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Can the diffusion of technologies affect voting patterns? Do political parties

reap political benefits from the diffusion of certain technologies? Technology

is usually not aligned with a specific ideology or political party. Indeed, to

the extent that technology raises living standards, all parties tend to favor

technology diffusion. However, in some cases, voters may associate a political

party with a specific technology. This may be the case because the technology

is important for the fulfillment of the party’s aspirations or because the party

has actively supported policies that affect the diffusion of the technology. One

example where both of these nexes are present is environmentally-friendly tech-

nologies. Green parties advocate for the diffusion of green energy technologies

and pursue policies that foster the diffusion of green energies. In Germany,

for example, when the Social Democratic-Green coalition won the 1998 federal

elections, it raised the feed-in tariffs paid for electricity produced from wind

and solar power.1

Coinciding with the diffusion of PV systems, the German Green Party

experienced a significant increase in its share of votes, from 6.7 percent in

1998 to 10.7 percent in the 2009 elections. This observation raises a question

that the literature has not contemplated yet. Has the diffusion of green energy

technologies helped the Green Party increase its share of votes?2

Identifying the effects of diffusion on green votes presents well-known iden-

tification challenges. An increase in the political power of the Green Party may

enable the approval of subsidies to green energy that accelerate its diffusion.
1Indeed, these measures may have accelerated the diffusion of photovoltaic (PV) systems

(Dewald and Truffer (2011), Jacobsson et al. (2004) and Jacobsson and Bergek (2004)).
2In section 3.4, we provide two possible rationales for why adopting PV systems may

affect voting patterns. One is based on Bayesian updating and the other based on cognitive
dissonance (Akerlof and Dickens, 1982).
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Such reverse causality logic may result in biased estimates of the effect of PV

systems diffusion on green votes. Similarly, failing to control for unobserved

heterogeneity may result in biased estimates if omitted drivers of Green Party

votes are correlated with diffusion patterns.

We avoid these potential biases by exploiting variation in adoption rates

(i.e. the increment in diffusion) exogenous to the political process. To find

a valid instrument for adoption rates, we build on the key finding of over

50 years of economic and marketing research on diffusion curves. Namely,

that new technologies in a wide range of sectors, countries and periods diffuse

approximately following logistic curves (e.g., Griliches (1957) and Mansfield

(1961)).3 Logistic curves are characterized by low initial adoption rates that

eventually accelerate to reach a technology’s long-run penetration rate. One

implication of the non-linear nature of logistic curves is that current adoption

rates can be forecasted by lagged diffusion levels.

The literature has provided four distinct rationales for the non-linearity of

diffusion curves. Epidemic models (Bass, 1969; Rogers, 1995) argue that initial

lack of information on the technology prevents potential adopters from adopt-

ing profitable technologies. As the number of adopters increases, information

flows faster accelerating the adoption rate. Probit models rely on exogenous

bell-shaped distributions of adoption costs or profits among potential adopters

to generate heterogeneity in the timing of adoption.4 The tension between the

legitimization of the technology in the population and competition for limited

resources required to adopt it may also generate S-shaped diffusion (Hannan
3See Comin and Mestieri (2013) for some examples.
4See, for example, the vintage human capital model of Chari and Hopenhayn (1991).
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and Freeman, 1989). Finally, in information cascades models (Arthur (1989)

and Banerjee (1992)) agents initially adopt slowly because they are experi-

menting with various technological options. Followers, instead, find it optimal

to copy their predecessors as in a herd, leading to an acceleration of the speed

of diffusion.5

It is important to note that (i) all the sources of non-linear dynamics pro-

posed in the literature are orthogonal to voting patterns and more generally to

politics; and (ii) non-linear dynamics have been documented in the diffusion

of a large number of technologies, most of which are orthogonal to the political

process. These two observations allow us to confidently claim that variation

in adoption rates that comes from the non-linearity of technology diffusion is

orthogonal to voting patterns. Under this premise, we can use lagged diffusion

levels to instrument for current adoption rates of PV systems.

We implement this identification strategy by constructing a balanced panel

at the NUTS-3 level that covers both the diffusion of PV systems and the

fraction of total votes that went to the Green Party in all the federal elections

between 1998 and 2009. Our baseline regression includes year dummies and

region-specific trends in green voting. We find a significant effect of PV adop-

tion on the increase in the share of votes for the Green Party. In particular,

the increase in the diffusion rate of PV systems between 1998 and 2009 led

to an increase in the fraction of green votes of 1 percent, which represents

25 percent of the actual increase in the voting rate experienced by the Green

Party between 1998 and 2009.
5See Geroski (2000) for a survey.
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To better understand the mechanism by which green-technology adoption

affects voting patterns, we investigate several hypotheses. First, we explore

whether voters compensate the Green Party for a windfall gained by adopting

PV systems at a higher feed-in tariff. We deem this hypothesis as unlikely to

drive our findings because (i) our estimates are robust to controlling for proxies

of the profitability of adopting PV systems and (ii) we show that installing

a PV system did not significantly contribute to household income. A second

hypothesis is that observing the diffusion of green technologies is sufficient

to affect voters propensity to vote for the Green Party. We evaluate this

hypothesis by exploring whether the diffusion of industrial green technologies

(PV and eolic, i.e., wind) has a similar effect on green voting to what we have

observed for household PV systems. In contrast to our findings for household

PV systems, we find no effect of the adoption of industrial PV systems and

eolic systems on green voting.

We interpret these results as evidence that seeing more green energy in-

stallations in the neighborhood is not sufficient to induce voting for the Green

Party. Instead, individuals that use green technologies are more likely to be-

come Green Party voters.

Our analysis is related to various literatures that have explored the drivers

of voting behavior. Deacon and Shapiro (1975) and Fischel (1979) use survey

data from voters in referenda on environmental issues to study which factors

affect the probability of voting in support of the environment. They find that

occupation, political affiliation, education, income and location are important
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drivers of green voting.6 A number of studies have explored the role of mone-

tary incentives in voting both from the perspective of voters and of politicians.

The existing evidence suggests that monetary rewards are relatively ineffec-

tive in driving votes both when trying to affect the position taken by elected

representatives (Ansolabehere et al., 2003) and the votes of the electorate (Cor-

nelius (2004), Wang and Kurzman (2007), Schaffer and Schedler (2007)). The

specific driver of voting patterns we explore is the diffusion of PV systems.

To the best of our knowledge, our paper is the first to explore the effects of

technology diffusion on votes.7

As mentioned above, our identification strategy exploits the logistic diffu-

sion pattern observed for many technologies. In addition to the standard forces

that induce logistic diffusion patterns, a few other drivers have been pointed

out as relevant for the adoption of green technologies. These include regula-

tion (Snyder et al., 2003), feed-in tariffs (Dewald and Truffer, 2011; Jacobsson

et al., 2004), environmental ideology (Kahn, 2007), consumption patterns of

reference persons and habit (Welsch and Kühling, 2009).8

The rest of the paper is organized as follows. Section 1 describes the rele-

vant institutional context of green energy in Germany and presents the aggre-
6A related literature (e.g., Tjernström and Tietenberg (2008), Torgler and García-Valiñas

(2007), Whitehead (1991), Nord et al. (1998) Zelezny et al. (2000)) has used survey data to
explore drivers (mostly socio-economic and demographic) of attitudes towards green issues.

7Our analysis is also related to the literature on policy feedback (Schattschneider, 1935;
Pierson, 1993; Soss and Schram, 2007). These authors argue that new policies can create
their own support through a range of mechanisms. However, the effects we identify are
orthogonal to potential policy feedbacks since (i) we control for policy changes and (ii) we
exploit exogenous variation in adoption rates which, by definition, is not driven by new
policies.

8Two other mechanisms that deliver logistic dynamics have been studied in the context
of green technologies: information (Rode and Weber, 2012) and peer effects (Bollinger and
Gillingham, 2012; Müller and Rode, 2013).
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gate trends in green technology diffusion and green voting. Section 2 develops

a model of technology adoption to explore the drivers of diffusion and motivate

the instrumentation strategy. Section 3 presents the empirical findings, and

discusses their robustness and interpretation. Section 4 concludes.

1 German institutional context and aggregate

trends

In 1998, the Social Democratic-Green coalition won the federal elections. Two

years later, the government introduced a new feed-in tariff scheme, the EEG,

which raised the feed-in tariff for electricity produced from solar energy. For

example, the feed in tariff for systems with a capacity of at most 30 kWp

was raised to 50 EURCent/kWh (from 8.84 EURCent/kWh).9 The feed-in

tariff was vintage-specific and was guaranteed for twenty years (Agnolucci,

2006; Altrock et al., 2011; Maurer et al., 2012).10 Additionally, between 1999

and 2003, the government provided low-interest loans for PV roof installations

through the 100,000 roofs program (Jacobsson and Lauber, 2006). By 2003,

the fraction of buildings with PV systems was 0.49 percent, almost 10 times

larger than in 1999. The 2004 Amendment to the EEG further raised the

feed-in tariff to 57 EURCent/kWh (see Figure 1). By 2009, 3.6 percent of

buildings had PV systems.
9The capacity (or nominal power) of a PV system is specified in kilowatts-peak

[
kWp

]
,

i.e. the system’s maximum power output under defined conditions. In contrast, produced
electricity is measured in kilowatt-hours [kWh].

10However, starting in 2002, new installations received a feed-in tariff 5 percent lower than
installations put in place the previous year. See Figure 1.
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Figure 1: Fraction of buildings with a new PV system and the level of the
feed-in tariff for electricity from PV

(
for systems with a capacity of at most

30 kWp
)

in Germany from 1995 through 2009.

All Figures created using R (2013).

In 1999, the total capacity installed in eolic plants was seven times larger

than the capacity installed in solar plants. The 2000 EEG also introduced

new feed-in tariff schemes for electricity from eolic plants, though they rose

comparatively less than for PV systems (9.1 EURCent/kWh).11 (See Figure 2.)

Since 2000, eolic systems diffused more slowly than PV systems, and by 2009,

the total capacity installed in PV systems was 6 times higher than in eolic

plants.
11Unlike PV systems, the feed-in tariff for eolic systems was not fixed for 20 years. For

the first five years they were fixed at a certain amount and then at some point after the
installation was five years old, the feed-in tariff dropped to a new level. The date of reset of
the feed-in tariff depended on the efficiency of the installation. In less efficient installations,
the high feed-in tariff period was longer. For eolic systems installed in 2000, the reset level
of the feed-in tariff was 6.19 EURCent/kWh.
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Figure 2: Number of new eolic (onshore) systems per forestal and agricultural
area [in sqkm] and the level of the average feed-in tariff for electricity from
eolic (onshore) systems (of 90 percent reference yield without system service
or repowering bonus) in Germany from 1995 through 2009.

Coinciding with the diffusion of green energies, the Green Party experi-

enced a significant increase in votes. (See Figure 3.)12 In the 1998 elections,

the Green Party received 6.7 percent of valid votes. This share increased to

8.6 percent in 2002, declined to 8.1 percent in 2005 and reached 10.7 percent

in 2009.

Beneath these aggregate trends in votes and green energy diffusion there are

important regional differences. Figure 4 shows the evolution of the fraction of

buildings equipped with PV systems for the years 1998, 2002, 2005 and 2009 on
12Voting data comes from DESTATIS (2012). We consider second votes (‘Zweitstimmen’ ).
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Figure 3: Fraction of green votes in federal elections in Germany from 1998
through 2009.

the NUTS-3 level in Germany.13 In 1998, the diffusion level of PV systems was

low in all regions. By 2002, we begin to notice significant regional differences,

with higher diffusion rates in the south – Baden-Württemberg and Bavaria –

where global solar radiation is higher. Through 2005 and 2009, the highest

diffusion rates can be observed in the south, in the north of Hesse and in the

east and the north-west of North Rhine-Westphalia. In contrast, relatively few

PV systems were installed in the middle of North Rhine-Westphalia, the east

of Lower Saxony, the south of Schleswig-Holstein and, in general, the eastern

part of Germany.

Figure 5 illustrates the diffusion of eolic systems. By 1998, there were al-

ready significant regional differences in the diffusion of eolic systems. Some

northern regions such as Dithmarschen, Schleswig-Holstein, (0.30 wind mills
13Due to the restructuring of districts, we lack data for 2.3 percent of the NUTS-3 regions

for 1998, 2002 and 2005, and for 6.9 percent for 2009.

10



1998 2002

2005 2009

Cumulative fraction of buildings with PV

No data <0.05% 0.05-0.5% 0.5-1% 1-2% 2-5% >5%

0 200 km

Figure 4: Fraction of building with PV at NUTS-3 level for 1998, 2001, 2005
and 2009.

per sqkm) and Hamburg (0.29) had considerable diffusion of eolic systems. In

contrast, 48 percent of the regions – many of them in Bavaria and Baden-

Württemberg – had no eolic system installed. In 2009, these differences pre-

vailed. The regions with highest diffusion levels of eolic systems were Emden,
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Figure 5: Number of eolic (onshore) systems per forestal and agricultural area
[in sqkm] at NUTS-3 level for 1998, 2001, 2005 and 2009.

Lower Saxony, (0.88 wind mills per sqkm) and Bremerhaven, Bremen, (0.71).

The share of regions without eolic systems installed dropped to 24 percent,

and these are concentrated in Bavaria, North Rhine-Westphalia and Baden-

Württemberg.
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Figure 6: Fraction of green votes at NUTS-3 level for 1998, 2001, 2005 and
2009.

Finally, the cross-sections of the share of green votes are plotted in Fig-

ure 6.14 In 1998, the Green Party obtained large voting shares in Freiburg,

Baden-Württemberg, in Heidelberg, Baden-Württemberg, in Tübingen, Ba-
14Due to the restructuring of districts, we lack data for some 3 percent of the NUTS-3

regions for 1998 and 2002, 0.7 percent for 2005 and 7.5 percent for 2009.
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den-Württemberg, and in Darmstadt, Hesse. On the contrary, the Green Party

did poorly in the eastern part of Germany. In the next decade, we observe an

increase in green votes in most regions. The highest increases in the share of

green votes between 1998 and 2009 took place in Lüneburg, Lower-Saxony, in

Flensburg, Schleswig-Holstein, and in Würzburg, Bavaria.

2 A simple model of diffusion

To illustrate the drivers of the adoption decisions, we develop a simple model.

After characterizing the individual adoption decision, we study the diffusion

dynamics of PV systems at the regional level. Though our model belongs to

the so-called probit models, it shares with other diffusion models the prediction

that diffusion follows an S-shaped pattern. In our empirical analysis, we take

no particular stand on which of the theories proposed in the literature drives

the non-linear diffusion dynamics.

In each location (NUTS-3 region), there is a continuum of potential adopters,

j, that differ in the potential electricity production, elj, (due to differences in

solar radiation, alignment potential. . . ) and in the sunk cost of setting up the

PV system, cjt. The sunk cost of installation declines over time deterministi-

cally as follows:

cjt = cj0e
−αt.

Without loss of generality, we index the potential adopters, j, in each region n

so that the ratio cj0/ej is increasing. Furthermore, we assume that, in each

region, log(cj0/ej) is distributed according to the following logistic cumulative
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density function:

Fn(x) =
1

1 + e−bnx

where bn is a region-specific parameter that determines how concentrated the

density function is.

The instant t in which a PV system is installed defines its vintage. For

simplicity, we assume that adopters of vintage-τ PV systems obtain a constant

feed-in tariff of Pτ forever.15 Pt evolves stochastically according to the following

Poisson process:

dPt =

⎧⎪⎪⎨
⎪⎪⎩
φPt, with probability λdt,

0, with probability 1− λdt.

(1)

This formulation captures the possibility that the feed-in tariff increases dis-

cretely, as occurred in Germany in 2000.

Given a constant discount rate of r, the expected value of a PV system of

vintage τ is defined by:

rVτdt = Pτejdt (2)

which yields

Vτ =
Pτej
r

. (3)

Conditional on not having installed a PV system at time t, when the feed-in

tariff is Pt, the option value of installing a PV system, Wt, is defined by
15In reality, it is for a 20 year period.
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W (t, Pt) = max

{
Et

W (t+ dt, Pt+dt)

1 + rdt
, Vt − cjt

}
, (4)

where Et is the expectation operator. The following proposition characterizes

both the optimal adoption rule and the diffusion of PV systems.

Proposition 1 (i) A potential producer j has adopted a PV system at time t

if her ratio

cj0/ej �
(1− λ(φ− 1)/r)Pt

e−αt(r + α)
,

where Pt is the prevailing feed-in tariff at time t. (ii) The fraction of potential

adopters that have installed a PV system at t when the prevailing feed-in tariff

is Pt is given by

Fn (log [(1− λ(φ− 1)/r)Pt]− log(r + α) + αt) (5)

= [1 + exp (−bn (log [(1− λ(φ− 1)/r)Pt]− log(r + α) + αt))]−1 .

Proof: See Appendix A.�

Taking a first order Taylor expansion of (5), it follows that the fraction of

newly installed PV systems, fn, is approximately equal to

dFnt ≡ fnt (log [(1− λ(φ− 1)/r)Pt]− log(r + α) + αt)

� Fnt ∗ (1− Fnt) ∗ bn ∗
[
dPt

Pt

+ α ∗ dt
]

︸ ︷︷ ︸
revision in return

. (6)
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Equation (6) characterizes the determinants of the adoption rate. Adoption

rates are increasing in the revisions of the return to adopting PV systems. In

particular, the return to adopting PV systems increase with the growth rate of

the feed-in tariff (dPt/Pt) , and with the rate of decline of installation costs, α.

Adoption rates also increase with the concentration of the ratio cj0/ej (bn),

and, in the initial stages of adoption (i.e., when (1 − Fnt) � 1), it is also

increasing in the diffusion level, Fnt. Note that, the diffusion level is a driver

of adoption rates that varies both over time and across regions. Therefore, we

can exploit exogenous variation in diffusion levels to instrument for adoption

rates in the presence of both time and region-specific fixed effects.

3 Econometric evidence

We consider the following reduced form for the fraction of votes received by the

Green Party in region n in the federal elections that take place in year t (Vnt) :

Vnt = αn + gn ∗ t+ αt + βFnt + ρXnt + εnt. (7)

αn is a region (NUTS-3) level effect, gn is a region-specific trend, αt is an

aggregate time dummy, Fnt is the stock of PV systems installed in the region,

Xnt is a vector of other potential drivers of green votes, and εnt is an error

term. Taking differences between consecutive election years (t and t− k), (7)

can be expressed as:

�Vnt = gn + γt + β�Fnt + ρ�Xnt + unt (8)
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where �Vnt ≡ Vnt − Vnt−k is the increment in the share of green votes, γt ≡
αt − αt−k is a time dummy, unt ≡ εnt − εnt−k is an error term and �Fnt ≡
Fnt−Fnt−k is the adoption rate defined as the increase in the ratio of the stock

of PV systems adopted over the number of potential adopters.

Table 1 reports the ordinary least squares (OLS) estimates of equation (8).16

We consider four specifications which differ according to whether time and

NUTS-3 fixed effects are included. Time dummies capture time-varying factors

that have a symmetric effect in voting patterns across regions. For example,

nation-wide changes in green sentiment or political changes in the Green Party

and how these are perceived by voters. Regional dummies capture region-

specific trends in attitudes towards the Green Party, education and values,

which may lead to regional trends in green votes. Because the specification

that includes both time and NUTS-3 dummies controls for these trends, we

consider it to provide a cleaner identification than the other three alternatives.

In addition, all specifications control for the logarithm of per capita income in

the region.

Turning back to Table 1, we find that increments in the share of green

votes are positively associated with adoption rates in all four specifications.

These associations are statistically and economically significant. Based on the

estimates in our preferred specification (column 4), an increase in the adoption

rate by one standard deviation is associated with an increase in the fraction

of green votes by .2 standard deviations (see Table 15 in Appendix B for the

relevant descriptive statistics). Similarly, the diffusion of PV systems between
16Reported standard errors (SE) are always robust to both arbitrary heteroskedasticity

and arbitrary autocorrelation. They have a bandwidth of 3.
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Table 1: OLS estimation of increase in PV diffusion on increase in share of
green votes.

(1) (2) (3) (4)
Δvt Δvt Δvt Δvt

ΔFPV,t 0.272∗∗∗ 0.448∗∗∗ 0.0796∗∗∗ 0.177∗∗∗
(12.43) (13.93) (4.35) (6.79)

log(GDPcap,t) 0.00702∗∗∗ 0.0115 0.00597∗∗∗ -0.00384
(7.38) (1.79) (7.21) (-0.52)

α -0.0618∗∗∗ -0.111 -0.0381∗∗∗ 0.0481
(-6.47) (-1.79) (-4.48) (0.67)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.129 -0.069 0.582 0.525
F 116.4 8.658 416.6 11.21
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1998 and 2009 is associated with an increase in the fraction of green votes of

0.9 percent; which is approximately 25 percent of the actual increase in the

voting rate experienced by the Green Party between 1998 and 2009.

At this point, we do not interpret the estimates in Table 1 as a causal effect

of PV diffusion on green votes. The correlation between adoption rates and

the increment in the fraction of green votes could also result from omitting

relevant variables from the vector of controls, �Xnt. To confidently argue that

the estimates reflect the causal effect of PV adoption on green voting, we need

some exogenous source of variation in the adoption of PV systems. That is,

variation in PV adoption that is driven by factors that do not affect directly

voting patterns or that are not correlated with factors other than adoption

that may drive voting patterns.

Finding valid instruments is, in general, a difficult task. However, in our

context, the non-linear diffusion patterns of new technologies provide us with
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a natural instrumental variable. As shown in Section 2, a property of logistic

diffusion curves is that current adoption rates are a function of the lagged

diffusion level. Indeed, in the early stages of diffusion, current adoption is

(approximately) a linear function of the lagged diffusion level. But, what is

the nature of this relationship? Is it orthogonal to voting patterns?

The literature has proposed several hypotheses on the source of the non-

linearities of diffusion patterns. These theories include epidemic models (Bass,

1969; Rogers, 1995) where information diffuses slowly, probit models where

the exogenous distribution of adoption costs and profits in the population

is bell-shaped (Griliches, 1957), legitimization theories where the population

accepts slowly the validity of the technology (Hannan and Freeman, 1989) and

information cascades models where agents initially experiment with multiple

forms of the technology until a dominant form emerges (Arthur (1989) and

Banerjee (1992)). Importantly, in none of these theories is the non-linear

nature of diffusion dynamics related to politics or voting dynamics.

Furthermore, S-shape diffusion patterns have been documented for a wide

range of technologies, periods and countries with very diverse political and

contextual factors. The ubiquity of S-shaped diffusion patterns strongly sup-

ports the premise that variation in the adoption of PV systems driven by the

non-linearities of diffusion are exogenous to changes in voting patterns. In

particular, we find it difficult to make the argument that factors that drive

changes in green votes between t − k and t are correlated in any way with

the stock of adoption until the previous election year (t− k); especially, after

controlling for time and regional dummies that capture cross-regional differ-
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ences in attitudes towards the Green Party, and in their trends, as well as any

pattern of aggregate time-variation in green vote drivers.

Table 2 reports the estimates of the first stage regression where we use

the PV diffusion level in the previous election year (t − k) to forecast the

adoption rate over the electoral cycle (i.e. from t − k to t). The findings

are quite similar for all four specifications, including our preferred one with

both region and time fixed effects. Lagged diffusion levels are a very strong

predictor of current adoption rates. The t-statistics of this coefficient are

close to 20 or above. The null that the instrument is irrelevant is rejected at

any level of significance. Furthermore, the high R2 (around 0.85 in all four

specification) shows that the logistic curve provides a very good approximation

for the diffusion process of PV systems at the NUTS-3 level.

Table 2: First stage estimation of increase in PV diffusion on increase in share
of green votes.

(1) (2) (3) (4)
ΔFPV,t ΔFPV,t ΔFPV,t ΔFPV,t

FPV,t−k 1.721∗∗∗ 1.417∗∗∗ 1.641∗∗∗ 1.278∗∗∗
(30.74) (24.88) (24.58) (18.93)

log(GDPcap,t) -0.00186∗∗∗ 0.0329∗∗∗ -0.00212∗∗∗ 0.00829∗
(-3.43) (9.95) (-3.94) (2.02)

α 0.0218∗∗∗ -0.313∗∗∗ 0.0271∗∗∗ -0.0717
(4.03) (-9.82) (4.93) (-1.79)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.837 0.864 0.843 0.877
F 471.5 99.07 472.4 131.3
χ2

Instrument=0 945.0 618.9 604.0 358.4
p-valueInstrument=0 1.65e-207 1.31e-136 2.30e-133 6.29e-80
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3 shows the estimates from the second stage regression. In all spec-

ifications we find a positive and significant effect of instrumented adoption

21



rates on the increment in Green Party votes. The point estimates vary from

0.12 to 0.4 depending on the specification. In our preferred specification with

region and time fixed effects the point estimate is 0.21 which implies that one

standard deviation increase in the adoption rate of PV systems over one elec-

toral period induces an increase in the share of votes for the Green Party by

0.36 percentage points. Cumulating that over the three elections that took

place after 1998 until 2009 implies that the diffusion of PV systems accounts

for a cumulative increase in the fraction of green votes of 1.1 percentage points.

This increment represents approximately a quarter of the actual increase in

votes experienced by the Green Party over this period.

Table 3: Two-stage least squares estimation of increase in PV diffusion on
increase in share of green votes.

(1) (2) (3) (4)
Δvt Δvt Δvt Δvt

ΔF̂PV,t 0.284∗∗∗ 0.402∗∗∗ 0.117∗∗∗ 0.205∗∗∗
(12.95) (12.49) (5.33) (6.75)

log(GDPcap,t) 0.00697∗∗∗ 0.0171∗∗ 0.00596∗∗∗ -0.00368
(7.32) (2.64) (7.21) (-0.50)

α -0.0614∗∗∗ -0.165∗∗ -0.0390∗∗∗ 0.0460
(-6.43) (-2.65) (-4.59) (0.65)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.129 -0.071 0.580 0.525
F 121.7 8.757 412.0 10.92
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Next, we conduct a series of robustness checks to gain further assurance

that the estimated effect of PV adoption on green voting reflects a causal

relationship.
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3.1 The profitability of PV systems

The first check consists of exploring the role played by the profitability of

PV adoption in our results. We do this in two different ways. Firstly, we

control for the profitability of PV systems in the region and year. Secondly,

we calculate the ratio of net profits from PV systems to household income to

assess the possible significance of the income from PV system installations

in households’ decisions.

3.1.1 Controlling for profitability

Controlling for the profitability of adopting a PV system allows us to study

the importance of omitted variables (OV) for our estimates of the effect of

PV adoption on voting patterns. OV are drivers of voting patterns that are

correlated with adoption rates. The most natural source of co-movement be-

tween OV and adoption rates is a potential correlation between the OV and

the profitability of PV adoption. Hence, by controlling for profitability we test

the relevance of this channel.

As implied by Section 2, we proxy changes in profitability by the growth

rate of the feed-in tariff interacted by the average solar radiation of the NUTS-3

region. Note that this measure captures the asymmetric effect that the feed-in

tariff has on the return to PV systems. Therefore, it has variation even after

including time and regional fixed effects.

Table 4 presents the first stage estimates after controlling for profitabil-

ity. Consistent with the literature (Dewald and Truffer (2011), Jacobsson

et al. (2004) and Jacobsson and Bergek (2004)), we find that changes in prof-

23



itability have a positive effect on adoption rates if we include time dummies

(third column). However, once NUTS-3 dummies are considered, changes in

profitability do not affect adoption rates. This observation suggests that the

potential for omitted variables to drive the relationship between PV adop-

tion and voting patterns is very limited.17 Also note that the strength of the

instrument is not affected by controlling for profitability. In particular, the

coefficient of the lagged diffusion level in the first stage regression, its signif-

icance or the R2 of this regression are not affected by the additional control.

All this suggests that although changes in profitability may have some effects

on adoption rates, the variation we use to identify the effect of adoption on

voting patterns is orthogonal to changes in profitability.

Table 5 explores the second stage regression. Columns 1, 2, and 4 show

a positive and significant association between changes in profitability and the

increment in green votes. We interpret this coefficient as reflecting the larger

increase in green votes in the southern regions of Germany during the 2002

election, the first after the EEG raised the feed-in tariff. The main finding from

Table 5 is that the effect of PV adoption rates on voting patterns is unaffected

by the profitability control. This further confirms that our estimates are not

driven by omitted variable biases.

3.1.2 Money for votes?

The hypothesis we test in this paper is whether the adoption of PV increases

the propensity to vote for the Green Party. An alternative hypothesis to
17Indeed, in the OLS regressions (not shown) the coefficient of adoption on the increment

in green votes does not change at all after controlling for profitability.
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Table 4: First stage estimation of increase in PV diffusion on increase in share
of green votes.

(1) (2) (3) (4)
ΔFPV,t ΔFPV,t ΔFPV,t ΔFPV,t

FPV,t−k 1.638∗∗∗ 1.425∗∗∗ 1.563∗∗∗ 1.267∗∗∗
(23.93) (22.90) (19.32) (16.06)

log(GDPcap,t) -0.00286∗∗∗ 0.0347∗∗∗ -0.00342∗∗∗ 0.00852∗
(-5.29) (9.96) (-6.32) (2.08)

ΔpPV,t/pPV,t−k ∗ sun -0.000000207∗ 9.58e-08 0.00000537∗∗ -0.000000949
(-2.09) (0.95) (3.23) (-0.59)

sun 0.0000270∗∗∗ 0.0000237∗∗∗
(6.17) (3.32)

α 0.00488 -0.331∗∗∗ 0.0180∗ -0.0741
(0.78) (-9.83) (2.17) (-1.86)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.843 0.864 0.854 0.877
F 530.6 103.5 475.0 158.1
χ2

Instrument=0 572.7 524.4 373.2 257.9
p-valueInstrument=0 1.47e-126 4.71e-116 3.85e-83 4.82e-58
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

explain the correlation between PV diffusion and green votes is that voters

reward the Green Party for the monetary transfers that may come with the

installation of PV systems. The robustness of our estimates to controlling for

the changes in profitability of PV systems seems hard to reconcile with this

hypothesis. However, to further explore its plausibility, we next calculate the

monetary return from adopting PV systems.

We compute the income from installing a PV system relative to household

income as follows:
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Table 5: Two-stage least squares estimation of increase in PV diffusion on
increase in share of green votes.

(1) (2) (3) (4)
Δvt Δvt Δvt Δvt

ΔF̂PV,t 0.522∗∗∗ 0.660∗∗∗ 0.162∗∗∗ 0.254∗∗∗
(13.15) (14.57) (5.45) (5.94)

log(GDPcap,t) 0.0107∗∗∗ 0.0882∗∗∗ 0.00668∗∗∗ -0.00541
(10.39) (10.52) (7.87) (-0.74)

ΔpPV,t/pPV,t−k ∗ sun 0.00000236∗∗∗ 0.00000421∗∗∗ 0.00000261 0.00000536∗
(13.61) (19.89) (0.98) (1.97)

sun -0.0000683∗∗∗ -0.0000208∗∗
(-9.99) (-2.71)

α -0.0349∗∗ -0.860∗∗∗ -0.0254∗ 0.0629
(-3.11) (-10.61) (-2.38) (0.89)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.231 0.245 0.580 0.525
F 79.29 6.851 262.4 10.74
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Profit Income Ratio = Capacity ∗
[

T=19∑
t=0

(
1− v

1 + r

)t

[ Feed-in Tariff

∗ # Full-load Hours ]− Investment per kWp (9)

∗
(
1 +

T=19∑
t=0

b

(1 + r)t

)]
/(Household Income ∗ 20).

In this formula, both the costs and revenues from PV systems are proportional

to the capacity of the PV system. The first term in the numerator is the

present discounted value of revenues per unit of capacity installed,18 while the

second term is the cost of installing and operating the PV system per unit
18We use a standard value for the annual discount rate, 5 percent per year (e.g., Cooley

and Prescott (1995)).
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of capacity. Because we want to evaluate the economic significance of the net

revenues from PV systems, we scale them by the annual average household

income (DESTATIS, 2013b).

Revenues from PV systems are calculated by multiplying the level of the

feed-in tariff times the number of full-load hours the system operates per year.

The feed-in tariff varies with the year of installation of the system. The num-

ber of full-load hours depends on the location and alignment of the installa-

tion. The average for the number of full-load hours in Germany is 900 hours

(Klaus et al., 2010; Wirth, 2013). To assess the sensitivity of our calculations

to variation in solar radiation, we also compute the profit to income ratio

when calibrating the number of full-load hours to 1,110 hours which is at the

90th percentile of the full-load hours for all the systems installed in Germany

through 2009.19 The depreciation of the PV systems reduces its efficiency at

a rate (v) of 0.5 percent per year (BMU, 2011; Wirth, 2013). (See Table 6 for

a definition of the parameters, their value and their source.)

The costs of installing PV systems dropped very significantly between

2000 and 2009 (Janzing (2010) and BSW-Solar (2012)). In 2000, the cost

of installing one kWp was 8,000 EUR while in 2009 it was approximately

4,000 EUR. In addition to the installation costs, there is an annual cost of

operation and maintenance (b) which amounts to 1 percent of the cost of in-

stallation (BMU, 2011; Wirth, 2013).

Because we use household income as the benchmark for net PV income,

we should calibrate the capacity level to that of systems installed in single
19These values come from combining data on solar global radiation (DWD, 2010) with

an optimistic performance ratio of 85 percent. KEK (2010), BMU (2011) and Wirth (2013)
confirm our calculations.
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Table 6: Details on the calculation of PV profits.

Definition Parameter Value Source
Household income Disposable income per household

[EUR]
Yearly DESTATIS (2013a)

Feed-in Tariff Level feed in tariff [EUR] Yearly EEG (2000,2004,2011)
Investment per kWp Investment costs [EUR] Yearly 2000-05: Janzing (2010);

2006-09: BSW-Solar (2012),
pvX (2012)

r Weighted average cost of capital 5.0 percent Cooley and Prescott (1995),
BMU (2011),Wirth (2013)

b Yearly operating costs 1.0 percent BMU (2011), Wirth (2013)
T + 1 Life span [years] 20 EEG (2000, 2004, 2011), BMU

(2011),Wirth (2013)
v Yearly decrease in revenue 0.5 percent BMU (2011), Wirth (2013)

Capacity Median capacity
[
kWp

]
4 KEK (2010), DESTATIS

(2013b)
90th percentile capacity

[
kWp

]
6.4 KEK (2010), DESTATIS

(2013b)
Full-load Hours Average [hours] 900 BMU (2011), Wirth (2013)

90th percentile [hours] 1110 DWD (2010), BMU (2011),
Wirth (2013)

household residences. Unfortunately, this information is not directly avail-

able. However, we can make some back of the envelope calculations by using

information collected in 2010 by the Karlsruher Energie- und Klimaschutza-

gentur (KEK) for Karlsruhe, Baden-Württemberg.20 KEK is a government

agency which authorized SUN-AREA (a private company) to use information

on the roof inclination, area, orientation and solar radiation to calculate the

potential capacity of PV systems on each roof. Combining this data with

information on the fraction of single-family residences in Karlsruhe,21 it fol-
20Karlsruhe is a 300,000 city (among the 25 largest in Germany) with a global solar

radiation similar to the average in Baden-Württemberg and Bavaria (DWD, 2010), two of
the regions with highest solar radiation in Germany and where most German PV systems
are installed.

21According to DESTATIS (2013b) there were 39,607 residential buildings in Karlsruhe
in 2010; 17,631 of these were single-family homes. Assuming that, out of all the residential
buildings, single-family houses are those with smaller roofs, we can use KEK (2010) data to
measure the potential roof area of single family residences. In particular, according to KEK
(2010) there were 40,043 residential buildings in the city of Karlsruhe in 2010.
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lows that the median potential area for PV installation in single household

residences is 37 sqm, and the 90th percentile is 58 sqm.22 Given this potential

roof area, we estimate that the capacity supported by the median single-family

residence is approximately 4 kWp, while for the residence at the 90th percentile

it is 6.4 kWp.

Table 7 reports the value of (9) for four combinations of full-load hours and

capacity, that represent the average/median and 90th percentile values in each

dimension. Given the time series variation in the feed-in tariff and installation

costs, we report the ratios for four years over the period 2000-2009. The profit

to income ratio ranges from -2.7 percent to 0.8 percent with lower values for

earlier years and for systems with lower capacity and full-load hours.

Table 7: Yearly profits from investment in PV as share of yearly average
household income according to yearly full load hours and time of installation.

Year of installation PV system with 4 kWp PV system with 6.4 kWp

Full load hours [kWh] Full load hours [kWh]
900 1110 900 1110

2000 -1.7 percent -1.0 percent -2.7 percent -1.6 percent
2004 -0.5 percent 0.2 percent -0.9 percent 0.3 percent
2006 -0.3 percent 0.3 percent -0.5 percent 0.5 percent
2009 0.0 percent 0.5 percent 0.0 percent 0.8 percent

Beyond this variation, the main conclusion we extract from the table is

that, even for systems with high capacity and installed in areas with high global

solar radiation, the net revenues from PV electricity production are negligible

for households. Therefore, we do not consider plausible that current and future
22It is necessary to install between 8 and 10 sqm of solar modules to reach a capacity of

1 kWp (KEK, 2010). We use a value of 9 sqm per kWp in our calculations.
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PV adopters compensate the Green Party with their votes in exchange for the

net income from PV systems.23

3.2 Lagged diffusion

As we have shown in Section 2, the non-linearity that characterizes logistic

curves implies that lagged diffusion is a good predictor of adoption rates. So

far, we have used the diffusion level at the previous election year to instrument

for the adoption rate between the previous and current election years. But,

in principle, we could also use earlier diffusion levels to instrument for current

adoption rates. This alternative strategy would provide even greater assurance

for the exogeneity of the instruments since it seems unreasonable that drivers

of changes in attitudes between t−k and t are correlated with the PV diffusion

level at t− 2 ∗ k (after including time and fixed effects).

Tables 8 and 9 report the results from the first and second stage regres-

sions, respectively. The main finding from the first stage regression is that, as

implied by the theory, the diffusion level at t− 2 ∗ k is a good predictor of the

adoption rate between t−k and t. When comparing Tables 8 and 2, we see very

small reductions in the R2. The second stage estimates are also very similar to

those in Table 3. There is no significant difference in the estimated effects of

adoption rates on voting patterns or in the R2 of this relationship under both

instrumentation strategies. These findings further confirm the validity of our

instruments
23In results not reported here, we have shown that the effect of adoption on Green Party

votes is robust to eliminating the regions from the south of Germany (where solar radiation
is highest) from the sample. This observation implies that the effects of adoption on green
votes are general and not just driven by the southern regions.
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Table 8: First stage estimation of increase in PV diffusion on increase in share
of green votes.

(1) (2) (3) (4)
ΔFPV,t ΔFPV,t ΔFPV,t ΔFPV,t

FPV,t−2k 4.870∗∗∗ 3.659∗∗∗ 4.502∗∗∗ 3.130∗∗∗
(18.94) (18.41) (13.54) (13.27)

log(GDPcap,t) -0.00221∗ 0.0469∗∗∗ -0.00265∗∗ 0.00738
(-2.51) (11.53) (-2.99) (1.39)

α 0.0279∗∗ -0.447∗∗∗ 0.0351∗∗∗ -0.0611
(3.14) (-11.40) (3.89) (-1.18)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.630 0.773 0.643 0.792
F 181.3 36.47 258.6 36.58
χ2

Instrument=0 358.8 339.0 183.4 176.0
p-valueInstrument=0 5.27e-80 1.07e-75 8.66e-42 3.60e-40
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Two-stage least squares estimation of increase in PV diffusion on
increase in share of green votes (instrument: FPV,t−2k).

(1) (2) (3) (4)
Δvt Δvt Δvt Δvt

ΔF̂PV,t 0.433∗∗∗ 0.645∗∗∗ 0.112∗∗∗ 0.157∗∗∗
(13.72) (14.18) (3.52) (3.72)

log(GDPcap,t) 0.00628∗∗∗ -0.0127 0.00596∗∗∗ -0.00395
(6.34) (-1.72) (7.22) (-0.54)

α -0.0563∗∗∗ 0.122 -0.0389∗∗∗ 0.0495
(-5.68) (1.70) (-4.54) (0.70)

NUTS-3 dummies No Yes No Yes

Time dummies No No Yes Yes
N 1157 1157 1157 1157
adj. R2 0.095 -0.097 0.581 0.525
F 124.3 8.137 414.2 11.78
t statistics in parentheses, built with Newey-West SE
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

3.3 Placebo tests

The hypothesis we are testing in this paper is that using green technology

makes voters more prone to vote for the Green Party. If this is the case,
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the effect of green adoption on green voting should be entirely driven by the

adoption of household systems. By the same token, we should observe no

effect of the adoption of industrial green energy systems on voting patterns.

Next, we implement this placebo test in two exercises. Firstly, we differentiate

between large PV systems which are feasible only in industrial installations

and small PV systems that are typically installed by households. Secondly, we

also explore the relationship between the diffusion of eolic systems and voting

patterns, since the investments required to install eolic systems are too large

to be financed by households.

3.3.1 Industrial vs. household PV systems

To assess whether the relationship between PV systems diffusion and green vot-

ing is driven by the diffusion of household or industrial systems we construct

series for the diffusion of low and high capacity systems. We use two thresh-

olds for the maximum capacity of household systems, 30 kWp and 100 kWp.

In addition we study the effects of the diffusion of very large PV systems

(1,000 kWp or more) which definitely are industrial. To save space, we focus

on our preferred specification with regional and time dummies and only re-

port the two-stage least square estimates which are entirely consistent with

the OLS estimates. Table 16 in Appendix B presents the first stage regres-

sions for the adoption of PV systems of various capacities. For all capacity

groupings, the lagged diffusion level is a strong and very significant predictor

of current adoption rates. The R2 of the first stage regressions are very high
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suggesting that the logistic provides a good characterization of the diffusion

of both industrial and household PV systems.

Table 10 reports the estimates of the instrumented adoption rates and

changes in green voting rates for industrial and household systems. For house-

hold systems we basically estimate the same effects as in the full sample (Ta-

ble 3). The estimated effect is slightly higher for systems with a capacity of

at most 30 kWp than for systems of at most 100 kWp. In both cases, the effect

of PV adoption on green voting is strongly significant with p-values smaller

than 0.001. The estimates change dramatically for industrial systems. When

we focus on systems with capacity above 100 kWp, we find a positive but

insignificant association between instrumented adoption rates and changes in

green votes. For very large PV systems (over 1,000 kWp capacity), the rela-

tionship between instrumented adoption rates and voting patterns disappears

completely. These findings are consistent with the view that using (rather

than seeing) green technologies is what induces voters to vote for the Green

Party.

3.3.2 Capacity-weighted measures of diffusion

The measures of PV system diffusion used so far make no adjustment for the

capacity of the system. To explore the robustness of our findings to alterna-

tive measures of diffusion, we consider the following measure of the capacity-

adjusted adoption rate:

�FPVCapac. =
� Total solar capacity installednt

# Buildingsnt * Avg. capacity
(10)
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Table 10: Two-stage least squares estimation of increase in PV diffusion on
increase in share of green votes.

Household installations Industrial installations

(1) (2) (3) (4)
Δvt Δvt Δvt Δvt

ΔF̂PV≤30kWp,t 0.239∗∗∗
(6.87)

ΔF̂PV≤100kWp,t 0.207∗∗∗
(6.78)

ΔF̂PV>100kWp,t 0.174
(0.23)

ΔF̂PV>103kWp,t -0.0951
(-0.12)

log(GDPcap,t) -0.00355 -0.00345 -0.00506 -0.00477
(-0.49) (-0.47) (-0.67) (-0.63)

α 0.0446 0.0439 0.0631 0.0605
(0.63) (0.62) (0.86) (0.83)

N 1157 1157 1157 1157
adj. R2 0.524 0.525 0.510 0.511
F 11.20 11.50 21.08 20.89
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

where “Avg. capacity” is the average capacity of all PV systems installed across

all regions in all periods.

Column (1) of Table 11 presents the OLS estimates of the effect of the

increase in capacity on the increase in the share of green votes in our preferred

specification with both year and region fixed effects. The main finding is

that now the relationship between the two is negative (and significant at the

1 percent level).

As one could expect from the previous analysis, this change in the sign is

entirely driven by the fact that capacity-weighted adoption measures, such as

ΔFPVCapac., are dominated by industrial installations which have much larger

capacity than household installations. To make this clear, columns (2) and (3)
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Table 11: OLS estimation of increase in PV diffusion (capacity weighted mea-
sure) on increase in share of green votes.

All inst. Household installations Industrial installations

(1) (2) (3) (4) (5)
Δvt Δvt Δvt Δvt Δvt

ΔFPVCapac.,t -0.0176∗∗
(-2.77)

ΔFPVCapac.≤30kWp,t 0.131∗∗∗
(6.85)

ΔFPVCapac.≤100kWp,t 0.130∗∗∗
(7.17)

ΔFPVCapac.>100kWp,t -1.195∗∗
(-2.86)

ΔFPVCapac.>103kWp,t -1.199∗∗

(-2.87)

log(GDPcap,t) -0.00317 -0.00407 -0.00366 -0.00310 -0.00310
(-0.42) (-0.56) (-0.50) (-0.42) (-0.42)

α 0.0453 0.0511 0.0468 0.0446 0.0446
(0.62) (0.72) (0.66) (0.62) (0.62)

N 1157 1157 1157 1157 1157
adj. R2 0.514 0.525 0.528 0.514 0.514
F 77.59 14.53 17.90 71.23 70.86
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

of Table 11 use the capacity-weighted measure of adoption but consider only

installations with a capacity of at most 30 kWp in column (2) and of at most

100 kWp in column (3). After excluding industrial installations, the sign of

the relationship between capacity-weighted adoption rates of PV systems and

changes in the Green Party share of votes is again positive and significant

as we found in the previous section.24 In contrast, when we only consider
24The point estimate for systems with a capacity of 30 kWp or below is 0.13 which implies

that one standard deviation increase in the adoption rate of PV systems over one electoral
period induces an increase in the share of votes for the Green Party by 0.3 percentage
points. Cumulating that over the three elections that took place after 1998 until 2009
indicates that the diffusion of PV systems accounts for an increase in the fraction of green
votes of approximately one quarter of the actual increase in votes experienced by the Green
Party over this period.
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installations with a capacity larger than 100 kWp (column 4) or 1,000 kWp

(column 5) we find a negative relationship between adoption rates and green

votes, again.

The conclusions from the OLS estimates remain after instrumenting capacity-

weighted adoption rates with lagged capacity-weighted diffusion levels. In re-

sults not shown here, we find that the instrument is strong, especially for

household systems. As before, instrumenting does not change the magni-

tude or sign of the OLS estimates. In particular, Table 12 shows the second

stage regression coefficients. We only find positive and significant effects of

capacity-weighted measures of adoption on the increase in the Green Party

share of votes in the small capacity systems. Therefore, we conclude that our

findings are robust to using capacity-weighted measures of diffusion.

3.3.3 The diffusion of eolic systems

A similar investigation can be conducted with eolic installations which, because

of the large investments they require, are all industrial. Table 13 column (1)

and (2) report the OLS estimates of the relationship between eolic adoption

rates and increase in green share of votes.25 In particular, column (1) focuses

on the number of new eolic installations over the electoral period normalized

by the forestal and agricultural land area in the region. Note that this nor-

malization reflects the fact that, unlike most PV systems, eolic plants are

not installed on buildings. Column (2) uses a capacity-weighted measure of
25See Table 17 in Appendix B for the descriptive statistics.
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Table 12: Two-stage least squares estimation of increase in PV diffusion (ca-
pacity weighted measure) on increase in share of green votes.

All inst. Household installations Industrial installations

(1) (2) (3) (4) (5)
Δvt Δvt Δvt Δvt Δvt

ΔF̂PVCapac.,t -0.0149
(-0.95)

ΔF̂PVCapac.≤30kWp,t 0.135∗∗∗
(6.39)

ΔF̂PVCapac.≤100kWp,t 0.119∗∗∗
(5.96)

ΔF̂PVCapac.>100kWp,t -1.144
(-1.12)

ΔF̂PVCapac.>103kWp,t -1.146
(-1.12)

log(GDPcap,t) -0.00343 -0.00405 -0.00376 -0.00318 -0.00318
(-0.45) (-0.55) (-0.52) (-0.42) (-0.42)

α 0.0478 0.0508 0.0480 0.0454 0.0453
(0.65) (0.71) (0.68) (0.62) (0.62)

N 1157 1157 1157 1157 1157
adj. R2 0.513 0.525 0.528 0.514 0.514
F 65.44 14.65 17.73 76.98 77.12
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

adoption given by this formula

�FEolicCapac. =
� Total eolic capacity installednt

Agricultural & forestal areant * Avg. capacity
(11)

where “Avg. capacity” is the average capacity of all eolic installations across

all regions in all periods.

For both measures of adoption, the OLS estimates are statistically insignif-

icant. Table 18 in Appendix B and Table 13 column (3) and (4) present the

estimates in the first and second stage regressions. After instrumenting adop-

tion rates for eolic systems, we still find no effect on the increase in the share
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Table 13: Estimation of increase in eolic diffusion on increase in share of green
votes.

OLS Two-stage least squares

(1) (2) (3) (4)
Δvt Δvt Δvt Δvt

ΔFEolic,t -0.0189
(-1.62)

ΔFEolicCapac.,t -0.00753
(-1.25)

ΔF̂Eolic,t -0.0380
(-1.71)

ΔF̂EolicCapac.,t -0.114
(-0.85)

α 0.0323 0.0353 0.0233 -0.0481
(0.45) (0.49) (0.32) (-0.30)

N 1161 1161 1161 1161
adj. R2 0.508 0.507 0.507 0.425
F 20.65 24.83 11.40 10.96
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

of Green Party votes. This result confirms our hypothesis that observing the

diffusion of green technologies is not sufficient for voters to vote for the Green

Party. Our findings suggest that voters need to actually adopt/use green tech-

nologies to become more prone to vote for the Green Party.

3.4 Discussion

So far, we have uncovered the impact that the diffusion of PV systems has on

the votes obtained by the Green Party. However, we have not explored the

mechanisms that may lead PV adopters to vote green. Answering this question

is beyond the scope of this paper. However, we would like to point to some

mechanisms that may cause this effect. Broadly speaking, we can think of two
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mechanisms. One is Bayesian learning about the Green Party. As potential

voters adopt PV systems they learn about values and technologies supported

by the Green Party. They update upwards their prior on the political value

of the Green Party raising the probability of voting green. An alternative

channel by which green adoption may affect voting behavior is based on the

notion that voters suffer from cognitive dissonance (e.g. (Akerlof and Dickens,

1982)). That is, the choice to adopt green technologies may trigger a change

in voters preferences towards green values which may ultimately induce them

to vote for the Green Party.

Both of these hypotheses are consistent with the new findings uncovered in

this paper. To fully discern between the two hypothesis would require the use

of survey data. However, we may learn about their plausibility by studying

how the effect of PV adoption on green votes varies between NUTS-1 regions

(Länder) where the Green Party was in power and those where it was not.

One feature of Bayesian learning is that the marginal effect on the posterior

of a given signal diminishes with the information the agent has (i.e. with the

precision of the prior). We consider safe to assume that voters in NUTS-1

regions ruled by the Green Party have more precise priors about the Green

Party and green values than those in NUTS-1 regions where the Green Party

had not ruled before 1998 (i.e. our first data point on Green Party votes).

Therefore, if our findings are the result of Bayesian learning, we should expect

a smaller effect of PV system adoption on green voting in NUTS-1 regions

where the Green Party had ruled.
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Table 14 evaluates this prediction by introducing an additional regressor in

our baseline specification which is an interaction between the adoption rate of

PV systems and a dummy that equals one if the Green Party was in a governing

coalition in the NUTS-1 regions before 1998. The first column reports the OLS

estimates and the second the IV estimates. In both cases, the differential effect

of adoption on green voting is, if anything, positive in regions where the Green

Party was in power through 1998. This is precisely the opposite of what we

would expect from a Bayesian learner. Therefore, we interpret this result

as suggestive that voters’ cognitive dissonance is likely to be the mechanism

driving our findings. However, as emphasized above, much more work needs

to be undertaken to establish that.

Table 14: Estimation of increase in PV diffusion on increase in share of green
votes.

OLS Two-stage least squares

(1) (2)
Δvt Δvt

ΔFPV,t 0.177∗∗∗
(6.80)

ΔF̂PV,t ∗GreenLand 0.107
(1.84)

ΔF̂PV,t 0.228∗∗∗
(6.88)

Δ ˆFPV,t ∗GreenLand 0.188∗
(1.98)

log(GDPcap,t) -0.00409 -0.00398
(-0.56) (-0.54)

α 0.0501 0.0478
(0.70) (0.67)

N 1157 1157
adj. R2 0.526 0.524
F 29.86 35.06
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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4 Conclusions

In this paper we have posed a new research question: Does the diffusion of

technology affect voting patterns? To start understanding the political con-

sequences of technology diffusion, we have explored two specific technologies

(PV and eolic systems) in one country (Germany). Our identification strat-

egy has exploited the (widely documented) non-linearities in the diffusion of

new technologies to obtain exogenous variation in adoption rates. Our analy-

sis implies that approximately a quarter of the increase in the share of votes

experienced by the Green Party between 1998 and 2009 is driven by the diffu-

sion of PV systems. These estimates are robust to controlling for measures of

profitability of solar energy, income and a full set of regional and time dum-

mies. In contrast, we find no such effects from the diffusion of industrial PV

systems and eolic systems. This contrast confirms the importance of voters’

direct involvement with the adoption and/or operation of the technology for

this to affect their voting patterns.

Our findings raise many new questions. First, more work is needed to

uncover the mechanism by which adoption of PV systems leads to vote for the

Green Party. Second, do we see similar effects of the diffusion of PV systems in

other countries? In Spain, for example, green parties continued to be irrelevant

despite the large diffusion of PV systems. However, unlike Germany, in Spain

most of the systems installed were industrial and households have not yet

adopted them in any significant way. Third, are there political consequences

of the diffusion of other technologies? Do they also affect voting patterns?26

26E.g., without the diffusion of Internet technology the Pirate Party may not have been
founded in Sweden in 2006 (and in many other countries later on).
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Fourth, in addition to voting patterns, does the diffusion of technology affect

other political phenomena such as campaign contributions, party affiliation,

voter turnout, civic involvement in politics, etc. Finally, for which technologies

do we observe these effects and what do they have in common?
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Appendix

For Online Publication: The following is not intended to be included

in the journal version of the article, but as online appendix.

A Proof of Proposition 1

If we adopt technology at t, we get

Vt = e−rt

(
Ptej
r

− cj0e
−αt

)
. (12)

If we adopt technology at t+ dt, we get

EtVt+dt =(1− λdt)

[
e−r(t+dt)

(
Ptej
r

− cj0e
−α(t+dt)

)]
(13)

+ λdt

[
e−r(t+dt)

(
φPtej
r

− cj0e
−α(t+dt)

)]
.

The moment of adoption corresponds to lim
dt→0

EtVt+dt − Vt

dt
= 0, and

EtVt+dt = e−r(t+dt)

(
Ptej
r

− cj0e
−α(t+dt)

)
+ λe−r(t+dt) (φ− 1)Ptej

r
dt (14)

= e−rt(1− rdt)

(
Ptej
r

− cj0e
−αt(1− αdt)

)
+ λe−rt (φ− 1)Ptej

r
dt+ o(dt)

= e−rt

(
Ptej
r

− cj0e
−αt

)

+ e−rt

(
−Ptej + rcj0e

−αt + αe−αtcj0 + λ
(φ− 1)Ptej

r

)
dt+ o(dt).
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Correspondingly, the solution is

lim
dt→0

EtVt+dt − Vt

dt
= e−rt

(
−Ptej + rcj0e

−αt + αe−αtcj0 + λ
(φ− 1)Ptej

r

)
= 0.

(15)

Rearranging, we obtain

(r + α)e−αtcj0 +

(
λ
(φ− 1)

r
− 1

)
Ptej = 0. (16)

Which yields the optimal adoption condition stated in Proposition 1:

cj0/ej =

(
1− λ (φ−1)

r

)
Pt

(r + α)e−αt
� (17)
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B Tables

Table 15: Descriptive statistics, PV.

Mean Std. Dev. Min. Max.
FPV,t .019 .026 .00013 .19
FPV≤30kWp,t .017 .023 .00013 .16
FPV≤100kWp,t .018 .025 .00013 .18
FPV>100kWp,t .00035 .0007 0 .009
FPV>103kWp,t .00021 .00058 0 .0083
FPVCapac.,t .015 .059 2.7e-06 .85
FPVCapac.≤30kWp,t .016 .027 4.1e-05 .23
FPVCapac.≤100kWp,t .016 .029 3.3e-05 .25
FPVCapac.>100kWp,t .00022 .0009 0 .013
FPVCapac.>103kWp,t .00022 .0009 0 .013
ΔFPV,t .013 .017 .00011 .13
ΔFPV≤30kWp,t .012 .015 -1.6e-05 .12
ΔFPV≤100kWp,t .013 .017 -1.6e-05 .13
ΔFPV>100kWp,t .00029 .00057 -2.7e-05 .007
ΔFPV>103kWp,t .00017 .00047 -2.7e-05 .0067
ΔFPVCapac.,t .013 .054 -.00024 .81
ΔFPVCapac.≤30kWp,t .012 .02 -5.1e-06 .18
ΔFPVCapac.≤100kWp,t .013 .022 -4.0e-06 .19
ΔFPVCapac.>100kWp,t .00019 .00081 -4.6e-06 .012
ΔFPVCapac.>103kWp,t .00019 .00081 -4.9e-06 .012
FPV,t−k .0057 .0091 0 .066
FPV,t−2k .0015 .0028 0 .024
FPV≤30kWp,t−k .0054 .0086 0 .063
FPV≤100kWp,t−k .0056 .009 0 .066
FPV>100kWp,t−k 5.8e-05 .00016 0 .0028
FPV>103kWp,t−k 3.9e-05 .00014 0 .0023
FPVCapac.,t−k .0018 .0097 0 .19
FPVCapac.≤30kWp,t−k .0037 .0076 0 .065
FPVCapac.≤100kWp,t−k .0036 .0075 0 .06
FPVCapac.>100kWp,t−k 2.5e-05 .00015 0 .0029
FPVCapac.>103kWp,t−k 2.4e-05 .00015 0 .0028
pPV,t 49 4.7 43 55
sun 1035 58 871 1162
ΔpPV,t/pPV,t−k ∗ sun 1562 2276 -245 5351
vt .082 .035 .02 .29
Δvt .013 .015 -.03 .081
log(GDPcap,t) 10 .33 9.4 11
N 1158
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Table 16: First stage estimation of increase in PV diffusion on increase in
share of green votes.

Household installations Industrial installations

(1) (2) (3) (4)
ΔFPV≤30kWp,t ΔFPV≤100kWp,t ΔFPV>100kWp,t ΔFPV>103kWp,t

FPV≤30kWp,t−k 1.168∗∗∗
(17.95)

FPV≤100kWp,t−k 1.273∗∗∗
(18.89)

FPV>100kWp,t−k 1.865∗∗∗
(5.63)

FPV>103kWp,t−k 2.193∗∗∗

(6.43)

log(GDPcap,t) 0.00694 0.00734 0.000815∗∗∗ 0.000608∗∗
(1.84) (1.82) (3.31) (2.86)

α -0.0595 -0.0629 -0.00754∗∗ -0.00574∗∗
(-1.62) (-1.60) (-3.17) (-2.78)

N 1157 1157 1157 1157
adj. R2 0.871 0.878 0.679 0.648
F 142.5 118.8 23.37 12.90
χ2

Instrument=0 322.1 357.0 31.68 41.29
p-valueInstrument=0 4.97e-72 1.27e-79 1.81e-08 1.31e-10
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 17: Descriptive statistics, eolic.

Mean Std. Dev. Min. Max.
FEolic,t .04 .078 0 .88
FEolicCapac.,t .037 .089 0 1.5
ΔFEolic,t .013 .031 0 .52
ΔFEolicCapac.,t .016 .051 0 1.3
FEolic,t−k .027 .06 0 .77
FEolicCapac.,t−k .021 .054 0 .97
vt .082 .035 .02 .29
Δvt .013 .015 -.03 .081
log(GDPcap,t) 10 .33 9.4 11
N 1161
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Table 18: First stage estimation of increase in eolic diffusion on increase in
share of green votes.

(1) (2)
ΔFEolic,t ΔFEolicCapac.,t

FEolic,t−k -0.535∗∗∗
(-8.64)

FEolicCapac.,t−k -0.124
(-0.90)

log(GDPcap,t) 0.0406 0.0806
(1.59) (1.44)

α -0.385 -0.777
(-1.55) (-1.43)

N 1161 1161
adj. R2 0.590 0.387
F 34.08 29.77
χ2

Instrument=0 74.66 0.805
p-valueInstrument=0 5.59e-18 0.370
t statistics in parentheses, built with Newey-West SE
NUTS-3 and time dummies included
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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