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1 Introduction

During the last 25 years or so, empiricists have pointed out a tremendous amount of

between–firm and between–plant heterogeneity, even within narrowly defined sectors. Yet,

for most of its young life the modern theory of business cycles has completely disregarded

such variation. What is the loss of generality implied by this methodological choice?

There are many reasons why heterogeneity may matter for aggregate fluctuations,

some of which have received a substantial attention in the literature.1 Our goal is to

contribute to the understanding of the role played by entry and exit. What are, if any,

the costs of abstracting from firm entry and exit when modeling aggregate fluctuations?

Our main result is that entry and exit propagate the effects of aggregate shocks. We

find this to be a feature of the equilibrium allocation in Hopenhayn (1992)’s model of

industry dynamics, amended to allow for investment in physical capital and for aggregate

fluctuations. We assume that firms’ productivity is the product of a common and of an

idiosyncratic component, both driven by persistent stochastic processes and orthogonal

to each other. Differently from Hopenhayn (1992), potential entrants are in finite mass

and face different probability distributions over the first realization of the idiosyncratic

shock.

We assume that the demand for firms’ output and the supply of physical capital are

infinitely elastic at the unit price, while the supply of labor services has finite elasticity.

The wage rate fluctuates to ensure that the labor market clears. This is crucial, as it is

often the case that the effects of shocks on endogenous variables are muted or reversed by

the ensuing adjustment in prices.

When parameterized to match a set of empirical regularities on investment, entry,

and exit, our framework replicates well–documented stylized facts about firm dynamics.

To start with, the exit hazard rate declines with age. Employment growth is decreasing

with size and age, both unconditionally and conditionally. The size distribution of firms

is skewed to the right and the skewness of a cohort’s size distribution declines with age.

Furthermore, the entry rate is pro–cyclical, while the exit rate is counter–cyclical.

The mechanics of entry is straightforward. A positive shock to the common productiv-

ity component makes entry more appealing. This is the case because, with a labor supply

elasticity calibrated to match the standard deviation of employment relative to output,

the equilibrium response of the wage rate is not large enough to undo the impact of the

1This is the case for the possibility that the occasional synchronization in the timing of establishments’
investment may influence aggregate dynamics when nonconvex capital adjustment costs lead establish-
ments to adjust capital in a lumpy fashion. See Veracierto (2002) and Khan and Thomas (2003, 2008).
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innovation in aggregate productivity.

Entrants are more plentiful, but of lower average idiosyncratic efficiency. This happens

because, with a time–invariant cost of entry, firms with poorer prospects about their

productivity find it worth entering. Aggregate output and TFP are lower than they

would be in the absence of this selection effect. However, given the small output share of

entering firms, the contemporaneous response of output is not very different from the one

that obtains in a model that abstracts from entry and exit.

It is the evolution of the new entrants that causes a sizeable impact on aggregate

dynamics. As the common productivity component declines towards its unconditional

mean, there is a larger–than–average pool of young firms that increase in efficiency and

size. The distribution of firms over idiosyncratic productivity improves. It follows that

entry propagates the effects of aggregate productivity shocks on output and increases its

unconditional variance.

For a version of our model without entry or exit to generate a data–conforming per-

sistence of output, the first–order autocorrelation of aggregate productivity shocks must

be as high as 0.775. In the benchmark scenario with entry and exit, it needs only be

0.685. As pointed out by Cogley and Nason (1995), many Real–Business–Cycle models

have weak internal propagation mechanisms. In order to generate the persistence in ag-

gregate time–series that we recover in the data, they must rely heavily on external sources

of dynamics. Our work shows that allowing for firm heterogeneity and for entry and exit

can sensibly reduce such reliance.

The propagation result depends on the pro–cyclicality of the entry rate, for which

evidence abounds,2 and on the dynamics of young firms. According to our theory, the

relative importance of a cohort is minimal at birth and increases over time. Strong support

for this prediction comes from Foster, Haltiwanger, and Krizan (2001), who document that

the (positive) productivity gap between entrants and exiters grows larger over time.

In our setup idiosyncratic shocks only affect technical efficiency. In reality, however,

plants also face random shifts in input supply and product demand schedules, which lead

to changes in input and product prices, respectively.

It must be clear that the main implications of our theory do not hinge upon the

origin of plant–level shocks. In particular, they will still hold in setups with horizontal

product differentiation where idiosyncratic demand shocks play a major role, as long as

such models admit reduced forms where innovations in demand boil down to shocks to

Revenue Total Factor Productivity (TFPR) that resemble our own disturbances.

2See Campbell (1998) and Lee and Mukoyama (2012).
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Exploiting data from the five Census of Manufacturing in the period 1977–1997, Fos-

ter, Haltiwanger, and Syverson (2008, 2012) conclude that in the case of ten seven–digit

industries, the dynamics of TFPR was mostly the result of idiosyncratic demand shocks.

Entrants displayed about the same technical efficiency as incumbents, but faced much

lower demand schedules, and therefore charged lower prices. Over time, conditional on

survival, demand shifted outwards, leading to higher prices and greater TFPR.

To rationalize these findings, Foster, Haltiwanger, and Syverson (2012) posit a stochas-

tic process for idiosyncratic demand shocks which leads to a TFPR dynamics very similar

to ours. Therefore we conjecture that our results for cross–sectional heterogeneity and

aggregate dynamics would not change if we amended our model to allow for idiosyncratic

random variation in demand.

A final caveat is that ours is not a theory of the firm. That is, we do not provide an

explanation for why single–plant and multi–plant business entities coexist. While our cal-

ibration relies exclusively on plant–level data, throughout the paper we will alternatively

refer to production units as firms or plants.

In recent years, a number of scholars have built upon Hopenhayn (1992) to produce

novel theories of aggregate fluctuations with firm heterogeneity. We think for example

at the business cycle theories of Veracierto (2002), Khan and Thomas (2003, 2008), and

Bachman and Bayer (2013), the asset pricing model by Zhang (2005), and the work by

Lee and Mukoyama (2012). With the exception of the latter, however, all of those papers

abstract from entry and exit. Lee and Mukoyama (2012)’s framework differs from ours in

key modeling assumptions. In particular, they do not model capital accumulation and let

the free–entry condition pin down the wage rate.

Campbell (1998), one of the earliest treatments of entry and exit in a model with ag-

gregate fluctuations, focuses on investment–specific technology shocks and makes a list of

assumptions with the purpose of ensuring aggregation. In turn, this leads to an environ-

ment that has no implications for most features of firm dynamics. Cooley, Marimon, and

Quadrini (2004) and Samaniego (2008) characterize the equilibria of stationary economies

with entry and exit and study their responses to zero–measure aggregate productivity

shocks.

A somewhat different strand of papers, among which Devereux, Head, and Lapham

(1996), Chatterjee and Cooper (1993), and Bilbiie, Ghironi, and Melitz (2012), model

entry and exit in general equilibrium models with monopolistic competition, but abstract

completely from firm dynamics. Interestingly, also in these frameworks entry leads to a

propagation of exogenous random disturbances. The reason, however, is very different.
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Entry increases the diversity of the product space. Because of increasing returns, this

encourages agents to work harder and accumulate more capital.

The remainder of the paper is organized as follows. The model is introduced in Section

2. In Section 3, we characterize firm dynamics in the stationary economy. The analysis

of the scenario with aggregate fluctuations begins in Section 4, where we describe the

impact of aggregate shocks on the entry and exit margins. In Section 5, we characterize

the cyclical properties of entry and exit rates, as well as the relative size of entrants and

exiters. We also gain insights into the mechanics of the model by describing the impulse

responses to an aggregate productivity shock. In Section 6, we illustrate how allowing for

entry and exit strengthen the model’s internal propagation mechanism and we outline its

implications for the cyclicality of the cross–sectoral distribution of productivity. Section

7 concludes.

2 Model

Time is discrete and is indexed by t = 1, 2, .... The horizon is infinite. At time t, a positive

mass of price–taking firms produce an homogenous good by means of the production

function yt = ztst(k
α
t l

1−α
t )θ, with α, θ ∈ (0, 1). With kt we denote physical capital, lt is

labor, and zt and st are aggregate and idiosyncratic random disturbances, respectively.

The common component of productivity zt is driven by the stochastic process

log zt+1 = ρz log zt + σzεz,t+1,

where εz,t ∼ N(0, 1) for all t ≥ 0. The dynamics of the idiosyncratic component st is

described by

log st+1 = ρs log st + σsεs,t+1,

with εs,t ∼ N(0, 1) for all t ≥ 0. The conditional distribution will be denoted asH(st+1|st).

Firms hire labor services on the spot market at the wage rate wt and discount future

profits by means of the time–invariant factor 1
R
, R > 1. Adjusting the capital stock by x

bears a cost g(x, k). Capital depreciates at the rate δ ∈ (0, 1).

We assume that the demand for the firm’s output and the supply of capital are in-

finitely elastic and normalize their prices at 1. The supply of labor is given by the function

Ls(w) = wγ , with γ > 0.

Operating firms incur a cost cf > 0, drawn from the common time-invariant distribu-

tion G. Firms that quit producing cannot re–enter the market at a later stage and recoup

the undepreciated portion of their capital stock, net of the adjustment cost of driving it

to 0. The timing is summarized in Figure 1.
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Figure 1: Timing in period t.

Every period there is a constant mass M > 0 of prospective entrants, each of which

receives a signal q about their productivity, with q ∼ Q(q). Conditional on entry, the

distribution of the idiosyncratic shock in the first period of operation is H(s′|q), strictly

decreasing in q. Entrepreneurs that decide to enter the industry pay an entry cost ce ≥ 0.

At all t ≥ 0, the distribution of operating firms over the two dimensions of heterogene-

ity is denoted by Γt(k, s). Finally, let λt ∈ Λ denote the vector of aggregate state variables

and J(λt+1|λt) its transition operator. In Section 4, we will show that λt = {Γt, zt}.

2.1 The incumbent’s optimization program

Given the aggregate state λ, capital in place k, and idiosyncratic shock s, the employment

choice is the solution to the following static problem:3

π(λ, k, s) = max
l

sz[kαl1−α]θ − wl.

Upon exit, a firm obtains a value equal to the undepreciated portion of its capital k, net of

the adjustment cost it incurs in order to dismantle it, i.e. Vx(k) = k(1−δ)−g [−k(1− δ), k].

Then, the start–of–period value of an incumbent firm is dictated by the function

V (λ, k, s) which solves the following functional equation:

V (λ, k, s) = π(λ, k, s) +

∫
max

{
Vx(k), Ṽ (λ, k, s) − cf

}
dG(cf )

3We drop time indexes in the remainder of the paper, except in parts where such choice may jeopardize
clarity of exposition.
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Ṽ (λ, k, s) =max
x

−x− g(x, k) +
1

R

∫

Λ

∫

ℜ

V (λ′, k′, s′)dH(s′|s)dJ(λ′|λ)

s.t. k′ = k(1− δ) + x

2.2 Entry

For an aggregate state λ, the value of a prospective entrant that obtains a signal q is

Ve(λ, q) = max
k′

−k′ +
1

R

∫
V (λ′, k′, s′)dH(s′|q)dJ(λ′|λ).

She will invest and start operating if and only if Ve(λ, q) ≥ ce.

2.3 Recursive Competitive Equilibrium

For given Γ0, a recursive competitive equilibrium consists of (i) value functions V (λ, k, s),

Ṽ (λ, k, s) and Ve(λ, q), (ii) policy functions x(λ, k, s), l(λ, k, s), k′(λ, q), and (iii) bounded

sequences of wages {wt}
∞
t=0, incumbents’ measures {Γt}

∞
t=1, and entrants’measures {Et}

∞
t=0

such that, for all t ≥ 0,

1. V (λ, k, s), Ṽ (λ, k, s), x(λ, k, s), and l(λ, k, s) solve the incumbent’s problem;

2. Ve(λ, q) and k′(λ, q) solve the entrant’s problem;

3. The labor market clears:
∫
l(λt, k, s)dΓt(k, s) = Ls(wt) ∀ t ≥ 0,

4. For all Borel sets S × K ⊂ ℜ+ ×ℜ+ and ∀ t ≥ 0,

Et+1(S × K) = M

∫

S

∫

Be(K,λt)
dQ(q)dH(s′|q),

where Be(K, λt) = {q s.t. k′(λt, q) ∈ K and Ve(λt, q) ≥ ce};

5. For all Borel sets S × K ⊂ ℜ+ ×ℜ+ and ∀ t ≥ 0,

Γt+1(S × K) =

∫

S

∫ ∫

B(K,λt,cf )
dΓt(k, s)dG(cf )dH(s′|s) + Et+1(S ×K),

where B(K, λt, cf ) =
{
(k, s) s.t. Ṽ (λt, k, s)− cf ≥ Vx(k) and k(1− δ) + x(λt, k, s) ∈ K

}
.

3 The Stationary Case

We begin by analyzing the case without aggregate shocks, i.e. σz = 0. In this scenario,

our economy converges to a stationary equilibrium in which all aggregate variables are

constant. First, we introduce our assumptions about functional forms. Then we illustrate
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the mechanics of entry, investment, and exit. After calibrating the model, we detail

the model’s implications for several features of firm dynamics, among which the relation

between firm growth and survival, size, and age.

3.1 Functional Forms

Investment adjustment costs are the sum of a fixed portion and of a convex portion:

g(x, k) = χ(x)c0k + c1

(x
k

)2
k, c0, c1 ≥ 0,

where χ(x) = 0 for x = 0 and χ(x) = 1 otherwise. Notice that the fixed portion is scaled

by the level of capital in place and is paid if and only if gross investment is different from

zero.

The distribution of signals for the entrants is Pareto. See the left panel of Figure 2. We

posit that q ≥ q ≥ 0 and that Q(q) = (q/q)ξ, ξ > 1. The realization of the idiosyncratic

shock in the first period of operation follows the process log(s) = ρs log(q) + σsη, where

η ∼ N(0, 1).

Finally, we assume that the distribution of the operating cost G is log–normal with

parameters µcf and σcf .

3.2 Entry, Investment, and Exit

Since an incumbent’s value V (k, s) is weakly increasing in the idiosyncratic productivity

shock s and the conditional distribution H(s′|q) is decreasing in the signal q, the value

of entering Ve(q) is a strictly increasing function of the signal. In turn, this means that

there will be a threshold for q, call it q∗, such that prospective entrants will enter if and

only if they receive a draw greater than or equal to q∗.

The mass of actual entrants with productivity less than or equal to any s̄ ≥ 0 will be

M
∫ s̄ ∫

q∗
dQ(q)dH(s|q). See the right panel of Figure 2.

Let k′(q) denote the optimal entrants’ capital choice conditional on having received a

signal q. For every k̄ ≥ k′(q∗) and for all s̄ ≥ 0, the portion of entrants characterized by

pairs (s, k) such that s ≤ s̄ and k ≤ k̄ will be M
∫ s̄ ∫ q−1(k̄)

q∗
dQ(q)dH(s|q), where q−1 is

the inverse of the mapping between signal and capital choice.

Our treatment of the entry problem is different from that in Hopenhayn (1992). There,

prospective entrants are identical. Selection upon entry is due to the fact that firms that

paid the entry cost start operating only if their first productivity draw is greater than

the exit threshold. In our framework, prospective entrants are heterogeneous. Some
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Figure 2: Signal’s distribution (left) and productivity distribution of actual entrants.

obtain a greater signal than others and therefore face better short–term prospects. As a

consequence, they start with greater capital and are likely to hire more employees.

Investment is modeled as in the standard neoclassical framework with non-convex

adjustment costs. See for example Khan and Thomas (2008). The fixed cost of investment

gives rise to policy functions of the S–s type, which in turn are responsible for the periods

of inaction that are characteristic of all firm– and plant–level datasets.

Firms exit whenever they draw an operating cost cf such that the value of exiting

Vx(k) is greater than the value of continuing operations, i.e. Ṽ (k, s) − cf . Figure 3

depicts the probability of survival as a function of the state variables. For given capital,

the probability of exiting is decreasing in the idiosyncratic productivity. This is not

surprising, given that the value of exiting does not depend on s, while the continuation

payoff is obviously greater, the larger is productivity. Survival chances also improve with

capital, for given level of productivity. Both the value of continuing and exiting are

increasing in capital, but simple inspection reveals that the marginal impact of raising

capital is greater on the value of staying.

Differently from Hopenhayn (1992), where firms exit with certainty when productivity

falls below a certain threshold and continue with certainty otherwise, in our framework all

firms survive with positive probability and survival is smoothly increasing in both capital

and productivity. If we let the distribution of the operating cost collapse to a singleton,

the exit policy would be characterized by a decreasing schedule, call it s(k), such that a

firm equipped with capital k will exit if and only if its productivity is lower than s(k).

8



0
0.1

0.2
0.3

0.4
0.5

0
0.5

1
1.5

2
2.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

CapitalIdiosyncratic Productivity
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3.3 Calibration

Our parameter values are listed in Table 1. One period is assumed to be one year.

Consistent with most macroeconomic studies, we assume that R = 1.04, δ = 0.1, and

α = 0.3. We set θ, which governs returns to scale, equal to 0.8. This value is on the lower

end of the range of estimates recovered by Basu and Fernald (1997) using industry–level

data. Using plant–level data, Lee (2005) finds that returns to scale in manufacturing vary

from 0.828 to 0.91, depending on the estimator.

The remaining parameters are chosen in such a way that a number of statistics com-

puted using a panel of simulated data are close to their empirical counterparts. Unless

indicated otherwise, the simulated data is drawn from the stationary distribution. We list

the simulated moments and their empirical counterparts in Table 2.

Because of non–linearities, it is not possible to match parameters to moments. How-

ever, the mechanics of the model clearly indicates which are the key parameters for each

set of moments. What follows is a summary description of the algorithm that assigns
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values to parameters.

First, notice that there are uncountably many pairs (M,γ) which yield stationary

equilibria identical to each other except for the volume of operating firms (and entrants).

All the statistics of interest for our study are the same across all such allocations. To see

why this is the case, start from a given stationary equilibrium and consider raising the

labor supply elasticity γ. The original equilibrium wage will now elicit a greater supply of

labor. Then, simply find the new, greater value for M , such that the aggregate demand

for labor in stationary equilibrium equals supply at the original wage.

The property just described will not be true in the general model with σz > 0. We

decide to borrow the value of γ from the calibration of that model, to be illustrated in

Section 4. Given this choice, we set M in such a way that the equilibrium wage is 3.0.

This value is clearly arbitrary. However – it will be clear at the end of this section – it

involves no loss of generality.

Description Symbol Value

Capital share α 0.3
Span of control θ 0.8
Depreciation rate δ 0.1
Interest rate R 1.04
Labor supply elasticity γ 2.0
Mass of potential entrants M 1,766.29
Persistence idiosync. shock ρs 0.55
Variance idiosync. shock σs 0.22
Operating cost – mean parameter µcf -5.63872

Operating cost – var parameter σcf 0.90277

Fixed cost of investment c0 0.00011
Variable cost of investment c1 0.03141
Pareto exponent ξ 2.69
Entry cost ce 0.005347

Table 1: Parameter Values.

The parameters of the process driving the idiosyncratic shock, along with those gov-

erning the adjustment costs, were chosen to match the mean and standard deviation of

the investment rate, the autocorrelation of investment, and the rate of inaction, i.e. the

fraction of periods in which the investment rate is less than 1%. The targets are the

moments computed by Cooper and Haltiwanger (2006) using a balanced panel from the

LRD from 1972 to 1988. Because of selection in entry and exit, such statistics are likely

to be biased estimates of the population moments. To ensure consistency between the
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simulated statistics and their empirical counterparts, we follow Cao (2007) and compute

our moments on balanced panels extracted from the simulated series.

A simpler version of the neoclassical investment model with lognormal disturbances –

one without investment adjustment costs – has the interesting properties that (i) the mean

investment rate is a simple non linear function of of the parameters ρs and σs and that (ii)

the standard deviation of the investment rate is a simple non–linear function of the mean.

It follows that in that framework, mean and standard deviation do not identify the pair

{ρs, σs}. While these properties do not hold exact in our model, inspection reveals that

similar restrictions exist. We proceed to set σs = 0.22, a value consistent with available

estimates of the standard deviation of the innovation to idiosyncratic productivity shocks,4

and set ρs to minimize a weighted average of the distances of mean and standard deviation

of investment rate from their targets.

The remaining parameters are set so that the model gets close to match the average

entry rate and the relative size of entrants and exiters with respect to survivors, respec-

tively. The definitions of these ratios are those of Dunne, Roberts, and Samuelson (1988)

and the targets are the statistics obtained by Lee and Mukoyama (2012) using the LRD.

The mean of the operating cost has the largest effect on the exit rate, which in stationary

equilibrium must equal the entry rate. The variance of the operating cost pins down the

relative size of exiters.

Finally, the pair {ξ, ce} determines the relative size of entrants. For simplicity, we set

ce equal to the mean operating cost, and then pick the value of the Pareto exponent to

hit the target.

Statistic Model Data

Mean investment rate 0.153 0.122
Std. Dev. investment rate 0.325 0.337
Investment autocorrelation 0.059 0.058
Inaction rate 0.067 0.081
Entry rate 0.062 0.062
Entrants’ relative size 0.58 0.60
Exiters’ relative size 0.47 0.49

Table 2: Calibration Targets.

We claimed above that our arbitrary choice of M implies no loss of generality. How

would the stationary equilibrium look like if, say, we chose a greater value? The wage rate

would be higher and therefore all firm sizes would decline. Exit would be more appealing,

4See Haltiwanger (2011) and Castro, Clementi, and Lee (2013).
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which in turn would imply higher exit (and entry) rate. However, firms dynamics will be

exactly the same, as the investment process is invariant to the wage rate. It follows that

by revising our choices for the parameters governing entry and exit, we can generate an

economy that differs from ours only in its scale. All the moments of interest will be the

same, and so will be the model’s implications for entry, growth, and survival.

3.4 Firm Dynamics

In this section, we describe the model’s implications for firm growth and survival, and

compare them with the empirical evidence. Unless otherwise noted, size is measured

by employment. The appropriate empirical counterpart of our notion of productivity is

revenue total factor productivity (TFPR), as defined in Foster, Haltiwanger, and Syverson

(2008).

The left panel of Figure 4 illustrates the unconditional relation between exit hazard

rate and age. Consistent with Dunne, Roberts, and Samuelson (1989) and all other

studies we are aware of, the exit hazard rate decreases with age. This is the case because

on average entrants are less productive than incumbents. As a cohort ages – see the right

panel – the survivors’ productivity and value increase, leading to lower exit rates.
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Figure 4: The exit hazard rate

A similar mechanism is at work in Hopenhayn (1992). In his framework, however, there

exists a size threshold such that the exit rate is 100% for smaller firms and identically

zero for larger firms. This feature is at odds with the evidence.5 In our model, firms with

the same employment are characterized by different combinations of (k, s) and therefore

have different continuation values. Those with relatively low capital and relatively high

productivity are less likely to exit.

5See Dunne, Roberts, and Samuelson (1989) and Lee and Mukoyama (2012).
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Dunne, Roberts, and Samuelson (1989) also found that in the US manufacturing sector,

establishment growth is unconditionally negatively correlated with both age and size – a

finding that was confirmed for a variety of sectors and countries.6 Evans (1987) and Hall

(1987) found evidence that firm growth declines with size even when we condition on age,

and viceversa.

Hopenhayn (1992) is consistent with these facts, with the exception of the conditional

correlation between growth and age. In his model, idiosyncratic productivity is a suffi-

cient statistics for firm size and growth. Conditional on age, smaller firms grow faster

because the stochastic process is mean–reverting. However, firms of the same size behave

identically, regardless of their age. The model generates the right unconditional relation

between age and growth, simply because age and size are positively correlated in the

stationary distribution. When controlling for size, age is uncorrelated with growth.
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Figure 5: Unconditional Relationship between Growth, Age, and Size.

Our version of the model is consistent with all the facts about growth listed above.

Figure 5 illustrates the unconditional correlations. Recall that the state variables are

productivity and capital. Conditional on age, employment growth declines with size

because larger firms tend to have higher productivity levels. Given that productivity is

mean–reverting, their growth rates will be lower.

Now consider all the firms with the same employment. Since adjustment costs prevent

the instantaneous adjustment of capital to the first–best size implied by productivity, some

firms will be characterized by a relatively low capital and high shock, and others by a

relatively high capital and low shock. The former will grow faster, because investment and

employment are catching up with the optimal size dictated by productivity. The latter

will shrink, as the scale of production is adjusted to the new, lower level of productivity.

6See Coad (2009) for a survey of the literature.
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The conditional negative association between age and size arises because, on average,

firms with relatively high k and low s (shrinking) will be older than firms with low k

and high s (growing). For shrinking firms, productivity must have declined. For this to

happen, they must have had the time to grow in the first place. On average, they will be

older than those that share the same size, but are growing instead.

The model is consistent with the evidence on firm growth even when we measure size

with capital rather than employment. Conditional on age, capital is negatively correlated

with growth for the same reason that employment is. It is still the case that larger firms

have higher productivity on average. Another mechanism contributes to generating the

right conditional correlation between growth and size. Because of investment adjustment

costs, same–productivity firms have different capital stocks. It turns out that on average

the larger ones have seen their productivity decline, while the smaller ones have seen their

efficiency rise. The former are in the process of shrinking, while the latter are growing.

We just argued that firms with the same capital will have different productivity levels.

For given capital, firms with higher shocks are growing, while firms with lower shocks

are shrinking. Once again, the negative conditional correlation between growth and age

follows from the observation that, on average, firms with higher shocks are younger.

It is worth emphasizing that, no matter the definition of size, the conditional relation

between age and growth is driven by relatively young firms. Age matters for growth

even when conditioning on size, because it is (conditionally) negatively associated with

productivity. To our knowledge, only two other papers present models that are consistent

with this fact. The mechanism at work in D’Erasmo (2009) is similar to ours. Cooley and

Quadrini (2001) obtain the result in a version of Hopenhayn (1992)’s model with financial

frictions and exogenous exit.

The left panel of Figure 6 shows the firm size distribution that obtains in stationary

equilibrium. Noticeably, it displays positive skewness. The right panel illustrates the

evolution of a cohort size size distribution over time. Skewness declines as the cohort

ages. Both of these features are consistent with the evidence gathered by Cabral and

Mata (2003) from a comprehensive data set of Portuguese manufacturing firms.

4 Aggregate Fluctuations – Mechanics

We now move to the scenario with aggregate fluctuations. In order to formulate their

choices, firms need to forecast next period’s wage. The labor market clearing condition
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implies that the equilibrium wage at time t satisfies the following restriction:

logwt =
log[(1− α)θzt]

1 + γ[1− (1− α)θ]
+

1− (1− α)θ

1 + γ[1− (1− α)θ]
Ωt, (1)

with Ωt = log
[∫ (

skαθ
) 1

1−(1−α)θ dΓt(k, s)
]
. The log–wage is an affine function of the

logarithm of aggregate productivity and of a moment of the distribution.

Unfortunately, the dynamics of Ωt depends on the evolution of Γt. It follows that

the vector of state variables λt consists of the distribution Γt and the aggregate shock

zt. Faced with the formidable task of approximating an infinitely–dimensional object, we

follow Krusell and Smith (1998) and conjecture that Ωt+1 is an affine function of Ωt and

log zt+1. Then, (1) implies the following law of motion for the equilibrium wage is

logwt+1 = β0 + β1 logwt + β2 log zt+1 + β3 log zt + εt+1. (2)

When computing the numerical approximation of the equilibrium allocation, we will

impose that firms form expectations about the evolution of the wage assuming that (2)

holds true. This means that the aggregate state variables reduce to the pair (wt, zt). The

parameters {β0, β1, β2, β3} will be set equal to the values that maximize the accuracy of

the prediction rule. The definition of accuracy and its assessment are discussed in Section

4.2. The algorithm is described in detail in Appendix A.

4.1 Calibration

With respect to the stationary case, we need to calibrate three more parameters. These

are ρz and σz, which shape the dynamics of aggregate productivity, and the labor supply

elasticity γ. We set them in order to match the standard deviation and auto–correlation

of output growth, as well as the standard deviation of employment growth.
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The targets for the first two are standard deviation and autocorrelation of the growth

in non–farm private value added from 1947 to 2008, from the US Bureau of Economic

Analysis. The third target is the standard deviation of employment growth, also in the

non–farm private sector and for the same period, from the Bureau of Labor Statistics.

Description Symbol Value

Labor supply elasticity γ 2.0
Persist. aggregate shock ρz 0.685
Std. Dev. aggregate shock σz 0.0163

Table 3: Parameter Values.

Our parameter values are listed in Table 3. Our choice for γ is close to recent estimates

of the aggregate labor supply elasticity. For example, Rogerson and Wallenius (2009)

conclude that for micro elasticities ranging from 0.05 to 1.25, the corresponding macro

elasticities are in the range of 2.25 to 3.0. Fiorito and Zanella (2012) estimate a micro

elasticity of 0.1 and macro elasticities in the range 1.1-1.7. At the quarterly frequency,

our values for ρz and σz imply an autocorrelation of about 0.91 and a standard deviation

of about 0.008. In comparison, Cooley and Prescott (1995) set the two parameters at 0.95

and 0.007, respectively.

Statistic Model Data

Standard deviation output growth 0.032 0.032
Autocorrelation output growth 0.069 0.063
Std. dev. employment growth (rel. to output growth) 0.656 0.667

Table 4: Additional Calibration Targets.

4.2 The Forecasting Rule

The forecasting rule for the equilibrium wage turns out to be

log(wt+1) = 0.38385 + 0.65105 log(wt) + 0.53075 log(zt+1)− 0.21508 log(zt) + εt+1.

The wage is persistent and mean–reverting. A positive aggregate shock increases the

demand for labor from both incumbents and entrants. This is why β2, the coefficient of

log(zt+1), is estimated to be positive. The coefficient of log(zt) – β3 – is negative because

the larger the aggregate shock in the previous period, the smaller is going to be the

expected increment in aggregate productivity, and therefore the lower the wage increase.
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In the literature with heterogeneous agents and aggregate risk it has become standard

to evaluate the accuracy of the forecasting rule by assessing the R2 of the regression,

which in our case is 0.9971. However, as pointed out by Den Haan (2010), this choice

is questionable on at least three grounds. To start with, the R2 considers predictions

made conditional on wages generated by the true law of motion. In this sense, it only

assesses the accuracy of one–period ahead forecasts. Second, the R2 is an average. In the

numerical methods literature, it is standard to report maximum errors instead. Last, but

not least, the R2 scales the error term by the variance of the dependent variable. The

problem here is that it is often not clear what the appropriate scaling is. The root mean

squared error (0.00103 in our case) does not suffer from the latter shortcoming, but is

affected by the first two.

Here we follow Den Haan (2010)’ suggestion to assess the accuracy of our forecasting

rule by calculating the maximum discrepancy (in absolute value) between the actual

wage and the wage generated by the rule without updating. That is, we compute the

maximum pointwise difference between the sequence of actual market–clearing wages and

that generated by our rule, when next period’s predicted wage is conditional on last

period’s prediction for the current wage rather than the market clearing wage. The value

of that statistics over 24,500 simulations is 0.765% of the market clearing wage.

The frequency distribution of percentage forecasting errors is illustrated in the left

panel in Figure 7. The absolute value of the forecasting error is greater than 0.5% of

the clearing wage in only 1.3% of the observations. The right panel is a scatter plot of

equilibrium wages and their respective forecasts. It shows that the points are aligned

along the 45o line and that forecasting errors are small with respect to the variation in

equilibrium wages. More diagnostics is reported in the Appendix.
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4.3 Entry and Exit

Recall that in the stationary equilibrium analyzed in Section 3, the solution to the entry

problem consists of a time–invariant threshold on the signal space and a policy function

for investment. Here the threshold will be time-varying, and will depend on the wage and

on the aggregate productivity realization.

The value of an incumbent is strictly increasing in aggregate productivity and strictly

decreasing in the wage, while the cost of entry is constant. It follows that the entry

threshold will be greater the lower is aggregate productivity and the greater is the wage.

See the left panel in Figure 8 for an illustration.

Everything else equal, a rise in aggregate productivity (or a decline in the wage) will

lead to an increase in the number of entrants. Given that the distribution of idiosyncratic

shocks is stochastically increasing in the value of the signal, such a rise will also lead to a

decline in entrants’ average idiosyncratic efficiency.7

2.5

3

3.5

0.9
0.95

1
1.05

1.1

0.45

0.5

0.55

0.6

0.65

0.7

Aggregate ProductivityWage

2.5

3

3.5 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

0.7

0.75

0.8

0.85

0.9

0.95

Aggregate ProductivityWage

Figure 8: Left: Entry Threshold on the Signal Space. Right: Survival Probability.

The conditional probability of survival is also time–varying. Since the value recovered

upon exit is not a function of aggregate variables, survival chances are greater the higher

is aggregate productivity and the lower is the wage. The right panel of Figure 8 illus-

trates how the probability of continuing to operate changes with the two aggregate state

variables, for a given pair of individual states {k, s}.

Everything equal, a positive shock to aggregate productivity leads to a decline in the

number of exiting firms. Since the distribution of the idiosyncratic shock is invariant over

time and across firms, the average idiosyncratic efficiency of exiters will also decline.

7 For high levels of aggregate productivity and low wages the schedule on the left panel of figure 8 is
flat. In that portion of the aggregate state space, the signal threshold coincides with its lower bound and
all potential entrants find it optimal to start producing. It turns out, however, that this portion of the
state space does not belong to the ergodic set.
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The equilibrium dynamics of the entry and exit margins will obviously depend on the

response of the wage to innovations in aggregate productivity. The wage and aggregate

shock will be strongly positively correlated. The milder the response of the wage to

positive aggregate productivity shocks, the higher the likelihood that periods of high

aggregate TFP will be characterized by high entry volumes, high survival rates, and

relatively low productivity of entrants and exiters.

5 Aggregate Fluctuations – Results

5.1 Cyclical Behavior of Entry and Exit

Table 5 reports the raw correlations of entry rate, exit rate, and the size of entrants

and exiters (relative to incumbents) with industry output. Consistent with the evidence

presented by Campbell (1998), the entry rate is pro–cyclical and the exit rate is counter–

cyclical.

Entry Rate Exit Rate Entrants’ Size Exiters’ Size
0.402 -0.779 -0.725 -0.892

Table 5: Correlations with industry output.

Interestingly, Campbell (1998) also provides evidence on the correlations between entry

rate, exit rate, and future and lagged output growth. He finds that the correlation of entry

with lagged output growth is greater than the contemporaneous correlation and that the

exit rate is positively correlated with future output growth.

Our model is consistent with both features. The correlation of entry rate with con-

temporaneous output growth is 0.0039, while that with one–period lagged output growth

is 0.8359. The reason is that the entry decision is taken contingent on the information

available one period before the start of operations. The correlation coefficient between

exit rate and one– and two–period ahead output growth are 0.13 and 0.26, respectively.

Periods of low exit tend to be periods of high output. Given the mean–reverting nature

of aggregate productivity, on average such periods are followed by times of low output

growth.

Analyzing data from the LRD, Lee and Mukoyama (2012) find that selection at entry

is quantitatively very important. Relative to incumbents, entering plants tend to be larger

during recessions. This is the case, according to their evidence, because entrants’ average

idiosyncratic productivity is counter-cyclical. Our model shares these features of the data.
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When the common productivity component is low, only firms with a relatively high level

of idiosyncratic productivity find it worthwhile to enter.

The banking literature also found evidence in support of the claim that aggregate

conditions have an impact on selection at entry. A number of papers, among which

Cetorelli (2013), find that when credit market conditions are relatively favorable, entering

firms are less productive on average.

In our model, the relative size of exiters is also higher during recessions. A drop in the

common productivity component leads to a lower value of all incumbents. It follows that

the marginal exiter will have a higher value of the idiosyncratic productivity component.

5.2 Impulse Responses

The objective of this section is to describe the impulse response functions in order to gain

some more intuition about the model’s dynamics. We initialize the system by assuming

that the distribution of firms is equal to the point–wise mean of distributions on the

ergodic set. The common productivity component is set at its mean value. At time t = 1,

we impose that the exogenous aggregate productivity component rises by about 7% and

we compute the evolution of the size distribution over the next 25 periods. We repeat

this experiment for 3,000 times and depict the averages of selected variables in Figures 9

and 10.
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Figure 9: Response to a positive productivity shock.

The left–most panel on the top of Figure 9 reports the percentage deviation of the
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common productivity component from its unconditional mean. Not surprisingly, output,

the wage rate and employment display similar dynamics.

Because of our timing assumptions, the industry composition does not depend upon

contemporaneous shocks. Entry is governed by past aggregate conditions, and exit occurs

after production has taken place. It follows that the contemporaneous response of output,

employment, and wage to the positive productivity shock is entirely due to the expansion

in hiring by incumbents.

The compositional effects of the aggregate shock appear in the next period. The exit

rate declines, while the entry rate rises.8 As a result, the number of operating firms

also rises. It peaks in period 5, when the exit volume, which is rising back towards its

unconditional mean, overcomes the declining entry volume.

Figure 10 illustrates the dynamics of selection in entry and exit. The average size and

idiosyncratic productivity of entrants (relative to incumbents) declines and then converges

back to its unconditional mean. This is the case because, on balance, the hike in aggregate

productivity and the ensuing increase in the wage imply a rise in the value of incumbency.

It follows that the average idiosyncratic productivity of the pool of entrants declines.

The average size and idiosyncratic productivity of exiters (relative to non-exiters)

also declines. The improvement in aggregate factors implies an increase in the value of

continuing operations. As a result, the marginal firms, i.e. those indifferent between

exiting and staying, decline in quality. Since entry increases while exit declines, the

cross–sectional mean of idiosyncratic productivity decreases.

Notice that the convergence of entry rate and exit rate to their respective unconditional

means is not monotone. The exit rate overshoots its long–run value. The entry rate

undershoots. Similarly, for all the statistics illustrated in Figure 10, except for the mass

of operating firms. This happens because the wage decays at a lower pace than aggregate

productivity.

A few periods after the positive shock hits, the aggregate component of productivity

is back close to its unconditional mean. However, the wage is still relatively high. The

reason is that the volume of entry is finite and firms are born relatively small. As the

new entrants become more efficient, their labor demand increases, keeping the wage from

falling faster. With a relatively high wage and relatively low aggregate productivity, the

selection effect changes sign. Entry falls below its long–run value, while exit is higher

than that.

8Following Dunne, Roberts, and Samuelson (1988), the period-t exit rate is the ratio of firms exiting
between period t and t+1 and the number of operating firms in time t. This statistic drops in the period
where the shocks hits, but the effect of exit on the distribution only appears in the next period.
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Figure 10: Response to a positive productivity shock.

6 The relevance of entry and exit for aggregate dynamics

In this section we show that allowing for entry and exit enhances the model’s internal

propagation mechanism. A corollary is that measuring the aggregate Solow residual as

it is customary done in macroeconomics results in an upward bias in its persistence’s

estimate.

This is the outcome of two forces. One is the pro–cyclicality of the entry rate. The

other is the fact that firms start out relatively unproductive, but quickly grow in size

and efficiency. This dynamics is reflected in the contribution of net entry to aggregate

productivity growth. As it is the case in the data, the contribution of new entrants is

small in their first year, but grows over time.

Finally, we describe our model’s implications for the cyclicality of selected cross–

sectional moments.

6.1 Propagation

Think of the economy considered in Section 5, but abstract from entry and exit. At

every point in time, there is a mass of firms whose technology is exactly as specified

above. However, firms never exit. As our purpose is to compare such economy with

our benchmark, assume that the number of operating firms is equal to the unconditional

average number of incumbents that obtains along the benchmark’s equilibrium path.
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Figure 11: The effect of entry & exit on output dynamics.

Figure 11 depicts the impulse response of industry output to a positive aggregate

shocks in our benchmark scenario and in the scenario without entry and exit, respectively.

We argued above that in the benchmark scenario the contemporaneous response of

output is entirely due to incumbents. Therefore it is not surprising that the period–1

percentage deviation from the unconditional mean is the same across the two economies.

In period 2, output is greater in the benchmark economy, due to the increase in net entry.

What we find particularly interesting is that the gap between the two time series keeps

increasing beyond t = 5, the period when net entry becomes negative. This is due to the

dynamics of firms born in the aftermath of the shock. Upon entry, these entities are

very small and therefore account for a rather small fraction of total output. Over time,

however, they grow in efficiency and size. This process takes place at the same time in

which the aggregate productivity component regresses towards its unconditional mean.

As a result, aggregate output falls at a slower pace.

The mean–reversion of output is slower when we allow for entry and exit. In other

words, aggregate output is more persistent.

A confirmation that this mechanism is indeed at work comes from inspection of Fig-

ure 12, which illustrates the dynamics of the Solow residual in the two economies. The

residual is computed by assuming an aggregate production function of the Cobb–Douglas

form with capital share equal to 0.3. That is, we plot log(Yt)−α log(Kt)− (1−α) log(Lt).

The Solow residual is uniformly higher in the benchmark scenario with entry and exit.
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Figure 12: The effect of entry & exit on productivity dynamics.

The dynamics of the residual depends on the evolution of both zt and the distribution of

the idiosyncratic component st. In the benchmark economy, such distribution improves

stochastically over time. In the case without entry and exit, instead, it is time–invariant.

This simple exercise hints that trying to infer information about the process generating

factor–neutral exogenous technical change using a model without entry or exit will give the

wrong answer. Such model will interpret changes in aggregate efficiency that results from

the reallocation of output shares towards more efficient firms as changes in the exogenous

aggregate component.

We also conducted the alternative experiment of setting the parameters in the economy

without entry and exit in such a way that it generates the same values of the target

moments as the benchmark economy. To generate the target autocorrelation for output

growth, we had to set ρz = 0.775, much higher than the value of 0.685 assumed in Section

4.

6.2 Productivity Decomposition

Entry and exit enhance the model’s propagation mechanism because entry is pro–cyclical

and entrants’ productivity grows faster than incumbents’, drawing a reallocation of market

share towards them. Strong evidence in support of the latter claim comes from the litera-

ture that exploits longitudinal establishment data to study the determinants of aggregate

productivity growth.
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After thoroughly reviewing that literature, Foster, Haltiwanger, and Krizan (2001)

conclude that “studies that focus on high–frequency variation tend to find a small contri-

bution of net entry to aggregate productivity growth while studies over a longer horizon

find a large role for net entry.” They go on to add that “Part of this is virtually by con-

struction... Nevertheless, ... The gap between productivity of entering and exiting plants

also increases in the horizon over which the changes are measured since a longer hori-

zon yields greater differential from selection and learning effects.” That is, conditional on

survival entrants’ productivity grows faster.

Not surprisingly, a productivity decomposition exercise carried out on simulated data

generated by our model yielded results which are qualitatively consistent with the evidence

illustrated by Foster, Haltiwanger, and Krizan (2001). On average, the contribution of net

entry to productivity growth is positive, as entering firms tend to be more productive than

the exiters they replace. Its magnitude is small when the interval between observations is

one period (equivalent to one year), but it increases with the time between observations.

In part, this is due to the mere fact that the output share accounted for by entrants is

larger, the longer the horizon over which changes are measured. However, it is also due

to the fact that entrants grow in size and productivity at a faster pace than incumbents.

Define total factor productivity as the weighted sum of firm–level Solow residuals,

where the weights are the output shares. Let Ct denote the collection of plants active in

both periods t − k and t. The set Et includes the plants that entered between the two

dates and are still active at time t. In Xt−k are the firms that were active at time t− k,

but exited before time t.

Following Haltiwanger (1997), the growth in TFP can be decomposed into five com-

ponents, corresponding to the addenda in equation (3). They are known as (i) the within

component, which measures the changes in productivity for continuing plants, (ii) the

between–plant portion, which reflects the change in output shares across continuing plants,

(iii) a covariance component, and finally (iv) entry and (v) exit components.9

∆ log(TFP t) =
∑

i∈Ct

φi,t−k∆ log(TFP it) +
∑

i∈Ct

[log(TFP i,t−k)− log(TFP t−k)]∆φit+

∑

i∈Ct

∆ log(TFP it)∆φit +
∑

i∈Et

[log(TFP it)− log(TFP t−k)]φit−

∑

i∈Xt−k

[log(TFP i,t−k)− log(TFP t−k)]φi,t−k (3)

Table 6 reports the results that obtain when we set k equal to 1 and 5, respectively.

9With φit and TFP it we denote firm i’s output share and measured total factor productivity at time
t, respectively. TFPt is the weighted average total factor productivity across all firms active at time t.
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In the last column, labeled Net Entry, we report the difference between the entry and exit

components. Recall that in our model the unconditional mean of aggregate productivity

growth is identically zero.

k Within Between Covariance Entry Exit Net Entry

1 -8.7778 -4.1623 12.4366 -0.2964 -0.8011 0.5047
5 -15.1437 -13.3884 27.5833 -0.7556 -1.7104 0.9548

Table 6: Productivity Decomposition (percentages).

The between and within components are necessarily negative, because of mean rever-

sion in the process driving idiosyncratic productivity. Larger firms, which tend to be more

productive, shrink on average. Smaller firms, on the contrary, tend to grow. The covari-

ance component is positive, because firms that become more productive also increase in

size.

On average, both the entry and exit contributions are negative. This reflects the fact

that both entrants and exiters are less productive than average. However, entrants tend

to be more productive than exiters. The contribution of net entry to productivity growth

is positive regardless of the horizon.

What’s most relevant for our analysis is that for k = 5 the contribution of net entry

is about twice that for k = 1. In part, this is due to the fact that the share of output

produced by entrants increases with k. However, this cannot be the whole story. The

contribution of entry is roughly −0.3% for k = 1 and goes to −0.76% for k = 5. If

entrants’ productivity did not grow faster than average, the contribution of entry for the

k = 5 horizon would be much smaller.

6.3 Cyclical Variation of Cross–sectional Moments

Starting with Eisfeldt and Rampini (2006), a number of papers have assessed the cyclical

behavior of the cross–sectional distribution of productivity. Particular interest has been

paid to the evolution of the second moment.

Exploiting the German dataset USTAN and data from the US Census of Manufactur-

ing, respectively, Bachman and Bayer (2013) and Bloom, Floetotto, Jaimovich, Saporta-

Eksten, and Terry (2012) conclude that the standard deviation of idiosyncratic TFP

growth is countercyclical. Kehrig (2011), also analyzing US Census data, reports that a

measure of dispersion of the level of TFP is countercyclical as well.

In spite of our assumption that the stochastic process governing idiosyncratic produc-
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tivity is constant across time and across firms, the equilibrium allocation of our model

features non–trivial dynamics of the cross–sectional distribution of productivity. The rea-

son, as it is by now clear, is that the net entry rate, as well as selection in entry and exit,

are time–varying.

The impulse response functions discussed in section 5 hint that when industry output

is high, the idiosyncratic productivity of both entrants and exiters is relatively low. Since

the entry-rate is pro–cyclical while the exit–rate is counter–cyclical, it follows that the

first moment of the idiosyncratic productivity distribution is counter-cyclical.

Another robust implication of the model is that skewness is pro–cyclical. In Section 3

we showed that, consistent with the evidence, the productivity distribution is positively

skewed. During expansions, both entrants and exiters are less productive than average.

Since the net entry rate is pro–cyclical, skewness increases.

This feature is illustrated in Figure 13, which plots the difference between the (av-

erage) fraction of firms associated with each level of idiosyncratic shock in expansion

and in recession, respectively. When industry output is high, there are relatively more

low–productivity firms and relatively less high–productivity firms. The right tail of the

distribution is thinner.
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Figure 13: Change in the Cross-Sectional Distribution.

Unfortunately the prediction for the cyclicality of the second moment is not robust.

Our simulations show that the sign of the correlation between second moment and industry

output changes with relatively minor changes in parameter values.
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7 Conclusion

This paper provides a framework to study the dynamics of the cross–section of firms and

its implications for aggregate dynamics. When calibrated to match a set of moments of

the investment process, our model delivers implications for firm dynamics and for the

cyclicality of entry and exit that are consistent with the evidence.

The survival rate increases with size. The growth rate of employment is decreasing

with size and age, both unconditionally and conditionally. The size distribution of firms

is skewed to the right. When tracking the size distribution over the life a cohort, the

skewness declines with age.

The entry rate is positively correlated with current and lagged output growth. The

exit rate is negatively correlated with output growth and positively associated with future

growth.

We show that allowing for entry and exit enhances the internal propagation mechanism

of the model. This obtains because the entry rate is pro–cyclical and recent entrants grow

faster than incumbents.

A positive shock to aggregate productivity leads to an in increase in entry. Con-

sistent with the empirical evidence, the new entrants are smaller and less efficient than

incumbents. The skewness of the distribution of firms over the idiosyncratic productivity

component increases. As the exogenous component of aggregate productivity declines

towards its unconditional mean, the new entrants that survive grow in productivity and

size. That is, the distribution of idiosyncratic productivity improves.

For a version of our model without entry or exit to generate a data–conforming per-

sistence of output, the first–order autocorrelation of aggregate productivity shocks must

be 0.775. In the benchmark scenario with entry and exit, it needs only be 0.685.
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A Numerical Approximation

Our algorithm consists of the following steps.

1. Guess values for the parameters of the wage forecasting rule β̂ =
{
β̂0, β̂1, β̂2, β̂3

}
;

2. Approximate the value function of the incumbent firm;

3. Simulate the economy for T periods, starting from an arbitrary initial condition

(z0,Γ0);

4. Obtain a new guess for β̂ by running regression (2) over the time–series {wt, zt}
T
t=S+1,

where S is the number of observations to be scrapped because the dynamical system

has not reached its ergodic set yet;

5. If the new guess for β̂ is close to the previous one, stop. If not, go back to step 2.

A.1 Approximation of the Value Function

The incumbent’s value function is approximated by value function iteration.

1. Start by defining grids for the state variables w, z, k, s. Denote them as Ψw, Ψz,

Ψk, and Ψs, respectively. The wage grid is equally spaced and centered around

the equilibrium wage of the stationary economy. The capital grid is constructed

following the method suggested by McGrattan (1999). The grids and transition

matrices for the two shocks are constructed following Tauchen (1986). For all pairs

(s, s′) such that s, s′ ∈ Ψs, let H(s′|s) denote the probability that next period’s

idiosyncratic shock equals s′, conditional on today’s being s. For all (z, z′) such

that z, z′ ∈ Ψz, let also G(z′|z) denote the probability that next period’s aggregate

shock equals z′, conditional on today’s being z.

2. For all triplets (w, z, z′) on the grid, the forecasting rule yields a wage forecast for

the next period (tildes denote elements not on the grid):

log(w̃′) = β̂0 + β̂1 log(w) + β̂2 log(z
′) + β̂3 log(z).

In general, w̃′ will not belong to the grid of wages. There will be contiguous grid

points (wi, wi+1) such that wi ≤ w̃′ ≤ wi+1. Now let J(wi|w, z, z
′) = 1 − w̃′−wi

wi+1−wi
,

J(wi+1|w, z, z
′) = w̃′−wi

wi+1−wi
, and J(wj |w, z, z

′) = 0 for all j such that j 6= i and

j 6= i+1. This allows us to evaluate the value function for values of the wage which

are off the grid by linear interpolation;
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3. For all grid elements (w, z, k, s), guess values for the value function V0(w, z, k, s);

4. The revised guess of the value function, V1(w, z, k, s), is determined as follows:

V1(w, z, k, s) =π(w, z, k, s) + Pr[cf > c∗f (w, z, k, s)]Vx(k)

+ Pr[cf ≤ c∗f (w, z, k, s)]
[
Ṽ (w, z, k, s) − E[cf |cf ≤ c∗f (w, z, k, s)]

]

subject to

π(w, z, k, s) =
1− (1− α)θ

(1− α)θ
w

−
θ(1−α)

1−θ(1−α) [(1 − α)θszkαθ]
1

1−θ(1−α) ,

Vx(k) = k(1− δ)− g[−k(1 − δ), k],

Ṽ (w, z, k, s) = max
k′∈Ψk

{
− x− c0kχ− c1

(x
k

)2
k

+
1

R

∑

j

∑

i

∑

n

V0(wi, zj , k
′, sn)H(sn|s)J(wi|w, z, zj)G(zj |z)

}
,

x = k′ − k(1− δ),

χ = 1 if k′ 6= k and χ = 0 otherwise,

where c∗f (w, z, k, s) is the value of the fixed operating cost that makes the firm

indifferent between the choice of exiting and obtaining the undepreciated portion of

its capital, net of the adjustment cost, or the choice of continuing and investing the

optimal amount of capital.

5. Keep on iterating until sup
∣∣∣Vt+1(w,z,k,s)−Vt(w,z,k,s)

Vt(w,z,k,s)

∣∣∣ < 10.0−6. Denote the latest value

function as V∞(w, z, k, s).

A.2 Entry

1. Define a grid for the signal. Denote it as Ψq. Let also W (sn|q) indicate the proba-

bility that the first draw of the idiosyncratic shock is sn, conditional on the signal

being q.

2. For all triplets (w, z, q) on the grid, compute the value of entering as

Ve(w, z, q) = max
k′∈Ψk

−k′+
1

R

∑

j

∑

i

∑

n

V∞(wi, zj , k
′, sn)W (sn|q)J(wi|w, z, zj)G(zj |z).

3. For all grid points z, construct a bi-dimensional cubic spline interpolation of Ve(w, z, q)

over the dimensions (w, q). For all pairs w̃, q̃, denote the value of entering as

Ṽe(w̃, z, q̃).

4. Define q̃e(w̃, z) as the value of the signal which makes prospective entrants indifferent

between entering and not. That is, Ṽe(w̃, z, q̃e(w̃, z)) = ce.
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A.3 Simulation

1. Given the current firm distribution Γt and aggregate shock zt, compute the equi-

librium wage w̃t by equating the labor supply equation Ls(w) = wγ to the labor

demand equation

Ld
t (w) =

(
ztθ(1− α)

w

)∑

m

∑

n

[
snk

αθ
m

] 1
1−θ(1−α)

Γt(sn, km).

2. For all z′ ∈ Ψz, compute the conditional wage forecast w̃t+1(z
′) as follows:

log[w̃t+1(z
′)] = β̂0 + β̂1 log(w̃t) + β̂2 log(z

′) + β̂3 log(zt).

For every z′, there will be contiguous grid points (wi, wi+1) such that wi ≤ w̃t+1(z
′) ≤

wi+1. Now let Jt+1(wi|z
′) = 1− w̃t+1(z′)−wi

wi+1−wi
, Jt+1(wi|z

′) = w̃t+1(z′)−wi

wi+1−wi
, and Jt+1(wj |z

′) =

0 for all j such that j 6= i and j 6= i+ 1;

3. For all pairs (k, s) on the grid such that Γt(k, s) > 0, the optimal choice of capital

k′(w̃t, zt, k, s) is the solution to the following problem:

max
k′∈Ψk

π(w̃t, zt, k, s)− x− c0kχ− c1

(x
k

)2
k

+
1

R

∑

j

∑

i

∑

n

V∞(wi, zj , k
′, sn)H(sn|s)Jt(wi|zj)G(zj |zt),

s.t. x = k′ − k(1− δ),

π(w̃t, zt, k, s) =
1− (1− α)θ

(1− α)θ
w̃

−
θ(1−α)

1−θ(1−α)

t [(1− α)θsztk
αθ]

1
1−θ(1−α) ,

χ = 1 if k′ 6= k and χ = 0 otherwise .

4. There will be contiguous elements of the signal grid (q∗, q∗∗) such that q∗ ≤ q̃e(w̃t, zt) ≤

q∗∗.

• For all q ≥ q∗∗, the initial capital of entrants k′e(w̃t, zt, q) solves the following

problem:

max
k′e∈Ψk

−km +
1

R

∑

j

∑

i

∑

n

V∞(wi, zj , k
′
e, sn)W (sn|q)Jt(wi|zj)G(zj |zt).

• We can easily compute the distribution of the idiosyncratic shock conditional

on q̃e ≡ q̃e(w̃t, zt), denoted as W̃ (sn|q̃e) and then compute the optimal capital

k′e(w̃t, zt, q̃e) as the solution to:

max
k′e∈Ψk

−km +
1

R

∑

j

∑

i

∑

n

V∞(wi, zj , k
′
e, sn)W̃ (sn|q̃e)Jt(wi|zj)G(zj |zt).
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5. Draw the aggregate productivity shock zt+1;

6. Determine the distribution at time t+1. For all (k, s) such that V∞(w̃t+1(zt+1), zt+1, k, s) =

0, then Γt+1 = 0. For all other pairs,

Γt+1(k, s) =
∑

m

∑

n

Γt(km, sn)H(s|sn)Υm,n(wt, zt, k) + Et+1(k, s),

where

Υm,n(wt, zt, k) =

{
1 if k′(wt, zt, km, sn) = k

0 otherwise.

and Et+1(k, s) = M
∑

i:qi≥q∗∗ H(s|qi)Q(qi)Ξm,i(wt, zt, k)+MH̃(s|qe)Q̃(qe)Ξ̃m,i(wt, zt, k)

where

Ξm,i(wt, zt) =

{
1 if k′(wt, zt, qi) = k

0 otherwise.

A.4 More Accuracy Tests of the Forecasting Rule

Forecasting errors are essentially unbiased – the mean error is -0.00017% of the forecasting

price – and uncorrelated with the price (the correlation coefficient between the two series

is -0.0456) and the aggregate shock (-0.0045).
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Figure 14: Accuracy of the Forecasting Rule.

In the left panel of Figure 14 is the scatter plot of the forecasting errors against the

market clearing price. In the right panel is the time series of the forecasting error. The

good news is that errors do not cumulate.

32



References

Bachman, R., and C. Bayer (2013): “Wait–and–see Business Cycles?,” Journal of

Monetary Economics, Forthcoming.

Basu, S., and J. Fernald (1997): “Returns to Scale in US Production: Estimates and

Implications,” Journal of Political Economy, 105(2), 249–283.

Bilbiie, F., F. Ghironi, and M. Melitz (2012): “Endogenous Entry, Product Variety,

and Business Cycles,” Journal of Political Economy, 120(2), 304–345.

Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. Terry

(2012): “Really Uncertain Business Cycles,” NBER Working Paper # 18245.

Cabral, L., and J. Mata (2003): “On the Evolution of the Firm Size Distribution:

Facts and Theory,” American Economic Review, 93(4), 1075–1090.

Campbell, J. (1998): “Entry, Exit, Embodied Technology, and Business Cycles,” Review

of Economic Dynamics, 1, 371–408.

Cao, S. (2007): “Three Essays on Capital Adjustment, Reallocation and Aggregate

Productivity,” PhD Dissertation, University of Texas at Austin.

Castro, R., G. L. Clementi, and Y. Lee (2013): “Cross-Sectoral Variation in The

Volatility of Plant-Level Idiosyncratic Shocks,” NBER Working Paper #17659.

Cetorelli, N. (2013): “Surviving Credit Market Competition,” Economic Inquiry,

Forthcoming.

Chatterjee, S., and R. Cooper (1993): “Entry and Exit, Product Variety and the

Business Cycle,” NBER Working Paper # 4562.

Coad, A. (2009): The Growth of Firms. A Survey of Theories and Empirical Evidence.

Edward Elgar Publishing.

Cogley, T., and J. Nason (1995): “Output Dynamics in Real Business Cycle Models,”

American Economic Review, 85(3), 492–511.

Cooley, T., R. Marimon, and V. Quadrini (2004): “Aggregate Consequences of

Limited Contract Enforceability,” Journal of Political Economy, 112(4), 817–847.

33



Cooley, T., and E. Prescott (1995): “Economic Growth and Business Cycles,” in

Frontiers of Business Cycle Research, ed. by T. Cooley, pp. 1–38. Princeton University

Press.

Cooley, T., and V. Quadrini (2001): “Financial Markets and Firm Dynamics,” Amer-

ican Economic Review, 91(5), 1286–1310.

Cooper, R., and J. Haltiwanger (2006): “On the Nature of Capital Adjustment

Costs,” Review of Economic Studies, 73(3), 611–633.

Den Haan, W. J. (2010): “Assessing the Accuracy of the Aggregate Law of Motion in

Models with Heterogeneous Agents,” Journal of Economic Dynamics and Control, 34,

79–99.

D’Erasmo, P. (2009): “Investment and Firm Dynamics,” Working Paper, University of

Maryland.

Devereux, M., A. Head, and B. Lapham (1996): “Aggregate Fluctuations with In-

creasing Returns to Specialization and Scale,” Journal of Economic Dynamics and

Control, 20, 627–656.

Dunne, T., M. Roberts, and L. Samuelson (1988): “Patterns of Firm Entry and

Exit in US Manufacturing Industries,” Rand Journal of Economics, 19, 495–515.

(1989): “The Growth and Failure of US Manufacturing Plants,” Quarterly Jour-

nal of Economics, 94, 671–698.

Eisfeldt, A., and A. Rampini (2006): “Capital Reallocation and Liquidity,” Journal

of Monetary Economics, 53, 369–399.

Evans, D. (1987): “Tests of Alternative Theories of Firm Growth,” Journal of Political

Economy, 95(4), 657–674.

Fiorito, R., and G. Zanella (2012): “The Anatomy of the Aggregate Labor Supply

Elasticity,” Review of Economic Dynamics, 15, 171–187.

Foster, L., J. Haltiwanger, and C. Krizan (2001): “Aggregate Productivity

Growth: Lessons from Microeconomic Evidence,” in New Developments in Produc-

tivity Analysis, ed. by C. Hulten, E. Dean, and M. Harper, pp. 303–363. University of

Chicago Press.

34



Foster, L., J. Haltiwanger, and C. Syverson (2008): “Reallocation, Firm Turnover,

and Efficiency: Selection on Productivity of Profitability?,” American Economic Re-

view, 98(1), 394–425.

(2012): “The Slow Growth of New Plants: Learning about Demand?,” NBER

Working paper # 17853.

Hall, B. (1987): “The Relationship Between Firm Size and Firm Growth in the US

Manufacturing Sector,” Journal of Industrial Economics, 35(4), 583–606.

Haltiwanger, J. (1997): “Measuring and Analyzing Aggregate Fluctuations: The Im-

portance of Building from Microeconomic Evidence,” Federal Reserve Bank of St. Louis

Review, 79, 55–77.

(2011): “Firm Dynamics and Productivity Growth,” European Investment Bank

Papers, 16(1), 116–136.

Hopenhayn, H. (1992): “Entry, Exit, and Firm Dynamics in Long Run Equilibrium,”

Econometrica, 60(5), 1127–1150.

Kehrig, M. (2011): “The Cyclicality of Productivity Dispersion,” Working Paper, Uni-

versity of Texas at Austin.

Khan, A., and J. K. Thomas (2003): “Nonconvex Factor Adjustments in Equilibrium

Business Cycle Models: Do Nonlinearities Matter?,” Journal of Monetary Economics,

50, 331–360.

(2008): “Idiosyncratic Shocks and the Role of Nonconvexities in Plant and

Aggregate Investment Dynamics,” Econometrica, 76(2), 395–436.

Krusell, P., and A. Smith (1998): “Income and wealth heterogeneity in the macroe-

conomy,” Journal of Political Economy, 106, 867–896.

Lee, Y. (2005): “The Importance of Reallocations in Cyclical Productivity and Returns

to Scale: Evidence from Plant-level Data,” Working paper # 05–09, Federal Reserve

Bank of Cleveland.

Lee, Y., and T. Mukoyama (2012): “Entry, Exit, and Plant–level Dynamics over the

Business Cycle,” Working paper, University of Virginia.

35



McGrattan, E. (1999): “Application of weighted residual methods to dynamic eco-

nomic models,” in Computational Methods for the Study of Dynamic Economies, ed.

by R. Marimon, and A. Scott. Oxford University Press.

Rogerson, R., and J. Wallenius (2009): “Micro and Macro Elasticities in a Life Cycle

Model with Taxes,” Journal of Economic Theory, 144, 2277–2292.

Samaniego, R. (2008): “Entry, Exit and Business Cycle in a General Equilibrium

Model,” Review of Economic Dynamics, 11, 529–541.

Tauchen, G. (1986): “Finite State Markov-Chain Approximations to Univariate and

Vector Autoregressions,” Economics Letters, 20, 177–181.

Veracierto, M. (2002): “Plant–Level Irreversible Investment and Equilibrium Business

Cycles,” American Economic Review, 92(1), 181–197.

Zhang, L. (2005): “The Value Premium,” Journal of Finance, 60(1), 67–103.

36


	Introduction
	Model
	The incumbent's optimization program
	Entry
	Recursive Competitive Equilibrium

	The Stationary Case
	Functional Forms
	Entry, Investment, and Exit
	Calibration
	Firm Dynamics

	Aggregate Fluctuations – Mechanics
	Calibration
	The Forecasting Rule
	Entry and Exit

	Aggregate Fluctuations – Results
	Cyclical Behavior of Entry and Exit
	Impulse Responses

	The relevance of entry and exit for aggregate dynamics
	Propagation
	Productivity Decomposition
	Cyclical Variation of Cross–sectional Moments

	Conclusion
	Numerical Approximation
	Approximation of the Value Function
	Entry
	Simulation
	More Accuracy Tests of the Forecasting Rule


