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FINANCE RESEARCHERS have an easy familiarity with alpha, the most well-known measure 

of the abnormal return of an investment.  Studies refer to CAPM alpha, three-factor alpha 

or four-factor alpha, assuming the reader hardly requires a definition.  Investment 

practitioners discuss their strategies in terms of the quest for alpha.  Alpha can be active, 

conditional or portable.  The number of investment firms with alpha in their names is 

truly staggering. 

  Despite the apparent familiarity with alpha, the current literature too often fails to 

think rigorously about how alphas can be interpreted.  The contributions of this paper are 

three.  First, we offer extensions of existing results that motivate alpha as a guide to 

investment selection.   Given that markets are incomplete and investors have different 

marginal rates of substitution, the conclusion is that we need to define alpha in a client-

specific manner.   

  Our second contribution is an analysis of how different investor-specific alphas 

are expected to be from the alphas typically used in research practice.  We derive and 

estimate bounds on the extent to which a client may be expected to disagree with a 

measure of alpha.  Our measure of disagreement integrates out and therefore does not 

consider differences in beliefs.  Even so, we find that disagreement with traditional alphas, 

based on marginal utility alone, can be similar in importance to the choice of the 

performance benchmark or to the statistical imprecision in estimates of alphas.   

  Our third contribution is empirical evidence that investor disagreement and 

heterogeneity are economically significant in the behavior of fund investors.  Funds whose 

clients’ alphas are expected to be larger than a traditional alpha have positive average 

disagreement.  We find that such funds experience larger inflows, controlling for the 

traditional alpha, than funds with low average disagreement.  Funds with a large cross-

sectional variance of investor disagreement have greater investor heterogeneity.  We find 

that funds with more heterogeneity across investors experience lower average flows.  

These are separate effects from uncertainty due to estimation error in the traditional alpha. 
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  The next section reviews the issues with traditional alphas that motivate our 

analysis.  Section II sets up the problem for investor-specific alphas and Section III 

provides the main analytical results.  Section IV discusses our approach to bounding the 

extent to which clients may disagree about alpha.  Section V discusses the data and Section 

VI presents the empirical evidence.  Section VII concludes and an Appendix provides the 

proofs.  

    I. Problems with Traditional Alphas 

  A Fundamental Question about the use of alphas is: Given a fund with a positive 

alpha, should an investor buy the fund?  While the concept of alpha may be traced in 

some form back to Cowles (1933), a substantial literature grappled with this question after 

alpha was developed within the Capital Asset Pricing Model (CAPM, Sharpe, 1964) by 

Jensen (1968) and others.  But this work, with a few exceptions, essentially died out in the 

late 1980s, leaving the Fundamental Question at best partially resolved. 

  The literature does offer some hopeful examples that suggest an investor would 

wish to buy a positive-alpha fund, but there are also many counterexamples.  The simplest 

intuition for the attractiveness of a positive alpha is taught with the CAPM, where a 

combination of a positive-alpha fund, the market portfolio and cash can "beat the market" 

in a mean variance sense (higher mean return given the variance).  Given an arbitrary 

(inefficient) benchmark, Dybvig and Ross (1985) show (their Theorem 5), that a positive 

alpha measured relative to the benchmark implies that buying some of the fund at the 

margin, will result in a higher Sharpe ratio than the benchmark, if the benchmark excess 

return is positive. 

  Jobson and Korkie (1982) showed that given an inefficient index, a portfolio with 

weights proportional to the vector of assets' alphas, premultiplied by an inverse 

covariance matrix (the optimal orthogonal portfolio), can be combined with the index to 
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generate a mean variance efficient portfolio.  The weight in the optimal orthogonal 

portfolio for a positive alpha asset can be negative, and Gibbons Ross and Shanken (1989) 

provide empirical examples where it is.  So, even if a positive alpha is attractive at the 

margin to a mean-variance investor, it might not imply buying a positive alpha fund.1 

  There are many counterexamples to the attractiveness of a positive alpha.  In some 

examples performance within the model is neutral but alpha is not zero.  Jagannathan and 

Korajczyk (1986) and Leland (1999) show you can get nonzero CAPM alphas by trading 

options with no special skill.  Ferson and Schadt (1996) show you can record negative 

alphas when performance is neutral if you don't account for public information.  Roll 

(1978), Dybvig and Ross (1985) and Green (1986) give examples of nearly arbitrary alphas 

when there is no ability.  Goetzmann et al. (2007) show how to produce positive alphas 

through informationless trading.  While the relevant strategies, such as options trading, 

may be more common among hedge funds and fixed income funds than among the US 

equity mutual funds examined here2, these examples cast doubt on the common 

presumption that investors would wish to buy a positive alpha fund. 

    The above examples do not consider differential information.  It seems natural to 

think that a portfolio manager may have better information about returns than the client 

investor.  With differential information the problem of alpha becomes richer (e.g., Admati 

and Ross, 1985).  The portfolio formed by a better-informed manager expands the 

                                                                                                                                            
1 In a mean variance setting, the optimal weight need not be of the same sign as the alpha 
because of correlation among assets.  If only a single fund is allowed, in combination with 
a fixed inefficient benchmark, then the optimal combination of the two does place a 
positive weight on a positive-alpha fund.  Our results generalize this example, as they do 
not assume that the weights on the other assets in a “market” portfolio are held fixed, do 
not rely on mean-variance preferences, on a single-period model or on many other 
restrictions that are imposed in earlier studies.  In the simultaneous consideration of 
multiple assets our results may be applied to a portfolio of the funds. 
2 For example, Koski and Pontiff (1999) find only limited use of options among US equity 
style mutual funds. 



 
 

 4 

opportunity set of the less-informed client, so the client would generally like to use the 

managed portfolio in some way.  But a positive abnormal return or alpha is neither 

necessary nor sufficient to establish a positive value of the manager’s information, as 

observed by Ohlson (1979) in a different setting.  The problem here is, the client might 

wish to short a fund even if it has a positive alpha (Chen and Knez, 1996), or buy a fund 

even if it has a negative alpha (Glode, 2011).  In summary, the existing literature suggests 

that traditional alphas are not a reliable guide to the attractiveness of an investment.   

  This paper provides conditions under which the "right" alpha, defined in terms of 

the client's preferences, provides a reliable buy or sell indication.  Our contributions to the 

literature are both analytical and empirical.  First, we derive a well-specified alpha using a 

multiperiod model under general returns distributions, and show that the client-specific 

alpha does provide a reliable buy or sell indication.  While this is not the first paper to 

argue that the limitations of alpha can be addressed by defining alpha in a client-specific 

fashion (e.g. Sharpe (1982), Goetzman et. al., 2007) these earlier studies relied on a single-

period model, normality, independence of returns over time and/or specific investor 

preferences.  But, returns are not independently normally distributed over time, and 

mean-variance preferences are not realistic. Our first contribution is to provide more 

general results.   The cost of this general justification for alpha is that we have to confront 

investor heterogeneity. 

  As our second contribution we derive bounds on the extent to which clients are 

expected to disagree with a traditional measure of alpha and present evidence on the 

magnitudes.  Disagreement presumes that markets are incomplete, because otherwise 

investors’ marginal rates of substitution would agree.  Cochrane and Sáa-Requejo (2000) 

study bounds on prices in incomplete markets, of payoffs that are not spanned by a set of 

benchmark assets.  Their pricing bounds, like our bounds on disagreement, are stated in 
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terms of a maximum Sharpe ratio (Sharpe, 1992) and the volatility of a residual return in a 

factor model regression.  In our bounds the maximum Sharpe ratio is given by the 

benchmark assets, while in their case it is exogenously specified.  Our evidence suggests 

that investor disagreement can be an effect of similar magnitude to benchmark choice and 

to the statistical imprecision in estimates of alpha.  While benchmark choice and statistical 

imprecision have attracted considerable attention in the literature, the implications of 

disagreement and investor heterogeneity have only begun to be explored. 

  One of the problems with traditional alphas is potential biases from high 

frequency trading.  Goetzmann et al. (2007) propose a “manipulation proof” performance 

measure (MPPM) that is immune to such biases.  Investors may disagree with a traditional 

alpha because it is manipulated, or because they have different beliefs or preferences.  

Integrating out the differences in beliefs we find that traditional alphas differ from the 

MPPM by more than the disagreement with the traditional alphas.  We also infer that 

investors are expected to disagree with the MPPM, at least as much as with traditional 

alphas, so manipulation is not the main source of disagreement. 

  The analysis in this paper is related to Glosten and Jagannathan (1994) and Chen 

and Knez (1996).  Glosten and Jagannathan (1994) start with the definition of alpha 

studied here, based on the stochastic discount factor (SDF) implied by the client’s marginal 

rate of substitution.  They assume that clients' SDFs are functions only of a small set of 

traded benchmark portfolios and options strategies, and focus on the resulting consensus 

or representative agent valuation.  Chen and Knez (1996), following Grinblatt and Titman 

(1989), focus on the SDF represented by a minimum variance efficient portfolio conditional 

on the client's information, and allow managers to have better information.  They 

characterize general classes of "admissible" and positive admissible performance 
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measures, concluding that performance measurement is “essentially arbitrary.3”   

  Glode (2011) also exploits our key assumption that the covariances of fund returns 

with investors’ marginal utility may not be captured by standard performance 

benchmarks.  Glode focuses on the consensus pricing of these covariances, while our focus 

is the disagreement across investors.  Finally, our empirical analysis is related to many 

studies of the relation between fund flows and performance, some of which are discussed 

in context below.  

    II. A General Model for a Client’s Alpha 

  This section revisits alpha using a natural definition based on the stochastic 

discount factor.  The SDF approach was proposed in some form as early as Beja (1971), but 

became common in asset pricing only after the literature that tried to address the 

Fundamental Question about alpha had waned.  The approach offers new and general 

insights.  These results are based on a multiperiod model and do not require normality.  

There is no need to rule out timing ability, nor is selectivity information required to be 

independent of timing information, security-specific or otherwise restricted as in the 

earlier literature.  The client is allowed to have a general consumption response to the 

managed portfolio.  Finally, a mean variance efficient benchmark is not required or used.4 

   Agents make consumption and portfolio choices at each date t, to maximize a 

time-separable, increasing and concave lifetime utility function, represented as the indirect 

value function: 

                                                                                                                                            
3 Our approach uses a "positive admissible" measure.  Chen and Knez show that there can 
be funds that have positive alphas under some positive admissible measures and negative 
alphas under others.  This foreshadows the results here that the "right" alpha is client-
specific, and there is likely to be disagreement across investors about alpha.  

4 Ferson (2012) shows that a mean variance efficient benchmark is only appropriate under 
quadratic utility. 
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   J(Wt,info)  Max{c,x} u(C) + E{ β J(Wt+1,st+1) |info},                                      (1) 

   s.t. Wt+1 = (Wt-C) x'Rt+1,  x'1=1, 

 

where Wt is the wealth at time t, C is the consumption expenditure at time t, x is the 

portfolio weight, Rt+1 is the N-vector of gross (i.e., one plus the rate of) returns for the N 

assets, one of which can be risk-free, and 1 is an N-vector of ones.  The K-vector of state 

variables in the model is st at time t and the conditioning information at time t, "info," 

takes one of two forms.  The info is Zt, representing public information that includes the 

current values of the state variables st and the current risk-free rate if any, when referring 

to the client.  The info is Ωt when referring to the better-informed manager, assuming that 

Zt is contained in Ωt.  The time subscripts are dropped except when needed to avoid 

ambiguity.5 

  Assuming that the client starts at an interior optimum in the N-asset economy, the 

first order conditions to the problem imply: 

    

   E(mR|Z) = 1,  with m = β Jw(Wt+1)/uc(Ct),                                                      (2) 

 

where m is the stochastic discount factor and subscripts denote derivatives.  The notation 

Jw(W) suppresses but allows for the dependence of the value function on the state 

variables and Zt. 

  Consider now presenting the client with a new investment opportunity, the 

                                                                                                                                            

     5 There can be another component of wealth; for example nontraded human capital, and 
that component can imply hedging demands as in Grinblatt and Titman (1989) without 
affecting the results. 
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managed portfolio with return Rp = x(Ω)'R where x(Ω) is the vector of the informed 

manager's portfolio weights.  We assume that portfolio managers don't invent new 

securities, just trade the existing ones using better information. 6  Define alpha for any 

portfolio Rp as: 

                                      αp = E(mRp|Z) - 1.                                                             (3) 

 

If the manager has no superior information in the sense that Z includes Ω, then αp is zero 

by Equation (2).  Let the managed portfolio return be Rp = vt+1/Pt, where Pt is the price 

that the manager offers the client at time t and vt+1 is the random value one period later.  

From the definition of alpha we see that (1+αp)Pt = E{vt+1m|Z}, so that if alpha is zero the 

client would find the offer price "fair." A positive alpha suggests a "low" price for the value 

to the client.  It is shown below that this intuition holds when the client's consumption and 

investments in all assets can change in response to the introduction of the managed 

portfolio. 

                               III. Addressing the Fundamental Question 

    When faced with a new investment opportunity Rp with a nonzero alpha, the 

client will adjust to new optimal consumption and portfolio choices until the alpha is zero 

at the new optimum.7  Consider a situation where we allow the client to adjust current 

                                                                                                                                            

     6 It is assumed, as is common in the literature starting with Mayers and Rice (1979), that 
the manager's trading based on superior information does not affect the market prices of the 
underlying assets. 

     7 This is a partial normative, not a general equilibrium analysis.  Berk and Green (2004) 
make an argument where equilibrium adjustment comes from the flows of new cash across 
funds and diseconomies of scale in fund management, which drive informed manager's 
alphas to zero in equilibrium.  Here, the client adjusts with new optimal portfolio and 
consumption choices.  This is similar in spirit to the portfolio optimization procedure in 
Sharpe (1987), where the client makes discrete changes to arrive at the new optimal 
portfolio. 
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consumption and to buy or sell some amount of the manager's fund.  The client feels the 

effects of these decisions in his future wealth, and thus the marginal utilities of current 

consumption and future wealth change, and the optimal holdings of other assets may 

change.  We assume that the client is a price taker in the markets for investment assets and 

consumption goods.  Let Δ be a reduction in current consumption used to buy the fund, 

leading to the random wealth at time t+1, W(Δ) = Wt+1 + ΔRp + (Wt-C)[x(Δ)-x]'R, where 

x(Δ) is the new optimal portfolio weight vector for the N base assets, normalized to sum to 

1.0, and x is the old optimal weight vector.8  The appendix proves:  

 
PROPOSITION 1:  Under the assumptions described above, and also assuming regular utility 

functions to which the mean value theorem applies, and assuming further that the response of the 

optimal portfolio weights on the original N assets satisfies  

[Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] [Rpt+1 + (Wt-Ct) (x(Δ)-x)/Δ)'R] > 0,   

Then when confronted with a new investment with an alpha equal to αp, the client will optimally 

purchase the discrete amount  given by:   

    Δ = αp {uc /(-ucc* - Q)}, 

Where Q = E{β Jww* [Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] [Rpt+1 + (Wt-Ct) (x(Δ)-x)/Δ)'R]}<0 and 

ucc*<0. 

  The sign of the optimal investment in the new fund is the same as the sign of 

alpha, so the investor buys (sells) a discrete amount of the fund if alpha is positive 

(negative).  The optimal investment is zero when alpha is zero.  The optimal investment is 

                                                                                                                                            
8 The client divides the beginning of period wealth Wt as follows:  Δ is invested in the new 
fund, C-Δ is consumed and (Wt-C) is invested in the old assets.  At Δ=0, W(Δ) = Wt+1 = 
(Wt-C)x'R, and x(Δ)=x.  The analysis can accommodate the case where the investor does not 
change the current consumption, but only the portfolio weights in response to the new 
investment.  In this case the weights x(Δ) do not sum to 1.0 and Δ = Wt(1-x(Δ)'1).  
Combinations of these two cases may also be considered. 



 
 

 10 

proportional to alpha and scaled by a term related to "risk tolerance.” 

  The assumption that [Rpt+1+(Wt-Ct)(x(Δ)/Δ)'R][Rpt+1+(Wt-Ct)(x(Δ)-x)/Δ)'R]>0 

says that the derivatives of the optimal portfolio weights on the N base assets are 

adequately approximated by the normalized discrete changes.  This holds in the limit for 

small Δ.  For discrete Δ the restriction holds when x(Δ) is well-approximated by a linear 

function of Δ or when the relative allocation to the original assets does not change very 

much.   The condition should only fail if the allocations to the original assets change 

drastically when the new fund is introduced. 

  The client-specific alpha precludes some of the pathologies described above.  For 

example, we assume a monotone increasing utility function, ruling out the quadratic 

utility that lies at the root of ambiguities discussed in Mayers and Rice (1979) and 

Verecchia (1980).  Trading within the return measurement interval, which Goetzmann et 

al. (2007) illustrate with several examples, can generate spurious traditional alphas but 

need not bias the SDF alpha studied here. 9  Of course, this does not rule out statistical 

biases in measuring alpha.  For example, return smoothing can make it difficult to 

estimate alpha because the returns of the fund are not accurately measured (e.g. Asness et 

al. (2001), Getmansky, Lo and Makarov, 2004). 

 

        IV. Disagreement and Investor Heterogeneity 

The conclusion from the last section is that a client-specific definition of alpha can 

                                                                                                                                            

     9 The issue of bias because funds trade within the return measurement period, or interim 
trading, is raised by Goetzmann, Ingersoll and Ivkovic (2000) and Ferson and Khang (2002), 
and examined in detail by Goetzmann et al. (2007).  However, Ferson, Henry and Kisgen 
(2006) show that if the right time-aggregated SDF is used the problem is avoided.  The 
definition of alpha here involves the right time-aggregated SDF on the (perhaps heroic) 
assumption that investors optimize as often as managers trade.   
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provide a reliable buy/sell signal.  But investors will not in general agree about the right 

alpha, so the same fund may look attractive to one investor but not to another.  In this 

section we define a measure of the expected disagreement a client will have with a 

traditional alpha and derive bounds on its magnitude.  We then discuss the implications 

for mutual fund flows of the expected disagreement and also heterogeneity, which we 

define as the variance of disagreement across investors.  

We work with excess returns, r  R-Rf, where Rf is a gross short term Treasury return. 

 Thus, Equation (2) implies that E(mr|Z)=0 and equation (3) implies that αp = E(mrp|Z).  

Consider a regression over time of rp on the "passive" assets {rj}j in r: 

 

    rp = ap + Σj βj rj + εp.                  (5) 

 

This is a simple, unconditional regression with constant coefficients and E(εp)=E(εprj)=0.  

Taking the unconditional expectation of the expression for alpha and substituting in 

Equation (5) for rp, we obtain: 

 

   E(αp) = E(m)ap +  Σj βj E(mrj) + E(mεp).                (6) 

 

The first term on the right hand side of (6) captures the traditional, unconditional alpha that 

would be obtained if {rj}j were used as the benchmark returns in a factor model.10  Since 

E(mrj|Z)=0 for the passive assets, the second term in Equation (6) is zero.  The third term 

can be expressed as E(mεp) = Cov(m,εp) = ρєm σ(m) σ(εp), where ρєm is the correlation 

                                                                                                                                            

    10 Using the SDF approach, αp is measured at the beginning of the period, like an asset 
price.  Using the traditional regressions of returns on factors, alpha is measured at the end of 
the period, like a return.  The term E(m) translates between the two dates. 
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between m and εp.  If the correlation is zero, the traditional alpha and the expected alpha for 

the client coincide.  Investor disagreement with a measure of alpha arises when the part of 

the fund return that is not captured by the traditional factors is correlated with the investor's 

marginal rate of substitution.   

 Expanding the expectation of the product, mrj, into the product of the expectations 

plus the covariance and setting the result to zero we obtain: 

 

   σ(m)/E(m) = (-1/ρmrj)[E(rj)/σ(rj)],                                                               (7) 

 

where ρmrj is the correlation between m and rj and σ(.) denotes the standard deviation.  

Equations (6) and (7) then imply: 

 

   E(αp)/E(m) - ap  =  ρєm σ(εp) [σ(m)/E(m)]                                                   (8) 

                      =  ρєm σ(εp) (-1/ρmrj)E(rj)/σ(rj). 

 

The term (-1/ρmrj)E(rj)/σ(rj) in the second line of Equation (8) is the same for all the passive 

assets, so it may be replaced with (-1/ρmrj*)E(rj*)/σ(rj*), where rj* is the portfolio of the 

passive assets that achieves the maximum Sharpe ratio, SRmax. 

 

A. A Bound on Expected Disagreement 

 Assuming SRmax>0, equation (8) implies: 

 

   E(αp)/E(m) - ap =  (-ρєm /ρmrj*) σ(εp)  SRmax                                                                         (9) 

                 ≤   σ(εp)  SRmax, 
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where we make the assumption that (ρєm /ρmrj*) ≤ 1.  Since the return rj* maximizes the 

Sharpe ratio, it maximizes the correlation to m, and this assumption should be innocuous in 

most cases.11  

 The first line of Equation (9) defines the expected disagreement of the client with a 

traditional measure of alpha that uses the passive returns rj as the factors. The second line 

expresses an upper bound on the expected disagreement that we can estimate using data. 

The upper bound depends on the volatility of the fund’s residuals, σ(εp), and on the 

maximum Sharpe ratio available in the passive returns.  When the maximum Sharpe ratio is 

higher the disagreement is higher because the volatility of a client’s marginal rate of 

substitution is higher. A fund with a low σ(εp) is a fund whose return variation is largely 

captured by the passive benchmark assets. For such a fund there can be little disagreement 

about its performance. 

    The maximum Sharpe ratio in Equation (9) should reflect the maximum taken 

over all of the assets for which the client is at an interior optimum.  In empirical practice 

we can only use small subsets of the possible assets.  We consider alternative groups of 

benchmark assets, in order to assess the sensitivity of the results.   Since the maximum 

Sharpe ratio in the universe of many assets is likely to be larger than on the subsets we 

examine, our upper bounds on disagreement are conservative from this perspective. 

 The expected disagreement in (9) depends on the unobserved correlation, ρєm.  If that 

                                                                                                                                            
11 This is an assumption on an unobservable that cannot be verified directly.  There could 
be some mutual fund clients whose marginal utilities are not highly correlated with the 
passive asset returns and yet are highly correlated with fund residuals.  This can occur, as 
Kerry Back points out in private communication, if both fund payoffs and marginal 
utilities are highly nonlinear functions of benchmark variables.  The assumption can fail in 
such instances.  We then interpret the bounds as applying only to the subset of clients for 
which the assumption holds.  Below we introduce an empirical proxy for state-level client 
heterogeneity and find correlations consistent with the assumption that (ρєm/ρmrj*)<1 in 
most cases.   
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correlation is zero there is no disagreement with the traditional alpha. But the evidence 

below suggests that the correlation is not zero.  The second line of Equation (9) suggests that 

disagreement will be closer to the upper bound for clients with ρmrj* far below 1.0.  Investors 

whose marginal utility fluctuations are not well captured by the traditional benchmarks will 

disagree more with traditional alphas.  

 It is important to note that we have taken the unconditional expectation of the client’s 

conditional expectation to arrive at these results.  The expected alpha should be interpreted 

as the “econometrician’s” expectation of the client’s alpha. Clients have different beliefs 

when they hold different Zs, and their different consumption and portfolio choices lead to 

different marginal rates of substitution. Applying iterated expectations, we derive 

implications of investor disagreement that can be represented using the unconditional 

expectations. Our measure of disagreement is probably conservative on this dimension, 

because differences in investors’ beliefs present another potential source of disagreement 

about alpha.12   

 

B. Disagreement and Fund Flows 

 Proposition I determines the amount of fund p that investor i would purchase as Δip = 

αip Ai, where Ai >0.  With no restrictions on this latent demand, the net flow to a mutual 

fund is Fp = Σi Δip.  The flow is positively related to the traditional alpha and a risk-tolerance-

weighted average of investors’ disagreements with alpha: 

                                                                                                                                            

    12 Taking the conditional expectation of the client’s alpha delivers the expected alpha. The 
investor’s information set is still reflected in the expected alpha to the extent that different 
information sets lead clients to different consumption and portfolio policies, and thus 
different marginal rates of substitution.  The analysis also applies to conditional moments 
given public information known by all clients, in which case E(.), ρ and the σ's refer to these 
conditional moments. 
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                Fp/E(m) = Σi Ai[(-ρєm /ρmrj*) σ(εp) SRmax] + (Σi Ai) ap,                                              (10) 

 

where the term in brackets [.] is the disagreement from Equation (9). Thus, for a given 

traditional alpha, ap, we expect higher flows when the weighted average disagreement is 

higher.  We present empirical proxies below for ρєm and ρmrj*, and we proxy for the average 

disagreement with ADISp, the unweighted average of the term in brackets. Our first testable 

prediction is that funds with larger ADISp should experience larger flows of investor funds, 

controlling for the traditional alpha.   

 We can’t observe the risk tolerances Ai that weight the disagreements, so our 

empirical measures do not address heterogeneity in risk tolerance across investors.  The sign 

of ADISp and the risk tolerance weighted average should typically be the same for a given 

fund, but if there are large covariances between investors’ risk tolerances and disagreement 

and they differ across funds, this presents a source of measurement error that we would 

expect to weaken our empirical results.13  

 Most of the empirical literature and our evidence below uses the percentage flows to 

mutual funds.  In our model flows are in the units of the numeraire for consumption, and 

thus arbitrary in scale. The investor’s problem makes no reference to the size of a mutual 

fund.  Empirically, the levels of mutual fund dollar flows are highly persistent and may be 

nonstationary.  We therefore follow the literature and use percentage flows in our empirical 

work, and we include a control variable for the size of the fund. 

 

                                                                                                                                            
13 Because A>0 and E{AD} = E(A)E(D) + Cov(A,D), the covariance between disagreement 
D and risk tolerance A would have to be large and of the opposite sign as E(D) in order for 
E{AD} to be different in sign from E(D).  If Cov(A,D) is similar in magnitude across funds, 
it is approximately a cross sectional constant in our analysis. 
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 C. Heterogeneity and Fund Flows 

 We define the heterogeneity for a fund p as the variance of the disagreement across 

investors.  In general, the effect of heterogeneity on fund flows is ambiguous.  If the cross-

sectional variance of the latent demand increases in a mean-preserving spread, for example 

there could be no effect on the expected flow.  However, heterogeneity likely affects fund 

flows when constraints inhibit investors’ demands, even when the latent demand is 

unaffected by the heterogeneity.   

 For many reasons, the full range of latent demands will not be expressed in fund 

flows. For example, investors cannot sell short mutual funds. Chen, Massa and Zhang (2012) 

describe how this affects flows when investors have different beliefs.  Costs like load fees, 

transactions charges and unrealized capital gains also impede fund flows. Investors’ 

learning about funds and other participation costs (Sirri and Tufano (1998), Huang, Wei and 

Yan, 2007) also likely impede fund flows.  We therefore consider the effects of heterogeneity 

in the presence of restrictions on the latent demands.14 

 For simplicity, assume that the realized flow is truncated, reflecting only the latent 

demands Δip above some lower boundary values, ΔiL.  For example, a no-short-selling 

constraint implies ΔiL=0 for investors not currently holding the fund.  In general the 

truncation point will vary across funds and investors as functions of the characteristics of 

both funds and investors.  In this example heterogeneity can have both a level effect and 

interaction effects on fund flows.15   

                                                                                                                                            
14 Our definition of alpha is connected to constraints.  If we include the fund p among the 
base assets, with the constraint that the investor may not hold the fund, then the shadow 
price of the constraint is proportional to the alpha of Proposition I multiplied by the 
marginal utility of consumption. 
15 Related arguments about constraints, although not stated in terms of our version of 
heterogeneity, appear in Sirri and Tufano (1998), Jain and Wu (2000), Massa (2003), Nanda 
et al. (2004), Huang et al. (2007) and Cheng, Massa and Zhang (2012).  In the latter, a 
negative level effect of heterogeneity arises from managers’ equilibrium response to 



 
 

 17 

 The level effect of heterogeneity on fund flows should be negative for a given average 

latent demand, because in funds with more heterogeneity more investors’ demands will fall 

below ΔiL and be restricted.  This negative level effect is our first testable prediction about 

heterogeneity. 

 Heterogeneity should also act to modify the relation between fund flows and 

performance. A fund with no heterogeneity would have no flow response to performance 

below ΔL, and in our model the response would be linear, with a slope determined by risk 

tolerance, to performance above ΔL.  The flow-performance graph would resemble a hockey 

stick. With heterogeneity investors will be restricted from responding at different levels of 

performance, with more investors restricted at lower levels of performance.  Fewer investors 

will be restricted at higher levels of performance, and for very high levels flows should be 

nearly linear in performance.  The flow-performance graph would resemble the sum over 

many hockey sticks, with different slopes, placed at various points relative to the x-axis. 

  Our analysis does not model trading costs and taxes, although constraints on 

latent demands likely depend on these and other costs.  Some frictions such as taxes may 

operate at the higher performance levels.  Some costs differ across investors and may 

imply additional investor heterogeneity that we do not capture.  Tax-induced 

heterogeneity, for example, is likely to be greater in funds that have recently experienced 

more volatile returns.  In our empirical analysis we control for recent fund return 

volatility and other fund characteristics that are likely to be related to errors in the 

specification.   

V. The Data 
 
A.  Fund Returns 

We study monthly returns on actively managed US equity mutual funds from January 

                                                                                                                                            

convexity in the flow-performance relation.  
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1984 to December 2012, from the CRSP mutual fund database.  We remove sector funds, 

balanced funds and funds other than diversified, US equity funds.16  We combine share 

classes for each fund into a total net asset weighted average.   

 We examine in some experiments, institutional and retail share classes, aggregating 

the two share classes separately.17 We remove index funds from the active fund sample, 

and use them as benchmarks.  Index funds are identified by matching fund names with a 

list of text strings from Busse and Tong (2012, footnote 1).  We also check manually that 

the index funds are correctly identified.   

Fama and French (2010) point out a selection bias due to missing returns from 

about 15% of the funds on CRSP before 1984.  Evans (2010) documents that incubated 

mutual funds overstate average performance due to backfilling.  We therefore remove 

                                                                                                                                            
16 We select funds as follows.  CRSP uses Policy and Wiesenberger objective codes 
(WB_OBJ) prior to 1993. Strategic Insight Objective codes (SI_OBJ) cover from 1993 to 
September, 1998 and Lipper Objective codes (Lipper_OBJ) and Lipper Class codes 
(Lipper_CLASS) are used up to 2008. Most recent funds are classified by Thomson Reuters 
Objective codes (TR_OBJ). Mid cap funds are coded as GMC in WB_OBJ, MC in 
Lipper_OBJ, MCCE, MCGE, MCVE in Lipper_CLASS, or MID in TR_OBJ.  Small cap 
funds are coded as SCG in WB_OBJ, MR, SG in Lipper_OBJ, SCCE, SCGE, SCVE in 
Lipper_CLASS, or SMC in TR_OBJ. Aggressive growth funds are coded as AG, AGG in 
WB_OBJ, AGG in SI_OBJ, or AGG in TR_OBJ. Growth funds are coded as G, LTG in 
WB_OBJ, GRO in SI_OBJ, G in Lipper_OBJ, or GRD in TR_OBJ. Growth and income funds 
are coded as GI, GCI in WB_OBJ, GRI in SI_OBJ, GI in Lipper_OBJ, or GCI in TR_OBJ. 
Equity income funds are coded as EI, IEQ in WB_OBJ, EI in Lipper_OBJ, EIEI in 
Lipper_CLASS, or EQI in TR_OBJ.  Our “Other” funds category comprises Leverage and 
short mutual funds, coded as HEDGE in Policy, OI in WB_OBj, OPI in SI_OBJ, CA, DL, 
DSB, LSE in Lipper_OBJ, or ELCC, SESE in Lipper_CLASS.  
 
17  Share classes are first identified by fund names and cross checked with the MFLINKS 
tables in CRSP, which provide Wharton Financial Institution Center Numbers (WFICN) to 
suggest what funds should be aggregated based on common holdings.  Institutional share 
classes are filtered by the institutional fund flag in CRSP, and fund names are matched 
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fund returns before the date of fund organization, remove the first year of each fund’s 

returns and remove funds with less than 5 million dollars of assets under management at 

the end of the previous year.  Funds that invest more than 25% in bonds plus cash at the 

end of previous year are also screened out (30% produces similar results).  These screens 

leave us with a sample of 144 active equity funds in the first year, 1984, growing to 4595 

funds in the final year, 2012.  We apply the same screens to the index funds as to the active 

equity funds.  This leaves us with 8 index funds in 1984, growing to 1412 in 2012.   

 

B. Benchmark Returns 

Since our bounds are relative to a traditional alpha based on a given set of 

benchmark returns, we include benchmarks that have been common in the literature, and 

other benchmarks that represent realistic alternative investment choices.  We vary the 

number of benchmarks in the factor model to assess the sensitivity of the results to the 

number.  Our benchmarks are: (1) a broad stock market portfolio, (2) the three Fama and 

French (1993) factors, (3) a set of six indexes formed from index mutual funds with 

different strategies, and (4) a set of five exchange traded funds (ETFs).   

The proxy for the market portfolio is the CRSP value-weighted index of NYSE 

stocks.  The Fama and French factors are the market excess return, SMB, and HML.  SMB 

and HML measure the excess returns of small caps over big caps and of value stocks over 

growth stocks, respectively.  These data are from Ken French’s website18.    We assume that 

                                                                                                                                            

with “institutional”, Inst, Y, I, Class I, Class Y, CL I, and CL Y. 
18 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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the alphas are zero, from the client’s perspective, on the benchmark assets rj.  It seems 

plausible that the investor would be at an interior optimum relative to his allocation to a 

broad market index, and thus the alpha of the market index would be zero.  The assumption 

of zero alphas is less plausible for benchmarks like the Fama and French (1993) factors, given 

the highly tilted small and value stock positions they embed and the short positions they 

imply.19    

While active funds may have alphas, it seems plausible to assume that investors 

would agree that index funds and passively-managed exchange traded funds (ETFs) have 

zero, or nearly zero, alphas.  We therefore examine index funds and ETFs as benchmarks.  

We form six equally-weighted portfolios of index funds, based on their stated benchmarks 

as reported by Morningstar Direct.  The Categories are: S&P500, S&P Midcap, Small cap, 

Russell, MSCI US and Others. 

Exchange traded funds (ETFs) now cover a wide array of asset classes and 

strategies.  We select the following five ETFs based on their passive management, high 

trading volume and market sector coverage:  SPY (S&P 500), MDY (S&P Mid-cap 400), IJR 

(S&P Small-cap 600), QQQ (Nasdaq 100 Index), and IYR (Dow Jones US Real Estate 

Index).    

 

                                                                                                                                            
19 If the benchmark assets have nonzero alphas from the client’s perspective then the second 
term of Equation (6) is not zero. Our bounds on disagreement should then include a 
weighted average of these unobservable client benchmark alphas. The weights are the active 
fund’s betas on the benchmark assets.  The weighted average of the alphas of the 
benchmarks may be close to zero, but our results should be interpreted with caution in view 
of this issue. 
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C. Proxies for Disagreement 

Investor disagreement differs across funds, according to our model, in proportion to 

the product (-ρєm /ρmrj*) σ(εp).   We estimate σ(εp) from the mutual fund and benchmark 

returns data, but ρєm  and ρmrj*  are  more challenging.  We construct proxies for these 

correlations following Da and Yun (2010), who find that electricity consumption works 

better than nondurables plus services consumption expenditures in consumption-based 

asset pricing models.  We use annual electricity consumption growth, measured for the 50 

states and the District of Columbia during 1984-2012.20  We take the cross-state variation in 

the time-series correlations between a fund’s residual return, εp, and the state electricity 

consumption growths as a proxy for the variation in ρєm across “clients.”  Of course, the 

electricity growth correlations do not provide a direct link to marginal utility, so this 

proxy for the variation in disagreement is crude. Perhaps, better measures can be 

developed in future work using micro level data.21   

  

                                                                                                                                            

 
20 We are grateful to Zhi Da and Hayong Yun for allowing us to use their data. 
 
21 We consider two additional proxies for investor heterogeneity based on the various 
share classes issued by a fund.  We separate out “institutional” share classes on the 
assumption that individuals are more heterogeneous than institutional investors.  We also 
use the number of share classes as a proxy for the degree of heterogeneity in the investor 
base.  Both proxies are correlated with greater heterogeneity using our main measure, but 
we find that neither proxy is associated with significantly different flows for a given 
performance measure.  In hindsight, this may not be too surprising. Multiple share classes 
might increase flows because they offer a heterogeneous menu of cost structures, and this 
can reduce constraints on some investors’ latent demands, thus offsetting the greater 
heterogeneity.  Institutional flows are likely determined in large part by considerations 
outside the scope of our model, such as the special features of 401(k) accounts. 
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D. Summary Statistics 

Table I presents summary statistics for the monthly returns of the equity funds and 

the benchmark factors.  The index funds have mean returns around one half percent per 

month and standard deviations around five percent.  The monthly Sharpe ratios vary 

between 0.078 and 0.125.  The ETFs display more dispersion, with mean returns between 

0.28% and 0.87%, standard deviations between 4.3% and 8.0%, and Sharpe ratios between 

0.034 and 0.150.  With more disperse assets, a benchmark should generate higher 

maximum Sharpe ratios and higher correlations with a maximum correlation portfolio. 

These have offsetting effects on the magnitude of disagreement according to Equation (9). 

 The autocorrelations are small for all the benchmarks, with none above 0.15.  

The statistics for the mutual fund returns in Panels B and C summarize the cross-

section by sorting the individual funds and reporting the values at various fractiles of the 

cross-sectional distribution.   Each column is sorted separately on the statistic shown.   The 

median fund with at least 12 monthly observations returns 0.48% per month more than a 

Treasury bill over our sample period, and ten percent of the funds have excess returns of 

1.2% or more per month.  The median standard deviation is 5.0%, but 10 percent of the 

funds have standard deviations below 3.6% and ten percent are above 6.8%.  Ex post, at 

least, the universe of funds presents a wide range of investment outcomes. Our question is 

whether investors will disagree about the attractiveness of these investments. 

Panel C of Table I presents a comparison sample where only two months of return 

data are required for inclusion.  This shows that requiring 12 months of data, as we do in 
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the subsequent analyses, has an impact on the distribution of the average returns.  This is 

a form of sample selection-induced survivorship bias.  The surviving funds in the left tail 

do better, and the 12-month survivors have a more compact distribution of average 

returns.  At the one percent left tail the mean return values are -2.53% in the longer-

surviving subset, versus -3.41% in the broader sample.  The effects on the standard 

deviations are smaller.  Our measures of disagreement and heterogeneity use funds’ 

(residual) standard deviations.  Survivor selection seems to slightly inflate the left tail of 

the standard deviation distribution (1.93% versus 1.57% at the 1% tail).  This suggests that 

our upper bounds on investor disagreement may be slightly too high for the low-volatility 

funds, in view of survivor selection. 

Panel D of Table I summarizes correlations of the electricity growths with the 

mutual fund residual returns, ρεm.  The table summarizes results for the average fund.  For 

the average fund the differences between the maximum and minimum values across the 

states ranges from 0.09 for the index mutual fund benchmark to 0.19 for the CAPM.  There 

is much more variation in the correlations across funds.  The bottom rows present 

correlations using the standard growth rates of US per capita consumption of nondurables 

plus services.  For most of the models (except the FF3 factors) the correlation is similar to 

that for the median state.   

The electricity correlations present indirect evidence in support of the assumption 

that (-ρєm /ρmrj*) <1, which was used to derive the upper bound on disagreement.  The ratios 

of the correlations using the electricity growth rates are below one in every state for three of 

the benchmark choices, and the ratio is less than one in more than 76% of the states for the 
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CAPM.  The ratios for the aggregate consumption are also below 1.0. 

     VI. Empirical Results 

 
  We first present some statistics about traditional estimates of alpha that we use to 

inform our interpretation of the bounds on disagreement.  Estimates of the bounds are 

then presented.  Finally, we examine the cross-sectional implications of disagreement and 

heterogeneity for the flow of investor funds.  

 

A. Traditional Alphas 

  Table II summarizes estimates of alphas using various benchmarks. The alphas are 

the intercepts time-series regressions of fund excess returns on the benchmark excess 

returns. (Conditional alphas are discussed in a later section.)  The benchmarks are the 

market portfolio proxy (Mkt), the three Fama-French factors (FF3) and the vectors of index 

mutual funds (Idx MFs) or ETFs.  We also include the “manipulation proof” (MPPM) 

performance measure of Goetzmann et al. (2007).  This is an SDF alpha for a power utility 

function of the market portfolio return, with a relative risk aversion set equal to 3.0.  A 

similar measure is advocated by Leland (1999), based on the earlier work of Rubinstein 

(1976).  The cross-section is summarized, as in Table I, by sorting the funds on the value of 

each statistic and presenting the cutoff values for various fractiles.  The statistics include 

the point estimates of alpha, its standard error and the residual standard deviation of the 

regression.   

 Distributions of alpha estimates under the null of zero alphas are generated by 
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simulation in several recent studies. We compare the cross-sectional distribution of the t-

ratios in our data to simulations under the null from Fama and French (2010, Table III) for 

1984-2006.  Consistent with their findings, there is more dispersion in the distribution of 

performance than expected under the null of zero alphas.  In particular, the left tail of the 

cross-sectional distribution is thicker than is expected if the alphas were zero.   

  The residual standard deviations are used in our measures of disagreement.  The 

mean residual standard deviation varies from 1.3% using the vector of ETFs or index 

funds, to 1.9% using the single market index. There is substantial variation in the 

estimated σ(єp) across funds: the interquartile range under the CAPM is 1.1-2.3% per 

month.  This suggests variation in the disagreement across funds, as the residual risk is the 

risk that investors may disagree about in their evaluation of mutual funds.  

  The statistics in Table II allow rough calculations about the likely magnitudes of 

investor disagreement.  In the CAPM for example, the median residual volatility is 1.6% 

per month.  The monthly maximum Sharpe ratio is about 0.13, suggesting an upper bound 

on the expected disagreement of about 0.21% per month, or 2.5% per year for the median 

fund.  The median standard error of the CAPM alpha is 0.21% or about 2.5% per year, so 

the magnitude of the expected disagreement with the CAPM could be on the order of 

about one standard error of estimation uncertainty. 

  Panel B of Table II provides another point of comparison.  The first column shows 

the range of traditional alpha estimates across the four benchmark models.  For each fund, 

the range is the difference between the largest and the smallest alpha, and the distribution 

of the range is summarized across the funds.  The median range of alphas across the 



 
 

 26 

models is 0.20% per month, or about 2.4% per year.   This suggests that the magnitude of 

expected investor disagreement could be on the same order of magnitude as the 

ambiguity associated with the choice of a benchmark model.   

  The right hand column of Panel A summarizes estimates of the MPPM alphas for 

mutual funds.  The mean and median values are lower than the other alphas, consistent 

with manipulation that inflates the traditional alphas.  The right-hand column of Panel B 

reports the range of alphas across the four benchmark models and the MPPM.  The range 

is inflated, compared with the range using the four models, illustrating that the MPPM 

differs substantially from the traditional alphas for many funds.  This raises the question 

of whether disagreement with a traditional alpha could arise from manipulation. 

 

B. Disagreement with Alphas 

  Table III summarizes measures of investor disagreement with the traditional 

alphas and the MPPM.  Regressions of the excess fund returns on the benchmark excess 

returns deliver the alphas and the regression residuals, εp.  We use the electricity growth 

data to obtain estimates of the average disagreement for each fund.  Panel A summarizes 

the average disagreement, E[(-ρєm /ρmrj*) σ(εp) SRmax], where E[.] is the sample average 

across the 51 “states” for a given fund p, -ρєm  is the correlation between a fund’s residual 

return and a state’s electricity consumption growth and ρmrj* is the correlation with the 

maximum correlation portfolio of the benchmarks.  The cross-sectional distributions are 

summarized as before.  The upper bounds at the bottom of the panel are calculated as the 

product σ(εp) SRmax, where σ(εp) is the standard deviation of εp and SRmax is the maximum  

Sharpe ratio in the benchmark assets.    

  It is well known that estimates of maximum Sharpe ratios are upwardly biased in 

finite samples (e.g. Jobson and Korkie, 1982).   We adjust the maximum Sharpe ratio 
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estimates for finite sample bias following Ferson and Siegel (2003).22   

  The average disagreement is close to zero for the average fund, but there seems to 

be substantial heterogeneity across funds.  The 10% tail values in the FF3 model, for 

example, are -0.29% and +0.34% per month, and they are much larger for the CAPM.  We 

exploit this variation across funds in our analysis of the flow-performance relation.  The 

mean and median upper bounds on disagreement, which do not rely on the electricity 

data, are shown in the bottom rows of Panel A.  The mean upper bound varies across the 

benchmarks from 0.21-0.38% per month, or about 2.5-4.5% per year.  Thus, even for the 

average fund disagreement with the traditional alphas may be substantial.   

  Table III allows us to refine the rough calculations above for the economic 

magnitudes of disagreement.  The average upper bound is comparable in magnitude to 

the ambiguity in traditional alphas associated with the choice of benchmark.  A 

representative example is the FF3 benchmark.  Here the median upper bound on 

disagreement is 0.25% per month.  In comparison, for the median fund, the range of 

alphas across the four benchmark models is 0.20% per month in Table II.  The average 

investor disagreement could be comparable in magnitude to the effect of benchmark 

choice. The average upper bound is also comparable in magnitude to the effect of 

estimation uncertainty in the traditional alphas.  For example, for the median fund the 

standard error of the CAPM alpha in Table II is 0.21%.  In Table III the median upper 

bound on disagreement relative to the CAPM is also 0.21% per month.  Thus, investors 

may disagree on the performance of the median fund, as measured by the CAPM, by an 

                                                                                                                                            
22 The adjusted measure is [(T-N-2)/T] SRmax2 – N/T, where N is the number of benchmark 
assets, T is the length of the time series and SRmax2 is the maximum likelihood estimate of 
the maximum squared Sharpe ratio under normality.  We do not apply the correction 
when N=1.  



 
 

 28 

amount similar to the standard error of the traditional alpha.23 

  Panel B of Table III summarizes measures of disagreement with the MPPM.  We 

take the average disagreement with a traditional alpha, estimated as described above.  We 

subtract from this the difference between the MPPM and the traditional alpha.  The result is 

an indirect measure of average disagreement with the MPPM.  As the indirect measure 

depends on the traditional alpha, we show results for the different benchmark models.   

  For each model except the ETF benchmark, Panel B shows that the average 

disagreement with the MPPM for the mean and median funds is larger than the average 

disagreement with the traditional alphas.  This is consistent with manipulation that makes 

the traditional alphas “too large.” The numbers also suggest that the range of average 

disagreement with the MPPM is substantially greater than it is for the traditional alphas, 

with the exception of the ETF benchmark.  Of course, the measures of disagreement with the 

MPPM involve a more complex calculation with more estimated values, and are thus likely 

to be noisier.  However, the figures suggest that investors are likely to disagree with the 

MPPM, just as they do with the traditional alphas, and possibly to an even greater extent.  

Thus, manipulation is not likely to be the main source of investor disagreement with 

traditional alphas.  In the next section we compare the information in these measures for the 

                                                                                                                                            
23 One might ask if there are any mutual funds whose traditional alphas are so large that 
they swamp the disagreement, and we would expect all investors to agree that they are 
positive. Fama and French (2010) find insignificant traditional alphas for net returns, in 
both the positive and negative tails of the cross-sectional distribution of equity funds in 
their more recent subperiod.  If the largest traditional alphas are insignificantly different 
from zero, they will not be significantly larger than zero plus our bounds on 
disagreement.  While it is conceivable that most investors could disagree with a traditional 
alpha in the same direction (e.g., the CAPM alphas for small stocks are too low), this 
suggests systematic missing factors in the model.  Absent such factors there are unlikely to 
be many funds where all investors agree that the alpha is positive (or negative), consistent 
with the large dispersion of average disagreement in Panel A of Table III.  Thus, investor 
disagreement is likely to be important in the evaluation of almost all mutual funds. 
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flow of investor funds. 

 

C. Cross-sectional Implications of Disagreement 

 Our first prediction is that we should find a positive level effect of average 

disagreement on fund flows, controlling for a traditional alpha. Mutual fund flows are 

measured in the usual way as: 

 

   Flowp,t  =  [TNAp,t – TNAp,t-1 Rpt]/ TNAp,t-1,                                             (11) 

 

where TNA is the total net assets of the fund and Rpt is one plus the rate of return.  Fund 

flows are measured quarterly and the unit of analysis is the fund quarter.   

 Our proxy for the average disagreement is ADISp = E[(-ρєm /ρmrj*) σ(εp) SRmax], as in 

Table III. However, in exploring the cross-sectional implications of disagreement and 

heterogeneity, we must be cognizant of the close relation of ADISp to the standard error of 

the traditional alpha estimate for a fund.  Both depend on σ(εp), the residual volatility of the 

fund’s return.  We do not want to confuse the cross sectional effects of disagreement with 

the effects of imprecision in estimates of the traditional alpha. We therefore orthogonalize 

ADISp to the standard errors.  For each period we run a cross-sectional regression of the 

ADISp‘s on heteroskedasticity-consistent standard error estimates for funds’ alphas, and 

take the intercept plus residuals of these regressions as the orthogonalized measure, ODISp. 

 Our first flow performance regression addresses the level effect of average 

disagreement in a pooled panel regression: 

 

             Flowp,t+1 = b0 + b1 ap,t + b2 ODISpt +  controlst + up,t+1.                                              (12) 
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The traditional alphas for a given quarter, ap,t, are estimated using 36 months of past data (a 

minimum of 12 months are required) for each fund.   

 The control variables include the lagged volatility of the fund’s return over the 

previous 36 (minimum of 12) months.  This can be motivated by previous empirical work 

(e.g. Sirri and Tufano, 1998), as a proxy for uncertainty about managerial ability or to soak 

up heterogeneity in fund investors’ tax bases.  We include the funds’ size (log of TNA), age 

(the log of 1 + number of months since fund inception) and the expense ratio (plus 1/7 of the 

load fee, if any).  Chen, Goldstein and Jiang (2010) find that funds holding more liquid assets 

experience stronger flows in relation to performance.  We therefore include a simple 

measure of liquidity: the first order autocorrelation of the fund’s reported return over the 

past 36 (minimum of 12) months, as suggested by the model of Getmansky, Lo and Makarov 

(2004).   Two variables control for fund family membership: a dummy variable for whether 

the fund is in a family, and an index for the number of funds in the family.   

 In the left hand columns of Table IV include year dummies in the controls and thus 

identify the coefficients mainly from the cross-section.  The aggregate quarterly flows to the 

fund sector replace the time dummies in the right hand columns.  Because the residuals are 

likely to be correlated within fund styles, we cluster the standard errors by time and by fund 

style.24   

 Panel A of Table IV presents results using ADISp as the disagreement measure and 

Panel B uses the orthogonalized measure, ODISp.  There is a large and significant positive 

relation between the alphas and the subsequent flows of investor funds, consistent with 

                                                                                                                                            
24  The style clusters are mid cap, small cap, aggressive growth, growth, growth and 
income, equity income and other, where the allocation of funds to the strategies are 
determined as described in footnote 16.  This scheme assumes no correlation of the style-
level flows over time.  We examine the sample correlations and find them to be 
insignificant.   
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previous studies.  The signs on most of the control variables are consistent with previous 

work.  For example, the coefficient on fund size is negative and significant.  Larger mutual 

funds experience smaller percentage flows for a given performance measure. 

 Our main focus is the average disagreement, which has a positive coefficient in each 

flow regression. The t-ratios of the coefficients are larger than two in five of the six examples. 

 The coefficients are similar using the ADIS and the ODIS measures, and they are relatively 

insensitive to the controls.  The coefficients are in the range 2.7 to 4.0.  This says that the flow 

of new money to the average fund is 2.7% to 4% smaller when the average investor thinks 

that the FF3 alpha is 1% too high.  Using the standard deviation of the ADIS variable and the 

coefficients in Panel A, the typical fund flow is about 1.0-1.6% higher in a given quarter 

when ADIS is one standard deviation above its mean (using the cross-sectional variance of 

ADIS, the figure is slightly higher).  For ODIS, the flow is about 1.1-1.3% higher when ODIS 

is one standard deviation above its mean.  In comparison, the unconditional mean flow in 

our sample is 2.9% per quarter (the median is -1.1%), so the disagreement effect appears to 

be economically significant. 

  

D. Cross-sectional Implications of Heterogeneity 

 We predict a negative level effect of heterogeneity on fund flows for a given latent 

demand.  We use different performance measures for the latent demand.  One is the sum of 

a traditional alpha and its associated average disagreement, denoted as Δp. We proxy for 

investor heterogeneity using the standard deviation across the 51 states, of the disagreement 

measure: HETp = Std[(-ρєm /ρmrj*) σ(εp) SRmax], where Std[.] is the sample standard deviation 

taken across the states.  We orthogonalize the heterogeneity measures to the standard errors 

of alpha, using the same approach described above.  We denote the orthogonalized 

heterogeneity measure as OHETp.   
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  Table V presents the results of the flow performance regressions focusing on the level 

effects of heterogeneity.  Three sets of columns are shown in each panel, with different 

subsets of the control variables.  The coefficients on the alphas are positive and significant, 

with magnitudes similar to those in Table IV.  The coefficients on Δp are slightly smaller, but 

strongly statistically significant.  The coefficients on the MPPM are the smallest, but they are 

still statistically significant. 

 Our main focus is the coefficients on OHET, which are strongly significant and 

negative in each regression.  The coefficients on OHET are slightly larger when using the 

latent demand Δp, compared with using the raw alphas or the MPPM.  The coefficients vary 

across the experiments from -9.5 to -13.5.  This says that a fund with 1% more heterogeneity 

in its investor base experiences about 10% less in future fund flows, other things equal.   

 Using the standard deviation of the OHET variable and the coefficients in Panel A, 

the typical fund flow is about  3.2.-3.8% lower in a given quarter when OHET is one 

standard deviation above its mean.  When the FF3 alpha is the performance measure in 

Panel B, the typical flow is about 2.7.-3.2% lower in a given quarter when OHET is one 

standard deviation above its mean, and when the MPPM is the measure in Panel C, the 

figures are 2.8-3.4%.  These are about twice as large as the disagreement effects in Table IV.  

Thus, the effect of heterogeneity is likely of great economic significance.25    

 

E. Conditional Models 

  Conditional performance evaluation, as introduced by Ferson and Schadt (1996), 

attempts to obtain better measures of manager skill by stripping out the effects of public 

information.  However, Del Guercio and Tkac (2002) find that individual investors do not 

                                                                                                                                            
25 In a previous version of this paper we study the interaction effects of heterogeneity with 
regressions and graphs, and find patterns broadly consistent with our discussion of the 
interaction effects in Section IV.B.  These results are available by request.  
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respond to complex performance measures as much as to simpler measures.  We examine 

a number of conditional models to assess the sensitivity of the disagreement measures.  

(Tables are available by request.)  The first example follows Ferson and Schadt (1996), with 

constant alphas and time-varying conditional betas, modeled as linear functions of lagged 

instruments for public information.26   

  The conditional models generally find larger bounds on disagreement.   The effects 

of the smaller residual standard deviations (which reduce disagreement) are more than 

offset by the larger maximum Sharpe ratios in models with a larger effective number of 

benchmarks. For example, in the FF3 factor benchmark, the median estimate of the upper 

bound is 0.52% in the Ferson and Schadt model, compared with the 0.21% we found in 

Table III.  At the same time the range of the alpha estimates across the benchmarks is 

slightly narrower, so the disagreement bound now exceeds the range of alphas across the 

benchmark models at each fractile of the distribution of funds.  Disagreement now 

appears even more important relative to the effects of benchmark choice and to the 

statistical imprecision of the alpha estimates. 

  We allow for the possibility of time-varying conditional alphas, modeling them as 

linear functions of the lagged instruments, following Christopherson et al. (1998).27  We 

examine the alphas in NBER recession and non recession periods.  The CAPM alphas are 

slightly larger in recession periods, consistent with previous studies, although we do not 

                                                                                                                                            
26 We use the one-month Treasury bill yield from CRSP, a yield spread between Moody’s 
Baa-rated and Aaa-rated corporate bonds, and yield difference between a constant 
maturity 10-year Treasury bond and the 3-month Treasury bill and the sum of the 
dividends paid on the S&P500 index over the past 12 months divided by the level of the 
index as lagged instruments.  The data are from CRSP and DRI Basic Economics. 
27 We also examine models with time-varying conditional volatility using a GARCH(1,1) 
model. If the fund residual is conditionally heteroskedastic, then its volatility, σ(εp|Z), varies 
over time with Z and the expected bound is E{σ(εp|Zt) SRmax(Zt)}, allowing for a covariance 
between the two terms.  
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find this to be the case for the FF3 model alphas.28  The standard errors of the alpha 

estimates in the two subsamples are larger and the range of alphas across the models is 

greater, reflecting the smaller sample sizes.  The inferences about the magnitudes of the 

disagreement are generally similar to those from the constant alpha models. 

 

      VII. Conclusions 

The ambiguities in the interpretation of alpha as a normative investment signal are largely 

resolved when alpha is defined relative to the client's preferences; and, assuming 

incomplete markets, performance evaluation is inherently client specific.  In evaluating 

managed portfolios, one size does not fit all.  Investors will not in general agree about 

alphas, and the same fund will look attractive to one investor but not to another.  We 

evaluate the effects of investor disagreement and heterogeneity on investment 

performance measurement and find that the effects are statistically and economically 

significant.  This has important implications for the existing literature, for practical 

investment evaluation and for future research. 

  We infer that the expected disagreements of investors with traditional alphas are 

likely comparable in magnitude to the impacts of benchmark choice and estimation errors. 

 Benchmark choice and statistical imprecision have received a great deal of attention in the 

literature on performance measurement, but investor heterogeneity has hardly begun to 

be explored.  We find that when measures of the average disagreement across investors 

indicate that traditional alphas are too low, funds enjoy larger flows of new money for a 

given traditional alpha.  When a fund faces greater heterogeneity, defined as the variance 

of disagreement across investors, it experiences less flow for a given performance level.  

                                                                                                                                            
28 Studies finding that mutual funds perform better in recessions include Ferson and Qian 
(2004), Kowsowski (2011), Moskowitz (2000), and Kacperczyk, Niewerburgh and Veldkamp 
(2012).  These results are criticized by De Souza and Lynch (2012) for ex post conditioning.   
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These effects are separate from uncertainty about the true value of the traditional alpha. 

  While our analysis indicates that investor disagreement and heterogeneity are 

economically significant, we likely understate the case.  We use iterated expectations to 

integrate out clients’ different beliefs about traditional alphas.  We do not consider taxes 

or transaction costs.  These are additional sources of potential disagreement about alpha 

across investors. 

  The implications of our results for the practical evaluation of investments are 

important.  One client is likely to view the performance of a given fund differently from 

another client.  If the client’s life situation is idiosyncratic, he is likely to view the 

performance of a fund as idiosyncratically different.  Our results also suggest an 

important avenue for new research on investment performance evaluation.   If the client-

specific nature of alpha is important, then studies should develop clientele-specific 

measures of fund performance.    

 

            Appendix 

A. Proof of Proposition 1: 

The first order condition for an optimal response Δ that maximizes the lifetime utility 

implies: 

 

  - uc(Ct-Δ) + E{βJw(W(Δ)) [Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] |Zt} = 0.                           (A1) 

 

Assuming regular utility functions, we use the mean value theorem to represent 

 

   uc(Ct-Δ) = uc(Ct) - ucc* Δ and           (A2) 

   Jw(W(Δ)) = Jw(Wt+1) + Jww* [W(Δ)-Wt+1],  
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where * indicates that the functions are evaluated at points in the intervals (Ct-Δ,Ct) and 

(W(Δ),Wt+1) respectively.  Substituting (A.2) into (A.1) yields: 

 

        uc(Ct) -ucc*Δ=E{β [Jw(Wt)+Jww* (W(Δ)-Wt+1)] [Rp,t+1 + (Wt-Ct)(x(Δ)/Δ)'R]}.           (A3) 

 

Substituting in (W(Δ)-Wt+1) = ΔRp + (Wt-Ct)[x(Δ)-x]'R, where x(Δ) is the new optimal 

portfolio weight vector for the N base assets, normalized to sum to 1.0, and x is the old 

optimal weight vector, and using the first order condition E{β Jw(Wt) R}=1uc(C) and the 

fact that x(Δ)'1=1 implies (x(Δ)/Δ)'1=0, and using the definition of αp, (A.3) reduces to: 

 

       uc(Ct) - ucc*Δ = (1+αp)uc(Ct) + Δ Q,                                                (A4) 

    Q = E{β Jww* [Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] [Rpt+1 + (Wt-Ct) (x(Δ)-x)/Δ)'R]}. 

 

Solving for the optimal Δ we have: 

    Δ = αp {uc /(-ucc* - Q)},         (A5) 

and the conditions of the theorem guarantee that Q<0, which establishes the result.  QED. 
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Table I 

Summary Statistics 
 

The data are from January 1984 through December 2012. The benchmark assets include a 
stock market portfolio (market), the Fama French three factors (FF 3 Factors), six equal-
weighted portfolios of index mutual funds (Index MFs) and a set of five ETFs: SPY (large 
cap), MDY (mid cap), IJR (small cap), QQQ (Nasdaq 100), IYR (Mortgage/Real Estate).  
Mean is the sample mean, Std Dev is the standard deviation, Min is the minimum, Max is 
the maximum, AR1 is the first order autocorrelation and SR is the sample Sharpe ratio.  
All statistics are computed on excess returns measured net of the one month return on a 
three-month Treasury bill.  Columns for the mutual funds are sorted separately on each 
statistic shown in Panels B and C. Monthly percentage figures are reported in the first four 
columns.  In panel D, ρєm is the correlation between state level electricity consumption 
growth and the residual from regressing the fund’s return on the benchmarks, and ρmrj* is 
the correlation with the maximum correlation portfolio of the benchmark returns. 
                                                                                                                                           

 
Panel A: Summary Statistics for Benchmarks 

                                                                                                                                           

 

 Mean Std Dev Min Max AR1 SR 

                                                                                                                                           

      

FF 3 Factors       

Market 0.584 4.559 -23.077 12.416 0.087 0.128 

SMB 0.068 3.156 -16.390 22.000 -0.034 0.022 

HML 0.293 3.070 -12.600 13.840 0.143 0.095 

       

Index MFs       

S&P 500 0.557 4.450 -22.083 15.718 0.046 0.125 

S&P MidCap 0.679 4.868 -21.900 16.041 0.124 0.140 

SmallCap 0.454 5.861 -20.270 18.922 0.080 0.078 

Russell 0.416 5.319 -31.829 13.609 0.136 0.078 

MSCI US 0.492 5.256 -32.640 14.052 0.156 0.094 

Others 0.559 4.835 -19.073 14.289 0.078 0.116 

       

ETFs       

IJR 0.656 5.717 -19.798 18.071 0.087 0.115 

IYR 0.873 6.639 -31.352 29.605 0.073 0.132 

MDY 0.786 5.255 -21.584 14.765 0.125 0.150 

QQQ 0.275 8.011 -26.599 23.046 0.104 0.034 

SPY 0.488 4.329 -16.555 10.914 0.089 0.113 
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Panel B: Summary Statistics for Mutual Fund Returns with At Least 12 Months’ Data 
                                                                                                                                        

Fractile Mean Std Dev Min Max AR1 SR 

                                                                                                                                           

 

Bottom 1% -2.534 1.931 -32.402 3.364 -0.322 -0.326 

Bottom 10% -0.293 3.652 -22.441 7.550 -0.120 -0.055 

Bottom 25% 0.169 4.379 -19.184 10.185 -0.036 0.033 

Median 0.482 5.054 -14.342 12.255 0.075 0.097 

Top 25% 0.820 5.812 -9.077 14.922 0.159 0.175 

Top 10% 1.201 6.861 -7.313 19.059 0.232 0.251 

Top 1% 2.034 12.595 -3.708 36.050 0.419 0.436 

                                                                                                                                           

Panel C: Summary Statistics for Mutual Fund Returns with at Least 2 Month’s Data 
                                                                                                                                           

Fractile Mean Std Dev Min Max AR1 SR 

                                                                                                                                           

 

Bottom 1% -3.409 1.565 -31.925 0.850 -0.625 -0.510 

Bottom 10% -0.438 3.414 -22.237 6.088 -0.148 -0.082 

Bottom 25% 0.140 4.315 -18.842 9.632 -0.044 0.028 

Median 0.478 5.017 -13.069 12.005 0.069 0.097 

Top 25% 0.845 5.804 -8.603 14.737 0.159 0.181 

Top 10% 1.279 6.908 -6.377 18.669 0.236 0.268 

Top 1% 2.839 12.734 -0.804 35.833 0.475 0.747 

                                                                                                                                          

                                 Panel D: Electricity Growth Correlations for the Average Fund  
                                                                                                                                           

Fractile CAPM  FF3  Idx MFs  ETFs 

                                                                                                                                           
Min State ρєm -0.096 -0.047 -0.026 -0.066 

Median State ρєm 0.017 0.017 0.030 0.004 

Max State ρєm 0.096 0.079 0.063 0.090 

     

Min State ρmrj* 0.001 0.062 0.204 0.335 

Median State ρmrj* 0.110 0.337 0.664 0.704 

Max State ρmrj* 0.449 0.560 0.927 0.925 

     

Fraction with 76.5 100 100 100 

|ρєm/ ρmrj*|<1     

 

Aggregate Cons:      

Median Fund ρєm 0.021 0.081 0.036 0.014 

ρmrj* 0.190 0.332 0.673 0.581 
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Table II 

Mutual Funds’ Alphas and Residual Volatilities Using Various Factor 

Models 
 
This table summarizes the cross-sectional distribution of alpha estimates, their standard 
errors, and the volatility of the idiosyncratic residuals for actively managed mutual funds. 
CAPM denotes the Capital Asset Pricing Model, FF3 denotes the three Fama-French 
factors, Idx MFs are the six equal-weighted portfolios of index mutual funds, ETFs are a 
set of five ETFs.  The symbols rp and rj denote the fund excess returns and the vector of 
benchmark excess returns, respectively. All figures are in monthly percentage units.   The 
sample period is January, 1984 through December, 2012.  The alphas are the intercepts in 
the following regression: 
  

rp = ap + Bp’ rj + εp.                                          
                       

Std is the White (1980) standard error of the alpha and σ(εp) is the standard deviation of 
the fund residual.  The regressions use actively managed mutual funds with at least 12 
monthly returns.  The last column reports manipulation-proof performance measures 
(MPPM) proposed by Goetzmann et al. (2007) with a risk aversion coefficient of 3. In each 
column funds are sorted on the indicated statistic. 
                                                                                                                                           

 
Panel A: Summary Statistics for Traditional Mutual Fund Alphas and the MPPM 

                                                                                                                                           

 

          CAPM  FF3  MPPM 

                                                                                                                                           

 

         Alpha  Std  σ(εp)  Alpha  Std  σ(εp)  Alpha 

                                                                                                                                           

 
Bottom 1% -1.271 0.062 0.426  -1.239 0.052 0.358  -4.309 

Bottom 10% -0.452 0.106 0.746  -0.441 0.090 0.636  -0.689 

Bottom 25% -0.247 0.144 1.079  -0.246 0.120 0.887  -0.350 

Median -0.070 0.205 1.608  -0.087 0.165 1.264  -0.105 

Top 25% 0.102 0.289 2.301  0.051 0.229 1.818  0.140 

Top 10% 0.307 0.411 3.225  0.194 0.339 2.474  0.478 

Top 1% 0.869 1.087 6.747  0.630 0.897 4.856  1.131 

          

Mean -0.079 0.249 1.872  -0.116 0.204 1.475  -0.205 
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                                               Idx MFs                                              ETFs   

                                                                                                                                           

 

         Alpha  Std  σ(εp)  Alpha  Std  σ(εp)   

                                                                                                                                           

 
Bottom 1% -1.584 0.039 0.254  -2.063 0.035 0.277 

Bottom 10% -0.456 0.088 0.520  -0.579 0.085 0.559 

Bottom 25% -0.227 0.118 0.731  -0.320 0.111 0.765 

Median -0.059 0.161 1.105  -0.140 0.151 1.089 

Top 25% 0.091 0.228 1.673  0.013 0.213 1.555 

Top 10% 0.255 0.339 2.322  0.150 0.316 2.124 

Top 1% 0.775 0.919 4.699  0.566 0.879 4.517 

        

Mean -0.119 0.202 1.326  -0.215 0.189 1.296 

                                                                                                                                           

 

Panel B: Range of Alphas Across Models 
                                                                                                                                           

 

                     Four Benchmarks  Five Models Including the MPPM   

                                                                                                                                           

 
Bottom 1% 0.027 0.044 

Bottom 10% 0.069 0.110 

Bottom 25% 0.119 0.176 

Median 0.202 0.304 

Top 25% 0.358 0.550 

Top 10% 0.603 0.967 

Top 1% 2.143 4.338 

   

Mean 0.344 0.546 

                                                                                                                                           



 
 

 45 

Table III 

Investor Disagreement Measures 

 

Measures of disagreement with alphas using various benchmarks are summarized.  
CAPM uses the market portfolio, FF3 uses the three Fama French factors, Idx MFs uses the 
the index funds and ETFs uses are a set of five ETFs as the benchmarks. The symbols rp 

and rj denote the fund excess returns and the vector of benchmark excess returns, 
respectively.  The regression is: 
 

rp = ap + Bp’ rj + εp  
 
The upper bounds are calculated as the product σ(εp) SRmax., where σ(εp) is the standard 
deviation of εp and SRmax is the maximum Sharpe ratio in the benchmarks, adjusted for 
finite sample bias following Ferson and Siegel (2003).  The average disagreement is 
calculated as the average of (-ρєm /ρmrj*) σ(εp) SRmax across the 51 “states” for a given 
benchmark choice and fund.  ρєm is the correlation between state level electricity 
consumption growth and the residual from regressing the fund’s return on the benchmarks, 
and ρmrj* is the correlation between the electricity consumption growth and a maximum 
correlation portfolio of the benchmark returns.  Panel B shows disagreement with the 
manipulation proof performance measure, MPPM.  The figures are in monthly percentage 
units for 1984-2012. 
                                                                                                                                           

 

Panel A: Disagreement with Traditional Alphas 
                                                                                                                                           

 

Fractile          CAPM      FF3       Idx MFs     ETFs   

                                                                                                                                           

 
Bottom 1%  -7.302 -0.697 -0.567 -0.393 

Bottom 10%  -2.602 -0.290 -0.222 -0.166 

Bottom 25%  -1.141 -0.137 -0.114 -0.094 

Median  0.042 0.028 -0.015 0.001 

Top 25%  1.255 0.195 0.082 0.098 

Top 10%  2.569 0.343 0.178 0.168 

Top 1%  6.111 0.893 0.433 0.384 

      

Mean  -0.008 0.035 -0.021 0.002 

      

Upper Bounds:      

      

Mean  0.240 0.248 0.379 0.210 

Median  0.206 0.212 0.316 0.176 
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Panel B: Disagreement with the MPPM 

                                                                                                                                           
 
               CAPM       FF3       Idx MFs     ETFs    

                                                                                                                                           

 

Bottom 1% -6.824 -1.438 -1.439 -1.777 

Bottom 10% -2.218 -0.526 -0.508 -0.625 

Bottom 25% -0.877 -0.206 -0.182 -0.279 

Median 0.143 0.036 0.028 -0.039 

Top 25% 1.214 0.296 0.220 0.151 

Top 10% 2.549 0.651 0.522 0.398 

Top 1% 7.209 4.046 3.428 3.807 

     

Mean 0.154 0.135 0.058 -0.015 
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Table IV 

  Quarterly Panel Flow-performance Regressions using Average 

Disagreement and Three-Factor Alphas 
 

The data cover January, 1984 through December, 2012.  The net flow, Flowp,t+1, is defined 
as the quarter-to-quarter growth in total net assets (TNA) in excess of fund returns.  Three-
factor alphas, ap,t, are estimated using 36 months of past data on excess returns (a minimum 
of 12 months are required) and the Fama-French factors as follows: 
  

.1,...,36,,,,,,,  ttrrrar phmlhmlsmbsmbmktmkttpp    

 
We then run the following quarterly pooled panel regressions for 1985-2012:  
 

Flowp,t+1 = b0 + b1 ap,t + b2 ADISp,t + controlst + up,t+1,   
 

Flowp,t+1 = b0 + b1 ap,t + b2 ODISp,t + controlst + up,t+1,   
 
The proxy for average disagreement is:  
 

ADISp = E[(-ρєm /ρmrj*) σ(εp) SRmax], 
 
where ρєm is the time-series correlation between a fund’s residual return and a state’s 
electricity consumption growth and E[.] denotes the cross-sectional average across the 50 
states and the District of Columbia.  The symbol rj* denotes the maximum correlation 
portfolio in a given set of benchmark returns and σ(εp) is fund p’s residual volatility.  SRmax 
is the maximum Sharpe ratio, adjusted for finite sample bias following Ferson and Siegel 
(2003).  We also orthogonalize ADISp to the cross section of standard errors of the 
traditional alphas each quarter, and take the intercept plus residuals of these regressions as 
the measure ODISp.   The control variables include the lagged age (the natural logarithm of 
months since inception, AGEt), the lagged size (the natural logarithm of TNA, SIZEt), the 
expense ratio plus one-seventh of the front-end load (EXPENSEt), the aggregate flow into 
the fund style category (SECFLOWt), the lagged fund total return volatility (TVOLt) and 
the lagged first order fund return autocorrelation, estimated over the past 36 months 
(ARt).  DFAMt is a dummy variable equal to one if a fund has other funds in the same 
family, and zero otherwise.  NFAMt indicates the number of funds greater than one in the 
same family, and is zero if there is only one fund in the family.  The year fixed effects are 
year dummies.  The standard errors are clustered by year and fund style.   
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Panel A: Fund Flows and ADIS 

                                                                                                                                           

 
 Coeff Std Coeff Std Coeff Std 

       

a pt 14.298 4.424 12.362 3.433 12.890 3.450 

ADISpt 2.965 1.784 3.958 1.820 3.959 1.756 

AGEt 0.093 0.049 0.077 0.046 0.082 0.046 

SIZEt -0.088 0.042 -0.082 0.041 -0.085 0.042 

EXPENSEt -4.691 4.100 -4.120 3.628 -3.661 3.391 

TVOLt -1.621 0.710 -1.832 0.768 -2.004 0.769 

ARt 0.068 0.046 0.130 0.026 0.124 0.012 

SECFLOWt   1.224 0.518 1.488 0.807 

DFAMt     0.037 0.077 

NFAMt     0.001 0.001 

Year Fixed Effects Yes  No  No  

                                                                                                                                           

 
Panel B: Fund Flows and ODIS 

                                                                                                                                           

 

 Coeff Std Coeff Std Coeff Std 

       

a pt 14.325 4.431 12.363 3.425 12.860 3.466 

ODISpt 3.428 1.712 2.954 1.312 2.695 1.366 

AGEt 0.093 0.049 0.076 0.046 0.080 0.046 

SIZEt -0.088 0.042 -0.081 0.041 -0.085 0.042 

EXPENSEt -4.623 4.117 -4.010 3.663 -3.557 3.427 

TVOLt -1.488 0.712 -1.624 0.752 -1.793 0.760 

ARt 0.066 0.045 0.119 0.038 0.114 0.030 

SECFLOWt   1.261 0.497 1.521 0.798 

DFAMt     0.039 0.076 

NFAMt     0.001 0.001 

Year Fixed Effects Yes  No  No  

                                                                                                                                           



 
 

 49 

Table V 

  Flow-performance Regressions using Heterogeneity and Three 

Factor Alphas 
 

The data cover January, 1984 through December, 2012.  The net flow, Flowp,t+1, is defined 
as the quarter-to-quarter growth in total net assets (TNA) in excess of fund returns.  Three-
factor alphas, ap,t, are estimated using 36 months of past data (a minimum of 12 months are 
required) and the Fama-French factors as follows: 
 

.1,...,36,,,,,,,  ttrrrar phmlhmlsmbsmbmktmkttpp    

 
We then run the following quarterly pooled panel regressions for 1985-2012:  
 

Flowp,t+1 = b0 + b1 Δp,t + b2 OHETp,t + controlst + up,t+1,   
 

Flowp,t+1 = b0 + b1 ap,t + b2 OHETp,t + controlst + up,t+1,   
 

Flowp,t+1 = b0 + b1 MPPMp,t + b2 OHETp,t + controlst + up,t+1,   
 
The proxy for investor heterogeneity is based on: HETp = Std[(-ρєm /ρmrj*) σ(εp) SRmax], 
where ρєm is the time-series correlation between a fund’s residual return and a state’s 
electricity consumption growth and Std[.] denotes the cross-sectional standard deviation 
across the 50 states and the District of Columbia.  The symbol rj* denotes the maximum 
correlation portfolio in a given set of benchmark returns and σ(εp) is fund p’s residual 
volatility.  SRmax is the maximum Sharpe ratio, adjusted for finite sample bias following 
Ferson and Siegel (2003).  We orthogonalize HETp to the cross section of standard errors of 
the three-factor alphas each quarter, and take the intercept plus residuals of these 
regressions as the orthogonalized measure, OHETp.  Δp is the sum of the three-factor alpha 
and its average disagreement, ADISp = E[(-ρєm /ρmrj*) σ(εp) SRmax].   MPPM is the 
manipulation-proof performance measure. 
 
The control variables include the lagged age (the natural logarithm of months since 
inception, AGEt), the lagged size (the natural logarithm of TNA, SIZEt), the expense ratio 
plus one-seventh of the front-end load (EXPENSEt), the aggregate flow into the fund style 
category (SECFLOWt), the lagged fund total return volatility estimated over the past 36 
months (TVOLt) and the lagged first order autocorrelation of the fund return estimated 
over the last 36 months (ARt).  DFAMt is the dummy equal to one if a fund has other funds 
in the same family, and zero otherwise.  NFAMt indicates the number of funds greater 
than one in the same family, and is zero if there is only one fund in a family.  The year 
fixed effects are year dummies.  The standard errors are clustered by year and fund style.   
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Panel A: Fund Flows, OHET and Latent Demands   

                                                                                                                                          

 
 Coeff Std Coeff Std Coeff Std 

       

Δpt 10.179 3.846 8.194 2.717 8.311 2.801 

OHETpt -13.546 4.784 -11.462 3.741 -11.499 3.642 

AGEt 0.111 0.074 0.099 0.070 0.108 0.070 

SIZEt -0.124 0.049 -0.120 0.047 -0.128 0.048 

EXPENSEt -6.470 4.296 -6.416 4.175 -5.594 3.938 

TVOLt -3.003 1.373 -2.944 1.184 -2.908 1.173 

ARt 0.164 0.111 0.180 0.116 0.145 0.106 

SECFLOWt   1.608 1.133 1.847 1.263 

DFAMt     0.009 0.101 

NFAMt     0.003 0.001 

Year Fixed Effects Yes  No  No  

                                                                                                                                           

 
Panel B: Fund Flows, OHET and Three-factor Alphas 

                                                                                                                                          

 
 Coeff Std Coeff Std Coeff Std 

       

a pt 15.358 5.281 11.855 3.433 12.014 3.581 

OHETpt -11.269 3.973 -9.549 3.117 -9.553 3.020 

AGEt 0.115 0.074 0.100 0.070 0.109 0.069 

SIZEt -0.126 0.049 -0.121 0.047 -0.129 0.048 

EXPENSEt -6.218 4.295 -6.058 4.103 -5.219 3.852 

TVOLt -2.235 1.046 -2.567 1.023 -2.528 1.008 

ARt 0.163 0.105 0.162 0.110 0.127 0.100 

SECFLOWt   1.666 1.145 1.905 1.278 

DFAMt     0.017 0.102 

NFAMt     0.003 0.001 

Year Fixed Effects Yes  No  No  
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Panel C: Fund Flows, OHET and the MPPM 
                                                                                                                                          

 
 Coeff Std Coeff Std Coeff Std 

       

MPPM pt 7.928 3.156 6.010 2.692 6.375 2.833 

OHETpt -12.165 4.753 -10.093 3.387 -9.923 3.224 

AGEt 0.118 0.077 0.103 0.074 0.114 0.073 

SIZEt -0.129 0.051 -0.124 0.050 -0.133 0.051 

EXPENSEt -7.196 4.732 -6.692 4.451 -5.824 4.151 

TVOLt -0.316 1.143 -1.705 0.983 -1.574 0.937 

ARt 0.119 0.096 0.117 0.104 0.078 0.094 

SECFLOWt   1.495 1.002 1.726 1.129 

DFAMt     0.007 0.105 

NFAMt     0.003 0.002 

Year Fixed Effect Yes  No  No  

                                                                                                                                           


