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1 Introduction

Concerns about omitted variable bias are common to most or all non-experimental empirical work in

economics, other social sciences and the natural sciences. And although randomized experiments are common

in natural sciences and are becoming increasingly common within economics, the majority of empirical work in

both settings is still not randomized.1 Within economics, a common heuristic for evaluating the robustness of

a result to omitted variable bias concerns is to look at the sensitivity of the treatment effect to added controls.

In a review of non-structural, non-experimental empirical work published in three general interest economics

journals2 in 2012, 75% of papers explored the sensitivity of the results to varying control sets, and a number of

these papers were quite explicit about the relationship between coefficient stability and omitted variable bias.3

The baseline assumptions underlying the linear model do not imply that coefficient movements are

informative about bias. The heuristic is informative only with the added assumption that the selection on

observables variables is informative about the selection on unobservables (Altonji, Elder and Taber (2005);

Murphy and Topel (1990)). This connection is rarely made explicit in empirical work and the underlying

assumption is generally untested.

The goal in this paper is to develop a formal statement of robustness related to the coefficient stability

heuristic. I formalize the link between coefficient stability and omitted variable bias through the proportional

selection on observed and unobserved variables. I develop implementation guidelines and suggest that

robustness can be described by an identified set of the treatment effect. I perform two validation examples -

one based on constructed data and one linking possibly biased observational relationships to external causal

estimates - which suggest this procedure performs well. Finally, I apply this adjustment to a set of papers in

economics and use insights from randomized data to suggest bounds for constructing the identified set.

A key result is that coefficient movements alone are not sufficient to learn about bias. It is also

necessary to take into account movements in the R-squared values when controls are added. Small coefficient

movements with small R-squared movements can imply more bias than large movements in both. In the

analysis of the economics literature, I show significant overlap in the distribution of coefficient movements

between result which do and do not survive the full robustness adjustment.

I begin in Section 2 with the formal theory, which adopts the setup and assumption of Altonji, Elder

and Taber (2005) (hence, AET). I consider the following model: Y = βX +W1 +W2, where W1 is observed

and W2 is unobserved and the coefficient of interest is β. Note that β cannot be recovered from regression

1For example: in 2012 JAMA published 133 major research papers, only 53 of which were randomized. The American Journal of
Public Health published 128, only 14 of which were randomized. The combination of the American Economic Review, the Quarterly
Journal of Economics and the Journal of Political Economy published 69 empirical, non-structural papers, only 11 of which were
randomized.

2American Economic Review, Journal of Political Economy and Quarterly Journal of Economics.
3For example, Chiappori et al (2012) state: “It is reassuring that the estimates are very similar in the standard and the augmented

specifications, indicating that our results are unlikely to be driven by omitted variables bias.” Similarly, Lacetera et al (2012) state:
“These controls do not change the coefficient estimates meaningfully, and the stability of the estimates from columns 4 through 7
suggests that controlling for the model and age of the car accounts for most of the relevant selection.”
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because of the unobserved elements in the model. I describe the proportional selection assumption, which

formally links the relationship between X and the observed variables to the relationship between X and the

unobserved variables. This link invokes a degree of proportionality, denoted δ.

Under this assumption I show that β can be recovered from: (1) the coefficients on X with and without

controls for observed variables; (2) the R-squared values from controlled and uncontrolled regressions; and (3)

a value for δ. The result shows that coefficient movements do relate to omitted variable bias, but they must be

scaled by movements in the R-squared values.

Section 3 turns to implementation. Performing the adjustment described requires the coefficient and

R-squared values from regressions, which are recoverable, but also an assumption about δ. A key practical

issue is that, because the model specified has no error term, δ above captures both the relative importance of

the unobserved variables related to X and the idiosyncratic variation in Y . This value has no clear analog in

the data.

In the first part of Section 3, I redefine the model as Y = βX +W1 + W̃2 + ε, where ε is orthogonal to

X, W1 and W̃2. This unpacks δ into two components: (1) δ̃, the proportional selection between W1 and the

unobservables related to X (W̃2) and (2) the R-squared of the full regression with controls for X, W1 and W̃2,

which I denote Rmax.

The advantage to this unpacking is that it allows us to use knowledge about the measurement error or

idiosyncratic variation in Y to constrain the problem. Consider estimating the wage returns to education in a

setting where omitted family background is a concern, and imagine two possible wage measures: this week’s

wages, or the average weekly wage over the last year. As an overall measure of earning power, wages measured

based on a single week have more measurement error. Without separating δ into components we know only

that it should be lower for the single-week wages. By separating out the components,we can use knowledge of

the relative degree of measurement error to define the two Rmax values, and then note that δ̃ should actually

be the same in the two analyses.

Section 3 provides a formal way to describe robustness of results under this model. I show, using logic

akin to the partial identification literature, that by assuming bounding values for Rmax and δ̃ one can generate

an identified set for the treatment effect. This set can then be subject to robustness questions: Does it contain

zero? Does it contain values far from what we would conclude based on the controlled effect? A key

consideration is bounding values for δ̃ and Rmax. I argue that δ̃ ∈ [0, 1] is a plausible bound on the degree of

selection, and note that Rmax is necessarily bounded between the controlled R-squared and 1, although

knowledge of the problem may suggest a bounding value less than 1.

Section 3 provides some simulation evidence on the performance of this adjustment, primarily

illustrating the importance of the R-squared movements. What this simulation does not answer is the question

of how this adjustment performs in non-simulated data or whether the identified set logic would improve
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inference. I evaluate the performance of this adjustment in two ways in Section 4.

First, I use NLSY data to construct a dataset relating education and wages; the data is constructed

such that we know the “true” treatment effect based on a full set of family background controls. I then

evaluate the performance of this adjustment by excluding combinations of controls from the “observed” set. I

estimate the value of δ̃ which would be produced by each excluded set and calculated the bias-adjusted

treatment effect. I show that 83% of the δ̃ values are in the range from 0 to 1, the bounds suggested in Section

3, meaning that in 83% of cases the identified set would include the true effect. This may actually undervalue

this performance as the control set is selected here at random rather than based on using the most important

controls first, as would be common in practice. The data is constructed with a realistic amount of

idiosyncratic variation in the outcome, and I demonstrate that ignoring this variation (i.e. assuming the

R-squared in the full model is 1) would lead to a flawed adjustment.

In a second test I use NLSY data to estimate the relationship between maternal behavior and child

outcomes. A major concern in this setting is the the confound by socioeconomic status. I match the possibly

biased observational estimates with external evidence of the causal effect from randomized data or

comprehensive meta-analyses (this is close in spirit to Lalonde (1986)).4 I then ask whether the proportional

selection adjustment would separate true from false associations within these possibly biased observational

correlations. I find that the adjustment performs well: The identified set under this adjustment excludes zero

in the two cases where external evidence confirms a link, and overlaps with zero in the three cases where the

external evidence rejects the link.

The evidence in this section suggests this adjustment would improve inference. Although these settings

by no means capture all of the areas in which coefficient stability heuristics are used, they are helpful largely

because the basic empirical issue – pro-social behavior linked with socioeconomic status – is shared by many

settings within economics.

In the final section of the paper I turn to the application of this procedure to the economics literature. I

focus on two questions. First: How do stability statements in published papers in economics hold up to a

version of this adjustment? Second: Is it possible to generate tighter bounds on Rmax? This latter issue is

crucial since the evidence in Section 4 suggests that the bound of Rmax = 1 will lead us to conclude too few

results are robust.

I begin with a sample of papers in the American Economic Review, Journal of Political Economy,

Quarterly Journal of Economics and Econometrica, published between 2008 and 2013 and satisfying citation

cutoffs (>20 for 2008-2010 and >10 for 2011-2013). I extract all relationships for which a coefficient stability

heuristic is reported (58 papers; 134 results). I consider the sensitivity of these results to the proportional

selection adjustment, with δ̃ ∈ [0, 1] and varying bounds on Rmax. My primary definition of robustness is

4I also look at sibling fixed effects estimates within this dataset as another way to fully control for family background, with
identical results.
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whether the identified set includes zero; this is estimated on the set of relationships for which inclusion of

controls moves the effect toward zero. I also consider an auxiliary definition based on whether the identified

set falls fully within some standard error bounds of the controlled effect.

Under either notion of robustness, about 40% of results are robust to a value of Rmax = 1. I show other

bounds on Rmax which are a function of the fully controlled R-squared. These capture the idea that there is

variation in how predictable outcomes are, and this variation can be roughly inferred from how much is

predicted by the observables. Denoting the fully controlled R-squared as R̃, I explore robustness to

Rmax = ΠR̃, with varying values of Π. About 50% of results are robust to a value of Π = 3, and 65% to a

value of Π = 2.

This shows considerable variation in the robustness of these stability claims, but does not suggest a

bounding value. For that, I turn to randomized results. The claim that the coefficient is unchanged by

inclusion of controls implicitly suggests that the treatment is assigned as if randomly. If that is the case, then

the coefficient movement should be within the bounds we would expect to occur if treatment were randomized.

Fortunately for this exercise, it is common in randomized papers to show coefficients with and without

controls, either as a balancing test or to increase precision.

I draw a sample of all randomized papers from the American Economic Review, Journal of Political

Economy, Quarterly Journal of Economics, Econometrica and American Economic Journal: Applied

Economics between 2008 and 2013 which report coefficients with and without controls (33 papers; 76 results).

Randomized data is more robust to this adjustment than non-randomized, but I show that assuming Rmax = 1

would still lead to rejection of 30% of randomized results. I derive cutoffs based on values of Π which would

allow 95% of randomized results to survive: for the primary robustness definition, this value is Π = 2.2.

This provides a full robustness reporting standard. Showing that the identified set with bounds

δ̃ ∈ [0, 1] and Rmax ∈ [R̃,min{2.2R̃, 1}] excludes zero would suggest robustness in the range of what would be

seen if the treatment were randomized. For results where inclusion of controls moves the coefficient away from

zero, this identified set may be evaluated based on whether it leads to similar magnitude conclusions.

In the full sample of non-randomized results considered, about 65% would survive this bounding

robustness argument. I show considerable overlap in coefficient movements across groups which do and do not

survive this robustness standard, indicating that additional information is provided by this calculation over an

approach that explicitly calculates coefficient movements. I conclude this section by discussing three example

papers and showing how the conclusions would be altered (or not) by this adjustment.
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2 Theory

Consider the regression model

Y = βX +W1 +W2 (1)

X represents the treatment and the coefficient of interest is β. W1 and W2 represent confounders. Specifically,

W1 is a vector which is a linear combination of observed control variables woj multiplied by their true

coefficients: W1 =
∑Jo
j=1 w

o
jγ
o
j . W2 is a vector which is a linear combination of unobserved control variables

wuj , again multiplied by their true coefficients: W2 =
∑Ju
j=1 w

u
j γ

u
j . Note that W2 may contain some components

which are orthogonal to X, including any measurement error in Y .

I assume that Cov(W1,W2) = 0 and, without loss of generality, that V ar(X) = 1. The assumption of

orthogonality between W1 and W2 is discussed in more detail below. The covariance matrix associated with

the vector [X,W1,W2]′ is positive definite. Note that without further assumptions on the relationship between

X, W1 and W2 there is no information provided about the bias associated with W2 by seeing the bias from W1.

Define the proportional selection relationship as δ σ1X

σ11
= σ2X

σ22
, where σiX = Cov(Wi, X), σii = V ar(Wi)

and δ is the coefficient of proportionality. I assume that δ > 0 and refer to this as the proportional selection

assumption. This implies that the relationship between X and the vector containing the observables is

informative about the relationship between X and the vector containing the unobservables.

Define the coefficient resulting from the short regression of Y on X as β̊ and the R-squared from that

regression as R̊. Define the coefficient from the intermediate regression of Y on X and W1 as β̃ and the

R-squared as R̃. Note these are in-sample values.

The omitted variable bias on β̊ and β̃ is controlled by the auxiliary regressions of (1) W1 on X; (2) W2

on X; and (3) W2 on X and W1. Denote the in-sample coefficient on X from regressions of W1 and W2 on X

as λ̂W1|X and λ̂W2|X , respectively and the coefficient on X from a regression of W2 on X and W1 as λ̂W2|X,W1
.

Denote the population analogs of these values λW1|X , λW2|X and λW2|X,W1.

All estimates are implicitly indexed by n. Probability limits are taken as n approaches infinity. All

observations are independent and identically distributed according to model (1). By standard omitted variable

bias formulas, I can express the probability limits of the short and intermediate regression coefficients in terms

of these values:

β̊
p→ β + λW1|X + λW2|X

β̃
p→ β + λW2|X,W1

Lemma 1 defines the probability limit of the coefficient difference.

Lemma 1. (β̊ − β̃)
p→ σ1X

σ2
11−σ

2
1X(δσ22+σ11)

σ11(σ11−σ2
1X)
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Proof. This follows directly from the probability limits of the auxiliary regression coefficients under the

proportional selection assumption. Proof details are in Appendix A.

Denote the sample variance of Y as σ̂yy and note that σ̂yy
p→ σyy. Lemma 2 defines probability limits

for functions of the R-squared values.

Lemma 2. (R̃− R̊)σ̂yy
p→ [σ2

11−σ
2
1X(σ11+δσ22)]

2

σ2
11(σ11−σ2

1X)
and (1− R̃)σ̂yy

p→ σ22[σ2
11−σ

2
1X(σ11+δ2σ22)]

σ11(σ11−σ2
1X)

.

Proof. This follows directly from the auxiliary regression coefficients and Lemma 1. Proof details are in

Appendix A.

Define the following:

β∗ =



β̃ −
[
β̊ − β̃

]
1−R̃
R̃−R̊ if δ=1

β̃ −

[√
[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[1−R̃])]−Θ[β̊−β̃]

2(1−δ)[β̊−β̃]
2
[R̃−R̊]

]
if δ 6= 1, σ1X ≥ 0

β̃ −

[
−
√

[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[1−R̃])]−Θ[β̊−β̃]
2(1−δ)[β̊−β̃]

2
[R̃−R̊]

]
if δ 6= 1, σ1X < 0

where Θ =
([
R̃− R̊

]
2σ̂yy +

[
β̊ − β̃

]
2
[
R̃− R̊

])
.

Proposition 1. β∗
p→ β.

Proof. I outline the proof here, with details in Appendix A. Recall that the bias of interest to calculate is

λ̂W2|X,W1
which, under the proportional selection assumption and by Lemma 1, converges in probability to

δσ22σ1X

σ11−σ2
1X
. δ is assumed to be known so the unknown variables are σ11, σ22 and σ1X .

By Lemmas 1 and 2 we have:

β̊ − β̃ p→ σ1X
σ2

11 − σ2
1X(δσ22 + σ11)

σ11(σ11 − σ2
1X)[

R̃− R̊
]
σ̂yy

p→
[
σ2

11 − σ2
1X(σ11 + δσ22)

]2
σ2

11(σ11 − σ2
1X)[

1− R̃
]
σ̂yy

p→
σ22

[
σ2

11 − σ2
1X(σ11 + δ2σ22)

]
σ11(σ11 − σ2

1X)

This defines a system of three equations in the three unknowns of interest. Solving this system completes the

proof.

For values of δ close to 1, the simple expression β̃ − δ
[
β̊ − β̃

]
1−R̃
R̃−R̊ will be an approximation for β. The

exact value diverges from this as δ gets significantly larger than 1. A standard error for this estimator can be

calculated with a bootstrap.

7



It is worth briefly discussing a central assumption in deriving these results – namely, that W1 and W2

are orthogonal. This is conceptually somewhat at odds with the idea that these are “related” observables and

unobservables. In practice, this assumption can be generated mechanically, but it does influence how we

should think about the proportionality condition.

Consider the example where W1 and W2 together capture a full picture of socioeconomic status, and W1

contains standard demographic controls – education categories, income categories, race. The assumption is,

then, that W2 captures everything else that we do not see – details about education and income, IQ and

achievement measures, etc. If we simply observed these variables they would be by definition correlated with

the components of W1. What W2 actually captures is the variables after they are residualized with respect to

the elements in W1.

This does not pose an issue for the implementation procedure I discuss below – in running the

intermediate regression and controlling for the components of W1 the relevant omitted information is by

definition orthogonal. However, when we consider the relative importance of the observed and unobserved

variables in explaining variation in X, it is important to keep in mind that the unobservable set is residualized.

The setup and assumptions in this section are drawn directly from AET. The observation that the bias

is proportional to
σ22σ1,X

σ11−σ2
1,X

is echoed in their work. The discussion here differs in two ways. First, I show

explicitly the relationship between bias and coefficient movements. Second, the estimator they derive is

consistent only if β = 0 or δ = 1. The more complicated formulas above arise from the bias on W1 in the

intermediate regression. Further discussion is in Appendix A.2.

3 Implementation

This section develops an empirically tractable robustness concept based on the theory in Section 2.

3.1 Components of δ

In Section 2, W2 in the full model is defined to capture all of the residual variation in Y which is not explained

by X and W1. This includes some components which are related to X and W1 through proportional selection.

W2 may also include components which are orthogonal to X or are related to X in a way about which W1 is

not informative.

Focus on the simplest case where there is some idiosyncratic variation (say, measurement error) in Y.

The proportionality value, δ, defined as δ σ1X

σ11
= σ2X

σ22
is sensitive to the degree of this measurement error5 and

the relationship between W1, W2 and X. It is possible to unpack δ into these two elements.

5This is because σ22 captures measurement error in Y.
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Define W2 = W̃2 + ε, where Cov(X, ε) = 0, Cov(W1, ε) = 0 and Cov(W̃2, ε) = 0. Define

σ2̃X = Cov(W̃2, X), σ2̃2̃ = V ar(W̃2). The full model can be rewritten as:

Y = βX +W1 + W̃2 + ε (2)

With this assumption, we can separate δ into two components.

First, define δ̃ as the proportionality value relating W1 and W̃2 : δ̃ σ1X

σ11
=

σ2̃X

σ2̃2̃
. This δ̃ captures how much

of X is explained by the observables versus the unobservables, but in this case the unobservables contain only

the omitted variables which are related to X and are proxied by W1.

Second, define the overall R-squared of the model above - with controls for X, W1 and W̃2 – as Rmax.

Note that Rmax < 1 as long as ε 6= 0. The difference between Rmax and 1 captures the degree of idiosyncratic

variation in Y.

We can now define β∗′, a slight modification of β∗ :

β∗′ =



β̃ −
[
β̊ − β̃

]
Rmax−R̃
R̃−R̊ if δ̃=1

β̃ −

[√
[β̊−β̃]2[Θ2+Θ(4δ̃(1−δ̃)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]

2(1−δ̃)[β̊−β̃]
2
[R̃−R̊]

]
if δ̃ 6= 1, σ1X ≥ 0

β̃ −

[
−
√

[β̊−β̃]2[Θ2+Θ(4δ̃(1−δ̃)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]
2(1−δ̃)[β̊−β̃]

2
[R̃−R̊]

]
if δ̃ 6= 1, σ1X < 0

with Θ =
([
R̃− R̊

]
2σ̂yy +

[
β̊ − β̃

]
2
[
R̃− R̊

])
as in Section 2.

Corollary 1. β∗′
p→ β.

Proof. See Appendix A.

This discussion focuses on the case where W2 contains only a portion related to W1 and an idiosyncratic

component. This discussion can be extended, however, to a case where there is a second (possibly observed)

factor which is orthogonal to W1 but correlated with X and Y. If we consider the education and wage example,

this could capture something like sex: we would not think of sex as an important socioeconomic confound, but

failing to control for it would bias X. In particular, consider the case where the full model is

Y = βX +W1 + W̃2 +m+ ε (3)

where m is orthogonal to W1, W̃2 and ε and the assumptions about orthogonality with ε are as above.

Corollary 2. If m is included in the short and intermediate regression, then β∗′
p→ β. If m is not included in

either regression then β∗′
p→ β where β is defined by Y = βX + Ψ1W1 + Ψ2W̃2 + ε.
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Proof. See Appendix A.

This corollary simply notes that if there is a second confounding factor which is orthogonal to W1 and

W̃2, the effect β can be recovered in a similar way, as long as m can be observed and included in both

regressions. In this case Rmax is the R-squared we would observe if X, W1, W̃2 and m were all included in the

regression.

These corollaries are a simple extension of Proposition 1. If Rmax = 1 then δ = δ̃ and β∗ = β∗′.

Together, δ̃ and Rmax define a single value of δ (note that the converse is not true). In this sense, there

is no additional information provided by unpacking δ into these components. Practically, however, this

separation is useful. Using this procedure to estimate β, or to make an argument about robustness, requires

assuming a value for δ. This value, which captures both idiosyncratic variation in the outcome and the

selection relationship, does not have a natural interpretation in the data. In contrast, both δ̃ and Rmax do.

This is not to say that these values are recoverable from the data directly - they are not - but that because

they have a natural interpretation it may be easier to describe and evaluate the assumptions made about them.

3.2 Implementation in Regression

Consider a researcher interested in estimating a treatment effect β of X on Y in a linear model. The researcher

is concerned about confounding variable, and observes a vector of controls W1. There are a set of unobserved

variables, which relate to Y , X and an index based on W1 as defined in the proportional selection assumption.

Practically, the researcher is concerned that they observe only a subset of the possible omitted variables.

There are two regressions that the researcher can observe, shown in equations 4 and 5 below. The first

controls only for X, the variable of interest. The second adds controls for the observed confounders. Each of

these produces a coefficient on X.

Y = α̂+ β̊X + ε̂ (4)

Y = α̃+ β̃X + ΨW1 + ε̃ (5)

Referring back to the expressions for β∗ and β∗′ above, equation (4) here recovers β̊ and R̊. Similarly, equation

(5) recovers β̃ and R̃.

The result in Proposition (1) shows how β can be recovered using these regression values and an

assumption about δ. Corollary (1) shows how β can be recovered using these regression values and

assumptions about Rmax and δ̃. Stata code accompanying this paper performs this calculation.6

6The command is psacalc and it is available through ssc.
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Point Estimation

Given values for Rmax and δ̃, the object β is point identified. As I noted above, both of these objects have

natural interpretations in the data and in some cases it may be reasonable to make assumption about their

value. β will also be point identified with an assumption about δ.

Bounding and Robustness Calculations

In many cases the exact values of δ̃ and Rmax will not be clear. In such cases, it may be more feasible to make

robustness statements based on bounding values for these objects. In practice, discussion of coefficient

movements are typically done as part of a robustness argument; the discussion here will suggest a more formal

way to make similar contributions.

I conceptualize this in a partial identification framework (Tamer, 2010; Manski, 2003). Consider the

estimator β∗′(Rmax, δ̃) which is defined above and is an asymptotically consistent estimator of β under known

values of Rmax and δ̃. Without any additional assumptions, I note that Rmax is bounded between R̃ (the

controlled regression coefficient) and 1. Under the proportional selection assumption, δ̃ is bounded below at 0

and some arbitrary upper bound δ.

The estimator below delivers the identified set for β.

∆S = {β ∈ R : β = β∗′(Rmax, δ̃), for some Rmax ∈ [R̃, 1] and δ ∈ [0, δ]}

This set is bounded on one side by β̃, which is the value of β delivered when Rmax = R̃ or δ = 0 (or both).

Without more assumptions, the other bound is either positive or negative infinity, since δ is unbounded. The

insight of partial identification is that it may be possible to use additional intuition from the problem to

further bound both Rmax and δ̃ values.

Consider first the issue of bounding δ̃. I argue that for many problems, δ̃ = 1 may be a reasonable upper

bound. Recall that δ̃ captures the relative importance of the index of observed and unobserved variables in

explaining X. The bound of δ̃ = 1 suggests the observables are at least as important as the unobservables. One

reason to favor this is that researchers typically focus their data collection efforts (or their choice of regression

controls) on the controls they believe ex ante are the most important. A second is that W̃2 is residualized with

respect to W1 so, conceptually, we want to think of the omitted variables having been stripped of the portion

related to the included ones. Ultimately, this is an empirical issue, and I will discuss evidence for this bound in

Section 4.

In the case of Rmax it may be possible to generate a bound smaller than 1 by, for example, considering

measurement error in Y or evaluating variation in Y which cannot be related to X because it results from

choices made after X is determined. Define an assumed upper bound on Rmax as Rmax, with Rmax ≤ 1.
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With these two bounding assumptions the identified set is: ∆s = [β̃, β∗′(Rmax, 1)].

Empirically, the question of interest in considering ∆s is whether the conclusions based on the full set

are similar to what we would draw based on observing the controlled coefficient β̃. If inclusion of controls

moves the coefficient toward zero, one natural question is whether the set includes zero. Regardless of the

direction of movement one could ask whether the bounds of the set are outside the confidence interval on β̃ –

this effectively asks whether the magnitude conclusions based on the controlled coefficient are robust.

This suggested robustness leaves open the question of what is a reasonable Rmax to assume in

describing the identified set. I discuss this in two specific empirical contexts in Section 4 and in more detail in

the context of the economics literature in Section 5.

3.3 Numerical Example

Before moving to explore the performance of this adjustment in data, it is useful to illustrate the mechanisms

here with numerical simulation. I will focus on illustrating the importance of the R-squared movements in

addition to coefficient changes.

To begin, assume a setup in which it is known that δ̃ = 1 and Rmax = 1. Assume that a completely

uncontrolled regression of Y on X yields a coefficient of 0.5 and an R-squared of 0.1. Consider three scenarios

for the controlled coefficient: (1) β̃ = .45, (2) β̃ = .3 and (3) β̃ = .15. Relying on only the coefficient

movements, the last result looks the least robust. That is, observation that the coefficient moves from 0.5 to

0.15 would likely lead to much more concern about the remaining unobservables than the move from 0.5 to

0.45. However, this information is incomplete without knowing R̃.

Figure 1 graphs, for the three coefficient movement scenarios, the distribution of bias-adjusted β values.

I have truncated the distribution in all cases at -2.5, but used text to describe the coefficients under one

extreme case where R̃ = .11. This figure illustrates large overlap in the distributions. Clearly values of

β > 0.15 will be delivered only by the smaller coefficient movements (and values β > 0.3 only by the smallest

one) but below β = 0.15 there is full overlap. At the value of R̃ = .11, the larger coefficient movement implies

a more negative effect, but as the R-squared movement gets arbitrarily small, all three cases could have

infinitely negative adjusted β values. A perhaps simpler way to say this is that all three coefficient movements

are fully consistent with true effect of less than zero. Such an effect would be delivered by R̃ < .19 with the

small move, R̃ < .46 with the medium move, and R̃ < .73 with the big move. Clearly, the last is the most

sensitive, but without knowing the movement in R-squared, we cannot draw conclusions.

A second example is useful to illustrate in simulated data how Rmax and δ̃ may separately vary and

what this will imply about the relationship between initial coefficient movements and the remaining bias. I

simulate data on {X,W1, W̃2} based on assumed values of variances, covariances and means. I then construct
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the outcome Y as a function of these variables:

Y = 0.3X +W1 + W̃2 + ε

where ε ∼ N(0, 1) and Cov(X, ε) = Cov(W1, ε) = Cov(W̃2, ε) = 0. I estimate the movements in coefficients and

R-squared values when W1 is included in the regression of Y on X.

I construct several simulations which vary values of δ̃ and the variance of W̃2. Throughout the example

I assume that V ar(W1) = V ar(X) = 1, Cov(X,W1) = 0.2 and all variables (X,W1 and W̃2) have a mean of 1.

Table 1 shows the simulated results. The first three rows use a value of δ̃ = 1 and vary V ar(W̃2); the bottom

three use a value of δ̃ = .5 and vary V ar(W̃2). The variation in δ̃ does not alter the intuition here, so I will

focus on the case where δ̃ = 1.

This table demonstrates that the variance of W̃2 plays a huge role in how coefficient movements should

be interpreted, precisely because this variation drives the difference between Rmax and R̃, as well as how that

difference compares to the difference between R̃ and R̊. When V ar(W̃2) = 1 - the same variance as W1 - the

R-squared moves about halfway toward Rmax with inclusion of controls. In this case, if we assume δ̃ = 1 we

could come close to the true β by simply adjusting the coefficients again by the amount they move with

controls.7 When V ar(W̃2) is much smaller than 1 – we assume 0.1 here – the R-squared moves nearly all the

way to Rmax and the remaining bias is very small. Conversely, when V ar(W̃2) is large relative to V ar(W1) the

R-squared moves only a tiny fraction of the way to Rmax and the remaining bias is very large relative to the

coefficient movements.

This last example illustrates the key example of where either ignoring R-squared movements or not

assuming a correct value for Rmax will cause serious errors. In this case the coefficient movement with

inclusion of controls is very small, and one might be tempted to conclude the result was very robust. But

because there is so much explanatory power in the unobservables, the remaining error is very large.

The final column of the table shows the calculated β∗′ values, using the δ̃ and correct Rmax and

demonstrates that the mechanics of the adjustment are correct: all values are very tightly estimated around

0.3, the true coefficient used to construct the simulation.

4 Empirical Validation

The results above provide a way to recover an estimate of causal treatment effects under the assumption that

selection on observables and unobservables is proportional. The discussion makes clear that the bias does

7This could actually be done without seeing the R-squared at all. This is the procedure that is suggested in Bellows and Miguel
(2009) and followed in Nunn and Wantchekon (2011). It relies heavily, however, on this assumption that the variance of the observed
and unobserved components are equal (this assumption is not stated in those papers, which do not discuss R-squared movements).
The Nunn and Wantchekon (2011) case will be discussed in more detail later.
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relate to coefficient movements in these cases, which is encouraging for common robustness calculations. The

simulated data shows that this works mechanically, and illustrates the importance of these R-squared

movements. However, this theoretical discussion does not provide any insight as to whether the proportional

selection assumption is valid in empirical contexts and, by extension, whether the robustness calculation

suggested would improve inference.

In this section I describe two exercises which explore how this adjustment performs in the data. I use

two example settings which are familiar to economists. In the first example, I generate a dataset in which I

know the true effect by construction and explore how this adjustment would perform when various confounds

are “unobserved”. In the second example, I compute possibly biased estimates, perform the adjustment, and

compare the resulting conclusions to external evidence on causal impacts. I ask whether the adjusted

coefficients generate more accurate conclusions than the simple controlled estimates.

4.1 Constructed Data: Returns to Education

I begin with a canonical example in economics, the relationship between wages and years of education. One

issue with estimates of standard Mincer regressions is the confound with family background: people whose

mothers have more education, for example, are more likely to be educated but also have higher wages for other

reasons.8 Using data from the NLSY I construct a dataset in which I define the “true” return to education as

the impact of education controlling for a full set of family background characteristics. I then consider the bias

- both in simple controlled regressions and after this adjustment is performed - in hypothetical cases in which I

do not observe the full set of controls. This exercise will allow me to see how the adjustment performs and to

estimate values of δ̃ and ask how they compare to the bounds suggested in Section 3.

4.1.1 Data and Empirical Strategy

I use data from the NLSY-79 cohort. I am concerned with the impact of years of education on log wages, and

I begin by considering the standard Mincer regression of log wages on educational attainment. I use the higher

of the two educational levels recorded in 1981 and 1986 and the higher of the two wage values recorded in 1996

and 1998. Experience and experience-squared are calculated in the typical way (experience = age - education

years - 6). I also control for individual sex.

My concern is with confounding by demographics and family background. I capture this with eight

variables: region of residence, race, marital status, mother’s education, father’s education, mother’s

occupation, father’s occupation and number of siblings. All variables are controlled for fully flexibly, with

dummies. Summary statistics for these data appear in Appendix B.

8A second obvious issue is the confound with ability. It would be possible to do an exercise similar to this one with that confound.
Since the exercise here is not about finding the causal effect of education on wages, but is simply about exploring this adjustment,
there is no loss to ignoring the issue of ability.
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I construct a dataset by regressing log wages on education, experience, sex and the full set of family

background data. I generate fitted values, and then take these as the “true” effects in the model - that is, the

effect on education we see in this regression is the unbiased treatment effect in the constructed data.

The regression of this fitted value on the full set of controls has an R-squared of 1 by construction. In

practice, however, wages are not fully predicted by family background or individual characteristics. I therefore

add an orthogonal error term to this fitted value. To generate a magnitude for this term I regress the log wage

measure used here on log wages in 1992 or 1994 (again, I take the higher of the 2). This regression has an

R-squared of about 0.45. I argue that family background, education, etc, should not explain more of the

outcome than the previous year’s wages, since these variables all contribute to that wage. I therefore add an

orthogonal error term to the fitted value such that the ultimate regression R-squared is about 0.45.

It is important to note that the addition of this error term is done largely for realism; it will be

instructive to explore errors that may be introduced by incorrectly assuming that Rmax = 1. However, the

calculations of δ̃ is not sensitive to this addition.

Given this constructed dataset, the empirical exercise is straightforward. I iterate through excluding all

sets of controls (up to 6 of the 8). In each case I: (1) calculate the δ̃ implied by the included and excluded

control set; (2) calculate β∗′ with this δ̃ and the true Rmax; (3) calculate whether the identified set bounded

by β̃ and β∗′(Rmax, 1) contains the true effect. ; and (4) calculate β∗′ with this δ̃ and the assuming Rmax = 1.

4.1.2 Results

Figure 2a shows the distributions of the true β and the estimated β̃ and the values of β∗′. The true effect in

the constructed data is 0.090, with a standard error of 0.003. The β∗′ values cluster at the true effect value.

This is a simple numerical check of the procedure in realistic data: if we know the true Rmax and the true δ̃

the adjustment works as it should. Not surprisingly, the estimated β̃ distribution is shifted substantially to the

right from the true β. Controlled estimates are systematically biased to estimate excess returns to education.

Figure 2b shows the values of δ̃ calculated in this exercise. This value is not mechanical: nothing in the

setup constrains any particular value of δ̃. In the figure, I show the full distribution of δ̃ and the [0,1] bounds

that I suggest would be appropriate in many settings.

The average δ̃ is 0.528 and 83% of values fall within the [0,1] range. Only 4 (of 211) values are negative.

The cases with values of δ̃ > 1 are instructive. These are combinations of controls where the index of the

omitted variables are more important in explaining education than the included ones. Of the 32 cases with

δ̃ > 1, 90% of them excluded either maternal or paternal education. This makes clear that these variables are

among the most important confounds; this should not be surprising and, indeed, it seems likely that researchers

would think to include these first, before considering data on parental occupation or number of siblings. Put

differently, if we consider control set selection not at random as I do here but with the idea that the most
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important controls are selected first, it is likely that the [0, 1] bound would be even more accurate. The fact

that the average δ̃ is less than 1 supports the idea of 1 as a bound on δ̃, rather than as an average value.

I can comment on the identified set logic described in Section 3. Given the δ̃ values, it is straightforward

to observe that if we calculate the set [β̃,β∗′(Rmax, 1)], in 83% of cases the set will include the true value. In

an additional 7% of cases the set will overlap with the confidence interval of the true β, suggesting that the

error in the set is small.

In this setting, it seems that this adjustment works well. The confidence interval of controlled estimates

captures the true value of β only 62% of the time, whereas 82% of the time the adjusted identified set using

the true Rmax and a δ̃ ∈ [0, 1] bound contains the true value.

As a final point, Figure 2c shows a graph similar to Figure 2a, but with values of β∗′ which would be

calculated with Rmax = 1 and the true δ̃. These values are systematically biased downward (effectively, the

adjustment is too large because we are mistakenly assuming the R-squared would go to 1 with the full control

set) and the error can be extremely large. This suggests significant thought is necessary in considering Rmax,

an issue I take up in more detail in Section 5.

4.2 Observational Data: Maternal Behavior and Child Outcomes

A second approach to validation is to take a setting in which we have some possibly biased observational

relationships and we think we have a sense of the true effect from external sources. Given this, the question is

whether this approach can separate “true” from “false” associations.9

In this section I undertake this type of validation exercise in the context of the link between maternal

behaviors, infant birth weight and child IQ. These relationships are of some interest in economics, and of wider

interest in public health and public policy circles. A literature in economics demonstrates that health shocks

while children are in the womb can influence early outcomes and later cognitive skills (e.g. Almond and Currie,

2011; Almond and Mazumder, 2011). A second literature, largely in epidemiology and public health, suggests

that even much smaller variations in behavior – occasional drinking during pregnancy, not breastfeeding –

could impact child IQ and birth weight. These latter studies, in particular, are subject to significant omitted

variable concerns, largely associated with omitted socioeconomic status. I consider five relationships in all: the

relationship between child IQ and breastfeeding, drinking during pregnancy, low birth weight/prematurity and

the relationship between birth weight (as the outcome) and maternal drinking and smoking in pregnancy.

4.2.1 Data

I use NLSY data, this time from the Children and Young Adult sample, which has information on the children

of NLSY participants. I measure IQ with PIAT test scores for children 4 to 8 and birth weight with birth

9Altonji, Elder and Taber (2008) do a version of this in a single context.
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weight in grams as reported by the mother. In the latter analysis I include all children. In all cases I control

for child sex and, with IQ, for their age. These are not considered as part of the confounding set.

The IQ treatments are: months of breastfeeding, any drinking of alcohol in pregnancy and an indicator

for being low birth weight and premature (<2500 grams and <37 weeks of gestation). The birth weight

treatments are maternal smoking and drinking intensity during pregnancy. I measure socioeconomic status,

the confounding category, with child race, maternal age, maternal education, maternal income and maternal

marital status. Summary statistics for these data appear in Appendix B.

4.2.2 Empirical Strategy

The empirical strategy here is straightforward. I run regressions with and without the socioeconomic controls

to extract β̊, R̊, β̃ and R̃. I adopt a bounding value for Rmax drawn from within sibling correlations

(Mazumder, 2011). In theory, Rmax should reflect how much of the variation in child IQ and birth weight

could be explained if we had full controls for family background; I argue this is the thought experiment

approximated by the sibling fixed effect R-squared. The figures are 0.61 for IQ and 0.53 for birth weight.

Given this Rmax bound, I first calculate the identified set [β̃,β∗′(Rmax, 1)]. For completeness, I do two

other calculations. First, I calculate the value of Rmax which would produce β = 0 assuming that δ̃ = 1 and

compare this value to the Rmax bound. Second, I find the value of δ̃ which would produce β = 0 under the

assumed Rmax and compare this to δ̃ = 1. It is important to note that these latter two analyses contain the

same information as the identified set.

The conclusions from these robustness calculations are compared to the conclusions we expect to get if

we were able to estimate the true model. To ask whether the adjusted coefficient gets it right, we need to

know what the correct answer is.

I use two types of evidence. First, I consider external evidence from randomized trials (where available)

and meta-analyses. Randomized evidence suggests that breastfeeding is not linked with full-scale IQ (Kramer

et al, 2008) and most evidence does not suggest an impact of occasional maternal drinking on child IQ (see, for

example: Falgreen-Eriksen et al, 2012; O’Callaghan et al, 2007).10 In contrast, low birth weight and

prematurity do seem to be consistently linked to low IQ (Salt and Redshaw, 2006), a link which also has a

biological underpinning (de Kieviet et al, 2012). Occasional maternal drinking is typically not thought to

impact birth weight (Henderson, Gray and Brocklehurst, 2007), but there is better evidence that smoking does

(e.g. from trials of smoking cessation programs as in Lumley et al, 2009).

Second, I consider the conclusions one would draw from sibling fixed effects regressions in the NLSY

data described above, which provides a more “within sample” test of fully controlling for family background.

10Although the question of whether occasional maternal drinking lowers IQ is an issue with some controversy, as I show below
the observational data here actually estimates positive impacts of maternal drinking on IQ, and the fact that those effects are not
causal is not a subject of much debate.

17



Of course, sibling fixed effects estimates may be subject to their own concerns about causality, so it is perhaps

comforting that the conclusions are the same from either source.

4.2.3 Results

Table 2 reports the results: Panel A shows results on IQ, Panel B on birth weight.

The first column shows treatment effects, standard errors and R-squared values with only sex (or age

and sex in the case of IQ) as controls. Column 2 shows similar values with the full control set. More

breastfeeding is associated with higher IQ in these regressions, and low birth weight is associated with lower

child IQ. More maternal drinking appears in these data to be associated with higher child IQ later, an finding

which has no biological support and is extremely likely to be due to selection. Both samples show smoking and

drinking are associated with lower birth weight. All analyses reported here show significant effects with the

full set of controls. Interpreting these results in a naive way, one would conclude that each has a significant

link with child outcomes.

Column 3 reports whether external evidence, summarized above, suggests a causal impact. As noted,

low birth weight does seem to be linked to IQ and smoking is linked to low birth weight, but the other

relationships do not have broad support. Column 4 shows sibling fixed effects regressions, which show similar

conclusions. The only difference is in the impact of low birth weight on child IQ, where the NLSY regression

coefficient is significant only at the 11% level.

Column 5 shows the identified set, bounded by the Rmax estimates in the top row of each panel and

δ̃ = 1. This procedure performs well. The two cases in which the identified set does not include zero are those

where the external evidence suggest significant results. Put differently, if one were to use the rule of accepting

the effect as causal only if the identified set excluded zero, this would lead to the same conclusions as the

external evidence. In all cases the identified set includes the sibling fixed effect estimates.

In Column 6 I show the value of Rmax which would produce β = 0; comparing these to the Rmax values

in the top of each panel yields the same conclusions as in Column 5. Finally, Column 7 shows that the effects

confirmed in external data are those which have values of δ̃ > 1 required to produce β = 0. Again, the

conclusion are the same.

There are two final points to make about this analysis. First, similar to the wage analysis above, the

value of δ̃ which matches the adjusted effects to the sibling fixed effect values is less than 1 - it is 0.42 -

pointing to the value of 1 as a bound. Second, doing these calculations with a value of Rmax = 1 as the bound

would lead us to reject all the associations - including the two which are confirmed in outside data.

The results in this section suggest the robustness framework suggested performs well. It also makes clear

the importance of taking into account the movements in R-squared in addition to movements in coefficients.

In this latter example, if we based our analysis only on the size (say, in percent terms) of the coefficient
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movements we would conclude the link between drinking and low birth weight is much more robust than the

link between low birth weight and IQ since the former moves only 10% and the latter 30%. In fact, the low

birth weight and IQ link has more external support. This is confirmed by the identified set conclusions, and

mechanically it is reflective of the much larger change in R-squared in the low birth weight - IQ relationship.

5 Application to Economics Literature

The evidence in the previous section suggests that a version of this approach would improve inference. Both

exercises suggest that a bounding value of δ̃ ∈ [0, 1] performs well. Both cases also illustrate the importance of

the choice of Rmax, in particular noting that assuming Rmax = 1 when the truth is below this will lead to

over-adjustment. I turn now to the application of this approach within the economics literature. I consider

two questions. First: How do stability statements in published papers in economics hold up to a version of this

adjustment? Second: Is it possible to say anything more about realistic bounds on Rmax?

I begin by analyzing stability comments made in non-randomized data within economics, and show the

degree of robustness of the results to varying Rmax cutoff. Second, I use evidence from randomized data

within economics to develop a bound for Rmax. The third subsection describes three examples.

5.1 Stability of Coefficients in Non-Randomized Data

The data for this section comes from the published literature in economics. I extract all papers in the

American Economic Review, Quarterly Journal of Economics, The Journal of Political Economy and

Econometrica from 2008-2010 with at least 20 citations in the ISI Web of Science, and those from 2011-2013 in

the same journals with at least 10 citations. From these papers I extract all results where the researcher

explores the sensitivity of the result to a control set. In cases where the R-squared is not reported (29%), I use

replication files or ask the researcher. Two results were excluded due to inability to obtain R-squared values.

The final sample includes 58 papers, with 134 total results.

The full set of citations used appears in Appendix D.

The empirical exercise here is straightforward. I extract coefficient and R-squared values from the

paper. Note that in cases where controls are included sequentially, I compare the fewest-controls to the

most-controls set. For each result, I calculate the identified set with δ̃ = 1 and varying values of Rmax.

I consider Rmax = 1 as one bound. I also consider a parametrization of Rmax as a function of

R̃ :Rmax = min{ΠR̃, 1} with varying values of Π. This function allows for that some outcomes have more

measurement error or noise than others, and suggests that the degree of variation accounted for by the

observables (including the treatment) may be informative as to the degree accounted for by the unobservables.

An alternative would be to use Rmax = R̃+ Π(R̃− R̊), which captures a similar assumption. I work through
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this version in Appendix C, and show the conclusions are extremely similar.

Having calculated the identified set using these Rmax values, I consider two standards for robustness.

My primary analysis focuses on the subset of results for which the inclusion of controls moves the coefficient

towards zero, and simply asks whether the set includes zero. I also consider whether the bounds of the set fall

within +/- 2.8 standard errors of the controlled estimate, an analysis which can be done including results

where controls move the coefficient away from zero. This second standard captures a test of whether the

magnitude conclusions from the controlled estimate are shared by the adjusted estimate.

The results appear in Figures 3a and 3b. Figure 3a shows the primary robustness with rejection of zero;

Figure 3b uses all results and shows the magnitude test. These graphs show the share of relationships which

would survive varying values of Π, with Rmax = min{ΠR̃, 1}. In either case, we find about 40% of results

would survive Rmax = 1. Within the others, there is a wide distribution of robustness; some share of results

would not survive even quite small differences between R̃ and Rmax.

To quantify this, Panel A of Table 3 shows the share of these results which would survive Rmax = 1 and

three values of Π. Twenty-five to thirty percent of studies would not survive Π = 1.5. Considering the

rejection-of-zero robustness, within this set that is not robust to Π = 1.5, the average study fails at a value of

Π = 1.2 or, in point estimate terms, a predicted increase in R-squared of 0.09 with inclusion of unobserved

controls.

One issue in interpreting these results is that the author of these papers may not be intending these

results as a test of omitted variable bias. To address this, I limit to the large subset of papers in which the

authors either explicitly comment on the coefficient stability (since remaining omitted variable bias is the only

reason that would matter) or explicitly comment on omitted variable bias. Within this subsample, consider

the analog of Columns (1) and (3) of Table 3: 35% of these papers would survive Rmax = 1 and 63% would

survive Rmax = 2R̃. This is very similar to, if anything lower than, the overall sample, suggesting it is not the

case that the papers which fail by this criteria do so because this is not the intended test.

5.2 Evidence on Stability Cutoffs from Randomized Data

The evidence above suggests that even within a sample of papers which argue for coefficient stability there is a

lot of variation in the degree of stability. A natural following question is whether we can suggest any guidance

about where one might draw the line - specifically, is there some value of Π above which we should consider a

result robust?

I argue that one place to look for such guidance is in reports from randomized data. Randomized

experiments are becoming increasingly common within economics and papers reporting results of these

experiments often include regressions with and without controls. Sometimes these are explicitly used to test

balance in the experiment, although it is also commonly done to increase precision. Assuming that the data is
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correctly randomized, if the sample size were infinite, the effects would not be expected to move at all. In

practice, with finite data, coefficients can move a bit simply due to very small differences across groups.

When non-randomized papers invoke a coefficient stability heuristic to argue the results they observe

are causal, they are (perhaps implicitly) suggesting that the treatment is as good as random. Including

controls doesn’t change the coefficient because there is no confounding; this is exactly the argument we know

holds in randomized cases. Given this, I argue we can use the stability of randomized data as a guide to how

much stability we would expect in non-randomized data if the treatment were assigned exogenously: is the

coefficient stability within the range the researcher would expect with a randomly assigned treatment?

The approach in this section is to assume effects estimated in randomized data are causal and to

therefore assume that they should survive this adjustment procedure.11 I then ask what value of Π in the

Rmax parametrization would make this true.

The baseline set of papers for this analysis is all randomized papers (lab or field) published in the

American Economic Review, Quarterly Journal of Economics, Journal of Political Economy, Econometrica

and the American Economic Journal - Applied Economics in the period 2008 through 2013.12 I extract from

this all papers which report sensitivity of a treatment effect to controls. In cases where there are multiple

effects reported (i.e. multiple outcomes), I include all effects. In cases where R-squared values were not

provided in the paper (22%), I used replication files if available and otherwise asked the authors of the papers.

The one result with no R-squared values available was not included. The final sample includes 33 papers with

76 results.

The full set of references is in Appendix D.

I undertake the same analysis as in the non-randomized data: calculate the identified set under δ̃ = 1

and varying Rmax and compare the results to the two standards for robustness.

Figures 4a and 4b show the distributions of sensitivity for the randomized data. A first thing to note is

that these results are more robust than the non-randomized results. I have graphed them on the same scale for

comparability. Sixty to seventy percent of randomized results would survive a cutoff of Rmax = 1. Nearly all

would survive a cutoff of Rmax = 2R̃ , much greater than for the non-randomized results. Panel B of Table 3

shows the survival shares for this dataset explicitly under the varying Rmax cutoffs.

It is not surprising that the randomized results are more robust. The fact that they do not all survive

Rmax = 1 is due to the fact that even small changes in coefficient can be blown up with this assumption. To

consider an example, Jensen (2012) estimates the impact of a job recruitment program on (among other

outcomes) child BMI (Table 4 and Appendix B). Adding controls changes the coefficient on treatment from

11An obvious concern is that, perhaps, these papers are not correctly randomized. This would lead me to a standard which was
too lax. I address this in two ways. First, I have focused on papers published in highly ranked journals, increasing the chance that
the randomization was of high quality. Second, I will draw guidelines which fit 95% of papers, thus accepting that a small share of
randomized papers may suffer from true lack of balance and should not be used to guide this approach.

12I include AEJ-Applied because it has published a large number of experimental papers. This journal begins in 2009.
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0.24 to 0.20, a seemingly quite small difference. The R-squared moves from 0.007 to 0.017. Assuming that

Rmax = 1 would produce a coefficient of -3.73. Given that this program was randomized and the

randomization passes standard balancing tests, it seems implausible that this is the actual effect. Much more

plausible is the possibility that even with all correlated unobservables included it would not be possible to

explain close to all of the variation in child BMI.

I use these data to develop robustness cutoff values. I base these on the value of Π which would allow

95% of results to survive. In testing rejection of zero, this value is 2.2. This value suggests that a bound where

the unobservables explain as much as the observables (where the latter includes the treatment). This is

somewhat parallel to the bounding on δ̃.

To argue for a level of stability which would be expected from a randomized treatment, non-randomized

effects should show that the set [β̃,β∗′(min{2.2R̃, 1}, 1)] excludes zero. Applying this to the non-randomized

data above, I find that 64% of results would survive this standard. This set would be valuable to report even

in cases where the controls cause the coefficient to move away from zero; in that case the question would be

whether considering the full set would lead to very different conclusions than the controlled estimate.

A similar analysis applies to the second robustness standard, were I find the cutoff generated by the

randomized data is Π = 1.5. This suggests an alternative way to test for robustness by showing that

β∗′(min{1.5R̃, 1}, 1) is withing 2.8 standard errors of the controlled effect. This allows survival of 69% of

non-randomized results.

A final question to ask is how the conclusions here differ from those we would draw if we relied only on

coefficient movements. Figure 5 graphs the percent reduction (in absolute value) in coefficient for results which

do and do not survive the β∗′(min{2.2R̃, 1}, 1) cutoff (I consider only results where the coefficient moves

towards zero). The smaller the coefficient movement the more robust the result (this almost has to be true

given that coefficient movements are an input to the result) but the distributions are almost fully overlapping.

Only at the very tails would coefficient movements alone differentiate these groups, suggesting significant

additional information is provided by doing the full adjustment.

5.3 Examples

Before concluding, it is useful to consider the application of this cutoff value in several examples. I choose

three papers from the literature which are very explicit about coefficient stability or (in one case) do

calculations in the spirit of this adjustment and for which inclusion of controls reduces the coefficient. In each

case I show the identified set [β̃,β∗′(min{2.2R̃, 1}, 1)] as well as the Rmax and δ̃ values which produce β = 0.
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5.3.1 Mian and Sufi (2009)

Mian and Sufi (2009) deal with the impact of sub-prime borrowers on the mortgage crisis. In their Table V,

they estimate the impact of fraction sub-prime borrowers by zip code on mortgage origination. They worry

about other characteristics of the zip code, and in their most fully controlled specification control for fixed

effect for three-digit zip code prefix. They comment explicitly, in the text, on the stability of the coefficients

along with the increase in R-squared (this is among very few papers to comment on the latter).

Panel A of Table 4 shows the robustness calculations for this paper. To echo the data above, I consider

what happens when moving from the least controlled to most controlled regression in Table (4): Column (1) to

Column (4). The results in this paper is robust to this adjustment. The full identified set is quite small and

does not come close to including zero. The magnitude conclusions in the paper would be quite similar if we

drew any figure from the identified set.

5.3.2 Nunn and Wantchekon (2011)

Nunn and Wantchekon (2011) analyze the impact of slave trades on mistrust in Africa. They worry about

unobserved differences across areas, and present a number of arguments to support the interpretation of their

results as causal. In Section IV.B. they undertake direct calculations based on the theory in Altonji, Elder and

Taber (2005). They use coefficient movements in their regressions to calculate the value of δ̃ which would be

required to produce β = 0. They argue the results are robust because all the calculated values of δ̃ are greater

than 1, a cutoff which they also favor.

However, although they do not make this explicit, the calculations they undertake - which rely only on

coefficient movements - are correct only if Rmax = R̃+ (R̃− R̊). In words, this assumes the unobservables

explain as much of the outcome as the observables (ignoring that the treatment is part of the observables).

The R-squared in their regressions do not move much; as an example, in the first row of Table 4, considering

the “Trust Relatives” measure, adding controls increases R-squared from 0.115 to 0.133. Their adjustment

assumes that the fully controlled R-squared would be 0.151. As I note in the discussion in Section 3.3, if the

unobservable index has a large variance, this assumption of equal increase in R-squared will not hold.13

I consider how these results might change if we use the Rmax = min{2.2R̃, 1} value. Their paper has

five outcomes and they show the results in several ways. I consider rows 1 and 2 of their Table 4 and

recompute their analysis with the new Rmax values. The results are shown in Table 4.

Some, but not all, of the results in their paper survive this version of the adjustment. Three of the ten δ̃

values are above 1, meaning that three of the ten identified sets continue to reject zero under this adjustment.

The other seven admit zero. This suggests that the conclusion from this table, at least, would have been

13As noted above, Appendix C shows the analysis in the above sections using the formulation : Rmax = R̃+ Π(R̃− R̊). The best
fit value of Π there is 4.95, and the conclusions - in general and about this particular paper - are unchanged.

23



altered by taking the full adjustment - with the randomized-based cutoff for Rmax– into account.

5.3.3 Spolaore and Wacziarg, 2009

Spolaore and Wacziarg (2009) estimate the impact of genetic distance on economic distance between countries.

They worry about unobserved differences across country groups - geographic distance, shared continent, etc.

Their Table 4, and the surrounding discussion, includes various control sets and looks at coefficient stability.

Panel C of Table 4 shows the robustness calculation for this paper. As above, I consider the comparison

of the baseline results to the most-controlled column (in their case, this is with continent-pair fixed effects).

The identified set here does include zero.

It is worth noting that this paper also shows three intermediate regressions with other control sets

(Columns (2)-(4) of Table 4) where the coefficient is more stable (although the R-squared moves less). The

adjusted sets based on these columns would exclude zero. In a case like this it may be useful to delve further

into the appropriate Rmax (perhaps using more information drawn from the setting) or think more about

whether the unobservables are closer to the controls in Column (5) or to those in Columns (2) - (4). This

latter point is akin to the discussion of this issue in Murphy and Topel (1990).

6 Conclusion

This paper develops a formal language for discussing robustness of treatment effects, related to the popular

heuristic of exploring coefficient sensitivity to controls. I connect this heuristic to the assumption of

proportional selection on observed and unobserved variables (Altonji, Elder and Taber (2005)). I describe an

implementation strategy for generating bounds on treatment effects and show validation in two empirical

contexts. Applying this to the economics literature, and drawing guidelines for expected coefficient sensitivity

from randomized results, I develop a full bounding argument.

I suggest researchers report an identified set for the treatment effect [β̃,β∗′(min{2.2R̃, 1}, 1)] where

β∗′ = β̃ − δ̃ (β̊−β̃)(Rmax−R̃)

(R̃−R̊)
. Showing that such a set excludes zero would indicate a level of robustness in the

range of what would be seen if the treatment were randomized. For results where inclusion of controls moves

the coefficient away from zero, a similar bound could be compared to the magnitude conclusions from the

controlled coefficient.

The particular Rmax = min{2.2R̃, 1} bound is a useful summary, but it is important to note that there

many be many cases where one is able to be more precise about Rmax using more knowledge of the problem.

The examples in Section 4 illustrate two ways one might develop this intuition. The core insight here is that

the movement in R-squared values relative to this Rmax must be taken into account when developing any

coefficient stability argument.
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Figure 1: Simulated Effects by Controlled R-Squared

Small Move Adj. Beta, Rtilde=.11:    −4.000

Medium Move Adj. Beta, Rtilde=.11:   −17.500

Big Move Adj. Beta, Rtilde=.11:   −31.000
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Notes: This figure shows calculated values of the bias-adjusted treatment effect in a constructed example with varying coefficient movements.

In all cases I assume the coefficient with no controls is equal to 0.5, the uncontrolled R-squared is 0.1, δ̃ = 1 and Rmax = 1. The solid line

shows the distribution of adjusted effects assuming the coefficient with controls is 0.45 and with varying controlled R-squared. The dashed

line shows a similar distribution assuming the controlled coefficient is 0.30; the dotted line shows this with a controlled coefficient of 0.15.

Discussion is in Section 3.3
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Figure 2: NLSY Wage Data Simulation

(a) “True”, Controlled and Adjusted Beta
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(b) Distribution of Estimated Delta
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(c) “True”, Controlled and Rmax = 1 Adjusted Beta
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Notes: These figures show results from the validation using the constructed NLSY wage dataset. The analysis is described in

Section 4.
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Figure 3: Robustness of Stability Results in Economics Literature

(a) Rejection of Zero, Rmax = ΠR̃.
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(b) Results within +/- 2.8 SE, Rmax = ΠR̃.
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Notes: These graphs show the performance of non-randomized results under the proportional selection adjustment. Each

figure graphs the share of results which would survive varying parametrizations of Rmax, in all cases assuming δ̃ = 1. Sub-

Figure a indicates the share of results which would survive Rmax = ΠR̃ for varying values of Π, with the survival in this case

meaning the identified set does not include zero. This figure contains only relationships where the effect is significant with

controls and adding the controls moves the coefficient toward zero. Sub-Figure b indicates the share of results for which the

full identified set would be within 2.8 standard errors of the controlled coefficient. This sub-figure includes all relationships.
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Figure 4: Results from Randomized Data

(a) Rejection of Zero, Rmax = ΠR̃.
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(b) Results within +/- 2.8 SE, Rmax = ΠR̃.
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Notes: These graphs show the performance of randomized results under the proportional selection adjustment. Each figure

graphs the share of results which would survive varying parametrizations of Rmax, in all cases assuming δ̃ = 1. Sub-Figure a

indicates the share of results which would survive Rmax = ΠR̃ for varying values of Π, with the survival in this case meaning

the identified set does not include zero. This figure contains only relationships where the effect is significant with controls and

adding the controls moves the coefficient toward zero. Sub-Figure b indicates the share of results for which the full identified

set would be within 2.8 standard errors of the controlled coefficient. This sub-figure includes all relationships.
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Figure 5: Relationship between Full Robustness and Coefficient Movement
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Notes: This graph shows the range of coefficient movements in non-randomized studies divided into those which are robust to the propor-

tional selection adjustment with Rmax = 2.2R̃ (solid line) and those which are not (dotted line). This includes only relationships in which

the inclusion of controls moves the coefficient toward zero.
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Table 1: Example from Simulated Data

Simulation Inputs Simulation Outputs

δ̃ V ar(W̃2) β̊[R̊] β̃[R̃] Rmax Change in Coeff. Remaining Bias Adjusted β

1 0.1 0.52 [.12] 0.32 [.53] 0.57 0.198 0.017 0.308

1 1 0.69 [.14] 0.50 [.41] 0.69 0.189 0.198 0.299

1 10 2.50 [.46] 2.38 [.49] 0.93 0.116 2.08 0.309

0.5 0.1 0.51 [.11] 0.31 [.52] 0.56 0.199 0.009 0.307

0.5 1 0.60 [.11] 0.40 [.39] 0.70 0.196 0.102 0.295

0.5 10 1.49 [.17] 1.33 [.22] 0.92 0.159 1.03 0.291

Notes: This table shows calculations based on simulated data described in Section 3.3. The simulation constructs the outcome as follows:

Y = .3X +W1 + W̃2 + ε where ε ∼ N(0, 1), Cov(X, ε) = Cov(W1, ε) = Cov(W̃2, ε) = 0, V ar(W1) = V ar(X) = 1 and the means of X, W1

and W̃2 are all equal to 1. The values β̊ and R̊ come from regressions of Y on X with no other controls; β̃ and R̃ come from regression

which control for W1.
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Table 3: Robustness of Stability Results

Panel A: Non-Randomized Data, Share of Results which Survive δ̃ = 1, varying Rmax

Rmax = 1 Rmax = min(3R̃; 1) Rmax = min(2R̃; 1) Rmax = min(1.5R̃; 1)

Share With Adjusted β Same Sign as β̃
41% 54% 64% 70%

Sample: Add Controls, Moves toward Zero

Share with Adjusted β +/- 2.8 SE of β̃
38% 52% 63% 69%

Sample: All

Panel B: Randomized Data, Share of Results which Survive δ̃ = 1, varying Rmax

Rmax = 1 Rmax = min(3R̃; 1) Rmax = min(2R̃; 1) Rmax = min(1.5R̃; 1)

Share With Adjusted β Same Sign as β̃
69% 91% 97% 100%

Sample: Add Controls, Moves toward Zero

Share with Adjusted β +/- 2.8 SE of β̃
63% 87% 91% 95%

Sample: All

Notes: This table describes the survival of non-randomized (Panel A) and randomized (Panel B) results under the proportional selection

adjustment. Both panels show the share of results which would survive δ̃ with varying Rmax values. I consider two definitions of survival:

(1) the identified set does not include zero and (2) the outer bound of the set is within 2.8 standard errors of β̃. The first of these is

considered only for results which move toward zero when controls are added.
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Table 4: Examples from Economics Literature

Panel A: Mian and Sufi (2009)

Result Description Baseline Effect Controlled Effect Rmaxfor β = 0 δ̃ for β = 0 Identified Set

(Std.Error)[R2] (Std.Error)[R2] (δ̃ = 1) (Rmax = 2.2R̃) [β̃, β∗(2.2R̃, 1)]

Table V, Column (1) to (4) 0.49 (.033) [.44] 0.431 (.079) [.94] > 1 54.19 [0.431,0.423]

Panel B: Nunn and Wantchekon (2011)

Result Description Baseline Effect Controlled Effect Rmaxfor β = 0 δ̃ for β = 0 Identified Set

(Std.Error)[R2] (Std.Error)[R2] (δ̃ = 1) (Rmax = 2.2R̃) [β̃, β∗(2.2R̃, 1)]

Row 1, Trust Relatives -0.163 (.043) [.115] -0.133 (.036) [.133] 0.21 0.48 [-0.133, 0.141]

Row 1, Trust Neighbors -0.196 (.045) [.117] -0.159 (.034) [.156] 0.32 0.89 [-0.159, 0.020]

Row 1, Trust Local Council -0.147 (.031) [.163] -0.111 (.022) [.196] 0.30 0.43 [-0.111, 0.149]

Row 1, Intragroup Trust -0.179 (.041) [.115] -0.144 (.031) [.144] 0.26 0.69 [-0.144, 0.064]

Row 1, Intergroup Trust -0.126 (.032) [.091] -0.097 (.027) [.112] 0.18 0.52 [-0.097, 0.088]

Row 2, Trust Relatives -0.193 (.043) [.106] -0.178 (.031) [.130] 0.41 1.81 [-0.178, -0.080]

Row 2, Trust Neighbors -0.238 (.044) [.115] -0.202 (.029) [.159] 0.47 1.63 [-0.202, -0.078]

Row 2, Trust Local Council -0.177 (.027) [.175] -0.128 (.021) [.205] 0.28 0.32 [-0.128, 0.274]

Row 2, Intragroup Trust -0.208 (.041) [.121] -0.187 (.032) [.155] 0.47 1.70 [-0.187, -0.078]

Row 2, Intergroup Trust -0.145 (.031) [.093] -0.115 (.030) [.119] 0.21 0.68 [-0.115, 0.054]

Panel C: Spolaore and Wacziarg (2009)

Result Description Baseline Effect Controlled Effect Rmaxfor β = 0 δ̃ for β = 0 Identified Set

(Std.Error)[R2] (Std.Error)[R2] (δ̃ = 1) (Rmax = 2.2R̃) [β̃, β∗(2.2R̃, 1)]

Table 4, Column (1) to (5) 6.357 (.996) [.11] 4.134 (1.046) [.22] 0.42 0.75 [-1.37, 4.13]

Notes: This table summarizes the sensitivity of results in three papers to the proportional selection adjustment selected. Mian and Sufi

(2009) estimate the relationship between sub-prime borrowers and mortgage origination by zip code. The uncontrolled results for Mian and

Sufi (2009) are slightly different from the paper because these limit to the same sample for controlled and uncontrolled results. Nunn and

Wantchekon (2011) estimate the relationship between African slave trades and the extent of mistrust in modern African countries. Spolaore

and Wacziarg (2009) estimate the impact of genetic distance on income distance across countries.
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Appendix A: Theoretical Results

A.1. Details of Proofs

I show the proof in this section for arbitrary Rmax and δ̃, the formulation described in Section 3. Note,
however, that if Rmax = 1 then δ̃ = δ, and the proof is identical. Therefore I show the proof for Corollary 1
below, noting that Proposition 1 is a special case.

Proof of Lemma 1: Claim: (β̊ − β̃)
p→ σ1X

σ2
11−σ

2
1X(δσ22+σ11)

σ11(σ11−σ2
1,X)

Proof: Observe that λ̂w1|X converges in probability to Cov(W1,X)
V (X) = σ1X . By a similar logic, λ̂W2|X converges

to σ2X and, under proportional selection, to δ̃σ1Xσ22

σ11
. λ̂W2|X,W1

converges in probability to Cov(W2,X)

V ar(X̃)
where X̃

is the residual from a regression of X on W1. Note that V ar(X̃) converges in probability to 1− σ2
1X

σ11
.

Therefore, again invoking proportional selection, λ̂W2|X,W1
converges in probability to δ̃σ22σ1X

σ11−σ2
1X
. Subtracting

and simplifying yields the result.

Proof of Lemma 2: Claim: (R̃− R̊)σ̂yy
p→ [σ2

11−σ
2
1X(σ11+δ̃σ22)]

2

σ2
11(σ11−σ2

1X)
and

(Rmax − R̃)σ̂yy
p→ σ22[σ2

11−σ
2
1X(σ11+δ̃2σ22)]

σ11(σ11−σ2
1X)

.

Proof: Observe the following definitions. From the short regression coefficient, R̊ =
(β+λ̂w1|X+λ̂W2|X)2

σ̂yy
. By

Lemma 1, this converges in probability to
(β+

σ1,X (δ̃σ22+σ11)

σ11
)2

σyy
. In the intermediate regression the calculation

relies on the coefficient on X (β + λ̂W2|X,W1
) and the coefficient on W1, which is also biased by the exclusion of

W2 through the joint correlation with X and is equal to 1− σ1X

σ11
λ̂W2|X,W1

. Thus,

R̃ =
(β+λ̂W2|X,W1

)2+σ11(1−σ1X
σ11

λ̂W2|X,W1
)2+2σ1X(β+λ̂W2|X,W1

)(1−σ1X
σ11

λ̂W2|X,W1
)

σ̂yy
. By Lemma 1,

R̃
p→

(β+
δ̃σ22σ1X
σ11−σ2

1X

)2+(1−σ1X
σ11

δ̃σ22σ1X
σ11−σ2

1X

)2σ11+2(β+
δ̃σ22σ1X
σ11−σ2

1X

)(1−σ1X
σ11

δ̃σ22σ1X
σ11−σ2

1X

)σ1X

σyy
. Finally, observe that

Rmax =
β2+σ11+σ22+2βσ1,X+2β

δ̃σ1Xσ22
σ11

σyy
. Differencing these expressions appropriately yields the result.

Proof of Corollary 1. Claim : Define:

β∗′ =



β̃ −
[
β̊ − β̃

]
Rmax−R̃
R̃−R̊ if δ̃=1

β̃ −

[√
[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]

2(1−δ)[β̊−β̃]
2
[R̃−R̊]

]
if δ̃ 6= 1, σ1X ≥ 0

β̃ −

[
−
√

[β̊−β̃]2[Θ2+Θ(4δ̃(1−δ)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]
2(1−δ̃)[β̊−β̃]

2
[R̃−R̊]

]
if δ̃ 6= 1, σ1X < 0

where Θ =
([
R̃− R̊

]
2σ̂yy +

[
β̊ − β̃

]
2
[
R̃− R̊

])
. β∗

p→ β.

Proof: Recall that the object of interest – the bias – is δ̃σ22σ1X

σ11−σ2
1X
. There are three unknowns here: σ11, σ22 and

σ1X . Note that none of these can be calculated directly from the data. Lemmas 1 and 2 provide a system of
three equations in these variables. Lemmas are stated in probability limits; for the proof I will write these as
equalities to simplify notation, and return to the probability limit notation at the end. In addition, again to
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simplify notation in the algebra, I will adopt single letter notation for each of the differences.

A = β̊ − β̃ = σ1X
σ2

11 − σ2
1X(δ̃σ22 + σ11)

σ11(σ11 − σ2
1X)

B =
[
R̃− R̊

]
σyy =

[
σ2

11 − σ2
1X(σ11 + δ̃σ22)

]2
σ2

11(σ11 − σ2
1X)

C =
[
Rmax − R̃

]
σyy =

σ22

[
σ2

11 − σ2
1X(σ11 + δ̃2σ22)

]
σ11(σ11 − σ2

1X)

The algebra differs slightly for the case of δ̃ = 1 and the case of δ̃ 6= 1 but only in a later step of the
proof. I will note when the cases diverge below. The method of proof is simply to solve the system of
simultaneous equations. Some algebraic steps are suppressed.

Solve Equation (1) for σ22:

A = σ1X
σ2

11 − σ2
1X(δ̃σ22 + σ11)

σ11(σ11 − σ2
1X)

σ22 =
1

δ̃

[
σ2

11σ1X −Aσ11(σ11 − σ2
1,X)− σ11σ

3
1X

σ3
1X

]

Solve Equation (2) for σ11 and σ22 in terms of σ1X :

B =

[
σ2

11 − σ2
1X(σ11 + δ̃σ22)

]2
σ2

11(σ11 − σ2
1X)σy

=

[
σ2

11 − σ2
1X(σ11 +

σ2
11σ1X−Aσ11(σ11−σ2

1,X)−σ11σ
3
1X

σ3
1X

)
]2

σ2
11(σ11 − σ2

1X)

σ11 =

[
σ2

1X(A2 +B)

A2

]
σ22 =

1

δ̃

[
σ1X(B2 +A2B) [σ1X −A]

A4

]

Note that for the bias calculation we do not require σ11 alone but only σ11 − σ2
1X which, given values

above, equals
σ2

1XB
A2 and allows us to collapse the bias calculation to δ̃σ22A

2

σ1XB
.

Case 1: δ̃ = 1. Solve Equation (3) for σ1X :

C =
σ22

[
σ2

11 − σ2
1X(σ11 + σ22)

]
σ11(σ11 − σ2

1X)
=

[
σ1X(B2+A2B)[σ1X−A]

A4

] [
σ2

1X(A2+B)
A2 − σ2

1X

(
σ2

1X(A2+B)
A2 +

[
σ1X(B2+A2B)[σ1X−A]

A4

])]
σ2

1X(A2+B)

A2

[
σ2

1X(A2+B)

A2 − σ2
1X

]

σ1X =
CA3 +A(B2 +A2B)

(B2 +A2B)

σ22 =
[
CA3 +A(B2 +A2B)

] [ C

A(B2 +A2B)

]
Applying these values to the formula above, we have:

δ̃σ22σ1X

σ11 − σ2
1X

=
AC

B
= δ̃

[
β̂ − β̃

] Rmax − R̃
R̃− R̂
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which leads us to the δ̃ = 1 result.

Case 2: δ̃ 6= 1. Solve Equation (3) for σ1X :

C =
σ22

[
σ2

11 − σ2
1X(σ11 + δ̃2σ22)

]
σ11(σ11 − σ2

1X)

C =
1

δ̃

σ1X(B2+A2B)[σ1X−A]
A4

[[
σ2

1X(A2+B)
A2

]2
− σ2

1X(
σ2

1X(A2+B)
A2 + δ̃ σ1X(B2+A2B)[σ1X−A]

A4 )

]
σ2

1X(A2+B)

A2 (
σ2

1X(A2+B)

A2 − σ2
1X)

This does not simplify to the extent that the δ = 1 case does, and solving for σ1X requires the quadratic
formula. Applying this, we find:

σ1X =
(A(B2 +A2B)(1− 2δ̃))±

√
(A2(B2 +A2B)2 + 4(B2 +A2B)(1− δ̃)δ̃CA4)

2(B2 +A2B)(1− δ̃)
Note this has two roots. The positive root corresponds to the case where σ1X ≥ 0; the negative root to the
case where σ1X < 0.

Given this and the resulting formula for σ22 we can complete the solution. If σ1X ≥ 0, we have:

δ̃σ22A
2

σ1XB
=

 (−A(B2 +A2B) +

√
(A2(B2 +A2B)

[
B2 +A2B + 4δ̃(1− δ̃)CA2

]
2(1− δ̃)BA2


If σ1X < 0 we have:

δ̃σ22A
2

σ1XB
=

 (−A(B2 +A2B)−
√

(A2(B2 +A2B)
[
B2 +A2B + 4δ̃(1− δ̃)CA2

]
2(1− δ̃)BA2


Substituting in the difference values for A, B and C yields the result.

Note that calculating the values of Rmax or δ̃ which produce β = 0 simply involves rearranging these
equations.

A.2 Further Theoretical Results

This appendix discusses two additional issues related to the theory. Subsection A.2.1 below briefly contrasts
the calculation of bias based on the coefficients to the calculation directly from the data suggested by Altonji,
Elder and Taber (2005). Subsection A.2.2 discusses details of the case with m.

A.2.1 Altonji, Elder and Taber (2005) Calculation

Recall the model:
Y = α+ βX +W1 +W2

Lemma 1 in the text demonstrates that, under the proportional selection relationship the bias on the
intermediate regression coefficient β̃ is δσ22σ1X

σ11−σ2
1X
.

Altonji, Elder and Taber (2005) suggest that this bias might be calculated directly from the data. In
particular, they propose:

1. Run the intermediate regression, which we will denote Y = β̃X + ΨW1 + ε̃.
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2. Calculate ΨW1 and denote the variance of the residual Vε̃.

3. Regress X on Ψ̂W1. Denote the coefficient on Ψ̂W1 as Γ, and the variance of the residual VX̃ .

4. Calculate the bias as δΓVε̃
VX̃

Recall that V ar(X) = 1. Consider each of the elements of this in turn:

1. VX̃

VX̃
p→ 1− σ2

1X

σ11

2. Γ. Note first that Ψ̂→p 1− σ1X

σ11

δσ22σ1X

σ11(1−σ2
1X)

.

Γ =
Cov(Ψ̂W1, X)

V ar(Ψ̂W1)
=
Cov(W1, X)

Ψ̂V ar(W1)

Γ
p→ σ1X[

1− σ1X

σ11

δσ22σ1X

σ11−σ2
1X)

]
σ11

=
σ1X(σ11 − σ2

1X)

σ11(σ11 − σ2
1X)− δσ22σ2

1X

3. Vε̃.

Vε̃
p→ σ22 −

(δσ22σ1X)2

σ11(σ11 − σ2
1X)

Combining these, we find:

δΓVε̃
VX̃

p→ δσ22σ1X

σ11 − σ2
1X

[
σ11(σ11 − σ2

1X)− δ2σ22σ
2
1X

σ11(σ11 − σ2
1X)− δσ22σ2

1X

]
If δ = 1 the second term cancels, but in cases where δ 6= 1 it does not and this calculation is a close
approximation to the bias.

A.2.2 Additional Category Controls

Section 3 discusses extending the model to a case where there is an additional, orthogonal, category of
controls, so the true model is

Y = α+ βX +W1 + W̃2 +m+ ε

I suggest in Section 3 that the appropriate procedure for recovering β if m is observed is to include m in both
the short and intermediate regressions and preform the same procedure. It is trivial to see why this works. I
have assumed that m is orthogonal to W1 and W̃2. The only correlations are between m and X and Y. Consider
regressing Y on m and taking residuals and doing the same for X. We can then run our original procedure on
the residuals of X and Y to recover β. Including the m control in both regressions is equivalent to this exercise.

In the case where m is not observed, I suggest that it is still possible to use this procedure to recover β
from this regression:

Y = α+ βX + ΨW1 + ΨW̃2 + ε

Although this will not be the causal effect, since m is omitted, it will be closer to the causal effect since it
adjusts for the influence of W̃2.The procedure for recovering β differs from the main text only in that Ψ 6= 1. 14

To prove this, we therefore work through a modified version of the proof in Section 2.
Short and intermediate regression coefficients are given below.

β̊ = β + Ψ̂λ̂w1|X + Ψ̂λ̂W2|X

β̃ = β + Ψ̂λ̂W2|X,W1

14As mentioned in the text this is because they are biased by the exclusion of m through the joint correlation with X.
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By the same logic as Lemma 1 in the text, and the observation that Ψ̂→p Ψ we observe that

β̊ − β̃ p→ Ψσ1X
σ2

11 − σ2
1X(δ̃σ22 + σ11)

σ11(σ11 − σ2
1X)

Turning to the r-squared values, we observe R̊
p→

(β+
Ψσ1X (δ̃σ22+σ11)

σ11
)2

σyy
,

R̃
p→

(β+
δ̃σ22σ1X
σ11−σ2

1X

)2+(Ψ−σ1X
σ11

δ̃σ22σ1,X

σ11−σ2
1X

)2σ11+2(β+
δ̃σ22σ1,X

σ11−σ2
1X

)(Ψ−σ1X
σ11

δ̃σ22σ1X
σ11−σ2

1X

)σ1X

σyy
and

Rmax =
β

2
+Ψ2σ11+Ψ2σ22+2βΨσ1X+2βΨ

δ̃σ1Xσ22
σ11

σyy
. Algebraic simplification then yields:

[
R̃− R̊

]
σyy

p→ Ψ2

[
σ2

11 − σ2
1X(σ11 + δ̃σ22)

]2
σ2

11(σ11 − σ2
1X)

[
Rmax − R̃

]
σyy

p→ Ψ
σ22

[
σ2

11 − σ2
1X(σ11 + δ̃2σ22)

]
σ11(σ11 − σ2

1X)

Combining, we replicate the results from Section 2.
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Appendix B: Appendix Tables

Table 1: Summary Statistics: NLSY Wage Data

Mean Standard Deviation Range Sample Size

Log Wages (1996-1998) 2.67 0.63 0-6.21 7496

Years of educ. 12.5 2.24 0-20 7496

Years of exper. 16.3 3.02 8-31 7496

Female 0.49 0.50 0-1 7496

Region of Residence N/A N/A 1-4 7496

White 0.64 0.47 0-1 7496

Married Codes N/A N/A 0-6 7496

Mother Educ (yrs) 11.0 3.00 1-20 7496

Father Educ (yrs) 11.2 5.27 1-20 7496

Mother Occup (codes) N/A N/A 0-984 7496

Father Occup (codes) N/A N/A 0-984 7496

Siblings (#) 3.8 2.6 0-22 7496

Notes: This table shows summary statistics for the data used in the NSLY wage analysis in Section 4. Data comes from the NLSY-79

cohort. Means are not reported for region, marital codes or occupation because they are not meaningful. All variables are controlled in the

regressions as dummies. Wages are the max of 1996 and 1998 wages.
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Table 2: Summary Statistics: Early Life and Child IQ

Panel A: IQ Analysis

Mean Standard Deviation Sample Size

IQ (PIAT Score, Standardized) 0.025 0.991 6962

Breastfeeding Months 2.40 4.63 6514

LBW + Preterm 0.049 0.217 6174

Mom Drink at all in Pregnancy 0.322 0.467 6537

Age 5.57 1.37 6962

Child Female 0.495 0.500 6962

Mother Black 0.282 0.450 6962

Mother Age 25.3 5.61 6962

Mother Education (years) 12.2 2.7 6962

Mother Income $41,294 $80,735 6962

Mother Married 0.654 0.476 6962

Panel B: Birth Weight Analysis

Birth Weight (grams) 3290.4 647.69 7686

Mom Smoke in Pregnancy 0.291 0.454 7686

Drinking Intensity (0-7) 0.638 1.16 7442

Child Female 0.486 0.499 7686

Mother Black 0.273 0.445 7686

Mother Age 24.4 5.49 7686

Mother Education (years) 12.0 2.7 7686

Mother Income $30,813 $65,374 7686

Mother Married 0.667 0.471 7686

Notes: This table shows summary statistics for the data used in the analysis in Section 4. Drinking intensity is coded from 0 (never) to 7

(every day). Natality detail files are from 2001 and 2002. Data is from the NLSY Children and Young Adults panel.
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Appendix C: Alternative Parametrization of Rmax

This appendix considers how the results in Section 5 would change if I used an alternative parametrization of
Rmax. The primary analysis in the paper uses Rmax = ΠR̃ with varying Π. Here, I use Rmax = R̃+ Π(R̃− R̊).
I consider the same questions: the level of robustness of non-randomized results, the Π cutoff implied by the
randomized data and what share of non-randomized results would survive the cutoff. For simplicity, I consider
here only the primary robustness criteria of whether the identified set excludes zero, and therefore limit to
results where inclusion of controls moves the effect size toward zero.

Figure 1a shows the robustness of non-randomized data under this parametrization, and Figure 1b
shows the randomized robustness. The multiplier values in both cases are larger here, reflecting the fact that
the increase in R-squared from R̊ to R̃ is smaller in value than the level, R̃. The observation that the
randomized data is more robust than the non-randomized is even more true. Table 1 replicates the form of
Table 3 in the paper. I consider larger values of Π as cutoffs but, again, the conclusion of varying stability and
higher stability of randomized results.

The robustness cutoff value implied by the randomized data is 4.95. With this value 67% of
non-randomized results would survive, almost exactly the share in the main analysis. Perhaps more important,
in 83% of cases the robustness conclusions overlap, suggesting that similar information is being provide by
both parametrizations.

Table 1: Robustness of Stability Results, Alternative Rmax

Share of Results which Survive δ̃ = 1, varying Rmax: Robustness is Identified Set Excludes Zero

Rmax = 1 Rmax = min{R̃+ 5(R̃− R̊), 1} Rmax = min{R̃+ 3(R̃− R̊), 1} Rmax = min{R̃+ 2(R̃− R̊), 1}
Non-Randomized 41% 67% 75% 81%

Randomized 69% 94% 97% 100%

Notes: This table describes the survival of non-randomized and randomized results under the proportional selection adjustment with varying

Rmax using the alternative Rmax parametrization. Both rows show the share of results which would survive δ̃ with varying Rmax values

with survival defined as the identified set does not include zero. The analysis includes only results which move toward zero when controls

are added.
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Figure 1: Stability Results Using Additive Rmax Parametrization

(a) Rejection of Zero, Non-Randomized, Rmax = R̃+ Π(R̃− R̊).

Survive Rmax=1:     0.413

.4
.6

.8
1

S
ha

re
 o

f R
es

ul
ts

 W
ith

 s
ig

n(
β)

=
si

gn
(β

til
de

)

0 2 4 6 8 10 12 14
Multiplier: Rmax = Rtilde+Π*(Rtilde−Rdot)

(b) Rejection of Zero, Randomized, Rmax = R̃+ Π(R̃− R̊).
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Notes: These graphs show the performance of non-randomized results (Sub-Figure a) and randomized results (Sub-Figure

b) with under the proportional selection adjustment. Each figure graphs the share of results which would survive varying

parametrizations of Rmax, in all cases assuming δ̃ = 1. Each Sub-Figure indicates the share of results which would survive

Rmax = R̃ + Π(R̃ − R̊) for varying values of Π, with the survival in this case meaning the identified set does not include

zero. This figure contains only relationships where the effect is significant with controls and adding the controls moves the

coefficient toward zero.
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