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ABSTRACT

Taking advantage of unique longitudinal data, we provide the first characterization of what college
students believe at the time of entrance about their final major, relate these beliefs to actual major
outcomes, and, provide an understanding of why students hold the initial beliefs about majors that
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final major is best viewed as the end result of a learning process. We find that students enter school
quite optimistic/interested about obtaining a science degree, but that relatively few students end up
graduating with a science degree. The substantial overoptimism about completing a degree in science
can be attributed largely to students beginning school with misperceptions about their ability to perform
well academically in science.
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1See Daymont and Andrisani (1984), Grogger and Eide (1995), Hamermesh and Donald (2008), Loury
(1997), Loury and Garman (1995), and James, Nabeel, Conaty and To (1989).

2This desire has received much attention. See, for example, “Why Science Majors Change Their Minds
(It’s just so darn hard).” NY Times, November 4, 2011.

3For other work recognizing the importance of learning in determining educational outcomes see, for
example, Manski 1989; Altonji 1993; Carneiro, Hansen and Heckman 2003; Cunha, Heckman and Navarro 2005.
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Section I.  Introduction

It is well known that lifetime earnings are influenced strongly by a student’s college major.1

Further, certain disciplines, such as math and other sciences, are viewed as being particularly important for

the future path of the economy (COSEPUP, 2007).  Then it is not surprising that policymakers often

express a desire to influence the number of graduates in certain majors.2  Nonetheless, much remains

unknown about how college majors are determined.  In this paper we use a unique combination of survey

and administrative data to provide new evidence about this issue. 

We provide the first characterization of what students believe at the time of college entrance about

whether they will graduate and their majors at graduation if they do graduate, relate these beliefs to realized

graduation and major outcomes, and, of interest given important differences found between beliefs and

outcomes, provide an understanding of why students hold the “initial” beliefs about outcomes that they do. 

Our motivation for focusing on initial beliefs comes from the reality that, when a student’s final major is

viewed as the end result of a process in which he learns about the quality of his match with each possible

major (Arcidiacono, 2004), an understanding of initial beliefs serves as the necessary foundation for any

comprehensive understanding of how college majors are determined.3 The fundamental importance of

initial beliefs is apparent if one considers that institutional rules related to flexibility in major choice, the

timing of major declaration, and the nature/number of required and elective courses vary dramatically

across institutions (both within and across countries) and represent a natural policy lever. In theory, these

institutional rules may have a substantial impact on a student’s ability/propensity to experiment with

different subject areas, and, as a result, may have a large impact on the distribution of major outcomes.

However, in practice, the impact of institutional rules will depend critically on beliefs at entrance. If

students are well informed about their abilities or other major-specific factors that influence their choice of

major, then institutional rules may have little effect. However, if much uncertainty exists about these

factors or if systematic bias exists in beliefs about these factors, then institutional rules may have an

important impact.

That virtually nothing is known about initial beliefs can be attributed primarily to the difficulty of

obtaining data that are ideal for providing the type of evidence described in the previous paragraph.  For
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illustration focusing on college major (rather than dropout), characterizing beliefs at entrance about major

outcomes is arguably best achieved through the use of carefully worded survey questions that allow a

student to express uncertainty about the object of ultimate interest - his “final” major at the time of

graduation.  Relating these initial beliefs to realized major outcomes requires administrative data at the

time that each student finishes school. Finally, natural guidance for an investigation into why students hold

particular initial beliefs about their final major comes from a learning model of major choice in which

students enter school with beliefs about major-specific factors (e.g., the grade performance or future

income associated with each major) and in which uncertainty about one’s final major arises because

individuals have the opportunity to update their beliefs about these factors before making a final major

decision. This conceptual framework suggests the need for substantial additional data which, for example:

1) characterize beliefs about major-specific factors at entrance, 2) describe the extent to which beliefs

about major-specific factors are updated during school, 3) provide an understanding of the determinants of

these updates, and 4) describe what beliefs about major-specific factors would be consistent with, for

example, actual observed grade performance in the sample or actual observed future income in the sample. 

Thus, a thorough examination of beliefs at the time of entrance requires both detailed survey data and

detailed administrative data, with observations being needed at very specific times over a relatively long

period.

In this paper, we take advantage of unique survey and administrative data that we collected

specifically to address the data challenges above. As described in Section II, the data come from the Berea

Panel Study (BPS), a longitudinal survey of students at Berea College that was initiated to allow an in-

depth study of a variety of decisions and outcomes in higher education. Generally, the survey data from the

BPS are well-suited for the type of analysis in this paper because the data collection was guided closely by

theoretical models of learning. More specifically, the data contain two unique features that are of central

importance for this study. First, the survey is unique among surveys of college students in its frequency of

contact with respondents; each student was surveyed approximately twelve times each year while in school

and annually thereafter, with, importantly, the first survey taking place immediately before the beginning

of the student’s freshman year.  Second, taking advantage of recent methodological advances in the

elicitation of beliefs (Dominitz, 1998; Dominitz and Manski, 1996, 1997;  Manski, 2004), the BPS was

perhaps the first (and only) sustained longitudinal survey whose initiation was motivated primarily by a

desire to supplement detailed administrative data with individual-level expectations data.  

From a policy standpoint, it is important to identify the stage at which students tend to move away

from particular disciplines, such as math and other sciences, that are often viewed as being particularly

important. On one hand, at the time of college entrance, many students may have already decided that
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these disciplines are either not of interest or are not a good match academically.  On the other hand, it is

possible that students tend to enter college quite open to these disciplines, but often realize after entrance

that these disciplines are not a good match.  Existing data limitations imply that very little is known about

the relative importance of these two explanations.

Section III, which characterizes beliefs about outcomes at entrance and compares these beliefs to

realized outcomes, provides new evidence about this issue.  We consider eight possible outcomes that

could be realized as of the time a student leaves college by aggregating individual majors into seven major

“groups” (hereafter often referred to simply as “majors”) and by, as in Arcidiacono (2004), adding dropout

as the eighth possible outcome. Our primary survey questions elicit, at the time of entrance, the individual-

specific probability (belief) that each of these final outcomes will be realized (hereafter, referred to simply

as outcomes).  We find that much uncertainty exists at entrance. For example, on average, a student assigns

a probability of only .310 to the realized outcome that is observed for him in the administrative data. This

occurs, in part, because, while students are very open at entrance to majoring in science, relatively few

students end up graduating with a science major.  Specifically, while the proportion of students who begin

school believing that a degree in science is their most likely outcome (.20) is higher than the proportion for

any other major and while the average perceived probability of completing a science degree (.16) is almost

as high as the average perceived probability for any other major, only .07 of students complete a degree in

science. This result highlights a common theme found throughout the paper - that the science major is an

outlier among majors in many fundamental ways. 

Then, a natural question is what makes students often realize that their match is worse for degrees

in math or science than they expected at entrance. Guided by the conceptual learning model described

above, Section IV provides an understanding of why students begin school with the beliefs about outcomes

that they do. The model that we estimate places a particular emphasis on understanding initial beliefs about

science and can be used to examine how beliefs about outcomes would change if a student’s actual initial

beliefs about grade performance and future income were replaced by: 1) the beliefs about grade

performance and future income that the student held in the later stages of college or 2) beliefs about grade

performance and future income that correspond to actual distributions of grade performance and future

income.  We find that the substantial overoptimism about completing a degree in science can be attributed

largely to students beginning school with misperceptions about their ability to perform well academically

in science. An intermediate step in reaching this conclusion involves examining the process by which

students update their beliefs about grade performance in each major. We again find evidence that science

deviates from other majors.  By and large, the primary way to learn about one’s ability in science is to take

science classes, while, for majors j other than science, students tend to collect much of their information



4These papers do not provide evidence related to the central motivation for this paper - that obtaining a
comprehensive understanding requires viewing the final major as the end result of a learning process which starts at
the time of entrance. This is the case both because these projects do not involve the type of longitudinal aspect
(starting at the time of entrance) that is present in the BPS and because the survey instruments used in these other
projects did not allow students to express uncertainty about their final major.

5This could occur for a variety of reasons including differences in faculty expectations between high
school and college (see, e.g.,  Daempfle, 2003, and Federman, 2007), or because grades tend to be inflated in non-
STEM majors (see, e.g., Sabot and Wakefield-Linn,1991, and Rask, 2010).  Related to this literature, much has also
been written concerning why certain groups, for example minorities or females, are less likely to finish with STEM
majors. (See, e.g., Ost, 2010, Arcidiacono et. al, 2012b, Arcidiacono et al., 2012c, and Arcidiacono et al., 2013).

5

about their ability in j from classes taken outside of the major.

This paper builds on work in Stinebrickner and Stinebrickner (2012) and Stinebrickner and

Stinebrickner (forthcoming) which studies, in detail, the process by which students update their beliefs

about their overall grade performance/academic ability and finds that dropout is strongly related to what

they learn about these factors. Thus, our work is related to a literature which has begun to recognize the

usefulness of expectations data in the education context (see, e.g., Attanasio and Kaufmann, 2009;

Kaufmann, 2009; and Jensen, 2010) and a literature that has recognized the importance of understanding

the process by which beliefs evolve (see, e.g., Delavande, 2008; Dominitz and Hung, 2008, Armantier et

al., 2012). In terms of research on college major, our work is most related to that of Zafar (2008,

forthcoming) and Arcidiacono et al. (2012a) who, using data collected much more recently than the data in

this paper, illustrate that expectations data can allow a useful next step beyond what is possible using

traditional data.4 This paper also contributes to a growing body of literature on the STEM (Science,

Technology, Engineering, Math) pipeline. Much has been written about the reasons why students

leave majors in these fields to pursue other majors, with discussion often focusing on the possibility

that students may learn that their grade performance in STEM majors will be worse than expected.5

This paper contributes to this literature by providing the first direct evidence detailing how beliefs

about grade performance in various majors actually change over the entire period that a students is in

school and how these changes in beliefs relate to one’s choice of major.

From a methodological standpoint, our work contributes heavily to an understanding of the value

of expectations data.  Given the longitudinal nature of our data, we are able to provide new evidence about

how beliefs about factors that might influence a decision evolve.  Further, the nature of our data/exercise

complements Blass et al. (2010), which represents some of the only other previous work using survey



6Recent work by Wiswall and Zafar (2011) follows this paper in collecting beliefs about major in
probabilistic form, with a focus on examining how these beliefs are updated during a survey session when students
are provided with new information about the benefits of particular majors. For other work on college major that
does not use expectations data see, for example, Beffy et al. (forthcoming) and Montmarquette et al. (2002).
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questions that allow agents to express uncertainty about a choice that will be made in the future.6  From a

descriptive standpoint, because we collected longitudinal data and because we study a real-world situation

in which the future decision is actually observed, we are able to, for example: a) characterize the amount of

uncertainty about outcomes that is present at the time of entrance and b) examine whether, on average,

students have correct beliefs about outcomes at the time of entrance. From a modeling standpoint, because

in our context it is reasonable to take a stand on the underlying outcome-specific factors that may cause

uncertainty about a final outcome (e.g., academic performance/ability and future income) and because we

can use additional survey questions to characterize the person-specific distributions representing beliefs

about these factors, we are able to relax the assumption in Blass et al. (2010) that the amount of uncertainty

about underlying factors is unobservable and homogeneous across people. 

In addition, our work relates very directly to a literature which notes that correct policy decisions

often hinge on determining whether differences in outcomes across individuals is indicative of individual

uncertainty  or is indicative of heterogeneity that is known to individuals (Cunha et al. 2005; Browning and

Carro, 2007). Our survey question elicits uncertainty about outcomes directly at the time of college

entrance, and our approach for understanding how people arrive at these initial beliefs explicitly takes into

account uncertainty in the outcome-specific factors that influence decisions.

Section II. The Berea Panel Study and the sample used in this paper

Designed and administered by Todd Stinebrickner and Ralph Stinebrickner, the BPS is a multi-

purpose longitudinal survey that takes place at Berea College and elicits information of relevance for

understanding a wide variety of issues in higher education, including those related to dropout, major, time-

use, social networks, peer effects, and transitions to the labor market. The school is unique in certain

respects that have been discussed in previous work. For example, the school has a focus on providing an

education to students from low income backgrounds and offers a full tuition subsidy to all students. Both

family income and tuition costs have the potential to impact major choice.  For example, it seems likely

that students from low income backgrounds, who are less likely to have attended high quality schools and

are less likely to have college-educated parents, may be especially uninformed about what will take place

during college. As such, it is necessary to be appropriately cautious about the exact extent to which the

results from our case study would generalize to other demographic groups or to other specific institutions. 

However, important for the notion that the basic lessons from our work are likely to be useful for thinking
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about what takes place elsewhere, Berea operates under a standard liberal arts curriculum and the students

at Berea are similar in academic quality to, for example, students at the University of Kentucky (S&S,

2008a). Further, in Section III we find that patterns of major-switching at Berea are similar in spirit to

those found by Arcidiacono (2004) for students in the NLS-72.

The BPS consists of two cohorts.  Baseline surveys were administered to the first cohort (the 2000

cohort) immediately before it began its freshman year in the fall of 2000 and baseline surveys were

administered to the second cohort (the 2001 cohort) immediately before it began its freshman year in the

fall of 2001.  In addition to collecting detailed background information, the baseline surveys were designed

to take advantage of advances in survey methodology (see, e.g., Barsky et al., 1997; Dominitz, 1998; and

Dominitz and Manski, 1996, 1997) in order to collect expectations towards uncertain outcomes and the

factors that might influence these outcomes. Substantial follow-up surveys that were administered at the

beginning and end of each subsequent semester document how expectations towards uncertain outcomes

and the factors that might influence these outcomes have changed.  Students are surveyed annually after

leaving school.

Combining the 2000 and 2001 cohorts, our full sample consists of the 655 students (roughly 85%

of all entering students in these two cohorts) who answered the baseline survey that took place

immediately before the start of the students’ freshman year.  The BPS survey data are linked to

administrative data which serve several purposes in the paper.  First, the administrative data allow us to

document whether a student graduated and what his major was if he graduated.  Second, the administrative

data contain information about a variety of observable characteristics, Xi.  Among these, we take advantage

of a student’s sex and his/her score on the American College Test (ACT). For the full sample, the

proportion of students that are male (MALE) is 41.8%. The average (std. deviation) score on the ACT

math test (MACT) is 21.81 (4.14), and the average (std. deviation) score on the ACT verbal test (VACT) is

23.37 (4.51). In earlier work, we found that these test scores are generally similar to those observed for

students at the University of Kentucky and the University of Tennessee (S&S 2008a).  Finally, as

discussed in detail in Section IV, the administrative data contain transcript information which allow us to

observe each class that a student took while in school and the grade that he received in that class.

III. Beliefs about outcomes at entrance

              In terms of outcomes, our object of interest is a student’s choice at the time of departure from

college. The largest set of possible outcomes we consider is given by the choice set JD={DROP, SCI, AG,

BUS, ED, HUM, PRO, SS}. The first outcome (DROP) indicates whether a person drops out of college

before graduation. The remaining outcomes represent the aggregated major groups (hereafter often referred

to simply as majors) that could be chosen if a student graduates: Science including Math (SCI), Agriculture



7The “percent chance” questions were answered after students completed classroom training which, among
other things, discussed this type of question in non-education contexts. For this paper, “illegitimate” responses in
the first column of Question 1 are responses where the sum of the percent chances was more than 110 or less than
90.  For sums that were between 90 and 110, but not equal to 100, we adjusted each percent chance proportionally
to make the sum equal 100.

8

and Physical Education (AG), Business (BUS), Education (ED), Humanities (HUM), Professional

programs (PRO), and Social Science (SS).  The set of individual majors that appear in each of these major

groups is shown in survey Question 1 (Note: all survey questions appear in Appendix A). We have used

the D superscript when denoting the choice set JD to indicate that the outcome DROP is part of the choice

set. Some of our analyses involve somewhat different specifications of the choice set, including cases

where we do not include DROP.  We introduce the relevant choice sets as they are utilized.

Understanding how open students are to degrees in certain disciplines, such as math and other

sciences, at the time of entrance is of direct policy importance. Blass et al. (2010) describe the problems

that can arise when a respondent is forced to “state” a choice in a context in which uncertainty exists about

a decision that will take place in the future. Then, importantly, at the time of entrance, the first column of

survey Question 1 allows a respondent to express uncertainty about his final choice by reporting the

percent chance of ending up with each major (conditional on not dropping out) and Question 2a allows a

respondent to express uncertainty about whether he will drop out by reporting the percent chance of

graduation.7

We refer to student i’s reported probability at the time of entrance of ending up with an outcome of

j0JD as i’s initial (perceived) probability of choosing j and denote this probability Pri,j.  Pri,DROP is calculated

by subtracting the percent chance in Question 2 from 100 (and dividing by 100). Because students can only

finish with a particular major if they do not drop out, for all j…DROP, Pri,j is constructing by multiplying

the response for j in survey Question 1 by 1-Pri,DROP (and dividing by 100).  Juster (1966) and Manski

(1990) reasoned that, when asked to declare the outcome of a future decision in a case where uncertainty

will be resolved before the final decision is made, survey respondents will tend to state the alternative with

the highest probability as of the time of the survey.  Hereafter, we follow this literature by referring to the

most likely outcome at the time of entrance (i.e., arg maxj0JD Pri,j) as the “stated” outcome STATEi,

although we note that this title is somewhat of a misnomer since we construct the most likely outcome

ourselves from Questions 1 and 2a.

We denote the random variable representing a student’s outcome as J, with j representing a generic

possible realization, and j* referring to the student’s actual choice (i.e., the realization of J that is observed

in the administrative data). As discussed in the introduction, the amount of uncertainty that exists about

outcomes at entrance is of central importance for policy. Because observing changes in declared major is



8Another measure of relevance is maxj Pri,j. We find a sample average of .61. 

9Both dropout and choice of major conditional on graduating contribute to the differences between the
sample averages of 'jPri,jPri,j and Pri,j*. When we consider the choice set {DROP, GRAD}, the sample averages are
.813 and .608, respectively, and a test of mean equality produces a t-statistic of 13.43.  When, for the subset of
students who graduate, we consider the choice set {AG, BUS, ED, HUM, SCI, PRO, SS}, the sample averages are
.501 and .368, respectively, and a test of mean equality produces a t-statistic of 8.38. 

9

not sufficient to understand how much uncertainty exists at the time of entrance, the responses to Questions

1 and 2 represent the first opportunity to provide evidence about this uncertainty.  One simple measure of

the actual amount of uncertainty that exists about outcomes at entrance is Pri,j*, the probability that student i

assigned at entrance to the outcome j*0JD that was eventually realized. The sample average  of .310

indicates that students do not have a particularly good sense of what outcome will be realized, although we

note that students are not entirely uninformed since .310 is approximately double the probability that

would be observed if either: a) students put equal probability on all eight choices or b) students randomly

chose one of the eight outcomes and assigned a probability of 1.0 to that outcome.

The relatively low sample average of  Pri,j* indicates that an administrator/counselor would not be

very certain about a student’s final major on the basis of answers to Questions 1 and 2.  One way to

examine whether students understand how much uncertainty exists is to compare the sample average of

Pri,j* to the sample average 'jPri,jPri,j, which represents the conceptual equivalent of asking students the

following survey question: “At the time you leave college we are going to find what outcome you chose

(from administrative data) and then see what probability you assigned to this outcome at entrance (from

survey data). What do you expect this probability to be?”8 The fact that the sample average of 'jPri,jPri,j is

40% larger than the sample average of Pri,j* (.433 vs. .310), with a test of the null hypothesis that the

population means are equal  producing a t-statistic of 10.75, implies that students are not fully aware of

how much actual uncertainty exists.9

One possible reason for the difference observed between the sample averages in the previous

paragraph is that students may be, on average, too optimistic about the probability of having certain

outcomes and too pessimistic about the probability of having other outcomes.  The existence of systematic

biases can be informative for policymakers who are interested in why more students do not complete

degrees in certain areas. For example, a finding that students are very optimistic about science at entrance

might help alleviate a concern that students lose interest in science majors at earlier (pre-college) stages of

schooling, but might raise the possibility that students learn after college entrance that they are not well-

prepared for these majors.

The first panel of Table 1 examines systematic biases that exist for the population as a whole. For

each outcome j0 JD, Column 1 shows the proportion of students that have j as their stated major and
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Column 2 shows the sample average of Pri,j.  Important for policy, students are very open to a major in

science at the time of entrance; the proportion of students in the sample who begin school believing that

Science is the most likely major, .198,  is higher than the proportion in the sample for any other major

(Column 1) and the average perceived probability of Science in the sample, .156, is higher than the average

perceived probability for all but one other major (Column 2). However, despite this optimism, Column 3

shows that only .074 of students end up with an outcome of Science, and the only majors with proportions

lower than that of SCI are the speciality majors AG and ED.  This motivates our work in Section IV which

attempts to understand why individuals hold the beliefs about outcomes that they do at entrance and to

understand why these beliefs are found to be systematically wrong for Science.

The results in Table 1 indicate that Science is an outlier among majors in the sense that it is very

“popular” at entrance, but is ultimately chosen by only a relatively small number of students.  This is

formalized in Column 4, which shows the difference between Column 3 and Column 1, and Column 5,

which shows the difference between Column 3 and Column 2.  Column 4 shows that, for j=SCI, the

sample proportion of students who have an outcome of SCI (.074) is .123 smaller than the sample

proportion that initially believed that SCI was their most likely major (.198). This represent a decrease of 

(.123/.198)%=62%.  For all majors j…SCI (and j…DROP)  we reject the null hypothesis that the difference

in Column 4 is the same for j as it is for SCI, with t-statistics from the tests ranging from 3.589 (AG) to

5.576 (ED).  Column 5 shows that, for j=SCI, the sample proportion of students who have an outcome of

SCI (.074) is .081 smaller than the average perceived initial probability of choosing SCI (.156). This

represents a decrease of (.081/.156)%=52%. For all majors j…SCI (and j…DROP) we reject the null

hypothesis that the difference in Column 5 is the same for j as it is for SCI, with t-statistics from the tests

ranging from 2.377 (j=BUS) to 5.098 (j=PRO).

Row 1 of Table 1 shows that students are also substantially overoptimistic about graduation at

entrance. While only .051 of students believe that DROP is the most likely outcome and, on average,

students assign a probability of .134 to DROP, in reality .375 of students have DROP as their outcome.

This overoptimism about dropout has been explored in our recent work (S&S, 2012; S&S, forthcoming). 

In terms of its implications for major choice, we note that this overoptimism contributes to the numbers in

Columns 4 and 5 of Table 1 being negative for all majors.  It is then natural to wonder whether the fact that

the entries in Columns 4 and 5 are substantially more negative for SCI than for the other majors might be

an indication of especially large dropout rates for students who start school believing that SCI is very

likely. We find no evidence of this in the first panel of Table 2, which shows the proportion of students

with each possible outcome j0JD after stratifying the sample by STATEi. Row 1 shows that the sample

dropout proportion of students who have a stated major of SCI (.335) is lower than the sample dropout



10An exact comparison is somewhat difficult since Table 3 of Arcidiacono (2004) shows transitions during
the first two years of college and also uses a somewhat smaller group of majors. Nonetheless, a rough comparison
shows strong similarities.  He finds, for example, that, among students who start in science,  28%, 42%, 8%, 19%,
and 2%, respectively, have the majors of DROP, SCI, BUS, SS/PRO (combined), and ED, respectively, after two
years.  If, in Column 2 of Table 2 we aggregate SS and PRO and aggregate AG and  SCI, the comparison
percentages from our data are 34%, 35%, 4%, 25%, and 5%, respectively. The DROP and SCI percentages would
become even closer by the time students in his data complete school.
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proportion of students from all but one of the other stated majors. This is relevant for a policy concern that

encouraging students to try SCI may lead some students to become overly pessimistic about their general

academic ability. The results in the first panel of Table 2 are similar in spirit to those found in Arcidiacono

(2004) for the NLS-72.10

Thus, the fact that the entries in Columns 4 and 5 of Table 1 are larger for SCI than for other

majors arises because, despite considerable initial optimism about SCI, graduates very often end up in

majors other than SCI. This is formalized in the second panel of Table 1 which, using the subsample of

students who graduate,  repeats the first panel for a choice set JND={SCI, AG, BUS, ED, HUM, PRO, SS}

which does not contain DROP (ND indicates “no dropout”).  As expected, the entries in Columns 4 and 5

are, as in the first panel, larger (in magnitude) for SCI than for the other majors.  For all j … SCI we reject

the null hypothesis that the difference in Column 4 is the same for j as it is for SCI (-.095), with t-statistics

from the tests ranging from 3.072 (SS) to 6.285 (HUM).  For all j … SCI we reject the null hypothesis that

the difference in Column 5 is the same for j as it is for SCI (-.063), with t-statistics ranging from 2.049

(AG) to 6.055 (HUM).

It is worth delving further into why students who graduate tend to end up in majors other than SCI. 

Among those who graduate, the number of students who have a realized major of j depends on both: A) the

true probability of having a realized major of j conditional on having a stated major of j (i.e., the

probability of “staying” in j) and B) the true probability of having a realized major of j conditional on

having a stated major of k…j (i.e., the probability of “changing” to j). These numbers can be computed for

the sample from the second panel of Table 2 which is analogous to the first panel but uses the graduate

subsample and the choice set JND (as in the second panel of Table 1). With respect to A),  Figure 1A shows

that the proportion in the sample who stay in j is lower when j=SCI than when j is any of the other majors.

With respect to B), Figure 2A shows that the proportion in the sample who change to j  is lower when j is

Science than when j is any of the other majors. Misperceptions in the Prij’s will exist if beliefs about the

probability of staying in j and beliefs about the probability of changing to j do not correspond to the actual

probabilities in Figures 1A and 2A. In contrast to Figure 1A, Figure 1B indicates that, at entrance, students

who have STATEi=SCI believe they are as likely to stay in their stated major as are students whose stated

major is something other than SCI. In constrast to Figure 2A, Figure 2B shows that students believe they



11For each j0JND, Figure 1B shows the sample average of Pri,j for all students who have STATEi=j. For
each j0JND, Figure 2B shows the sample average of Pri,j for all students who have  STATEi…j.
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are as likely to change into SCI as they are to change into any other major.11 Thus, Figures 1A and 2A

show that starting in Science is close to necessary but far from sufficient for having a final major of

Science, but Figures 1B and 2B show that students do not fully realize that this is the case.

There are two primary, potential explanations for why the movements out of SCI seen in Columns

4 and 5 of Table 1 are large relative to movements out of other majors.  One possible explanation is that

science has a particularly large option value. Under this explanation, students might find it worthwhile to

experiment with science at the start of school even in cases where they plan to leave science unless they

perform substantially better than expected. Then, the evidence in Figure 1B - that students starting in SCI

are not relatively pessimistic about finishing in SCI - does not provide direct support for this explanation.

Further, if under an option value story majors with high option values tend to be tried first or not at all,

then the evidence in Figure 2B - that students are as optimistic about changing into SCI as they are to

changing into other majors - also does not provide direct support of the importance of the option value

explanation. Section IV provides evidence about a second possible explanation - that students tend to be

especially misinformed about their ability to perform well in science. 

Section IV.  Understanding beliefs about outcomes at entrance

IV.A. Overview

Section III uncovers three reasons why the actual number of college graduates majoring in SCI

(i.e., have j*=SCI) is much smaller than the number that would be expected given the beliefs about

outcomes (Pri,j: j0JD) observed at entrance. First, students are overoptimistic about the probability that they

will graduate.  Second, students who have a stated major of SCI are too optimistic about the probability

that they will remain in SCI.  Finally, students who have a stated major other than SCI are too optimistic

about the probability that they will change to a major in SCI. 

             To provide an understanding of these findings, we estimate a model describing why individuals

hold the initial beliefs about outcomes that they do.  In IV.B we describe the model of initial beliefs, which

takes into account that, before making his final decision about his dropout/major outcome at some future

time t*, student i will have the opportunity to resolve some of the uncertainty about major-specific factors

Factori,j that influence the utility that he receives from each of his alternatives j.  When not all uncertainty

about Factori,j can be resolved by t*, the expected utility that i will attach to alternative j when making his

decision at t* will depend on the mean of the distribution describing i’s beliefs at t* about Factori,j. 

However, at time t=1, when initial beliefs about outcomes, Pri,j, are reported but uncertainty about Factori,j

has not yet been resolved, this “t*-mean-for-j” will not be known. This implies that a student cannot know



12Our modeling and estimation exercise involves understanding why students have particular Pri,j’s taking
as given the courses they are enrolled in at the early stages of college. As such, we do not provide evidence about
students’ strategies for selecting courses in an effort to find a major with a good match. While understanding course
choice is undoubtedly important, the structural model that would be needed to understand course choice would
require a variety of additional assumptions that are not needed here given our objectives. For example, for our work
we need to ascertain how a student updates his beliefs about underlying factors given the specific courses he is
taking. To understand course choice it would be necessary to understand how the student would update beliefs for
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for sure which alternative he will choose at t*. Instead, he uses the distributions describing his beliefs at

t=1 about what the t*-mean-for-j will turn out to be for each j to construct his report of Pri,j. The empirical

difficulty is that, for reasons discussed in IV.B, these t=1 distributions cannot be observed directly in the

data.  Instead, we construct these t=1 distributions by taking advantage of several unique features of our

data.  We first specify the updating process by which a person will arrive at his t*-mean-for-j. In this

process, the t*-mean-for-j is a function of i’s t=1-mean-for-j  (i.e., the mean of the distribution describing

i’s beliefs at t=1 about Factori,j) and a noisy signal of Factori,j. Access to data documenting the t*-mean-for-

j, the t=1-mean-for-j, and the observed value of the signal allows the parameters of the updating process to

be estimated. Given the estimated updating process, uncertainty at t=1 about what the t*-mean-for-j will

turn out to be comes from uncertainty about what value of the signal will be realized.  Then, individual-

specific information characterizing beliefs about the distribution of the signal allows us to construct the

desired object - the distribution  describing i’s beliefs at t=1 about what the t*-mean-for-j will turn out to

be. 

In practice, we focus on two alternative-specific factors, Factori,j. In Section IV.C we describe the

construction of i’s beliefs at t=1 about what the t*-mean-for-j will turn out to be when Factori,j is  the

average semester grade performance associated with j.  In Section IV.D we describe the construction of i’s

beliefs at t=1 about what the t*-mean-for-j will turn out to be when Factori,j is  the average annual future

income associated with j. Section IV.E provides some descriptive evidence that these two factors are likely

to influence a student’s decision. Section IV.F describes the identification and estimation of the model. 

Section IV.G discusses parameter estimates and quantifies how much different initial beliefs about

outcomes would have been if students had started school with more accurate beliefs about the major-

specific factors. Ultimately, our paper provides direct evidence that initial beliefs about an outcome of SCI

are, on average, incorrect largely because students learn after entrance that their initial beliefs about the

major-specific factors associated with SCI were, on average, incorrect.

IV.B. An estimable model of initial beliefs about major

            Student i enters college (t=1) uncertain about his outcome j*. He envisions a time t* at which he

will finalize his outcome by choosing the optimal j from the set JD. Taking as given the courses a student is

enrolled in during the early stages of college,12 our goal is to specify and estimate a model which explains



every possible set of classes that he might consider taking. 

13 For sake of discussion think of t* as occurring relatively quickly and abstract from issues related to the
utility obtained while in college but before t*. 

14Assume that i’s grade point average (GPA) in major j in some future semester tN is given by
 GPAi,j,tN =AGPAi,j +γi,j,tN,

where γi,j,tN is a mean-zero random variable representing the transitory portion of grades in tN. Technically speaking,
lifetime utility associated with j might depend on not only AGPAi,j but also on γi,j,tN. However, the simplifying focus
on the average can be motivated by the reality that knowing AGPAi,j is close to sufficient for knowing one’s
cumulative grade point average at the end of college for j since the sum of γi,j,tN will tend towards zero with the
number of semesters.  The motivation for focusing on average income in a year is similar.  

15In theory, AGPAi,j and AINCi,j  may influence both the utility received from j while in school and the
utility received from j after leaving school. Then, if one wanted to understand why one of these factors mattered or
did not matter at its most basic level, it would be necessary to identify the impact of the factor on utility in both the
schooling and post-schooling periods. Our simple specification is motivated, in large part, by the difficulty of this
identification task. If, as in Arcidiacono et al. (2012a), one assumes that some major-specific factors only influence
utility in school and other major-specific factors only influence utility after school, then it is possible to put a
stronger interpretation on individual coefficients.
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why a student begins school with his set of beliefs Pri=(Pri,j: j0JD).

Denote as Uj(AGPAi,j, AINCi,j, Xi, vi,j, εi,j) the lifetime utility starting at t* that student i receives

from choosing major j.13 Xi is a vector including i’s observable characteristics discussed in Section II and

also includes a constant equal to one in order to allow for the estimation of the constant in Uj.  vi,j and εi,j

represent the effect on Uj of individual factors that are not observed by the econometrician, and we define

vi =(vi,j: j0JD) and εi =(εi,j: j0JD).  We assume that εi,j is the portion of unobservable utility that is known to

the student at the time of entrance, while vi,j is the portion that is not known at entrance but will be known

by the decision time t*. The remaining two elements of the function Uj
 are the major-specific factors

(denoted Factori,j in IV.A) that we utilize. AGPAi,j is the average GPA that person i would receive in a

future semester if he had outcome j.14 Noting that grade performance does not enter the utility from the

option DROP, we define AGPAi =(AGPAi,j: j0JND). AINCi,j is the average annual income that person i

would receive after leaving school if he left school with outcome j, and we define AINCi =(AINCi,j: j0JD).

We assume a simple reduced form for the utility function.15

(1) Uj(AGPAi,j, AINCi,j, Xi, vi,j, εi,j)= αjXi+β1AGPAi,j +β2AINCi,j +vi,j +εi,j.

The central issue for the estimation of (1) is that, while AGPAi,j and AINCi,j are constants, their true

values may not be fully known by person i at any particular time t. In addition, a student will be uncertain

about vi,j at entrance. At time t* a student is forced to make his final choice. If uncertainty about AGPAi,j

and AINCi,j remains “unresolved” at t*, the student makes his choice at t* by choosing the option with the

highest expected utility. Denoting the expected utility at t* of option j as Et*Uj(), the person is observed to

choose j if
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(2) Et*Uj()!Et*Uk()>0 for all k…j.

We let AGPAt
i,j and AINCt

i,j be random variables which represent a student’s beliefs at t about the

constants AGPAi,j and AINCi,j, so that AGPAt*
i,j and AINCt*

i,j are random variables characterizing the

unresolvable uncertainty that remains at t*. At t*, to compute Et*Uj() for each j, the student integrates

Uj(AGPAi,j, AINCi,j, Xi, vi,j, εi,j) over the distribution of the random variables AGPAt*
i,j and AINCt*

i,j. Given

the linear specification in Eq. 1, this integration results in 

(3) Et*Uj(AGPAi,j, AINCi,j, Xi,, vi,j, εi,j)= αjXi+β1 E(AGPAt*
i,j)+β2 E(AINCt*

i,j)+ vi,j+ εi,j, 

so that, from the student’s perspective, Et*Uj can be viewed as a function of  the constants E(AGPAt*
i,j),

E(AINCt*
i,j) and the value of vi,j. In terms of the wording used in IV.A, E(AGPAt*

i,j) is the mean of the

distribution describing i’s beliefs at t* about the average grade point average associated with j and

E(AINCOMEt*
i,j) is the mean of the distribution describing i’s beliefs at t* about the average future income

associated with j.

Denote E(AGPAt
i)=(E(AGPAt

i,j): j0JND) and E(AINCt
i)=(E(AINCt

i,j): j0JD).  At t=1 when the

student reports Pri, he knows that his decision at t* will be made taking into account the vector of constants

E(AGPAt*
i), the vector of constants E(AINCt*

i), and the realization of vi. Then, if at t=1 the student knew

what E(AGPAt*
i), E(AINCt*

i), and vi would turn out to be, there would be no uncertainty about what choice

he would make at t*. Uncertainty arises because there is likely to exist uncertainty about AGPAi,j and

AINCi,j that will be “resolved” by t* (and uncertainty about vi,j will be resolved by t*). The perceived

probability at t=1 of having a final outcome of j, Pri,j, is the probability that i will arrive at t* with values of

E(AGPAt*
i), E(AINCt*

i), and vi such that, given εi, j is the optimal choice. Let E(AGPAt*
i)1 and E(AINCt*

i)1

be random variables describing i’s beliefs at  t=1 about what E(AGPAt*
i) and E(AINCt*

i) will turn out to be

and let g denote a density function. Recall from Eq. 3 that Et*Uj can be viewed as a function of E(AGPAt*
i),

E(AINCt*
i), and vi. Then for any j0J, Pri,j is determined by utilizing Eq. 2 as

(4) Pr(Et*Uj()!Et*Uk()>0 for all k…j)

 = I1(Et*Uj()!Et*Uk()>0 for all k…j) g(E(AGPAt*
i)1, E(AINCt*

i)1, vi) dE(AGPAt*
i)1 dE(AINCt*

i)1 dvi .

The econometrician is assumed to know the distributions of E(AGPAt*
i)1, E(AINCt*

i)1, and vi that

are being used by student i in the calculation of (4). However, unlike the student, the econometrician does

not know the individual-specific realization of the vector εi. Given the known distribution of εi, the

likelihood contribution for i, Li, is the probability of obtaining εi such that i would report the set (Pri,j: j0JD)

that he did:

(5) Li=Prob(i reports (Pri,j: j0JD))   

          =Prob(εi: œj0JD, Pr(Et*Uj()!Et*Uk()>0 for all k…j)=Pri,j)

           =Prob(εi: œj0JD,



16The survey question related to AGPA would have to be something along the lines of, “please tell us the
percent chance that, at the time you make your major decision, the mean of the distribution describing your beliefs
about AGPAi,j will fall in each of the following grade categories...”  Note that this is not the same as asking a
respondent at entrance about the percent chance that his GPA would be in various grade categories in the future if
he had major j. One reason is that, in addition to capturing uncertainty about AGPAi,j, the answers to this grade
question would also reflect period-specific transitory variation in a person’s grade performance. A second reason is
that, even if no transitory variation existed, this grade question would capture both resolvable and unresolvable
uncertainty about AGPAi,j when what is needed for estimation is to isolate the unresolvable portion.

17For recent work examining the timing of specialization see Malamud (2010, 2011).
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I1(Et*Uj()!Et*Uk()>0 for all k…j) g(E(AGPAt*
i)1, E(AINCt*

i)1, vi) dE(AGPAt*
i)1 dE(AINCt*

I)1 dvi =Pri,j). 

Then, estimation of the model requires knowledge of the distributions of E(AGPAt*
i)1 and

E(AINCt*
i)1. These distributions are not observed directly in our data, primarily because it would not be

easy to construct a survey question that would credibly elicit this information.16  Section IV.C describes

construction of E(AGPAt*
i)1 and Section IV.D describes construction of E(AINCt*

i)1. Our effort to be

explicit regarding the source of uncertainty about a student’s major and to allow this uncertainty to be

heterogeneous across students represents a natural next step in the very small literature that allows

agents to express uncertainty about a future choice (Blass et al., 2010).

Also needed to estimate the model is a value of t*. It is important to stress that t* is not observed

in institutional rules or in administrative data.  This is the case because t* should reflect a student’s views,

at the time he reports his initial beliefs, about when he will likely choose an outcome. These views may be

quite different from, for example, the time at which institutional rules require students to declare an

outcome (roughly the end of the 2nd year at Berea).  Institutional rules in U.S. schools are typically

designed to allow much flexibility in the timing of  choices; a student is allowed to drop out at any point,

rules about the timing of major declaration only specify the latest date at which a student can declare a

major, and even this declaration is typically not truly binding.  Waiting as long as possible to finalize a

decision allows increased experimentation. However, the costs of delaying a decision could be

considerable; a student who waits unnecessarily long to leave school foregoes earnings, and a student who

waits unnecessarily long to choose a major risks unnecessary delays in graduation and may also not end

up with an optimal mix of major and non-major courses.  As such, there do exist incentives that push a

student towards making a decision relatively early, even if institutional rules do not require this.17

Students will tend to feel comfortable making a decision early if they are quite certain about their

abilities and interests. Then, given that overconfidence at entrance is a strong, common theme throughout

this paper and also in our other work related to dropout (S&S, 2012; S&S, forthcoming), our intuition is

that students in our data will tend to believe at entrance that they will make decisions substantially earlier

than: 1) what would be required by institutional rules and 2) what might be suggested by the timing of



18Given that, on average, students believe that  the overall probability of dropout is .134 (Column 2 Table
1), they believe that over 70% of dropout will take place in the first year.  S&S (2012) find that roughly 38% of
dropout takes before the start of the second year. This highlights the reality that, in the presence of overoptimism,
examining the timing of actual outcomes is not particularly useful for understanding what students think about when
they will make decisions.
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actual decisions observed in the data. We have some direct evidence in support of our intuition for one of

our outcomes - DROP.  This is the case because our baseline survey elicited not only a student’s beliefs

about the probability of graduating, but also the student’s beliefs about the probability of returning for the

second year (Question 2b). Combining these questions we find that, on average, students believe that

there is only a .04 chance of dropping out after the start of the second year. Thus, the evidence suggests

that students believe that the dropout decision will take place quickly even though institutional details do

not require this and even though S&S (forthcoming) finds that a substantial amount of dropout takes place

after the first year.18 Of course, it is possible that students believe that the major decision takes place on a

different timing than the dropout decision.  Looking at our outcome of particular interest, SCI, the data

seem to support the notion that a decision also tends to be made rather quickly.  At the middle of the

second year, 90% of students who have an outcome of  SCI indicate that SCI is the most likely major,

and, among graduates, only 3% of students who have an outcome other than SCI list SCI as the most

likely major. 

Given this empirical evidence related to DROP and SCI and given that Section III found that

students do not fully appreciate how much uncertainty exists about college major, we use t*=3 (the

beginning of the 3rd semester) to obtain our main results, although we also examine the robustness of

our results to different choices about t*. An additional appeal of using t*=3 for our primary results is

that this choice is most consistent with our implicit assumption that students know the courses they

will take between t=1 and t* when reporting their initial beliefs.  At t=1, students will know the set of

classes that are mandatory under the general studies curriculum, will know the elective courses they

will take in the first semester, and may also often have a good sense of the elective courses they will

take in the second semester.  However, we examine the robustness of our results to different choices

about t*.

We note that the choice of t*=3 may not be as appealing for all other majors as it is for SCI and

DROP. For example, at the middle of the second  year, 73% of students in the sample who have an

outcome of PRO indicate that PRO is the most likely major compared to the 90% that was found above

for SCI.  This percentage is 80%, 92%, 84%, 75% and 88%, respectively, for the remaining majors, AG,

BUS, ED, HUM, and SS, respectively.  Aggregating the non-science majors yields a proportion of .80,



19The non-trivial number of science courses arises, in part, because the curriculum requires students to take
some science in order to graduate. On average, students take 9.51 classes in the first year.  The average number of
courses taken is 1.53, .21, .11, 2.22, 1.74, .29, and .73 in AG, BUS, ED, HUM, SCI, PRO,and SS, respectively.  In
addition, students, on average, take 2.65 classes that do not fit within any specific major area but are required under
the school’s liberal arts (General Studies) curriculum. A small number of the classes in other areas may also fit the
description of satisfying liberal arts requirements. For example, the large average number for AG arises, in large
part, due to required physical education classes and students would often take at least one humanities class in the
first year as part of the liberal arts curriculum.
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and a test that the proportion for the aggregated non-science major is the same as the proportion found

earlier for SCI (.90) is rejected at a .05 level of significance. The difference between SCI and some of

the other majors is perhaps not surprising because there may be differences in the timing of when

classes in particular majors tend to be taken. For example, using transcript data, we find that students

in the overall sample take, on average, 1.74 SCI classes in the first year and students who have

STATEi=SCI take, on average, 1.86 SCI classes in the first year. However, students in the overall

sample take, on average, only .29 PRO classes in the first year and students who have  STATEi=PRO

take, on average, only .32 PRO classes in the first year.19 

The differences observed between SCI and certain other majors suggests that it may be

appealing to assume that at an early stage of school students choose between three options {DROP,

SCI, and NON-SCI} where NON-SCI is an aggregated category that contains all majors other than

SCI.  Clearly, modeling the decision in this way would not allow us to understand how students

choose among the individual non-science majors, but may be most realistic given our specific

objective of understanding the choice of SCI major.  We return to a discussion of issues related to the

choice set when we discuss the identification and estimation of the model in Section IV.F.  However,

we first describe in IV.C. how we construct the distribution of E(AGPAt*
i)1, describe in IV.D. how we

construct the distribution of E(AINCt*
i)1, and provide some descriptive evidence in IV.E. that future

grades and future income are likely play an important role in determining a student’s choice of major.

IV.C.  Constructing E(AGPAt*
i)1 

In this section we detail the construction of the distribution of E(AGPAt*
i)1, which describes a

student’s beliefs at t=1 about what E(AGPAt*
i) will turn out to be. Our motivation for taking into account

that students may be uncertain about E(AGPAt*
i) at entrance comes from the fact that much updating is

observed in the data.  For the 428 students for which E(AGPAt
i,j) is observed at both t=1 and at our choice

of t*=3, the sample average (std. dev.) of E(AGPAt*
i,j) -E(AGPA1

i,j) is -.18 (.75), -.02 (.72), -.08 (.68), -.01

(.67), -.04 (.69), -.03 (.67), and !.04 (.71), respectively, for j=SCI, AG, BUS, ED, HUM, PRO, and SS,

respectively. The null hypothesis that the average updating is the same for SCI as it is for j…SCI  is



20Students appear to be learning about their ability in SCI, not that they are unwilling to put effort into
science. Indeed, the average daily number of hours that students expect to study if they had SCI as their major
increases between t=1 and t=3. The change in the average expected number of daily study hours between t=1 and
t=3 is .17, -.03, .06, -.03, -.05, .17, and -.001 for SCI, AG, BUS, ED, HUM, PRO, and SS, respectively. See S&S (,
2004,2008b) for work examining the role of study effort in determining grade performance.

21Without information describing what each student believes about the distribution of the actual grades that
are assigned in each major (across students), it is not possible to know whether the low average E(AGPA1

i,SCI) at
entrance indicates that 1) students tend to think they are not good at science relative to other students or 2) students
simply realize that the grades assigned in science classes tend to be lower. However, we will eventually show that,
among students with STATEi=SCI, students who have j*…SCI start school with beliefs E(AGPA1

i,SCI) that are
similar to students who have j*=SCI but end school with beliefs that are much different. Then, students who are
leaving SCI are learning that they are not particularly well-suited for SCI relative to other students.
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rejected at .05 for all j…SCI.20  This suggests that taking into account uncertainty may be especially

important given our particular interest in SCI. However, the non-trivial standard deviations observed for

all majors imply that substantial updating is present in all majors, even those with means close to zero. 

As described in IV.A, the first step in characterizing the distribution of E(AGPAt*
i)1 is to specify

the updating process by which i will arrive at the mean of the distribution describing his beliefs at t* about

the average grade point average he will receive in major j (i.e., how he will arrive at E(AGPAt*
i)).

Understanding why substantial heterogeneity in updating is observed across students is important for

thinking about the specification of this updating process. Focusing on SCI, we find evidence that

heterogeneity in updating exists, in part, because students who have STATEi=SCI have significantly (at

.05) different mean updates than students with STATEi…SCI, but that much heterogeneity in updating

remains even within each of these groups; the sample mean (std. dev.) of E(AGPAt*
i,SCI) -E(AGPA1

i,SCI) is

-.30 (.46) for students with STATEi=SCI and is -.13 (.82) for students with STATEi…SCI.

Our updating process  involves viewing E(AGPAt*
i,j) as a posterior mean which is arrived at from

a prior mean E(AGPA1
i,j) through an updating process that also takes into account an imperfect signal

Sigi,j of AGPAi,j:

(6) E(AGPAt*
i,j)=αj+ βj E(AGPA1

i,j) + γjSigi,j +ui,j,

where ui,j is a mean-zero unobservable.

For the full sample (Column 1) and for the sample stratified by STATEi, (Column 2-9), Table 3

shows the sample average of E(AGPA1
i,j) for each j. The results in the first column indicate that students

begin school believing that grade performance may depend on major.  For example, on average, students

believe that SCI will be more difficult from a grade perspective; students believe that their grades will be,

on average, between .14 (BUS) and .27 (ED, HUM) lower in SCI than in the other majors, and, for each

j…SCI the null hypothesis that the average E(AGPA1
i,j) is equal to the average E(AGPA1

i,SCI) is rejected at

all traditional significance levels.21 However, the non-trivial standard deviations in Column 1 indicate that



22The expected study effort is 3.64, 2.26, 2.93, 2.17, 2.89, 3.23, and 3.06, respectively, for SCI, AG, BUS,
ED, HUM, PRO, and SS, respectively. Then, constructing ability-type measures that are analogous to E(AGPA1

i,j)
but holding study effort constant leads to even larger differences between SCI and the other majors (S&S, 2011).

23In reality, although this question technically reflected beliefs about the first semester, we assume this
distribution is the relevant distribution for the entire first year.
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there is substantial heterogeneity across students in E(AGPA1
i,j), with the largest sample standard

deviation of .84 being associated with j=SCI. We note that the low (relative) sample average of

E(AGPA1
i,SCI) comes despite the fact that students believe they would study more in SCI.22              

Grade information obtained from administrative records is used to construct the signal, Sigi,j, of

AGPAi,j in Eq. 6. We check robustness to two signals. The first signal is student i’s overall grade point

average in the period between entrance and t*, which we denote as GPAi. GPAi is observed directly in the

administrative data. For our choice of  t*=3 we find a mean (standard deviation) of 2.88 (.72).  As

described in more detail later in this section, the second signal is a multi-dimensional signal which

disaggregates GPAi to account for differences in grade performance in different types of courses. The

course specific grade information is obtained from transcript data.  For our choice of  t*=3, we find that

the sample average (std. dev.) grade is  2.58 (1.19), 3.23 (.88), 2.69 (1.23), 3.48 (.90), 3.13 (.97), 3.04

(.82), 2.75 (1.10), and 2.99 (.96), respectively, in SCI, AG, BUS, ED, HUM, PRO, SS, and GEN courses

respectively, where GEN represents courses that do not fit within any specific major area but are required

under the school’s liberal arts (General Studies) curriculum.

The two signals have different strengths and weaknesses. In a textbook Bayesian model, the

weight assigned to a signal should vary across signals that contain different amounts of information

(noise). Grade performance in a particular class may be more  informative about AGPAi,j for some majors

j than other majors j. The disaggregation associated with the second signal is appealing because it

attempts to group together courses that might be equally informative about AGPAi,j. As discussed in more

detail later in this section, the strength of the first signal comes from the fact that, as described in IV.A,

the construction of E(AGPAt*
i,j)1 requires not only the realized signal Sigi,j (which is used to estimate the

updating equation) but also the distribution describing beliefs about Sigi,j (which is used to characterize i’s

uncertainty about E(AGPAt*
i,j) given estimates of the updating equation). While we directly elicited each

student’s belief about the distribution of the first signal GPAi using survey Question 3,23 the construction

of beliefs about the distribution of the second signal requires some assumptions. 

With E(AGPA1
i, j), Sigi,j, and E(AGPAt*

i, j) observed for each j, we are able to estimate Eq. 6 for

each j. We begin by examining the determination of  E(AGPAt*
i,SCI). The first column of Table 4 shows

results from the estimation of Eq. 6 using the overall GPA signal (i.e., Sigi,SCI= GPAi). The results in the
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first panel of Column 1 indicate that the “posterior” belief E(AGPAt*
i,SCI) is strongly related to both the

“prior” belief E(AGPA1
i,SCI) and the signal GPAi with the coefficients having t-statistics of 11.72 and 5.29,

respectively. As noted earlier, this signal does not take into account that the informativeness of GPAi for

understanding future grade performance in SCI is likely to vary with, for example, the number of science

classes a student is taking. Because a student’s courses will tend to vary with his stated major, we estimate

Eq. 6 separately for students with STATEi=SCI (panel 2, Column 1) and for students with STATEi…SCI

(Panel 3, Column 1). We find that GPAi is a substantially stronger predictor of E(AGPAt*
i,SCI) when

STATEi=SCI than when STATEi…SCI, with estimates (t-stats) of .376 (5.29) and .131 (2.11),

respectively.

Even after stratifying on the basis of STATEi, the overall GPA signal is less than ideal. The

number of science classes might vary within the STATEi=SCI or STATEi…SCI groups, and two students

who obtain the same overall GPAi in the same set of classes may have different grades in, for example,

their science classes. This serves as our motivation for our second signal which disaggregates GPAi to

account for grade performance in different types of courses.  Specifically, we construct the terms

GPAi,SCIC1(0<CLi,SCI#2), GPAi,SCI C1(CLi,SCI>3), and GPAi,NON-SCI, where 1(C) is an indicator function,

CLi,SCI is the number of classes taken in SCI between t=1 and t*, GPAi,SCI is the GPA in these SCI classes,

and GPAi,NON-SCI is the GPA in all non-science classes. Related to the first two terms, the possibility that

some students will take zero science classes implies the need to include an additional term 1(CLi,SCI=0).

With respect to GPAi,NON-SCI, we note two things: 1) we have simplified our specification by aggregating

the classes in all non-science majors and 2) while the informativeness of the signal from the non-science

classes will depend on the number of non-science courses, differentiating between different numbers of

non-science classes is not overly important because students typically have a sizeable number of non-

science classes. Finally, in the textbook Bayesian context, the informativeness of the signal will also

influence the weight assigned to the prior mean. As such, we also add to Eq. 6 interaction terms allowing

the importance of the prior E(AGPA1
i,j) to depend on the values of 1(CLi,SCI=0),  1(0<CLi,SCI#2), and

1(CLi,SCI>3).

Column 1 of Table 5 shows the estimates of Eq. 6 for the dependent variable E(AGPAt*
i,SCI) using

the second signal as described in the previous paragraph. The results indicate that courses in SCI play a

particularly important role in the determination of E(AGPAt*
i,SCI). For a student who takes only one or two

courses in SCI, the estimated effect of GPAi,SCI  is slightly larger than the estimated effect of  GPAi,NON!SCI

(.109 vs. .087) even though students are taking, on average, between seven and eight non-science classes.

The conclusion that an individual SCI course is substantially more informative than an individual non-

science course can be seen even more clearly by noting that the estimated effect of GPAi,SCI  increases in a



24It is possible that this increase occurs, in part, because students who are taking more science classes tend
to also be taking somewhat different types of science classes as part of, for example, a major in science.

25For example, Row 2 of Table 1 in S&S (forthcoming) finds that, for a composition constant sample, the
sample average GPA remains remarkably constant over time.

26By internal consistency we have in mind that: a student’s best guess (expected value) at t=1 of what the
mean of the distribution describing his beliefs at t* about AGPAi,j will turn out to be (i.e., what E(AGPAt*

i,j)  will
turn out to be) should be the mean of the distribution describing his beliefs at t=1 about AGPAi,j (i.e., E(AGPA1

i,j)). 
This internal consistency would not be appealing if students believed that courses in t* assigned systematically
higher or lower grades in the future as compared to t=1.
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statistically significant (at a .05 level) manner (from .109 to .257) when a student takes three or more

science classes.24

 Columns 2-7 of Table 5 estimate the updating specification in Column 1 (from Eq. 6) for majors j

other than SCI. Most striking is that the effect of GPA in courses outside of j, which we denote GPAi,NON-j,

is substantially more important in Columns 2-7 than it was for SCI in Column 1. The  t-statistics for

GPAi,NON-j range from 4.43 to 8.47 in Column 2-7 compared to 1.64 in Column 1, and the estimated

effects of GPAi,NON-j range from .201 to .288 in Columns 2-7 compared to.087 in Column 1. Then, noting

that the estimated effects of GPAi,j (interacted with number of classes taken in j) are often not significant

in Columns 2-7, our results indicate that, in majors j other than SCI, students collect much of their

information from classes outside of the major j. Roughly speaking, students seem to believe that the set of

majors other than SCI require a somewhat common set of abilities/knowledge, with this set somewhat

different than what is required for SCI.  Looking back at the second two panels of Table 4, we find

additional evidence in support of this conclusion.  Unlike what was found for SCI in Column 1, the effect

of GPAi on E(AGPAt*
i,j) for the other majors does not tend to depend much on whether or not a person

has STATEi=j (in which case the person would likely be taking more classes in j); the difference between

the estimated effect of GPAi in Panel 2 and the estimated effect of GPAi in Panel 3 is .245 for SCI and is,

on average, .025 for the other six majors (with estimates ranging from -.055 to .106).

We note one more practical issue related to updating. During the estimation of our model for the

reported Prij’s in Eqs. 1-5, we obtain the distribution of E(AGPAt*
i)1 by considering the likelihood of

different possible values of αj+ βj E(AGPA1
i,j) + γjSigi,j (from Eq. 6) given the distribution describing

person i’s beliefs at entrance about Sigi,j (constructed as described in IV.C).  S&S (forthcoming) finds

that,  in terms of grades assigned, courses taken in later years tend to be of similar difficulty as courses

taken in earlier years.25 Then, internal consistency would seem to suggest that the mean of E(AGPAt*
i,j)1

should be equal to E(AGPA1
i,j).26  Our approach is to allow the constant αj to vary across i for each j and to

choose these constants in a way that satisfies this internal consistency constraint. In practice, for the first



27Estimating a version of Eqs. 7 and 8 directly uses different variation, but leads to little change.

28This says that a person’s belief about the average grade he would receive in, say, a science class in the
first year corresponds to the expected grade that the person would receive in the future if he had SCI as a major.
This assumption abstracts from the reality that the survey question for E(AGPA1

i,j) does not ask a person to consider
only the SCI classes that would be taken as part of the major. Nonetheless, to a rough approximation it seems
reasonable to believe that a student thinking about what classes he would take in a future semester if he had a
specific major within our SCI category would believe that most of his classes would  fall in this specific major or in
other majors within SCI.  This would be especially true after the first couple of semesters when students take the
majority of their  liberal arts (General Studies) requirements.
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signal in which Sigi,j=GPAi, this is equivalent to the updating rule:

(7) E(AGPAt*
i,j)1=E(AGPA1

i,j)+ γj (GPA1
i- E(GPA1

i)), 

where GPA1
i is a random variable describing i’s beliefs about GPAi. Similarly, the analogous

internally-consistent updating rule for the second (disaggregated) signal can be written as

(8) E(AGPAt*
i,j)1=E(AGPA1

i,j)+ γj,1(GPA1
i,j - E(GPA1

i,j))+γj,2(GPA1
i,NON-j - E(GPA1

i,NON-j)),

where GPA1
i,j is a random variable describing beliefs about GPAi,j, and GPA1

i,NON-j is a random variable

describing beliefs about GPAi,NON-j (i’s grade performance in all classes taken outside of major j). We

take our estimates for γj from Table 4 and our estimates for γj,1 and γj,2 from Table 5.27 Note from Table 5

that the value we use for γj,1 will depend on how many classes in j a person is taking.

Given estimates of the parameters in Eqs. 7 and 8, the distribution of E(AGPAt*
i,j)1 can be

constructed for each j if one knows the distribution describing the person’s beliefs about Sigi,j. A desirable

feature of the first signal GPAi is that the needed distribution describing beliefs about GPAi is directly

observed using survey Question 3.  In the sample, students believe that the average probability is .405,

.350, .173, .048, .016, and .006, respectively, that  GPAi will be between 3.5 and 4.0, 3.0 and 3.5, 2.5 and

3.0, 2.0 and 2.5, 1.0 and 2.0, and 0.0 and 1.0, respectively. Thus, on average, students are optimistic; they

believe that GPAi will be approximately 3.27, while the actual average GPAi is 2.88.

             As described earlier in this section (IV.C.), for each j0JND the second signal disaggregates GPAi

into GPAi,j and GPAi,NON-j, where the former term is i’s GPA in all classes in major j and the latter term is

i’s GPA in all classes outside of j.  Thus, for any student i, characterizing beliefs about the second signal

for all possible j requires knowledge of the distribution describing beliefs about GPAi,j for all j. For each 

j, a natural assumption is that the mean of the distribution describing beliefs about GPAi,j is given by the

reported value E(AGPA1
i,j).28 Then, the reason we noted earlier that the distribution describing beliefs

about GPAi,j is not fully observed is that the variance of this distribution is not directly observed. What

can be observed from survey Question 3 is unique information about the variance of the distribution

describing beliefs about overall GPAi. Observing this overall variance allows us to take into account that

some students may generally be more uncertain about grade performance than others. However, given this
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overall variance and knowledge of the set of classes that student i took, constructing the variance of the

distribution describing beliefs about GPAi,j for each j requires additional assumptions related to what

student i believes about the relative amount of uncertainty across j.  Roughly speaking, we make the

assumption that i’s uncertainty about grade performance in a particular class in major j is proportional to

the variance of the grades observed in the data for classes in major j. While this assumption is untestable,

it does have the virtue of allowing students to realize that there may be more grade uncertainty in some

majors than in other majors. In Appendix B we describe this assumption in more detail and describe the

latent variable model that we use to characterize the distribution describing beliefs about GPAi,j for each j. 

IV.D.  Constructing E(AINCt*
i)1

 In this section we detail the construction of the distribution of E(AINCt*
i)1, which describes a

student’s beliefs at t=1 about what E(AINCt*
i) will turn out to be. Our approach in IV.C for constructing

the distribution of  E(AGPAt*
i)1 involved: 1) describing the updating rule for beliefs about AGPAi,j as a

function of E(AGPA1
i,j) and a signal of AGPAi,j (constructed from actual grade performance), and 2)

characterizing the person-specific amount of uncertainty that exists about the signal. From Eqs. 7 and 8

we see that the prior E(AGPA1
i,j) represents the mean of E(AGPAt*

i)1 and that the distribution of possible

updates to E(AGPA1
i,j) is determined by how much person-specific uncertainty exists about the signal. 

It would be appealing to take an analogous approach  to construct the distribution of E(AINCt*
i)1.

For the age of 28, the expected value of the distribution describing beliefs about the average annual

income i would receive if he had major j, E(AINC1
i,j), is observed in the third column of Question 1.

However, a difficulty arises because there does not exist a direct signal of AINCi,j that is analogous to the

grade performance signals used for AGPAi,j. One might consider an updating rule that is a function of

other indirect information that might influence beliefs. However, we find that the most obvious of this

other information - actual grade performance - does not have a quantitatively strong relationship to

updating. This implies that the use of such an updating rule would amount to imposing an assumption that

very little updating about average income would take place during school. That is, a person would expect

to update very little from E(AINC1
i,j), a situation that seems less than ideal since we simply may not be

able to observe the same signals that are observed by the agent. 

Analogous to the approach in Section IV.C, we  use the prior  E(AINC1
i,j) as the mean of

E(AINCt*
i)1.  However, we take a somewhat different approach for characterizing the distribution of

possible updates to E(AINC1
i,j) that could take place by t*. At various times during school, Survey

Question 4 allows us to observe a student’s total uncertainty about his income at the age of 28 - by

eliciting the lower bound, upper bound, 25th percentile, 50th percentile, and 75th percentile of the

distribution describing beliefs about income at age 28 under a graduation scenario. This total



25

uncertainty comes from three sources: 1) uncertainty about updates to beliefs about average income that

will take place as of t* (resolvable uncertainty), 2) uncertainty about updates to beliefs about average

income that will take place after t* (unresolvable uncertainty), and 3) transitory yearly fluctuations in

earnings that exist for a person with a given value of AINCi,j.  What is needed to characterize the

distribution of possible updates is to isolate the first source. To do this, we make an assumption that the

proportion of the uncertainty that person i believes will be resolved about j before he makes his

decision at t* corresponds to the proportion of uncertainty that is actually resolved about j, on

average, in the sample.  Information about the proportion of uncertainty that is actually resolved, on

average, in the sample, can be obtained by comparing how much total uncertainty exists, on average,

at the time of entrance to how much total uncertainty exists, on average, at t*. Appendix C describes

the approach in more detail, including the manner in which we deal with the reality that we do not

elicit the 25th, 50th, and 75th percentiles or bounds separately by major.

IV.E.  Descriptive evidence that AGPA and AINC are likely to matter

Our estimation of Eq. 6 in IV.C showed that E(AGPA1
i,j) plays a prominent role in the

construction of  E(AGPAt*
i)1, the random variable that directly enters our full model of IV.B. Then,

before estimating our full model, we can provide some informal, descriptive evidence that beliefs

about AGPAi will likely turn out to be important determinants of  (Pri,j: j0JD). In Columns 3-9 of Table 3,

we see that, for every j and every k…j, the average E(AGPA1
i,j)-E(AGPA1

i,k) is substantially larger for

students with STATEi=j than it is for students with any other stated major.  For example, Column 3 shows

that students with STATEi=SCI have an average E(AGPA1
i,SCI) that is quantitatively and significantly

larger than the average E(AGPA1
i,k) for each k…SCI. In contrast, Columns 4-9 show that, for students with

any stated major j other than SCI, the average E(AGPA1
i,SCI) is substantially lower than the average

E(AGPA1
i,j). To facilitate the description further, the second panel of Table 3 includes two measures

which aggregate the outcomes AG, BUS, ED, HUM, PRO, SS into a single non-science (NON-SCI)

major grouping. The first measure (measure 1) constructs E(AGPA1
i,NON!SCI) for person i  as a weighted

average of E(AGPA1
i,j) across all j…SCI, where the weight associated with j is the probability Pri,j

conditional on j…SCI.  Students with STATEi=SCI have average E(AGPA1
i,SCI)-E(AGPA1

i,NON-SCI)=.11,

whereas students with a stated major other than SCI (and also not equal to DROP) have average

E(AGPA1
i,SCI)-E(AGPA1

i,NON-SCI)= -.70. This difference arises because students with STATEi=SCI believe

that they are much stronger academically in SCI than other students (average E(AGPA1
i,SCI) of 3.53 vs.

2.74), rather than because they believe they are weaker in NON-SCI subjects than other students (average

E(AGPA1
i,NON-SCI) of 3.42 vs. 3.44). Similar conclusions are reached in the last row of the second panel

using the second NON-SCI measure (measure 2) in which E(AGPA1
i,NON!SCI) is constructed as
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max{E(AGPA1
i,j): j…SCI}.

The results in the second panel of Table 3  also present a convenient way to see that beliefs about

AGPAi may play an important role in determining Pri,DROP.  Students with STATEi=DROP have a sample

average of E(AGPA1
i,SCI) that is .88 lower (2.65 vs. 3.53) than the sample average E(AGPA1

i,SCI) for

students with STATEi= SCI and is .09 lower (2.65 vs. 2.74) than the sample average for students with

STATEi=NON-SCI.  Similarly, the last two rows of Panel two show that students with STATEi=DROP

have a sample average of E(AGPA1
i,NON-SCI) that is lower than the sample average of E(AGPA1

i,NON-SCI) for

students with STATEi=SCI or for STATEi=NON-SCI.

Similar to what was seen in Table 3 for AGPAi,j, Table 6 suggests that beliefs about AINCi,j may

be an important determinant of the initial beliefs (Pri,j: j0JD). Focusing again on the major outcomes in

Columns 3-9, we again see that, for every major j and every major k…j, the sample average of E(AINC1
i,j)-

E(AINC1
i,k) is larger for students with a stated major of  j than for students with any other stated major. 

The second panel of Table 6 again facilitates comparisons by including two measures which aggregate the

outcomes AG, BUS, ED, HUM, PRO, SS into a single non-science (NON-SCI) major grouping. For

either of the two measures of E(AINC1
i,NON-SCI) we find that, as compared to individuals with STATEi=j,

j…SCI, students with STATEi=SCI expect substantially higher future earnings from a SCI degree but very

similar earnings from a NON-SCI degree. Thus, as before we see that students with STATEi=SCI believe

they have a comparative advantage in SCI, but not necessarily an absolute disadvantage in NON-SCI.

Beliefs about income are also related to beliefs about dropout.  Compared to other students, students with

STATEi=DROP have (statistically) more optimistic beliefs about their future income if they leave school

immediately; the sample average E(AINC1
i,DROP) is $36,400 for STATEi=DROP, is $29,600 for

STATEi=SCI, and is $29,900 for STATEi=NON-SCI.

IV.F.  Identification and Estimation

IV.F.1. The Choice Set

For our primary estimation of the model in Eqs. 1-5, we consider a further aggregated (Agg) choice

set in which all non-science majors are combined into a single NON-SCI group: JD,Agg={DROP, SCI,

NON-SCI} with Pri,NON-SCI=3j0{AG, BUS,ED,HUM,PRO,SS}Pri,j. Section IV.B suggested reasons related to the

timing of choices that may make this appealing and Section IV.C suggested that, at least in terms of

updating, there are substantial similarities among the non-science majors.  In addition, there are

practical considerations that make this specification appealing.  First, given that our model implies

that i’s probability of choosing each major j will be strictly between 0 and 1, we must adjust reported



29In practice we assume that Pri,j =.99 if i reports 1.0 and we assume that Pri,j =.01 if i reports 0.0. 
Changing these assumptions slightly has little effect. This issue is described in Blass et al. (2010) who implement a
strategy that does not require this type of adjustment.
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probabilities Pri,j that are either 0.0 or 1.0.29 The need to do this becomes less common with the

further aggregated choice set. Second, as will be discussed in more detail, Eq. 5 shows that, for any

set of parameter values, computing the likelihood contribution for i requires solving for a set of zeros. 

Since the number of zeros depends on the number of elements of the choice set, the burden of doing this is

reduced non-trivially with a reduction in the choice set.

IV.F.2. Identification

With all of the information needed to characterize the distributions of E(AGPAt*
i)1 and E(AINCt*

i)1

constructed outside the model as described in IV.C and IV.D, the parameters to be estimated are those in

Eq. 1.  In terms of the coefficients in Eq. 1, we make a standard normalization by setting αDROP =0 so that

αSCI and αNON-SCI are interpreted as effects of Xi on SCI and NON-SCI relative to the effects of Xi on the

base case DROP. In terms of the unobservables, in the standard discrete choice case, vi,j and εi,j would be

combined by necessity into a single random variable and the scale of the model would be fixed by

normalizing the variance of this random variable.  To illustrate how observing person-specific reports of

the Pri,j’s influences identification issues related to vi,j and εi,j, we simplify the discussion by: 1)

considering a binary choice set JND,AGG={SCI, NON-SCI} and 2) ignoring the effects of Xi and AINCi,j  in

Eq. 1. For concreteness, we assume that i reports Pri,SCI=.20. 

Eq. 5 shows that we must first find values of εi,SCI and εi,NON-SCI so that Pri,SCI=.20 and then evaluate

how likely these values are. Rewriting Eq. 5 and inserting Eq. 3 for our simplified case,

(9) )              Prob(εi,SCI,εi,NON&SCI: Pr(Et(U SCI>Et(U NON&SCI)'.20

= ).Prob(εi,SCI,εi,NON&SCI: Pr(β1E(AGPA t(
i,SCI)

1%vi,SCI%εi,SCI>β1E(AGPA t(
i,NON&SCI)

1%vi,NON&SCI%εi,NON&SCI)'.20

Recalling that εi,SCI and εi,NON-SCI are known to the student and rearranging so that all random variables

capturing the uncertainty of i appear on the left side,

(10) .Prob(εi,SCI,εi,NON&SCI: Pr(β1E(AGPA t(
i,SCI)

1&β1E(AGPA t(
i,NON&SCI)

1%vi,SCI&vi,NON&SCI>εi,NON&SCI&εi,SCI)'.20)

Eq. 10 shows that, as is standard in discrete choice models, it is the differenced unobservables vi,diffSN =

vi,SCI- vi,NON-SCI and εi,diffSN = εi,SCI-εi,NON-CI that are of relevance. In practice we will assume that differenced

unobservables such as  vi,diffSN and εi,diffSN are normal, with means of zero and standard deviations σvdiffSN

and  σεdiffSN that do not vary across i. We assume for the discussion here that E(AGPAt*
i,SCI)1 and

E(AGPAt*
i,NON-SCI)1 are also normal, although our estimation strategy does not always require/utilize this

assumption. With Eq. 8 indicating that the mean of E(AGPAt*
i,SCI)1 = E(AGPA1

i,SCI) and that the mean of

E(AGPAt*
i,NON-SCI)1 =E(AGPA1

i,NON-SCI), Eq. 10 can be rewritten as:
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(11)  Prob(εi,diffSN: Pr(Z>
&εi,diffSN%β1E(AGPA 1

i,NON&SCI)&β1E(AGPA 1
i,SCI)

β2
1Var(E(AGPA t(

i,SCI)1)%β2
1Var(E(AGPA t(

i,NON&SCI)1)%σ2
vdiffSN

)'.20),

where Z is a standard normal random variable. Noting that Pr(Z>.84)..20, denoting the ratio in Eq. 11 as

C and setting this ratio equal to .84 allows us to solve for εi,diffSN*, the value of εi,diffSN that satisfies

Pr(Z>C)=.20, as a function of β1, σ2
vdiffSN E(AGPA1

i,SCI), E(AGPA1,i,NON-SCI), Var(E(AGPAt*
i,NON!SCI)1), and

Var(E(AGPAt*
i,SCI)1).   The likelihood contribution involves evaluating the density of εi,diffSN at εi,diffSN*.

With εi,diffSN  -N(0,σ2
εdiff ), the likelihood for person i is proportional to:

(12) exp(& 1
2

[
β1E(AGPA 1

i,NON&SCI)
σεdiffSN

&
β1E(AGPA 1

i,SCI)
σεdiffSN

&.84
β2

1Var(E(AGPA t(
i,SCI)

1))

σ2
εdiffSN

%
β2

1Var(E(AGPA t(
i,NON&SCI))

1

σ2
εdiffSN

%
σ2

vdiffSN

σ2
εdiffSN

]

2

).

E(AGPA1
i,SCI), E(AGPA1

i,NON-SCI), Var(E(AGPAt*
i,NON!SCI)1), and Var(E(AGPAt*

i,SCI)1) can be thought of as

data since, as described in Section IV.C, they are constructed from survey information.  The parameters to

be estimated are σvdiffSN, σεdiffSN, and β1.  From Eq. 12, it is evident that these parameters are not separately

identified since doubling each of the parameters would leave the Eq. 12 unchanged. However,

normalizing σvdiffSN allows both  β1 and σεdiffSN to be identified.  

Returning to our primary case which uses JD,Agg instead of JND,Agg, Eq. 5 can now be written as a

function of any two of Pri,DROP, Pri,SCI, and Pri,NON-SCI.  Using the latter two, Eq. 5 is

(13) andProb(εi,SCI,εi,NON&SCI,εi,DROP: Pr(Et(U SCI>Et(U NON&SCI, Et(U SCI>Et(U DROP)'Pri,SCI

.Pr(Et(U NON&SCI>Et(U SCI, Et(U NON&SCI>Et(U DROP)'Pri,NON&SCI)

Expanding analogously to Eq. 9, εi,SCI- εi,NON-SCI, εi,SCI- εi,DROP, εi,NON-SCI -εi,SCI, and εi,NON-SCI -εi,DROP appear in

the inner probability expressions. However, εi,diffSN=εi,SCI-εi,NON-SCI and εi,diffSD=εi,SCI-εi,DROP are sufficient for

determining all four of these differences. Similarly, the terms involving vi,SCI, vi,NON-SCI, and vi,DROP can be

written as functions of the differences vi,diffSN=vi,SCI!vi,NON-SCI and vi,diffSD=vi,SCI!vi,DROP.  We normalize

Var(vi,diffSN)=Var(vi,diffSD)=1 and corr(vi,diffSN, vi,diffSD)=0 and assume that vi,diffSN and vi,diffSD are normal.  We

assume that εi,diffSN and εi,diffSD have a joint normal distribution and estimate the standard deviation of

εi,diffSN, denoted σεdiffSN, the standard deviation of εi,diffSD, denoted σεdiffSD, and the correlation between εi,diffSN

and εi,diffSD.

Estimation involves maximizing the likelihood function that comes from Eq. 5.  As is standard,

the parameters are updated using a Newton-Raphson algorithm. However, within this updating process,

there is a second need for Newton-Raphson since, for each guess of the parameters during the updating

process, it is necessary to find, for each person i, the values of εi,diffSN and εi,diffSD that satisfy the two Pr

conditions in Eq. 13. From a computational standpoint, finding these zeros can be burdensome because,



30One reason the sample is somewhat smaller than what is seen in, for example, Table 3 is that some
individuals in our first cohort did not provide E(AGPA1

i,j) when they assigned Pri,j=0. In Table 3 we used whatever
information was provided by the “partial” cases (with sample sizes reflecting the total number of people
contributing information) But, partial cases are not included in our estimation sample. 
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for each possible value of εi,diffSN and εi,diffSD, computing  andPr(Et(U SCI>Et(U NON&SCI, Et(U SCI>Et(U DROP)

requires the evaluation of the multi-dimensional integralPr(Et(U NON&SCI>Et(U SCI, Et(U NON&SCI>Et(U DROP)

seen in Eq. 5 over the random variables E(AGPAt*
i)1, E(AINCt*

i)1, vi,diffSN, and vi,diffSD.  We evaluate these

integrals by simulation, taking advantage of the results in Section IV.C. and IV.D in order to draw from

the distributions of E(AGPAt*
i)1 and E(AINCt*

i)1.

IV.G.  Results 

IV.G.1.  Estimates

With DROP as the base choice, the parameters to be estimated are the Eq. 1 coefficients αSCI, αNON-SCI, β1,

β2 and the variance terms σεdiffSN, σεdiffSD and corr(εi,diffSN,εi,diffSD).  αSCI and αNON-SCI are four dimensional

vectors with Xi={1.0, MALEi, MACTi, and VACTi}. Our estimation sample contains the 572 members of

the full sample who have no missing information of any type.30

Given a desire to ensure robustness, Section IV.C discussed two possible ways of aggregating the

non-science majors when constructing the utility from NON-SCI and two possible signals that could enter

the updating process related to APGAi,j.  Column 1 of Table 7 shows results in which: 1) a student knows

that at t* he will compare Et*UDROP() and Et*USCI() to Et*UNON-SCI=Maxj0{AG,BUS,ED,HUM,PRO,SS} [αNON!SCIXi

+β1E(AGPAt*
i,j)+β2E(AINCt*

i,j) +vi,NON-SCI +εi,NON-SCI] and 2) the updated belief E(AGPAt*
i,j) for any j0JND

uses the results from Table 5 where the signal involves both GPAi,j and GPAi,NON-j. Note that in the

definition of Et*UNON-SCI in 1), AGPAi,j and AINCi,j receive an identical treatment as would be present in a

full (non-aggregated) model in the sense that i learns about these factors separately for each j before t* and

compares β1E(AGPAt*
i,j)+β2E(AINCt*

i,j) across j when making a decision.

Our primary interest is in the influence of  AGPAi,j and AINCi,j. These factors have a statistically

significant effect on utility, with the coefficients β1 and β2, respectively, having t-statistics of 15.15 and

7.42, respectively. In terms of other observable influences on utility, a particular element of Xi may have

an effect on utility from major j beyond its influence through AGPAi,j and AINCi,j if, for example, the

characteristic is related to how much a person enjoys major j. We find some evidence of this. For example,

being male and having higher math ACT scores increases utility from SCI relative to NON-SCI;  αSCI,MALE-

αNON-SCI,MALE has an estimate (t-stat) of .105 (1.88) and αSCI,MACT-αNON-SCI,MACT has an estimate (t-stat) of .022

(2.78). Having higher verbal ACT scores increases utility in NON-SCI relative to SCI;  αSCI,VACT-αNON-

SCI,VACT has an estimate (t-stat) of -.012 (-2.88). In terms of unobservable influences on utility, recall that



31We have also found that the estimates here and the conclusions of the paper, more generally, are not very
sensitive to changing t* (e.g., to t*=5). Changing t* involves reestimating the updating equations in Table 4 and
Table 5. We find that the changes to Table 4 and Table 5 are not particularly large.  In addition, the effect of any
changes to Tables 4 and 5 on the estimates in Table 7 tends to be mitigated by the fact that at entrance students tend
to understate the amount of uncertainty that exists about the grade performance signal  (IV.C. showed that students
tend to not anticipate bad grade outcomes that do actually sometimes occur). Recall that the distribution of
E(AGPAt*

i)1 is determined by the set of values of E(AGPAt*
i) that could arise as a person uses Tables 4 and 5 to

update his beliefs for each possible value of Sigi,j that he thinks is relevant. Then, changes to Tables 4 and 5 will
tend to have less effect on  the distribution of E(AGPAt*

i)1 if a person is not very uncertain about  Sigi,j. 
32Note that we use the word misperception to describe a case where a student’s beliefs are not accurate

given what tends to happen in college.  A different question, not examined here, is whether a student formed these
beliefs in a reasonable way given the information that he received before arriving at college.
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the model is estimated under a normalizing assumption about the variance of the resolvable portions of

unobserved utility: Var(vi,diffSN)=Var(vi,diffSD)=1. We find that the variance across students in the known (to

students) unobservable portions of utility is somewhat similar in size with an estimate for σεdiffSN of .627

and an estimate for σεdiffSD of 1.028.  Finally, we find that people who like SCI relative to NON-SCI also

tend to like SCI relative to DROP, with corr(εi,diffSN,εi,diffSD) having an estimate (t-stat) of .73 (33.31). 

As one robustness check, Column 2 of Table 7 is the same as Column 1 except that the updated

belief E(AGPAt*
i,j) for any j0JND uses the results from Table 4 where the signal involves only the overall

GPAi. More specifically, we utilize the second and third panels of Table 4 so that the effect of GPAi

depends on whether or not STATEi=j.  As a second robustness check, Column 3 of Table 7 is the same as

Column 1 except that a student knows that at t* he will compare Et*UDROP() and Et*USCI() to Et*UNON-SCI()=

αNON!SCIXi + β1E(AGPAt*
i,NON!SCI) + β2E(AINCt*

i,NON-SCI) + vi,NON-SCI + εi,NON!SCI where E(AGPAt*
i,NON-SCI) and

E(AINCt*
i,NON-SCI), respectively, are the weighted averages of E(AGPAt*

i,j) and E(AINCt*
i,j), respectively,

across all j…SCI, where the weight associated with j is the student’s reported probability Pri,j conditional

on j…SCI. The benefit of this specification is that, to the extent that decisions are influenced heavily by the

εi,j’s, the weights contain some information about which values of  E(AGPAt*
i,j) and E(AINCt*

i,j) are likely

to be particularly important to i. Regardless, the estimates in Columns 2 and 3 are very similar to the

estimates in Column 1 so, in what follows, we focus primarily on the results from Column 1.31 

IV.G.2.  Are effects of AGPAi,j and AINCi,j quantitatively important? 

Whether misperceptions about AGPAi and AINCi, if they exist, have the potential to explain the

substantial difference in Columns 2 and 3 of Table 1 between perceived probabilities (Pri,j’s) and actual

outcomes (j*’s) depends on the quantitative importance of AGPAi,j and AINCi,j.32 Given that it is hard to

understand the quantitative importance of  AGPAi,j and AINCi,j from examining parameter estimates alone,

we provide some evidence about this issue here. For given distributions of E(AGPAt*
i)1, E(AINCt*

i)1 (and

for the given normalized distributions of vi,diffSN, and vi,diffSD), i’s values of Pri,SCI, Pri,NON-SCI, and Pri,DROP are



33With the estimates coming from Column 1 of Table 7, the Column 1 note in Table 7 indicates that the
construction uses Sigi,j=(GPAi,j, GPAi,NON-j).
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determined by his realizations of εi,diffSN and εi,diffSD. Using simulation to integrate over the joint distribution

εi,diffSN and εi,diffSD yields average values of Pri,SCI, Pri,NON-SCI, and Pri,DROP for i.  Averaging across i yields the

simulated sample average probabilities in Table 8.  Of interest is the sensitivity of the simulated sample

average probabilities to changes in E(AGPAt*
i)1 and E(AINCt*

i)1. 

For the estimation sample, the sample average values of Pri,SCI, Pri,NON-SCI, and Pri,DROP,

respectively, from our survey data are .166, .697, and .137, respectively (Column 2, Table 8). As a check

of our model, the baseline results in Column 3 of Table 8 show the simulated sample average probabilities

under a scenario in which the distributions of E(AGPAt*
i)1 and E(AINCt*

i)1 are left unchanged (i.e, the

distributions are constructed from the actual data as described in IV.C. and IV.D.).33  The simulated

sample average probabilities, .172, .692, and .136, are close to the actual sample averages. 

Columns 4-7 of the first panel of Table 8 show results when we vary the mean E(AGPA1
i) of the

distribution of E(AGPAt*
i)1.  In Column 4 we assume that, for each k0JND, E(AGPA1

i,k) is one-half of a

standard deviation above the sample mean observed in the first column, first panel of Table 3.  In Column

5 we assume that, for each k0JND, E(AGPA1
i,k) is one-half of a standard deviation below its observed

sample mean. In Column 6 we assume that, for each k…SCI, E(AGPA1
i,k) is one-half of a standard

deviation above its sample mean while E(AGPA1
i,SCI) is one-half of a standard deviation below its sample

mean. In Column 7 we assume that, for each k…SCI, E(AGPA1
i,k) is one-half of a standard deviation below

its sample mean while E(AGPA1
i,SCI) is one-half of a standard deviation above its sample mean.  The

results indicate that Pri,SCI is very sensitive to changes in beliefs about grade performance.  Pri,SCI ranges

from .093 to .285 across the four scenarios. Increasing E(AGPA1
i,SCI) by one standard deviation while

leaving E(AGPA1
i,k) unchanged for all k…SCI leads to an increase in Pri,SCI of .285-.169=.116 (69%) if 

E(AGPA1
i,k) is one-half of a standard deviation below its sample mean for all k…SCI (Col. 7 vs. Col. 5)

and leads to an increase in  Pri,SCI of .230-.093=.137 (147%) if  E(AGPA1
i,k) is one-half of a standard

deviation above its sample mean for all k…SCI (Col. 4 vs. Col. 6). These changes in Pri,SCI are of similar

magnitude as the difference observed between the average Pri,SCI observed in the survey data (.166, Col. 2)

and the actual proportion of students who have the outcome of SCI (.082, Col. 1). This leaves open the

possibility that substantial misperceptions, if they exist, about E(AGPA1
i) could generate the type of

overoptimism about SCI observed at entrance. 

Columns 4-7 also show that Pri,DROP can be influenced by changes in beliefs about grade

performance, although substantial increases in Pri,DROP require that beliefs about grade performance

become considerably less positive in all non-science majors. For example, decreasing E(AGPA1
i,k) for all 
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k…SCI by one standard deviation while leaving E(AGPA1
i,SCI)  unchanged leads to an increase in Pri,DROP of

.083 (69%) if  E(AGPA1
i,SCI) is one-half of a standard deviation below its sample mean (Col. 6 vs. Col. 5)

and leads to an increase in Pri,DROP of .074 (67% )if  E(AGPA1
i,SCI) is one-half of a standard deviation

above its sample mean (Col. 4 vs. Col. 7).  However, unlike what was seen for Pri,SCI, the changes that are

generated to Pri,DROP, while non-trivial, are small relative to the difference between the average Pri,DROP

observed in the survey data (.137, Col. 2) and the actual proportion of people who drop out (.360, Col. 1).

Misperceptions about E(AGPA1
i), if they exist, may have difficulty explaining the overoptimism about

graduation observed at entrance.

Columns 4-7 of the second  panel of Table 8 show results analogous to those in the first panel

when we vary the mean E(AINC1
i) of the distribution of E(AINCt*

i)1.  There exists a non-trivial role for

AINCi,j, but one that is substantially smaller than what was seen for AGPAi,j.  For example, increasing

E(AINC1
i,SCI) by one standard deviation while leaving E(AINC1

i,k) unchanged for all k…SCI  leads to an

increase in Pri,SCI of .042 (24%) if  E(AINC1
i,k) is one-half of a standard deviation below its sample mean

for all k…SCI (Col. 7 vs. Col. 5) and leads to an increase in  Pri,SCI of .032 (21%) if  E(AINC1
i,k) is one-half

of a standard deviation above its sample mean for all k…SCI (Col. 4 vs. Col. 6). 

IV.G.3. What would Pri,j’s be under true distributions of AGPAi and AINCi?           

IV.G.2 showed that, generally speaking, the reported probabilities (Pri’s) are sensitive to beliefs

about AGPAi and AINCi.  Here we show that  misperceptions about AGPAi and AINCi exist at entrance,

and quantify the extent to which these misperceptions can explain the substantial difference between the

average Pri,SCI, Pri,NON-SCI, and Pri,DROP observed in the survey data (Col. 2, Table 8) and the proportion of

students who have the outcomes SCI, NON-SCI, and DROP (Col. 1, Table 8).

We start by focusing on AGPAi.  Uncertainty about one’s final outcome arises, in part, because i

faces uncertainty about AGPAi that will be resolved by time t*. For any j 0JND, this uncertainty is given by

the distribution of the random variable E(AGPAt*
i,j)1 from IV.C. The distribution of E(AGPAt*

i,j)1 may be

biased when compared to the true distribution of  AGPAi,j in the population. Our objective here is to

simulate how the reported probabilities Pri,SCI, Pri,NON-SCI, and Pri,DROP would have been different if, for each

i and j, the distribution of  E(AGPAt*
i,j)1 were replaced during estimation by a distribution representing the

true values of AGPAi,j across students who are similar to i in observable ways.

To characterize this true distribution we again take advantage of transcript data, now utilizing

course and grade information over a student’s entire time in school. As in IV.C, we make the simplifying

assumption that a student forms beliefs about future grades in major j by primarily considering his classes



34Footnote 28 discusses this assumption. Here we have done some experimentation to make sure that this
assumption is not driving our subsequent finding that misperceptions are able to explain why students are much less
likely to end up in SCI than expected.  As we will discuss, this result depends to a large extent on the
misperceptions of students who have STATEi=SCI but have an outcome j*…SCI. Table 3 shows that students with
STATEi=SCI have high values of E(AGPA1

i,SCI), but also have high values of E(AGPA1
i,j), j…SCI.  Then the beliefs

about performance in SCI of this crucial group is not very sensitive to exactly how many classes this group
considers taking outside of SCI as part of a SCI major. 

35For the full sample we find that only 11% of students take zero SCI classes and 63% take two or more
SCI classes. For the sample of graduates we examine in Section IV.G.4 we find that only 5% of students take zero
SCI classes and 73% take two or more SCI classes.
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in j, not the classes he might take that would fall in some other major.34 We assume that i’s grade G in a

particular class k in a particular major j0JND is given by the permanent/transitory structure

(14) Gi,j,k=constantG
j+ηGXi+θG

i,j+uG
i,j,k.

With θG
i,j representing the mean-zero permanent portion of unobserved performance and uG

i,j,k representing

the mean-zero transitory portion of unobserved performance, we view Eq. 14 as a random effects

specification. Then, the object of interest - i’s long-run average GPA in major j - is given by

(15) AGPAi,j=constantG
j+ηGXi+θG

i,j. 

With one equation for each major, we estimate the system of the seven equations defined by {Gi,j,k: j0JND}.

To allow for possible correlations in θG
i,j across majors j we assume that (θG

i,j: j0JND) has a multivariate

normal distribution. We assume that uG
i,j,k is independent across j and k and that uG

i,j,k-N(0,Var(uG
i,j)). 

We are able to separate the importance of the permanent and transitory components for a particular

major j because, for some students i, we observe Gi,j,k for multiple courses k. Our estimates of the

parameters in Eqs. 14 associated with a particular major j will be identified by individuals who take

classes in j. Given that we are interested in the distribution of AGPAi,j across all students, one might

worry, for example, that students who are good at major j will be more likely to select into taking classes

in j. However, this concern is seemingly mitigated to a non-trivial extent in our context because: 1) with

respect to our major of primary interest SCI, due (in part) to SCI requirements that are part of the liberal

arts curriculum, almost all students take at least one SCI course and the majority of students take two or

more SCI courses and 2) with respect to the other majors, we show momentarily that there exists a very

strong correlation across the set of non-science majors (which suggests that grade performance in j…SCI

for those who take classes in j may be similar to what grade performance in j would have been for those

who did not take classes in j).35 Further, if students who would receive bad grades in SCI tend to avoid

science classes, our estimates of Eq. 15 would be too positive about the true distribution of AGPAi,SCI.

Thus, adjusting the distribution might further strengthen our finding that misperceptions are important.

Regardless, it is necessary to view the estimates of Eq. 15 with appropriate caution.



36A student’s math ACT score is a statistically significant predictor of performance in five of the seven
majors, having the largest t-statistic (and largest estimate) for SCI. The  estimated effects across the seven majors
have, on average, a t-statistic of 2.79.  In contrast, a student’s verbal ACT score is a statistically significant predictor
of grade performance in only two of the seven majors and the estimated effects across the seven majors have, on
average, a t-statistic of .829.  Part of the explanation for the gender difference is the higher level of effort of females
as detailed in S&S (2012).  

37The models in this subsection are estimated by simulated maximum likelihood.
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Column 1 of Table 9 shows simulated maximum likelihood estimates of the parameters defining

the system {Gi,j,k: j0JND} assuming that θG
i,j is uncorrelated across j and that ηG=0. Two particular results

stand out.  First, the variance of  AGPAi,j as measured by Var(θG
i,j) is substantially higher for j=SCI than

for the other majors; Var(θG
i,j)=.72, .19, .50, .30, .41, .26, and .56, respectively, for j=SCI, AG, BUS, ED,

HUM, PRO, SS, respectively.  Second, comparing the average value of AGPAi,j for each major j given by

constantG
j to the sample average perceived value of E(AGPAi,j

1) for each major j as given in Column 1 of

Table 3, we see that students were particularly overoptimistic at entrance about SCI.  The difference

between constantG
j (Table 9) and E(AGPA1

i,SCI) (Col. 1, Table 3) is !.54 for SCI and is, on average, -.05

for the other six majors (ranging between -.40 to .34). Column 2 of Table 9 shows results including Xi.  We

see evidence in support of the importance of MACT and see that, conditional on MACT and VACT,

women perform significantly better than males in all majors.36  Finally, Column 3 relaxes the assumption

that θi,j is uncorrelated across j. We reduce the dimension of the covariance matrix by estimating

COV(θi,SCI ,θi,j) for each j0{AG, BUS, ED, HUM, PRO, SS}, but by constraining the correlation to be the

same across all pairs of non-science majors: corr(θi,j ,θi,k)=corr(θi,m ,θi,n) for all j,k,m,n0{AG, BUS, ED,

HUM, PRO, SS}, j…k, m…n.37 In IV.C, when examining the determinants of the update E(AGPAt*
i,j), we

found that grades in classes outside of  j tend to be more informative when j…SCI than when j=SCI and

concluded that students believe that the set of majors other than SCI require a somewhat common set of

abilities/knowledge, with this set somewhat different than what is required for SCI.  We find direct support

for this notion here; corr(θi,SCI ,θi,j) ranges from .146 to .410 across j…SCI, but the common corr(θi,j ,θi,k),

j,k…SCI, j…k is .84.

Using the joint distribution of {AGPAi,j: j0{SCI, AG, BUS, ED, HUM, PRO, SS}} constructed

from Eq. 15 in place of the belief distribution E(AGPAt*
i)1 constructed from observed beliefs, Column 4 of

Table 10 shows simulated sample average probabilities for Pri,SCI, Pri,NON-SCI, and Pri,DROP constructed as in

IV.G.2. Compared to the baseline simulations in Column 3, we see a decrease in Pri,SCI from .172 to .121. 

Thus, replacing perceptions about the average grade performance with the measure of the true distribution

of average grade performance explains about 56%=.172-.121/(.172-.082) of the difference between the

baseline simulated average value of Pri,SCI (Column 3, Table 10) and the actual proportion of matriculants
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who have an outcome of SCI (column 1, Table 10). 

 That the simulation in Column 4 does not explain even more of the difference between the SCI

numbers in Columns 1 and 3 of Table 10 can be attributed to the fact that the majority of the dramatic

difference in DROP between Columns 1 and 2 is left unexplained (we simulate a change in Pri,DROP of

.161-.136=.025, whereas the difference is .360-.136=.224). Indeed, Column 4 is quite successful in

correcting misperceptions about the choice of SCI relative to the choice of NON-SCIENCE. The

probability of SCI conditional on not dropping out, Pri,SCI/(Pri,SCI+Pri,NON-SCI), is .199 in our baseline

simulation (Column 3), is .128 in reality (Column 1), and is .144 in our Column 4 simulation. In IV.G.4,

we discuss what our previous research suggests about why the expectations data collected at entrance may

be better suited for studying major choice than for understanding dropout. However, before doing this, we

examine whether misperceptions exist about AINCi,j, and, if so, whether these misperceptions can further

explain the differences between Columns 1 and 3 of Table 10. 

 Survey Question 1 eliciting E(AINC1
i,j) asks about earnings at age 28. We use our post-college

annual survey to examine actual earnings around the age of 28. Analogous to Eqs. 14 and 15, we use

INCi,j,k, i’s actual earnings observed at the ages of k=26, 27, 28 to estimate, for each j, the random effects

specification

(16)  INCi,j,k=constantINC
j+ηINCXi+θINC

i,j+uINC
i,j,k.

The object of interest - i’s average income in major j - is given by

(17)  AINCi,j =constantINC
j+ηINCXi+θINC

i,j.

Since students are only observed with income in a single major, it is not possible to allow θINC
i,j to be

correlated across j. More generally, from the standpoint of selection, our estimation of Eq. 16 is less

appealing than our estimation of Eq. 14 (where students are observed with grades in different majors). 

Indeed, concerns about selection are one of the primary motivations for collecting expectations data

because such data allow one to observe beliefs about all potential outcomes. Nonetheless, little is known

about the relationship between income expectations and actual long-run income outcomes.

Column 6 of Table 9 shows results with ηINC=0.  Looking across majors for those who graduate,

the mean of AINCi,j as measured by constantINC
j is largest for SCI, PRO, and BUS ($40,210, $40,070, and

$38, 840) and is smallest for HUM ($26,680). Comparing these constantINC
j’s to the perceptions

E(AINC1
i,j) in Col. 1 of Table 6 (and ignoring selection), we see that students entered school with a

reasonable perception about the income ordering across the seven majors.  For example, consistent with

reality, they believed that SCI, PRO, and BUS are most lucrative).  However, they may have somewhat

overstated the returns to a degree. For example, in Column 1 of Table 6 we see a sample average

E(AINC1
i,DROP) of $29,800, whereas the sample average E(AINC1

i,j) over j…DROP  is $44,500.  In Column
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6 of Table 9 we see an estimate for constantINC
DROP of $28,610, whereas the average constantINC

j over

j…DROP is only $34,280. 

Intuitively, the fall in the return to schooling that is present when we simulate the model using the

distribution of (AINCi,j: j0JD) constructed from Eq. 17 (using estimates in Column 7 of Table 9 with

ηINC…0) in place of the distribution of E(AINCt*
i,)1 constructed from survey data should increase dropout.

However, the simulation results from IV.G.2 suggest that the effect will likely be small (relative to the

very large amount of unexpected dropout). The results in Column 6 of Table 10, where we modify the

specification in Column 4 by using the distribution of (AINCi,j: j0JD) constructed from Eq. 17 in place of

the distribution of E(AINCt*
i,)1 constructed from survey data, indicate that this is the case. Compared to

Column 4, the simulated average Pri,DROP increases from .161 to .178. The simulated average Pri,SCI

decreases further to .104 so that our results are now fully successful in correcting misperceptions about the

choice of SCI relative to the choice of NON-SCIENCE; the probability of SCI conditional on not dropping

out, Pri,SCI/(Pri,SCI+Pri,NON-SCI), is .127 (Column 6) compared to .128 in reality (Column 1). More generally,

the results in Columns 4-6 show that misperceptions about grade performance play a more important role

than misperceptions about income.

IV.G.4. Direct evidence of learning using JND,AGG={SCIENCE, NON-SCIENCE}

IV.G.3 shows that our model is successful in explaining why beliefs about

Pri,SCI/(Pri,SCI+Pri,NON!SCI) are much different than the actual proportion of graduating students who have the

outcome SCI. However, our model has difficulty explaining the large amount of dropout that is present

relative to what students expected. There are natural reasons for this. One issue detailed in S&S (2012) is

that students assign little probability to the very poor grade outcomes that are most strongly tied to

dropout. In this case, examining in IV.G.3 how the Pri,j’s would be influenced by replacing the distribution

of  E(AGPAt*
i,j)1  with the distribution describing the true values of AGPAi,j (as measured by Eqs. 14 and

15), may, in essence, involve some extrapolation which could  have difficulty capturing fully the

particularly large effects of very poor grade performance. In addition, students may simply not anticipate

the full set of avenues through which poor grade performance will influence them. In S&S (forthcoming)

we use a dynamic programming model to understand the relative importance of various explanations for

the strong relationship between grade performance and dropout. We find that grade performance operates

to a large extent by influencing how enjoyable it is to be in school.  It seems quite plausible that students

may not anticipate how stressful/unenjoyable school might turn out to be when grade performance is bad,

and this may lead them to believe incorrectly at entrance that they will “stick it out” no matter what

happens.

Given that this discussion suggests that expectations data collected at entrance seems particularly



38One could attempt to characterize beliefs at the time of exit for those who drop out.  But, in practice, this
is difficult because, for example, our surveys eliciting major information take place at the beginning of semesters
and much dropout occurs between semesters.

39Given high response rates, the majority of observations come from the second semester of the 4th year.
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useful for understanding choices among majors, it seems worthwhile to estimate the model using the

choice set JND,AGG={SCI,NON-SCI}. We do this for the subset of our estimation sample who graduate and

show the results in Column 4 of Table 7.  The estimated effects of AGPAi,j and AINCi,j are almost twice as

large as in Columns 1-3, but that is primarily because the estimate of σεdiffSN is also almost twice as large.

Indeed, the t-statistics associated with AGPAi,j and AINCi,j remain large (10.71 and 4.29).In the second

panel of Table 10 we show simulations for this choice set that are analogous to the results for JD,AGG in the

first panel of Table 10. Column 3 shows that the baseline simulated average  Pri,SCI of .183 is similar to the

average reported Pri,SCI of .189 (Column 2), but much different than the actual proportion who have SCI of

.119 (Column 1). Column 6 shows that replacing E(AGPAt*
i)1 by the constructed true distribution of

AGPAi from Eq. 15 (using estimates for the grad sample from Column 5 of Table 9) and E(AINCt*
i)1 by

the constructed true distribution of AINCi from Eq. 17 (using estimates from Column 7 of Table 9) leads to a

simulated average Pri,SCI of .114.  Thus, our model finds that misconceptions about AGPAi and AINCi can fully

explain why graduating students are substantially overoptimistic about completing a degree in SCI. Columns 3-

5 (2nd panel Table 10) reveal that most of movement in Pri,SCI comes from misperceptions about AGPAi, rather

than misperceptions AINCi. Comparing constantG
SCI,...,constantG

SS in Column 4 of Table 9 to Col. 1, Panel 2 of

Table 3 reveals that, as was seen before, misperceptions tend to be about grade performance in SCI rather than

about grade performance in other majors.

The results in the previous paragraph suggest that misperceptions about Pri,SCI are likely to exist because

students start school with misperceptions about AGPAi  and, to a lesser extent, AINCi. A particular advantage

of examining the subsample of graduates is that we are able to use surveys taken later in school to provide

direct evidence about whether students actually update their beliefs about AGPAi and AINCi substantially by

the end of school.38 While earlier we suggested that it seems reasonable to assume that students believe at

entrance that they will make a major choice rather quickly, beliefs near the end of school are likely to be

informative about outcomes because students who do not fully appreciate how much uncertainty exists about

their major (Sect. III) are likely to end up choosing a major later than they expected.

We focus on the 335 (out of 366) graduating students for which, in addition to observing E(AGPA1
i)

and E(AINC1
i), we also observe E(AGPAt

i)and E(AINCt
i) for some time after the start of the third year.

We refer to the last date at which this information is observed for i as t**.39 The first column of Table 11

shows E(AGPA1
i) in the first panel and E(AINC1

i) in the second panel. The second column of Table 11

shows E(AGPAt**
i)-E(AGPA1

i) and E(AINCt**
i)-E(AGPA1

i). The sample mean of  -.15 for SCI in the first



40Note that it might be desirable to further divide the last group on the basis of a person’s major j*. 
However, in practice this is not useful since so few people who have STATEi …SCI have j*=SCI.

41For the stratified sample, our focus on AGPAi is motivated by our finding in previous sections that this
factor is particularly important for explaining major choice.  S&S (2012) and S&S (forthcoming) examines AINCi
for these same stratification groups - finding differences between groups that are similar in spirit, but  smaller in
magnitude.
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panel of Column 2 indicates that, on average, students do adjust their beliefs about AGPA1
i, SCI downward

during school. The means associated with the other majors j…SCI range from -.049 to .107 and for each of

these majors j we reject, at a 5% level of significance, the null that E(AGPAt**
i,SCI)-E(AGPA1

i,SCI) is the same

as  E(AGPAt**
i,j)-E(AGPA1

i,j). The evidence in IV.G.3 showed that students enter school overly optimistic

about the future income associated with all majors. The sample means in the second panel of Column 2

show that students revise their beliefs about earnings downward over time in all majors.

Section III showed that many students with STATEi =SCI have an outcome other than SCI and

that very few students who have STATEi …SCI end up with an outcome of SCI. The descriptive statistics 

in Columns 3-8 of the first panel of Table 11  examine whether heterogeneity in updating about AGPAi is

consistent with these patterns by stratifying the sample into three groups: those who have STATEi =SCI

and j*=SCI, those who have STATEi =SCI but  j*…SCI, and those who have STATEi …SCI.40  Consistent

with the finding that many students leave SCI, the first row of Table 11 shows that the STATEi =SCI,

j*…SCI group start school with a sample average E(AGPA1
i) that is very similar to the STATEi =SCI,

j*=SCI group (3.53 vs. 3.63) but, as a result of a having an average E(AGPAt**
i,SCI)-E(AGPA1

i,SCI) of -.61

(Col. 6), end school with  a sample average E(AGPAt**
i) that is much more similar to the STATEi …SCI

group (2.92 vs. 2.71). Of relevance for understanding the finding that few people move into SCI after

entrance, Column 8 shows that the STATEi …SCI group has an average (std. dev.) E(AGPAt**
i,SCI)-

E(AGPA1
i,SCI) of -.066 (.785). Although the sample mean is slightly negative, one might think that, given

the very large standard deviation, some students might learn that they are very good at SCI.  To understand

why we do not see more changes into SCI, we disaggregated Column 8 further by stratifying on whether a

students was in the bottom quartile or top three quartiles in terms of E(AGPA1
i,SCI). We find that the

positive updating tends to be concentrated to a large extent in the (former) group of students who had very

low initial expectations, and, as a result, were likely not close to the margin of choosing SCI. For example,

the sample average E(AGPAt**
i,SCI)-E(AGPA1

i,SCI) is .761 for these students and is -.326 for students in the

top three quartiles. Thus, consistent with our earlier results, it seems difficult for students who initially

believe they are good at science  to learn that they are extremely good at SCI without taking many science

classes.41

Finally, we examine whether the changes in beliefs about AGPAi and AINCi over time are



42These numbers are very similar for the 335 person subsample.

43If a person is forced at entrance to choose a major he will not have the opportunity to learn about  vidiffSN
= vi,SCI- vi,NON-SCI so, analogous to the treatment of  AGPAt*

i,SCI and AINCt*
i,SCI in Eq. 3, what will now be relevant for

vi,diffSN will be the expectation E(vdiffSN)=0. εi,diffSN = εi,SCI- εi,NON-SCI is known to the individual so, as before, our
simulations integrate out with respect to εi,diffSN. Thus, what is calculated is the average probability that each person
will choose SCI.  Averaging over the sample gives us our simulated sample proportion.  
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consistent with the fact that, in our graduate estimation sample, Table 10 showed an average Pri,SCI of .189

but that only .119 of students had j*=SCI.42 Our baseline simulation using the 335 student subsample finds

a simulated average value for Pri,SCI of .184. To simulate the actual proportion making the choice of SCI,

we use our model to ask the question “what proportion of students would have chosen SCI if they were

forced to choose their major at entrance and had the beliefs given by E(AGPAt**
i,j), j0JND and

E(AINCt**
i,SCI), j0JND  at that time?” Using the estimates in Column 4 of Table 7 our model finds that the

proportion choosing SCI would be .104.43 Thus, our model, when used with the revised beliefs, is able to

capture the reality that the sample proportion with a major of SCI is substantially smaller than what was

expected at entrance.

V. Conclusion

We find that students enter college as open to a major in science as to any other major, but that

relatively few students finish school with science as their outcome.  This occurs because, relative to other

majors, students are both more likely to leave science (if they started in science) and are less likely to

change into science (if they started in a major other than science). In terms of major-specific factors that

influence the major decision, we find a particularly important role for future grade performance, with

future income playing a statistically significant, but smaller role.  As to why students leave science,

departing students have typically learned that their future grade performance in science would be

substantially worse than expected, with this reflecting learning about ability rather than learning about

their willingness to study. As to why students do not often change into science, students who do not start

in science typically do not learn that they are especially talented in science. 

These patterns are consistent with our findings when we use transcript data to examine the process

by which students update their beliefs about future major-specific grade performance.  We find that taking

courses in science is the primary way to learn about one’s ability in science, with science being an outlier

in that grades in courses taken outside of the major play a relatively uninformative role in what one learns

about his ability in the major.  It is possible that requiring additional courses in science during college

might lead to more science graduates. However, simulations of our model show that, when we replace

each student’s beliefs at entrance about major-specific average grade performance (from survey data) with

a distribution representing true major-specific average grade performance (computed from transcript data),



40

students’ beliefs about the probability of choosing science become consistent with the relatively low

proportion of students who actually choose science.  This suggests that, by and large, students are

ultimately choosing science in numbers that are roughly consistent with their abilities at the time of

college entrance.  As such, if more science graduates are desired, the findings suggest the importance of

policies at younger ages that lead students to enter college better prepared to study science.



41

References

Altonji, Joseph. “The Demand for and Return to Education When Education Outcomes are Uncertain,”
Journal of Labor Economics, 1993, vol. 11, no. 1, 48-83.

Arcidiacono, Peter. “Ability Sorting and the Returns to College Major,” Journal of Econometrics, Vol.
121, Nos. 1-2 (August, 2004), 343-375.

Arcidiacono, Peter, Hotz, Joseph, and Kang, Songman, “Modeling College Major Choices Using Elicited
Measures of Expectations and Counterfactuals, Journal of Econometrics, 166(1), January, 2012a, 3-16.. 

Arcidiacono, Peter, Aucejo, Esteban, and Ken Spenner, “What Happens After Enrollment? An Analysis of
the Time Path of Racial Differences in GPA and Major Choice,” IZA Journal of Labor Economics, Vol. 1,
Article 5 (October) 2012b.

Arcidiacono, Peter, and Cory Koedel, “Race and College Success: Evidence from Missouri,” 2012c.

Arcidiacono, Peter, Aucejo, Esteban, and V. Joseph Hotz, “University Differences in the Graduation of
Minorities in STEM Fields: Evidence from California,” working paper, 2013.

Armantier, Olivier, Nelson, Scott, Topa, Giorgio, van der Klaauw, Wilbert and Basit Zafar, “The Price is
Right: Updating Inflation Expectations in a Randomized Price Information Experiment, January, 2012.

Attanasio, Orazio, and Kaufmann, Katja. “Educational Choices, Subjective Expectations, and Credit
Constraints,” Working paper 15087, National Bureau of Research, 2009.

Kaufmann, Katja. “Understanding the Income Gradient in College Attendance in Mexico: The Role of
Heterogeneity in Expected Returns.” working paper, Bocconi University, 2009.

Barsky, Robert, Kimball, Miles, Juster, F. Thomas, and Shapiro, Matthew. “Preference Parameters and
Behavioral Heterogeneity: An Experimental Approach in the Health and Retirement Survey,” The
Quarterly Journal of Economics, May 1997, 537-579.

Beffy, Magali, Fougere, Denis, Maurel, Arnaud, “Choosing the Field of Study in Post-Secondary
Education: Do Expected Earnings Matter?” The Review of Economics and Statistics, Forthcoming.

Blass, Asher, Lach, Saul, and Manski, Charles. “Using Elicited Choice Probabilities to Estimate Random
Utility Models: Preferences for Electricity Reliability,” International Economic Review, 2010.

Browning, Martin and Carro, Jesus, “Heterogeneity and Microeconometrics Modelling.” Advances in
Economics and Econometrics, volume 3, edited by Richard Blundell, Whitney newey and Torsten
Perssson, Cambridge University Press, 2007.

Carneiro, Pedro, Hansen, Karsten, and Heckman, James, “Estimating Distributions of Counterfactuals
with an Application to the Returns to Schooling and Measurement of the Effect of Uncertainty on
Schooling Choice,” International Economic Review, 2003.

Cunha, Flavio, Heckman, James, and Navarro, Salvador, “Separating Uncertainty from Heterogeneity in
Life Cycle Earnings,” Oxford Economic Papers, 2005, 57(2), 191-261.



42

COSEPUP (Committee on Science, Engineering, and Public Policy), “Rising Above the Gathering Storm:
Energizing and Employing America for a Brighter Economic Future.” The National Academies Press
(2007).

Daempfle, P. (2003). An analysis of the high attrition rates among first year college science, math, and
engineering majors. Journal of College Student Retention: Research, Theory and Practice, 5(1), 37-52.

Daymont, T. and P. Andrisani, “Job Preferences, College Major, and the Gender Gap in Earnings,”
Journal of Human Resources 1984 (19), 408-428.

Delavande, A, Measuring Revisions to Subjective Expectations, Journal of Risk and Uncertainty, 2008,
36(1).

Dominitz, Jeff and Hung, Angela. “Empirical Models of Discrete Choice and Belief Updating in
Observational Learning Experiments,” February, 2009, 94-109.

Dominitz, Jeff. “Earnings Expectations, Revisions, and Realizations,” The Review of Economics and
Statistics, August 1998, 374-388.

Dominitz, Jeff and Manski, Charles. “Eliciting Student Expectations of the Returns to Schooling,” Winter
1996, 1-26.

Dominitz, Jeff and Manski, Charles. “Using Expectations Data to Study Subjective Income Expectations,”
Journal of American Statistical Association, September 1997, 855-867.

Federman, M (2007). State Graduation Requirements, High School Course Taking, and Choosing a Technical
College Major. The B.E. Journal of Economic Analysis & Policy, 7, 1-32. 

Grogger, J. And E. Eide. “Changes in College Skills and the Rise in the College Wage Premium,” Journal
of Human Resources, 30 (1995), 280-310.

Hamermesh, D. and S. Donald. “The Effect of College Curriculum on Earnings: An Affinity Identifier for
Non-Ignorable Non-Response Bias,” Journal of Econometrics (2008), 144(2), 479-491.

James, E., A. Nabeel, J. Conaty, and D. To. “College Quality and Future Earnings: Where Should you
Send Your Child to College?” American Economic Review 79 (1989), 247-252.

Jensen, R. (2010). The (perceived) Returns to Education and the Demand for Schooling.  Quarterly
Journal of Economics 125(2), 515-548.

Juster, T., “Consumer Buying Intentions and Purchase Probability: An Experiment in Survey Design,”
Journal of the American Statistical Association 61 (1966), 658-96.

Kaufmann, Katja. “Understanding the Income Gradient in College Attendance in Mexico: The Role of
Heterogeneity in Expected Returns.” working paper, Bocconi University, 2009.

Loury, L. “The Gender-Earnings Gap Among College-Educated Workers,” Industrial and Labor Relations
Review, 50 (1997), 580-493.

Loury, L. and D. Garman, “College Selectivity and Earnings,” Journal of Labor Economics, 13 (1995),



43

289-308. 

Malamud, Ofer. “Breadth vs. Depth: The Timing of Specialization in Higher Education,” Labour, Vol 24,
No. 4 (2010): 359-390.

Malamud, Ofer. “Discovering One’s Talent: Learning from Academic Specialization.” Industrial and
Labor Relations Review, Vol. 62, No. 2 (2011): 375-405.

Manski, Charles,  “Schooling as Experimentation: a reappraisal of the post-secondary drop-out
phenomenon,” Economics of Education Review, Volume 8 number 4, 1989, 305-312.

Manski, C., “The Use of Intentions Data to Predict Behavior:   A Best Case Analysis,” Journal of the
American Statistical Association 85 (1990), 934-940.

Manski, C., “Measuring Expectations,” Econometrica, 72 (5), (2004), 1329-1376.

Montmarquette, C, Cannings, Kathy, and Mahseredjian, Sophie, “How Do Young People Choose College
Majors?,” Economics of Education Review, Elsevier, 21(6), (2002) 543-556, December.

Ost, Ben. The Role of Peers and Grades in Determining Major Persistence in the Sciences. Economics of
Education Review, 2010, 29(6): 923-934.

Rask, K. 2010. “Attrition in STEM Fields at a Liberal Arts College: The Importance of Grades and Pre-
Collegiate Preferences.” Economics of Education Review, 29(6):892-900.

Sabot, R., and J. Wakeman-Linn. 1991. "Grade Inflation and Course Choice." Journal of Economic
Perspectives 5:159-70.

Stinebrickner, Todd and Stinebrickner, Ralph, “Time-Use and College Outcomes,” Journal of
Econometrics, 121 (1-2) July-August (2004), 243-269.

Stinebrickner, Todd and Stinebrickner, Ralph, “The Effect of Credit Constraints on the College Drop-
Out Decision: A Direct Approach Using a New Panel Study,” American Economic Review.
December (2008a)

Stinebrickner, Todd and Stinebrickner, Ralph, “The Causal Effect of Studying on Academic
Performance,” Frontiers in Economic Policy and Analysis (Frontiers), Berkeley Electronic Press
(2008b).

Stinebrickner, Todd and Stinebrickner, Ralph, “Learning about Academic Ability and the College
Drop-Out Decision,” Journal of Labor Economics, 2012.

Stinebrickner, Todd and Stinebrickner, Ralph,” Academic Performance and College Dropout: Using
Longitudinal Expectations Data to Estimate a Learning Model,” forthcoming, Journal of Labor
Economics.

Stinebrickner, Todd and Stinebrickner, Ralph,” Math or Science?  Using Longitudinal Expectations
Data to Examine the Process of Choosing a College Major, NBER working paper, w16869, 2011.



44

Wiswall, M. and Zafar, Basit, “Determinants of College Major Choice: Identification Using an
Information Experiment,” Federal Reserve Bank of New York, Staff Report, no. 500 (2011).

Zafar, Basit, “College Major Choice and the Gender Gap,” working paper (2008).

Zafar, Basit, “How Do College Students Form Expectations?” Journal of Labor Economics,
Forthcoming.



                                                           Appendix A: Survey Questions

Question 1 (beginning of first semester).  We realize that you may not be sure what area of study you will
eventually graduate with. In the first column below are listed possible areas of study. In the second column write
down the percent chance that you will end up with this area of study. In the third column, please write down the
grade point average (GPA) you would expect to receive in a typical semester in the future if you had each of these
areas of study.  In the fourth column write down the yearly income you would expect to earn at age 28 (or 10 years
from now if you are now 20 years of age or older) if you graduated with each of these areas of study. In the fifth
column, write down how many hours you would expect to study/do homework (outside of class) on a typical day in
the future if you had each of these areas of study.

Please fill out all remaining columns even if you have a zero in the percent chance column for a
particular area of study.

Humanities include Art, English, Foreign Languages, History, Music, Philosophy, Religion, and Theatre.

Natural Science and Math includes Biology, Chemistry, Computer Science, Physics and Mathematics.

Professional Programs include Industrial Arts, Industrial Technology, Child Development, Dietetics,
Home Economics, Nutrition, and Nursing.

Social Sciences include Economics, Political Science, Psychology and Sociology.

Area of study                        Percent      Expected GPA        Expected Yearly Expected Study/
                                             Chance        (0.00-4.00)             Income Age  28    Homework on a typical     

         (See above) **                (in dollars)  day (in hours)
                         

     1.Agriculture                   ________  ________             _________       _________
(and Natural Resources)

2.Business                         ________     ________          __________ __________

3.Elementary Education     ________       ________           __________              __________

4. Humanities                      ________      ________           __________ __________

5.Natural Science & Math  ________        ________             __________               __________

6. Professional Programs    ________        ________              ___________ __________

7. Social Sciences              _________   ________            ___________ __________

     Note:  Numbers in the second column (percent chance) should each be between 0 and 100 and should add up to 100.
Note:  A=4.0, B=3.0, C=2.0, D=1.0, F=0.0.   So numbers  in third column (GPA) should be between 0.00 and 4.00.

Question 2a.
What it the percent chance that you will eventually graduate from Berea College?_________

Question 2b.
What it the percent chance that you will complete more than one year of school at Berea College?  That is, what is

the percent chance that you will return to Berea for at least the beginning of your second year?______



Question 3.  We realize that you do not know exactly how well you will do in classes.  However, we would like to
have you describe your beliefs about the grade point average that you expect to receive in the first semester.
Given the amount of study-time you indicated above, please tell us the percent chance that your grade point
average will be in each of the following intervals.  That is, for each interval, write the number of chances out of
100 that your final grade point average will be in that interval.  

Note:  The numbers on the six lines must add up to 100.

Interval Percent Chance (number of chances out of 100).

[3.5, 4.00]                    ____________

[3.0, 3.49]                    ____________

[2.5, 2.99] ____________

[2.0, 2.49] ____________

[1.0, 1.99] ____________

[0.0,   .99] ____________

Note:  A=4.0, B=3.0, C=2.0, D=1.0, F=0.0



Appendix B: Constructing Beliefs about the Second (disaggregated) Signal of AGPA

 In order to construct beliefs about GPAi,j for all j, we characterize i’s beliefs about his grade performance

in each of the Mi individual classes that he takes. We note that these beliefs can be aggregated up to form

beliefs about  GPAi,j for any j. 

We refer to the random variable which describes i’s beliefs about the grade he will receive in class

m, m=1,...,Mi  as GPACLi,m. For each class m, we define a latent analog to GPACLi,m.

(A.1) GPACLi,m*=E(GPACLi,m*)+v*i,m,

where v*i,m-N(0,Var(v*i,m)) and the relationship between the latent GPACLi,m* and the actual GPACLi,m is

given by

(A.2) GPACLi,m=GPACLi,m* if 0<GPACLi,m*<4.0

       4.0 if GPACLi,m*$4.0

       0.0 if  GPACLi,m*#0.0.

Given the relationship in A.2, i’s beliefs about GPACLi,m, m=1,...,Mi are fully determined by E(GPACLi,m*)

and Var(v*i,m), m=1,...,Mi.  The objective here is to find values of E(GPACLi,m*) and Var(v*i,m), m=1,...,Mi

that are most consistent with what is observed about GPACLi,m, m=1,...,Mi in the survey data.          

To describe what is observed about GPACLi,m,  m=1,...,Mi in the survey data let Major(m) be a

function which identifies the major associated with any particular class m=1,2,...,Mi. For any m such that

Major(m)0JND a natural assumption described in IV.C. is that E(GPACLi,m)=E(AGPA1
i,Major(m)). There are

some classes such that Major(m)óJND. These classes fall under Berea’s General Studies (liberal arts) heading.

We refer to these general studies courses as GEN so that for classes m from the general studies curriculum

Major(m)=GEN.  Survey question 1 provides no direct information about i’s beliefs about his expected grade

performance in a given General Studies course.  However, this expectation can be computed because it is the

only unknown in the equation  E(GPAi)=(1/Mi)3E(GPACLi,m) since E(GPAi), a person’s expectation about

overall GPA, is observed in survey Question 3. Thus, we can think of E(GPACLi,m) as being observed for each

m. Var( GPACLi,m), m=1,...,Mi is not observed directly.  However, beliefs about var(GPAi) as given by

var([GPACLi,1+ GPACLi,2+...+ GPACLi,M]/Mi) is observed in survey Question 3.  

Then, roughly speaking, our goal is to choose E(GPACLi,m*), m=1,...,Mi and Var(v*i,m), m=1,...,Mi so

that Eqs. A.1 and A.2 produce values that satisfy, as closely as possible: 1) E(GPACLi,m)=E(AGPA1
i,Major(m)),

m=1,...,Mi  and 2) var([GPACLi,1+ GPACLi,2+...+ GPACLi,M]/Mi)

 For any choice of Var(v*i,m), m=1,...,Mi there exist values of E(GPACLi,m*), m=1,...,Mi such that,

given A.1 and A.2, E(GPACLi,m)=E(AGPA1
i,Major(m)) for all m.  Then, imposing that

E(GPACLi,m)=E(AGPA1
i,Major(m)) for all m, the question is how to choose Var(v*i,m), m=1,...,Mi.  We begin by

imposing restrictions to  reduce the dimensionality of the problem.  In terms of the covariance terms, purely for

simplicity we assume that COV( v*i,m, v*i,n)=0 for all courses m and n.   In terms of the variance terms,  we 



assume that, if course m is from major j and course n is from major k, then

var(GPACLi,m*)/var(GPACLi,n*) =a/b where a represents the variance of actual course grades in major j

and b represents the variance of actual course grades in major k. Pooling all first year classes we observe

that the variances of SCI, AG, BUS, ED, HUM, PRO, SS, and GEN are 1.48, .83, 1.38, .63, 1.02, .74, 1.25, and

.98, respectively.  Thus, we set Var(v*i,m) equal to 1.48τi, .83τi, 1.38τi, .63τi, 1.02τi, .74τi , 1.25τi, and .982τi,

respectively, if Major(m)=SCI, AG, BUS, ED, HUM, SS, PRO, and GEN, respectively. With these restrictions

in place we choose the person-specific value of τi that makes the belief distribution of GPAi coming from A.1

and A.2 (which is given by (1/Mi)3GPACLi,m) as close to the reported belief distribution of GPAi from survey

Question 3.  



Appendix C:  Constructing E(AINCt*
i)1

To illustrate the construction of E(AINCt*
i)1 we use an example that provides some concreteness.

Consider a person i who has Pri,SCI=.4 and Pri,SS=.6.  We assume that, when i reports, in Survey

Question 4, the upper bound, lower bound, and quartiles associated with the distribution describing

his beliefs about income at age 28, he does so assuming that there is a .40 chance of ending up with

SCI and that, if this turns out to be the case, his beliefs about the income he will receive at age 28 are

given by E(AINC1
i,SCI)+ν1

i,SCI.  Here, ν1
i,SCI is a mean-zero random variable that captures all sources of

uncertainty about the income at age 28 associated with SCI: resolvable uncertainty about AINCi,SCI,

unresolvable uncertainty about AINCi,SCI, and transitory yearly fluctuations in earnings that exist for a

person with average income AINCi,SCI.   Similarly, we assume that, when i provides the upper bound,

lower bound, and quartiles associated with the distribution describing his beliefs about income at age

28, he does so assuming that there is a .60 chance of ending up with SS and that, if this turns out to be

the case, his beliefs about the income he will receive at age 28 are given by  are given by

E(AINC1
i,SS)+νi,SS. 

Since the quartiles above are not observed for individual majors, an additional assumption is

needed about the relative importance of uncertainty across majors. We assume that the variance of the

resolvable portion of ν1
i,j is the same for person i across majors j. We make the same assumption about

the unresolvable and transitory portions of νi,j
1. Then, Var(ν1

i,j)=Var(ν1
i,k) for all j and k. Referring to

this total variance as σ2
ν,i,1 and making the assumption that the ν1

i,j are normally distributed, we can

find the value of  σ2
ν,i,1 that represents the best fit to the income distribution given by i for time t

(Survey Question 4).  Taking advantage of the fact that upper bound, lower bound, and quartiles

associated with the distribution describing beliefs about income at age 28 were also collected at t*=3

allows us to compute a value of σ2
ν,i,t*, the total variation at time t*. 1-(σ2

ν,i,t*/σ2
ν,i,1) shows the

percentage of the total variation that has been resolved (for each major) between t=1 and t* for person

i.  On average, we find this ratio to be .21.  Then, for each person i we assume that the variance of the

resolvable uncertainty portion ν1
i,j is given by .21*σ2

ν,i,1.
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Table 1 Outcomes and Beliefs about Outcomes 

1 2 3 4 5
Full sample, j0 JD 
 n=652

1(STATEi=j)
mean (std. err.)

Pri,j

mean (std. err.)
1(j*=j)

mean (std. err.)
(3)-(1)

mean (std. err.)
(3)-(2)

mean (std. err.)

j=DROP .051 (.008) .134 (.005) .375 (.018) .324 (.020) .241 (.019)

j=SCI .198 (.015) .156 (.009) .074 (.010) -.123 (.013) -.081 (.010)
j=AG .101 (.011) .092 (.006) .047 (.008) -.054 (.011) -.045 (.008)
j=BUS .125 (.012) .122 (.007) .074 (.010) -.050 (.012) -.047 (.009)

j=ED .074 (.009) .084 (.006) .053 (.008) -.021 (.010) -.031 (.008)
j=HUM .185 (.014) .164 (.009) .164 (.014) -.020 (.014) -.0001 (.012)
j=PRO .137 (.013) .121 (.007) .128 (.013) -.009 (.015) -.006 (.012)
j=SS .124 (.012) .124 (.007) .091 (.011) -.033 (.013) -.032 (.011)
' of previous rows 1 1 1.01 0.01 0.01

Graduate sample, j0 JND 
n=409

1(STATEi=j)
mean (std. err.)

Pri,j

mean (std. err.)
1(j*=j)

mean (std. err.)
(3)-(1)

mean (std. err.)
(3)-(2)

mean (std. err.)

j=SCI .215 (.020) .183 (.013) .119 (.106) -.095 (.017) -.063 (.013)
j=AG .091 (.014) .101 (.009) .075 (.013) -.015 (.013) -.026 (.010)
j=BUS .131 (.016) .135 (.010) .119 (.016) -.011 (.013) -.016 (.012)
j=ED .072 (.012) .091 (.007) .085 (.013) .013 (.012) -.006 (.011)
j=HUM .199 (.019) .191 (.013) .264 (.021) .064 (.017) .072 (.016)
j=PRO .134 (.016) .142 (.011) .205 (.019) .070 (.019) .063 (.017)
j=SS .155 (.017) .152 (.010) .146 (.017) -.008 (.108) -.006 (.016)
' of previous rows 1 1 1.017 0.017 0.017

Notes: Each entry shows a sample mean (standard error of the sample mean). The first panel includes the full
sample.  The second panel includes only students who graduated and removes the DROP option.

Column 1: This is roughly the proportion of students who have STATEi=j. To be more exact, it is the sample
average of a variable which has a value of one if STATEi=j. But, if two majors j and k are tied with the highest
probability (i.e., Pri,j = Pri,k) we assume that the probability is .50 that STATEi=j and .50 that STATEi=k.   
Column 2: Sample average of perceived initial probabilities Pri,j.
Column 3: Sample average of indicator variable which has a value of one if student’s outcome j* is j.  The “' of
previous rows” value of 1.01 in Column 3 indicates that about 1% of students have majors in two different major
groups.
Column 4 is Column 3 - Column 1
Column 5 is Column 3 - Column 2



Table 2 Proportion with actual outcomes j* stratified by stated major

1 2 3 4 5 6 7 8
                     

 Full sample, j0 JD      
       
Outcome j*    n=655

STATEi=
DROP
n=33.67

STATEi=
SCI
n=130.08

STATEi=
AG

n=66.75

STATEi=
BUS

n=82.17

STATEi=
ED
n=49

STATEi=
HUM

n=121.25

STATEi=
PRO 

n=90.25

STATEi=
SS 

n=81.83

j*=DROP 0.529 0.335 0.458 0.389 0.414 0.335 0.407 0.297
j*=SCI 0.059 0.311 0.014 0 0.02 0 0.038 0.012
j*=AG 0.044 0.038 0.284 0.01 0 0.01 0.022 0.024
j*=BUS 0.103 0.042 0.044 0.377 0 0.016 0.011 0.036
j*=ED 0.029 0.046 0 0.046 0.384 0.016 0.022 0.012
j*=HUM 0.059 0.049 0.029 0.912 0.057 0.555 0.083 0.15
j*=PRO 0.074 0.103 0.127 0.066 0.102 0.012 0.387 0.152
j*=SS 0.099 0.096 0.034 0.022 0.02 0.056 0.049 0.338
' of previous rows 1 1.023 1 1 1 1 1.022 1.024

                          
Grad sample, j0 JND 
Outcome j*         n=409

STATEi=
SCI
n=81.66

STATEi=
AG

n=37.41

STATEi=
BUS

n=53.58

STATEi=
ED

n=29.67

STATEi=
HUM

n=81.67

STATEi=
PRO 
n=55.0

STATEi=
SS 

n=63.41
SCI 0.464 0.026 0 0.033 0 0.072 0.031
AG 0.056 0.507 0.018 0.033 0.012 0.036 0.031
BUS 0.065 0.086 0.629 0 0.024 0.018 0.051
ED 0.067 0.089 0.071 0.634 0.024 0.036 0.031
HUM 0.084 0.053 0.139 0.095 0.824 0.136 0.21
PRO 0.152 0.24 0.102 0.168 0.03 0.654 0.197
SS 0.141 0.075 0.037 0.033 0.083 0.081 0.478
' of previous rows 1.033 1 1 1 1 1.036 1.031

Notes: 
For the sample stratified by STATEi, the table shows the proportion of
students with various possible outcome j*.  The sample sizes can be
fractions because if two majors j and k are tied with the highest
probability (i.e., Pri,j = Pri,k) the person would be counted as .5 of an
observation in each of the majors. The numbers in the SCI, PRO, and SS
columns add up to more than one because at least one person with each
of these stated majors has more than one actual major j*. The first panel
includes the full sample.  The second panel includes only students who
graduated and removes the DROP option.



Table 3 Sample mean and standard deviation of E(AGPA1
i,j )

sample mean  (standard deviation)
1 2 3 4 5 6 7 8 9
Full STATEi= STATEi= STATEi= STATEi= STATEi= STATEi= STATEi= STATEi=

     
Full sample

Sample
n=638

DROP
n=38

SCI
n=139

AG
n=73

BUS
n=92

ED
n=55

HUM
n=134

PRO 
n=99

SS 
n=94

j=SCI 2.91 (.84) 2.65 (.65) 3.53 (.33) 2.76 (.74) 2.86 (.79) 2.71 (.88) 2.65 (1.04) 2.83 (.83) 2.57 (.86)
j=AG 3.05 (.70) 2.99 (.63) 3.28 (.56) 3.32 (.44) 3.01 (.80) 3.04 (.60) 2.74 (.86) 3.04 (.62) 2.90 (.69)
j=BUS 3.05 (.69) 3.02 (.59) 3.27 (.47) 2.78 (.67) 3.48 (.36) 2.89 (.66) 2.83 (.87) 2.94 (.77) 2.96 (.62)
j=ED 3.18 (.65) 3.15 (.52) 3.32 (.53) 3.02 (.58) 3.09 (.76) 3.56 (.271) 3.13 (.78) 3.08 (.69) 3.09 (.54)
j=HUM 3.18 (.61) 3.03 (.53) 3.19 (.60) 2.88 (.74) 3.10 (.674) 3.13 (.653) 3.61 (.30) 3.05 (.67) 3.15 (.49)
j=PRO 3.07 (.68) 2.93 (.62) 3.20 (.54) 2.84 (.65) 3.05 (.684) 3.02 (.68) 2.89 (.86) 3.45 (.38) 2.95 (.65)
j=SS 3.14 (.67) 3.01 (.54) 3.22 (.59) 2.89 (.65) 3.01 (.831) 2.94 (.71) 3.20 (.66) 3.00 (.73) 3.49 (.34)

STATEi=
DROP

n=38

STATEi=
SCI

n=139

STATEi=k
k…SCI
k…DROP
n=486

j=SCI 2.65 (.65) 3.53 (.33) 2.74 (.87)
j=NON-SCI
(measure 1)

3.26 (.35) 3.42 (.31) 3.44 (.33)

j=NON-SCI
(measure 2)

3.46 (.28) 3.61 (.29) 3.59 (.32)

STATEi= STATEi= STATEi= STATEi= STATEi= STATEi= STATEi=
 Grad sample All

graduates
n=403

SCI
n=93

AG
n=40

BUS
n=59

ED
n=33

HUM
n=89

PRO
n=59

SS
n=72

j=SCI 2.93 (.83) 3.54 (.31) 2.74 (.76) 2.79 (.76) 2.84 (.81) 2.71 (1.05) 2.70 (.87) 2.72 (.79)
j=AG 3.03 (.66) 3.28 (.58) 3.29 (.41) 2.92 (.74) 3.09 (.55) 2.72 (.77) 3.01 (.66) 2.96 (.67)
j=BUS 3.09 (.65) 3.33 (.39) 2.81 (.75) 3.46 (.357) 3.00 (.46) 2.88 (.80) 2.92 (.74) 3.02 (.59)
j=ED 3.22 (.58) 3.36 (.44) 3.07 (.62) 3.06 (.72) 3.52 (.27) 3.21 (.64) 3.14 (.66) 3.13 (.51)
j=HUM 3.21 (.59) 3.16 (.63) 2.97 (.60) 2.88 (.72) 3.19 (.47) 3.63 (.298) 3.08 (.65) 3.15 (.50)
j=PRO 3.12 (.62) 3.25 (.44) 2.80 (.70) 3.00 (.62) 3.12 (.53) 2.95 (.784) 3.46 (.37) 3.01 (.62)
j=SS 3.16 (.66) 3.28 (.54) 2.96 (.69) 2.91 (.87) 2.96 (.536 3.23 (.65) 2.94 (.84) 3.48 (.34)

STATEi=
SCI
n=93

STATEi=k
k…SCI
n=316

j=SCI 3.54 (.31) 2.75 (.85)
j=NON-SCI
(measure 1)

3.42 (.32) 3.43 (.32)

j=NON-SCI
(measure 2)

3.62 (.29) 3.59 (.31)

Notes: For the overall sample (Column 1) and for the sample stratified by STATEi (Columns 2-9) the table shows
the sample mean (sample standard deviation) E(AGPAi,j)for each j.  If Pri,j = Pri,k are tied as the highest
probabilities, then beliefs enter in both the column associated with j and the column associated with k. The first
panel includes all students with legitimate responses.  The second panel includes only students who graduated.



Table 4 Determinants of E(AGPAt*
i,j) from Eq. 6 using Sigi,j=GPAi 

1 2 3 4 5 6 7
j=SCI
estimate
 (std. error)

j=AG
estimate
 (std. error)

j=BUS 
estimate
 (std. error)

j=ED
estimate
 (std. error)

j=HUM
estimate
 (std. error)

j=PRO
estimate
 (std. error)

j=SS
estimate

 (std. error)
Full sample
n=420

Full sample
n=412

Full sample
n=423

Full sample
n=416

Full sample
n=423

Full sample
n=421

Full sample
n=425

GPAi .227 (.051)* .246 (.047)* .226 (.047)* .293 (.042)* .344 (.044)* .226 (.043)* .252 (.043)*
E(AGPA1

i,j) .434 (.037)* .361 (.041)* .413 (.041)* .238 (.040)* .314 (.039)* .296 (.039)* .262 (.037)*
Constant .810 (.183)* 1.190(.187)* 1.032 (.177)* 1.543 (.165)** 1.077 (.157)* 1.464 (.166)* 1.502 (.163)*
R2 0.281 0.209 0.253 0.199 0.29 0.191 0.189

Statei =SCI
n=106

Statei =AG
n=47

Statei =BUS
n=61

Statei =ED 
n=40

Statei =HUM
n=83

Statei=PRO
n=73

Statei =SS
n=65

GPAi .376 (.071)* .275 (.104)* .320 (.077)* .268 (.111) .280 (.074)* .315 (.082)* .250 (.113)*
E(AGPA1

i,j) .630 (.142)* .470(.132)* .296 (.114)* .359 (.218)* .496 (.120)* .414 (.128)* .246 (.175)
Constant -0.073 (.454)* .753 (.476) 1.377 (.391)* 1.301 (.756) .762 (.467) .886 (.442)* 1.638 (.650)*
R2 0.281 0.362 0.367 0.242 0.315 0.325 0.117

Statei …SCI Statei …AG
n=365

Statei …BUS
n=362

Statei …ED 
n=376

Statei …HUM
n=340

Statei…PRO
n=348

Statei …SS
n=360

GPAi .131 (.062)* .241 (.052)* .227 (.053)* .297 (.045)* .335 (.050)* .209 (.507)* .250 (.047)*
E(AGPA1

i,j) .347 (.04)* .355 (.044)* .382 (.045)* .223 (.042)* .266 (.044)* .272 (.043)* .253 (.039)*
Constant 1.274 (.21)* 1.225 (.203)* 1.086 (.195)* 1.568 (.174)* 1.215 (.181)* 1.574 (.186)* 1.525 (.174)*
R2 0.208 0.199 0.225 0.189 0.232 0.166 0.183

Notes: Results show OLS estimate (std. error) of parameters from updating Eq. 6 using Sigi,j=GPAi. Sample includes all
students for which both E(AGPA1

i,j) and E(AGPA3
i,j) are observed.

 * significant at .05



Table 5 Determinants of E(AGPAt*
i,j) from Eq. 6 using  Sigi,j =(GPAij,GPAi,NON-j)

1 2 3 4 5 6 7
Variable j=SCI

n=422
j=AG
n=414

j=BUS
n=426

j=ED
n=418

j=HUM
n=427

j=PRO 
n=423

j=SS 
n=428

Sigi,j

GPAi,j x 1(CLi,j$3) .257
(.070)*

.054
(.092)

N.A. N.A. .020
(.064)

.223
(.040)*

.292
(.153)

GPAi,j x 1(0<CLi,j#2) .109
(.038)*

.074
(.041)

.104
(.078)

.005
(.092)

.184
(.039)*

.024
(.079)

.109
(.039)*

1(CLi,j=0) -.163
(.262)

.114
(.403)

-.983
(.433)*

.103
(.82)

-.104
(.273)

-.408
(.418)*

.297
(.248)

GPAi,NON-j .087
(.053)

.201
(.044)*

.216
(.043)*

.288
(.038)*

.218
(.042)*

.232
(.404)*

.219
(.043)*

Priori,j

E(AGPA1
i,j) x 1(CLi,j=0) .402

(.076)*
.340
(.117)*

.405
(.043)*

.223
(.404)*

.375
(.071)*

.306
(.042)*

.254
(.054)*

E(AGPA1
i,j) x1(0<CLi,j#2) .490

(.047)*
.350
(.046)*

.123
(.126)

.295
(.214)

.193
(.049)*

.167
(.099)

.255
(.051)*

E(AGPA1
i,j) x1(CLi,j$3) .348

(.066)*
.054
(.092)

N.A. N.A. .020
(.064)

.223
(.040)*

.292
(.153)

constant 1.271*
(.199)**

1.188
(.188)*

2.034
(.423)*

1.502
(.817)

1.28
(.181)*

1.830
(.390)*

1.403
(.187)*

R2 0.316 0.229 0.303 0.251 0.354 0.211 0.228

Notes: Results show OLS estimate (std. error) of parameters from updating Eq. 6 using Sigi,j =(GPAij,GPAi,NON-j).
Sample includes all students for which both E(AGPA1

i,j) and E(AGPA3
i,j) are observed.

 * significant at .05



Table 6 Sample mean and standard deviation of E(AINC1
i,j)

average (standard deviation)
1 2 3 4 5 6 7 8 9

Full
sample

Full
sample
n=632

STATEi=
DROP
n=38

STATEi=
SCI
n=138

STATEi=
AG
n=72

STATEi=
BUS
n=90

STATEi=
ED

n=55

STATEi=
HUM
n=134

STATEi=
PRO 
n=99

STATEi=
SS 

n=94
j=DROP 29.8 (23.7) 36.4 (23.2) 29.6 (29.4). 32.8 (25.0) 37.0 (32.7) 27.4 (21.8) 26.5 (15.9) 26.4 (16.8) 28.2 (17.4)
j=SCI 52.0 (29.3) 47.8 (16.8) 65.8 (41.3) 41.7 (18.2) 52.0 (23.9) 41.9 (17.7) 50.8 (25.8) 51.5 (26.2) 48.1 (23.5)
j=AG 34.8 (15.3) 33.4 (12.9) 36.1 (17.3) 40.1 (19.4) 38.1 (13.9) 31.7 (10.5) 31.4 (12.3) 35.7 (15.3) 31.4 (13.7)
j=BUS 51.6 (27.5) 50.0 (19.5) 50.2 (35.0) 44.4 (19.2) 63.3 (29.2) 49.3 (27.4) 54.4 (35.0) 49.6 (23.3) 50.3 (30.3)
j=ED 33.3 (14.9) 34.8 (16.8) 33.5 (18.5) 30.3 (11.8) 35.4 (13.9) 34.3 (10.1) 31.9 (12.0) 32.6 (14.4) 33.0 (15.5)
j=HUM 37.8 (18.6) 38.0 (15.0) 35.8 (18.8) 32.6 (12.7) 40.6 (19.4) 34.6 (11.2) 43.5 (21.7) 37.1 (18.7) 35.5 (15.5)
j=PRO 53.5 (38.5) 52.2 (23.8) 55.5 (47.4) 47.5 (24.8) 55.8 (28.0) 45.2 (20.4) 53.4 (46.9) 64.7 (42.5) 45.3 (21.1)
j=SS 48.5 (31.8) 48.6 (21.6) 49.9 (32.9) 41.4 (19.4) 49.7 (25.2) 43.2 (17.9) 51.0 (47.9) 46.8 (24.7) 51.1 (22.8)

STATEi=
DROP

n=38

STATEi=
SCI

n=138

STATEi=k
k…SCI
k…DROP
n=486

j=DROP 36.4 (.23) 29.6 (29.4) 29.9 (21.9)

j=SCI 47.8 (16.8) 65.8 (41.3) 48.2 (24.0)
j=NON-SCI
(Measure 1)

46.1 (16.5) 47.0 (24.0) 48.9 (24.4)

j=NON-SCI 
(Measure 2)

61.9 (23.9) 63.6 (48.6) 66.5 (57.1)

Graduates Full 
sample
n=398

STATEi=
SCI
n=92

STATEi=
AG
n=40

STATEi=
BUS
n=57

STATEi=
ED
n=32

STATEi=
HUM
n=86

STATEi=
PRO
n=56

STATEi=
SS
n=65

j=SCI 51.3 (27.9) 60.9 (36.5) 38.3 (16.9) 52.2 (23.1) 41.2 (14.6) 51.2 (26.9) 51.3 (27.3) 49.7 (21.8)
j=AG 33.9 (13.6) 34.5 (15.5) 37.6 (18.6) 36.6 (13.0) 33.2 (11.5) 30.8 (10.2) 35.0 (11.5) 31.0 (11.1)
j=BUS 50.6 (26.4) 50.1 (23.9) 41.5 (18.3) 58.4 (23.3) 51.7 (32.1) 52.9 (33.8) 49.0 (22.7) 49.2 (25.7)
j=ED 33.1 (14.7) 33.9 (19.2) 28.1 (11.8) 35.0 (11.1) 35.5 (11.2) 31.2 (10.2) 33.9 (16.4) 33.5 (14.2)
j=HUM 37.7 (19.0) 34.5 (18.3) 30.7 (12.6) 41.9 (21.2) 35.8 (11.7) 43.4 (21.8) 37.2 (20.1) 35.2 (13.7)
j=PRO 53.7 (41.3) 57.0 (55.0) 43.6 (20.1) 55.5 (24.3) 47.4 (20.9) 56.5 (54.7) 58.2 (30.6) 47.6 (20.6)
j=SS 48.6 (34.8) 49.7 (33.1) 38.2 (17.3) 49.7 (25.3) 44.6 (17.5) 53.3 (56.1) 43.7 (17.7) 50.5 (22.6)

STATEi=
SCI
n=92

STATEi=k
k…SCI
n=302

j=SCI 60.9 (36.5) 48.4 (24.1)
j=NON-SCI 46.6 (23.8) 47.3 (21.5)
j=NON-SCI
(Measure 2)

65.1 (54.8) 64.0 (44.5)

For the overall sample (Column 1) and for the sample stratified by STATEi (Columns 2-9)the table shows the sample mean (sample
standard deviation) E(AINCi,j) for each j.  If Pri,j = Pri,k are tied as the highest probabilities, then beliefs enter in both the column
associated with j and the column associated with k.



Table 7     Estimates of models of Pri from Eqs. 1-5

        (1) (2) (3) (4)
MAJOR-SPECIFIC
FACTORS

n=572 n=572 n=572 n=366

AGPAi,j .520 (.034)* .511 (.034)* .521 (.032) .910 (.085)*
AINCi,j/10 .060 (008)* .060 (.008)* .062 (.007)* .116 (.027)*
SCIENCE
 Constant -1.162 (.115)* -1.142 (.117)* -1.177 (.107)* -.948 (.088)*
  Male -.011 (.069) -.006 (.069) -.003 (.069) .185 (.128)
  Math_ACT .015 (.009) .017 (.009) .016 (.009) .029 (.019)
  Verbal_ACT -.021 (.009)* -.019 (.009)* -.019 (.009) -2.529 (.018)*
NON-SCIENCE
 Constant -.490 (.124)* -.465 (.126)* -.384 (.110)* 0.0 (normalization)
  Male -.116 (.066) -.109 (.066) -.068 (.067) 0.0 (normalization)
  Math_ACT -.007 (.009) -.005 (.009) -.007 (.009) 0.0 (normalization)
  Verbal_ACT -.009 (.008) -.008 (.008) -.011 (.008) 0.0 (normalization)
DROP
 Constant 0.0 (normalization) 0.0 (normalization) 0.0 (normalization) N.A
  Male 0.0 (normalization) 0.0 (normalization) 0.0 (normalization) N.A
  Math_ACT 0.0 (normalization) 0.0 (normalization) 0.0 (normalization) N.A
  Verbal_ACT 0.0 (normalization) 0.0 (normalization) 0.0 (normalization) N.A

UNOBSERVABLES
σεdiffSN .627 (.018)* .626 (.018)* .617 (.108)* 1.139 (.03)*
σεdiffSD 1.028 (.039)* 1.034 (.039)* 1.031 (.039)*
corr(εi,diffSN,εi,diffSd) .733 (.022)* .731 (.022)* .731 (.022)*

Log Likelihood -1151.66 -1165.35 -1155.91 -566.97
Notes: Table shows estimate (std. error) from simulated maximum likelihood.  
* Significant at 5%
Column 1:JD,AGG;   Sigi,j=(GPAi,j, GPAi,NON-j.); 
Et*UNON-SCI=Maxj0{AG,BUS,ED,HUM,PRO,SS} αNON-SCIXi+β1E(AGPAt*

i,j)+β2(AINCt*
i,j)+vi,NON-SCI +εi,NON-SCI 

Column 2: JD,AGG;  Sigi,j=(GPAi); 
Et*UNON-SCI=Maxj0{AG,BUS,ED,HUM,PRO,SS} αNON-SCIXi+β1E(AGPAt*

i,j)+β2(AINCt*
i,j)+vi,NON-SCI +εi,NON-SCI

Column 3: JD,AGG; Sigi,j=(GPAi,j, GPAi,NON-j.); 
Et*UNON-SCI()= αNON!SIXi + β1E(AGPAt*

i,NON!SCI) + β2E(AINCt*
i,NON-SCI) + vi,NON-SCI + εi,NON!SCI where E(AGPAt*

i,NON-SCI) and
E(AINCt*

i,NON-SCI) are weighted averages of E(AGPAt*
i,j) and E(AINCt*

i,j) with weights given by Pri,j’s

Column 4: JND,AGG; Sigi,j=(GPAi,j, GPAi,NON-j.); 
Et*UNON-SCI=Maxj0{AG,BUS,ED,HUM,PRO,SS} αNON-SCIXi+β1E(AGPAt*

i,j)+β2(AINCt*
i,j)+vi,NON-SCI +εi,NON-SCI 



Table 8 Examining the quantitative importance of  AGPAi,j and AINCOMEi,j:
Sample averages under various scenarios for E(AGPA1

i,) and E(AINC1
i,)

Major j

(1)
Actual
PROB
j*=j

(2)
Prij

(3)
Simulated

Prij
baseline

(4)
Simulated Prij
E(AGPA1

i,SCI )
high

E(AGPA1
i,k)k…SCI

high

(5)
Simulated Prij
E(AGPA1

i,SCI )
low

E(AGPA1
i,k)k…SCI

low

(6)
Simulated Prij
E(AGPA1

i,SCI )
low

E(AGPA1
i,k)k…SCI

high

(7)
Simulated Prij
E(AGPA1

i,SCI )
high

E(AGPA1
i,k)k…SCI

low
j=SCI 0.082 0.166 0.172 0.230 0.169 0.093 0.285
j=NON-SCI 0.558 0.697 0.692 0.660 0.628 0.787 0.531
j=DROP 0.360 0.137 0.136 0.110 0.203 0.120 0.184

Simulated Prij
E(AINC1

i,SCI )
high

E(AINC1
i,k)k…SCI

high

Simulated Prij
E(AINC1

i,SCI )
low

E(AINC1
i,k)k…SCI

low

Simulated Prij
E(AINC1

i,SCI )
low

E(AINC1
i,j)k…SCI

high

Simulated Prij
E(AINC1

i,SCI )
high

E(AINC1
i,k)k…SCI

low
j=SCI 0.181 0.172 0.149 0.214
j=NON-SCI 0.692 0.673 0.722 0.636
j=DROP 0.127 0.155 0.129 0.150

Notes: For the estimation sample from Table 7:
Column 1 shows the proportion of students with each outcome (from administrative data).
Column 2 shows the sample average of the Pri,j, j=SCI, NON-SCI,DROP.(from survey data).
Column 3 shows simulated sample average values of Pri,j under the baseline model in which no changes have been made.
Column 4 (1st panel): simulated sample average values of  Pri,j when E(AGPA1

i,k), k=SCI, AG, BUS, ED, HUM, PRO, SS are
each one-half of a standard deviation above their mean from Column 1 of Table 3.
Column 5 (1st panel): simulated sample average values of  Pri,j when E(AGPA1

i,k), k=SCI, AG, BUS, ED, HUM, PRO, SS are
each one-half of a standard deviation below their mean from Column 1 of Table 3.
Column 6 (1st panel): E(AGPA1

i,SCI) one-half standard deviation below mean. E(AGPA1
i,k), k=AG, BUS, ED, HUM, PRO, SS

one-half standard deviation above mean.
Column 7 (1st panel): E(AGPA1

i,SCI) one-half standard deviation above mean. E(AGPA1
i,k), k=AG, BUS, ED, HUM, PRO, SS

one-half standard deviation below mean.
The second panel of Columns 4-7 are the same as the first panel of Columns 4-7 except that changes are to E(AINC1

i,k) rather
than E(AGPA1

i,k).



Table 9 Random effects estimation of grade equations from Eq. 14 (Cols. 1-5) and income equations from Eq. 16 (Cols. 6-7)
average (standard error)

Note: x=G in
Cols. 1-5 and
x=INC in
Cols. 6-7.

(1)
Dependent
Variable
Gi,j,k

(2)
Dependent
Variable
Gi,j,k

(3)
Dependent
Variable
Gi,j,k

(4)
Dependent
Variable
Gi,j,k

(5)
Dependent
Variable
Gi,j,k

(6)
Dependent
Variable
INCi,j,k/1000

(7)
Dependent
Variable

INCi,j,k/1000

constantx
DROP 28.61 (1464)* 25.71 (2.37)*

constantx
SCI 2.368 (.05)* 2.555 (.081)* 2.519 (.085)* 2.658 (.058)* 2.656 (.068)* 40.21 (2.639)* 37.90 (3.75)*

constantx
AG 3.392 (.04)* 3.514 (.052)* 3.498 (.059)* 3.559 (.037)* 3.611 (.044)* 29.28 (3.09)* 31.51 (4.25)*

constantx
BUS 2.722 (.08)* 2.922 (.125)* 2.925 (.015)* 2.901 (.072)* 3.027 (.077)* 38.84 (2.57)* 34.69 (3.98)*

constantx
ED 3.374 (.11)* 3.540 (.144)* 3.445 (.106)* 3.516 (.092)* 3.579 (.074)* 33.01 (1.83)* 32.71 (2.13)*

constantx
HUM 3.077 (.04)* 3.230 (.060)* 3.230 (.070)* 3.296 (.037)* 3.362 (.050)* 26.68 (1.69)* 26.90 (2.50)*

constantx
PRO 3.084 (.04)* 3.233 (.064)* 3.202 (.065)* 3.202 (.045)* 3.284 (.054)* 40.07 (2.81)* 37.32 (3.30)*

constantx
SS 2.73 7(.04)* 2.920 (.081)* 2.871 (.083)* 2.936 (.053)* 3.042 (.061)* 31.88 (2.31)* 32.79 (2.69)*

Var(θx
i,DROP) 152.34 147.37

Var(θx
i,SCI) .718 (.073)*  .583 (.059)* .722 (.075)* .449 (.058)* .345 (.049)* 257.05 271.59

Var(θx
i,AG) .191 (.018)* .169 (.018)* .228 (.024)* .079 (.010)* .082 (.014)* 216.97 228.31

Var(θx
i,BUS) .503 (.085)* .468 (.077)* .615 (.099)* .245 (.059)* .195 (.047)* 350.81 354.47

Var(θx
i,ED) .296 (.044)* .225 (.067)* .402 (.084)* .135 (.045)* .119 (.035)*  90.11 81.88

Var(θx
i,HUM) .411 (.041)* .316 (.033)* .410 (.041)* .156 (.022)* .151 (.021)* 228.94 234.09

Var(θx
i,PRO) .263 (.039)* .193 (.031)* .302 (.042)* .145 (.026)* .146 (..025)* 519.38 511.21

Var(θx
i,SS) .557 (.065)* .384 (.044)* .598 (.067)* .283 (.037)* .219 (.038)* 186.73 151.21

Var(ux
i,DROP)  85.72 85.72

Var(ux
i,SCI,) .672 (.017)* .668 (.017)* .658 (.016)* .607 (.017)* .604 (.016)* 102.41 102.41

Var(ux
i,AG) .484 (.013)* .482 (.012)* .480 (.012)* .378 (.012)* .377 (.012)*  63.69  63.69

Var(ux
i,BUS) .467 (.030)* .465 (.030)* .458 (.028)* .451 (.031)* .456 (.033)*  54.16  54.16

Var(ux
i,ED) .431 (.023)* .426 (.022)* .404 (.016)* .313 (.020)* .308 (.018)*  44.89  44.89

Var(ux
i,HUM) .582 (.007)* .583 (.007)* .575 (.007)* .506 (.007)* .504 (.007)*  46.24  46.24

Var(ux
i,PRO,) .430 (.015)* .428 (.015)* .418 (.015)* .404 (.015)* .398 (.016)*  65.69  65.69

Var(ux
i,SS) .508 (.017)* .505 (.016)* .469 (.015)* .442 (.016)* .432 (.016)*  24.31  24.31

MALE-DROP 2.79 (.30)
MALE-SCI -.310 (.102)* -.361 (.090)* .038 (.095) 3.55 (4.4)
MALE-AG -.227 (.056)* -.250 (.056)* -.056 (.050) -1.14 (6.86)
MALE-BUS -.234 (.142)* -.509 (.122)* -.179 (.116) 7.11 (4.52)
MALE-ED -.447 (.179)* -.388 (.148)* -.236 (.121)*  9.33 (5.17)*
MALE-HUM -.374 (.071)* -.465 (.069)* -.166 (.058)* 1.12 (3.67)
MALE-PRO -.379 (.079)* -.374 (.077)* -.106 (.078) 1.28 (6.66)*
MALE-SS -.547 (.098)* -.575 (.091)* -.212 (.082)* 1.15 (4.92)
M A C T -
DROP

-.93 (.50)

MACT-SCI .066 (.013)* .075 (.013)* .047 (.012)* .35 (.69)
MACT-AG .030 (.007)* .031 (.007)* .023 (.006)* .84 (.96)
MACT-BUS .012 (.020) .057 (.018)* .013 (.017) -.17 (9.22)
MACT-ED .043 (.019)* .017 (.018) -.013 (.014) -.43 (.51)
MACT-HUM .036 (.101)* .039 (.009)* .022 (.007)* -.29 (.46)
MACT-PRO .011 (.011) .018 (.010) .006 (.009)  .04 (.83)
MACT-SS .046 (.013)* .049 (.012)* .028 (.010)* 2.33 (.72)*
VACT-DROP .84 (.40)*
VACT-SCI .006 (.014) .101 (.011) .031 (.011)*  .23 (.80)
VACT-AG -.005 (.008) -.009 (.007) .0003 (.005) -1.58 (1.12)
VACT-BUS .027 (.017) .026 (.015) .043 (.012)*  .49 (.72)
VACT-ED -.021 (.023) .003 (.022) .035 (.020) -.67 (.60)
VACT-HUM .006 (.008) .0001 (.008) .012 (.007) -.18 (.52)
VACT-PRO .022 (.011)* .015 (.009) .026 (.009)*   .71 (.74)
VACT-SS .032 (.012)* .038 (.01)* .048 (.009)* -1.06 (.66)



Cov(θx
i,SCI,

        θx
i,AG)

.362 (.036)*
Corr .146

.133 (.022)*

Cov(θx
i,SCI,

        θx
i,BUS)

.616 (.075)*
Corr .410

.245 (.037)*

Cov(θx
i,SCI,

        θx
i,ED)

.444 (.075)*
Corr.238

.149 (.037)*

Cov(θx
i,SCI,

        θx
i,HUM)

.441 (.045)*
Corr .239

.140 (.025)*

Cov(θx
i,SCI,

        θx
i,PRO)

.395 (.047)*
corr.184

.137 (.027)*

Cov(θx
i,SCI,

        θx
i,SS)

.302 (.042)*
corr .387

.212 (.040)*

Corr(θx
i,j,

        θx
i,k) k…j

corr.838(.019)* .653 (.042)*

Log Like -15463.71 -15284.16 -1487.79 -11817.18 -11542.43

*significant at .05
Columns 1-3 show estimates of Eq. 14 for full sample.
Column 4-5 show estimates of Eq. 14 for graduate subsample.
Columns 6-7 show estimates of Eq. 16.



Table 10 Examining the quantitative importance of  AGPAi,j and AINCi,j

Sample averages under various scenarios for E(AGPA1
i,) and E(AINC1

i,)

(1)
actual
Prob(j*=j)

Note: 
same as 
Col 1 
Table 8

(2)
Prij

Note: 
same as 
Col 2 
Table 8

(3)
Simulated
Prij
baseline
Note: 
same as 
Col 3 
Table 8

(4)
Simulated Prij

Note:
E(AGPAt*

i)1

replaced by 
true dist. of
AGPAi  from 
Eq. 15

(5)
Simulated Prij
Note:
E(AINCt*

i)1

replaced by 
true dist. of
AINCi from 
Eq. 17 

(6)
Simulated Prij

Note:
E(AGPAt*

i)1 replaced by dist.
of AGPAi from Eq. 15 &
E(AINCt*

i)1 replaced by dist.
of AINCi from Eq. 17  

Full sample
j 0JD,AGG

SCI 0.082 0.166 0.172 0.121 0.164 0.104
NON-SCI 0.558 0.697 0.692 0.717 0.677 0.717
DROP 0.36 0.137 0.136 0.161 0.157 0.178

Grad
sample
j0JND,AGG

SCI 0.119 0.189 0.183 0.133 0.181 0.114
NON-SCI 0.881 0.811 0.816 0.867 0.818 0.886

Notes: For the estimation sample from Table 7:
Column 1 shows the proportion of students with each outcome (from administrative data).
Column 2 shows the sample average of the Pri,j, j=SCI, NON-SCI,DROP(from survey data).
Column 3 shows simulated sample average values of Pri,j under the baseline model in which no changes have been made.
Column 4 shows simulated sample average probabilities when E(AGPAt*

i)1 is replaced by the “true”distribution of AGPAi from
Eq. 15.
Column 5 shows simulated sample average probabilities when E(AINCt*

i)1 is replaced by the true distribution of AINCi from Eq.
17. 
Column 6 shows simulated sample average probabilities when E(AGPAt*

i)1 is replaced by the “true” distribution of AGPAi from
Eq. 15 and E(AINCt*

i)1 is replaced by the true distribution of AINCi from Eq. 17. 



Table 11 Beliefs at entrance (t=1) and end of school (t**): Sample mean and standard deviation
sample mean (standard deviation)

1

E(AGPA1
i,j)

n=335

2

E(AGPAt**
i,j)-

E(AGPA1
i,j)

n=335

3
STATEi=SCI
& j*=SCI

E(AGPA1
i,j)

n=32

4
STATEi=SCI
& j*=SCI

E(AGPAt**
i,j)-

E(AGPA1
i,j)

n=32

5
STATEi=SCI
& j*…SCI

E(AGPA1
i,j)

n=40

6
STATEi=SCI
& j*…SCI

E(AGPAt
i
**

,j)!
E(AGPA1

i,j)
n=40

7
STATEi…SCI

E(AGPA1
i,j)

n=263

8
STATEi…SCI

E(AGPAt**
i,j)!

E(AGPA1
i,j)

n=263

j=SCI 2.944 (.824) -.150 (.750) 3.628 (.294) -.270 (.384) 3.532 (.252) -.606 (.535) 2.771 (.841) -.066 (.785)
j=AG 3.031 (.680) .107 (.710) 3.281 (.491) .116 (.500) 3.325 (.493) -.100 (.649) 2.956 (.706) .138 (.736)
j=BUS 3.079 (.661) -.030 (.688) 3.371 (.423) .070 (.402) 3.293 (.410) -.161 (.662) 3.011 (.700) 2.988 (.544)
j=ED 3.227 (.599) .048 (.677) 3.453 (.392) .029 (.442) 3.313 (.420) -.063 (.523) 3.186 (.636) .068 (.720)
j=HUM 3.190 (.613) -.049 (.645) 3.261 (.506) .038 (.659) 3.182 (.543) -.065 (.561) 3.182 (.636) -.057 (.656)
j=PRO 3.121 (.616) .041 (.639) 3.310 (.400) .017 (.483) 3.216 (.499) .0025 (.623) 3.084 (.648) .049 (.659)
j=SS 3.132 (.691) .030 (.688) 3.339 (.452) .115 (.510) 3.302 (.400) -.155 (.553) 3.082 (.740) .048 (.721)

1

E(AINC1
i,j)

n=335

2

E(AINCt**
i,j)-

E(AINC1
i,j)

n=335

j=SCI 51.0 (38.1) -12.9 (25.6)
j=AG 33.3 (12.8) -4.5 (13.0)
j=BUS 49.9 (24.3) -8.9 (27.3)
j=ED 32.7 (13.3) -3.8 (14.1)
j=HUM 37.0 (17.7) -6.8 (20.7)
j=PRO 51.4 (25.7) -12.5 (25.9)
j=SS 46.2 (22.1) -11.2 (21.8)


