DECISION COMPLEXITY AS A BARRIER TO ANNUITIZATION

Jeffrey R. Brown
Arie Kapteyn
Erzo F.P. Luttmer
Olivia S. Mitchell

Working Paper 19168
http://www.nber.org/papers/w19168

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 2013

The research reported herein was performed pursuant to a grant from the U.S. Social Security Administration (SSA) funded as part of the Financial Literacy Consortium. The authors also acknowledge support provided by the Pension Research Council/Boettner Center at the Wharton School of the University of Pennsylvania, and the RAND Corporation. The authors thank Caroline Tassot and Yong Yu for superb research assistance, and Tim Colvin, Tania Gutsche, Bas Weerman, and members of the Netspar 2012 Paris conference for their invaluable comments and assistance on the project. Brown is a Trustee of TIAA and has served as a speaker, author, or consultant for a number of financial services organizations, some of which sell annuities and other retirement income products. Mitchell is a Trustee of the Wells Fargo Advantage Funds and has received research support from TIAA-CREF. The opinions and conclusions expressed herein are solely those of the authors and do not represent the opinions or policy of SSA, any agency of the Federal Government, any other institution with which the authors are affiliated, or the National Bureau of Economic Research.

At least one co-author has disclosed a financial relationship of potential relevance for this research. Further information is available online at http://www.nber.org/papers/w19168.ack

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2013 by Jeffrey R. Brown, Arie Kapteyn, Erzo F.P. Luttmer, and Olivia S. Mitchell. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Decision Complexity as a Barrier to Annuitzation
Jeffrey R. Brown, Arie Kapteyn, Erzo F.P. Luttmer, and Olivia S. Mitchell
NBER Working Paper No. 19168
June 2013
JEL No. D03,G02,H55

abstract

We show that people have difficulty valuing annuities, and this, instead of a preference for lumpsums, helps explain observed low annuity demand. Although the median price at which people are willing to sell an annuity stream is close to the actuarial value, many responses diverge greatly from optimizing behavior. Moreover, people will pay substantially less to buy than to sell annuities. We conclude that boundedly rational consumers adopt “buy low, sell high” heuristics when confronting a complex trade-off. This suggests that many consumers do not make optimizing decisions, underscoring the difficulty of explaining cross-sectional annuity valuation differences using standard models.

Jeffrey R. Brown
Department of Finance
University of Illinois at Urbana-Champaign
515 East Gregory Drive
Champaign, IL 61820
and NBER
brownjr@illinois.edu

Arie Kapteyn
University of Southern California
12015 Waterfront Drive
Playa Vista, CA 90094-2536
and NBER
kapteyn@usc.edu

Erzo F.P. Luttmer
6106 Rockefeller Center, Room 305
Department of Economics
Dartmouth College
Hanover, NH 03755
and NBER
Erzo.FP.Luttmer@Dartmouth.Edu

Olivia S. Mitchell
University of Pennsylvania
Wharton School
3620 Locust Walk, St 3000 SH-DH
Philadelphia, PA 19104-6302
and NBER
mitchelo@wharton.upenn.edu

An online appendix is available at:
http://www.nber.org/data-appendix/w19168
Decision Complexity as a Barrier to Annuitization

An enduring empirical puzzle in the economics literature is why individuals so rarely purchase annuities to insure against length-of-life uncertainty, despite the substantial value that annuities have been shown to provide in standard life-cycle models. Following Yaari’s (1965) paper establishing conditions under which full annuitization proves optimal, many subsequent researchers have sought to solve what has been dubbed the “annuity puzzle,” a term that refers to the question of why few ‘real world’ consumers annuitize their retirement wealth. That research, discussed in greater detail below, explores several plausible explanations ranging from supply-side market imperfections (e.g., adverse selection, aggregate risk, or incomplete annuity markets) to rational demand-side limitations (e.g., bequest motives, the availability of formal and informal substitutes, or the presence of uninsured expenditure shocks). In general, however, it appears that no single factor can explain the limited demand for payout annuities; moreover, while combining many factors into one model can generate limited annuity demand, such an approach typically comes at the cost of creating new puzzles.

Of late, researchers have begun to explore psychological barriers to annuitization in both theoretical and experimental studies. The present paper contributes to this nascent literature by providing evidence consistent with the hypothesis that many people find it difficult to value annuities, and that this difficulty – rather than a well-defined preference for lump sums – may help to explain the observed reluctance of individuals to annuitize.

There are at least two complementary reasons for why individuals may deviate from optimizing behavior in the annuitization context. First, people may exhibit bounded rationality (Simon 1947) and thus make mistakes in the optimization process. The annuitization decision is complex because it combines decision-making under uncertainty and choices having far-distant consequences; both of these features render decision-making difficult (Beshears et al. 2008). Determining the optimal mix of annuitized and non-annuitized resources requires one to forecast mortality, capital market returns, inflation, future expenditures, income uncertainty, and other factors, as well as appropriately weight these factors according to one’s current assessment of future preferences. Individuals unable to solve such a complex dynamic programming problem may therefore find it difficult to evaluate the expected lifetime utility consequences of

1 For a recent survey, see Benartzi et al. (2011).
annuitization. If so, then as Benartzi and Thaler (2002, p. 1607) noted in their study of how portfolio choices are affected by the availability of irrelevant options, people may “not really have well-formed preferences, but rather construct preferences when choices are elicited. Since the form of the elicitation can affect the choices people make, there is not a single preference ordering that can be clearly identified.” Recent evidence on how framing affects the perceived desirability of annuities is consistent with this view.²

Second, as noted by Kling, Phaneuf, and Zhao (2012, p.12) in their overview of contingent valuation methods, “rationality may be the result of repeated participation in markets …(and) departures from rationality can therefore be aggravated by complex or unfamiliar decision environments and uncertainties, which can often result in rule-of-thumb behaviors.”³ Beshears et al. (2008) make a similar point, namely that limited personal experience can create a wedge between revealed preferences (i.e., those that might be inferred from our actions), and true underlying preferences. Bernheim (2002) argues that individuals who fail to save adequately for retirement are unable to learn from experience, since by the time they retire with inadequate resources, they cannot return to a younger age and save more. In the present context, most individuals have little or no experience making annuitization decisions, let alone the ability to learn from the experience of having an annuity (or not) later in their own lives. Although some might learn from observing the experience of others, this does not always happen: for instance, when Enron, WorldCom, and Global Crossing employees’ 401(k) balances were decimated due to over-investment in their employers’ equity, there was virtually no reaction by workers at other U.S. firms to reduce their own investments in employer stock (Choi et al. 2005).

Our central hypothesis is that many people do not fully understand the lifetime utility implications of the annuitization decision, and therefore they have difficulty forming an appropriate assessment of the value of annuities. We offer evidence to support this hypothesis from a randomized experiment in the American Life Panel (ALP), in which we present individuals with hypothetical choices between a lump sum and a Social Security annuity. By varying whether the questions elicit a compensating variation (CV) or equivalent variation (EV) value, whether the individual is buying or selling the annuity, the size of the increments, the

² Research on framing is linked to Kahnemann and Tversky (1981); in the annuity context, see Agnew et al. (2008); Brown et al. (2008); and Brown et al. (2013).
³ Abeler and Jäger (2013) show that individuals also have difficulty maximizing utility when choosing work effort in an environment with complex tax and subsidy rules.
order of the questions, we can directly examine the coherence and stability of subjective valuations placed by respondents on their Social Security annuity. We are also able to make use of the rich ALP database to control for potentially confounding factors such as heterogeneity in liquidity constraints and beliefs about political risk.

Like most economists, we usually find evidence based on actual choices in natural settings more compelling than evidence based on hypothetical choices. We readily acknowledge important drawbacks of using hypothetical choice behavior to study annuitization decisions. In particular, because the stakes are low in hypothetical choice settings, individuals may exert less effort in making their decisions. In addition, individuals have lower incentives to seek help from peers or other sources in making their decision when the choice is hypothetical. While both of these considerations may make hypothetical choice behavior more noisy, it would be very surprising if they led to systematic patterns in hypothetical choice behavior that would be completely absent in actual choices.

Counterbalancing these drawbacks are three important benefits of using a hypothetical choice setting. First, the hypothetical setting allows us to observe an individual’s annuitization decisions for a wide range of annuity prices, from which we obtain individual-specific annuity valuations without having to rely on functional form assumptions. In real world settings, annuitization decisions are typically made at a single price (and if there is price variation, it is generally not exogenous). Second, in a hypothetical setting, it is practically feasible to observe both the price at which an individual is willing to buy an annuity and the price at which she is willing to sell the annuity. Such within-person variation turns out to be extremely valuable in exploring the decision-complexity hypothesis. Third, the hypothetical setting allows us to elicit annuitization choices for a broadly representative population. As discussed in the literature section below, actual annuitization decisions in natural settings are typically only observed for rather select populations.

We provide five pieces of evidence consistent with the hypothesis that individuals have difficulty valuing annuities. First, we show that even when median valuations appear reasonable, many people’s implied annuity values are difficult to reconcile with optimizing behavior under any plausible set of parameters. Second, we uncover a large divergence between the price at which individuals are willing to buy an annuity and the price at which they are willing to sell an annuity. This result is not due to liquidity constraints or endowment effects; rather, it is
consistent with a simple “buy low, sell high” heuristic. Third, we show that the “buy” and “sell” values are negatively correlated, particularly for the financially unsophisticated. Fourth, we use other experimental variation to show that the implied valuations violate the “invariance” criterion of rational decision-making, such as being sensitive to anchoring effects. Finally, we argue that it is difficult to explain observed cross-sectional variation in the annuity values using theoretically attractive measures, and that that the pattern of significant marginal valuation predictors is consistent with individuals using simple heuristics rather than full optimization to value the trade-offs.

In addition to advancing our academic understanding of consumer behavior in this area, our results also have considerable practical policy relevance. There is currently an active discussion on what role payout annuities should play in defined contribution (DC) or 401(k) pension plans, with much debate about whether and how life annuities ought to be encouraged in such settings (Gale et al. 2008; Brown 2009). This debate, in part, revolves around whether individuals are making optimal payout decisions. Moreover, many countries including the U.S. are grappling with fiscally unsustainable pay-as-you-go public pension systems. To the extent that households are poorly equipped to value the annuities offered by their public pensions, this has implications for the political feasibility of reforms changing the benefit structure, particularly if individuals were to be offered a choice between a lump sum or future annuity payments. The same point applies to state and local public defined benefit plans (DB) in the U.S. which also face substantial underfunding problems (Novy-Marx and Rauh 2011), and for which some reformers have called for a reduction in DB annuities in exchange for lump-sum contributions to defined contribution accounts (e.g., Kilgour 2006).

In what follows, we first summarize prior studies on the demand for annuities, including both the neoclassical and the behavioral economics literatures. Next, we describe the American Life Panel (ALP) internet survey, a relatively representative sample of the U.S. population, and we outline how we elicit lump-sum versus annuity preferences in this survey. We then present our key empirical results, followed by a number of robustness checks and further analyses for subgroups that vary in their financial capability. We conclude with a discussion of possible policy implications and future research questions.

I. What We Know About the Annuity Puzzle
A. Prior Theoretical and Simulation Research on Rational Life Annuity Demand

The modern economics literature on annuities has noted a set of conditions under which it would be optimal for an individual to annuitize 100% of his wealth. Extensions to the theory have demonstrated that full annuitization would be optimal under a more general set of conditions. More recent studies have used extended life-cycle models to construct theoretical consumer valuations of value payout annuities and to compute how optimal annuitization varies with other factors, including pricing (Mitchell et al. 1999); pre-existing annuitization (Brown 2001; Dushi and Webb 2006); risk-sharing within families (Kotlikoff and Spivak 1981; Brown and Poterba 2000); uncertain health expenses (Turra and Mitchell 2008; Sinclair and Smetters 2004; Peijnenburg et al. 2010a, 2010b), bequests (Brown 2001; Lockwood 2011); inflation (Brown et al. 2001, 2002); the option value of learning about mortality (Milevsky and Young 2007); stochastic mortality processes (Reichling and Smetters 2012; Maurer et al. 2013); and broader, portfolio choice issues, including labor income and the types of assets on offer (Inkmann et al. 2011; Koijen et al. 2011; Chai et al. 2011; Horneff et al. 2009, 2010).

Our overall assessment of this neoclassical microeconomics literature is that it has not been fully successful in resolving the annuity puzzle, even for marginal annuitization decisions (e.g., Shepard 2011). Although some papers have been able to simulate low overall demand for annuities (e.g., Dushi and Webb 2006; Inkmann et al. 2011; Horneff et al. 2009, 2010; Reichling and Smetters 2012), many of the proposed annuity puzzle solutions create new puzzles. For example, studies that rely on risk-sharing within families are unable to fully explain why the

4 Rather than providing a comprehensive review here, we instead highlight those studies most germane to the research that follows. Readers interested in the broader literature on life annuities may consult Benartzi et al. (2011); Poterba et al. (2011); Brown (2008); Horneff et al. (2007); and Mitchell et al. (1999). Note that we use the term “life annuity” because we are interested in products that guarantee income for life, as opposed to financial products such as “equity indexed annuities” that are mainly used as tax-advantaged wealth accumulation devices (and hence they are rarely converted into life-contingent income).

5 The conditions include no bequest motives, time-separable utility, exponential discounting, and actuarially fair annuities (among others).

6 Davidoff et al. (2005) shows that full annuitization is optimal under complete markets with no bequest motives. Peijnenburg et al. (2010a; 2010b) finds that if agents save optimally out of annuity income, full annuitization can be optimal, even in the presence of liquidity needs and precautionary motives. They further find that full annuitization is suboptimal only if agents risk substantial liquidity shocks early after annuitization and do not have liquid wealth to cover these expenses. This result is robust to the presence of significant loads.
demand for annuities does not rise after people transition from married life to widowhood. Studies that emphasize the lack of inflation protection or actuarially unfair pricing are unable to explain why it is so common for people to forego the opportunity to purchase higher Social Security benefits by delaying the date of claiming (they are inflation indexed and priced based on average population mortality). Studies that emphasize the inability to access equity returns in an annuitized form are unable to explain why individuals appear reluctant to annuitize even when they can do so with variable payout annuities. For this reason, and almost five decades after Yaari’s contribution and 25 years after Franco Modigliani (1988) noted in his Nobel acceptance speech that the absence of annuities was “ill-understood,” the annuity puzzle continues to be of interest.

2.2 Empirical Evidence on Annuity Demand

Compared to many studies in the theoretical and simulation literature, the empirical literature on annuities is relatively modest, mainly because the market for voluntary annuities in most countries is so small that household datasets contain too few observations on annuity purchasers (Mitchell et al. 2011). There are, however, a few exceptions. Using the 1992 wave of the U.S. Health and Retirement Study (HRS), Brown (2001) focused on respondents aged 51-61 with substantial assets in their defined contribution accounts. He examined their answers to the prospective question “In what form do you expect to receive benefits?” and correlated these annuitization intentions with the annuity valuations predicted by a life-cycle model based on demographic characteristics. He confirmed that intended annuitization was higher among those for whom the life-cycle model suggested higher valuations. But that analysis also concluded that it was difficult to explain more than a small fraction of the overall variation in the annuity decision.

In an investigation of individuals leaving the U.S. military during the 1990s, when Army “separteees” were offered a choice between a (non-life contingent) annuity and a lump-sum payment, Warner and Pleeter (2001) found that most soldiers (90 percent) and half the officers opted for lump sums. In view of the fact that these annuities were generously priced, the observed choices implied that many people had extraordinarily high discount rates – in excess of 17 percent (computed assuming that these were fully-informed and rational decisions). A few other studies have documented high annuitization rates in settings where the defined benefit

For instance, Hurd and Panis (2006) used five waves of the HRS (1992-2000) to explore how people made payout decisions from their defined benefit (DB) pension plans. Consistent with the hypothesis that individuals stick with the status quo when faced with a complex decision, the authors reported that two-thirds of retirees said they anticipated taking an annuity, when given a choice to take a lump-sum distribution instead of the standard DB annuity. Benartzi et al. (2011) analyzed two sets of administrative records on retiree elections of annuities versus lump sums. In the first, they found that 88 percent of employees who retired from IBM during 2000-08 chose full annuitization, and another eight percent selected a combination of annuitization plus a lump sum. Even when they limited their sample to those who retired at age 65+ (to ensure that results were not driven by an overly generous annuity to younger workers to incentivize early retirement), they found a 61 percent annuitization rate. They also examined payout patterns in 112 DB plans over the 2002-08 period, in a context where it was more difficult to measure whether a lump sum was offered. Roughly half the participants (49 percent) selected an annuity over a lump sum.

A related study by Bütler and Teppa (2007) used Swiss administrative data to track choices made by employees in 10 pension plans. When the annuity was the default option, the authors found substantial annuitization: 73 percent selected a pure annuity, with another 17 percent electing partial annuitization. But at a different firm providing a lump-sum option as the default, the annuitization rate was only about 10 percent. Although the authors could not completely rule out the possibility that the two firms set their default payouts to match employee preferences, this evidence was highly suggestive that default payout options had considerable influence over retiree behavior.

One of the only studies to examine plausibly exogenous variation in the price of annuities focused on Oregon public-sector workers allowed to choose between a pension life annuity and a combination lump sum/lower “partial” monthly benefit payable for life (Chalmers and Reuter 2012). Unexpectedly, it found that worker demand for partial lump-sum payouts rose rather than fell as the value of the forgone life annuity payments increased. When the authors controlled for the annuity’s money’s worth (measuring how close the annuity was to being actuarially fair), the demand for lump-sum payouts rose when the lump-sum payout was “large” or the incremental life annuity payment “small.” The authors concluded that decisions made in this plan were unsophisticated: retirees apparently valued incremental life annuity payments at less than their
expected present values, either because they could not accurately value the life annuities or because they strongly favored large lump-sum payments.

B. Behavioral Annuitzation Studies

As noted above, our central hypothesis is that the observed reluctance of individuals to annuitize may be the result of their difficulty in valuing annuities, rather than due to a strong preference for non-annuitized wealth. After ruling out many rational reasons, Davidoff et al. (2005) speculated that “limited annuity purchases are plausibly due to psychological or behavioral biases,” but they did not explore this avenue further. The behavioral literature on annuitization remains quite small, with only two papers examining the sensitivity of annuity demand to “framing.” Specifically, Agnew et al. (2008) showed that men and women in an experimental setting could be “steered” toward or away from purchasing annuities, depending on how the product was described. Brown et al. (2008) used an internet survey in which respondents age 50+ were shown either a “consumption” or an “investment” frame, where the former stressed the ability to consume for life, and the latter emphasized guaranteed returns for life. In the consumption frame, the majority (70 percent) elected the annuity, whereas only 21 percent did so when shown the investment presentation. The fact that people were so easily swayed by relatively minor framing changes in these studies is a violation of the “invariance” principle and thus inconsistent with models of rational decision-making.

Overall, we draw two key lessons from the previous literature on annuitization. First, it is difficult to explain low levels of annuitization and variation in the annuitization decision across individuals within a standard neoclassical fully rational optimizing framework. Second, there is some evidence that people are sensitive to framing effects, which suggests that individuals may not have well-defined preferences over annuities. In what follows, we substantially expand on the behavioral literature by providing new evidence that stated preferences for annuities do not conform to the predictions of optimizing behavior.

II. Methodology and Data

A. The Social Security Context

Our experiments, described below in greater detail, use Social Security benefits as the context rather than describing an unfamiliar hypothetical annuity product. This approach has several advantages. First, most workers have an understanding that Social Security pays benefits
to retirees that last for as long as they live (Greenwald et al. 2010; Liebman and Luttmer 2011), which means that respondents will understand the nature of our “offer” to trade off annuities and lump sums. This understanding is important because we seek to evaluate the complexity of the decision-making process, rather than problems people might have understanding a specific annuity product. Second, this context provides a simple way to control for possible concerns about the private annuity market that might influence results, such as the lack of inflation protection (our question makes it clear that Social Security is adjusted for inflation), or concerns about counterparty risk of the insurer providing the annuity. Third, given the ongoing debate about the U.S. long-term fiscal situation, our setting is highly policy-relevant. For example, past discussions of possible pension reforms around the world, as well as at the state and local levels in the U.S., have included proposals to partially “buy out” benefits by issuing government bonds to workers in exchange for a reduction in their annuitized benefits. Several private sector firms have also recently offered to buy back defined benefit pension annuities from retirees in exchange for lump sums (c.f., Wayland 2012).

B. The American Life Panel

To test how people value their Social Security annuity streams, we fielded a survey between June and August of 2011 using the American Life Panel, a panel of U.S. households that regularly take surveys over the Internet. If, at the recruiting stage, households lacked Internet access, this was provided by RAND. By not requiring Internet access in the recruiting stage, the ALP has an advantage over most other Internet panels when it comes to generating a representative sample. The American Life Panel included about 4,000 active panel members at the time of our experiment. Our survey was conducted over two waves of the ALP to keep the length of each questionnaire within manageable bounds, and we invited ALP participants aged 18 or older to take our survey. If participants indicated they did not think they would be eligible

9 Initially, these households would receive a WebTV allowing them to access the Internet. Since 2008, households lacking Internet access at the recruiting stage have received a laptop and broadband Internet access.

10 We present a more detailed explanation of the ALP in Online Appendix A, along with a brief description of how we estimated Social Security benefits for survey respondents. Our survey instrument is included in Online Appendix B.
to receive Social Security benefits (either on their own earnings records or on those of a current, late, or former spouse), they were asked to assume, for the purposes of the survey, that they would receive Social Security benefits equal to the average received by people with their average age/education/sex characteristics (see Online Appendix B.) Our sample includes 2,112 complete responses for both waves 1 and 2.

Table 1 compares our sample characteristics with those of the same age group in the Current Population Survey (CPS). Our sample is, on average, five years older, has more women, over-represents non-Hispanic whites, is more highly educated, has slightly higher incomes, and has somewhat smaller household sizes than the CPS. The regional distribution is close to that of the CPS. The fact that our sample is more highly educated means that, if anything, our respondents should be in a better position to provide meaningful responses to complex annuity valuation questions, compared to a fully nationally representative sample. Despite the statistically significant differences between the ALP and the CPS, our ALP sample does include respondents from a wide variety of backgrounds. In this sense, we can think of the ALP as broadly representative of the U.S. population.

C. Eliciting Lump-Sum versus Annuity Preferences

To elicit preferences over annuitization, respondents were posed several questions of the following sort:

In this question, we are going to ask you to make a choice between two money amounts. Please click on the option that you would prefer.

Suppose Social Security gave you a choice between:

1. Receiving your expected Social Security benefit of $SSB per month.
2. Receiving a Social Security benefit of $(SSB-X)$ per month and receiving a one-time payment of LS at age Z.

The variable SSB is an estimate of the individual’s estimated monthly Social Security benefit; the variable LS refers to the lump-sum amount; and Z is the individual’s self-reported expected claiming age. For those not currently receiving benefits, the trade-off is posed as a reduction in future monthly Social Security benefits in exchange for a lump sum to be received at that person’s expected claiming age. For those currently receiving Social Security benefits, the questions were modified so as to compare a change in monthly benefits to the receipt of a lump sum in one year. In both cases, the receipt of the lump sum was in the future rather than
immediately; we did this to avoid contaminating the answers with features of hyperbolic discounting. Before asking the annuity trade-off question, we instructed all respondents to “please assume that all amounts shown are after tax (i.e., you don’t owe any tax on any of the amounts we will show you)” and “please think of any dollar amount mentioned in this survey in terms of what a dollar buys you today (because Social Security will adjust future dollar amounts for inflation).” In the trade-off question, we told married respondents, “Benefits paid to your spouse will stay the same for either choice.” Thus, individuals were asked to value a single-life inflation-indexed annuity with no special tax treatment.

In order to probe the reliability of the valuations provided by respondents, we varied the question in a systematic way along two dimensions. First, we elicited how large a lump sum would be required to induce an individual to accept a reduction of (i.e., to sell) a portion of his Social Security income; below we refer to this version of the question with the shorthand “sell.” We also elicited how much the individual would be willing to pay in order to increase his Social Security annuity (the “buy” condition). The difference in responses to these alternative solicitations is a central focus of what follows.

A second dimension along which we varied our questions depended on whether we elicited a compensating variation (CV) – the annuity/lump-sum trade that would keep people at their existing utility level – or an equivalent variation (EV) – the lump-sum amount that would be equivalent in utility terms to a given change in the monthly annuity amount. As we discuss in greater detail below, an analysis of the CV versus EV distinction should allow us to distinguish decision complexity from a simple status quo bias or endowment effect. This is because in the EV version of the questions, the individual had to choose an increment or decrement to his annuity. The status quo was not an option in this scenario.

In practice, we elicited all four measures and designate them as CV-Sell (as in the example above), CV-Buy, EV-Sell, and EV-Buy. The chart below illustrates the essential differences across these four scenarios. We define SSB as the monthly Social Security benefit the individual was currently receiving (if the individual was a current recipient) or was expected to receive in the future (if the individual was not a recipient), and X as the increment (or decrement, if subtracted) to this monthly Social Security benefit. Finally, we set LS as the lump-sum amount offered in exchange for the change in monthly benefits. In essence, this paper is about how individuals trade off X for LS.
Four Variants of the Annuity Valuation Tradeoff Question

<table>
<thead>
<tr>
<th></th>
<th>“Sell”-version</th>
<th>“Buy”-version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Choice A</td>
<td>Choice B</td>
</tr>
<tr>
<td>Compensating Variation (CV)</td>
<td>$SSB-X + LS$</td>
<td>SSB</td>
</tr>
<tr>
<td>Equivalent Variation (EV)</td>
<td>$SSB + LS$</td>
<td>$SSB + X$</td>
</tr>
</tbody>
</table>

Note: SSB stands for current/expected monthly Social Security benefits, X is the amount by which monthly Social Security benefits would change, and LS is a one-time, lump-sum payment. Positive amounts are received by the individual while negative amounts indicate a payment by the individuals. Amounts between square brackets are paid monthly for as long as the individual lives, whereas LS is a one-time payment. The individual is asked to choose between Choice A and Choice B.

The CV-Sell scenario presented individuals with a choice between their current or expected Social Security benefit (SSB), versus a scenario in which their benefit would be reduced by X per month in exchange for receiving a lump sum of LS. The EV-Sell scenario provided a choice between receiving a higher monthly benefit ($SSB + X$) or receiving SSB plus a lump sum of LS. Note that within the Sell scenario, one can obtain EV simply by adding X to each side of the CV trade-off. Given that X=$100 per month in the baseline versions, the change in benefits is modest relative to total monthly income for most individuals. We would therefore expect CV and EV to be comparable, barring strong endowment effects that could be present in the CV formulation but not in the EV formulation (where the status quo was not an option).

Switching to the “Buy” scenarios, the CV-Buy question provided a choice between SSB and a benefit increased by X in exchange for paying LS to Social Security. EV-Buy provided a choice between receiving a lower monthly benefit ($SSB - X$) and paying a lump sum to maintain the existing benefit. Note that in these Buy scenarios, one can obtain CV simply by adding X to each of the EV scenarios. Again, it is worth noting that no status quo option was available in the EV case.

In order to converge on the subjective valuation resulting from any given measure above, the survey used a “branching” approach. For example, we started with a $100 increment to the monthly annuity versus a $20,000 lump sum. Then, based on the individual’s response, we either increased or decreased the amount of the lump-sum payment. By walking each respondent through a multi-stage branching process, we converged on a small range of lump-sum values that
approximated the respondent’s implied subjective valuation of the change in the annuity stream.

Two other studies have employed a similar branching approach in this context, although they were much more limited in focus.11 Cappelletti et al. (2011) used a national survey of Italian households in 2008 to ask whether people would give up half their monthly pension income (assumed to be €1000) in exchange for a lump sum of €60,000, paid immediately. Depending on their responses, individuals were branched to higher or lower lump-sum amounts. That study treated people’s responses as an accurate representation of annuity values, so it did not test whether responses varied with the specific elicitation approach, nor did the authors provide any of the other tests of decision-making complexity that we conduct below. In addition, because of the immediate payment, their study potentially conflated annuity valuation with hyperbolic discounting. Liebman and Luttmer (2011) conducted a 2008 survey on the perceived labor supply incentives in Social Security, and they included in their survey a question asking people for the equivalent variation of a $100/month increase in their Social Security benefits (this is equivalent to our EV-Sell question.) Because that research focused primarily on labor supply issues, those authors did not examine the alternative valuation measures nor investigate the determinants of this valuation. Accordingly, our study is the most comprehensive attempt to elicit annuity preferences in this way and the first to use alternative elicitations to make inferences about decision-making complexity.

\textit{D. Other Sources of Experimental Variation}

For two reasons we also randomized along a number of other dimensions. First, to test whether respondents were taking the survey seriously (as opposed to, say, always choosing option A), we randomized the order of the questions and the order of the options within a question. Second, to provide a further assessment of complexity, we tested for anchoring effects

11 In addition to the two studies discussed in the text, we also note two prior attempts by a subset of the present authors to elicit subjective annuity valuations in experimental modules in the U.S. Health and Retirement Survey. In both cases, errors in the questions or the coding of the responses interfered with analysis. One survey module was fielded in the 2004 HRS asking individuals about their willingness to trade $500 of a hypothetical $1000 monthly Social Security benefit for a lump sum. Although the lump sum amount offered to unmarried individuals was approximately actuarially fair, the amount offered to married couples (a majority of the sample) was far too low. A second experimental module was fielded in the 2008 HRS, but internal coding instructions provided by the HRS to field interviewers led to an inability to distinguish answers at the two extremes, i.e., those who place zero value on an annuity and those who place a very high value on annuities.
as well as whether responses varied with the magnitude of the change in the benefit. Furthermore, we asked a version of the questions designed to control for political risk, to ensure that our results were not driven by this. These factors are discussed in detail after we present the main results.

III. Initial Results: The Distribution of Annuity Valuations

A. The Distribution of CV-Sell Responses

Figure 1 reports the cumulative distribution function (CDF) of the responses to the CV-Sell question shown above. From a theoretical perspective, the choice to start with CV-Sell is arbitrary, i.e., there is no reason to believe that CV-Sell is preferable to the other three elicitation approaches. In selecting one of the four approaches to serve as a baseline for doing additional sensitivity tests along other dimensions (such as starting values and option ordering), we chose CV-Sell over the other three, as it is arguably more “policy relevant.” For example, offering retirees an opportunity to sell their annuity for a lump sum is a transaction that we have observed in the private sector in recent months (e.g., GM offering to offer retirees lump sums in lieu of their pension annuities). The Sell measure is also less likely than the Buy measure to be bounded by people’s access to liquidity.

Given our bracketing of responses, the Figure plots both the upper and lower bounds for each respondent’s annuity valuation. The midpoint of the upper and lower bounds indicates a valuation of $13,750 for a $100-per-month change in Social Security benefits. By comparison, the median actuarial value of this annuity for respondents in our sample is $16,855 (computed using Social Security’s intermediate assumptions of a three percent interest rate and intermediate mortality). This suggests that the median respondent values the annuity somewhat below its actuarial cost. Yet the CDF also reveals quite substantial heterogeneity in respondent valuations. For example, five percent of the sample reports upper-bound valuations of $1,500 or less, levels so low that they are difficult to explain using any “rational” economic model. The exception would be if an individual were virtually certain that he would die in the next year-and-a-half; however, we find that controlling for self-reported health status and survival probabilities does

12 Figure 1 plots valuations only for those individuals who saw the $100 increment first. Other respondents saw higher annuity amounts first, and – as we will discuss below – this anchoring effect led to an even higher valuation.
not eliminate the valuation outliers. At the other extreme, about one-sixth of the respondents reported lower-bound annuity values of $60,000 or higher – nearly four times the actuarial value of the annuity. Moreover, over six percent of the respondents said they would not accept a lump sum of less than $200,000. This is unexpected, since even if someone earned only a 60 basis-point (0.60%) annual return on the $200,000 lump sum, he could replace the $100 per month he was giving up and still have the lump sum of $200,000.

As we discuss in more detail below, these results cannot be explained away by reference to standard concerns about subjective life expectancy or other plausible “rational” explanations, nor can concerns about political risk to Social Security explain our findings.\(^{13}\) In other words, many respondents appear to be having difficulty providing economically meaningful values for the Social Security annuity, at least in the tails of the CDF.

\textit{B. Comparing CV and EV}

As noted above, we obtain the EV-Sell questions by simply adding $100 to both of the options in the CV-Sell questions. Given the small magnitude of the shift, we expect that a fully rational decision-maker would provide quite similar valuations across these two ways of eliciting value. But our evidence is not as conclusive: that is, column 1 of Table 2 shows that CV-Sell and EV-Sell are positively but far from perfectly correlated, as is evident from a regression coefficient of +0.34 obtained by regressing the log of the midpoint value of the response of the EV-Sell question on the log of the midpoint value of the response to the CV-Sell question. It is notable that we asked the CV-Sell and the EV-Sell questions of all respondents but in different

\(^{13}\) We control for political risk in two ways in this study. First, we ask a question assessing individuals’ perceptions about the probability that Social Security benefits will be reduced in the future. Including responses to this question as a control variable in various analyses does not substantially affect our findings. Second, we have a version of our annuity valuation question in which we explicitly instruct individuals not to consider political risk by stating: “\textit{From now on, please assume that you are absolutely certain that Social Security will make payments as promised, and that there is no chance at all of any benefit changes in the future other than the trade-offs discussed in the question below.}” Using the most unbiased comparison available (i.e., comparing the response to the no-political-risk question to the baseline CV-Sell question for those for whom the two questions were asked in different waves of the survey, we find that the response to the no-political-risk question is a statistically insignificant 10 percent lower than the response to the baseline CV-Sell question. Taken literally, this implies a negative risk premium. We believe, however, the more likely explanation is that our question may have had the unintended effect of making political risk more salient, rather than less. Overall, our analysis suggests that the incorporation of political risk does not alter our main findings.
survey waves; thus each individual answered the two questions at least two weeks apart. Given this lag, it is unlikely that the correlation is driven by anchoring or memory effects that could arise if the questions were asked within the same questionnaire.

We randomized the starting values for the lump-sum amounts across individuals rather than within individuals and across questions. It is therefore important to rule out the possibility that correlated responses might be driven by individuals facing starting values that are the same across waves, but different across individuals. We do so in column 2 of Table 2, which shows that, even after controlling for the starting values, the coefficient is virtually unchanged (+0.35 versus +0.34).

Of course, there may be error in these measures, which could bias down estimated correlations even if individuals’ preferences were stable across the CV and EV frames. One way to reduce measurement error is to average across different CV-Sell measures (e.g., our standard CV-Sell with a $100 change, CV-Sell with a $500 change, and so on).14 We do this in column 3 while still controlling for starting values, and we find that the correlation is even higher, with the average CV-Sell coefficient of +0.47. Overall, we view this as evidence that our questions contain meaningful information: even when asked two weeks apart and in slightly different formats (EV versus CV): the two Sell measures are significantly related within individuals.

\textit{C. Comparing Sell and Buy Patterns}

Figure 2 shows the CDF of the CV-Buy results along with those of the CV-Sell. We note that the key difference between these two is that the Sell question asked how much a person would have to be compensated to give up part of his Social Security annuity, whereas the Buy question asked how much he would be willing to pay to increase his Social Security annuity. The figure reveals a striking difference: the distribution of annuity valuations from the CV-Buy solicitation is substantially below that of the CV-Sell. The median midpoint response drops from $13,750 to $3,000, and responses at other points on the distribution drop as well. Although in the CV case this pattern would be consistent with status quo bias (Samuelson and Zeckhauser 1988)

14 As is explained more fully below, we asked the CV-Sell version multiple times to each respondent: for $X=\$100, X=\$500, for $X=\$SSB$ (i.e., the entire amount of the respondent’s Social Security benefits), and for a random X that was a multiple of $100, less than min($SSB-100, 2000), and not equal to 100 or 500. For the other versions, $X=\$100$ was the only version asked. For all versions, we multiply the lump sum reported by the respondent by $(100/X)$ so that all lump sums are amounts per $100 change in the Social Security annuity.
or an endowment effect (Kahneman et al. 1991), we show below that an almost identical shift occurs when we use the EV-Sell and EV-Buy responses – where the status quo is not an option. This suggests that the observed pattern is not due to that bias. Instead, we believe that when faced with a trade-off that is difficult to value, people adopt a simple heuristic of asking a high price to sell and bidding low to buy. This may occur when people are uncertain about the values of the options presented and hence seek to ‘cover’ themselves by agreeing to a transaction only if the alternative appears very attractive. We refer to this as a “buy low, sell high” heuristic.

To rule out the possibility that answers might be driven by liquidity constraints, we also asked respondents about their ability to come up with the money needed for the lump sum if they had to. We find that the vast majority (91 percent) indicated their choice was not due to liquidity constraints.15 Further, the clear divergence in valuations persists even when we focus on the non-liquidity constrained sample.

Figure 3 shows the CDF distributions using our EV measures, i.e., EV-Sell and EV-Buy. As with the CV versions of the questions, we see a higher average valuation for the Sell variant (median = $12,500) than for the Buy variant (median = $3,000). As noted, this is important because the EV measures do not provide respondents with a status quo option: they only have the choice between receiving (paying) a lump sum or receiving a higher (lower) annuity.

Although Figures 1–3 reveal large differences in the distributions of responses between Sell and Buy valuations, they do not depict whether within-person responses to these alternative valuation measures are correlated. Hence, we cannot tell whether the entire distribution is shifting to the left, or whether the same individuals are also changing their positions in the distribution depending on whether they see a Sell or Buy measure. We analyze this question further in columns 4-5 of Table 2. In column 4, we regress CV-Buy on CV-Sell, again

15 Specifically, we asked whether the respondent could come up with $5,000 “if you had to” and, separately, whether he could come up with the lump sum needed to purchase the higher annuity. The time frame for accessing the money was the same time frame as in the annuity valuation question, namely one year from now or the respondent’s expected claim date, whichever was later. About two-thirds of the respondents answered that they were certain they could come up with $5,000, and over 90 percent responded that they could come up with the amount probably or certainly. About 82 percent of respondents indicated that they could come up with the lowest lump sum amount that they declined to pay. Of the 18 percent that indicated they could not come up with this amount, half said that even if they had the money, they would decline to pay the lump sum. Thus, for 91 percent of the respondents, liquidity constraints were not the reason for the low reported annuity valuation in the CV-Buy trade-off question.
controlling for the starting value: the coefficient estimate is negative (-0.14) and statistically significant. In column 5, we report the correlation of the average Sell value with the average Buy value (with averages taken across CV and EV to reduce measurement error), again conditioning on the starting value; this yields a strongly significant negative coefficient estimate of -0.28. In other words, those placing a high value on their $100 monthly annuity when asked to sell it are also those unwilling to spend much to buy an additional $100 annuity flow.

The negative correlation also suggests substantial movement within the distributions, rather than just a downward shift for everyone when we move from a Sell to a Buy elicitation method. Further analysis (not detailed here) suggests that this movement is far from random; rather, some people provide responses to the Sell and Buy questions that are coherent, while others require a much larger lump sum to give up an annuity compared to the lump sum that they are willing to pay to obtain the annuity.

To further assess response heterogeneity, column 6 of Table 3 interacts the correlations with an index of financial literacy, measured as the sum of correct answers to the three questions devised for the Health and Retirement Study (Lusardi and Mitchell, 2007) and used in the ALP to rate respondents’ financial literacy levels. Consistent with our hypothesis that the discrepancy between Sell and Buy is driven by heterogeneous responses to this complex decision, we find that that the wedge between the responses is much greater for those with lower levels of financial literacy. Specifically, the regression coefficient is -0.60 for those with the lowest level of financial sophistication. The interaction term is +0.16, suggesting that, among the most literate individuals (who answer all three questions correctly and for whom the financial literacy index equals 3), the coefficient is a much smaller and only marginally significant -0.12.

IV. Further Results
A. Are the Responses Meaningful?

In view of the implausible values in the tails of the distributions and the negative correlation across Sell and Buy valuations, some might surmise that a subset of respondents

16 Although not reported in this table, we have also confirmed that other combinations of Sell and Buy are negatively correlated (e.g., EV-Sell and EV-Buy, or CV-Sell and EV-Buy).

17 The three questions test for an understanding of inflation, compound interest, and risk diversification.
might not have taken the survey seriously (or perhaps did not understand it).

Nevertheless, we have already shown that there is information contained in the elicited valuations: respondents provide consistent responses to similarly constructed offers (e.g., CV-Sell and EV-Sell) despite being asked in different waves two weeks apart. Additionally, as part of our experimental design, we included two additional sources of variation solely designed to test whether responses were meaningful. Specifically, we randomized the order of the scenarios to which people were exposed. We also randomized the order of the options within a question (i.e., whether the lump-sum increment was the first or the second response). If the order of the questions or the order of the options within the questions mattered, this would suggest that individuals had difficulty with the survey itself. The next set of regressions controls for these indicators.

B. Sensitivity to Anchoring and Starting Values

We also incorporated two sources of experimental variation designed to further test for the effects of complexity in the decision-making process. First, we varied the starting value for the size of the lump sum, randomizing among $10,000, $20,000 and $30,000. Second, in the CV-Sell case, we varied the order of size of the increment of the monthly benefit. Specifically, we presented the CV-Sell version multiple times to each respondent: for \(X=100 \), \(X=500 \), for \(X=\text{SSB} \) (i.e., the entire amount of the respondent’s Social Security benefits), and for a random \(X \) that was a multiple of $100, less than min($SSB-100, 2000), and not equal to 100 or 500. We also randomized whether we asked the CV-Sell with the Xs arranged in increasing order or with the Xs arranged in decreasing order. We control for this randomization in the regressions (i.e., whether people were shown values from small-to-large or large-to-small).

All four of these randomizations (two used to test for meaningfulness of responses and two for complexity) were conducted independently. A simple correlation analysis (not detailed here) confirmed that this randomization was indeed done correctly, such that variation along each dimension was orthogonal to the variation along the other dimensions.

\[\text{18} \text{ In the mechanism design literature on contingent valuation, concerns of this type are often referred to as being about whether the choices are consequential. The concern is that if respondents do not believe their survey responses are consequential, they may not dedicate effort to the survey.} \]

\[\text{19} \text{ We first randomized at the individual level whether CV-Sell was asked in the first or second wave of our survey. CV-Buy, EV-Sell, and EV-Buy were asked in the other wave of the survey. Within the wave in which CV-Buy, EV-Sell, and EV-Buy were asked, we randomized their order over each of the six possible orderings.} \]
C. Results of these Extensions

If our hypothesis is correct – that many respondents found the annuity valuation problem complex – then we would expect to find that people would be sensitive to irrelevant cues such as starting values and the variation size order. Conversely, we do not necessarily expect that the order of the scenarios or the options would matter for complex decisions, as long as the respondent tried to answer the questions. Our hypotheses are analyzed in the first column of Table 3, where we regress the log midpoint of our baseline CV-Sell variable (using a $100 variation in Social Security benefits) against the four variables capturing all sources of randomization.\footnote{We do this analysis on the CV-Sell version because only the CV-Sell version asks for different increment sizes of the Social Security amount. This means that we can randomize the order in which the increment sizes are shown only for the CV-Sell version.}

Results are consistent with our complexity hypothesis. First, there is no evidence that individuals simply elected the first option shown (i.e., there is no effect of “Lump sum shown last”), giving some comfort that the respondents did take care in answering the questions. Relatedly, it does not matter whether the question was asked in the first or second wave (i.e., “Asked in wave 1” has a small and insignificant coefficient estimate). Second, there is bias with respect to both of the other measures, as would be expected if individuals had difficulty making a complex decision: specifically, the starting value had a statistically significant coefficient of +0.37. Because both the annuity valuation and the starting value are measured in logs, this means that increasing the first lump-sum amount shown by 10% raised respondents’ valuations by an average of around 3.7%. Furthermore, when the CV-Sell question was shown after a CV-Sell question with a larger change in Social Security benefits (so the order was large-to-small), respondents reported a 0.7 log-point higher average valuation of the annuity than if the baseline CV-Sell question was seen first.

In columns 2 and 3, we divide the sample into groups based on financial literacy scores. Specifically, column 2 reports results for the more financially literate respondents (i.e., the 35% of respondents answering all three financial literacy questions correctly), and column 3 reports results for the less financially literate (i.e., the remaining 65%). Interestingly, the better-informed were much less likely to be influenced by the irrelevant cues of starting values and the ordering of the variation size, whereas the less-informed were far more sensitive. Column 4 includes the
full sample but now we interact financial literacy with our randomization measures. Results confirm that the less financially literate respondents were substantially more sensitive to the randomly-selected parameters in the questions, particularly the starting values used to launch the lump-sum question series.

D. Explaining Annuity Valuations

The reason that life annuities play such an important role in life-cycle economic models is that they provide a cost-effective way to smooth consumption by insuring against longevity risk. Although numerous papers (detailed above) have calculated the welfare gains associated with annuitization, there is conflicting evidence on the extent to which real-world individuals actually value these insurance aspects. On one hand, Brown (2001) showed that a utility-based measure of annuity valuation (the “annuity equivalent wealth” or AEW) is correlated with a binary measure of intended annuitization of asset balances. Yet he also pointed out that, although the variable was statistically significant, it could not account for all variation in the annuity decision. Büttler and Teppa (2007) documented similar findings in the Swiss system. On the other hand, Brown et al. (2008) suggested that, because the U.S. retirement system is so focused on wealth accumulation rather than retirement payouts, people have been conditioned to think about annuities in simple financial terms rather than as insurance contracts providing lifelong consumption-smoothing benefits. This latter view is consistent with research showing that individuals resort to simplified decision-making heuristics in the face of complex decisions (Benartzi et al. 2011).

Accordingly, we expect that when individuals confront trade-offs of the type presented in our survey, they find it difficult to sort through the lifetime utility implications and instead resort to thinking in simpler financial terms. To test this hypothesis, we run a regression of annuity valuations against various determinants of annuity demand in our data. Column 1 of Table 4 regresses the average CV valuation against the actuarial value of the annuity offer presented (which varied by cohort, age at annuitization, and sex; it also assumed a real interest rate of three percent). We also include controls for age, age squared, sex, marital status, race and ethnicity. The actuarial value term has a coefficient of 1.02, suggesting that there is approximately a one-

21 We use the CV versions because, unlike the EV versions, they were asked in different waves of the survey. We take the average of CV-Sell and CV-Buy because there is no a priori reason to consider one more credible than the other.
for-one correspondence between the annuity’s actuarial value and the individuals’ subjective valuations of the annuity. Column 2 replaces the actuarial value with an AEW following the methodology of Brown (2001). This is the theoretical value of the annuity we derive from a parameterized life-cycle model with variation coming from age at annuitization, mortality differences by cohort and sex, marital status (which determines whether it is a single or joint life optimization), risk aversion, current levels of non-annuitized wealth, current annuitized wealth, and interactions of these variables through the utility-maximizing model. We find that the coefficient on this theoretical, utility-based annuity value in column 2 is not significantly different from zero, though it is highly significantly different from one. In columns 3 and 4, we repeat this analysis using a more control variables, and we obtain very similar results.

Table 5 repeats the regressions from column 1 of Table 4 in rows 1-5, but it uses alternative measures of subjective annuity valuation as the dependent variable. Similarly, rows 6-10 repeat the column 3 regressions from Table 4; rows 1-5 and 6-10 only differ in the number of controls included in the regressions. We report the coefficient on the actuarial value of the annuity as well as the Root MSE and regression R-squared (in the interest of space). In rows 1-5, we note that for all four ways of eliciting annuity valuations, the coefficient on the actuarial value is approximately one (specifically, we cannot reject that it is one and we can reject that it is zero). Rows 6-10 show that including more controls lowers the estimated coefficient of the log actuarial value, but we cannot reject the null that the true parameter equals one. Overall, we view these results as being consistent with individuals using simpler financial decision rules (e.g., “How long will it take me to breakeven?”) rather than taking into account the more complex consumption-smoothing and insurance considerations.

Another conclusion from Table 5 is that the R-squares are very low: that is, even though subjective annuity valuations are significantly correlated with actuarial values, our ability to explain the overall variation in the annuity decision is quite small. The R-squares range from a low of 0.025 for the EV-Sell measure with a limited number of controls, to a high of 0.118 for the CV-Sell measure with an extended set of controls. These findings are consistent with prior

22 In results not detailed here, when we include both the actuarial value and the utility-based measure, we continue to find that the coefficient on the actuarial value is approximately one and that the utility-based measure is insignificant.

23 Definitions and summary statistics of these control variables are given in Online Appendix Table A.1.
studies (e.g., Brown 2008) which also found it difficult to account for the observed variation in annuitization decisions.

Table 6 reports coefficient estimates on the annuity valuations for respondents based on their financial sophistication. We employ three such measures: (1) the financial literacy index used above; (2) the degree of coherence in the EV-Sell and EV-Buy measures (which can then be used as independent variables in the regression of CV measures); and (3) the respondent’s level of education. We report the coefficients as well as the root mean squared error (MSE) for each specification. Although the coefficients differ across the subgroups, none of the coefficients differs significantly between the most and least financially sophisticated subgroups, and the null of a coefficient equal to one cannot be rejected for any subgroup. Even more interesting is the magnitude of the root MSE: this is much higher for less financially sophisticated individuals. Recalling that our dependent variable is in logs, these differences are economically meaningful. For example, the root mean squared distance from the regression line for non-college graduates is nearly 0.3 log-points above that for the college educated. Hence decisions made by less financially sophisticated individuals appear to be substantially noisier than for their more sophisticated counterparts, again consistent with our complexity explanation.

V. Discussion and Conclusions

This paper offers support for the hypothesis that many people find the annuitization decision quite complex, and this complexity can help explain the observed low levels of annuity purchases. Specifically, we find that consumers tend to value annuities less when given the opportunity to buy more, but they appear to value them more highly when given the opportunity to sell annuities in exchange a for lump sum. Because this finding holds even when no status quo option is available, we believe that this finding is not driven by standard status quo or endowment effects. Instead, our results are consistent with people being strongly reluctant to trade (buy or sell) a product when they have trouble ascertaining its value. Valuing an annuity is particularly complex inasmuch as it involves both uncertainty and events that will unfold far in the future. As a result, individuals are only willing to buy or sell an annuity when it is an exceptionally good deal, and this tendency is strongest among the least financially sophisticated. We also show that complexity matters, including the fact that people are sensitive to framing and starting values, and that the cross-sectional variation in subjective annuity valuations is
correlated with the relatively simple actuarial value, but not with the more complex, theoretical, utility-based value.

Evidence that decision complexity could limit annuity demand has a number of important implications for future retirement security research. First, such a finding may raise doubts about whether consumers are able to make utility-maximizing choices when confronted with the decision about whether to buy longevity protection in real-world situations. If individuals find these decisions to be complex, this could help assess various policy interventions such as providing better information, changing the default option in the typical DC plan to partial annuitization, or mandating some measure of compulsory annuitization.

Second, our findings imply that observers must be very careful when drawing conclusions about individual welfare based on observed behavior (i.e., “revealed preference”) involving annuities and quite possibly other complex financial products (e.g. long-term care insurance). For example, the fact that so few people annuitize their defined contribution pension balances when given the opportunity to do so cannot be interpreted as conclusive evidence that they do not value longevity protection.

In addition to advancing our academic understanding of consumer behavior in this area, our results also have considerable policy relevance. The U.S. Social Security system is on a fiscally unsustainable path that will require increasing revenue or curtailing benefit growth in the not-too-distant future (Cogan and Mitchell 2003). As policymakers evaluate alternative approaches to system-wide reform, it will be critical to understand how individuals actually value the system’s mandatory old-age annuity payments, and how this perceived value is affected by the nature and the framing of the trade-off presented. Our findings may also be relevant to those concerned with U.S. state and local pension plan underfunding (e.g., Novy-Marx and Rauh 2011). Policymakers are currently debating how to reform these plans, perhaps by implementing defined contribution offerings with payout annuities (c.f., Gale et al. 2008). More generally, our results are relevant for policymakers around the globe who are considering ways of providing longevity protection in a rapidly aging world.
References

Figure 1: CDF of "CV-Sell" for a $100/month Additional Social Security Annuity

Lump Sum Compensating for a $100/month Change in Social Security Benefits

Median: $13,750
Figure 2: CDF of Willingness to Buy versus Willingness to Sell a $100/month Additional Social Security Annuity

Median: $13,750

Median: $3,000

Lump Sum Compensating for a $100/month Change in Social Security Benefits
Figure 3. CDF of Equivalent Variation of a $100/month Additional Social Security Annuity

Lump Sum Equivalent to a $100/month Change in Social Security Benefits
Table 1: Characteristics of the ALP Sample

<table>
<thead>
<tr>
<th></th>
<th>ALP Sample Mean</th>
<th>CPS Mean</th>
<th>Difference ALP-CPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>51.4</td>
<td>46.2</td>
<td>5.19 ***</td>
</tr>
<tr>
<td>Age: 18-34</td>
<td>0.16</td>
<td>0.31</td>
<td>-0.15 ***</td>
</tr>
<tr>
<td>Age: 35-49</td>
<td>0.25</td>
<td>0.27</td>
<td>-0.02</td>
</tr>
<tr>
<td>Age: 50-64</td>
<td>0.41</td>
<td>0.25</td>
<td>0.16 ***</td>
</tr>
<tr>
<td>Age: 65+</td>
<td>0.18</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Female</td>
<td>0.58</td>
<td>0.51</td>
<td>0.07 ***</td>
</tr>
<tr>
<td>Married</td>
<td>0.60</td>
<td>0.54</td>
<td>0.07 ***</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>0.80</td>
<td>0.68</td>
<td>0.12 ***</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>0.08</td>
<td>0.12</td>
<td>-0.04 ***</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.09</td>
<td>0.14</td>
<td>-0.05 ***</td>
</tr>
<tr>
<td>Other Race/Ethnicity</td>
<td>0.03</td>
<td>0.07</td>
<td>-0.03 ***</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School Dropout</td>
<td>0.02</td>
<td>0.13</td>
<td>-0.11 ***</td>
</tr>
<tr>
<td>High School</td>
<td>0.16</td>
<td>0.30</td>
<td>-0.14 ***</td>
</tr>
<tr>
<td>Some College</td>
<td>0.37</td>
<td>0.28</td>
<td>0.09 ***</td>
</tr>
<tr>
<td>Bachelor's Degree</td>
<td>0.25</td>
<td>0.18</td>
<td>0.07 ***</td>
</tr>
<tr>
<td>Professional Degree</td>
<td>0.19</td>
<td>0.10</td>
<td>0.10 ***</td>
</tr>
<tr>
<td>Ln Family Income</td>
<td>10.89</td>
<td>10.77</td>
<td>0.13 ***</td>
</tr>
<tr>
<td>Family Income: Below 25k</td>
<td>0.18</td>
<td>0.24</td>
<td>-0.07 ***</td>
</tr>
<tr>
<td>Family Income: 25k-50k</td>
<td>0.27</td>
<td>0.24</td>
<td>0.04 ***</td>
</tr>
<tr>
<td>Family Income: 50k-75k</td>
<td>0.21</td>
<td>0.18</td>
<td>0.03 ***</td>
</tr>
<tr>
<td>Family Income: 75k-100k</td>
<td>0.13</td>
<td>0.12</td>
<td>0.01 **</td>
</tr>
<tr>
<td>Family Income: Above 100k</td>
<td>0.21</td>
<td>0.23</td>
<td>-0.02 *</td>
</tr>
<tr>
<td>Household size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size of one</td>
<td>0.22</td>
<td>0.14</td>
<td>0.08 ***</td>
</tr>
<tr>
<td>Household size of two</td>
<td>0.36</td>
<td>0.33</td>
<td>0.03 ***</td>
</tr>
<tr>
<td>Household size of three</td>
<td>0.15</td>
<td>0.19</td>
<td>-0.04 ***</td>
</tr>
<tr>
<td>Household size of four +</td>
<td>0.27</td>
<td>0.33</td>
<td>-0.06 ***</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>0.17</td>
<td>0.18</td>
<td>-0.02 *</td>
</tr>
<tr>
<td>Midwest</td>
<td>0.24</td>
<td>0.22</td>
<td>0.02 **</td>
</tr>
<tr>
<td>South</td>
<td>0.35</td>
<td>0.37</td>
<td>-0.01</td>
</tr>
<tr>
<td>West</td>
<td>0.24</td>
<td>0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Observations</td>
<td>2,112</td>
<td>146,785</td>
<td></td>
</tr>
</tbody>
</table>

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. In both the ALP and the CPS the sample is restricted to those age 18 and older. The ALP sample was collected between June and August of 2011. The CPS data are from March 2011 and use CPS person weights; the ALP data are unweighted.
Table 2. Associations between Annuity Valuation Measures in the ALP

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5) Mean of CV-Buy and EV-Buy</th>
<th>(6) Mean of CV-Buy and EV-Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV-Sell</td>
<td>0.34***</td>
<td>0.35***</td>
<td>-0.14***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV-Sell, mean of all variations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>Mean of CV-Sell and EV-Sell</td>
<td>-0.28***</td>
<td>-0.60***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of CV-Sell and EV-Sell × Financial literacy index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>Financial literacy index</td>
<td>-0.14***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>Control for start value</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Control for ordering of CV-Sell</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>R²</td>
<td>0.099</td>
<td>0.107</td>
<td>0.125</td>
<td>0.031</td>
<td>0.051</td>
<td>0.063</td>
</tr>
<tr>
<td>N</td>
<td>2,068</td>
<td>2,068</td>
<td>2,085</td>
<td>2,065</td>
<td>2,105</td>
<td>2,105</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%. OLS regressions of dependent variables are listed in column headings and explanatory variables in the rows. The annuity valuation measures CV-Sell, CV-Buy, EV-Sell, and EV-Buy are defined in the text. All valuations are expressed in logs of the midpoint between the upper and lower bounds. The baseline CV-Sell measure is the lump-sum amount given to the individual that would exactly compensate the individual for a $100 decrease in monthly Social Security benefits. The variable "CV-Sell, mean of all variations" is the average of all the CV-Sell measures, including measures that ask for changes in monthly Social Security benefits other than $100 per month. Each CV-Sell measure is scaled such that it is the annuity valuation per $100 change in monthly Social Security benefits. The Financial literacy index equals the number of correct answers to three financial literacy questions mentioned in the text. In the interaction term (Mean of CV-Sell and EV-Sell) × (Financial Literacy Index), the term "Mean of CV-Sell and EV-Sell" is demeaned so that the coefficient on the Financial literacy index can be interpreted as the effect of financial literacy on a person with an average value of "Mean of CV-Sell and EV-Sell."
Table 3: Effect of Randomizations and Interactions with Financial Literacy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Entire sample</th>
<th>Most financially literate</th>
<th>Least financially literate</th>
<th>Entire sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of starting value</td>
<td>0.37***</td>
<td>0.18</td>
<td>0.48***</td>
<td>0.98***</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.11)</td>
<td>(0.10)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Asked after larger version</td>
<td>0.70***</td>
<td>0.57***</td>
<td>0.75***</td>
<td>0.74***</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.08)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Asked in wave 1</td>
<td>0.04</td>
<td>-0.07</td>
<td>0.11</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Lump sum option shown last</td>
<td>0.09</td>
<td>0.01</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Log of starting value × Financial literacy index</td>
<td></td>
<td></td>
<td></td>
<td>-0.28***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.11)</td>
</tr>
<tr>
<td>Asked after larger version × Financial literacy index</td>
<td></td>
<td></td>
<td></td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>Asked in wave 1 × Financial literacy index</td>
<td></td>
<td></td>
<td></td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>Lump sum option shown last × Financial literacy index</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>Financial literacy index</td>
<td></td>
<td></td>
<td></td>
<td>-0.14***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.062</td>
<td>0.043</td>
<td>0.074</td>
<td>0.072</td>
</tr>
<tr>
<td>N</td>
<td>2,090</td>
<td>726</td>
<td>1,364</td>
<td>2,090</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. * significant at 10%, ** significant at 5% *** significant at 1%. Each column contains an OLS regression of the baseline CV-Sell measure on the explanatory variables listed in the rows. The baseline CV-Sell measure is the lump-sum amount given to the individual that would exactly compensate the individual for a $100 decrease in monthly Social Security benefits. CV-Sell is expressed in logs of the midpoint between the upper and lower bounds. The starting value for the annuity valuation was randomized at $10,000, $20,000, or $30,000. "Asked after larger version" equals one if the baseline CV-Sell measure was asked after a CV-Sell question where Social Security benefits were varied by more than $100. Whether this occurred was randomized. "Asked in wave 1" is a dummy variable that equals one if the CV-Sell question was asked in the first wave and "Lump sum option shown last" is a dummy variable that equals one if the option involving the lump sum amount was shown after the alternative option. Both dummy variables were randomized. The Financial Literacy index equals the number of correct answers to three financial literacy questions, and those getting all three questions correct are categorized as most financially literate. All variables interacted with the financial literacy index are de-meaned so that the coefficient on the financial literacy index can be interpreted as the effect of the financial literacy index when the interaction variables are at their sample means.
Table 4: Explaining Annuity Valuations

<table>
<thead>
<tr>
<th>Explanatory Variables</th>
<th>Dep. Variable: Mean of CV-Sell and CV-Buy (in logs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Log actuarial value</td>
<td>1.02****</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
</tr>
<tr>
<td>Log theoretical utility-based annuity value</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
</tr>
<tr>
<td>Age</td>
<td>-0.05***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>Age squared/100</td>
<td>0.06***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Married</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Black</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.34***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
</tr>
<tr>
<td>Other</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>Education Index, 1-5 scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.03</td>
</tr>
<tr>
<td>Log family income</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
</tr>
<tr>
<td>Owns an annuity</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Owns home</td>
<td>-0.16*</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
</tr>
<tr>
<td>Log financial wealth</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>Self-reported health index, 1-5 scale</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>Ever had kids</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Risk aversion (standardized)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>Precaution (standardized)</td>
<td>-0.07**</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>Expects returns greater than 3% p.a.</td>
<td>0.10*</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Confident SS will pay promised benefits, 1-4 scale</td>
<td>1.02***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>Controls for experimental variation</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.060</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2065</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors between parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%. Each column contains an OLS regression of annuity valuation (mean of log CV-Sell and log EV-Sell) on the explanatory variables listed in the rows. CV-Sell is the lump-sum amount given to the individual that would exactly compensate the individual for a $100 decrease in monthly Social Security benefits. EV-Sell is the lump sum given to the individual that the individual finds equivalent to a $100 increase in monthly Social Security benefits. All regressions also include controls for missing values of explanatory variables and controls for experimental variation, namely: log of starting value, asked after larger version, asked in wave 1, lump-sum option shown last. To calculate the theoretical utility-based value, we solve the lifecycle dynamic programming problem for a household that matches the respondent on age, gender, marital status, spousal age (if married), start date of the annuity, financial wealth, existing annuity wealth, and coefficient of risk aversion. We solve this lifecycle dynamic programming problem twice, once for the CV-Sell equivalent wealth and once for the EV-Sell equivalent wealth. We take the log of both amounts and average them. The education index equals 1 for high school dropouts, 2 for high school graduates, 3 for some college, 4 for bachelor's degree, and 5 for professional degree.
Table 5: Robustness of the Predictive Power of Actuarial Value

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Coefficient on log actuarial value</th>
<th>p-value on coefficient=1 Controls</th>
<th>Root MSE</th>
<th>R-squared</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mean of CV-Sell and CV-Buy</td>
<td>1.02*** (0.25)</td>
<td>0.940 Basic</td>
<td>1.187</td>
<td>0.060</td>
<td>2065</td>
</tr>
<tr>
<td>2. CV-Sell</td>
<td>1.05*** (0.34)</td>
<td>0.883 Basic</td>
<td>1.496</td>
<td>0.087</td>
<td>2090</td>
</tr>
<tr>
<td>3. CV-Buy</td>
<td>0.98** (0.44)</td>
<td>0.955 Basic</td>
<td>2.026</td>
<td>0.037</td>
<td>2086</td>
</tr>
<tr>
<td>4. EV-Sell</td>
<td>0.74** (0.37)</td>
<td>0.492 Basic</td>
<td>1.692</td>
<td>0.025</td>
<td>2089</td>
</tr>
<tr>
<td>5. EV-Buy</td>
<td>0.84* (0.48)</td>
<td>0.734 Basic</td>
<td>2.140</td>
<td>0.033</td>
<td>2082</td>
</tr>
<tr>
<td>6. Mean of CV-Sell and CV-Buy</td>
<td>0.84*** (0.26)</td>
<td>0.536 Extensive</td>
<td>1.180</td>
<td>0.080</td>
<td>2065</td>
</tr>
<tr>
<td>7. CV-Sell</td>
<td>0.63* (0.34)</td>
<td>0.281 Extensive</td>
<td>1.478</td>
<td>0.118</td>
<td>2090</td>
</tr>
<tr>
<td>8. CV-Buy</td>
<td>1.03** (0.45)</td>
<td>0.945 Extensive</td>
<td>2.012</td>
<td>0.061</td>
<td>2086</td>
</tr>
<tr>
<td>9. EV-Sell</td>
<td>0.36 (0.38)</td>
<td>0.095 Extensive</td>
<td>1.680</td>
<td>0.049</td>
<td>2089</td>
</tr>
<tr>
<td>10. EV-Buy</td>
<td>0.96* (0.49)</td>
<td>0.930 Extensive</td>
<td>2.129</td>
<td>0.053</td>
<td>2082</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. * significant at 10%, ** significant at 5% *** significant at 1%. Each row contains an OLS regression of the log annuity valuation measure listed in column 1 on the log actuarial value and additional controls. The annuity valuation measures CV-Sell, CV-Buy, EV-Sell, EV-Buy are defined in the text. All valuations are expressed in logs of the midpoint between the upper and lower bounds. Additional controls in rows 1-5 are those in specification 1 of Table 4 whereas the additional controls in rows 6-10 are those in specification 3 of Table 4. Rows 1 and 6 replicate columns 1 and 3 of Table 4, respectively.
Table 6: Predictive Power of Actuarial Value by Measures of Financial Sophistication

<table>
<thead>
<tr>
<th>Dependent variable: Mean of CV-Sell and CV-Buy</th>
<th>Coefficient on log actuarial value</th>
<th>p-value on coefficient=1</th>
<th>Controls</th>
<th>Root MSE</th>
<th>R-squared</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample split by financial literacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most financially literate</td>
<td>0.93** (0.40)</td>
<td>0.854 Basic</td>
<td>1.085</td>
<td>0.050</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>Least financially literate</td>
<td>0.99*** (0.33)</td>
<td>0.969 Basic</td>
<td>1.239</td>
<td>0.069</td>
<td>1342</td>
<td></td>
</tr>
<tr>
<td>p-value on test that coefficients are the same</td>
<td>[0.914]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sample split by EV coherence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most EV coherent</td>
<td>0.40 (0.33)</td>
<td>0.068 Basic</td>
<td>0.812</td>
<td>0.137</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>Least EV Coherent</td>
<td>1.28*** (0.33)</td>
<td>0.397 Basic</td>
<td>1.327</td>
<td>0.056</td>
<td>1385</td>
<td></td>
</tr>
<tr>
<td>p-value on test that coefficients are the same</td>
<td>[0.058]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sample split by educational attainment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor's degree or more</td>
<td>1.47*** (0.32)</td>
<td>0.141 Basic</td>
<td>1.023</td>
<td>0.084</td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>Some college or less</td>
<td>0.61 (0.38)</td>
<td>0.308 Basic</td>
<td>1.303</td>
<td>0.055</td>
<td>1149</td>
<td></td>
</tr>
<tr>
<td>p-value on test that coefficients are the same</td>
<td>[0.056]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. * significant at 10%, ** significant at 5% *** significant at 1%. Here we estimate specification 1 of Table 4 by subsample. Each row contains an OLS regression of the log annuity valuation (mean of CV-Sell and CV-Buy) on the log actuarial value and additional controls. Additional controls are those in specification 1 of Table 4. Financial literacy is defined by the number of correct answers to three financial literacy questions, and those getting all three questions correct are categorized as most financially literate. EV coherence measures the similarity between the EV-Sell and the EV-Buy valuation. Those for whom the log difference between EV-Sell and EV-Buy falls in the bottom tercile are categorized as most EV coherent.