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ABSTRACT
The theoretical literature on generational risk assumes that this risk is large and that the government
can effectively share it. To assess these assumptions, this paper calibrates and simulates 80-period,
40-period, and 20-period overlapping generations (OLG) life-cycle models with aggregate productivity
shocks.

Previous solution methods could not handle large-scale OLG models such as ours due to the well-known
curse of dimensionality. The prior state of the art uses sparse-grid methods to handle 10 to 30 periods
depending on the model's realism. Other methods used to solve large-scale, multi-period life-cycle
models rely on either local approximations or summary statistics of state variables. We employ and
extend a recent algorithm by Judd, Maliar, and Maliar (2009, 2011), which restricts the state space
to the model's ergodic set. This limits the required computation and effectively banishes the dimensionality
curse in models like ours.

We find that intrinsic generational risk is quite small, that government policies can produce generational
risk, and that bond markets can help share generational risk. We also show that a bond market can
mitigate risk-inducing government policy. Our simulations produce very small equity premia for three
reasons. First, there is relatively little intrinsic generational risk. Second, aggregate shocks hit both
the young and the old in similar ways.  And third, artificially inducing risk between the young and
the old via government policy elicits more net supply as well as more net demand for bonds, by the
young and the old respectively, leaving the risk premium essentially unchanged. Our results hold even
in the presence of rare disasters, very high risk aversion, persistent productivity shocks, and stochastic
depreciation. They echo other findings in the literature suggesting that macroeconomic fluctuations
are too small to have major microeconomic consequences.
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1 Introduction

Economists have examined generational risk and its mitigation via government policy in

a number of theoretical models (e.g. Bohn (1998), Shiller (1999), Rangel and Zeckhauser

(2001), Smetters (2003), Krueger and Kubler (2006), and Ball and Mankiw (2007)). This

literature presumes that generational risks are large and that the government is capable of

sharing them.

This paper questions both propositions. It does so by calibrating and simulating 80-

period, 40-period, and 20-period overlapping generations (OLG) life-cycle models with ag-

gregate productivity shocks. Solving such large-scale models without recourse to local ap-

proximations or potentially inapplicable aggregations of state variables has heretofore been

impossible due to the well-known curse of dimensionality. But a new computational method,

developed by Ken Judd, Lilia Maliar, and Serguei Maliar (2009, 2011), lifts this curse, taking

us beyond the roughly 10- to 30-period limit reached by Krueger and Kubler (2004, 2006)

using their sparse grid projection method. We employ this method, and extend it to allow

for the bond market.

In our models agents work full time prior to retirement. They do so in the context

of uncertainty about the economy’s future productivity and, thus, uncertainty about the

compensation accruing to their supplies of labor and capital. Government enters our model

through a take-as-you-go policy in which workers are forced to hand over resources each

period to the elderly. We consider three such policies. In the first, the government takes a

fixed amount from workers each period independent of the economy’s state. In the second, the

government’s taking is proportional to workers’ earnings. The third is variable (progressive),

with the amount taken far higher when wages are higher. We calibrate the no-policy model

using standard parameter values found in the real business cycle literature, including those

governing aggregate productivity shocks.

Our policies illustrate that intergenerational redistribution dominates business cycle fluc-

tuations in determining the economy’s long-run position. The variable policy is intentionally

unrealistic to illustrate that government actions can, in principle, destabilize the economy

and foster, not mitigate, generational risk. It can also dramatically alter asset market de-

mands by age.

There are three aspects of generational risk to consider. First, one can place all gen-

erations into Rawl’s (1971) original position (before anyone is born) and ask whether, ab-

stracting from trend growth, being born at date X is materially worse, measured in terms

of expected lifetime utility, than being born at date Y. Second, one can study the degree of

risk that any given generation faces over its lifetime. All generations could have the same
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expected lifetime utilities but still be very unsure what utility they will realize. Third, one

can examine the scope for concomitant generations to share their risk over their remaining

lifetimes.

Generational risk presupposes aggregate risk, i.e., risk that cannot be eliminated via

risk sharing across or within generations. But, as Lucas (1987) and Krusell and Smith

(1999) suggest, albeit in models with infinitely-lived agents, such purely aggregate or macro

economic risk may be small. The presumed driver of macroeconomic fluctuations is shocks

to productivity. But standard calibration of productivity shocks implies a coefficient of

variation of the level of total factor productivity of only 0.0313. And in our model, this

limited productivity variation implies rather small coefficients of variations of the wage and

the return to capital—0.0361 and 0.0326, respectively. Yet it is these factor price shocks

that different generations experience as macroeconomic risk. Adding rare disasters to the

productivity shock process as in Rietz (1988), Barro (2006), and Weitzman (2007) raises

these risk metrics, but not by much. The new coefficients of variation of productivity, the

wage, and the return to capital are 0.058, 0.071, and 0.065, respectively. Alternatively,

incorporating stochastic depreciation, as in Ambler and Paquet (1994) and Furlanetto and

Seneca (2011), also makes little difference. The three coefficients are now 0.029, 0.043, and

0.060.

These fundamentals and the ability of cohorts to self insure by saving on their own help

explain our main finding of very limited generational risk. Moreover, the fact that wage rates

and returns to capital are being hit by the same shock, exhibiting a correlation coefficient in

our baseline model of 0.515, means that substantial risk sharing occurs automatically since

risk sharing entails having agents experiencing, directly or indirectly, the same shocks. Even

in the model with stochastic depreciation automatic risk sharing arises via the following

general equilibrium effects. First, an X percent depreciation-induced reduction in the stock

of capital in period t is mitigated, from the perspective of capital owners, by increases in

the marginal productivity of capital in period t + 1 and thereafter. Second, the reduction

in capital stock hurts workers via a reduction in the marginal productivity of labor, i.e., in

wages in period t + 1 and thereafter.

Our principal findings number six. First, absent government policy, differences in ex-

pected lifetime utilities across generations, measured on a consumption-equivalent basis, are

less than 0.05 percent. Hence, Rawlsian justice prevails from an ex-ante, original position

and there is little risk associated with when one is born. This is to be expected given the

model’s stationarity and our choice of initial conditions.

Second, there is limited scope for sharing generational risks among contemporaneous

generations on an ex-post basis, i.e., after the generations have been born. As shown by
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Abel and Kotlikoff (1988), full risk sharing among contemporaneous agents with homothetic

preferences requires equal percentage changes in consumption from one period to the next.

Hence, one can measure the potential for generational risk sharing by calculating the per-

centage adjustment in consumption of each agent at each point in time needed to produce a

uniform percentage change across all agents alive at that point in time. In our base model,

the largest such absolute adjustment of any agent observed over more than 600 years is less

that 1 percent. Moreover, establishing full intergenerational risk sharing among all those

alive between a given period and the next entails a trivially small gain in expected utility

except when take-as-you-go policy is intentionally overly variable (progressive).

Third, letting agents share risk via a risk-free bond market does little to modify these

results. Moreover, since there is little risk to share, there is little demand for these bonds

relative to supply, which explains their low price. Low prices for safe bonds means, of

course, high safe rates of return and a small equity premium. Indeed, in our model, the

equity premium is trivially small, making the equity premium puzzle even greater. The

demanders of safe bonds are, as one would expect, the very young, who face the greatest risk

to their consumption from the productivity shock. The suppliers are the very old, who face

the least consumption risk, since their consumption depends not just on the risky return to

their assets, but also on the safe principal of their assets.

Applying variable taking policy flips the age pattern of net bond demands. This policy

transforms good (bad) times—when productivity is high (low)—into bad (good) times for

the young. Consequently, the best way for the young to hedge their risk is to hold something

that does well in good times, namely stocks. This finding that the young hold bonds is

opposite to that in Bodie, Merton, and Samuelson (1992) and other models in which the

main asset of the young—their wages—is not strongly correlated with the return to stocks.

In those models, having wages is like already holding bonds. In our model, having wages is

like already holding stocks.

Fourth, generational risk arises in our model not from a failure of agents to pool risk that

strongly needs to be pooled, but from government policy itself. All three take-as-you-go,

intergenerational redistribution policies undermine Rawlsian justice, producing significantly

different levels of lifetime expected utility of those born before and after the policies are

introduced. In addition, once cohorts are born, government policy actually exacerbates

generational risk, albeit not by much.

Fifth, government policy can dramatically alter the structure of bond demand turning

the young into net sellers rather than net buyers of bonds and doing the opposite for the

old.

Sixth, the findings suggest that secular policy changes is where the real action is when it
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comes to macroeconomics.

The paper next reviews the literature on generational risk sharing. Sections 3 and 4

describe the model and its calibration. Section 5 presents the solution algorithm. Section

6 presents results, and Section 7 conducts sensitivity analysis of those results. Section 8

concludes.

2 Literature Review

The theoretical proposition that generational risk can and should be shared via fiscal policy is

well established. But the above-cited studies beg the question of how much generational risk

exists and how well government policies can share it. The main impediment for answering this

question has been the difficulty of simulating realistic life-cycle models with long-lived agents

in economies subject to aggregate shocks. Such models feature too many state variables.

In our model, for example, there are 80 state variables reflecting the shock itself and the

distribution of wealth across the 80 age groups.

The reason the asset holdings of other agents matter for any given agent’s behavior is

that agents differ in their preferences. A 70-year-old who will die at 100 is not interested in

consuming in any year after he is dead. But a contemporaneous 30-year-old is interested in

consuming during some of those years. These preference differences mean that who holds

what will affect the economy’s overall saving and thus the course of future factor prices. And

it is the course of future factor prices that drives each agent’s life-cycle choices.

Unfortunately, finding an exact solution to our 80-period model entails solving for a fixed

point in age-specific choice functions, each of which has 80 arguments, and doing so for

all possible configurations of the state space. This is beyond the capacity of any current

computer and, arguably, any future computer.

Judd, Maliar, and Maliar (2009, 2011), building on Marcet (1988), overcome this dimen-

sionality curse by seeking internally consistent solutions for the choice functions over the

space of state variables that the economy will actually occupy. Their method foregoes solv-

ing for the model’s behavior in states that will never or essentially never materialize given

the ergodicity of the stochastic process driving the economy as well as its initial conditions.

The authors dub their solution the Generalized Stochastic Simulation Algorithm or GSSA.

GSSA is, perforce, an approximation method, but it offers a significant advance over other

approximate approaches in overcoming the dimensionality curse. In particular, it does not

use summary statistics of state variables or require global behavior to emulate local behavior.

Rı́os-Rull (1994, 1996) uses local perturbation methods to solve large-scale (55-period)
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OLG models subject to aggregate productivity shocks. These papers consider, in part,

whether the degree of completeness in risk-sharing arrangements materially affects the econ-

omy and conclude it does not. The studies also find extremely small equity premia. Rı́os-

Rull’s findings generally accord with those presented here although we a) consider a con-

tinuum of shocks rather than a discrete set and b) do not extrapolate from the economy’s

non-stochastic transition path.

Krusell and Smith (1997, 1998) take a different approach. They point out that agents

care only about the evolution of factor prices and, by extension, tax policy. They then

approximate the true functions, which relate the evolution of factor prices to the entire

vector of state variables, with functions whose arguments are summary statistics of the state

variables, particularly the mean of the wealth distribution.

Their method does well within their context, namely a population of infinitely lived

agents who differ with respect to their wealth and labor income. But, as the authors point

out, their method’s success is connected to the similarity of consumption behavior of agents,

specifically their uniform propensities to consume.

Gourinchas (2000) and Storesletten, Telmer, and Yaron (2007) apply the Krusell and

Smith approach in OLG models. They find it works well, but Krueger and Kubler (2004)

argue that Krusell and Smith’s low-dimensional approximation approach cannot adequately

handle more realistic OLG economies.1 As an alternative, Krueger and Kubler approximate

the equilibrium policy functions over the full state space. To overcome the curse of dimension-

ality, they implement Smolyak’s (1963) algorithm, which guarantees uniform approximation

over a small (sparse) set of points in the multidimensional hypercube.2

Krueger and Kubler (2006) use their method to study unfunded social security in a

life-cycle model similar to ours, albeit with nine periods of life and four discrete produc-

tivity shocks. They also incorporate stochastic depreciation, which is tailored to produce

significant risk-sharing opportunities between workers and retirees—indeed, large enough to

permit a Pareto improvement à la Merton (1983). However, the large negative correlation

between wages and asset returns resulting from their depreciation process is outside Davis

and Willen’s (2000) empirical estimates.

As an alternative to positing highly variable stochastic depreciation, we use government

policy to produce risk sharing opportunities between age groups. Specifically, we consider a

government taking policy that turns good (bad) times into bad (good) times for the young,

and good (bad) times into better (worse) times for the old. We then show that a bond

1Our analysis also points to the inadequacy of the Krusell-Smith algorithm in our setting, in line with
Krueger and Kubler (2004).

2See also Malin, Krueger, and Kubler (2011) for general description of this method.
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market can help pool the resulting generational risk.

3 The Model

Our model features G overlapping generations with shocks to total factor productivity. Each

agent works full time through retirement age R, dies at age G, and maximizes expected

lifetime utility. There are no borrowing or short asset sale constraints and no adjustment

costs, so firms maximize static profits. Finally, the government has a take-as-you-go policy

that takes either a fixed or state-dependent amount from workers each period and distributes

the proceeds uniformly among retirees.

3.1 Endowments and Preferences

The economy is populated by G overlapping generations that live from age 1 to age G. All

agents within a generation are identical and are referenced by their age g and time t. Each

cohort of workers supplies 1 unit of labor each period. Hence, total labor supply equals the

retirement age R. Utility is time-separable and isoelastic, with risk aversion coefficient γ:

u(c) =
c1−γ − 1

1 − γ
. (1)

3.2 Technology

Production is Cobb-Douglas with output Yt given by

Yt = ztK
α
t L1−α

t , (2)

where z is total factor productivity, α is capital’s share of output, and Lt is labor demand,

which equals R, labor supply. Equilibrium factor prices are given by

wt = z(1 − α)

(∑G
g=1 θg,t−1

R

)α

, (3)

rt = zα

(∑G
g=1 θg,t−1

R

)α−1

. (4)
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Total factor productivity, z, obeys

ln(zt+1) = ρ ln(zt) + εt+1 + vt+1, (5)

where εt+1 ∼ N (0, σ2) and vt+1 is a rare disaster shock satisfying

vt+1 =

⎧⎨
⎩ln(1 − d), with probability p

0, otherwise.
(6)

This specification for vt+1 follows Barro (2006), although his model features a representative

agent and Lucas tree production, with no aggregate saving and investment.

3.3 Financial Markets

Households save and invest in either risky capital or one-period safe bonds. Investing 1 unit

of consumption in bonds at time t yields 1+ r̄t units in period t+1. The safe rate of return,

r̄t, is indexed by t since it is known at time t although it is received at time t + 1. The total

demand for assets of household age g at time t is denoted by θg,t, and its share of assets

invested in bonds is denoted by αg,t. Households enter period t with θg−1,t−1 in assets, which

corresponds to the total assets they demanded the prior period. Since investment decisions

are made at the end of the period, the aggregate supply of capital in period t, Kt, is the sum

of assets brought by the households into period t, i.e.

Kt =
G∑

g=1

θg,t−1. (7)

Markets are incomplete; households cannot insure against productivity shocks or against the

date and state in which they will be born. Hence, the model potentially permits considerable

scope for generational risk sharing.

3.4 Government

We consider three alternative take-as-you-go policies, which we call variable, fixed, and

proportional. Under the variable policy, the percentage of the wage taken by the government

from each worker is linear in the wage. Under the fixed policy, taking is fixed and independent
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of the wage. Under the proportional policy, the government takes a fixed percentage of the

wage from each worker. Total takings are distributed uniformly among retirees. Let Hg,t

denote the government taking from the age g household at time t, and Bg,t government

giving to the age-g household at time t. Then

Hg,t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H̄, with fixed policy

μ(wt)wt�g, with variable policy

τwt�g, with proportional policy

0, otherwise,

(8)

where

μ(wt) = a
¯
w +

bw̄ − a
¯
w

w̄ −
¯
w

(wt −
¯
w), (9)

where
¯
w and w̄ are the estimates of the minimum and maximum values of w. Parameters a,

b, τ ,
¯
w, and w̄ are described in Section 4. Finally,

Bg,t =

⎧⎨
⎩(1 − �g)

∑G
g=1 Hg,t

L
, with government

0, otherwise.
(10)

Implicit in the above formulation is each period’s takings equal that period’s givings:

G∑
g=1

Hg,t =
G∑

g=1

Bg,t. (11)

As shown in Green and Kotlikoff (2008), this policy can be labeled to produce whatever time

path of explicit and implicit debts the government wishes to report.

3.5 Household Problem

Households of age g in state (s, z) maximize expected remaining lifetime utility given by

Vg(s, z) = maxc,θ,α {u(c) + βE [Vg+1(s
′, z′)]} (12)
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subject to

c1,t = �1wt − θ1,t − H1,t + B1,t, (13)

cg,t = �gwt + [αg−1,t−1(1 + r̄t−1) + (1 − αg−1,t−1)(1 + rt)] θg−1,t−1 − θg,t − Hg,t + Bg,t, (14)

for 1 < g < G, and

cG,t = �Gwt + [αG−1,t−1(1 + r̄t−1) + (1 − αG−1,t−1)(1 + rt)] θG−1,t−1 − HG,t + BG,t, (15)

where cg,t is the consumption of a g-year old at time t and (13)–(15) are budget constraints

for age group 1, those between 1 and G, and that for age group G.

3.6 Equilibrium

At time t, the economy’s state is (st, zt), with st = (θ1,t−1, . . . , θG−1,t−1) denoting the set of

age-specific asset holdings. Given the initial state of the economy s0 = (θ1,−1, . . . , θG−1,−1, z0),

the recursive competitive equilibrium is defined as follows:

Definition. The recursive competitive equilibrium is governed by the collection of the value

functions and the household policy functions for total savings θg(s, z), the share of savings

invested in bonds αg(s, z), and consumption cg(s, z) for each age group g, the choices for the

representative firm K(s, z) and L(s, z), the government policy H(s, z) and B(s, z), as well

as the pricing functions r(s, z), w(s, z), and r̄(s, z) such that:

1. Given the pricing functions, the value functions (12) solve the recursive problem of

the households subject to the budget constraints (13)–(15), and θg, αg, and cg are the

associated policy functions for all g and for all dates and states.

2. Wages and rates of return on capital satisfy (3) and (4), i.e. the firm maximizes profits

at each point in time for given w and r.

3. The government budget constraint (11) is satisfied.

4. All markets clear: Labor and capital market clearing conditions are implied by Lt = R

and (7). Since bonds are in zero net supply, bond market clearing requires

G∑
g=1

αg(s)θg(s) = 0. (16)
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Market clearing conditions in labor, capital, and bond markets and satisfaction of

household budgets imply market clearing in consumption.

Finally, for all age groups g = 1, . . . , G − 1, optimal intertemporal consumption and

investment choice satisfies

1 = βEz

[
(1 + r(s′, z′))

u′(cg+1(s
′, z′))

u′(cg(s, z))

]
and (17)

0 = Ez [u′(cg+1(s
′, z′))(r̄(s, z) − r(s′, z′))] , (18)

where Ez is the conditional expectation of z′ given z. Note that the endogenous part of the

state next period, s′, is determined by the asset demands chosen the period before. Hence,

the only stochastic element of the next period’s state vector is the aggregate productivity

level, z′.

4 Calibration

We first investigate generational risk and its potential for mitigation in the 80-period, no-

bond economy. We then turn to 40- and 20-period models with bonds to examine how a

bond market affects generational risk and to assess the size of equity premia. Including

a bond market entails approximating G additional functions (G − 1 bond shares plus the

annual safe rate of return, all of which are functions of the state variables). This makes

converging to a fixed point in the function space harder to achieve.

The rest of the parameters are calibrated as follows.

4.1 Endowments and Preferences

We consider values for γ ∈ {2, 5, 15}. In our 80-period model agents work for 45 periods and

live for 80. In the 40-period model, each period represents 1.5 years (ages 20 through 80),

with retirement after 30 periods. In the 20-period model, each period represents 3 years (ages

20 through 80), with retirement after 15 periods. We set the quarterly subjective discount

factor, β, at 0.99, as is standard in the macroeconomics literature. This implies values of β

of 0.96, 0.94, and 0.89 in the 80-, 40-, and 20-period models, respectively.
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4.2 Technology

Quarterly values for ρ and σ are 0.95 and 0.01, respectively. This corresponds to values of

0.8145, 0.7351, 0.5404 for ρ, and 0.0186, 0.0217, 0.0269 for σ, in the 80-, 40-, and 20-period

models, respectively. The probability of rare disaster, p, is 3 percent per year in the 80-period

model and 1.7 percent per year in the 40- and 20-period models. The fraction d by which

productivity contracts when a disaster hits is 0.2 in the 80- and 40-period models and 0.15

in the 20-period model. Capital share of output, α, equals 0.33.

4.3 Government

The variable policy parameters a and b equal 0.1 and 0.4, respectively. The values for
¯
w and

w̄ are estimated as the minimum and maximum wage from a previous run of the same model

(to start, we use the minimum and maximum wage from the no-policy model). This yields

¯
w and w̄ of 1.572 and 1.976 in the 80-period model, and 0.674 and 0.872 in the 20-period

model.3 The resulting taking rates range from 5 percent to 40 percent of the wage in the

80-period model, and from 9 percent to 40 percent of the wage in the 20-period model. Note

that (8) and (9), together with the above choice of parameters, imply that the variable policy

is countercyclical, i.e., the correlation between net wage and z is negative. The reason for

this negative correlation is that as the wage rises, the taking rate is applied to all wages, not

just the increment of wages.

The fixed policy taking, H̄, is set as the sample mean of the variable taking μ(wt)wt from

the corresponding variable policy model simulation. This equals 0.333, or 20 percent of the

average wage, in the 80-period model. Similarly, the proportional taking rate τ equals 20

percent of the wage, which is the average taking rate from the variable policy model.

5 Algorithm

Our algorithm consists of an inner loop and an outer loop. In the outer loop we solve for

the asset demand functions of each age group by applying Judd, Maliar, and Maliar’s (2009,

2011) generalized stochastic simulation algorithm (GSSA) to our OLG setting. We start by

making an initial guess of generation-specific asset demand functions θg (which amounts to

guesses of the consumption functions) as polynomials in the state variables. Next we take

a draw of the path of z’s for T periods and run the model forward over those periods using

the guessed asset demand functions to compute the state variables in each period. Next, for

3Government policies are not considered in the 40-period model.
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each age group, g, we evaluate the Euler condition to determine what age group g’s asset

demand (or, equivalently, consumption) should be in each period t. This evaluation is based

on the derived period t state variables and the current guessed asset demand (equivalently,

consumption) function of the agent age g+1. We then regress these time series of generation-

specific asset demands on the state variables and use the regression estimates to update the

corresponding polynomial coefficients. We iterate the updating of these functions based,

always, on the same draw of the path of z’s until asset demand functions converge.

The inner loop is our extension of GSSA that allows us to solve for bond shares of each

age group and the risk-free rates of return. Here we use binary search to determine the risk-

free rate r̄ that satisfies (16). In this binary search, the evaluation of the net bond demand

is achieved by using another binary search to determine the unique bond shares that satisfy

the first order conditions (18).

The following is the step by step description of our algorithm.

Initialization:

• Set z̄ = 1 and solve for the nonstochastic steady state asset demands of each age group

without bond, s̄ = (s̄1, . . . , s̄G−1). Let (s0, z0) = (s̄, z̄) be the starting point of the

simulation.

• Approximate G − 1 asset demand functions by polynomials in the state variables:

θ1(s, z) = φ1(s, z; b1), . . . , θG−1(s, z) = φG−1(s, z; bG−1), where b1, . . . bG−1 are poly-

nomial coefficients. We use degree 1 polynomials.4 To start iterations, we use the

following initial guess for the coefficients: b1 = (0, 0.9, 0, . . . , 0, 0.1s̄1), . . . , bG−1 =

(0, 0, . . . , 0, 0.9, 0.1s̄G−1). Note that for all g ∈ {1, . . . , G − 1}, the initial bg is such

that s̄g = φg(s̄, z̄; bg).

Outer loop:

• Take draws of the path of z’s for T years. We set T to 640.

• Simulate the model forward for t = 0, . . . , T . More precisely, at time t, for each age

group g, calculate its asset demand θ
(p)
g given the current guess for the coefficients

b
(p)
g , where the subscript (p) denotes the current iteration of the outer loop. I.e., θ

(p)
g,t

equals the inner product of the vector (1, st, zt) with the vector of coefficients b
(p)
g ,

where st = (θ
(p)
1 (st−1, zt−1), . . . , θ

(p)
G−1(st−1, zt−1)). Then the state at time t + 1 and

4Judd, Maliar, and Maliar (2009, 2011) recommend orthogonal polynomials, but we found no difference
in results from using higher order terms.
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iteration p is given by (st+1, zt+1) = (θ
(p)
1 (st, zt), . . . , θ

(p)
G−1(st, zt), zt+1), where zt+1 given

zt is determined by (5).

• Inner loop:

– Use binary search to solve (16) for r̄t, for all t = 0, . . . , T . To start, make an

(arbitrary) initial guess for the value of r̄t.

– For all t = 0, . . . , T , given r̄t, for all g = 1, . . . , G − 1, solve (18) for αg−1,t

using another binary search (evaluate the expectation in (18) using Gaussian

quadrature).

– Use αg−1,t found above for all g and for all t to calculate (16) and update r̄t for

all t.

• Note that for each age group g and each state (st, zt), t = 1, . . . , T , (17) implies

θg(st, zt) = βEz

[
θg(st, zt)(1 + r(st+1, zt+1))

u′(cg+1(st+1, zt+1))

u′(cg(st, zt))

]
(19)

for equilibrium asset demands θg. Denote the right-hand-side of (19) by yg(st, zt) and

evaluate the expectation using Gaussian quadrature.

• For each age group g, regress yg(st, zt) on (st, zt) and a constant term using regularized

least squares with Trikhonov regularization (see Judd, Maliar, and Maliar, 2011 for

details). Denote the estimated regression coefficients by b̂
(p)
g .

• Check for convergence: If

1

G − 1

G−1∑
g=1

1

T

T∑
t=1

∣∣∣∣∣θ
(p−1)
g (st, zt) − θ

(p)
g (st, zt)

θ
(p−1)
g (st, zt)

∣∣∣∣∣ < ε,

end. Otherwise, for each age group g update the coefficients as b
(p+1)
g = (1 − ξ)b

(p)
g +

ξb̂
(p)
g and return to the beginning of the outer loop. We use ξ ∈ [0.01, 0.2] and ε ∈

[10−10, 10−13].
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Deviations from Euler Equations

Model
Policy Bond Technology Depreciation Min Mean Max

80-Period Models
2 None No AR(1) No 0.00006 0.00019 0.00074
2 Fixed No AR(1) No 0.00013 0.00039 0.00210
2 Variable No AR(1) No 0.00008 0.00037 0.00085
2 Proportional No AR(1) No 0.00014 0.00026 0.00099
5 None No AR(1) No 0.00014 0.00056 0.00233
2 None No Rare Disasters No 0.00025 0.00081 0.00309

40-Period Models
2 None No AR(1) No 0.00010 0.00037 0.00058
2 None Yes AR(1) No 0.00024 0.00037 0.00059
2 None No Rare Disasters No 0.00035 0.00119 0.00185
2 None Yes Rare Disasters No 0.00087 0.00309 0.00648

20-Period Models
2 None No AR(1) No 0.00017 0.00066 0.00088
2 None Yes AR(1) No 0.00043 0.00049 0.00070
2 Variable No AR(1) No 0.00012 0.00047 0.00158
2 Variable Yes AR(1) No 0.00111 0.00462 0.00761

15 None No AR(1) No 0.00576 0.02147 0.04999
15 None Yes AR(1) No 0.00989 0.01377 0.02865
6 None No Rare Disasters No 0.00748 0.01982 0.03055
6 None Yes Rare Disasters No 0.00548 0.00641 0.01002
2 None No Random Walk No 0.00250 0.01367 0.02357
2 None No AR(1) Stochastic 0.00234 0.01351 0.02799

Mean Absolute Euler Eq. Deviations
�

Table 1: Minimum, mean, and maximum across generations of the average, across time,
of the absolute value of the generation-specific, out-of-sample deviations from the perfect
satisfaction of Euler equations.

5.1 Out-of-Sample Deviations from the Perfect Satisfaction of Eu-

ler Equations

Note that in our 640-period sample the generation-specific Euler equations (18) hold almost

perfectly by construction. A satisfactory solution requires they hold out of sample as well.

Hence, to test the accuracy of solutions, for each model considered we draw a fresh sequence

of z’s that is 10 times longer than the 640-period sequence used in the original simulation.

We then simulate the model forward on the new path of z’s, using the original asset demand

functions, θg, and, in the case of bonds, clearing the bond market by rerunning the inner

loop. We calculate the out-of-sample percentage deviations from full satisfaction of the Euler

equations,

ε(s, z) =

[
βEz [(1 + r(s′, z′))u′(cg+1(s

′, z′))] − u′(cg(s, z))

u′(cg(s, z))

]
× 100, (20)

for each period in the newly simulated time path and for each generation g ∈ 1, . . . , G − 1.5

Finally, we compute the average, across time, of the absolute value of the deviations from Eu-

5The out-of-sample test does not apply to (18) since the inner loop is rerun, i.e. (18) will hold by
construction.
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ler equations for each generation. Table 1 reports the summary statistics, across generations,

of their average absolute deviations from Euler equations for each model considered.6

Deviations tend to be larger in cases with high risk aversion, rare disaster, or bonds. The

worst preforming model is the 20-period model with very high risk aversion (γ = 15) and

no bonds, where the cross-generation mean and maximum of the generation-specific time-

averages of absolute Euler equation deviations are 2 percent and 5 percent, respectively. In

most other models, deviations are at least an order of magnitude smaller.

6 Results

6.1 80-Period Models Without Bonds

6.1.1 Rates of Return and Wages

Figure 1 presents the evolution over 640 years of the capital stock, output, the rate of return,

and the wage. These results are from our main model, which features 80 periods, no bonds,

a risk aversion coefficient γ equal to 2, and no rare disasters. Each panel displays results for

three cases—no policy, fixed policy, and variable policy.

Total factor productivity across the 640 years has a mean of 0.9987 and a standard

deviation of 0.0313. This produces sizeable fluctuations in capital, output, the rate of return,

and the wage, with standard deviations of 36.67, 4.67, 0.0013, and 0.070 around means of

1345, 129, 0.038, and 1.93.

Figure 1’s main message is the secular impact of generational policy.7 Where the economy

finds itself in the future is primarily the function of what the government does to it. Here

the policies are taking from the young, who are saving for their retirement, and giving to the

old, who are spending in light of their approaching deaths. This redistribution from savers

to spenders produces a sizable crowding out of the national saving. Given the closure of the

economy, domestic investment falls pari passus. With fixed (variable) policy, the average

capital stock falls by 34.12 (33.30) percent, producing a 12.92 (12.53) percent long-term

decline in both average output and average wage and a 32.64 (31.31) percent increase in the

average rate of return.

6Note, these deviations are not Euler errors which capture differences in period t’s marginal utility and
period (t + 1)’s realized marginal utility (properly weighted by β and r(s′, z′)). Rather, they reference the
discrepancy in period t between the marginal utility and its properly weighted expectation.

7Proportional policy, which strikes middle ground between fixed and variable policies, is not plotted in
this and subsequent figures to avoid clutter, but its effect on generational risk is analyzed in Sections 6.1.4
and 7.3.
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Figure 1: Capital, output, rate of return on capital, and wage rates in the 80-period model
with and without policies.
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Figure 2: Average lifetime rates of return on capital and wage rates of newborns born in
specified year in the 80-period model with and without policies.
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Despite the annual variability in both z and K, Figure 2 reveals little variability in average

lifetime rates of return on capital and wage rates of newborns. For the rates of return on

capital in the no policy, fixed policy, and variable policy simulations, the standard deviation

is 0.00038, 0.00092, and 0.00043, around means of 0.039, 0.052, and 0.051. For the wage

rates, the standard deviation is 0.03, 0.03, and 0.016 around means of 1.92, 1.67, and 1.68

for the three models respectively. This suggests that the lifetime risks newborns face may

not vary as much as macroeconomic fluctuations might lead us to believe. Moreover, given

the longevity of households, there may be significant scope for self-insurance by pooling risks

over time.

6.1.2 Consumption and Asset Demands
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 Consumption of Workers and Retirees in 80−Period Model With and Without Policy

 workers  retirees

Figure 3: Consumption of workers and retirees through time in the 80-period model with
and without policies.

Figure 3 plots annual consumption levels through time of the 45 working age groups (in

blue) and those of the 35 retired age groups (in green) without and with fixed and variable

policies. In each year there are 45 blue points being plotted, reflecting the consumption of

the 45 workers (from youngest to oldest) in that year, and 35 green points, reflecting the

consumption of retirees (from youngest to oldest).
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With no policy, workers consume somewhat more than retirees, and the variability of

consumption is similar for the two groups. Note that there is little difference across time in

the general level of consumption of either workers or retirees or in the spread of consumption

among workers or among retirees.

As the next two panels illustrate, once policy is introduced, workers, on average, consume

less than retirees as they change their desired longitudinal age-consumption profile in light of

the higher rate of return on capital. Moreover, there is more variability in consumption levels

among both workers and retirees at a point in time and, in the case of variable policy, across

time for retirees. These charts suggest that government policy can exacerbate generational

risk.
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 Average and Variability of Lifetime Consumption of Newborns Through Time
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Figure 4: Average lifetime consumption and variability of lifetime consumption (standard
deviation of an age group’s consumption over its lifetime) of newborns through time in the
80-period model with and without policies. In models labeled “no policy”, “variable policy”,
and “fixed policy” the risk aversion is 2 and there are no rare disasters; in the model labeled
“high gamma” the risk aversion is 5 and there are no rare disasters; in the model labeled
“rare disaster”, the risk aversion in 2, the probability of disaster in 3 percent per year, and
contraction size during the disaster is 20 percent.

Figure 4 shows the downside of the intergenerational redistribution. It charts average

lifetime consumption of successive new generations, referenced as newborns. This average is

both lower and more volatile with policy than without. The lower average is not surprising

as each new generation can expect to a) pay more when young than it receives when old

in a present value sense and b) experiences lower real wages over its lifetime thanks to

capitals crowding out. Of particular interest is the volatility of lifetime consumption when

the generational policies, especially the variable policy, are introduced. Again we see the

take-as-you-go policies exacerbating, not mitigating age group differences in realized lifetime

18



consumption.

The figure also considers high and low risk aversion as well as occasional rare disasters.

In the long run, increasing the risk aversion increases the average and lowers the volatility

of lifetime consumption as it leads to more capital accumulation and higher wages. In the

rare disaster case the opposite is true as some of the economy’s production potential is

periodically wiped out.
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Figure 5: Asset distribution by age for years of minimum and maximum age 85 assets, and
average assets by age in the 80-period model with and without policies.

Figure 5 plots the age-asset distribution for the two years when the 85-year-olds have

the smallest and largest amounts of assets. We see the typical life-cycle pattern of asset

accumulation in working years and decumulation in retirement. The change in the shape

of the age-asset profile with the take-as-you-go policies is as expected, with less private

wealth accumulation when young and slower decumulation when old thanks to the infusion

of government receipts. Although comparison of Figure 5’s upper-right and lower-left panels

suggests that the shape of the asset distribution is systematically very different in the case

of variable versus fixed policy, this is not the case. The lower-right panel shows that, on

average, the age-asset profiles are virtually indistinguishable under the two policies.

6.1.3 Utility Measures of Generational Risk

In Figure 6 and the associated Table 2 we consider more formal measures of generational

risk, which we call expected and realized lifetime utility measures.
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Figure 6: Expected and realized utility measures of generational risk in the 80-period bench-
mark model with and without policy, and two of its variants. In models labeled “no policy”,
“variable policy”, and “fixed policy” the risk aversion is 2 and there are no rare disasters;
in the model labeled “high gamma” the risk aversion is 5 and there are no rare disasters;
in the model labeled “rare disaster”, the risk aversion in 2, the probability of disaster in
3 percent per year, and contraction size during the disaster is 20 percent. The realized
(expected) measure of generational risk is defined as the variability of the compensating
consumption differential of newborns through time needed to achieve the average realized
(expected) utility of newborns.
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Each newborn’s expected lifetime utility measure is defined as the compensating con-

sumption differential needed to achieve the average (expected) lifetime utility across new-

borns. To compute the differential for, say, the age group born in year x, we first calculate

the average realized lifetime utility of generation x across 5, 000 different paths of draws of

the productivity shock. Call this EUx. Next, we divide the average of EUt over all t from

time 0 to 640 by EUx and raise the ratio to the power 1/(1 − γ). The result is the factor

by which consumption of generation x needs to be multiplied in all possible states it might

experience to achieve the same lifetime utility, on average, as other generations enjoy. The

closer are the consumption differentials to 1, and the less variable they are through time,

the less difference does the date of birth make for the household’s expected lifetime utility,

i.e. the smaller is the generational risk. Given the stationary nature of the model, the ex-

pected lifetime utility differentials should be very small except for generations born while the

policies are being introduced and the economy is heading toward its new stochastic steady

state (ergodic distribution).

The realized utility measure is based on the particular state the generation is born into

and the particular sequence of productivity shocks drawn over its lifetime. We first calculate

each generation’s particular realized lifetime utility and form the average of these realized

values across all generations born between years 0 and 640. Next, we calculate for each

generation the factor by which we need to multiply each year’s realized consumption to

produce the same realized lifetime utility as the first 640 generations experience on average.

Coefficients of Variation (in Percent) of Expected and Realized Generational Risk Measures

Model

no policy 0.03 1.76 0.03 1.83
variable policy 0.64 1.26 0.02 1.08
fixed policy 1.34 2.70 0.06 2.58
high gamma 0.02 1.77 0.02 1.85
rare disaster 0.20 4.59 0.08 4.82

Expected utility 
measure CV (%) 

full sample

Realized utility 
measure CV (%) 

full sample

Expected utility 
measure CV (%) 

drop 1st 75 periods

Realized utility 
measure CV (%) 

drop 1st 75 periods

Table 2: Coefficients of variation of the expected and realized utility measures of generational
risk in the 80-period models presented in Figure 6.

The left-hand-side panels of Figure 6 plot these two measures for our main model without

and with government policies. The right-hand side panels consider high risk aversion and

rare disaster versions of the model. Table 2 shows the corresponding coefficients of variation,

in percentage points, computed using both the entire data samples plotted in Figure 6, and

the subsamples obtained by removing the first 75 observations from each time-series.
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For all models and both generational risk measures, realized lifetime consumption dif-

ferentials are close to 1 and vary very little though time. Generational risk is, as expected,

smaller (the consumption differentials are closer to 1) under the expected utility measure

than under the realized utility measure.

The first two columns of Table 2, where all 640 years are considered, suggest that the

government policies exacerbate generational risk. But some of this risk arises from being

born either during or after the policies are fully infused in the economy’s general equilib-

rium. The last two columns leave out the first 75 years, but they still show the policies

worsening generational risk. Even so, there is not much generational risk to either be shared

or worsened. Nor does high risk aversion or rare disasters change this story much.

6.1.4 Consumption Co-movement Measures of Generational Risk
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Table 3: Measures of generational risk in the 80-period models: summary statistics of pair-
wise correlations in percentage changes in consumption among different age groups, and
absolute percentage adjustments needed to achieve full risk sharing. The first 75 observa-
tions (i.e. the capital stock transition period after the policies are introduced) have been
dropped from all calculations.

Abel and Kotlikoff (1988) show that full risk sharing among contemporaneous gener-

ations, indeed all agents, with the homothetic preferences considered here requires equal

percentage changes in the consumption from one period to the next. Hence, one can mea-

sure the extent of generational risk by considering the co-movement of consumption across

age groups as well as the extent of consumption adjustments that would be needed to achieve

perfect consumption co-movement.

Table 3 considers such measures.8 First, it reports summary statistics of pairwise cor-

relations in annual percentage changes in consumption between different age groups among

8Values of 0.000 and 1.000 reflect rounding.
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workers only, retirees only, and all agents.9 Second, it examines the correlation of each

agent’s annual percentage change in consumption with the annual percentage change in per

capita consumption. Third, it summarizes the agent- and year-specific absolute percentage

consumption adjustment needed to achieve perfect risk sharing, i.e. to ensure that all agents

experience the same percentage change in the year in question.

The first four rows of the no policy, rare disaster, and high γ panels of Table 3 show that

the average correlations considered in the first and second consumption co-movement mea-

sures exceed 0.934. Indeed, the smallest correlation coefficient of any agent’s consumption

with per capita consumption in these three panels is 0.682. The corresponding values in the

fixed policy panel are slightly lower—at least 0.874 for the average consumption co-movement

measures, and exceeding 0.394 for the co-movement with per capita consumption measure—

while in the proportional policy panel the corresponding values are slightly higher—0.993

and 0.967. The fifth row of these five panels shows that the average (across agents) absolute

percentage adjustments needed to achieve full risk sharing are less than 1 percent in all cases,

ranging from a low of 0.163 in the high γ case to a high of 0.513 percent in the fixed policy

case. Hence, generational risk in the absence of generational policy is tiny according to all

three measures.

The variable policy panel of Table 3 paints a different picture. It shows that pairwise

correlations in percentage changes in consumption among some workers are highly negative.

This is not surprising since variable policy is modeled intentionally to be countercyclical,

i.e. to turn good times for workers into bad times as the increase (decrease) in taking exceeds

the increase (decrease) in the gross wage.

The youngest workers are hurt the most for two reasons. First, the current high taking

implies likely high takings in the near future due to persistence in total factor productivity

(z). Second, they still have a long time to wait before they can benefit from high giving and

increased asset income in retirement. On the other hand, for the oldest workers high taking

in good times is offset by both the expectation of future high giving and higher asset returns

(due to the persistence in the z’s). Hence, one would expect the correlation in percentage

changes in consumption to be the lowest between the youngest and the oldest of workers.

Indeed, the minimum correlation of −0.986 occurs between the youngest (1-year-old) and

the oldest (45-year-old) workers. Moreover, the larger is the distance in the workers’ age,

the lower is the correlation in their percentage changes in consumption.10

9For each age group g, we compute that age group’s percentage change in consumption between t and
t−1, (cg,t−cg−1,t−1)/cg−1,t−1, for all t. We then correlate the percentage change in consumption time series
for any pair of age groups.

10This trend can be seen easily as follows. Find, for each worker i, that worker, j, whose percentage
change in consumption is least correlated with that of i. Then relate those correlations to the distance in
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6.1.5 Examining the Krusell-Smith Approximation

We next conduct an experiment to examine Krusell and Smith’s (1998) contention that a

summary statistic of the wealth distribution, particularly average asset holdings, is a suf-

ficient descriptor of the full state space. The experiment relies on our derived age-specific

consumption functions whose arguments, recall, are the individual asset holdings of all 80

generations as well as the current productivity shock. Specifically, we ask whether reshuffling

the assets holdings between the young and the old significantly alters individual and aggre-

gate consumption holding fixed the asset holdings of the age group itself. The reshuffling

for an agent age g entails starting with the assets of the oldest group that’s not age g and

exchanging the asset with those of the youngest agent that’s not age g and proceeding in this

fashion to the assets of the next oldest and next youngest agents not age g. If evaluating

each age group’s consumption with this reshuffling of the values of the arguments of the

function (apart from the value of the age group’s own assets) produces major differences in

predicted consumption, then who holds the assets, not just their average value, matters.
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Figure 7: Examining the Krusell-Smith approximation: average percentage changes in age-
group-specific and aggregate consumption in the 80-period models after reshuffling of asset
distributions.

Figure 7 shows the average (across 640 years) difference between the recomputed and the

age between i and j.
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original consumption as a percentage of the original consumption for each of our 80-period

models under consideration. The top-left panel does this for aggregate consumption and the

rest of the panels for age-group-specific consumption.

Consider first aggregate consumption. The reshuffling of assets makes little difference

in our base case, no-policy model. But with variable policy, there is a roughly 6 percent

increase in average annual consumption, which is major. Even the roughly 2 percent in-

crease in average annual consumption with fixed policy and no policy, but rare disasters is

sizeable when one considers how such a consumption differential would affect the economy’s

capital formation through time. Moreover, reshuffled values of average annual aggregate

consumption obscure large variations across the years. Across all 640 years, the maximum

increase in aggregate consumption from reshuffling is 9.923 percent, while the minimum is

0.263 percent. This suggests that the Krusell-Smith algorithm is inadequate in our life-cycle

setting.

Why does aggregate consumption rise with the reshuffling? As the three no-policy panels

show, consumption of the young increases and that of the old declines. This is not surprising

since the reshuffling scheme puts more assets in the hands of the young. This ensures

that the assets will be around longer in the economy, and that wage rates will be higher

and rates of return lower for many years to come. For workers, the reshuffling raises their

lifetime resources as perceived by their consumption functions leading to an unambiguous

rise in their consumption. For retirees, the reshuffling leaves their own assets unchanged,

but lowers their perceived future rates of return. But their consumption is driven primarily

by their own holdings of assets, not by the return on their assets. Hence, it’s not surprising

that the collective consumption of retirees falls by less than the collective consumption of

the young and that aggregate consumption rises.

Note also that, other things equal, the impact of reshuffling on aggregate consumption

is greater in the models with policies. The reason is clear. The capital stock is smaller in

these models, meaning that the derivative of the wage with respect to the capital stock is

larger. Hence, a small expected change in the economy’s implied future capital stock has a

larger impact on the future expected wage and thus a larger influence on the consumption

of workers.

For individual agents at specific ages the reshuffling makes a big difference for all mod-

els under consideration. Indeed, in the case of variable policy the percentage change in

consumption at certain older ages caused by the reshuffling averages close to 30 percent.

Interestingly, the two policies produce different age-specific reactions to the reshuffling in-

dicating the importance of the policy regime for underlying consumption behavior. In fact,

with variable policy, the elderly now end up consuming considerably more when assets are
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reshuffled reflecting the fact that having assets last longer in the economy means higher

wages and, therefore, receiving higher gettings, on average, each year from the young. The

elderly’s consumption is also somewhat higher, on average, when the policy involves fixed

taking. This may reflect the higher value, in a present value sense, arising from the fixed

annual receipts being implicitly discounted at a lower time path of asset returns.11

6.2 Models With Bonds

In Table 4 and Figures 8–10 we consider 40-period models with a one-period risk-free bond,

risk aversion of 2, and with and without rare disasters.

6.2.1 40-Period Model: Consumption Co-movement Measures of Generational

Risk
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Table 4: Measures of generational risk in the 40-period models with and without rare dis-
asters: summary statistics of pairwise correlations in percentage changes in consumption
among different age groups, and absolute percentage adjustments needed to achieve full risk
sharing.

Table 4 shows our three consumption co-movement measures of generational risk with

and without bonds. In all cases, average consumption co-movement correlation coefficients

are very high, ranging from a low of 0.966 in the case of rare disasters and bond to a high

of 0.999 in the case of no disasters and bond. The absolute percentage adjustments average

about 1.5 percent in all cases.

These results confirm that generational risk, even with rare disasters, is small. Although

a bond market reduces the range of adjustments needed to achieve full risk sharing, it makes

no difference to the mean.

11Since there is, in our base-case model, no term structure of interest rates, not even a short-term bond
market, the model involves no explicit discounting of future non-asset income flows.
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6.2.2 40-Period Model: Bond Demands and the Equity Premium
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Figure 8: Average bond shares, assets, and bond demands by age in the 40-period model
with risk aversion of 2, with and without rare disasters. In the case of rare disasters, the
probability of disaster in 1.7 percent per year, and contraction size during the disaster is 20
percent.

Figure 8 plots age-specific average bond shares, assets, and bond demands. It shows

that the young are the demanders of bonds, the youngest most so, and that the old are the

suppliers. The figure also shows that rare disasters make no material difference to average

bond demands.

The age pattern of bond holdings is intuitive since the young mainly live off of uncertain

wage income. On the other hand, the old live off the assets they have accumulated and the

income earned on these assets. But while the return on assets is uncertain, the principal

cannot be lost and, thus, is safe. Consequently, the old are in a position to insure the young

against productivity shocks by selling bonds to the young and going long capital (stocks).

The counterpart of the old going long in stocks and short in bonds is that the young

go short in stocks and long in bonds. Indeed, the youngest of the young hold close to an

astounding 6, 000 percent of their assets in bonds. But since their assets are themselves

small, their absolute holding of bonds is reasonable.

To see this, note that the young short stocks to insure against an adverse shock in z

and the resulting decline in wage. Consider two scenarios. In one, the beginning-of-period

capital is equal to the average capital stock over 640 periods, 193.970, and z is equal to
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the average z, 0.999, implying a wage of 1.239 and a rate of return on capital of 0.094

per period. In the other, capital is again equal to its average value and z is one standard

deviation below average, at 0.967, implying a wage of 1.199 and a rate of return on capital of

0.091. One measure of the young’s potential loss in wages is the difference in wage between

the two scenarios, 0.040. Since the difference in the rates of return on capital between the

two scenarios is 0.003 and the average bond demand of the youngest age group is 12.782, the

youngest gain 0.038 in consumption units when the adverse shock hits. Hence the potential

capital gain covers most of the loss.
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Figure 9: Bond shares and demands for selected age groups, and lagged total factor pro-
ductivity level (z), through time in the 40-period model with risk aversion of 2, with and
without rare disasters. In the case of rare disasters, the probability of disaster in 1.7 percent
per year, and contraction size during the disaster is 20 percent.

Bond demands fall off sharply with age even though assets rise rapidly during the ac-

cumulation phase. To understand further the behavior of bond demand, we plot, in Figure

9, bond shares and demands of selected age groups through time. Bond shares of the two

youngest age groups are the most volatile, while those of the oldest age group exhibit very

low volatility. This makes sense since when they are hit by adverse shocks, the young suffer

heavy losses in the main source of their livelihood—their labor income. And, because of per-

sistence in the process for z’s, when a bad shock hits, the young insure themselves against

further bad z’s coming in the near future by buying bonds and shorting stocks. Since the

bond shares they hold in the period after the bad shock reflect the decisions they made in
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the period the shock hit, we expect the correlation between the bond shares and lagged z’s

to be highly negative.

Indeed, the correlation between the bond shares and lagged z’s is −97.8 percent in the

model without rare disasters and −77.2 percent in the model with rare disaster for the

youngest age group. In the case of rare disasters, the figure reveals that the largest spikes

in bond shares coincide exactly with low lagged z’s. However, the size of the bond share

spikes of the youngest also depends on their beginning-of-period assets. If the largest bond

share spikes are excluded from the calculation, the correlation between the bond shares and

lagged z’s in the model with rare disasters is lower −92.2 percent. The figure also reveals

that bond demands of the young tend to drop after rare disasters hit even though bond

shares rise, consistent with the fact that their investible assets are reduced. The old suffer

less from drops in z’s; although their capital gain is lower, their principal cannot be lost.

This explains the lower variability in their bond shares.
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 Equity Premium and Rates of Return on Capital and the Riskless Bond
40−Period Model With and Without Rare Disasters

Figure 10: Equity premium and rates of return on capital and on the riskless bond in the
40-period model with and without rare disasters. In the case of rare disasters, the probability
of disaster in 1.7 percent per year, and contraction size during the disaster is 20 percent. In
all cases, risk aversion is 2.

Figure 10 shows that the equity premium very small, regardless of the presence of rare

disasters. Although in both models bond returns are less volatile than stock returns, on

average bond and stock returns are virtually indistinguishable. In the model with rare

disasters, the average annual rate of return on capital is 0.0617 with standard deviation of

0.0034. The average annual bond return is 0.0616 with standard deviation of 0.0027. In the
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model without rare disasters the equity premium is even smaller. There, the average annual

rate of return on both capital and bonds is 0.0620,12 with standard deviations of 0.0021 for

the stock and 0.0015 for the bond. Hence, rare disasters do not explain the high risk-free

rate in our model.

What explains the model’s small equity premium? One answer is simply that the risk

arising from the productivity shock is not that large. But is this true? In the model without

rare disasters and with bond, the mean wage is 1.239, and its standard deviation is only

0.048. But this ignores the persistence in the productivity shock process. Discounting at

the average risk-free rate, a one standard deviation shock to the wage between the first and

second year of life produces a present value loss in lifetime earnings of 0.236 or 1.74 percent

of the average wage.13 This is non-trivial. But there are three other considerations. One is

that shocks are i.i.d. and will likely average out over any worker’s workspan. The second

is that asset accumulation provides an effective means to self insure against productivity

shocks especially since a negative productivity shock lowers today’s capital formation, which

raises tomorrow’s future return to assets. Evidence of this self insurance is provided by the

rapid decline in bond demand as workers age. The third is that there are ample number of

elderly willing to underwrite the insurance young workers seek at an affordable price. I.e.,

they are willing to supply bonds at a low price (high return).

6.2.3 20-Period Model and the Variable Policy: Consumption Co-movement

Measures of Generational Risk

To study the effect of the bond market on generational risk when incomes of the young

and old are negatively correlated, we simulate a 20-period model with variable policy. The

countercyclical nature of the variable policy drives the correlation between the net wage and

the rate of return on capital down to −94.55 percent. Such highly negatively correlated

income risks leave scope for an improvement in risk sharing with the introduction of the

bond.

In Table 5 we consider our three consumption co-movement measures of generational risk:

pairwise correlations in percentage changes in consumption between different age groups,

correlations of each agent’s percentage change in consumption with the per capita consump-

tion, and absolute percentage adjustments needed to achieve perfect risk sharing. The two

12The difference becomes visible only in the sixth decimal place.
13To compute the present value loss in lifetime earnings we again consider two scenarios. In one, the z

equals the average z in the first year of life, is one standard deviation below average in the second year, and
evolves according to (5) until retirement. In the other scenario, the z starts at its average value in the first
year of life, and thereafter evolves according to (5). The earnings loss each period is equal to the difference
in wage implied by that period’s z in the two scenarios, keeping the capital at its average value in both cases.
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Table 5: Measures of generational risk in the 20-period model with and without variable
policy: summary statistics of pairwise correlations in percentage changes in consumption
among different age groups, and absolute percentage adjustments needed to achieve full risk
sharing. The first 50 observations (i.e. the capital stock transition period after the policies
are introduced) have been dropped from all calculations.

left-hand-side panels present the results in models without policy and with and without

bonds. As before in the 80- and 40-period models, they show that average consumption

co-movement measures are very high and the absolute percentage adjustments, while larger,

are still modest. Moreover, the improvement in risk sharing provided by the bond market is

very limited.

The two right-hand-side panels present the results with variable policy, with and without

bonds. As discussed in the 80-period model, pairwise correlations in percentage changes

in consumption among some workers are highly negative since the policy turns good times

into bad times for the workers, especially so for the youngest workers. However, the bond

market allows them to effectively share risks among themselves and insure against positive

z’s. Indeed, the minimum across workers of their pairwise correlations in percentage changes

in consumption increases from −96.53 percent to 95.87 percent after the bond is introduced.

The corresponding mean correlation increases from 30.83 percent to 98.94 percent after the

bond is introduced.

Table 5 also shows that the bond reduces the volatility of absolute percentage adjust-

ments. This is especially so in the case of variable policy, where the minimum absolute

adjustment of 0.00 percent and the maximum absolute adjustment of 22.88 percent are both

far from the mean adjustment of 6.06 percent. After the bond is introduced to the vari-

able policy model, the spread of the minimum absolute adjustment (4.28 percent) and the

maximum absolute adjustment (7.63 percent) around the mean absolute adjustment (5.93

percent) is much tighter. Figure 11, which plots the adjustments through time for the tenth

age group, illustrates this striking reduction in volatility. Thus the bond market is important

here, not to help agents hedge the riskiness of the economy, but rather to offset the riskiness
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Figure 11: Absolute percentage adjustments needed to achieve perfect risk sharing for the
10th age group in the 20-period model with γ = 2, with and without variable policy.

of the government policy.

6.2.4 20-Period Model and Variable Policy: Bond Demands and the Equity

Premium
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Figure 12: Average bond shares, assets, and bond demands by age in the 20-period model
with γ = 2, with and without variable policy.

Figure 12 plots average bond shares, assets, and bond demands by age. It shows that

the pattern of bond demands flips when variable policy is introduced. As predicted, in the

model with variable policy the young are insuring against the good times, which is when
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they get hurt by the government. To see this, note that they short bonds. They invest the

proceeds of those short sales in stocks. Hence, when stocks do well, the resulting higher

government taking is offset by increased capital gains.

On the other hand, the old need to insure themselves against the bad times. When

adverse z’s hit, the transfers they receive from the government are reduced. Moreover, in

the model with policy, the asset holdings of the old are lower than in the model without

policy, since in addition to their own savings they rely on the government. Hence, in bad

times their interest income is lower in the model with policy. So they are the demanders of

the bonds that the young supply.
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Figure 13: Correlation, in percent, between age-group-specific consumption and total factor
productivity (z) in the 20-period model with γ = 2, with and without variable policy.

Figure 13 plots the correlations, in percent, between the age-group-specific consumption

and the shock z. It shows that, unlike in the model without policy, in the model with policy,

bond positions of the young dramatically alter their correlations.14 Hence, the bond market

provides a practical generational risk sharing mechanism in the model with variable policy.

The effectiveness of bonds in insuring the young in the model with variable policy is also

evidenced by the fact that adding the bond market increases the volatility (the standard

deviation) of the capital stock from 0.693 to 1.018. This makes sense, since the bond makes

the good times even better and the bad times even worse for the young, and hence increases

14The very first age group enters each period without any assets or bond positions, hence the bond does
not flip the sign of the correlation of their consumption with the shock z with respect to the model without
bond.
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the upside and lowers the downside of how much they can save. In the model without policy

the effect of the bond market on the volatility of the capital stock is much less pronounced—

it decreases from 1.399 to 1.264 after the bond is introduced. This is consistent with our

previous evidence of it playing a very limited role in terms of risk sharing when income risks

are positively correlated.

Despite all the risk sharing the bond accommodates in the model with variable policy,

the equity premium, computed as the average, across 640 periods, of the difference between

the rates of return on the stock and the bond, remains small. In fact, the equity premium of

9.64×10−6 in the model without policy is virtually indistinguishable from that of 2.41∗10−5

in the model with variable policy. As before, the reason is that the average risk-free rate is

almost as high as the average rate of return on capital: in the model with policy the average

rates of return are 0.0818 for the stock and 0.0817 for the bond, while in the model without

policy they are 0.0620 for both the stock and the bond. Hence, uncorrelated income risks

cannot explain the equity premium puzzle in our model.

6.2.5 20-Period Model with High Risk Aversion and Rare Disasters: Consump-

tion Co-movement Measures of Generational Risk

To further investigate the equity premium puzzle, we simulate two more 20-period models:

one with very high risk aversion (γ = 15) and another with a combination of high risk

aversion (γ = 6) and rare disasters.
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Table 6: Measures of generational risk in the 20-period model with very high risk aversion
(γ = 15) and no rare disasters, and with a combination of high risk aversion (γ = 6) and rare
disasters: summary statistics of pairwise correlations in percentage changes in consumption
among different age groups, and absolute percentage adjustments needed to achieve full risk
sharing. In the case of rare disaster, the probability of disaster in 1.7 percent per year, and
contraction size during the disaster is 15 percent.
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Table 7: Correlations of wage (where applicable, both gross and net of government taking)
with the rate of return on capital and the z’s in various 20-period models.

Table 6 displays our consumption co-movement measures of generational risk for each

model, with and without bond. It shows that generational risk is very small to start with,

and that the bond has very limited effect in mitigating it. This is despite the fact that

the correlation between the wage and the interest rate is negative, as reported in Table 7.

However, unlike in the variable policy model, in these two models the correlation between the

wage and the z’s is highly positive. It is 68.06 percent and 73.83 percent in the very high risk

aversion model without and with bonds, respectively, and 82.22 percent and 85.50 percent in

the high risk aversion and rare disasters model without and with bonds, respectively. At the

same time, the correlation of the rate of return on capital with the z’s is also positive: 25.10

percent, 29.93 percent, 27.73 percent, and 34.83 percent in the very high risk aversion model

without and with bond, and in the high risk aversion with rare disasters model without and

with bond, respectively. Hence, both the young and the old suffer in bad times, and risk

sharing opportunities are limited.

6.2.6 20-Period Model with High Risk Aversion and Rare Disasters: Asset

Demands and the Equity Premium

However, the old suffer less than the young when bad shocks hit, as evidenced by the lower

correlations of rate of return on capital with the z’s compared to the corresponding correla-

tions of wages with the z’s. Hence, they are the demanders of bonds in these two models,

while the old are the suppliers, as Figure 14 shows.

The equity premium remains very small, at 5.3080 × 10−4 in the model with very high

risk aversion and at 3.9004 × 10−4 in the model with high risk aversion and rare disasters.

Again, this is due to the high risk free rate: the average rates of return are 0.1239 for the

bond and 0.1245 for the stock in the γ = 15 model, and 0.0845 for the bond and 0.0849 for
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Figure 14: Average bond shares, assets, and bond demands by age in the 20-period model
with very high risk aversion (γ = 15) and no rare disasters, and with a combination of high
risk aversion (γ = 6) and rare disasters. In the case of rare disasters, the probability of
disaster in 1.7 percent per year, and contraction size during the disaster is 15 percent.

the stock in the γ = 6 with rare disasters model. Hence, high risk aversion and rare disasters

do not explain the equity premium puzzle in our model.

The finding of small equity premia in a wide range of papers does not imply a common

explanation as the models used differ substantially with respect to the nature of technology,

preferences of agents, the horizons of agents, the number of periods, the types of shocks,

the presence of borrowing constraints, and the age-specific covariance of equity returns and

wages.15

In our model, equity premia appear to be small for three reasons. First, the annual

productivity shocks hitting the economy, while realistically calibrated, are relatively modest

even when rare disasters are incorporated. Hence, there is relatively little intrinsic genera-

tional risk. Second, in models without variable policy, intrinsic generational risk hits both

the young and the old in similar ways. Rather than sharing risks among themselves, agents

self insure by saving and accumulating significant assets over the life cycle, i.e. they pool

risk over time. While the return on these assets is risky, the principle itself cannot be lost.

Over time, as workers age, this diminishes the demand for bonds as a way of securing sure

resources. This explains why the very young are most interested in buying bonds and the

15Constantinides, Donaldson, and Mehra (2002), for example, assume the young have safe wages and
would be natural purchasers of stock and sellers of bonds were it not for borrowing constraints.
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very old are more interested in selling them. And third, artificially inducing risk between the

young and the old via government policy elicits more net supply as well as net demand for

bonds, by the young and the old respectively, leaving the risk premium essentially unchanged.

7 Sensitivity Analysis

To assess the robustness of our finding of small generational risk, we also simulated models

with stochastic depreciation and a random walk specification of the technology process.

7.1 Stochastic Depreciation

Although we view stochastic depreciation as a rather ad-hoc way of breaking the positive

correlation between stock returns and wages, we include it in the 20-period model to see its

impact on generational risk. Specifically, we follow Ambler and Paquet (1994) and specify

the depreciation rate as a normal random variable with quarterly mean, standard deviation,

and covariance with the technology shock of 0.021, 0.0052, and −2.07×10−6. This produces

correlations of −0.097 between the wage and the rate of return on capital, 0.822 between

the wage and the z’s, and 0.078 between the rate of return on capital and the z’s.16 The

corresponding correlations in the baseline 20-period model without depreciation are 0.372,

0.931, and 0.686.

Nevertheless, Table 8 reveals only a small increase in generational risk compared to the

baseline model without stochastic depreciation according to the consumption co-movement

measures. For example, the average across all agents of their correlations in percentage

changes in consumption is 0.883 which is only slightly smaller than the corresponding 0.988

value from the baseline model without depreciation. And the average percentage adjustment

of 2.009 in the model with stochastic depreciation is actually smaller than the 3.023 value in

the baseline model, but the spread of the adjustments is larger in the model with depreciation.

There are two reasons stochastic depreciation is less effective in generating generational

risk than one might think. First, an X percent depreciation-induced reduction in the stock

of capital in period t will be mitigated, from the perspective of capital owners, by increases

in the marginal productivity of capital in period t + 1 and thereafter. Second, the reduction

in capital hurts workers via a reduction in the marginal productivity of labor, i.e., in wages

16Since we start the simulation from the non-stochastic steady state of the 20-period model without
depreciation, the first 50 periods of the simulation represent the transition period during which the capital
stock moves to its new level. Hence, we exclude the first 50 periods from the calculations of the correlations
and the generational risk measures.
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in this period and thereafter. Hence, there is natural risk sharing arising via these general

equilibrium effects.

7.2 Random Walk Technology

The technology process we considered so far is AR(1), hence mean reverting. To attempt

to produce more pronounced generational risks and see what implications they might have

across generations, we simulate a 20-period model with a random walk specification of the

technology process, viz.,

ln(zt+1) = ln(zt) + εt+1, (21)

where εt+1 is a normal random variable calibrated as in (5).

Table 8 again shows only a small increase in generational risk compared to the baseline

model: consumption correlations are now 0.847, on average, and the average percentage

adjustment is 3.119.

����������	 
������� �
 ��	������	�� ����� ��� ������ 
����� ���� � � �� �� ������� �	� �� ��	��


�	 
��	 
�� 
�	 
��	 
�� 
�	 
��	 
��
 !""#  !""" $!    !## $  !"% $  !""#  !&' $  !"%#  !"""
 !""(  !""' $!    !"(#  !"')  !""&  !')*  !"*)  !""&
 !"&%  !"'' $!    !&"(  !''%  !""#  !*"(  !'*#  !"""
 !"#)  !"'"  !""(  !" *  !"%*  !"#%  !'   !" $*  !"'*

+ ,,+-. /01 2+ 314 ,50. 6 +78 510 9. /0 $!(## % ! )% * !*)&  !   ) !  " $) !#")  !  ) % !$$" $$!&(%

��� ������� ������	�

����

:���������
;�<��������	

��	��=>���
?���	���@�

A B6 Δ C /D E4 FG. FH I 6 Δ C /D E4 FG. FJK
A B6 Δ C /D F.0C F.. H I 6 Δ C /D F.0C F.. JK
A B6 Δ C /D +-. /0 H I 6 Δ C /D +-. /0 JK

A B6 Δ C /D +-. /0 H I 6 Δ C / L. FM+ LC0+ D K

Table 8: Measures of generational risk in 20-period models with stochastic depreciation (and
AR(1) technology) and random walk technology (and no depreciation): summary statistics of
pairwise correlations in percentage changes in consumption among different age groups, and
absolute percentage adjustments needed to achieve full risk sharing. The first 50 observations
(i.e. the capital stock transition period after stochastic depreciation or policy are introduced)
have been dropped from all calculations. The baseline model, included for comparison, is
with AR(1) technology and without depreciation. All models are without policy, without
bonds, and with γ of 2.
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7.3 The Small Gains from Fully Sharing Risk Among Living Gen-

erations

Our consumption co-movement measures of generational risk are less than fully satisfying

because they do not clarify the expected utility gains from actually implementing such risk

sharing. Figures 15 and 16 do this. They present the compensating differentials for each

cohort of newborns in the absence of such risk sharing arrangements needed to achieve the

same level of expected utility as in the presence of such arrangements. The compensating

differentials are, as above, the common factor by which one needs to multiply consumption

levels along all paths of the economy absent the envisaged risk sharing to produce the same

expected utility as would arise with the envisaged risk sharing.
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 Compensating Consumption Differentials Needed to Achieve Expected Utility with Perfect Risk Sharing
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Figure 15: Compensating consumption differentials of newborns through time needed to
equate their expected lifetime utility in the original simulation to that in the world with
perfect risk sharing in the 80-period models. In models labeled “no policy”, “variable policy”,
“fixed policy”, and “proportional policy” the risk aversion is 2 and there are no rare disasters;
in the model labeled “high gamma” the risk aversion is 5 and there are no rare disasters;
in the model labeled “rare disaster”, the risk aversion in 2, the probability of disaster in
3 percent per year, and contraction size during the disaster is 20 percent. The first 75
observations (i.e. the capital stock transition period after policies are introduced) have been
dropped from all calculations. All models are without bonds.

To calculate expected utility with full risk sharing among the living we imagine the

following agreement made by each contemporaneous generation age 1 to 79 at each point

in time t that governs who will consume what at time t + 1. Each generation takes the
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Figure 16: Compensating consumption differentials of newborns through time needed to
equate their expected lifetime utility in the original simulation to that in the world with
perfect risk sharing in the 20-period models. The model labeled “no policy” is our baseline
model without policy, without depreciation, and with AR(1) technology. The “stochastic
depreciation” model is without policy and with AR(1) technology, and “random walk tech-
nology” model is without policy and without stochastic depreciation. The “variable policy”
model is without stochastic depreciation and with AR(1) technology. The first 50 obser-
vations (i.e. the capital stock transition period after stochastic depreciation or policy are
introduced) have been dropped from all calculations. All models are without bonds and
with γ of 2.
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consumption it would do in the absence of the agreement as its threat point and agrees to

experience the same growth rate in consumption between t and t + 1 as everyone else, with

aggregate consumption growth calculated as the percentage change in the sum of threat

point consumptions of those 1 to 79 at time t and the sum of threat point consumptions of

those age 2 to 80 at time t + 1.

Note that by always consuming, in the aggregate, the total threat point level of con-

sumption, the economy’s capital stock along its risk-sharing path always remains the same

as without the risk-sharing. In addition, each generation’s assets in each period will equal

what it would otherwise have held in assets without the risk sharing since if the agreement

calls for them to consume less than they would otherwise have done, they give up some of

their current consumption rather than use up their remaining assets. And if the agreement

calls for them to consume more than they would otherwise have consumed, they receive the

additional consumption from their contemporaries, not via a dissipation of their own asset

holdings.

As Figure 15 shows, the expected utility gains from implementing full risk sharing among

those alive at any point in time are less than one tenth of one percent in the 80-period model

with no policy, fixed policy, and proportional policy as well as with no policy and high risk

aversion or no policy and rare disasters.17 In the case of variable policy, the gain to risk

sharing does, for a few generations, exceed one half of one percent.

Figure 16 repeats Figure 15, but for 20-period models with no policy, variable policy,

stochastic depreciation, and productivity shocks that follow a random walk. The results are

very similar to those in the prior figure.

8 Conclusion

The theoretical literature on generational risk assumes this risk is meaningful and can be

shared by the government. To assess the validity of these assumptions this paper develops,

calibrates, and simulates 80-period, 40-period, and 20-period OLG models with aggregate

productivity shocks.

We find that generational risk is overrated and illustrate how government take-as-you-go

policy can manufacture, rather than mitigate generational risk. We show that the main

determinant of the economy’s future position is not the shocks it experiences, but rather

the manner and extent to which the government redistributes resources across generations.

We also demonstrate that bond markets can play an important role in sharing risk across

17The values in the figure that are less than 1 reflect, we believe, approximation errors.
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generations, including the generational risk arising from government policy. Finally, we

confirm in an OLG framework that equity premium in simple neoclassical models is far

smaller than that observed.

Previous solution methods could not handle large scale models such as ours due to the well

known curse of dimensionality. We overcome the curse by restricting the model’s solution

to its ergodic set based on the suggestion of Marcet (1988) and the associated solution

algorithm developed by Judd, Maliar, and Maliar (2009, 2011). We extend the latter to

include an inner loop to clear the bond market. This paper demonstrates the practicability

of constructing large-scale OLG models with aggregate shocks in which generational policy

matters as appears so evident in real economies.
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