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1 Introduction

Concerns about omitted variable bias are common to most or all non-experimental empirical work in

economics, other social sciences and the natural sciences. And although randomized experiments are common

in natural sciences and becoming increasingly common within economics, the majority of empirical work in

both settings is still not randomized.1 Within economics, a common heuristic for evaluating the robustness of

a result to omitted variable bias concerns is to look at the sensitivity of the treatment effect to added controls.

The heuristic suggests that if a coefficient is stable as controls are added, this is a good sign that there is little

remaining bias. In a review of non-structural, non-experimental empirical work published in three top

economics journals2 in 2012, 75% of papers explored the sensitivity of the results to varying control sets, and a

number of these papers were quite explicit about the relationship between coefficient stability and omitted

variable bias.3

Although it is rarely made explicit, this coefficient stability heuristic relies on the idea that the selection

on observable covariates is informative about the selection on unobservable covariates, an idea which is

formalized in Altonji, Elder and Taber (2005) and suggested informally in Murphy and Topel (1990). I will

refer to this as the proportional selection assumption. In the context of a linear model, these papers show how

this assumption can be used to calculate a causal treatment effect. Neither paper formalizes the link with

coefficient movements.

The fact that the link between the proportional selection assumption and coefficient movements is not

explicit in either the underlying theoretical work or in the common robustness checks creates two problems.

First, the use of this as a robustness test is rarely done in the most efficient or informative way. Second, there

has been little or no effort to test whether the proportional selection assumption is better than alternatives

(for example, than the alternative that the unobservables are related to the treatment but there is no

information provided about that relationship by the link between treatment and observables). The

informativeness of robustness tests which rely on this proportional selection theory rests crucially on whether

it is empirically valid.

In this paper I take up both of these issues. I begin by expanding on the theory laid out in Altonji,

Elder and Taber (2005) (hence, AET) and connecting the omitted variable bias directly to coefficient

movements. I provide some explicit guidance for performing a bias adjustment based on this theory. I then

present two validation exercises, both of which take advantage of settings in which I observe a “true” treatment

1For example: in 2012 JAMA published 133 major research papers, only 53 of which were randomized. The American Journal of
Public Health published 128, only 14 of which were randomized. The combination of the American Economic Review, the Quartly
Journal of Economics and the Journal of Political Economy published 69 empirical, non-structural papers, only 11 of which were
randomized.

2American Economic Review, Journal of Political Economy and Quarterly Journal of Economics.
3For example, Chiappori et al (2012) state: “It is reassuring that the estimates are very similar in the standard and the augmented

specifications, indicating that our results are unlikely to be driven by omitted variables bias.” Similarly, Lacetera et al (2012) state:
“These controls do not change the coefficient estimates meaningfully, and the stability of the estimates from columns 4 through 7
suggests that controlling for the model and age of the car accounts for most of the relevant selection.”
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effect matched to possibly biased estimates.

I begin in Section 2 with theory. I consider a simple setup: an outcome Y is fully determined by a

treatment variable X, a vector of observable controls W , a vector of unobserved controls W ′ and an error

term, ε, which is orthogonal to X,W and W ′. The true effect of X on Y is β. I introduce the proportional

selection assumption: δCov(W,X)
V ar(W ) = Cov(W ′,X)

V ar(W ′) . Since W ′ is unobserved, the coefficient on X in a regression of

Y on X and W is biased. I demonstrate that, under the proportional selection assumption, a measure of this

bias can be calculated from (1) the coefficients on X with and without controls for W ; (2) the R-squared

values from controlled and uncontrolled regressions; and (3) an assumption about the R-squared of a

(hypothetical) regression controlling for X, W and W ′.

Denote the uncontrolled coefficient ξ, the coefficient with controls Λ, the two R-squared values as R1

and R2 and the maximum R-squared as Rmax. The bias on Λ is very closely approximated by δ (ξ−Λ)(Rmax−R2)
(R2−R1) .

Under an equal selection assumption (δ = 1) this recovers the bias exactly. Under the assumption that δ < 1,

suggested by AET, this is a very close upper bound on the bias, allowing us to infer a lower bound on β. The

intuition behind this adjustment is straightforward: if the coefficient moves a lot when the controls are added

and there is a lot of remaining variation in Y which could be explained by related variables, the bias on Λ is

large. I will refer to this procedure for recovering β as the proportional selection adjustment.4

This baseline discussion links residual omitted variable bias to coefficient movements. I explore two

practical extensions. First, I consider the case in which there is a second vector of controls, M, which is

correlated with X and Y , but orthogonal to W. If M is fully observed – that is, does not have any unobserved

components – I show the same bias-calculation results go through when M is included in both the controlled

and uncontrolled regressions. Put differently, the relevant coefficient movements are those which occur when

one adds the variables which relate to the omitted variables. More generally, I show that even with remaining

omitted variables this procedure can recover the effect one would estimate if W ′ was observed.

Second, I consider the case where the vector W has multiple components which can be included in turn.

I ask whether observing that treatment effect converge as better controls are added should lead one to

conclude further controls would not alter the coefficient. Although this is a common heuristic, it implies that

the controlled effect equals the true treatment effect only if the R-squared simultaneously converges to the

maximum R-squared.

Following the theory, I turn to two validation exercises. It is not possible to directly test the

proportional selection assumption, but I argue I can test the assumption indirectly – and the methodology

more generally – by asking whether estimates generated by the proportional selection adjustment are closer to

the true causal effect.5 Doing this requires an estimate of the true causal effect. Given this, validation could

4Bellows and Miguel (2009) derive an adjustment like this using only coefficient movements. Their derivation, however, works
only in the case where the variance of W and W ′ are identical, which is a very strong assumption and not what is laid out in AET.
The difference is discussed briefly in Section 2.

5Altonji et al (2008) also compare results from their adjustment to randomized results in a single case (catheterization), although
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take two forms. First, I can ask whether some value of δ would match possibly biased regression coefficients to

a true effect. Second, more constrained, I can ask whether a single value of δ might organize a number of

findings within a setting or settings.

In Section 3, I consider links between maternal behavior (prenatal and early life), child birth weight and

child IQ. Many studies – in economics and elsewhere – have suggested links between maternal behaviors and

child outcomes, but most studies are subject to significant concerns about omitted variable bias, notably

associated with socioeconomic status. I use data from the National Longitudinal Survey of Youth (NLSY) and

US Natality Detail Files to estimate (1) the impact of breastfeeding, drinking in pregnancy and low birth

weight/prematurity on child IQ and (2) the impact of maternal drinking and smoking on child birth weight.

I estimate regressions with and without controls for maternal socioeconomic status, and use the

coefficients and R-squared values to perform the proportional selection adjustment. I then ask whether there is

a value of δ which matches the adjusted β to the true β. Doing this requires an assumption on Rmax – the

amount of variation in Y which could be explained if we observed W ′ – and also a measure of the true β. In

this case, because the the central concern is omitted family background, I draw estimates of Rmax from

published sibling correlations in IQ and birth weight and use sibling fixed effects regressions in the NLSY to

estimate the true β.6 The basic conclusions from these sibling regressions are validated with external evidence.

The proportional selection adjustment performs well. In the simplest (and weakest) validation test, I

show that, in all seven relationships estimated, there is a value of δ for which the adjusted coefficient matches

the true treatment effect estimate. Further, all of the estimated δ values hover around 1. Following on this, I

show a stronger validation test: performing the proportional selection adjustment using a value of δ = 1, with

bootstrapped standard errors, would have led to much improved inference across the settings considered here.

The baseline fully controlled regressions suggest that breastfeeding and maternal drinking are associated

with higher IQ (note that there is no reason to believe maternal drinking would increase IQ and this must be

due to selection) and low birth weight/prematurity is associated with lower IQ. In sibling fixed effects

regressions the first two relationships are very close to zero, while the low birth weight effect is still negative

and marginally significant. The inferred coefficients after the proportional selection adjustment with a δ = 1

are also very close to zero in the case of breastfeeding and drinking, and negative and marginally significant for

prematurity. In the case of birth weight, in both the NLSY and Natality Detail Files, baseline controlled

regressions show lower birth weight associated with both maternal smoking and maternal drinking; only the

former is supported in sibling fixed effects regressions and, again, the adjusted coefficients reflect this. Further,

even in the case of smoking and birth weight, the adjusted coefficients are much closer to the sibling fixed

effects estimates, whereas the coefficients with controls overstate the effect.

Section 4 takes this approach a step further and asks whether we might use it to suggest a general form

they consider only the test of the null hypothesis rather than comparing magnitudes.
6Note that I will refer to this as the true β for simplicity, while accepting that it may still have bias.

4



of this adjustment that could improve inference in a particular setting. I consider links between positive health

behaviors and health outcomes, an area of much policy interest where many existing studies suffer from

omitted variable bias concerns. I combine NHANES data (for observational correlations) with randomized

evidence in two settings: the relationship between exercise and a number of health measures and the

relationship between vitamin D/calcium (CaD) supplementation and a similar set of measures. I generate a

total of 29 treatment-outcome pairs where I can estimate a relationship in the NHANES and match the point

estimate to a treatment effect from a randomized trial.

In this section I begin where I ended in Section 3, with the assumption that δ = 1. I then estimate a

value for Rmax which would rationalize each point estimate. The first step is to ask whether there is a value of

Rmax which would match the adjusted to true β in each setting. Second, once I have estimated these values

for each treatment-outcome pair, I ask whether a single value of Rmax(or, in fact, a parametrization as a

function of R2 and R1) could improve inference across all the settings. This exercise is in part validation but

goes further: ultimately, it asks whether a procedure using only results from observable regressions might be

used to improve inference in these settings and parallel settings.

The evidence suggest that in 22 of the 29 settings I could match the treatment point estimate with some

value of Rmax. In all of the remaining I could match a value within the randomized confidence interval (these

tend to be cases where none of the coefficients – randomized or observational – are significant). Second, more

importantly, I find that a single parametrization of Rmax would improve the point estimate in 21 of 29 cases

and decrease the overall error by 30%. Many of the cases are ones in which the controlled coefficients overstate

the benefit of the intervention and the adjusted coefficients match the truth.

I parametrize Rmax as a function of R2 and R1 which means that this adjustment can be done without

seeing the R-squared values. The results suggest a value of βadj = Λ− 1.018(ξ − Λ) would, on average, be

closer to the true β than Λ in these settings. I perform several out-of-sample tests and show this performs

well. I argue this adjustment may be applicable to a wide swath of the public health literature where the

outcome is a health outcome, treatment is a good health behavior and we see only imperfect socioeconomic

status controls. This adjustment would be easy for researchers (or research consumers) to perform, and could

be helpful in evaluating the plausibility of results.

2 Theory

This section outlines the theory. Section 2.1 develops the baseline result and shows the bias calculation

under the assumption of proportional selection. Section 2.2 describes an extension to a case where there is an

additional orthogonal category of controls. Section 2.3 discusses a closely related heuristic of looking for

increasing stability of coefficients as more controls are added. Section 2.4 summarizes the practical guidance
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from the theory before I take up validation in Section 3.

2.1 Baseline Result: Bias Calculation Under Proportional Selection

Consider a linear model relating an outcome Y to treatment X.

Y = α+ βX +W +W ′ + ε (1)

W and W ′ are indexes of control variables which are related to both X and Y. W and W ′ are orthogonal to

each other; the researcher observes W but not W ′. The final term, ε, is an iid noise term. Without loss of

generality I assume the variance of X and W are equal to 1, and the variance of W ′ is Vw′.

The key assumption is of proportional selection: the relationship between W and X is informative

about the relationship between W ′ and X. Formally, denote the covariance between W and X as Cwx and

between W ′ and X as Cw′x. Proportional selection assumes the following equality holds for some δ :

δCwx =
Cw′x
Vw′

AET provide the formal theory underlying this assumption. Among other things, they point out that if

W is chosen randomly from the set {W,W ′} then the assumption that δ = 1 will hold. If not, then δ may be

larger or smaller than 1, although they suggest that in practice δ < 1 may be an appropriate assumption if the

controls are chosen to be among the most important variables.

Were both W and W ′ observed, it would be possible to recover β from a standard linear regression

model. With W ′ unobserved, the researcher is able to estimate two equations:

Y = α̂+ ξX + o+ ε (2)

Y = α̃+ ΛX + ΨW + τ + ε (3)

ξ is the coefficient on X with no controls, and Λ is the coefficient on X when including all the observed

controls. Both ξ and Λ are subject to omitted variable bias. Since the models are linear, the relationship

between these coefficients and the true β is straightforward:

ξ = β + Cwx + Cw′x

Λ = β +
Cw′x
Vx̃

where X̃ is the residual from a bi-variate regression of X on the observed controls W. AET note that under
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the maintained assumption that W and W ′ are orthogonal and the proportional selection assumption,

Cw′x̃ = Cw′x = δCwxVw′ . Further, Vx̃ = 1− C2
xw. They show, therefore, the treatment effect β can be

recovered as β = Λ− δCwxVw′1−C2
wx

. This latter term is the bias from omission of the W ′ vector. The central

question is how this bias relates to the movement in coefficients from ξ (no controls) to Λ(with observed

controls). The result is summarized in Proposition 1.

Proposition 1. Denote the R-squared in equation (2) as R1 and the R-squared in equation (3) as R2.

Further, denote the full R-squared from Equation (1) as Rmax. Under the proportional selection assumption,

δ (ξ−Λ)(Rmax−R2)
(R2−R1) is a very close upper bound on the bias if δ < 1, a close lower bound on the bias if δ > 1 and

exactly equal to the bias if δ = 1.

Proof. The bias is given above: δCwxVw′
1−C2

wx
. The difference between ξ and Λ is ξ−Λ = Cwx + δCwxVw′ − δCwxVw′

1−C2
wx

.

Dividing, I can express the relationship between this coefficient difference and the bias:

ξ − Λ =

(
Cwx(1− C2

wx − δC2
wxVw′)

δCwxVw′

)
δCwxVw′

1− C2
xw

Now consider the variances from equations (2) and (3):

Vo = 1 + Vw′ − C2
xw[1 + δVw′ ]

2

Vτ = Vw′ −
[δCwxVw′ ]

2

1− C2
wx

Straightforward simplification yields:

Vτ
Vo − Vτ

=
Vw′(1− C2

xw − δ2C2
xwVw′)

(1− C2
xw − δC2

xwVw′)
2

Note that the definition of the R-squared in a linear model means that Vτ
Vo−Vτ = (Rmax−R2)

(R2−R1) . Together, this

implies that : δ (ξ−Λ)(Rmax−R2)
(R2−R1) =

[
δCwxVw′
1−C2

xw

]
(1−C2

xw−δ
2C2

xwVw′ )
(1−C2

xw−δC2
xwVw′ )

. The first term on the right hand side is the

bias. The second term is very close to 1 for values of δ close to 1. If δ = 1 it is exact. If δ < 1 the expression is

an upper bound on the bias and if δ > 1 it is a lower bound.

The result directly relates coefficient movements to the bias, as well as giving a way to calculate the bias

(or at least a close bound on it). This calculation requires observing both coefficients and R-squared values

from these regressions and making an assumption about the maximum R-squared. One assumption is that

this value is 1: that if all of the unobservables were observed, they would explain all variation in Y. This

assumption may be too strong in many cases where there is some either random component of Y

(measurement error, for example) or some variables which predict Y but are orthogonal to X.

Incorporating the R-squared values is, of course, crucial here. The movement in coefficients must be
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scaled by the amount of variation in Y explained by observed and unobserved components. Bellows and

Miguel (2009) derive derive and apply a version of this adjustment (in an Appendix) but do not incorporate

the R-squared values. Their adjustment, based only on the coefficient movements, is valid only in a case where

the amount of variation in Y explained by the observables is the same as the amount explained by the

unobservables. This assumption is unlikely to hold in general.

It is important to recall that the innovation here is simply to connect the formula for the bias – δCwxVw′
1−C2

xw

– directly to coefficient movements. The argument that this represents the bias under proportional selection is

made in more technical detail in AET and their related work. It is also possible to view this as an alternative

to the calculation methodology suggested in AET, which uses the data directly to calculate this object. Their

calculation is described in more detail in Appendix A and works out to the identical formula – again, exact

when δ = 1.

2.2 Extension: Additional Observed Controls

I now consider the extension to a case where there is another index of observed controls – call these M – which

are fully observed, do not have a related unobserved component and are orthogonal to W and W ′. In a health

context these could be, for example, age or sex – baseline variables which explain some of the variation in Y

and related to X but do not generate omitted variable concerns.7 In this case, Equation (4) below is the full

equation, and the two estimable equations are (5) and (6):

Y = α+ βX +W +W ′ +M + ε (4)

Y = α̂+ ξX + ΓM + o+ ε (5)

Y = α̃+ ΛX + ΨW + Γ′M + τ + ε (6)

Proposition 2 summarizes the bias calculation in this case.

Proposition 2. Denote the R-squared in equation (4) as Rmax, the R-squared in equation (5) as R1 and the

R-squared in equation (6) as R2. Under the assumption of proportional selection, δ (ξ−Λ)(Rmax−R2)
(R2−R1) is a very

close upper bound on the bias if δ < 1, a close lower bound on the bias if δ > 1 and exactly equal to the bias if

δ = 1. .

Proof. The bias on Λ is now δCwxVw′
1−C2

mx−C2
wx

. The same algebra as above yields ξ − Λ =
Cwx(1−C2

mx−C
2
wx(1+δVw′ ))

(1−C2
mx)(1−C2

mx−C2
wx)

and (Rmax−R2)
(R2−R1) =

Vz(1−C2
mx−C

2
wx(1+δ2Vw′ ))(1−C

2
mx)

(1−C2
mx−C2

wx(1−δVw′ ))2
. Combining, I find that

δ (ξ−Λ)(Rmax−R2)
(R2−R1) =

[
δCwxVw′

1−C2
mx−C2

wx

] [
(1−C2

mx−C
2
wx(1+δ2Vw′ ))

(1−C2
mx−C2

wx(1−δVw′ ))

]
which is exactly as above.

7In practice, obvious elements of M like age or sex are often correlated with possible omitted variables. This is fine, I simply
define the W and W ′ category as the parts of those variables which are orthogonal to M.
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In practice, this indicates that if there are a set of important, fully observed controls (could be age

dummies, or sex, year fixed effects, etc) those should be included in both the “controlled” and “uncontrolled”

regressions. The relevant coefficient movements are those which occur between the regression with X and M

and the regression with X, M and W.

As a corollary, consider the case where M also has a related unobserved vector M ′, so the true model is:

Y = α+ βX +W +W ′ +M +M ′ + ε

Consider the modified model:

Y = α+ β′X +W +W ′ + ∆M + ε̃

where β 6= β′ because M ′ is omitted. In this case, by the same theorem and proof as in Proposition 2, the

coefficients and R-squared values from equations (5) and (6) above can be used to recover β′.

This latter observation indicates that it is possible to use the coefficient movements to recover the effect

we would estimate if we could observe the unobservables related to W , even if we accept that may not be the

true treatment effect. This may be useful in a case where, for example, we wish to assume that the bias

associated with the unobserved portion of the M category is small.

A related question is whether we can recover the true β in the case above when we see W and M and

make proportional selection assumptions about W and W ′ and about M and M ′. This case is worked out in

Appendix A. The bias does relate to the coefficient movements between uncontrolled and fully controlled

regression in that case but the calculation is not straightforward.

2.3 Extension: Bias Results with Added Precision

The proposition in Section 2.1 gives a method for calculating bias using information on the movement of

coefficients from the fully uncontrolled to the fully controlled regression. It follows simply from that result

that if the coefficient on X doesn’t change much from the fully uncontrolled to the fully controlled regression,

this suggests limited bias. Effectively, this will only occur if Cwx is small, which then means the remaining

bias is also small.

A common related heuristic is to look for stabilizing coefficients as the number of controls increases. Even if

there is a large change in the coefficient when some controls are added, if further controls do not change the

coefficient very much, the conclusion is that the result is approaching the causal coefficient.

I capture this setup with the assumption that the true model is as follows:

Y = α+ βX +W1 +W2 +W ′ + ε

9



In this case, I imagine both W1 and W2 are observed, while W ′ is unobserved. I retain the assumption of

proportional selection, and assume that the variance of W1 is 1. I allow the degree of proportionality to vary.

In particular, I assume:

Cw1x =
Cw2x

δVw2

=
Cw′x
φVw′

A common procedure in this case is to run the three regressions below in order, and compare the coefficients ξ,

Λ1 to Λ2.

Y = α+ ξX + o+ ε (7)

Y = α̃+ Λ1X + Ω1W1 + τ + ε (8)

Y = α̂+ Λ2X + Ψ1W1 + Ψ2W2 + κ+ ε (9)

All three coefficients are biased, with the exact formulas given below.

ξ = β + Cw1x(1 + δVw2 + φVw′)

Λ1 = β +
Cw1x(δVw2

+ φVw′)

1− C2
w1x

Λ2 = β +
Cw1xφVw′

(1− C2
w1x(1 + δ2Vw2

))

I note first that if ξ and Λ2 are close to each other then this suggests limited remaining bias, as described in

the main results above. The stability heuristic is (possibly) useful here in a case where ξ and Λ1 are far apart.

In that case, the common heuristic would be that if Λ1 and Λ2 are close together, then the remaining bias on

Λ2 is small. The proposition below summarizes the condition for this to be the case.

Proposition 3. Stabilization of coefficients implies a small remaining bias if and only if a small δVw2
implies

that φVw′ is small.

Proof. The stabilization heuristic implies two things. First, Λ1 − Λ2 is small and, second, that Λ1−Λ2

ξ−Λ1
is small.

Note that:

Λ1 − Λ2

ξ − Λ1
=

δVw2
(1− C2

w1x(1 + δ2Vw2
+ δφVw′))

(1− C2
w1x(1 + δ2Vw2

))(1− C2
w1x(1 + δVw2

+ φVw′))

For a value of δ close to 1, as I have generally been considering,
(1−C2

w1x
(1+δ2Vw2+δφVw′ ))

(1−C2
w1x

(1+δVw2
+φVw′ ))

≈ 1 and this collapses

to Λ1−Λ2

ξ−Λ1
≈ δVw2

(1−C2
w1x

(1+δ2Vw2
)) . The question is whether finding that this is small implies that the remaining

bias,
Cw1x

φVw′
(1−C2

w1x
(1+δ2Vw2

)) is also small. It is clear that Cw1x is not small (because ξ and Λ1 are not close) which

means the bias will be small only if φVw′
(1−C2

w1x
(1+δ2Vw2

)) is small. The ratio above has the same denominator. In

all, I conclude that a small value of Λ1−Λ2

ξ−Λ1
implies a small remaining bias only if small δVw2

implies a small
φVw′ .
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This proposition argues that using this stability heuristic requires a further assumption along with the

proportional selection – namely, that the fact that the second set of observables included are less important

than the first set implies that the unobservables are also less important. This may be a palatable assumption

but it is certainly not obvious. It may, however, be partially informed by taking a view on the maximum

R-squared.

Consider Vκ (from Equation 9 above) which can be recovered from the difference between Rmax and the

fully controlled R-squared.

Vκ = Vw′(1− φCw1x
Cw1xφVw′

(1− C2
w1x(1 + δ2Vw2

))
)

If Vκ is large, this implies that Vw′ must be large. If Vκis small, this implies either a small Vw′ or a large φ.

What this suggests is that if the fully controlled R-squared is very far from the hypothesized Rmax, Vw′

is not small and, therefore, we cannot infer from the stabilizing coefficients that Λ2 is close to β. If the fully

controlled R-squared is close to Rmax it may still be the case that the bias is large, since φ may be large. In

other words, this is a necessary but not sufficient condition.

2.4 Summary

The results in this section formalize some commonly used heuristics. Together, they suggest several

things.

First, movement in the coefficient of interest when controls are added is informative about remaining

bias under the proportional selection assumption, but must be used along with some assumption about the

maximum amount of variance explained by the observables and unobservables together.

Second, the relevant movement in the coefficient is that which occurs after inclusion of the set of controls

for which one is concerned about omitted components. For example, if a coefficient moves a lot after inclusion

of a precise measure of individual age, this is not informative about how much further movement would be

observed with controls for socioeconomic status. Controls of this type should be included in all regressions.

Third, stability in the coefficient of interest as controls are added is reassuring only if the R-squared

stabilizes at or close to the maximum R-squared.

Together, this provides guidance in how these heuristics might be better used in practice. But it does

not provide evidence on whether this adjustment is effective in identifying causal impacts. To learn that, it is

necessary to perform some validation, which I turn to below.

3 Validation: Maternal Behavior, Birth Weight and Child IQ

The results above provide a way to recover an estimate of “causal” treatment effects under the

assumption that selection on observables and unobservables is proportional. This assumption is fairly strong
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and not directly testable. Indirectly, I can test the assumption – and the methodology more generally – by

asking whether estimates generated by this procedure are closer to the true causal effect. Discussing that

requires a setting in which I can match (possibly) biased estimates to some “true” estimate of a treatment

effect.

Given such a setting, validation could take two forms. Most generally, I could ask whether there is a

value of δ which would match the adjusted effect from the observational regressions to the true treatment

effect. The other elements of the adjustment are observable (in the case of the coefficients and R-squared values

from regressions) or knowable in principle (in the case of the maximum R-squared). The value of δ is a free

parameter, so one simple validation exercise is to ask whether some value of δ would work. This is equivalent

to asking whether the coefficient on the treatment moves closer to the truth when controls are added.

A more constrained test is to ask whether a single value of δ might organize a number of findings within

a particular setting (or settings). If yes, this would suggest at a minimum that this technique works well in

comparing the robustness of multiple findings within a given setting and, more tentatively, could suggest a

value of δ that might be used in other settings.

In this section I undertake both the less constrained and more constrained versions of this validation

test in the context of the relationship between maternal behaviors, infant birth weight and child IQ. These

relationships are of some interest in economics, and of wider interest in public health and public policy circles.

A literature in economics demonstrates that health shocks while children are in the womb can influence early

outcomes and later cognitive skills (e.g. Almond and Currie, 2011; Almond and Mazumder, 2011). A second

literature, largely in epidemiology and public health, suggests that even much smaller variations in behavior –

occasional drinking during pregnancy, not breastfeeding – could impact child IQ and birth weight. These

latter studies, however, are subject to significant omitted variable concerns. The behaviors which are linked to

good child outcomes tend to also be closely linked to maternal socioeconomic status.

I consider five relationships in all: the relationship between child IQ and breastfeeding, drinking during

pregnancy, low birth weight/prematurity and the relationship between birth weight (as the outcome) and

maternal drinking and smoking in pregnancy. Section 3.1 below describes the data, Section 3.2 the empirical

strategy and Section 3.3 the results.

3.1 Data

I use data from the National Longitudinal Survey of Youth Children and Young Adult Survey (NLSY) and

data from the US Natality Detail Files (from 2001 and 2002).
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NLSY

The NLSY is a longitudinal survey of women, and the Children and Young Adult module collects information

on the children of NLSY participants. These data contain information on both IQ and birth weight. In the

case of IQ, the outcome of interest is PIAT test scores for children aged 4 to 8. The treatments of interest are:

months of breastfeeding, any drinking of alcohol in pregnancy and an indicator for being low birth weight and

premature (<2500 grams and <37 weeks of gestation). These variables are summarized in the first rows of

Panel A of Table 1.

For birth weight, the outcome is simply birth weight in grams. Here, I use all children. The treatments

are whether the mother smokes in pregnancy and maternal drinking intensity during pregnancy. These

variables are summarized in Panel B of Table 1.

The NLSY data also contain demographic controls. These are summarized in the remainder of Panel A

and Panel B of Table 1 (I summarize these twice since the sample differs for the IQ and birth weight analyses).

They include: child age and sex, race, maternal age, maternal education, maternal income and maternal

marital status.

Natality Detail Files

The US Natality detail files contain data on all births in the US. I use data from 2001 and 2002 and focus on

birth weight as the outcome. The treatments are, again, whether the mother smokes during pregnancy and

maternal drinking intensity. I recode drinking data to match the NLSY definitions. The natality detail files

also include demographics: child sex, maternal race, age, education and marital status. These data do not

report income.

Panel C of Table 1 reports summary statistics.

3.2 Empirical Strategy

The baseline empirical strategy is straightforward. Assume that I observe a measure of the true β, denoted

βtrue. In addition, I can calculate a measure of the bias-adjusted β as described in Section 2, and denoted βadj :

βadj = Λ− δ (ξ − Λ)(Rmax −R2)

(R2 −R1)

The first stage of validation here involves asking whether there is a value of δ for which βtrue = βadj . Note that

for this exercise I assume that the bias calculation is exact even with a value of δ 6= 1. As I note in Section 2,

this is close to the truth. In a second stage I ask whether a single value of δ can provide improved inference

across all five settings considered.
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Behind this empirical strategy there are a number of open questions. First, what controls are in W and

which, if any, are in M? Second, what is the value of Rmax? The other parameters are observed in the

regressions but Rmax cannot be observed since we do not see the unobservables. Third, what is the value of

βtrue?

I begin with the choice of W and M. I argue that the primary omitted variables relate to socioeconomic

status; although there may be others, if we were able to eliminate the bias from this source, it would be a

significant step forward. Therefore the elements of W will be the observed components of socioeconomic

status: maternal education, income, race, marital status and age. Recall that M should contain any elements

which may impact the coefficient but do not have omitted counterparts. In this case, it seems appropriate to

include child sex and, in the case of IQ, child age.

Second, consider the choice of Rmax. In theory, this should reflect how much of the variation in child IQ

or birth weight could be explained if we had full controls for family background. This is a figure for which we

need to go outside the data. Neither IQ nor birth weight seem likely to have an Rmax of 1. Even identical

twins raised together do not have the same IQ scores or identical birth weight. I suggest that the appropriate

figure in either case is the correlation between siblings raised together, which will capture the full effect of

family background. For IQ, I use a value of 0.385, based on the average correlations from two studies reported

in Scarr and Weinberg (1983).8 For birth weight, I use a value of 0.5, drawn from Mazumder (2011).

Finally, the estimation requires values of βtrue. One natural approach would be to match the

observational analysis with evidence from randomized controlled trials which estimate similar parameters.

Indeed, this is the approach I will take in the next section. This is not feasible here. Even in the two cases

(breastfeeding and smoking) where I do have some randomized or quasi-random estimates on which to rely,

the magnitudes are not comparable.

Instead, I take advantage of the family structure in the NLSY to estimate sibling fixed effects models.

Although of course these may also be subject to concerns about causality, they should address most or all of

the concerns about omitted family background, per se, which I argued was the primary omitted variable

concern. I can therefore take them as the appropriate estimate of the impact of the treatment if I could adjust

fully for family background – the sibling fixed effects estimates are βtrue.

As a check on this, I can use outside results not to generate magnitudes but as tests of the null of a

treatment effect or not. I can then ask whether the relationships which are more robust to the adjustment

suggested here are also those which are confirmed in better data. Among the relationships I consider,

randomized evidence suggest that breastfeeding is not linked with full-scale IQ (Kramer et al, 2008) and most

evidence does not suggest an impact of occasional maternal drinking on child IQ (see, for example:

Falgreen-Eriksen et al, 2012; O’Callaghan et al, 2007). In contrast, low birth weight and prematurity do seem

8This is consistent with other overview studies which suggest values in the range of 0.35 to 0.4 – see, for example, Bouchard and
McGue, 2003.
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to be consistently linked to low IQ (Salt and Redshaw, 2006), a link which also has a biological underpinning

(de Kieviet et al, 2012). On the birth weight side, occasional maternal drinking is typically not thought to

impact birth weight (Henderson, Gray and Brocklehurst, 2007), but there is better evidence that smoking does

(e.g. from trials of smoking cessation programs as in Lumley et al, 2009).

3.3 Results

Table 2 reports the results: Panel A shows data on child IQ from the NSLY, Panel B data on birth weight

from the NLSY and Panel C data on birth weight from the Natality Detail Files.

The first two columns in each panel show estimated treatment effects and R-squared values with only

sex (or age and sex in the case of IQ) as controls. Columns 3 and 4 show similar treatment effects with the full

control set. More breastfeeding is associated with higher IQ in these regressions, and low birth weight is

associated with lower child IQ. More maternal drinking appears in these data to be associated with higher

child IQ later. There is no biological reason to think this is the case: it must be due to selection. Both

samples show smoking and drinking are associated with lower birth weight. All seven analyses reported here

show significant effects with the full set of controls. Interpreting these results in a naive way, one would

conclude that each has a significant link with child outcomes.

Column 5 shows the sibling fixed effects estimates; in Panel C, I report the estimates drawn from the

NLSY for these outcomes, since the Natality files do not link mothers across births. The positive impacts of

breastfeeding and maternal drinking are eliminated. The impact of low birth-weight and prematurity on IQ

remains fairly large – about 0.10 standard deviations – but has a p-value of 0.11. In the case of birth weight,

the impact of smoking on child birth weight remains strongly significant in these regressions, but there is no

measured impact of maternal drinking. These results – the lack of an impact for breastfeeding and maternal

drinking, the possible impact of low birth weight on child IQ and the strong impact of smoking on birth weight

– line up well with the conclusions on null hypotheses from the literature described above.

Column 6 combines these figures with the estimates of Rmax (0.385 in the case of IQ, 0.5 in the case of

birth weight) and calculates the δ which would match βadj to βtrue. In all seven rows this δ is defined and is

positive. That is, these all pass the most basic validation test: the coefficients move toward the truth when the

controls are added and there is therefore some value of δ which would match. The values of δ range between

about 0.5 and 1.5.

In Column 7 I report the value of δ which would return an adjusted effect of 0 (rather than the value

which would match to the sibling fixed effects). This is done for two reasons. First, for those outcomes

(maternal drinking, breastfeeding) where other literature suggests we reject the null, a value of 0 is another

estimate of the true effect. Second, this allows me to ask in general whether the less robust results are those

where a smaller value of δ would eliminate the effect. In the case of the first objective, this column suggests a

15



smaller range of δ – around 1 – would match each of these effects to zero. In the case of the second I find

support: the “true” effects would require, on average, a larger value of δ to produce an adjusted effect of zero.

Finally, Column 8 asks the second form of validation I describe above: could a single value of δ generate

better inference across all these settings. I use a value of δ = 1. This is done for two reasons. First, it seems a

natural focal point. Second, looking at the values in Columns 6 and 7, this would appear to fit well. Standard

errors in this column are calculated with a bootstrap over individuals, although it is worth keeping in mind

that these are very sensitive to sample size. This adjustment appears to perform well. The coefficient moves

closer to the true treatment effect in all cases. After the adjustment only the impacts of smoking remain

significant and sizable.

Coefficient Stability

The above analysis suggests that performing the proportional selection adjustment improves the conclusions.

It seems useful to consider whether a similar conclusion could have been reached from using the “coefficient

stability” heuristic. To do this, for each treatment I run regressions progressively including controls. I choose

the order of controls by ranking the demographics based on the amount of variation in child IQ or birth weight

that they explain in the data. I include these controls in the same order for each analysis within outcome (the

order differs for IQ and birth weight). Figures 1a-1g show coefficients and R-squared values for the seven

analyses.

These figures suggest coefficient stability is not useful distinguishing among these analyses. All show a

very similar pattern of stabilizing coefficients. Based on these alone it would be quite difficult to identify some

of the relationships as more robust than the others. In line with the discussion in Section 2.3, the issue is

clear: the R-squared in the fully controlled regressions here is around 0.25 for IQ and less than 0.1 for birth

weight, far below the figures of 0.385 or 0.5 that were drawn from existing data. Given this, the fact that the

coefficient has stabilized is not fully informative.

Summary

The results in this section – in particular, in Table 2 – are quite supportive of this approach. It passes the

most basic validation test by showing that the coefficient movements are informative and larger movements

point to less robust results. Perhaps more surprisingly, the results show that a single value of δ (δ = 1)

performs well across all the settings. Returning to the question of applications in economics, this suggests

support for the coefficient movement robustness test (although not the coefficient stability test) and may even

suggest an adjustment based on δ = 1 might be a helpful statistic to report (similarly one could report a value

of δ which generates βadj = 0 and use δ = 1 as a benchmark).
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In the next section I move to a somewhat more aggressive application and ask whether this approach

might be used in the context of a large public health literature to improve inference.

4 Application: Health Behaviors and Health Outcomes

A large literature in epidemiology and public health looks to estimate the relationship between positive heath

behaviors and health outcomes. Do individuals who exercise live longer? Does taking a vitamin supplement

lower your blood pressure? Observational studies in this literature suffer from clear omitted variable bias

problems, largely stemming from correlations between high socioeconomic status and both positive health

behaviors and good health outcomes. Likely due to this issue, when randomized studies are run to look at

similar questions the results are often at odds with what was seen in observational data. A classic example is

the exploration of the link between diet and health. For years the medical profession recommended a low-fat,

high carbohydrate diet as a key to better health. It turned out this was based on biased estimates. When

randomized data from a large study was released in 2006, this result was seriously weakened (Prentice et al,

2006; Beresford et al, 2006; Howard et al, 2006).

Given that many of the central issues facing this literature can be boiled down to omitted

socioeconomic status variables, it seems natural to ask whether the selection-on-observables adjustment

procedure could improve inference.

In this section I combine observational data on a number of relationships estimated in the public health

literature with randomized evidence on those relationships. In some cases, randomized trials have confirmed

observational links and in others they have not. I use a comparable observational population and match the

magnitude of the randomized impacts to the observational ones. As in the analysis above, I ask whether a

version of the selection-bias adjustment procedure could match the observational estimates to the randomized

effects.

I go further in this section than in Section 3 in two ways. First, motivated in part by the above, I

assume a value δ = 1 and then estimate a value for Rmax for each match. This effectively asks whether it is

possible to perform a successful version of this adjustment without thinking carefully about the Rmax. Second,

once I have estimated values for Rmax across a number of settings (this section considers 29

outcome-treatment pairs), I ask whether a single value of Rmax (or, in fact, a single parametrization as a

function of R2 and R1) could improve inference across all the settings.

In the end, I can ask whether a simple version of this procedure – using only the results from the

observable regressions – might be used to improve inference across these settings and parallel settings, which I

argue would encompass much of the public health literature. The last part of this section provides some simple

out of sample tests.
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It is worth noting that this section also has a role as validation, just as Section 3 above, in asking

whether a version of this adjustment can match the true impacts.

Section 4.1 below describes data, Section 4.2 the empirical strategy, and Section 4.3 the results,

including out-of-sample tests.

4.1 Data

This section considers two treatments: exercise and vitamin D+Calcium supplementation. In each case

I consider the relationship between the treatment and a range of outcomes. This analysis requires two pieces

of data: randomized trial results and observational data.

Randomized Trials

Randomized trial results are drawn from existing work.

Exercise Evidence on the impact of exercise is drawn from several papers which are summarized in a

Cochrane Review meta-analysis (Shaw et al, 2006). I consider only studies which compared exercise to no

exercise (this excluded studies which also used diet). Outcomes considered include weight, blood pressure,

cholesterol, blood glucose and triglycerides.

Vitamin D and Calcium Evidence on the impact of vitamin D and calcium supplementation comes

from the Women’s Health Initiative, a large scale study of post-menopausal women which has run a number of

important interventions. One trial within the study involved randomizing women into receiving vitamin D and

calcium supplements (treatment) or not (control). Outcomes include bone density, lipids, blood pressure,

exercise, and weight.

In Appendix Table A.1 I list the citation for each outcome-treatment pair, the treatment and any

restrictions on age or gender in the study recruitment.

Observational Data

Exercise Exercise data are drawn from the National Health and Nutrition Examination Survey

(NHANES), Wave III. Individuals are asked detailed questions about exercise. I use this to create a treatment

measure as close as possible to the treatment in each study. In most cases the study includes some kind of

jogging three times a week. Exact populations used are listed in Column 3 of Appendix Table A.1 for each

paper, but in general these tend to focus on middle-aged individuals. Exercise data and the outcomes variables

considered are summarized in Panel A of Table 3.

Vitamin D and Calcium Data on vitamin D and calcium supplementation also comes from the

NHANES-III. Individuals are asked about vitamin and mineral supplements, which allows me to create an

indicator for taking vitamin D and calcium supplementation. To match the Women’s Health Initiative data I

use women aged 55 to 85 (recruitment in this study is women 50 to 80, but evaluation is several years later).
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Summary statistics on share of women using supplements and outcomes variables are in Panel B of Table 3.

4.2 Empirical Strategy

In this section, I employ the assumption that δ = 1. The bias-adjusted coefficient, βadj is therefore

calculated: βadj = Λ− (ξ−Λ)(Rmax−R2)
R2−R1

. In this case, βtrue is drawn from randomized trial results. As in the

analysis above there is an important choice of what is in W and what will be in M . As above, I include in W

the standard socioeconomic status measures: education, income, marital status and race. This reflects the

observation that the bulk of the omitted variable issue are likely to be socioeconomic status. In M I include

age dummies and sex and, in cases where the outcome is weight in kilograms, measures of height.

The first step in the empirical strategy is to simply estimate value of Rmax for which βadj = βtrue. This

will be defined as long as Λ is closer to β than ξ is (that is, as long as the coefficients move in the correct

direction), although here it is possible that the estimated value of Rmax could be larger than 1, which would

be a failure from a validation standpoint.

The second step is to ask whether there is a single value of Rmax which would improve inference across

all these settings. In fact, this is unlikely to be the case since the settings I consider here differ widely in their

predictability, so a single value of Rmax is not likely to work well. Instead, I parametrize Rmax as a function of

R1 and R2 : Rmax = R2 + ψ(R2 −R1). I then estimate ψ.

Effectively, this assumes that the amount of Y which is explained by the observables is a guide to how

much would be explained by the unobservables. A value of ψ = 1 would imply that the unobservables explain

as much of the variation in Y as the observables.

In addition to having some intuitive appeal, this is a convenient assumption when the goal is to use the

conclusions to evaluate existing work. With this assumption, the calculation of the bias-adjusted coefficient

collapses to βadj = Λ− ψ(ξ − Λ) and it is not necessary to observe the R-squared values. Since published

papers in public health and epidemiology only very rarely report these values, this makes this procedure

significantly more useful.

Given this assumption, the full estimation is straightforward. For outcome-treatment pair i denote the

adjusted coefficient βiadj(ψ) and the true effect βitrue. The trial also produces a standard error, denoted σi. I

calculate the difference between the bias-adjusted and true coefficient, scaled by the standard error. I sum

these over the outcome-treatment pairs and minimize the sum over the choice of ψ. Formally, I solve:

ψ̂ = argminψ
∑
i

(
βiadj(ψ)− βitrue

σi

)2

Given this value it is then possible to explore the performance of this adjustment in several ways. First,

I can compare the magnitude of the error under the maximum likelihood value of ψ relative to the assumption
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that ψ = 0 (which is the benchmark controlled regression coefficient). Second, I can compare the performance

on each outcome-treatment pair, using bootstrapped standard errors, and ask whether I would have drawn

more accurate conclusions about the null hypothesis from the adjusted analysis. Finally, there are a few

outcomes for which the trials suggest a conclusion about the null hypothesis but where matching magnitudes

is difficult. It is possible to perform an out-of-sample test using these outcomes and exploring whether the

same adjustment would lead to more accurate conclusion in these cases.

4.3 Results

The first five columns of Table 4 show the first step of the results. Column 1 lists the outcome and, in the case

of exercise where there are typically multiple studies per outcome, information on the citation. The second

and third columns list the uncontrolled and controlled effects, their standard errors and the R-squared values.

The effects are significant in many but certainly not all cases, and generally in the expected direction, with

exercise and vitamin supplementation linked to improved health outcomes.

Column 4 reports the impact from the randomized trials. These impacts are less often significant than

the controlled effects and typically much, much smaller. If I consider the relationship between vitamin

supplementation and weight, for example, both the randomized and controlled effects are significant, but the

randomized effect is tiny relative to the impact with controls. The controlled effect indicates a difference of

about one and a half pounds, and the randomized effect a difference of just about one-tenth of a pound. This

is an economically significant difference.

Column 5 reports the value of Rmax which would match βadj and βtrue. In the case where this is not

defined (is either less than R2 or greater than 1) I simply report N.V. (“not valid”). In 22 of 29 outcomes the

adjustment works – there is a value of Rmax for which the adjusted coefficient matches the truth. The cases in

which there is no match are all ones where the observational effect is not significant and neither is the

randomized effect. These are inherently somewhat noisy, which makes it perhaps less surprising that the

coefficient movements are not informative. In fact, if I ask the broader question of whether some value of

Rmax could generate estimates inside the randomized confidence interval, the answer is yes in all 29 of the

cases. This finding supports the first validation hurdle: some version of this adjustment with a value of δ = 1

works in most cases.

Turning to the second step, the full estimation procedure described above yields a value of ψ = 1.018.

This suggests that the omitted characteristics explain approximately as much of the variation in outcome as

the included characteristics. I can illustrate the overall impact of this bias adjustment. To do so I re-scale each

outcome so the 95% confidence interval from the randomized trial ranges from 0 to 1 (and thus the randomized

point estimate is close to 0.5); this is necessary for visualization since the scale of the effects varies widely

across outcomes. I then convert first the standard controlled coefficient and then the bias-adjusted coefficient
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onto this scale. Figure 2a shows the interval for the randomized trial (open circles) and the controlled

coefficient (filled in circle). Although the controlled and true coefficient are similar in some cases, especially

when they are both close to zero, in others the controlled coefficient is wildly outside the confidence interval.

Figure 2b shows the coefficients after the bias adjustment is done with the value of ψ̂ = 1.018. The fit is

significantly better; note the large decrease in scale (the bias-adjusted coefficients on the same scale as the

controlled coefficients can be seen in Appendix Figure 1). In a number of cases where the controlled coefficient

showed significant errors – for example, the impact of vitamin supplementation on weight and exercise – the

adjusted coefficients are within or very close to the confidence interval. The overall error is significantly

smaller in the bias adjustment case – a reduction of 30% on average.

The final column of Table 4 describes this result numerically: I perform the bias adjustment with

ψ = 1.018, and generate standard errors using a bootstrap over individuals. Again, it’s worth taking the

standard errors with caution since the observational studies here are, in some cases, significantly underpowered

to pick up impacts of the size seen in randomized trials. The bias-adjusted impacts are much closer to the

estimates from the randomized data, on average.

This table makes clear much of the value in the adjustment comes in cases where the controlled

coefficients lead to false positive conclusions, or at least to an overstatement of the magnitude of the impact.

For example, the controlled coefficients suggest a large and significant impact of vitamin supplementation on

exercise9, whereas the bias-adjusted coefficient is very close to the small and insignificant impact estimated in

randomized trials. At the same time, the bias-adjustment retains significant effects in many of the cases where

there are large and significant effects estimated in randomized trials – for example, the impact of exercise on

weight, blood pressure and some measures of heart health. This bias-adjustment does a good job of identifying

true from false associations among those which simple controlled regressions show are significant.

Out of Sample Tests

Within sample, the adjusted coefficients above are closer to the true treatment effect than the controlled

coefficients. An important related test is to ask how these perform out of sample. I consider two out-of-sample

tests.

In the case of exercise and Vitamin D there are also several outcomes for which randomized experiments

have reached a conclusion about the null but where magnitude comparisons are difficult. This may be due to

differences in the timing of follow-up, the fact that randomized effects are reported as odds ratios or because

generating an exactly parallel analysis is difficult. However, given the adjustment value estimated above it is

possible to return to these outcomes and explore whether the adjustment procedure used here leads to correct

9The theory under which this might matter is that calcium and vitamin D increase bone health, which improves ability to
exercise.
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conclusions in these cases.

This is done in Panels A and B of Table 5. This table is structured similarly to Table 4 except that in

the third column I simply report the hypothesized direction and significance (or not) of the effect in the

randomized trial. In general, the bias-adjustment also performs well here. In the case of exercise, the

controlled coefficients show significant impacts on both diabetes and mortality (among individuals with heart

disease), and the bias-adjusted coefficients correctly identify only the mortality evidence as robust. In the case

of vitamin D the controlled coefficients incorrectly suggest supplementation matters for mortality, a result

which is corrected by the bias-adjustment.

A second out-of-sample tests relies on another study, the Physician Health Study (PHS). This work

evaluated the impact of beta-carotene, vitamin E and vitamin C on heart disease mortality among men.10

Published results from the study reject links between mortality and any of these vitamins (Hennekens et al,

1996; Sesso et al, 2008). Because the outcome is mortality and magnitudes are therefore difficult to link, I

could not use this study in the estimation, but it is possible to use as an out of sample test. The NHANES-III

provides the data, as above.

Panel C of Table 5 shows this evidence. Vitamin E and Vitamin C are both linked to lower mortality in

the controlled regressions but not (at least not significantly) in the bias-adjusted coefficients. This provides

further out-of-sample support.

Summary

The evidence here provides further validation support for the suggestion that the robustness of results to

coefficient movements is informative about their validity. Going further, however, it suggests that across a

range of settings in public health, inference might be improved on average with a single, very simple

adjustment. Given a controlled coefficient Λ and uncontrolled coefficient ξ, a value of βadj = Λ− 1.018(ξ − Λ)

would, at least based on the settings above, be closer on average to βtrue.

5 Conclusion

The goal of this paper is two-fold. First, I connect the popular robustness heuristic of exploring coefficient

sensitivity to controls to the proportional selection assumption formalized in Altonji, Elder and Taber (2005). I

provide some guidance to discipline the use of this coefficient movement heuristic and give a simple form of the

adjustment using only information on coefficient and R-squared values. In particular, I argue that under the

10This study also evaluated (and supported) the importance of aspirin in preventing heart disease mortality. However, the
observational evidence on aspirin is marred by both the omitted variable issue but much more so by a problem of reverse causality.
It has long been thought that aspirin was good for heart disease so the kind of people who take it tend to be those with heart
disease. This problem crops up in most of the settings I consider but to a much, much lesser extent. When facing this problem a
bias adjustment of this type will not address the issue. I therefore do not use this as a test.
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proportional selection assumption, with proportionality δ, the causal coefficient β can be recovered from the

uncontrolled coefficient, ξ, the coefficient with controls, Λ, the R-squared from the uncontrolled and controlled

regressions (R1 and R2) and an assumption about the maximum R-squared (Rmax). The exact calculation is:

β = Λ− δ (ξ − Λ)(Rmax −R2)

(R2 −R1)

Second, I describe two validation exercises. I argue that, regardless of the intuitive appeal of this

approach, it has value only if it is effective in drawing better causal conclusions. In both validation exercises I

consider cases where there exists both observational data which may be biased alongside either randomized

data or better observational studies which are more likely to reflect a “true” relationship.

In the case of the relationship between maternal behavior and child birth weight and IQ, I show that a

carefully applied version of this approach produces adjusted coefficients which are a much closer match to the

truth.

The second validation exercise takes a number of settings and asks whether I can estimate a general

version of the adjustment which would lead to better conclusions. I consider settings where (a) the outcome is

a health outcome and the treatment is a health behavior and (b) the primary omitted variable bias comes

from socioeconomic status, broadly construed. I argue that this applies to many relationships of interest and is

not limited to the ones I consider here. I approach this as an estimation with the assumption that

Rmax = R2 + ψ(R2 −R1), and ψ as a parameter to be estimated. I find that a value of ψ = 1.018 provides a

much better fit to randomized results than the simple controlled coefficients. With bootstrapped standard

errors it rejects a number of false-positive associations with limited cost in terms of rejecting true-positive ones.

To the extent that one is comfortable applying these results in other contexts, this suggests a simple

way for researchers in parallel settings to evaluate the plausibility of their results, and for readers of published

work to do so, as well, by simply calculating: βadj = Λ− 1.018(ξ − Λ).

Returning to the coefficient heuristic, both empirical exercises here provide support for its use. In

related settings, it appears that robustness to this adjustment does suggest causal impacts. The evidence may

suggest that δ = 1 – that is, an assumption of equal selection – could be a reasonable benchmark. Researchers

looking at coefficient movements may consider reporting the adjusted coefficient with a value of δ = 1 as a way

to summarize the degree of stability.
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Figure 1: Coefficient Stability, Maternal Behavior, Child Birth Weight and IQ
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(f) Maternal Smoking, Birth Weight in Natality Files
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(g) Maternal Drinking, Birth Weight in Natality Files
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Notes: These graphs show the evolution of the estimated rela-

tionship between each treatment and child IQ or birth weight

as controls are added. Controls are added in the same order

within an outcome-cross-dataset. The order is chosen based on

ordering the controls by how much of IQ or birth weight they

explain and including the most important first.
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Table 1: Summary Statistics: Early Life and Child IQ

Panel A: NLSY Data, IQ Analysis

Mean Standard Deviation Sample Size

IQ (PIAT Score, Standardized) 0.026 0.991 6613

Breastfeeding Months 2.32 4.51 6184

LBW + Preterm 0.049 0.217 5896

Mom Drink at all in Pregnancy 0.322 0.467 6225

Age 5.57 1.37 6613

Child Female 0.494 0.500 6613

Mother Black 0.284 0.451 6613

Mother Age 25.1 5.42 6613

Mother Education (years) 12.4 3.1 6613

Mother Income $39,980 $79,069 6613

Mother Married 0.649 0.477 6613

Panel B: NLSY Data, Birth Weight Analysis

Birth Weight (grams) 3292.8 604.9 7418

Mom Smoke in Pregnancy 0.290 0.453 7418

Drinking Intensity (0-7) 0.634 1.15 7174

Child Female 0.486 0.499 7418

Mother Black 0.277 0.447 7418

Mother Age 24.2 5.42 7418

Mother Education (years) 12.1 3.1 7418

Mother Income $31,097 $62,975 7418

Mother Married 0.665 0.471 7418

Panel C: Natality Detail Files

Birth Weight (grams) 3333.8 575.1 5,886,822

Mom Smoke in Pregnancy 0.123 0.328 5,886,822

Drinking Intensity (0-7) 0.023 0.316 5,886,822

Child Female 0.488 0.499 5,886,822

Mother Black 0.167 0.373 5,886,822

Mother Age 27.2 6.13 5,886,822

Mother Education (1-5) 3.51 1.16 5,886,822

Mother Married 0.658 0.474 5,886,822

Notes: This table shows summary statistics for the data used in the analysis in Section 3. Drinking intensity is coded from 0 (never) to 7

(every day). Natality detail files are from 2001 and 2002. NLSY data is from the NLSY Children and Young Adults panel.
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Table 3: Summary Statistics: Exercise and Vitamins

Panel A: Exercise [NHANES-III]

Mean Standard Deviation Sample Size

Jogging 3+ Times/Wk .033 .179 9268

BMI 28.0 6.08 9251

Weight (kg) 78.2 18.4 9252

Diastolic Blood Pressure 76.8 10.3 9197

Systolic Blood Pressure 123.9 17.5 9198

Serum Glucose (mmol/l) 5.61 2.17 8712

Triglycerides (mmol/l) 1.71 1.44 8791

Cholesterol (mmol/l) 5.39 1.13 8811

HDL (mmol/l) 1.31 .41 8740

Panel B: Vitamin D and Calcium Supplements [NHANES-III]

Took VitD+Calcium .211 .408 3200

Weight (kg) 69.5 16.3 3180

Diastolic Blood Pressure 73.5 10.1 3003

Systolic Blood Pressure 140.2 20.9 3004

Serum Glucose (mg/dl) 111.9 50.5 2937

Triglycerides (mg/dl) 166.4 111.8 2983

Cholesterol (mg/dl) 232.3 45.6 2988

HDL (mg/dl) 55.7 16.9 2972

Exercise Intensity (METS/wk) 14.3 20.4 3196

Femur BMD .68 .13 2689

Introchanter BMD .94 .19 2689

Notes: This table shows summary statistics for the data used in Section 4. NHANES-III : National Longitudinal Health and Nutrition

Survey, Wave III. For Exercise, the sample restrictions in the analysis differ slightly depending on which paper I am comparing to. For the

summary statistics I consider the most inclusive definition.
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Table 4: Selection Adjustments and Randomized Results

(1) (2) (3) (4) (5) (6)

Outcome Uncontrolled Effect Controlled Effect Randomized Rmaxto match Bias-Adjusted Effect

[Citation] (Std. Error), [R2] (Std. Error), [R2] Effect Randomized (δ = 1,φ = 1.018)

(Std. Error)

Panel A: Exercise

BMI, [3] -1.58∗∗ (0.44) [0.023] -1.30∗∗ (0.44) [0.078] -0.60∗∗ 0.211 -1.00∗∗(.47)

BMI, [4] -1.93∗∗ (0.41) [0.020] -1.49∗∗ (0.41) [0.048] -1.01∗∗ 0.079 -1.03∗∗(.36)

Weight in Kg, [1] -4.56∗∗ (1.20) [0.177] -3.98∗∗ (1.21) [0.201] -4.60∗∗ N.V. -3.40∗∗(1.18)

Weight in Kg, [2] -2.41∗∗ (1.09) [0.210] -1.53 (1.10) [0.230] -1.15∗∗ 0.238 -0.63 (1.11)

Diastolic BP, [2] -0.090 (0.67) [0.054] 0.004 (0.67) [0.071] -1.80 N.V. 0.099 (1.02)

Diastolic BP, [3] -0.330 (0.88) [0.017] -0.197 (0.89) [0.050] -3.00 N.V. -0.061 (1.08)

Systolic BP, [2] 0.223 (1.00) [0.094] 0.655 (1.01) [0.119] 0.20 N.V. 1.09 (1.02)

Systolic BP, [3] -0.071 (1.23) [0.069] 0.285 (1.24) [0.110] -4.00 N.V. 0.64 (1.40)

Serum Glucose, [2] -0.205 (0.14) [0.025] -0.131 (0.14) [0.051] -0.19∗∗ N.V. -0.055 (.095)

Serum Glucose, [4] -0.313∗∗ (0.12) [0.027] -0.237∗∗ (0.12) [0.048] -0.16∗ 0.069 -0.158∗∗ (.067)

Cholesterol, [1] -0.151∗ (0.09) [0.033] -0.121 (0.09) [0.062] -0.02 0.163 -0.091 (.071)

Cholesterol, [2] -0.123 (0.08) [0.068] -0.086 (0.08) [0.095] 0.05 0.198 -0.049 (.087)

Cholesterol, [3] -0.159 (0.11) [0.035] -0.103 (0.11) [0.084] 0.02 0.191 -0.047 (.123)

Triglycerides, [1] -0.468∗∗ (0.13) [0.034] -0.359∗∗ (0.13) [0.066] -0.16 0.125 -0.25∗∗(.093)

Triglycerides,[2] -0.367∗∗ (0.10) [0.030] -0.276∗∗ (0.10) [0.062] -0.20∗∗ 0.089 -0.184∗∗ (.082)

Triglycerides,[3] -0.393∗∗ (0.15) [0.027] -0.271∗ (0.15) [0.072] -0.16 0.113 -0.147 (.136)

HDL, [1] 0.104∗∗ (0.03) [0.016] 0.091∗∗ (0.03) [0.104] 0.13∗∗ N.V. 0.076∗∗(.031)

HDL, [2] 0.108∗∗ (0.03) [0.092] 0.081∗∗ (0.03) [0.132] 0.03 0.207 0.052∗(.028)

HDL, [3] 0.095∗∗ (0.04) [0.022] 0.065∗ (0.04) [0.116] 0.03 0.228 0.035 (.040)

Weight in Kg -3.03∗∗ (0.77) [0.139] -1.58∗∗ (0.78) [0.184] -0.13∗∗ 0.228 -0.105 (.80)

Diastolic BP -0.256 (0.46) [0.047] -0.153 (0.48) [0.065] 0.11 0.109 -0.048 (.52)

Systolic BP -1.12 (0.93) [0.102] -0.521 (0.96) [0.129] 0.22 0.162 0.095 (1.05)

Serum Glucose -6.92∗∗ (2.39) [0.021] -3.59∗ (2.44) [0.056] -0.82 0.085 -0.19 (2.59)

Triglycerides 4.47 (5.39) [0.010] 3.03 (5.45) [0.064] 1.43 0.124 1.57 (6.00)

Cholesterol 0.199 (2.17) [0.012] 0.156 (2.23) [0.030] -1.67 0.815 0.112 (2.52)

HDL 1.28∗ (0.80) [0.015] 1.02 (0.82) [0.053] 0.05 0.193 0.75 (.91)

Exercise (METS/wk) 5.27∗∗ (0.94) [0.028] 2.88∗∗ (0.94) [0.092] 0.18 0.165 0.44 (1.20)

Femur BMD -0.019∗∗ (0.01) [0.175] -0.006 (0.01) [0.260] 0.007∗∗ 0.341 0.008 (.007)

Introchanter BMD -0.020∗∗ (0.01) [0.163] -0.008 (0.01) [0.216] 0.0003 0.253 0.004 (.010)

Notes: This table displays the match between the results from observational data and randomized results. Citation Key: [1] Wood et al,

1988; [2] Stefanick et al, 1998; [3] Hellenius et al, 1993; [4] Anderssen et al, 1996. Full citations for randomized data and observational

sample restrictions are in Appendix Table A.1. Controls in Panels A and B include : dummies for age and sex (controlled and uncontrolled

regressions), dummies for income, dummies for education category, dummies for race, dummies for detailed marital status (controlled

regressions only). The bias-adjustment in Column 4 is performed using a value of ψ = 1.018. Standard errors are bootstrapped over

individuals. ∗significant at the 10% level, ∗∗ significant at the 5% level. N.V. Rmax value to match to randomized is less than R2.
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Table 5: Selection Adjustments, Out-of-Sample Outcomes

Panel A: Exercise

Outcome Uncontrolled Effect Controlled Effect Randomized Effect Bias-Adjusted Effect

(Std. Error) (Std. Error) [Possible Direction, Sig.] (Std. Error)

Ever Diabetes -0.035∗∗(.009) -0.019∗∗ (.009) Negative, Not Significant -0.003 (.010)

Mortality, with heart disease, Men -0.132∗∗(.041) -0.115∗∗(.041) Negative, Significant -0.098∗∗(.05)

Overall Bone Density, Women -0.013 (.012) -0.0003 (.012) Positive, Not Significant 0.013 (.014)

Panel B: Vitamin D and Calcium Supplementation

Outcome Uncontrolled Effect Controlled Effect Randomized Effect Bias-Adjusted Effect

(Std. Error) (Std. Error) [Possible Direction, Sig.] (Std. Error)

Ever Diabetes -0.049∗∗(.015) -0.023 (.016) Negative, Not Significant 0.002 (.018)

Mortality -0.058∗∗(.019) -0.034∗(.020) Negative, Not Significant -0.010 (.023)

Panel C: Vitamins and Mortality in Physician Health Study

Outcome Uncontrolled Effect Controlled Effect Randomized Effect Bias-Adjusted Effect

(Std. Error) (Std. Error) [Possible Direction, Sig.] (Std. Error)

Beta-Carotene Supplements -0.035∗(.019) -0.022 (.019) Negative, Not Significant -0.009 (.021)

Vitamin E Supplements -0.033∗∗∗(.012) -0.026∗∗(.012) Negative, Not Significant -0.017 (.013)

Vitamin C Supplements -0.029∗∗ (.011) -0.021∗ (.012) Negative, Not Significant -0.013 (.013)

Notes: Exercise treatment: total exercise times per month (in units of 100). All adjustments are done using a value of δ = 1 and ψ = 1.018.

Citation List: Exercise and (a) diabetes (Orozco et al, 2008); (b) mortality (Heran et al, 2011); (c) bone density (Howe et al, 2011). Vitamin

Supplementation and: (a) diabetes (de Boer et al, 2008); (b) mortality (LaCroix et al, 2009); (c) cognitive (Rossom et al, 2012); (d) cancer

(Brunner et al, 2011). Physican Health Study: (a) Beta-carotene (Hennekens et al, 1996); vitamins E and C (Sesso et al, 2008).
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Appendix A: Further Theoretical Results

This appendix discusses two additional issues related to the theory. Subsection A.1 below briefly contrasts the
calculation of bias based on the coefficients to the calculation directly from the data suggested by Altonji,
Elder and Taber (2005). Subsection A.2 discusses the case with two partially observed categories.

A.1. Altonji, Elder and Taber (2005) Calculation

Recall the true model:
Y = α+ βX +W +W ′ + ε

and the fully controlled model
Y = α̃+ ΛX + ΨW + τ + ε

For simplicity, assume ε = 0 so there is no iid noise; in this case Rmax = 1. Under the proportional selection
assumption, I show that the exact formula for the bias on Λ is δCwxVw′

1−C2
wx

. Further, I show that

δ (ξ−Λ)(1−R2)
(R2−R1) =

[
δCwxVw′
1−C2

xw

]
(1−C2

xw−δ
2C2

xwVw′ )
(1−C2

xw−δC2
xwVw′ )

which is a very close approximation to the bias and is exact when

δ = 1.
Altonji, Elder and Taber (2005) suggest an alternative way to calculate this object using the raw data.

In particular, they do the following:

1. Run the fully controlled regression and calculate Vτ and ΨW.

2. Regress X on ΨW , a regression we will write as:

X = α̂+ Γ(ΨW ) + X̃

3. Calculate Vx̃ and extract Γ.

The calculation is then δΓVτ
Vx̃

.

Recall that Vx̃ = 1− C2
xw so the denominator is exactly equal to the denominator of the bias. The

numerator differs slightly. In particular:

Γ =
Cwx

1− δC2
wxVw′

1−C2
wx

Vτ = Vw′(1− δ
δC2

wxVw′

1− C2
wx

)

Combining, we find that:

δΓVτ = δCxwVw′
(1− δ δC

2
wxVw′

1−C2
wx

)

1− δC2
wxVw′

1−C2
wx

Simplifying, we find that:

δΓVτ
Vx̃

=

[
δCwxVw′

1− C2
xw

]
(1− C2

xw − δ2C2
xwVw′)

(1− C2
xw − δC2

xwVw′)

which is exactly the same formula we get from the coefficient movement analysis and, as there, is exactly equal
to the bias in the case where δ = 1.

A.2. Extension: Multiple Categories with Proportional Selection

I consider now an extension to a case where there are two omitted categories, both of which have observed and
unobserved components and both of which can be described with a proportional selection assumption. For
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example, consider the relationship between child health and pollution. One partially observed category is
family socioeconomic status. A second is area geography. We may want to ask the question of whether we can
use a similar coefficient movement logic to infer true treatment effects in this case, perhaps by looking at the
movement of coefficients between the regression with only the treatment as a control and that with the
treatment plus observed socioeconomic status and geography controls.

Section 2.3 demonstrated that it is possible to infer the effect we would estimate if we saw either
category fully observed, but does not discuss inferring the true causal effect.

We consider now the case where the true model is

Y = α+ βX +W +W ′ +M +M ′ + ε

and X, W and M are observed. The variances of X, M and W are all equal to 1. We will assume equal
selection on M and M ′ and on W and W ′ and will assume that both M elements are orthogonal to the W
elements. Adopting proportional rather than equal selection makes the algebra more confusing without
improving intuition. In particular, I assume

Cw′x = CwxVw′

Cm′x = CmxVm′

I consider the following two equations – one with no controls, the second fully controlled:

Y = α+ ξX + o+ ε

Y = α+ ΛX + Θ1W + Θ2M + τ + ε

As before, the coefficient on Λ is biased. In this case: Λ = β + CwxVw′+CmxVm′
1−C2

mx−C2
wx

.

We can ask directly how the coefficient difference relates to the bias and we find:

(ξ − Λ)
[CwxVw′ + CmxVm′ ]

(1− C2
mx − C2

wx)(Cmx + Cwx)− (C2
mx + C2

wx)[CwxVw′ + CmxVm′ ]
=
CwxVw′ + CmxVm′

1− C2
mx − C2

wx

Using the same variance calculation we used before, we find that:

Vτ
Vo − Vτ

=
[CwxVw′ + CmxVm′ ]− (Vw′+Vm′ )(1−C

2
mx−C

2
wx)

[CwxVw′+CmxVm′ ]

[(1− C2
mx − C2

wx)(Cmx + Cwx)− (C2
mx + C2

wx)[CwxVw′ + CmxVm′ ]]− (1−C2
mx−C2

wx)(2−(Cmx+Cwx)(Cmx(1+Vm′ )+Cwx(1+Vw′ )))
[CwxVw′+CmxVm′ ]

Comparing the two equations, we can see that the exact calculation we had before does not go through here.
In particular, there is an added piece in the numerator and the denominator of the variance calculation. To
the extent these are small or roughly cancel each other, the formula given in Proposition 1 in the paper will be
approximately correct. More generally reassuring, this suggests that in this case the bias does still scale with
coefficient movements, and with the r-squared movements.
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Appendix Tables and Figures

Table A1: Citation for Randomized Outcomes

Outcome Citation Sample Restrictions (if any)

Exercise, BMI, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, BMI, [4] Anderssen et al, 1996 Age 30-50

Exercise, Wt(Kg), [1] Wood et al, 1988 Female, 30-59

Exercise, Wt(Kg), [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, DBP, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, DBP, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, SBP, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, SBP, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, Glucose, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Glucose, [4] Anderssen et al, 1996 Age 30-50

Exercise, Triglyc, [1] Wood et al, 1988 Female, 30-59

Exercise, Triglyc, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Triglyc, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, Cholest, [1] Wood et al, 1988 Female, 30-59

Exercise, Cholest, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Cholest, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

Exercise, HDL, [1] Wood et al, 1988 Female, 30-59

Exercise, HDL, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, HDL, [3] Hellenius et al, 1993 Men, 35-60, no heart disease

CaD, Wt(Kg) Caan et al, 2007 Women, 55-85

CaD, DBP Margolis et al, 2008 Women, 55-85

CaD, SBP Margolis et al, 2008 Women, 55-85

CaD, Glucose de Boer et al, 2008 Women, 55-85

CaD, Triglyc Rajpathak et al, 2010 Women, 55-85

CaD, Cholest Rajpathak et al, 2010 Women, 55-85

CaD, HDL Rajpathak et al, 2010 Women, 55-85

CaD, Exercise Brunner et al, 2008 Women, 55-85

CaD, Femur BMD Jackson et al, 2011 Women, 55-85

CaD, Intro. BMD Jackson et al, 2011 Women, 55-85

Notes: This table shows the source of the randomized estimates. The text of the outcome matches the form of citation in Figure 2.
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Appendix Figure 1: Adjusted Coefficients on Controlled Coefficient Scale

CaD, Cholest.
CaD, DBP

CaD, Exercise
CaD, Femur BMD

CaD, Glucose
CaD, HDL

CaD, Intro. BMD
CaD, SBP

CaD, Triglyc.
CaD, Wt(Kg)

Exercise, BMI, [3]
Exercise, BMI, [4]

Exercise, Cholest., [1]
Exercise, Cholest., [2]
Exercise, Cholest., [3]

Exercise, DBP, [2]
Exercise, DBP, [3]

Exercise, Glucose, [2]
Exercise, Glucose, [4]

Exercise, HDL, [1]
Exercise, HDL, [2]
Exercise, HDL, [3]
Exercise, SBP, [2]
Exercise, SBP, [3]

Exercise, Triglyc., [1]
Exercise, Triglyc., [2]
Exercise, Triglyc., [3]
Exercise, Wt(Kg), [1]
Exercise, Wt(Kg), [2]

−10 −5 0 5
Estimates (Scaled)

Notes: This table shows Figure 2b graphed on the same scale as Figure 2a.
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