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1 Introduction

Since the seminal contributions of Koopmans (1960), we have known that two plausible

desiderata of dynamic choice – independence and stationarity (see e.g. Heal, 2005) – imply

the standard exponential discounting model that forms the basis of dynamic welfare eco-

nomics1. Decision makers with constant utility discount rates are time consistent, and this,

in combination with the appeal of Koopmans’ axioms, has provided the basis for the domi-

nance of the exponential discounting model in normative applications.

In this paper we take the normative appeal of the exponential discounting model for

granted, and assume that, at least for the purposes of evaluation of public policy, agents have

time consistent preferences. However, like all preference representation results, Koopmans’

provides us with a functional form for agents’ preferences, but leaves the parameter values

that enter their preferences – the actual value of the discount rate – unspecified. In order to

operationalize the preference representation, we must look to the real world, and ask what

agents’ preferences actually are, or motivate a choice of discount rate by other normative

considerations (Dasgupta and Heal, 1979; Arrow, 1999). Once we realize this, things become

more murky. Whose discount rate should we choose? Are some discount rates more legitimate

than others? What counts as a good argument for one value, rather than another?

We view an individual’s choice of discount rate as an ethical primitive – it is a fundamental

judgements about how she values realizations of welfare that are distant in time. Many things

may inform this choice: ethical considerations of inter temporal equity, as well as judgements

of whether the savings rate implied by her choice is desirable (Koopmans, 1969; Dasgupta,

2012). Although others may disagree with her choice, they cannot claim it is ‘incorrect’

– this is much the same as claiming that a preference for whisky over wine is incorrect.

In this view, the problem of social discounting acquires a social choice dimension – there

are many discount rates in the population, none is privileged over the others, and each

should play a role in social decision making (Feldstein, 1964). There is abundant evidence

for heterogeneous time preferences in the empirical literature (Frederick, Loewenstein and

O’Donoghue, 2002). There is also substantial disagreement about the appropriate discount

rate for normative applications, as demonstrated by the debate that followed the Stern Review

of the Economics of Climate Change (Stern, 2007; Nordhaus, 2007; Weitzman, 2007), where

the choice of discount rate was a crucial determinant of policy recommendations. Given this

heterogeneity, and assuming the social choice approach has some democratic appeal, how

should different discount rates be aggregated?

The standard dynamic welfare model deals with this question, if it deals with it at all, by

fait accompli. We assume a representative agent (RA) whose preferences are themselves time

consistent, and the problem boils down to motivating a choice for this agent’s discount rate.

This simplification, while undoubtedly attractive due to its tractability dividends, is often

1A few additional technical conditions are also needed, but these are less controversial.
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misleading. It has been recognized for some time that heterogeneous time preferences may

lead the RA to have a non-constant discount rate. Gollier and Zeckhauser (2005) (henceforth

GZ) consider a notion of representativeness based on distributive efficiency between hetero-

geneous agents who have access to a common non-storable income stream. They obtained

an elegant result in this setup: The RA’s discount rate is a weighted sum of the individu-

als’ rates, where the weights depend on agents’ time varying consumption allocations. Thus,

the RA’s discount rate is in general non-constant. GZ also show that when agents exhibit

increasing tolerance for consumption fluctuations (or equivalently, decreasing absolute risk

aversion), the RA’s discount rate declines monotonically with time. Weitzman (1998, 2001)

obtained qualitatively similar results in his analysis of the effect of uncertainty on the real

(i.e. consumption) discount rate. The GZ result can thus be seen as a social choice theoretic

analogue of Weitzman’s analysis for the pure rate of time preference. Subsequently Jack-

son and Yariv (2012) have shown very generally that any social choice rule that aggregates

individuals’ preferences efficiently must be either dictatorial (i.e. coincide with exactly one

person’s preferences), or time inconsistent.

The GZ result is derived under the assumption that the group’s aggregate income at

each point in time is exogenously given and non-storable. In this paper we consider a more

general setting in which the group manages a common productive resource endogenously over

time. This context is, we feel, better suited to many of the interesting dynamic economic

problems that require collective public choices to be made over policies. Examples include

applications to Ramsey-style optimal growth models, and renewable and exhaustible resource

management.

When aggregate consumption decisions are endogenous the notion of ‘representative’ pref-

erences can take on new meanings. When the group’s income is exogenous and non-storable,

the only sense in which it is possible for an agent to represent the group is if its preferences are

constructed so as to reproduce the welfare the group achieves for a given exogenous income

stream. The RA’s instantaneous welfare function is defined to coincide with the maximum of

a weighted sum of individual utilities, subject to an income constraint. We shall refer to this

notion of representativeness as welfare equivalence. When income is endogenous however, we

may consider a different notion of representativeness, which we call policy equivalence. We

say that an agent’s preferences are policy equivalent if its optimal consumption plan coin-

cides with the group’s optimal aggregate consumption plan, so that the agent and the group

make identical consumption-savings decisions. In the endogenous income case aggregate con-

sumption decisions reflect the trade offs between different individuals in the social planner’s

allocation, and thus convey a great deal of relevant information. Policy equivalent preferences

can be shown to give rise to the same real discount rate as the group would choose for itself.

They are thus just as relevant as welfare equivalent preferences for the purposes of cost-benefit

analysis. Policy equivalence is a weaker constraint on preferences than welfare equivalence –
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welfare equivalent preferences are policy equivalent, but the converse does not hold in general.

Our main result, derived in Section 2, provides a simple characterization of all policy

equivalent preferences. It shows that policy equivalent time preferences can be expressed as

a weighted sum of welfare equivalent time preferences and the productivity of the resource

that provides the group’s consumption. The weights on these two components vary with

time, are endogenous, and correspond to a conversion factor between welfare equivalent and

policy equivalent preferences for consumption smoothing. Using this characterization, we

demonstrate that all policy equivalent preferences must converge to the lowest discount rate

in the population asymptotically. This result makes a conceptual link between our approach,

the analysis of long-run equilibria in economies with heterogeneous agents by Becker (1980),

and a result of Weitzman (1998), which says that in the long run, certainty equivalent real

discount rates tend to the ‘lowest’ rate.

The fact that policy equivalence is a weaker constraint on representative preferences than

welfare equivalence affords us new freedom in our representation of the group’s behavior. We

demonstrate this in Section 3 by considering a case in which individuals share a common

felicity function over consumption, but have heterogenous time preferences. Each individual

thus has separable preferences, which obey Koopmans’ stationarity axiom. In general however,

the preferences of a welfare equivalent representative agent in the GZ framework will not be

separable, and thus violate this axiom. By representing the group’s behavior with policy

equivalent preferences we can reinstate separability, thus maintaining consistency with the

stationarity axiom, and capturing all the effects of discount rate heterogeneity in a separable

discount factor. This has intuitive appeal – since agents disagree only about the discount rate

in this scenario it is attractive to capture the effects of disagreement in a modified collective

discount rate, while leaving the mutually agreed felicity function unchanged. We examine

this case in detail, demonstrating the relationship between welfare equivalent and separable

policy equivalent preferences, and characterizing their term structures.

A very special case arises when agents’ common felicity function is iso-elastic. In this case

welfare equivalent and separable policy equivalent preferences are identical, and give rise to

representative agents that have separable preferences. Since this choice of felicity function

is common in applications, we study its properties in more detail, and demonstrate that if

we assume, following Weitzman (2001), that agents’ rates of time preferences are gamma

distributed, the group’s discount rate will be a hyperbolic function of time. This allows us

to reinterpret the classic behavioral models of hyperbolic discounting (e.g. Loewenstein and

Prelec, 1992; Laibson, 1997; Dasgupta and Maskin, 2005) in a normative light.

Finally, we examine the temporal stability of representative preferences if the social plan-

ner cannot commit to her initial allocations in Section 4. In this case the fact that agents’

time preferences are heterogeneous gives rise to a time consistency problem, which is re-
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flected in the time varying discount rates of representative agents2. The presence of multiple

heterogeneous individuals may nevertheless act as a stabilizing force on the group’s initial

consumption plans. We observe that if the group can agree to implement an efficient plan

in the first period, that plan will be renegotiation-proof, and thus stable under a rule that

requires changes in allocations to be unanimously agreed upon. Thus, although initial allo-

cations are not time consistent if the social planner cannot commit to her plans, they may

nevertheless be implemented if we allow for this weaker concept of temporal stability. We

argue that this formulation has attractive normative features. Section 5 concludes.

Related literature

A model of heterogeneous preferences and endogenous resource management has been studied

by Li and Löfgren (2000). Our work is differentiated from their approach in that we consider

consumption derived from a common resource which may be differentially allocated, whereas

consumption in their model is a public good. The social planner in our model thus decides

on both aggregate consumption and the consumption share of each individual endogenously.

Models of heterogeneous preferences have also been investigated in financial economics, where

the focus is on private investment decisions and the effects of heterogeneity on market equilib-

ria, interest rates, and risk premia (e.g. Dumas, 1989; Lengwiler, 2005; Hara, 2009; Cvitanić

et al., 2012). This work focuses on positive questions and private choices, whereas our work

deals with normative questions and public choices. In addition, all of this work assumes,

as is common in financial economics, that consumption paths are exogenous. Finally, the

properties of the welfare equivalent representation of a heterogeneous group’s preferences

with exogenous consumption have been examined by Wilson (1968); Gollier and Zeckhauser

(2005); Nocetti, Jouini and Napp (2008); Jouini, Marin and Napp (2010). Our work uses the

endogeneity of aggregate consumption decisions to investigate policy equivalent preferences.

This gives us much greater freedom in representing the group’s behavior.

2 Representative time preferences

2.1 The social planner’s problem

Consider a set of agents, indexed by i. Each of the agents is assumed to have additive, time

consistent preferences. Thus, the utility of agent i from consumption cti realized at time t in

the future is Ui(cti)e
−ρit, where Ui(·) is the agent’s felicity function, and ρi is its pure rate of

time preference. The group of agents has access to a common managed ‘resource’ S, which is

the source of their income. We can think of S as physical or natural capital. The resource has

2This issue is present in all models of efficient preference aggregation by a social planner, including e.g.
Gollier and Zeckhauser (2005).
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a natural growth function F (S), which we assume to be a concave function with F ′(0) ≥ 0.

Otherwise, we keep the form of F (S) unspecified at this stage. This model accommodates a

wide class of stock management problems, including neoclassical growth models, and models

of renewable and exhaustible resource management.

We assume that a social planner commits to exploiting the resource S so that allocations

of consumption across individuals maximize social welfare, which is taken to be a Pareto-

weighted sum of individuals’ welfare. Consumption allocations are thus efficient. The social

planner’s allocation problem is:

max
cti

∑
i

wi

(∫ ∞
0

Ui(cti)e
−ρitdt

)
s.t. Ṡ = F (S)−

∑
i

cti, (1)

where the welfare weights wi ∈ (0, 1) satisfy
∑

iwi = 1, and the initial value of the stock is

S(0) = S0.

In addition to the standard assumptions U ′i > 0, U ′′i < 0 on the felicity functions, we also

assume that limc→0 U
′
i(c) =∞. This ensures that the solution to the planner’s control problem

is interior. The curvature of Ui(c) measures agents’ tolerance for consumption fluctuations. It

will prove useful in what follows to have a way of measuring this important aspect of agents’

intertemporal preferences. To this end we define the Absolute Tolerance for Consumption

Fluctuations associated with a felicity function Ui(c) as:

T i(c) := − U
′
i(c)

U ′′i (c)
(2)

This quantity tells us about agents’ consumption smoothing preferences. The smaller is T i,

the more the agent cares about smoothing its consumption over time. T i(c) is the inverse of

the coefficient of absolute risk aversion, though uncertainty will play no role in our analysis.

The familiar assumption of decreasing absolute risk aversion corresponds to the assumption

that T i(c) is an increasing function. This has an equally direct interpretation in our context:

the higher is c, the more tolerant agents are towards small additive consumption fluctuations.

We will assume this condition in what follows. The requirement that marginal felicity be

unbounded at c = 0 places restrictions on the behavior of T i(c) near zero. We show in

Appendix A that it implies

lim
c→0

T i(c) = 0. (3)

This condition will be useful later on.

The Hamiltonian for the social planner’s problem is:

H =
∑
i

wiUi(cti)e
−ρit + λ(F (S)−

∑
i

cti), (4)
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where λ is the shadow price of the resource. Since the Hamiltonian is concave, the necessary

conditions of the Pontryagin Maximum Principle are sufficient for an optimum, and the

optimum is unique. The necessary conditions are:

∂H

∂cti
= 0⇒ λ = e−ρitU ′i(cti)wi (5)

∂H

∂S
= −λ̇⇒ −λ̇ = F ′(S)λ (6)

lim
t→∞

λS = 0 (7)

Hence along an optimal trajectory, the stock evolves according to the dynamical system

λ̇ = −λF ′(S) (8)

Ṡ = F (S)−
∑
i

(U ′i)
−1 (eρitλ/wi) (9)

and at each point in time consumption is allocated so that

cti = (U ′i)
−1 (eρitλ/wi) (10)

The initial condition on the shadow price will be part of the solution. Denote the optimal

aggregate consumption path associated with the group’s problem by

C∗t =
∑
t

cti, (11)

and the associated optimal path of the resource stock by S∗t .

2.2 Representative agents and the group’s discount rate

We are interested in defining a representative agent whose preferences capture the heterogene-

ity in the population, and its effects on the group’s behavior. There are two natural definitions

of representativeness in our setup: welfare equivalence and policy equivalence. Both notions

require us to specify an instantaneous utility function for the representative agent which

depends only on the group’s aggregate consumption, and time.

Welfare equivalent preferences are constructed so that the welfare of the representative

agent coincides with that of the group at each point in time. Suppose that the group’s

aggregate consumption at time t is Ct. We know that aggregate consumption Ct must be

efficiently distributed. Thus the instantaneous welfare the group will realize at time t is

captured by the following function:

V (Ct, t) := max
c̃ti

∑
i

wiUi(c̃ti)e
−ρit s.t.

∑
i

c̃ti = Ct. (12)
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The elasticities of ∂V (Ct, t)/∂Ct with respect to time and aggregate consumption yield the

group’s welfare equivalent time preferences, and the inverse of its absolute tolerance for con-

sumption fluctuations, respectively. Gollier and Zeckhauser (2005) derive expressions for these

welfare equivalent quantities. They show that at the optimal allocation of the c̃ti we have

ρV (Ct, t) := −VtC
VC

=

∑
i ρiT

i(c̃ti)∑
i T

i(c̃ti)
(13)

T V (Ct, t) := − VC
VCC

=
∑
i

T i(c̃i). (14)

Notice that welfare equivalent preferences are defined without knowledge of the process that

generates the group’s consumption – we simply treat Ct as an exogenously given income

stream. Thus, while welfare equivalent preferences capture the realized value of consumption,

they do not capture the effects of preference heterogeneity on the endogenous aggregate

consumption decisions of the group.

Policy equivalent preferences are constructed so that the representative agent’s optimal

consumption plan coincides with the social planner’s equilibrium. We now aim to characterize

such preferences. Consider a representative agent (RA) with instantaneous utility function

R(C, t). We impose no restrictions on R(C, t) except that it be increasing and concave in C,

and satisfy limC→0
∂R(C,t)
∂C =∞ for all t. This RA will solve:

max
Ct

∫ ∞
0

R(Ct, t)dt s.t. Ṡt = F (St)− Ct. (15)

We want to characterize all preferences R(C, t) that are consistent with the group’s aggregate

consumption path, as defined by the solution to the dynamical system (8–9). Define

ρR(C, t) = −RCt
RC

(16)

TR(C, t) = − RC
RCC

, (17)

where subscripts denote partial derivatives. Denote the optimal paths of consumption and the

resource stock associated with preferences R(C, t) by CRt and SRt respectively. An application

of the Maximum Principle shows that along the equilibrium path associated with the RA’s

problem (15), we must have:

ρR(CRt , t) +
ĊRt

TR(CRt , t)
= F ′(SRt ) (18)

Our task is to find conditions on the preference functions ρR and TR that must be satisfied

if the representative agent’s consumption path is to emulate that of the social planner. In

order to do this we return to considering the group’s optimum. Differentiate (5) with respect
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to t, and substitute into (6), to find

ċti = (F ′(S∗)− ρi)T i(cti). (19)

Use (13–14), and sum (19) over i to find

Ċ∗t =
∑
i

ċti =

(
F ′(S∗)−

∑
i ρiT

i(cti)∑
i T

i(cti)

)∑
i

T i(cti)

= (F ′(S∗)− ρV (C∗t , t))TV (C∗t ) (20)

Note that we’ve used the properties of the function V (Ct, t), defined in (12), to re-express

some of the terms in the evolution equation for the group’s aggregate consumption.

Our identifying assumption is that the RA’s preferences give rise to the same optimal

consumption plan as the group:

∀t, CRt = C∗t . (21)

We need to impose this condition on the equation that determines the RA’s equilibrium

path, i.e. (18). Differentiating (21) with respect to time, and making use of (20), we see that

imposing (21) on (18) leads to the following necessary condition on the preference functions

ρR and TR:

ρR(C∗t , t) =

[
1− T V (C∗t , t)

TR(C∗t , t)

]
F ′(S∗t ) +

[
T V (C∗t , t)

TR(C∗t , t)

]
ρV (C∗t , t). (22)

We can write this slightly more succinctly by defining

XR(C, t) :=
T V (C, t)

TR(C, t)
. (23)

Hence our necessary conditions are

ρR(C∗t , t) = (1−XR(C∗t , t))F
′(S∗t ) +XR(C∗t , t)ρ

V (C∗t , t). (24)

The functions F ′(S∗t ), ρV (C∗t , t), and T V (C∗t , t) are all exogenously given. Note that we need

this relationship between the preference functions ρR and TR (or XR) to hold only on the

group’s equilibrium path C∗t , and for no other paths. This ensures that only the group’s

equilibrium path satisfies the RA’s equilibrium conditions.

The fact that (24) is required to hold only on the group’s equilibrium path illustrates

the degeneracy in the set of preferences that are able to replicate the group’s consumption

behavior. We are free to specify the values of R(Ct, t) on off-equilibrium paths as we choose,

provided we respect (24), and the relevant smoothness and concavity properties necessary for

making the solution to the RA’s optimization problem unique. The off-equilibrium values of
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R(Ct, t) are not however relevant for understanding the group’s discounting behavior – we

care only about preferences on the equilibrium path, as this is the path that is in fact realized.

We will say that preferences R(C, t) that satisfy (24) are policy equivalent to the group’s

equilibrium. It is trivially true that any policy equivalent preference must yield the correct

schedule for the group’s real (i.e. consumption) discount rate. The value of a marginal change

in consumption at time t to a policy equivalent representative agent in today’s consumption

units is just λR(t)/λR(0), where λR is the shadow price corresponding to the representative

preferences R. The real discount rate is the rate of change of the value of a marginal change

in consumption: − d
dt

(
λR(t)
λR(0)

)
= F ′(SRt ) = F ′(S∗t ). The first equality follows from the repre-

sentative agent’s first order conditions, and the second from the fact that, by construction,

the evolution of the resource stock is the same under the representative agent and the group

itself. Any policy equivalent agent will thus discount marginal changes in consumption in

the same manner as the group. Thus, although there are many possible policy equivalent

preferences, they all give rise to the same real discount rate, and hence the same cost-benefit

rules for the evaluation of marginal projects.

Policy equivalence is a weaker constraint on preferences than welfare equivalence. In fact,

welfare equivalent preferences are policy equivalent, but the converse does not hold in general.

To see this note that the planner’s optimization problem can be written as:

max
cti

∑
i

wi

(∫ ∞
0

Ui(cti)e
−ρitdt

)
s.t. Ṡ = F (S)−

∑
i

cti

≡max
Ct

∫ ∞
0

max
cti

(∑
i

wiUi(cti)e
−ρit s.t.

∑
i

cti = Ct

)
dt s.t. Ṡ = F (S)− Ct

≡max
Ct

∫ ∞
0

V (Ct, t)dt s.t. Ṡ = F (S)− Ct

The last of these formulations is of the same form as (15), and clearly the equilibria of the

first and last formulations must coincide. Thus welfare equivalent preferences are policy

equivalent. It is evident from (24) that for any XR(Ct, t) 6= 1, ρR(Ct, t) 6= ρV (Ct, t), and so

policy equivalent preferences need not be welfare equivalent.

The choice between the two notions of representativeness is in part a matter of convenience

for the problem at hand, and in part a question of which properties one wishes to ensure rep-

resentative preferences possess. Welfare equivalent preferences are easier to transfer between

different problems as they do not require knowledge of the production function F (S), but

in general they give rise to non-separable utility functions that may be difficult to interpret.

Policy equivalent preferences are in general context dependent but, owing to the additional

freedom in their specification, can be chosen to be separable, as we demonstrate in Section 3

below. Next however, we show that although the set of policy equivalent preferences may be

large, they are all tightly constrained in the long run.
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2.3 The steady state and the long-run discount rate for policy equivalent

preferences

We now show that at a steady state S∞ of the dynamical system (8–9), all policy equivalent

preferences R(C, t) give the same answer for the RA’s discount rate: the long run discount

rate coincides with the lowest rate in the population, regardless of the exact form of the

representative agent’s preferences.

To see this notice that when the resource stock is stationary, i.e. Ṡ = 0, we must have

F (S)−
∑
i

cti = 0. (25)

Since this equation must hold for all times at the steady state, we can differentiate it with

respect to time, and set the result to zero:

F ′(S)Ṡ −
∑
i

ċti = −(F ′(S)− ρV )
∑
i

T i(cti) = 0, (26)

where we’ve used (20). There are two possibilities, either F ′(S) = ρV , or
∑

i T
i(cti) = 0.

Assuming a non-trivial steady state (i.e. S 6= 0) at least one agent’s consumption will be

positive, thus we must have F ′(S) = ρV , and hence from (24), we conclude that

ρR|S=S∞ = ρV . (27)

The following proposition determines how consumption is allocated at the steady state,

and hence allows us to infer the long run discount rate for all policy equivalent preferences in

general via (27).

Proposition 1. Let L be the index of the agent with the lowest discount rate, ρL. Assume

that the equation F ′(S) = ρL has a solution3 in S. Then the only nontrivial steady state S∞

of our model is given by

S∞ = (F ′)−1(ρL) (28)

c∞i =

{
0 i 6= L

F (S∞) i = L
(29)

and the steady state is a saddle point of the dynamical system (8–9). Moreover, for all

preferences R(C, t) that replicate the group’s behavior,

lim
t→∞

ρR(C∗t , t) = ρL (30)

3This is guaranteed by continuity of F ′(S) if limS→0 F
′(S) > ρL, limS→∞ F

′(S) < ρL. The solution must
be unique by our assumption that F is concave.
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Proof. See Appendix B.

The fact that the steady state is a saddle point, and the only non-trivial steady state of

the system (8–9), means that we know that the optimal trajectory of the system must be

a saddle path. In general, the saddle path will be monotonic, i.e. the state variable S will

approach its steady state value S∞ monotonically from its initial value S0 (see e.g. Kamien

and Schwartz, 1991).

Proposition 1 parallels a result obtained by Becker (1980), who showed that in the long-

run steady state of a competitive economy where agents have heterogeneous time preferences,

all consumption accrues to the most patient individual. The endogeneity of the group’s

consumption path in our model has thus allowed us to obtain an analogue of the results of

Weitzman (1998), who shows that uncertainty about the real discount rate implies that in

the long run the certainty equivalent discount rate approaches the lowest rate in the long run.

In our case, disagreement over the pure rate of time preference implies that the group’s rate

of time preference approaches the lowest rate in the population asymptotically, regardless of

how we choose to represent its behavior.

3 Common felicity functions

In order to demonstrate the flexibility that the policy equivalent approach to representative

preferences affords us, and investigate the properties of the schedule of policy equivalent

time preferences, we now consider a case in which all agents agree on the felicity function,

Ui(c) = U(c) (with U ′ > 0, U ′′ < 0, limc→0 U
′(c) = ∞), but have different rates of time

preference ρi. In this case it is natural to seek a representative agent whose preferences reflect

the source of disagreement between the agents. In particular, since the agents agree on the

felicity function but disagree on time preferences, we might expect the representative agent

to share their assessment of the value of consumption, but to have a modified discount rate

that accounts for the heterogeneity in their time preferences. Unfortunately this option is not

open to us if we restrict ourselves to welfare equivalent representative preferences. Welfare

equivalent preferences are in general non-separable, and thus we cannot use the common

felicity function U(c) when representing the group’s behavior.

If, however, we consider policy equivalent preferences, we have the freedom to preserve

the separability of representative preferences, and hence to utilize U(c). Begin by defining

separable policy equivalent representative preferences as follows:

R(Ct, t) = U(Ct)e
−ρ∗(t)t. (31)

We can use the condition (24), and the definitions (13–14) to immediately write down the
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conditions that ρ∗(t) must satisfy in order to ensure policy equivalence:

ρ∗(t) = (1−XU (C∗t , t))F
′(S∗t ) +XU (C∗t , t)ρ

U (C∗t , t), (32)

XU (Ct, t) :=

∑
i T (cti)

T (
∑

i cti)
, (33)

ρU (Ct, t) :=

∑
i ρiT (cti)∑
i T (cti)

(34)

where T (c) = −U ′/U ′′ is the absolute tolerance of consumption fluctuations for the common

felicity function U(c).

A natural question to ask is whether we can find conditions that determine the qualitative

properties of the term structure of the representative discount rate ρ∗(t), and its relationship

to the welfare equivalent discount rate ρU (t). In general, the derivative of ρ∗(t) with respect

to time is a complex function. We have however obtained the following proposition:

Proposition 2. Suppose that

1. T is increasing and convex.

2. T/T ′ is convex.

3. If there is a non-trivial steady state: S0 < S∞.

Then ρ∗(t) is monotonically declining in time. ρ∗(t) ≥ ρU (t) if there is a non-trivial steady

state, and ρ∗(t) ≤ ρU (t) if S is an exhaustible resource (i.e. F (S) = 0).

Proof. See Appendix C.

As we show in Appendix C, the conditions on T in this proposition must hold locally at

c = 0, we have simply converted them to global conditions. An example of a class of functions

that satisfies these conditions is T (c) = Kcα, where K > 0, α ≥ 1. The familiar case of iso-

elastic felicity functions corresponds to α = 1, and will be examined in detail in the following

section. The condition on S0, i.e. that the initial value of S be below its steady state value, is

natural in most applications where the resource S is ‘renewable’, including neoclassical growth

models and renewable resource management problems. When the resource is exhaustible, i.e.

F (S) = 0, the only steady state is S = 0. We show in Appendix C that the conditions on

T (c) in the proposition still guarantee a monotonically declining discount rate in this case.

3.1 Parametric examples

In this section we specialize to specific parametric cases for the common felicity function

U(c) and the resource’s growth function F (S). This will allow us to investigate quantitative

properties of policy equivalent time preferences, thus moving beyond the qualitative results

of Proposition 2.
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3.1.1 Iso-elastic felicity and Gamma discounting

The evolution of the policy-equivalent discount rate (32) is in general complex, as it depends

on the evolution of the dynamical system (8–9). Here we focus on the special case of iso-elastic

felicity functions. This serves two purposes: iso-elastic felicity is a widely used functional form

in applications, and analytic solutions for ρ∗(t) are possible in this case.

It’s clear from the definition of X in (33), that X = 1 if T (c) is a linear function. This

case corresponds to the work-horse case of an iso-elastic felicity function. Specifically,

U(c) =
c1−η

1− η
⇒ T (c) =

c

η
. (35)

We can use this explicit functional form to calculate the inverse of marginal felicity, and hence

(10) determines the values of the agents’ consumption:

cti =

(
wie
−ρit

λ(t)

) 1
η

(36)

Substituting (35–36) and X = 1 into (24) shows that in this special case:

ρ∗η(t) =

∑
i ρi(wie

−ρit)
1
η∑

i(wie
−ρit)

1
η

. (37)

This result holds for any stock dynamics F (S) – the shadow price has fallen out of the

expression for ρ∗(t). Thus, in this case the policy-equivalent separable discount rate (32)

reduces to welfare-equivalent formula (13). This is the only felicity function for which welfare-

equivalent preferences are separable, and thus the two notions of representativeness coincide

in this case. It is straightforward to verify that ρ∗η(t) declines monotonically to the lowest

rate ρL, in agreement with Propositions 1 and 2.

The group’s discount rate ρ∗η(t) is a weighted sum of the individuals’ discount rates,

with time dependent weights yit := (wie
−ρit)

1
η . We can find an analytic expression for the

dependence of ρ∗(t) on the distribution of individual preferences in a special case for the

weights wi. Take the continuum limit of (37), and let wi → w(ρ) be the probability density of

discount rate ρ. Assume, following Weitzman (2001), that w(ρ) is Gamma distributed with

shape and scale parameters k, θ > 0. This implies:

w(ρ) ∝ ρk−1e−
ρ
θ . (38)

Thus the time dependent weights yit become

yit → yt(ρ) ∝ ρ(
k−1
η

+1)−1
e
− 1
η
( 1
θ
+t)ρ

. (39)
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These are also Gamma distributed, with modified parameters (k′, θ′) = (k−1η +1, η/(θ−1 + t)).

The Gamma distribution is not strictly defined for k′ < 0, but one can show from (37) that

ρ∗η(t) = 0 in this case. When k′ ≥ 0, using the fact that the mean of the Gamma distribution

with parameters (k′, θ′) is just k′θ′, we have

ρ∗η(t) =
k − 1 + η

t+ 1
θ

. (40)

Now noting that the mean µ and variance σ2 of the Gamma distribution are related to k and

θ through k = µ2

σ2 , and θ = σ2

µ , we find

ρ∗η(t) =

{
µ+(σ2/µ)(η−1)

1+σ2t/µ
η ≥ 1− µ2

σ2

0 η < 1− µ2

σ2

(41)

Note that ρ∗η is non-decreasing in η. We expect this since the larger is η, the less tolerant

agents are of consumption fluctuations – this makes the group’s consumption decisions more

myopic. ρ∗η is also non-decreasing in µ – the larger is the average pure rate of time preference,

the larger is the group’s rate of time preference. Interestingly,

sgn

(
∂ρ∗η
∂σ2

)
= sgn

(
η − 1

µ
− t
)

(42)

Thus the direction of the effect of an increase in the variance of time preferences varies with

time when η > 1. For t < (η−1)/µ, the group’s discount rate increases, and for t > (η−1)/µ

it decreases if we increase σ2. Also, limσ2→0 ρ
∗
η(t) = µ and limσ2→∞ ρ

∗
η(t) = (η − 1)/t (for

η > 1). The time preferences of high variance groups look more ‘hyperbolic’, while those of

low variance groups look more like the constant discount rate model. Figure 1 illustrates this

dependence.

The functional form for ρ∗η(t) in (41) corresponds to the hyperbolic discounting model, fa-

miliar from applications in behavioral economics (e.g. Loewenstein and Prelec, 1992; Laibson,

1997). Our analysis suggests an alternative interpretation for this model of a representative

agent’s time preferences. If social planners can commit to efficient dynamic distributions

of consumption, agents have common iso-elastic felicity functions, and time preferences are

gamma distributed, then the planner’s consumption plan is equivalent to that of a represen-

tative agent with hyperbolic time preferences. This holds for any stock dynamics, and thus

allows us to interpret the hyperbolic discounting model normatively, rather than behaviorally.

A crucial assumption of this result is that the social planner commits to her plans for all time.

While this may be an appropriate assumption in normative work, it is not in behavioral ap-

plications. Laibson (1997) and Barro (1999) explore the consequences of lack of commitment

in behavioral models. We return to this issue below in Section 4.
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Figure 1: Dependence of the representative discount rate ρ∗η(t) on the standard deviation
(σ) of the distribution of individual rates in the population, for iso-elastic felicity functions.
µ = 0.02, η = 2 in this example.

3.1.2 Policy equivalent preferences in a simple growth model

In order to understand the quantitative dynamics of the policy-equivalent discount rate ρ∗(t)

for non iso-elastic felicity functions, it is necessary to find the optimal saddle path trajectory

of the dynamical system (8–9). This requires numerical methods in general. In order to

demonstrate the additional insights that are possible from this exercise, we present the results

of such an analysis for a simple model.

We consider a neoclassical growth theory interpretation for our model, in which S is a

stock of capital, and F (S) is a Cobb-Douglas production function, minus depreciation. We

assume that labour supply is constant (normalized to 1), and no technical progress. Thus,

F (S) = Sγ − δS. (43)

We pick γ = 0.3 for the capital share of production, and δ = 0.1 for the annual depreciation

rate. As we have shown, T (c) must be nonlinear to pick up the additional effects of the

endogenous income term F ′(S) in (24). We pick T (c) = c2 – this choice obeys the conditions

in Proposition 2. Integrating this choice of T using the relationship (44) in Appendix A yields

the marginal felicity function and its inverse, which enter the dynamical equation (9).

We assume that there are two groups of agents in the economy – an impatient group with

ρ = 0.04, and a more patient group with ρ = 0.02, each with weight wi = 0.5. We pick an

initial condition of S0 = 2, use a shooting method to solve for the initial value of the shadow
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Figure 2: Representative discount rates for our simple growth model (43), and a felicity
function with T (c) = c2. The black (top) curve gives the term structure of the separable
policy equivalent discount rate ρ∗, and the red (bottom) curve gives the term structure of the
welfare equivalent discount rate ρU .

price on the saddle path, and use (24) and (13) to compute the policy and welfare equivalent

representative agent’s discount rates respectively. Figure 2 contains our results.

By Proposition 2, we know that we must have ρ∗ > ρU , and that dρ∗/dt < 0 for this model

specification. This is born out in Figure 2. What the simulation results show however is that

policy-equivalent and welfare equivalent discount rates can diverge dramatically, especially at

early times. The contribution of the first term in (32) to the RA’s time preferences is large

at early times, as F ′(S) is a declining function. Figure 2 shows that at early times the policy

equivalent discount rate is larger than the discount rate of either group of agents. This is not

possible for welfare equivalent preferences, as ρU is a weighted sum of individual rates, and

is thus bounded by the highest and lowest discount rates in the population.

4 Commitment, time-consistency, and renegotiation proofness

Throughout the analysis above we have assumed, as is common in the literature on hetero-

geneous time preferences (e.g. Li and Löfgren, 2000; Gollier and Zeckhauser, 2005), that the

social planner can commit to her initial allocations. This assumption may well be met in

17



some applications to public decision making, where legal institutions may provide credible

commitment devices that constrain policy revisions. If however we relax this assumption, it

is clear that the planner’s allocation will be time-inconsistent. This is reflected in the fact

that representative agents in general do not have constant discount rates, and is known to

be a general property of efficient aggregation of heterogeneous time preferences (Jackson and

Yariv, 2012)4.

The time-inconsistency of the efficient solution raises deep philosophical issues for this

approach to public decision-making when no credible commitment devices exist. On the

one hand, if the planner is permitted to revise her plan at each point in time, the more

impatient agents will receive a much larger share of consumption than was initially agreed

upon. Impatience is rewarded, and patience penalized under Pareto efficient revisions. This

is a disturbing feature for a normative decision procedure. On the other hand, if we insist on

sticking to the initial allocation even at later revision opportunities, one is pressed to ask why

t = 0 social preferences should receive special treatment in deciding allocations at all times.

A non-cooperative approach to this time-inconsistency problem would have us think of

the planner as playing a game against “future selves”. This approach is familiar from the

seminal single agent models of hyperbolic discounting (e.g. Strotz, 1955; Phelps and Pollak,

1968; Laibson, 1997). Markov perfect equilibria of this dynamic game will be time-consistent,

but not Pareto efficient. Our view is that this solution, while attractive for behavioral models,

is potentially problematic for normative applications with heterogeneous preferences. While

in single agent models the dynamic game approach results in an inter-temporal inefficiency,

in heterogeneous agent models it also results in distributive inefficiencies, i.e. there will be

unexploited opportunities to make the group as a whole better off within a given period,

and not simply between periods. Since there is no conceptual or practical difficulty with

the standing of agents in intra-generational allocations (as opposed to inter-generational al-

locations, in which future selves do not have current standing), this seems to remove much

of the attractiveness of the efficiency approach as a normative criterion. Indeed, if we are

forced to sacrifice distributive efficiency, it is not clear what the normative argument for the

weighted-sum social welfare function in equation (1) is.

We suggest that, while the non-cooperative approach suffers from additional difficulties

in heterogeneous agent models, the cooperative approach acquires new temporal stability

properties that are absent in single-agent models of time-inconsistent choice. In particular,

while initial allocations will certainly be time-inconsistent, they are, by virtue of their dis-

tributive efficiency, renegotiation proof. Renegotiation proofness is a weaker concept than

time-consistency, which may nevertheless provide a strong normative argument for sticking

4It is possible to choose a different preference aggregation mechanism such as voting, which may under some
conditions result in time consistent plans. However, such plans will be inefficient – one is forced to choose
between efficiency and consistency, we can’t have both. This paper focuses on the efficiency approach, Heal
and Millner (2014) considers a consistent voting mechanism, and compares the two approaches
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to initial consumption plans. The concept originated as an equilibrium selection mechanism

in dynamic games (Farrell and Maskin, 1989; Evans and Maskin, 1989; Abreu and Pearce,

1991). Renegotiation proof contracts are stable under proposals for change at all times – once

agreed to, it is not possible to make all players better off by renegotiating the contract at

future dates.

The initial allocations in our model are not the equilibria of a non-cooperative dynamic

game – we have argued that allowing for such strategic behavior is normatively problem-

atic. Thus the renegotiation proofness concept does not port across wholesale to our setting.

However, we can think of the social planner’s allocation plan at t = 0 as a contract between

different contemporaneous individuals, and ask whether the group would like to renegotiate

this contract at a later date. If the group’s initial allocation is efficient with respect to t = 0

preferences, this will never occur:

Proposition 3. Suppose that the group can agree to a contract that results in efficient dy-

namic consumption allocations at t = 0. Then at any future time τ > 0, there is no contract

the group can agree to that Pareto dominates the initial contract.

Proof. The proof is a trivial consequence of the distributive efficiency of the initial consump-

tion allocations. Suppose (!) that there did exist a revision to the initial plan that made at

least one person better off at t = τ , and no one worse off. Then this plan must have been

feasible at t = 0 also, thus violating the efficiency of the initial plan. Hence no such Pareto

improving revision can exist.

This simple observation captures the fact that there will always be at least one individ-

ual who resists attempts to renegotiate an initially efficient consumption plan. That initial

allocations are renegotiation proof, but not time-consistent, is ultimately due to the fact

that time-consistency is a ‘memoryless’ property, whereas renegotiation proofness evaluates

proposals for change against a baseline initial contract, and thus retains memory of initially

agreed contracts. The losers under a proposed revision remember what was promised to them

in the initial contract negotiation, and thus decline welfare reducing revisions to the contract.

Since initial plans are efficient, such losers must always exist for any proposed alteration.

Thus the presence of multiple heterogeneous agents, rather than a single time-inconsistent

planner, lends temporal stability to initially efficient consumption plans5.

5 Conclusions

While there are many arguments for the use of declining real discount rates for the evalua-

tion of marginal projects (see e.g. the survey in Groom et al. (2005)), the assumption of a

5Kocherlakota (1996) and Asheim (1997) apply the renegotiation proofness concept in models with a single
time-inconsistent agent. Their approach requires us to think of ‘future selves’ as part of current bargaining
processes. In our simple result only current heterogeneous individuals are party to negotiations.

19



constant pure rate of time preference has remained largely unchallenged in dynamic welfare

economics. There are very good reasons for this – the Koopmans axioms make a strong case

for the standard exponential discounting model. Despite this, many people are disquieted by

the consequences of the exponential discounting model for the evaluation of long-run public

policies such as climate change, nuclear waste management, and public infrastructure invest-

ments. The exponential decline of the discount factor makes even cataclysmic welfare impacts

that are distant in time of very little significance today.

Declining rates of time preference have been proposed as an ‘intuitionist’ solution to the

problem of maintaining the sensitivity of welfare analysis to the long-run effects of policy

choices. Building on the work of others, our analysis has shown that such models can be

placed on firm normative footing. Representative agent models with declining pure rates of

time preference arise naturally when aggregating the preferences of agents with idiosyncratic,

time consistent, preferences.

The exact choice of a discount rate schedule for empirical applications is a complex, yet

highly policy relevant, task. We have shown that for the purposes of public decisions and

cost benefit analysis of public projects, there are two relevant notions of ‘representative’

preferences. Welfare equivalent preferences capture the group’s realized welfare for a given

exogenous stream of aggregate consumption, and are in general non-separable. Policy equiv-

alent preferences replicate the group’s optimal consumption path, and give rise to the correct

sequence of real discount rates. In addition, they are much more flexible than welfare equiv-

alent preferences, and in particular can be chosen to be separable. We have shown that in

general policy equivalent preferences depend on agents’ idiosyncratic preferences, as well as

the productivity of the common resource that generates their income, and must approach the

lowest discount rate in the population asymptotically. We demonstrated analytic results for

iso-elastic felicity functions, and have argued that under plausible conditions policy equivalent

discount rates are monotonically declining. These qualitative properties are shared by the

hyperbolic discounting models that have thus far largely been the province of behavioral work.

Moreover, we have argued that the dynamic consumption allocations upon which declining

representative time preferences are based are renegotiation proof, and thus stable under pro-

posals for change. Our analysis thus suggests that it may be time to elevate models with

declining rates of time preference from purely descriptive applications to tools of normative

policy analysis.

A Conditions on T i(c)

The condition limc→0 U
′
i(c) = ∞ ensures that solutions to optimal consumption allocation

problems are interior. This condition places restrictions on the behavior of T i(c), defined in

(2), at the origin. The results in this appendix make use of the following simple lemma:
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Lemma 1. Suppose A(c) is a twice differentiable function. If limc→0+ A(c) = −∞, then

limc→0+ A
′(c) =∞.

The proof of this lemma is a simple application of the mean value theorem.

Treating (2) as a differential equation in U ′, we have

U ′i(c) = M exp

(
−
∫ c

0
[T i(x)]−1dx

)
(44)

for some constant M > 0. Define G(c) :=
∫ c
0 [T i(x)]−1dx. limc→0 U

′
i(c) = ∞ implies that

we require limc→0G(c) = −∞. This in turn implies that we must have limc→0G
′(c) =

limc→∞[T i(c)]−1 =∞, and hence we conclude that

lim
c→0

T i(c) = 0. (45)

The fact that T i approaches zero at the origin means that for c small enough T i(c) ∼ Kcα,

for some constants K,α > 0, where α is the exponent of the dominant term in T i(c) as c→ 0,

i.e. all other terms approach zero faster than cα. Thus for small c, G(c) ∼ 1
K(1−α)c

1−α. Since

we need limc→0G(c) = −∞, we must have α ≥ 1. Hence T i(c) must be locally convex at the

origin, and approach zero as fast as, or faster than c. This in turn implies that T i/T ′i ∼ c as

c→ 0, and thus T i/T ′i is also locally convex at the origin.

B Proof of Proposition 1

Equations (10) and (8) imply that in the steady state

U ′i(cti) ∝
e−(F

′(S∞)−ρi)t

wi
, (46)

where the proportionality constant is positive (since the shadow price is positive). Since U ′i
is decreasing by assumption, this implies that in the steady state cti is growing indefinitely

if ρi < F ′(S∞), declining if ρi > F ′(S∞), and constant if ρi = F ′(S∞). Now in the steady

state we require Ṡ = 0, i.e.
∑

i cti = F (S∞). This cannot be the case if any of the cti are

growing indefinitely. Since the ρi are distinct, this means that at most one of the cti can be

constant, and the rest must all decline to zero. Clearly, this can only be so if F ′(S∞) = ρL,

which implies limt→∞ cti = 0 for i 6= L. By the concavity of F (S) there is only one value of

S that satisfies F ′(S) = ρL. Thus this is the unique nontrivial steady state.

To prove that the steady state is a saddle point, from (8–9), the Jacobian of the system

is:

J =

(
∂λ̇
∂λ

∂λ̇
∂S

∂Ṡ
∂λ

∂Ṡ
∂S

)
=

(
−F ′(S) −λF ′′(S)∑
i T

i(cti) F ′(S)

)
(47)
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where in the bottom left element we’ve used the fact that

∂

∂λ
(U ′i)

−1 (eρitλ/wi) = − eρit/wi
U ′′i ((U ′i)

−1(eρitλ/wi))
= T i(cti). (48)

Evaluated at the steady state values of λ, S, cti, this becomes

J |S=S∞ =

(
−ρL 0

TL(F (ρL)) ρL

)
(49)

The eigenvalues of the Jacobian are ±ρL, and hence the steady state is a saddle point.

Finally, by (27) the steady state discount rate is given by the formula (13). Substituting

the steady state consumption values into this formula, and making use of (3), yields (30).

C Proof of Proposition 2

We consider the case in which a non-trivial steady state S∞ exists first, i.e. we assume that

F ′(S) = ρL has a solution. From (24), we have

ρ̇∗ = (1−X)F ′′(S)Ṡ − Ẋ(F ′(S)− ρU ) +Xρ̇U . (50)

By the assumption that T is convex, and (3), we know that T must be a super additive

function, and hence 0 ≤ X ≤ 1. Thus sgn(1 − X)F ′′(S)Ṡ = − sgn(Ṡ) = − sgn(S∞ − S0),
where the last equality follows from the monotonicity of the saddle path. Similarly, from

(20) we have sgn(F ′(S)− ρU ) = sgn(
∑

i ċti) = sgn(S∞ − S0). Again, the last equality follows

from the properties of the saddle path. If S0 < S∞, the group’s income F (S) is growing

along the saddle path. It thus cannot be optimal for aggregate consumption to be falling, and

we conclude that
∑

i ċti > 0. Thus the crux of the problem is to show that Ẋ > 0 and ρ̇U < 0.

Consider ρ̇U . From the definition (13), we have

ρ̇U =
(
∑
ρiT
′
i ċti)

∑
Ti − (

∑
ρiTi)

∑
T ′i ċti

(
∑
Ti)2

(51)

= (F ′(S) + ρU )

∑
ρiTiT

′
i∑

Ti
−
∑
ρ2iTiT

′
i∑

Ti
− F ′(S)ρU

∑
T ′iTi∑
Ti

(52)

where Ti := T (cti), and we’ve used (19–20) and simplified. If we set F ′(S) = ρU in this

equation, we recover the expression for ρ̇U that Gollier and Zeckhauser (2005) obtain in

Proposition 5 of their paper. They prove that at this value of F ′(S), ρ̇U < 0 if T ′ > 0. So

if we can show that ρ̇U |F ′(S)>ρU < ρ̇U |F ′(S)=ρU , we will be done. Partially differentiate the
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expression for ρ̇U above with respect to F ′(S) to find:

∂ρ̇U

∂F ′(S)
=

∑
ρiTiT

′
i∑

Ti
−
∑
ρiTi∑
Ti

∑
TiT

′
i∑

Ti
(53)

where we’ve used ρU = (
∑
ρiTi)/(

∑
Ti). Define the expectation operator, 〈xi〉 :=

∑
xiTi∑
Ti

.

Then the expression above is,

∂ρ̇U

∂F ′(S)
= 〈ρiT ′i 〉 − 〈ρi〉〈T ′i 〉 (54)

= Cov(ρi, T
′(cti)) (55)

where Cov(x, y) is the covariance of the two random variables x, y. Now from (10) it’s clear

that
∂cti
∂ρi

= −tT (cti) < 0. (56)

Hence ρi and cti are anti-correlated, and when T ′ is an increasing function, Cov(ρi, T
′(cti)) <

0⇒ ∂ρ̇U

∂F ′(S) < 0. Hence for F ′(S) > ρU this implies that ρ̇U < ρ̇U |F ′(S)=ρU < 0.

Now consider Ẋ. Differentiating X directly using the definition (23), we see that Ẋ > 0 iff(∑
i

T ′i ċti

)
T (
∑
i

cti) > (
∑

Ti)T
′(
∑
i

cti)
∑
i

ċti

⇐⇒

(∑
i

T ′iTi(F
′(S)− ρi)

)
T (
∑
i

cti) > T ′(
∑
i

cti)(
∑

Ti)
2(F ′(S)− ρU )

⇐⇒
(
∑

i T
′
iTi(F

′(S)− ρi))∑
Ti

− T ′(
∑
cti)

T (
∑
cti)

(
∑

Ti)(F
′(S)− ρU ) > 0

where in the second line we’ve used the expressions for ċti and
∑

i ċti in (19–20). Consider

the first term:

(
∑

i T
′
iTi(F

′(S)− ρi))∑
Ti

= F ′(S)〈T ′i 〉 − 〈ρiT ′i 〉

= F ′(S)〈T ′i 〉 − [Cov(ρi, T
′
i ) + 〈T ′i 〉〈ρi〉]

= −Cov(ρi, T
′
i ) + (F ′(s)− ρU )〈T ′i 〉

Hence Ẋ > 0 iff

−Cov(ρi, T
′
i ) + (F ′(S)− ρU )

[∑
i T
′
iTi∑
Ti
− T ′(

∑
cti)

T (
∑
cti)

(
∑

Ti)

]
> 0 (57)

We have shown that when T is convex, −Cov(ρi, T
′
i ) > 0, and we also have F ′(S)−ρU > 0 on
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the saddle path, so the task is to find conditions under which the square bracket is positive.

Rewrite this condition as:
T (
∑
cti)

T ′(
∑
cti)

∑
i

T ′iTi > (
∑

Ti)
2 (58)

Now assume that T/T ′ is a convex function. This, in combination with the fact that

limc→0 T (c) = 0, implies that limc→0 T/T
′ = 0, and hence T/T ′ is super additive. Thus,

T (
∑
cti)

T ′(
∑
cti)
≥
∑
j

Tj
T ′j

(59)

Under this condition, it is sufficient to show that(∑
i

T ′iTi

)∑
j

Tj
T ′j

 > (
∑

Ti)
2 =

∑
i

Ti
∑
j

Tj

⇐⇒
∑
i

∑
j

TiTj

(
T ′i
T ′j
− 1

)
> 0

Notice that when i = j in this double sum the factor in brackets is zero. Also, the factor TiTj

is symmetric under i ↔ j, so we can factorize pairs of terms with symmetric indices to find

that we require ∑
i

∑
j>i

TiTj

(
T ′i
T ′j

+
T ′j
T ′i
− 2

)
> 0.

The factors in the round brackets are all of the form x+ x−1 − 2, where x ≥ 0. It is easy to

show that this function has a global minimum at x = 1, at which its value is zero. Hence the

double sum is non-negative, and Ẋ > 0. Combining these pieces yields ρ̇∗ < 0.

Now consider the case of exhaustible resources, in which F (S) = 0. Clearly the equation

F ′(S) = ρL has no solution in this case, so there is no non-trivial steady state, and this

case is not covered by the derivation above. Since F ′(S) = 0 in this case, we have from our

expression (24) that

ρ∗(t) =

∑
i ρiT (cti)

T (
∑

i cti)
. (60)
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Differentiate ρ∗(t) explicitly with respect to time to find that sgn ρ̇∗(t) is given by the sign of(∑
i

ρiT
′(cti)ċti

)
T (
∑
i

cti)−

(∑
i

ρiT (cti)

)
T ′(
∑
i

cti)
∑
i

ċti (61)

=
∑
i

[
ρiT
′(cti)T (

∑
i

cti)−

(∑
i

ρiT (cti)

)
T ′(
∑
i

cti)

]
ċti (62)

= −T ′(
∑
i

cit)

[(∑
i

ρ2iTiT
′
i

)
T (
∑

i cti)

T ′(
∑
cti)
− (
∑
i

ρiTi)
2

]
(63)

where we’ve used ċti = −ρiT (cti) in the third line. Now consider the factor in the square

bracket, and assume T/T ′ is convex, so that (59) holds. Then to show that this factor is

non-negative it is sufficient to show that(∑
i

ρ2iTiT
′
i

)∑
j

Tj
T ′j

− (
∑
i

ρiTi)
2 > 0

⇐⇒
∑
i

∑
j

(
ρ2iTiTj

T ′i
T ′j
− ρiρjTiTj

)
> 0

⇐⇒
∑
i

∑
j

ρiρjTiTj

(
ρi
ρj

T ′i
T ′j
− 1

)
> 0

⇐⇒
∑
i

∑
j>i

ρiρjTiTj

(
ρi
ρj

T ′i
T ′j

+
ρj
ρi

T ′j
T ′i
− 2

)
> 0

Again, the factors in brackets are of the form x+x−1−2, and are thus positive. Hence ρ̇∗ < 0

in the exhaustible resources case as well.

Finally, from (24) and (20), we have

ρ∗ − ρU = (1−X)(F ′(S)− ρU ) (64)

= (1−X)

∑
i ċti∑

i T (cti)
(65)

Recall that 0 < X < 1 when T is convex. If there is a non-trivial steady state, sgn(
∑

i ċti) =

sgn(S∞ − S0), and we conclude that ρ∗ ≥ ρU . For exhaustible resources F ′(S) = 0 and we

find that ρU ≥ ρ∗.
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