDC codes in the admissions data where possible. In other cases,

supplemental ICD-9-CM codes were used.

Table 9: Definition of Hospital Services

Cardiac Imaging Cancer Births

CC laboratory Ultrasound Oncology services Obstetric care
Cardiac IC CT scans Radiation therapy Birthing room
Angioplasty MRI
Open heart surgery SPECT

PET

Notes: The exact methodology for rating hospitals is as follows. If the hospital provides none of the services, its

rating = 0. If it provides the least common service, its rating = 1. If it offers some service X but not the least

common service its rating = (1 - x) / (1 - y), where x = the percent of hospitals offering service X and y = the

percent of hospitals offering the least common service.
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There is no outside option, since our data includes only patients who are sick enough to go

to hospital for a particular diagnosis. We estimate the model using standard maximum likelihood

techniques and our micro (encounter-level) data. We observe the network of each insurer and,

therefore, can accurately specify the choice set of each patient. We assume that the enrollee can

choose any hospital in his HSA that is included in his insurer’s network provided that hospital is

located no more than 100 miles from the patient’s home zip code.

Table 10 shows the results of the hospital demand specification (omitting hospital fixed effects

due to space constraints). The results are in line with Ho (2006) and the previous hospital choice

literature. The coefficient on distance is negative and that on distance squared is positive, with

very similar magnitudes to those in Ho (2006). The non-interacted effects of teaching hospitals and

other hospital characteristics are absorbed in the fixed effects; however, the interactions show that

patients with very complex conditions (cancer and neurological diseases) attach the highest positive

weight to teaching hospitals. Many of the interactions are difficult to interpret, but it is clear

that patients with cardiac diagnoses place a strong positive weight on hospitals with good cardiac

services, cancer patients on those with cancer services (although, as in Ho (2006), this coefficient

is not significant at p=0.1), and women in labor on hospitals with good birthing services.

B Hospital System Bargaining

We adapt our model to allow for the possibility that hospitals bargain jointly, as part of hospital

systems. Let S denote the set of hospital systems, and for some system s ∈ S, let Ss denote the

set of hospitals that belong to system s. Let profits for a hospital system s be denoted by:

πs,S(p,G) =
∑
n∈Gi

∑
h∈Ss

Dn(φ(p,G),G)σhn(G)(phn − chn)

We assume each hospital system s and insurer j negotiates prices via simultaneous bilateral

Nash bargaining so that, as before, each price {pij}i∈Ss maximizes the Nash product of system and

insurer profits:

pij ∈ arg max [πj,M(p,G)− πj,M(p−sj ,G \ {hj}h∈Ss)]
τM (8)

× [πs,S(p,G)− πs,S(p−sj ,G \ {hj}h∈Ss)]
τH ∀ij ∈ G, i ∈ Ss

This is the corresponding bargain as (8), except the disagreement point represents insurer j losing

all hospitals in system s.

In a slight abuse of notation, let Si denote the set of hospitals that belong to the same system
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Table 10: Demand System Estimates

Interaction Terms Variable Parameter Std. Err.

Distance (miles) −0.162∗∗∗ 0.001
Distances squared 0.000∗∗∗ 0.000

Interactions: Teaching Income ($000) 0.002 0.002
PPO enrollee 0.128∗ 0.069
Cancer 0.136 0.106
Cardiac −0.270∗∗∗ 0.080
Digestive −0.163∗ 0.094
Labor 0.125 0.097
Neurological 1.306∗∗∗ 0.172

Interactions: Nurses Per Bed Income ($000) 0.000 0.001
PPO enrollee −0.090∗∗ 0.037
Cancer 0.131∗∗ 0.058
Cardiac −0.154∗∗∗ 0.044
Digestive −0.106∗∗ 0.047
Labor −0.218∗∗∗ 0.049
Neurological −1.029∗∗∗ 0.107

Interactions: For-Profit Income ($000) 0.001 0.001
PPO enrollee 0.021 0.052
Cancer 0.012 0.084
Cardiac −0.144∗∗ 0.059
Digestive −0.125∗ 0.067
Labor 0.284∗∗∗ 0.064
Neurological 0.571∗∗∗ 0.114

Interactions: Cardiac Services Income ($000) −0.002 0.001
PPO enrollee 0.381∗∗∗ 0.049
Cardiac 0.370∗∗∗ 0.053

Interactions: Imaging Services Income ($000) 0.007∗∗∗ 0.002
PPO enrollee 0.186∗∗∗ 0.061
Cancer 0.138 0.091
Cardiac −0.036 0.072
Digestive 0.026 0.066
Labor −0.404∗∗∗ 0.070
Neurological −0.616∗∗∗ 0.134

Interactions: Cancer Services Income ($000) −0.012∗∗∗ 0.004
PPO enrollee 0.072 0.130
Cancer 0.291 0.225

Interactions: Labor Services Income ($000) 0.007∗∗∗ 0.001
PPO enrollee −0.336∗∗∗ 0.054
Labor 1.026∗∗∗ 0.068

Hospital Fixed Effects Yes
Pseudo-R2 0.528

Notes: Maximum likelihood estimation of demand for hospitals using a multinomial logit model. Specification

includes hospital fixed effects. N = 850,073 across 35,289 admissions.

∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
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as hospital i. Then for each hospital i ∈ Si, the FOC of (8) can be expressed as:

p∗ijσij︸ ︷︷ ︸
hospital price / enrollee

=τH


(
Djφj − D̃jφ̃j

Dj

)
︸ ︷︷ ︸
(i) ∆ MCO revenues

−

 ∑
h∈Gj\{lj}l∈Si

p∗hj(σhj − σ̃hj +
Dj − D̃j

Dj
σ̃hj)


︸ ︷︷ ︸

(ii) ∆ MCO j payments to other hospitals not in Si

 (9)

+ τM

 c̄iσij︸︷︷︸
(iii) hospital costs / enrollee

−
∑

n∈Gi\ij

∑
h∈Si

(Dnσhn − D̃nσ̃hn)

Dj
(p∗hn − c̄h)

︸ ︷︷ ︸
(iv) ∆ System Si profits from other MCOs


−

∑
h∈Si\i

σhj [phj − τM c̄h]

︸ ︷︷ ︸
(v) Loss in profits of other system hospitals from MCO j

+εij

where now (̃·) represents the value of functions that take as arguments G \ Si: that is, the outcome

if MCO j and system Si come to a disagreement and all hospitals h ∈ Si are no longer on j’s

network. Term (v) is new and represents the profits of other hospitals in Si that are obtained from

MCO j, but would be lost if Si and MCO j came to a disagreement.

Finally, note that this expression is equivalent to (3), if there were no hospital systems (or

hospitals bargained independently).

Estimation. Informed by the FOCs given by (9), we modify our estimation equation (7) to

account for systems as follows:

Pij︸︷︷︸
p̂ij σ̂ij

= α1 Costij︸ ︷︷ ︸
c̄iσ̂ij

+α2 ∆Pmtj,\Sij︸ ︷︷ ︸∑
h∈Gj\{lj}l∈Si

p̂hj( ˆσhj−ˆ̃σhj)

(10)

+α3∆WTPSij + α4Kaiseri + α5Kaiseri ×∆WTPSij

+ Pmtj,\Sij︸ ︷︷ ︸∑
h∈Gj\{lj}l∈Si

p̂hj(˜̂σhj)

[α6 + α7Kaiseri + α8Kaiseri ×∆WTPSij ]

+α9

∑
h∈Si\i

Phj + α10

∑
h∈Si\i

Costhj

+HSAm +BSj + β × demogsi + εij .

where: Pmtj,\Sij and ∆Pmtj,\Sij are modified to consider the outcome when the whole system

Si is dropped from j’s network, ∆WTPSij represents the change in consumers’ WTP for MCO

j’s network when the whole system Si is dropped, and terms
∑

h∈Si\i Phj and
∑

h∈Si\iCosthj are

added to control for term (v) in (9).

Results are reported in column 4 of Table 7 in the main text.
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Table 11: Kaiser Hospitals

Hospital Name History

ANAHEIM MEDICAL CENTER (MC) Bought in 1979 (previously the Canyon General Hospital).
BALDWIN PARK MC† Built in 1994, although not utilized until 1998.
BELLFLOWER MEDICAL OFFICES Built in 1966.
FONTANA MC Newly constructed in 1954 to replace an old facility.
FRESNO MC Opened in 1985 as a Kaiser Permanente physician clinic. Became a

hospital in 1995.
HAYWARD MC Built in the 1960s.
LOS ANGELES MC Built in the 1950s
MANTECA MC† Bought in 2004 (previously St. Dominic’s Hospital).
OAKLAND MC Opened in 1950.
PANORAMA CITY MC Built in 1962.
REDWOOD CITY MC Opened in 1952.
RICHMOND MC Built in 1995; replaced Kaiser Richmond Field Hospital (built in 1942)

which was deemed seismically unsafe.
RIVERSIDE MC Built in 1989.
SACRAMENTO MC Built in 1965, expanded in 1970.
SAN DIEGO MC Built in 1972.
SAN FRANCISCO MC Built in 1950s (together with Los Angeles Medical Center).
SAN JOSE MC Bought in 1976 (previously Santa Teresa Hospital and Medical Center).
SAN RAFAEL MC Bought in 1976 (previously Terra Linda Valley Convalescent Hospital).
SANTA CLARA MC Built in 1967. Moved to new local facility in 2007.
SANTA ROSA MEDICAL OFFICES Built before 1980.
SOUTH BAY MC Built in 1950.
SOUTH SACRAMENTO MC Medical office opened in 1984, the hospital followed in 1985.
SOUTH SAN FRANCISCO MC Reconstructed in 1974 to replace and expand the previous Kaiser com-

munity hospital.
VALLEJO MC Built in 1972 to replace the old Vallejo Community Hospital (which

was bought by Kaiser in 1947).
WALNUT CREEK MC Built in 1953.
WEST LOS ANGELES MC Constructed in 1970s; opened in 1974 to serve West LA, Santa Monica

Bay, and part of South Bay area.
WOODLAND HILLS MC Built in 1986.

Notes: Estimated entry dates of 27 Kaiser hospitals active in 2004 that are used in our analysis. Sources available

upon request. † represents hospitals that were not owned by Kaiser or active in 1995.

C Kaiser Hospitals

Table 11 lists the names and brief histories of the 27 Kaiser hospitals active in California in 2004

that are used in our analysis.
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