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“It ain’t what you don’t know that gets you into trouble. It’s what you know for

sure that just ain’t so. – Mark Twain

1 Introduction

Some argue that the world is becoming more polarized (Sunstein 2009, Brooks 2012). Con-

sider, for instance, Americans’ views on global warming. In a 2003 Gallup poll, 68 percent of

self-identified Democrats believed that temperature changes over the past century could be

attributed to human activity, relative to 52 percent of Republicans (Saad 2013). By 2013,

these percentages had diverged to 78 percent and 39 percent.1 In a similar vein, there were

large racial differences in reactions to the O.J. Simpson murder trial. Four days after the

verdict was announced, 73 percent of whites but only 27 percent of blacks surveyed in a

Gallup/CNN/USA Today poll believed that Simpson was guilty of murdering Nicole Brown

Simpson and Ronald Goldman (Urschel 1995).

Psychologists have long recognized humans’ propensity to over-interpret evidence that

reinforces their beliefs while disregarding contradictory information.2 A particularly striking

example is Darley and Gross (1983). Subjects in their experiment are asked to grade an essay

written by a fictional student. Before reading the essay, however, graders view one of two

videos of the student playing in his or her home. The first video shows the student in a poor,

inner-city neighborhood, while the second depicts a middle-class suburban environment.

Subjects shown the first video give the essay significantly lower grades. However, a subset of

each group was also shown an identical video of the student in class, providing both correct

and incorrect answers to a teacher’s questions. Respondents who saw this second video

diverged even further in their grading of the essay. Subjects who viewed the low-quality

(high-quality) neighborhood and the class video gave the essay a lower (higher) grade than

those who just saw the neighborhood video. The showing of the same video to the subjects

caused them to further diverge in their grades.

The importance of polarizing beliefs in part derives from the conflict they induce. In influ-

ential papers, Esteban and Ray (1994) and Duclos, Esteban, and Ray (2004) derive measures

of societal polarization and methods to estimate them. Later work has linked increased po-

larization to conflict both theoretically (Esteban and Ray 2011) and empirically (Esteban,

Mayoral, and Ray 2013). These papers motivate understanding the mechanisms that can

lead opinions to diverge even in the face of common information, since such divergence can

1Beliefs that the effects of global warming “have already begun to happen” and that “global warming
will pose a serious threat to you or your way of life in your lifetime” show similar trajectories for both groups
(Saad 2013).

2See, e.g., Lord, Ross, and Lepper (1979). A summary of many of these studies can be found in Table
1, and we review some of this evidence in more detail below.
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result in society-level disruptions, intolerance, and discrimination.

In this paper, we introduce a model that provides a simple foundation for why the above-

described polarizations in beliefs should be observed from rational agents. In our model,

agents interpret information according to Bayes’ rule as it is received and store the inter-

preted signal in memory rather than the full information, and this simple modification of

Bayesian updating can lead to increasing and extreme polarization. In particular, there are

two possible states of nature A,B and an agent observes a series of signals a, b that are cor-

related with the state of nature. Some of the signals are ambiguous and come as ab and must

be interpreted. The difference from standard Bayesian agents with unbounded memory, is

that we assume that an agent does not store a sequence such as a, b, ab, ab, a, ab, b, b . . . in

memory, but, due to limited memory, interprets the ab signals as they are seen according

to Bayes’ rule (or some other rule), and then stores the interpretation in memory. So, if

the agent started by believing that A was more likely, then the sequence would be inter-

preted and stored in memory as a, b, a, a, a, a, b, b . . .. By storing the full ambiguous sequence

a, b, ab, ab, a, ab, b, b . . . the agent would actually see more evidence for b than a, while inter-

preting signals according to Bayes’ rule as they are received and then storing the interpre-

tation leads to a, b, a, a, a, a, b, b . . . and more evidence for a than b.

This can lead people with slightly different priors to end up with increasingly different

posteriors and they interpret the same string of ab’s very differently, which then reinforces

their differences in beliefs. As we show, if a nontrivial fraction of experiences are open to

interpretation, then two agents who have differing priors and who see exactly the same se-

quence of evidence can, with positive probability, end up polarized with one agent’s posterior

tending to place probability one on A and the other tending to place probability one on B.

With the lens of our model, the two neighborhood videos in Darley and Gross (1983)

created different priors on the students’ ability. This then affected the way that respondents

interpreted the second video of students answering questions. A student with a lower prior

on the talent of the student would put more emphasis on the incorrect answers in the second

video, and a student with a higher prior would put more emphasis on the correct answers.

This then leads to the observed polarization of beliefs when grading the essays. Bayes’ rule

with unbounded memory would predict the opposite – seeing the same second video should

lead beliefs to get closer if anything. With respect to the O.J. Simpson murder trial, people

interpreted the same trial as either another example of an unfair legal system or another

example of murder. The data are open to interpretation, and based on their differing past

experiences and beliefs prior to the trial people reached different conclusions.

The deviation of our model from fully Bayesian updating is minimal: Bayes’ rule is still

used at all steps and agents are rational, they are simply constrained by limited memory and

must interpret ambiguous signals before storing them and then base their posteriors on the
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memories rather than all of the original data. Some of our results examine optimal ways to

interpret ambiguous signals. We show that the rule above, based on iterative use of Bayes’

rule is optimal if the agent is not too patient, and so cares enough about making correct

decisions in the short run (or else begins with a strong prior). In contrast, if the agent is very

patient, then the agent may wish to randomize interpretations and may do so in a manner

that depends on the current belief.

The paper proceeds as follows. Section 2 provides a brief literature review. Section

3 describes a framework for updating beliefs when evidence is unclear and section 4 uses

this insight to understand potential mechanisms that drive polarization. The final section

concludes. An appendix contains the proofs of all formal results as well as additional technical

details.

2 A Brief Review of the Literature

Rabin and Schrag (1999) provide a first decision-making model of confirmation bias. In

each period agents observe a noisy signal about the state of the world, at which point they

update their beliefs. Agents’ perceptions are clouded by bias. In their model, signals that

are believed to be less likely are misinterpreted with an exogenous probability. Given the

exogenous mistakes introduced into the model, agents can converge to incorrect beliefs if

they misinterpret contradictory evidence sufficiently frequently. The model does not clarify

the mechanism behind the misinterpretation. Our model provides a foundation for the

interpretation and storage of ambiguous information that can be thought of as providing a

“why” behind the polarization.

In an important paper, Wilson (2003) introduced a model of limited memory that provides

insight into how restrictions on the updating process motivated by the psychology literature

can yield biases in beliefs (see also Mullainathan (2002) and Glaeser and Sunstein (2013)).

Her agent is endowed with a finite number of “memory states,” and the updating process is a

set of rules for how to transition between states after observing a period’s signal. The agent’s

goal is to know the correct state of the world when the sequence randomly terminates. The

optimal transition rule turns out to be fairly simple. First, agents rank their memory states

from 1 to N , with higher numbers indicating an increased likelihood that the “good” state

of the world is correct. Following a good (bad) signal, the agent shifts to the next higher

(lower) state until she reaches one of the extremes states (n = 1 or n = N). Wilson shows

that optimizing agents with sufficient patience (probability of continuation) will leave the

extreme state with very low probability. Thus, with some probability, agents will reach a

state in which they ignore large amounts of seemingly contradictory information. This can

yield polarization under several scenarios. For instance, two people who receive the same set
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of signals but start at different memory states can end up in different places for long periods

of time, as they can get temporarily “stuck” at one of the extreme states. More generally,

Wilson proves that as long as agents do not have identical priors and do not start at one of

the extreme states, their beliefs can differ for long periods of time with positive probability.

Our paper makes at least three contributions to the existing literatures. First, our itera-

tive process of Bayesian updating with limited memory provides a microfoundation for why

agents become increasingly polarized when faced with the same data, and generates patterns

and “anomalies” described in Mullainathan (2002) and Glaeser and Sunstein (2013). Sec-

ond, our polarization results are different from those established in Wilson (2003) in that our

agents can polarize forever, and become increasingly polarized when observing a common

stream of information, while Wilson’s model is ergodic: agents follow a similar irreducible

and aperiodic Markov chain, simply starting in different states. That can allow them to hold

different beliefs on some random occasions, but leads them to the same ergodic distribution.

Third, our model is simple, transparent, and can be easily applied to alternative settings.

3 A Model of Updating Beliefs when Experiences are

Open to Interpretation

There are two possible states of nature: ω ∈ {A,B}.
An agent observes a sequence of signals, st, one at each date t ∈ {1, 2, . . .}. The signals

lie in the set {a, b, ab}. A signal a is evidence that the state is A, a signal b is evidence that

the state is B, and the signals ab are ambiguous and open to interpretation.

In particular, signals are independent over time, conditional upon the state. With a

probability π < 1 the signal is st = ab independent of the state. With probability 1− π the

signal st is either a or b. If the state is ω = A and the signal is not ab, then the probability

that st = a is p > 1/2. Likewise, if the state is ω = B and the signal is not ab, then the

probability that st = b is p > 1/2.

For example, A might be a world with many racists and B a world with few racists.

In A a fraction p > 1/2 of interactions are racist, while in state B a fraction p > 1/2 of

interactions are non-racist. Or it might be that there are a sequence of studies regarding the

impact of climate change or the efficacy of the death penalty that come out, p of which are

valid and 1− p of which are corrupt or flawed in state A and the reverse in state B.

λ0 ∈ (0, 1) is the agent’s prior that ω = A.

Throughout our analysis we assume that the prior, λ0, is not 0 or 1, as otherwise learning

is precluded. Similarly, we maintain the assumption that π < 1 as otherwise no information

is ever revealed.
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It follows directly from a standard law of large numbers argument (e.g., Doob’s (1949)

consistency theorem), that the agent’s posterior beliefs converge to place weight one on the

true state ω almost surely.

Observation 1 A Bayesian-updating agent who forms beliefs conditional upon the full se-

quence of signals observed through each time has a posterior that converges to place probability

1 on the correct state almost surely.

The signals ab are uninformative as they occur with a frequency π regardless of the state.

Thus, a Bayesian updater who remembers all of the signals in their entirety effectively ignores

interactions that are open to interpretation.

3.1 Interpreting Signals and Limited Memory

An important aspect of the example described in the introduction is that agents have limited

memory. Otherwise, there would be no need to interpret signals – agents would store the

full “scene” of every interaction in memory and be fully Bayesian.

The key element of our model is that at each date an agent can only store one bit of

data. When the agent sees an ambiguous signal st = ab, the agent must interpret and store

it as either a or b. An agent has limited memory and cannot remember all the possible

interpretations of all social interactions and thus, must store in memory a strict subset of

the information involved in the social interaction. The interpretation of ambiguous signals

st = ab as clear signals a or b is based on the agent’s experiences through time t.

The only limitation our agent faces is being forced to interpret ambiguous signals and

store them in memory. The agent does this in a “rational” manner, interpreting the signals

according to their maximum likelihood. As we show below, this will be an optimal storage

technique if the agent is faced with making decisions in the short run that depend on how

they interpret the situations they face.

3.1.1 An Example of Polarized Beliefs

To illustrate this process and the polarization that it induces, let us consider a specific

example. For instance, suppose that the true state is ω = A, the probability that an

unambiguous signal matches the state is p = 2/3, and the fraction of ambiguous signals is

π = 1/2. In such a case, the sequence of signals might look like:

a, ab, ab, b, a, ab, a, ab, ab, b, ab, ab, . . .

In particular, consider a case such that the agent interprets st = ab based on what is
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most likely under her current belief λt−1: the agent interprets st = ab as a if λt−1 > 1/2 and

as b if λt−1 < 1/2.

Suppose that the agent’s prior is λ0 = 3/4. When faced with s1 = a, the agent’s posterior

λ1 becomes 6/7. So, the agent updates beliefs according to Bayes’ rule given the interpreted

(remembered) signals.3 Then when seeing s2 = ab the agent stores the signal as a, and ends

up with a posterior of λ2 = 5/6. In this case, the agent would store the sequence as

a, a, a, b, a, a, a, a, a, b, a, a, . . .

and the posterior at the end of this sequence would already be very close to 1.

In contrast, consider another agent whose prior is λ0 = 1/4. When faced with s1 = a, the

agent’s posterior λ1 becomes 2/5. Then when seeing s2 = ab the agent stores the signal as b,

and ends up with a posterior of λ2 = 1/4. In this case, the agent would store the sequence

as

a, b, b, b, a, b, a, b, b, b, b, b, . . .

and the posterior at the end of this sequence would be very close to 0.

Two agents observing exactly the same sequence with different (and non-extreme) priors,

come to have increasingly different posteriors. Their posteriors are

3/4, 6/7, 12/13, 24/25, 12/1, 24/25, 48/49, 96/97, 192/193, 384/385, 192/193, 192/193 . . .

1/4, 2/5, 1/4, 1/7, 1/13, 1/7, 1/13, 1/7, 1/13, 1/25, 1/49, 1/97 . . .

3.2 Optimal Interpretations in the Face of Choosing an Action

In the above example, we considered situations where the agent interprets signals according

to which state is more likely, which we refer to as maximum likelihood storage. There is a

tradeoff: if an agent stores a signal in the way that is viewed as most likely given the current

beliefs that can help in reacting to the current situation at hand, but then the agent can

bias long-term learning.

To explore this tradeoff, consider a situation in which the agent must take an action

based on the current interaction. For instance, in the context of our racist example, at each

date the agent must react appropriately to either being faced with a racist or not.4 In the

case of an ambiguous encounter, the agent must take an action. The key assumption is that

if the agent decides that it is best to respond to st = ab at time t in a manner consistent

3In this case λt = P (A|st = a, λt−1) = 2λt−1/(1 + λt−1), and λt = P (A|st = b, λt−1) = λt−1/(2− λt−1)
4Note that it is the particular situation/signal that must be appropriately interpreted, not the state.

The probability of the state is useful in making a decision, but it is the particular encounters that the agent
must make decisions about.
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with a signal of a, then the agent must store the signal as an a. The agent cannot treat the

signal in one manner for actions and then remember it differently. This is in line with our

limited memory assumption.

To be more explicit, suppose the agent has to call out her interpretation a or b of the

unclear signal she receives. She gets payoff of ut = 1 if the current situation is correctly

identified and ut = 0 when a mistake is made.5 In particular, if the agent calls out a, then

ut = 1 with probability p if the state is A and probability (1− p) if the state is B. Similarly,

if the signal is ambiguous and the agent calls out b, then ut = 1 with probability (1 − p) if

the state is A and probability p if the state is B.

To represent the full set of possible strategies that an agent might have for making

interpretations (including strategies for agents with unbounded memories), we first define

histories. Let a history ht = (s1, i1; . . . ; st, it) ∈ {{a, b, ab} × {a, b}}t be a list of raw signals

and their interpretations seen through time t. Let Ht = {{a, b, ab} × {a, b}}t be all the

histories of length t and H = ∪tHt be the set of all finite histories.

A strategy for the agent is a function σ that can depend on the history and the agent’s

beliefs and generates a probability that the current signal is interpreted as a: σ : H× [0, 1]→
[0, 1].6 In particular, σ(ht−1, λ0) is the probability that the agent interprets an ambiguous

signal st = ab as a conditional upon the history ht−1 and the initial prior belief λ0.

A limited-memory strategy is a strategy that depends only on interpreted and not on raw

signals.7

An agent’s expected payoffs can be written as:

U(σ, δ, λ0) = E

(
∞∑
t=1

δtut(σ(ht−1, λ0))

∣∣∣∣∣λ0
)
.

The optimal strategy in the case of unconstrained memory is that of a fully rational

Bayesian. It can be written solely as a function of the posterior belief, as the history that

led to the posterior is irrelevant.

Our limited-memory strategies exhibit interesting history dependencies. For instance,

a sequence can be reshuffled and will not affect Bayesian updating with unbounded mem-

ory. However, with bounded memory, the order of observation becomes important. See-

ing a sequence where the a’s all appear early tilts the prior towards the state A which

then affects the interpretation of ab’s towards a’s. In contrast, reshuffling a sequence to-

wards having the b’s early has the opposite affect. For instance, in our example in Sec-

5Given the binary setting, the normalization is without loss of generality.
6Given that we allow the strategy to depend on the history, it is irrelevant whether we allow it to depend

on the current posterior or original prior, as either can be deduced from the other given the history.
7A strategy is limited-memory if σ(ht) = σ(h′t) whenever the even entries (the interpreted signals, it’s)

of ht and h′t coincide.
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tion a, ab, ab, b, a, ab, a, ab, ab, b, ab, ab, was interpreted as a, a, a, b, a, a, a, a, a, b, a, a, . . . by

anyone starting with a prior above 1/2. Suppose we reorder that original sequence to be

b, b, ab, ab, ab, ab, ab, ab, a, a, ab, a,. With the same prior in favor of A, but sufficiently close to

1/2, the interpretation would instead flip to be b, b, b, b, b, b, b, b, a, a, b, a,, and end up push-

ing the beliefs towards B. So, the order in which a sequence of signals appear can now be

(enormously) consequential.

An optimal limited-memory strategy is one that adjusts the probability of interpreting a

signal with the posterior, but appears difficult to derive in a closed form. Nonetheless, we can

find strategies that approximate the optimal strategy when the agent is sufficiently patient

or impatient. To this aim, we will compare several classes of strategies: (a) the optimal

strategy, (b) ones that depend only on the time, and (c) ones that involve randomizing in a

simple manner based on the posterior.

In the latter class of strategies, the agent randomizes in interpreting ambiguous signals,

but with a fixed probability that leans towards the posterior. Let γ ∈ [0, 1] be a parameter

such that the agent follows the posterior with probability γ and goes against the posterior

with probability 1 − γ. Under such a strategy, at time t with posterior λt−1, the agent

interprets the unclear signal as a with probability γ1λt−1≥.5 + (1− γ)1λt−1<.5 and b with the

remaining probability. We denote this strategy by σγ.

The special case of γ = 1 corresponds to maximum likelihood interpretation. As we show

now, maximum likelihood is an approximately optimal method of interpretation if the agent

cares relatively more about the short run than the long run.

Proposition 1 If the agent’s discount factor is small enough or the prior belief is close

enough to either 0 or 1, then the maximum likelihood strategy is approximately optimal. That

is, for any λ0 and ε > 0, there exist δ such that if δ < δ, then U(σ1, δ, λ0) ≥ U(σ, δ, λ0)−ε for

all strategies σ. Moreover, the same statement holds for any δ for λ0 that are close enough

to 0 or 1.

All proofs appear in the appendix.

The intuition is straightforward. The underlying tension is between correctly calling the

state in the short run, and interpreting signals over the long run. If the decision maker is

sufficiently impatient then it is best to make correct decisions in the short run and not worry

about long-run learning. The last part of the proposition shows that even if the agent is

very patient, if the agent begins with a strong prior in one direction or the other (λ0 near

either 0 or 1), then maximum likelihood is again optimal as the agent does not expect to

learn much.

At the other extreme, by setting γ = 1/2, then it is clear that the agent will learn

the state with probability one in the long run. However, that is at the expense of making

incorrect decisions at many dates. More generally, we can state the following proposition.
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Let us say that there is long-run learning under the randomized-interpretation strategy

σγ for some γ if the resulting beliefs λt converge to the true state almost surely.

Proposition 2 If π < p−1/2
p

, then ambiguous signals are infrequent enough so that there is

long-run learning under the randomized-interpretation strategy σγ for any γ. So, consider

the case in which π > p−1/2
p

.

(a) If γ < p−1/2+π(1−p)
π

then there is long run learning under the randomized-interpretation

strategy σγ.

(b) If γ > p−1/2+π(1−p)
π

then there is a positive probability that beliefs λt converge to the wrong

state under the randomized-interpretation strategy σγ.

3.3 Approximately Optimal Strategies: Two-Step Rules

Proposition 2 shows that long run learning under a randomized-interpretation strategy

only occurs if the randomization is sufficiently high (γ is sufficiently low). This can be very

costly in the long run, as although the posterior converges, it happens because the agent is

randomly interpreting ambiguous signals, even when the agent is almost certain of how they

should be interpreted.

The optimal strategy should adjust the randomization with the belief: as the agent be-

comes increasingly sure of the true state, the agent should become increasingly confident

in categorizing ambiguous signals, and use less randomization. The fully optimal strategy

is difficult to characterize as it is the solution to an infinitely nested set of dynamic equa-

tions and we have not found a closed-form. Nonetheless, we can easily find a strategy that

approximates the optimal strategy when the agent is sufficiently patient.

Consider a T -period two-step rule, defined as follows. For T periods the agent uses

γ = 1/2, and after T periods the agent uses γ = 1. Let σT denote such a strategy. We will

show that with sufficient patience, such a strategy is approximately optimal.

As a strong benchmark, let σFI denote the full-information strategy, where the agent

actually knows whether the state is A or B, and so when seeing ab then always calls a if

ω = A (or b if ω = B). In this case, the expected utility is independent of λ0 and can be

written as a function of the strategy and the discount factor alone: U(σFI , δ). This is a very

stringent benchmark as it presumes information that the agent would never know even under

the best circumstances. Even so, we can show that a simple two-step rule can approximate

this benchmark.
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Proposition 3 Sufficiently patient agents can get arbitrarily close to the full information

payoff by using a variation on the two-step rule. That is, for any ε and λ0, there exist T and

δ such that if δ > δ, then U(σT , δ, λ0) > U(σFI , δ)− ε.

Thus, with sufficient patience a very simple strategy approaches the full information

benchmark.8

Putting these two results together, how a subjective degree of belief should change “ra-

tionally” to account for evidence which is open to interpretation depends, in important

ways, on how patient a decision maker is. If they are sufficiently patient, a strategy that

entails randomization in the presence of unclear evidence for finite time and then following

their maximum likelihood estimate thereafter approximates the full information Bayesian

outcome.9

In stark contrast, if agents sufficiently discount the future (or, equivalently, don’t expect

a large number of similar interactions in the future), they interpret ambiguous evidence as

the state which has the highest maximum likelihood, given their prior belief. This leads to

more informed (and optimal, though possibly mistaken) decisions in the short-run, but the

potential of not learning over the longer-run.

An important remark is that we have specified two-step rules in terms of time. An

alternative method is to do the following. If an agent’s beliefs λt place at least weight ε on

both states (λt ∈ [ε, 1 − ε]), then randomize with equal probability on interpretations, and

otherwise use the maximum likelihood method. This strategy does not require any attention

to calendar time, and also will approximate the full information strategy for small enough ε.

4 Implications for Polarization of Beliefs

As we have already seen in Section 3.1.1, two agents can have very different interpreta-

tions of exactly the same events and that can lead them to update differently, and become

increasingly polarized in their beliefs. The next result generalizes that observation.

Proposition 4 Suppose that a nontrivial fraction of experiences are open to interpretation

so that π > p−1/2
p

. Consider two interpretative agents 1 and 2 who both use the maximum

likelihood rule but have differing priors: agent 1’s prior is that A is more likely (so 1 has a

prior λ0 > 1/2) and agent 2’s prior is that B is more likely (so 2 has a prior λ0 < 1/2).

Let the two agents see exactly the same sequence of signals. With a positive probability that

8Proposition 3 also clearly holds for a slightly different strategy: σx which is defined by setting γt = 1/2
until either λt > 1−x or λt < x, and then setting γt = 1 forever after. Instead of holding for a large enough
T and δ, the proposition then holds for a small enough x and large enough δ.

9This result highlights a familiar tradeoff between exploitation (being correct in the short run) and
experimentation (long-run learning) typical in the multi-armed bandit literature (Berry and Fristedt 1985).
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tends to 1 in π the two agents will end up polarized with 1’s posterior tending to 1 and 2’s

posterior tending to 0. With a positive probability tending to 0 in π the two agents will end

up with the same (possibly incorrect) posterior tending to either 0 or 1.

The proof is based on the observation that when π = 1 and λ0 > 1/2, then all signals are

interpreted as a under the maximum likelihood storage rule. Moreover, the law of the belief

process depends continuously on π.

4.1 Evidence Consistent with Polarization of Beliefs

Table 5 summarizes a variety of studies in which identical information given to subjects in

a variety of experimental settings resulted in increased polarization of beliefs – individuals

expressing more confidence in their initial beliefs. The seminal paper in this literature is

Lord, Ross, and Lepper (1979), who provided experimental subjects with two articles on

the deterrent effects of capital punishment. The first article offered evidence that capital

punishment has a deterrent effect on crime, while the second argued there was no relationship.

The authors observe both biased assimilation (subjects rate the article reinforcing their

viewpoint as more convincing) and polarization (subjects express greater confidence in their

original beliefs).

Several other studies have produced similar results using opinions of nuclear power

(Plous 1991), homosexual stereotypes (Munro and Ditto 1997), perceptions of fictional

brands (Russo, Meloy, and Medvec 1998), theories of the assassination of John F. Kennedy

(McHoskey 2002), the perceived safety of nanotechnology (Kahan et al 2007), and the accu-

racy of statements made by contemporary politicians (Nyahn and Reifler 2010).

Nyhan, Reifler, and Ubel (2013) provide a recent example relating to political beliefs

regarding health care reform. They conduct an experiment to determine if more aggressive

media fact-checking can correct the (false) belief that the Affordable Care Act would create

“death panels.” Participants from an opt-in Internet panel were randomly assigned to either

a control group in which they read an article on Sarah Palin’s claims about “death panels” or

a treatment group in which the article also contained corrective information refuting Palin.

Consistent with the maximum likelihood storage rule, Nyhan, Reifler, and Ubel (2013)

find that the treatment reduced belief in death panels and strong opposition to the Affordable

Care Act among those who viewed Palin unfavorably and those who view her favorably but

have low political knowledge. However, identical information served to strengthen beliefs in

death panels among politically knowledgeable Palin supporters.
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5 Conclusion

Polarization of beliefs has been documented by both economists and psychologists. To date,

however, there has been little understanding of the underlying mechanisms that lead to

such polarization, and especially why increasing polarization occurs even though agents are

faced with access to the same information. To fill this void, we illuminate a simple idea:

when evidence is open to interpretation, then a straightforward – and constrained optimal

– iterative application of Bayes’ rule can lead individuals to polarize when their information

sets are identical.

Beyond polarization, our adaptation of Bayes’ rule has potentially important implications

for other information-based models such as discrimination. For instance, using our updating

rule, it is straightforward to show that statistical discrimination can persists in a world with

infinite signals. This is not true in standard models the rely on a single signal (e.g. Coate

and Loury 1993). Moreover, policies designed to counteract discrimination likely have to

be more complicated in an environment in which employers are forced to interpret unclear

signals before hiring decisions are made.

Bayes’ rule is one of the most often used results in the applied sciences – expressing

how a belief should change, rationally, to account for evidence. In many applications, from

economics to ecology, evidence is open to interpretation and our model can be used to form

posteriors.
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Table 1: Summary of Belief Divergence Results

Lord, Ross, and Lep-
per (1979)

Experimental subjects were provided with evidence for and against
the detterant effect of the death penalty. Subjects of all beliefs re-
port that the article matching their baseline is more convincing, and
students became more confident in their original position.

Darley and Gross
(1983)

Subjects were asked to grade an identical essay after hearing the child
described as from a poor, inner-city neighborhood or a middle-class
suburban neighborhood. Subjects gave lower grades to the inner-
city author, despite no change in the text of the essay. Subjects who
viewed a video of the child answering quiz questions before grading
the test displayed even greater divergence.

Plous (1991) Subjects with varying opinions on nuclear energy and deterrence
were provided with articles on the Three Mile Island disaster and
a narrowly-averted accidental missile launch. Subjects of all view-
points expressed increased confidence in their original viewpoints af-
ter reading the articles.

Munro and Ditto
(1997)

Subjects with high and low levels of prejudice towards homosexuals
were presented with two fictional studies on the empirical prevalence
of a homosexual stereotype. Follow-up interviews revealed evidence
of both biased assimilation and attitude polarization.

Russo, Meloy, and
Medvec (1998)

Experimenters sequentially provided subjects with information on
two fictional brands. In later stages, once participants have formed
preferences, neutral information causes subjects to identify more
strongly with their preferred brand.

McHoskey (2002) Students were randomly selected to review either information sup-
porting the claim that Lee Harvey Oswald acted alone in assassi-
nating John F. Kennedy and or information pointing to a larger
conspiracy. Students with extreme opinions intensify their positions
when presenting with information supporting their beliefs and relax
their beliefs to a lesser degree when confronted with contradictory
evidence.

Kahan et al (2007) Subjects were surveyed on their beliefs about the safety of nanotech-
nology after half were randomly provided with factual information
about risks and benefits. Those who were exposed to information
displayed greater polarization than those who were not.

Nyhan and Reifler
(2010), Nyhan, Rei-
fler, and Ubel (2013)

These studies detail a series of five experiments in which participants
are asked to assess the validity of a false or misleading statement
by a politician. In each case, the additional information leads the
most-committed members of the targeted subgroup to intensify their
misperceptions, rather than weakening them.
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6 Appendix

Proof of proposition 1.

Let us first show for any λ0 and ε > 0, there exist δ such that if δ ≤ δ, then U(σ1, δ, λ0) ≥
U(σ, δ, λ0)− ε for all strategies σ. Recall that

U(σ, δ, λ0) = E

(
∞∑
t=1

δtut(σ(ht−1, λ0))

∣∣∣∣∣λ0
)
.

Write

U(σ, δ, λ0) = E (u1(σ(∅, λ0))|λ0) + E

(
∞∑
t=2

δtut(σ(ht−1, λ0))

∣∣∣∣∣λ0
)
.

The basic idea is that as δ → 0, the future does not matter and the decision maker only

needs to maximize the current period’s payoff which amounts to choosing the most likely

interpretation. Note that E (
∑∞

t=2 δ
tut(σ(ht−1, λ0))|λ0) lies in the interval [− δ

1−δ ,
δ

1−δ ] lies

within [−ε, ε] if δ ≤ δ = ε
1+ε

. Thus, if δ ≤ δ, then

U(σ1, δ, λ0)− U(σ, δ, λ0) ≥ E
(
u1(σ

1(∅, λ0))
∣∣λ0)− E (u1(σ(∅, λ0))|λ0)− ε. (1)

Next, note that

E (u1(σ(∅, λ0))|λ0) = E[pPr[i1 = ω] + (1− p) Pr[i1 6= ω]|λ0].

Since p > 1/2, the maximizing solution is to set i1 to match the most likely state ω given

λ0, and so σ1 is optimal for the first period optimization. This implies that

E
(
u1(σ

1(∅, λ0))
∣∣λ0) ≥ E (u1(σ(∅, λ0))|λ0) .

Thus, from (3) it follows that if δ ≤ δ, than

U(σ1, δ, λ0) ≥ U(σ, δ, λ0)− ε. (2)

Next, let us now show that it is possible to choose δ such that it approaches 1 as λ0

approaches 0 or 1. For any δ, there exists T (δ) such that the expected sum of discounted

utilities past time T (δ) amounts to less than ε/2 and so the utility is captured in the first

T (δ) periods:10

U(σ, δ, λ0) ≥ E

T (δ)∑
t=1

δtut(σ(ht−1, λ0))

∣∣∣∣∣∣λ0
− ε/2.

10An upper bound is to set δT

1−δ = ε/2.
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Next, note that the expression

E

T (δ)∑
t=1

δtut(σ
1(ht−1, λ0))


is continuous in λ0 including the extreme points of λ0 ∈ {0, 1} for any given δ. Note also

that σ1 is the optimal strategy if λ0 = 1, since then the expected payoff in any given period

(independent of the history) is simply the probability that the interpretation is A times p

plus the probability that the interpretation is the interpretation is B times 1 − p. This is

maximized by setting the interpretation to A. Similarly if If λ0 = 0 the optimal strategy is

to interpret things as B in any given period. Thus, maximum likelihood storage rule, σ1,

is optimal for λ0 ∈ {0, 1}. Given the continuity, it is within ε/2 optimal for any λ0 close

enough to 1 or 0. So, for any δ we can find λ0 close enough to 1 or 0 for which

U(σ1, δ, λ0) ≥ U(σ, δ, λ0)− ε. (3)

which completes the proof.

Proof of Proposition 2. We first state an auxiliary result, from Hoeffding (1963), that

is useful in proving Proposition 2.

Lemma 1 (Hoeffding’s inequality) If X1, . . . , Xt are independent and ai ≤ Xi ≤ bi for

i = 1, 2, . . . , t, then for δ > 0,

P

(
t∑
i=1

(
Xi − E(Xi)

)
≥ tε

)
≤ e−2t

2ε2/
∑t

i=1(bi−ai).

Let n(λ) be the number of b interpreted signals minus the number of a interpreted signals

needed to reach the frontier where λt = 1/2 starting from λ0 = λ, i.e.,

n(λ) =

 log
(

λ
1−λ

)
log
(

p
1−p

)
 .

The b·c reflects starting from a prior below 1/2, and otherwise it would be rounded up.

The process nt = n(λt) is a random walk in the integers such that nt is increased by

1 every time there is an interpreted a signal and decreased by 1 every time there is an

interpreted b signal. The conditional laws given the states A and B are denoted by PA and

PB, respectively, and EA and EB are the corresponding expectations.
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(a) First, note that if (1 − π)p + π(1 − γ) > 1/2 (which is rewritten as γ < 1/2−(1−p)(1−π)
π

),

then even if all of the unclear signals are incorrectly interpreted, the majority of signals

will still match the true state. Therefore, if the true state is A, then the increments

∆nt = nt+1 − nt are positive in expectation, i.e., EA(∆nt) > 0. Moreover, they have

bounded first and second moments. It follows from the strong law of large numbers that

(nt−EA(nt))/t converges to zero PA-a.s., which implies that nt →∞ PA-a.s. and λt → 1

PA-a.s. The PB-a.s. convergence of λt to zero is proven in a similar same way.

Note that this is automatically satisfied if π < (p− 1/2)/p for any γ, which establishes

the first sentence of the proposition.

(b) Now suppose that (1−π)p+π(1−γ) < 1/2 and assume that the true state is B. We claim

that PB assigns positive probability to the event λt → 1, which coincides with the event

nt →∞. First, we note that nt reaches any preset level with positive probability if t is

large enough. Therefore, it is sufficient to prove the proposition for n0 large. Whenever

nt is positive, it is more likely to increase than to decrease, i.e., PB(∆nt = 1) ≡ z > 1/2.

As long as this is the case, EB(∆nt) = 2z− 1 > 0 and Hoeffding’s inequality states that

for any ε > 0,

PB
(
nt − n0 ≤ (2z − 1− ε)t

)
≤ e−tε

2/2.

Setting ε = (2z − 1)/2 leads to the bound

PB
(
nt ≤ (z − /2)t

)
≤ PB

(
nt − n0 ≤ (z − 1/2)t

)
≤ e−t(z−1/2)

2/2.

When n0 is large, nt cannot immediately fall below (z − 1/2)t. More specifically, this is

impossible for t ≤ bn0/(z + 1/2)c. It follows that

PB
(
∀t : nt > (z − 1/2)t

)
= 1 − PB

(
∃t : nt ≤ (z − 1/2)t

)
≥ 1 −

∑
t>bn0/(z+1/2)c

e−t(z−1/2)
2/2.

The last expression is positive if n0 is large enough. This proves that

PB
(

lim
t→∞

λt = 1
)

= PB
(

lim
t→∞

nt =∞
)
> 0.

It can be shown in a similar way that PA assigns positive probability to the event λt → 0.

Proof of Proposition 3. In the limit, the belief process places a.s. weight 1 on the true

state of Nature when the γ = 1/2 rule is used, as shown in proposition 2 (and could also be

deduced from Levy’s 0-1 law and Martingale convergence of beliefs). Therefore, the belief
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process remains eventually on the correct side of the frontier. Formally, under the γ = 1/2

rule, the random time

S = inf{t ≥ 0 : ∀s ≥ t : 1λt>1/2 = ω}

is Pω-a.s. finite for any ω ∈ {A,B}. Therefore, for any T ,

U(σT , δ, λ) ≥ E

(
1S≤T

∞∑
t=T

δtut(σ
T (ht−1, λt−1))

)
= E

(
1S≤T

∞∑
t=T

δtut(σ
FI(ω))

)

> E

(
∞∑
t=T

δtut(σ
FI(ω))

)
− ε/2 > E

(
∞∑
t=0

δtut(σ
FI(ω))

)
− ε = U(σFI , δ)− ε.

In the above equation, the first relation holds because some non-negative terms are dropped,

the second relation holds because the agent calls out the right state past time S, the third

relation holds for large enough T because P (S ≤ T )→ 1 as T →∞, and the fourth relation

holds for δ close enough to 1 because then the first T stages do not matter relative to the

rest.

Proof of Proposition 4. The argument in the proof of proposition 2b shows that when

π < 1, then the values 0 and 1 occur with positive probability as the limit of the belief

process λt as t → ∞. It remains to show that λt → 1 with probability tending to one as

π → 1 if λ0 > 1/2. So let us assume λ0 > 1/2. Obviously, in the extreme case that π = 1,

all signals are interpreted as a and therefore, the probability that λt → 1 equals 1. This

probability depends continuously on the parameter π by Lemma 2.

Lemma 2 Under any strategy, the belief process Λ is continuous in the total variation norm

with respect to the parameters p and π.

Proof. It is equivalent to show the proposition for the point process nt defined in the proof

of Proposition 2 instead of the process λt. Let pk → p, πk → π, and let P k and P be the

corresponding laws of the process nt. Furthermore, let Ft be the sigma algebra generated

by n0, . . . , nt and P k
t the restriction of P k to Ft. It follows directly from the Chapman-

Kolmogorov equations or from Jacod and Shiryaev (2003, corollary V.4.39a) applied to the

point process (nt− n0 + t)/2 that the total variation of the signed measure P k
t −Pt tends to

zero, i.e.,

‖P k
t − Pt‖ = sup{|P k

t (φ)− Pt(φ)| : φ Ft-measurable function on Ω with |φ| ≤ 1} → 0.

The restriction that φ is Ft-measurable can be removed by an approximation argument: for
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any Ft-measurable function φt, one has

|P k(φ)− P (φ)| ≤ |P k(φ)− P k(φt)|+ |P k(φt)− P (φt)|+ |P (φt)− P (φ)|
≤ |P k(φ)− P k(φt)|+ ‖P k − P‖+ |P (φt)− P (φ)|.

(4)

Setting k large enough, ‖P k
t − Pt‖ can be made smaller than ε/3. Then φt can be set equal

to the Ft-conditional expectation of φ under the measure (P k +P )/2. It follows that φt → φ

a.s. under P k and P . By the dominated convergence theorem, the first and third term in

the right-hand side of equation (4) are smaller than ε/3 when t is large enough. It follows

that (4) is arbitrarily small for large enough values of k. Thus P k converges to P in the total

variation norm.
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