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Abstract

A group of time consistent agents has access to a common productive resource stock

whose output provides their consumption needs. The agents disagree about the appro-

priate pure rate of time preference to use when choosing a consumption policy, and thus

delegate the management of the resource to a social planner who allocates consumption

efficiently across individuals and over time. We show that the planner’s optimal policy is

equivalent to that of a representative agent with a time varying rate of impatience. The

representative agent’s time preferences depend on the distribution of time preferences in

the group, on the agents’ tolerance for consumption fluctuations, and on the productiv-

ity of the resource. The representative agent’s rate of impatience coincides with that of

the individual with the lowest rate of impatience in the long run, and under plausible

conditions, is monotonically declining. In the work-horse case of iso-elastic felicity func-

tions, and Gamma distributed rates of impatience, analytic solutions are possible, and

the representative agent has hyperbolic time preferences. We thus provide a normative

justification for the use of declining rates of time preference in dynamic welfare analysis.

Key words: Pure rate of time preference, heterogeneity, time consistency, hyperbolic dis-

counting, dynamic welfare analysis

JEL Classification: D61, D99

1 Introduction

Ever since the seminal contributions of Koopmans (1960), we have known that two plausible

desiderata of dynamic choice – independence and stationarity (see e.g. Heal, 2005) – imply the

∗gmh1@columbia.edu
†a.millner@lse.ac.uk. We are grateful for helpful comments from Martin Weitzman.
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standard exponential discounting model that forms the basis of dynamic welfare economics1.

Decision makers with constant discount rates are time consistent, and this, in combination

with the appeal of Koopmans’ axioms, has provided the basis for the dominance of the

exponential discounting model in normative applications.

In this paper we take the normative appeal of the exponential discounting model for granted,

and assume that agents have time consistent preferences. However, like all preference repre-

sentation results, Koopmans provides us with a functional form for agents’ preferences, but

leaves the parameter values that enter their preferences – the actual value of the discount

rate – unspecified. In order to operationalize the preference representation, we must look to

the real world, and ask what agents’ preferences actually are, or motivate a choice of discount

rate by other normative considerations (Dasgupta & Heal, 1979; Broome, 1992; Arrow, 1999).

Once we realize this, things become more murky. Whose discount rate should we choose?

Are some discount rates more legitimate than others? What counts as a good argument for

one value, rather than another?

We view an individual’s choice of discount rate as an ethical primitive – it is a fundamental

judgement about how she values realizations of welfare that are distant in time. Many things

may inform this choice: ethical considerations of inter temporal equity, as well as judgements

of whether the savings rate implied by her choice is desirable (Dasgupta, 2008). Although

others may disagree with her choice, they cannot claim it is ‘incorrect’ – this is much the

same as claiming that a preference for whisky over wine is incorrect. In this view, the

problem of social discounting acquires a social choice dimension – there are many discount

rates in the population, none is privileged over the others, and each should play a role in

social decision making. There is abundant evidence for heterogeneous time preferences in

the empirical literature (Frederick et al., 2002). There is also substantial disagreement about

the appropriate discount rate for normative applications, as demonstrated by the debate that

followed the Stern Review of the Economics of Climate Change (Stern, 2007; Nordhaus, 2007;

Weitzman, 2007; Dasgupta, 2008), where the choice of discount rate was a crucial determinant

of policy recommendations. Given this heterogeneity, and assuming the social choice approach

has some democratic appeal, how should different discount rates be aggregated?

The standard dynamic welfare model deals with this question, if it deals with it at all, by

fait accompli. We assume a representative agent (RA) whose preferences are themselves time

consistent, and the problem boils down to motivating a choice for this agent’s discount rate.

This simplification, while undoubtedly attractive due to its tractability dividends, is often

misleading. It has long been recognized that heterogeneous time preferences may lead the

RA to have time preferences that differ substantially from any individual’s (Marglin, 1963).

In general, the RA will not be time consistent. This has been explored in models in which

agents have common consumption streams (Li & Löfgren, 2000; Jackson & Yariv, 2012),

1A few additional technical conditions are also needed, but these are not controversial.
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and also in models where agents receive an efficient share of an exogenous income stream

that cannot be saved at each point in time (Gollier & Zeckhauser, 2005). In the former

case, individual consumption shares are determined (the consumption good is public), and

aggregate consumption is endogenous, while in the latter consumption shares are endogenous

and aggregate consumption is exogenously given. Our contribution is to generalize these

results to the more realistic case in which both consumption shares and aggregate consumption

are endogenously determined, and derived from a common resource stock. This context is, we

feel, much better suited to many of the interesting dynamic economic problems that require

collective public choices to be made over policies. Examples include applications to Ramsey-

style savings-investment problems (Ramsey, 1928), and renewable and exhaustible resource

management.

Following Li & Löfgren (2000) and Gollier & Zeckhauser (2005), we assume a heterogenous

population of agents with idiosyncratic pure rates of time preference. A social planner wishes

to maximize a weighted sum of each agent’s dynamic welfare integral. Thus our social choice

rule is utilitarian, and by varying the weights on agent’s welfare, we sketch out the efficient

Pareto frontier of dynamic consumption allocations. The group’s income in our model is

derived from a productive resource stock, which the planner exploits optimally over time. By

endogenizing both aggregate income and agents’ consumption shares, we are able to derive a

general expression for the representative agent’s discount rate that depends on the distribution

of time preferences in the population, agents’ tolerance for consumption fluctuations, and the

productivity of the income generating resource stock. The evolution of the group’s discount

rate depends on the trajectories of a dynamical system, so is in general quite complex.

Despite this complexity, our result allows us to make connections between previously disparate

literatures. We begin by showing that the expression for the group’s discount rate obtained

by Gollier & Zeckhauser (2005) holds only in the infinitely distant future when agents face

an endogenous resource management decision problem. We then make a conceptual link

between the analysis of long-run equilibria in economies with heterogeneous agents by Becker

(1980), and the analysis of uncertain real discount rates by Weitzman (1998, 2001). Through

reasoning related to Becker’s, we show that there is an analogue of Weitzman’s results when we

disagree about the pure rate of time preference – the group’s rate of impatience approaches

the lowest rate in the population in the long run. We analyze the term structure of the

group’s discount rate, and show that under plausible conditions on agents’ felicity functions

it is monotonically declining. Under these conditions, the exogenous income collective rate

of impatience obtained by Gollier & Zeckhauser (2005) underestimates the group’s discount

rate when the resource stock is renewable, and overestimates it when the resource stock is

exhaustible.

Finally, we demonstrate the application of our results in two quantitative worked examples.

First we show that in the work horse case in which agents have iso-elastic felicity functions
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it is possible to solve analytically for the group’s discount rate for all stock dynamics. If

we further assume that the distribution of rates of impatience in the population is described

by a Gamma distribution, the group’s discount rate is a hyperbolic function of time. This

allows us to reinterpret the classic behavioral models of hyperbolic discounting (e.g Laibson,

1997; Barro, 1999) in a normative light. Second, we demonstrate the new effects endogenous

resource management introduces into the group’s discount rate in simulations with a simple

neoclassical growth model. We show that, unlike in the exogenous income case, endogenous

income effects can make groups more impatient than any of their constituent members.

2 Collective impatience and stock dynamics

2.1 The social planner’s problem

Consider a set of agents, indexed by i. Each of the agents is assumed to have additive,

time consistent, preferences. We assume that the agents have common felicity functions over

consumption2 U(c), but distinct heterogeneous pure rates of time preference, ρi. Thus, the

utility of agent i from consumption cit realized at time t in the future is U(cit)e
−ρit. The

group of agents has access to a common managed ‘resource’ S, which is the source of their

income. We can think of S as physical or natural capital. The resource has a natural growth

rate F (S), which we assume to be a concave function with F ′(0) ≥ 0. Otherwise, we keep

the form of F (S) unspecified at this stage. This model accommodates a wide class of stock

problems, including neoclassical growth models, and models of renewable and exhaustible

resource management.

We assume that a social planner (SP) wishes to exploit the resource S so that allocations of

consumption to individuals over time maximize social welfare, which is taken to be a weighted

sum of individuals’ welfare. The social planner’s allocation problem is thus:

max
cit

∑
i

wi

(∫ ∞
0

U(cit)e
−ρitdt

)
s.t. Ṡ = F (S)−

∑
i

cit, (1)

where the welfare weights wi > 0 satisfy
∑

iwi = 1, and the initial value of the stock is

S(0) = S0.

In addition to the standard assumptions U ′ > 0, U ′′ < 0 on the felicity function, we also

assume that limc→0 U
′(c) =∞. This ensures that the solution to the planner’s control problem

is interior. The curvature of U measures agent’s tolerance for consumption fluctuations. It

will prove useful in what follows to have a way of measuring this important aspect of agents’

inter temporal preferences. To this end, following Gollier & Zeckhauser (2005), we define the

2We assume common felicity functions, as we wish to focus purely on the effects of heterogeneity in pure
time preference, and not on heterogeneity in attitudes to consumption smoothing. Accounting for heterogenous
felicity functions would be a natural extension of our analysis.
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Absolute Tolerance for Consumption Fluctuations:

T (c) := − U
′(c)

U ′′(c)
(2)

This quantity tells us about agents’ consumption smoothing preferences. The smaller is T ,

the more agents care about smoothing their consumption over time. T (c) is of course just

the inverse of the coefficient of absolute risk aversion, though uncertainty will play no role in

our analysis. The familiar assumption of decreasing absolute risk aversion corresponds to the

assumption that T (c) is an increasing function. This has an equally direct interpretation in

our context: the higher is c, the more tolerant agents are towards small additive consumption

fluctuations. We will assume this condition in what follows. The requirement that marginal

utility be unbounded at c = 0 places restrictions on the behavior of T (c) near zero. We show

in Appendix A that it implies

lim
c→0

T (c) = 0. (3)

This condition will be useful later on.

The Hamiltonian for the social planner’s problem is:

H =
∑
i

wiU(cit)e
−ρit + λ(F (S)−

∑
i

cit), (4)

where λ is the shadow price of the resource. Since the Hamiltonian is concave, the necessary

conditions of the Pontryagin Maximum Principle are sufficient for an optimum, and the

optimum is unique. The necessary conditions are:

∂H

∂cit
= 0⇒ λ = e−ρitU ′(cit)wi (5)

∂H

∂S
= −λ̇⇒ −λ̇ = F ′(S)λ (6)

lim
t→∞

λS = 0 (7)

Hence along an optimal trajectory, the stock evolves according to the dynamical system

λ̇ = −λF ′(S) (8)

Ṡ = F (S)−
∑
i

(U ′)−1
(
eρitλ/wi

)
(9)

and at each point in time consumption is allocated so that

cti = (U ′)−1
(
eρitλ/wi

)
(10)
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The initial condition on the shadow price will be part of the solution.

2.2 The representative agent and the group’s discount rate

Our task is to find a representative agent (RA) whose time preferences coincide with those of

the SP. In order to achieve this we rely on a simple observation: the RA’s optimum must be

observationally equivalent to that of the SP. We now show that this is sufficient to determine

the RA’s discount rate.

Consider a RA who shares the agents’ felicity function U(c), but has some unspecified discount

factor β(t). She will solve the following problem:

max
Ct

∫ ∞
0

U(Ct)β(t)dt s.t. Ṡ = F (S)− Ct (11)

The Hamiltonian for this problem is:

H̃ = U(Ct)β(t) + µ(t)(F (S)− Ct) (12)

and applying the Maximum Principle leads to:

µ(t) = β(t)U ′(Ct) (13)

−µ̇ = F ′(S)µ (14)

lim
t→∞

Sµ = 0 (15)

Observational equivalence requires the evolution of the stock for the RA to be identical to

that for the SP, and hence we require ∑
i

cit = Ct (16)

for all time. Substituting this relationship into (13), we see that a necessary condition on β

is that

µ = β(t)U ′(
∑
i

cti) (17)

Differentiating this equation with respect to t, and substituting into (14), we find that the

RA’s implied rate of time preference ρ∗(t) satisfies

ρ∗(t) := − β̇
β

= F ′(S)− η(
∑

cti)

∑
ċti∑
cti
, (18)

where η(c) := −cU ′′(c)/U ′(c) is the elasticity of marginal utility. That is, the RA’s discount

rate ρ∗(t) is just given by the Ramsey formula, where the terms on the right hand side (i.e.

S and cit) are determined from the solution to the SP’s problem. All this says is that the
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representative agent must allocate aggregate consumption efficiently over time, and we have

chosen the discount rate ρ∗(t) so that the RA’s consumption decision coincides with the SP’s

aggregate consumption decision. It is straightforward to see that choosing ρ∗(t) according

to (18) also ensures that the RA discounts aggregate consumption at the same rate as the

group3. The group’s consumption discount rate is the crucial input to cost benefit analysis

of marginal projects. Thus ρ∗(t) is an operationally meaningful quantity for real cost benefit

analysis.

We now put the expression (18) into a more illuminating form which separates out two effects

that contribute to the RA’s time preferences: an ‘exogenous income’ distributive effect, and

an ‘endogenous income’ collective consumption smoothing effect. The former originates from

the time dependence of the problem of allocating an exogenously given stream of perishable

income between individuals with different discount rates, and the latter from the problem of

choosing the group’s aggregate income level optimally over time.

To begin, define

ρGZ :=

∑
i ρiT (cti)∑
i T (cti)

. (19)

Gollier & Zeckhauser (2005) (henceforth GZ) show that when the group has access only to an

exogenous, perishable, income source at each time t, the RA’s time preferences are given by

(19). The key driver of this result is the distributive motive induced by the heterogeneity in

the utility function U(c)e−ρit. Each agent’s marginal utility from consumption varies idiosyn-

cratically with time, and hence the allocation decision has a temporal dependence. What GZ

are not picking up however, is how the heterogeneity in ρi will affect agent’s preferences for

the timing of consumption. This arises because in their model current consumption choices

have no effect on future consumption possibilities, as income is exogenous and cannot be

saved. Put simply, agents decide how to divide an exogenous and perishable cake, but not

how much cake to bake over time.

Now differentiate (5) with respect to t, and substitute into (6), to find

ċti = (F ′(S)− ρi)T (cti). (20)

This is nothing more than another set of Ramsey equations – at the SP’s optimum allocations

of consumption to each agent i are efficient over time. Use the definition (19), and sum (20)

over i to find ∑
i

ċti = (F ′(S)− ρGZ)
∑
i

T (cti). (21)

3By definition, the RA’s consumption discount rate is ρ∗(t) + η(Ct)
Ċt
Ct

= F ′(S), where the equality follows
from (18), and Ct =

∑
i cti. The value of a marginal unit of aggregate consumption to the group at time t

is just λ(t), the shadow price of S. The group’s consumption discount rate is minus the growth rate of this
value: − d

dt
log λ(t) = F ′(S) by (8). Thus the two consumption discount rates agree.
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Now define

X :=

∑
i T (cti)

T (
∑

i cti)
. (22)

Using the fact that η(c) = c/T (c), the definition (22), and the relationship (21), we find that

(18) is equivalent to

ρ∗(t) = (1−X)F ′(S) +XρGZ . (23)

This expression is our central result. It says that the RA’s discount rate is a linear com-

bination of the distributive term ρGZ , and the endogenous income term F ′(S), the rate of

return on the resource S. The relative importance of these two factors is controlled by the

endogenous, time varying, quantity X. To interpret X, note that Wilson (1968) and GZ show

that the group’s tolerance for consumption fluctuations is given by
∑

i T (cti). Thus X is a

factor that converts between the group’s tolerance for consumption fluctuations at the SP’s

optimum (
∑

i T (cti)), and the representative agent’s tolerance for consumption fluctuations

at the optimum (T (
∑

i cti)). The evolution of the group’s discount rate is entirely determined

by the dynamical system (8–9).

2.3 The steady state and the long-run discount rate

We now show that at a steady state S∞ of the dynamical system (8–9), the expression for

the discount rate ρ∗(t) reduces to the expression GZ obtained in the exogenous income case.

This is to be expected: at a steady state of the system the group’s income is constrained

to be constant, and hence current consumption decisions do not affect future consumption

possibilities. This is precisely the case GZ examine.

To see this notice that when the resource stock is stationary, i.e. Ṡ = 0, we must have

F (S)−
∑
i

cti = 0. (24)

Since this equation must hold for all times at the steady state, we can differentiate it with

respect to time, and set the result to zero:

F ′(S)Ṡ −
∑
i

ċti = −(F ′(S)− ρGZ)
∑
i

T (cti) = 0, (25)

where we’ve used (21). There are two possibilities, either F ′(S) = ρGZ , or
∑

i T (cti) = 0.

Assuming a non-trivial steady state (i.e. S 6= 0) at least one agent’s consumption will be

positive, thus we must have F ′(S) = ρGZ , and hence from (23), we conclude that

ρ∗|S=S∞ = ρGZ . (26)

Thus we see that in general we can expect GZ’s results to be accurate only in the infinite
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future, when the system settles down to its steady state.

The result (26) says that, even before we know how consumption is allocated in the steady

state, we know that the group’s discount rate must be in agreement with GZ’s prediction

in the long run. The following proposition determines how consumption is allocated at the

steady state, and hence allows us to infer the group’s long run discount rate in general.

Proposition 1. Let L be the index of the agent with the lowest discount rate, ρL. Assume

that the equation F ′(S) = ρL has a solution4 in S. Then the only nontrivial steady state S∞

of our model is given by

S∞ = (F ′)−1(ρL) (27)

c∞i =

{
0 i 6= L

F (S∞) i = L
(28)

and the steady state is a saddle point of the dynamical system (8–9). Moreover,

lim
t→∞

ρ∗(t) = ρL (29)

Proof. Equations (10) and (8) imply that in the steady state

U ′(cti) ∝
e−(F

′(S∞)−ρi)t

wi
, (30)

where the proportionality constant is positive (since the shadow price is positive). Since U ′

is decreasing by assumption, this implies that in the steady state cti is growing indefinitely

if ρi < F ′(S∞), declining if ρi > F ′(S∞), and constant if ρi = F ′(S∞). Now in the steady

state we require Ṡ = 0, i.e.
∑

i cti = F (S∞). This cannot be the case if any of the cti are

growing indefinitely. Since the ρi are distinct, this means that at most one of the cti can be

constant, and the rest must all decline to zero. Clearly, this can only be so if F ′(S∞) = ρL,

which implies limt→∞ cti = 0 for i 6= L. By the concavity of F (S) there is only one value of

S that satisfies F ′(S) = ρL. Thus this is the unique nontrivial steady state.

To prove that the steady state is a saddle point, from (8–9), the Jacobian of the system is:

J =

(
∂λ̇
∂λ

∂λ̇
∂S

∂Ṡ
∂λ

∂Ṡ
∂S

)
=

(
−F ′(S) −λF ′′(S)∑
i T (cti) F ′(S)

)
(31)

where in the bottom left element we’ve used the fact that

∂

∂λ
(U ′)−1

(
eρitλ/wi

)
= − eρit/wi

U ′′((U ′)−1(eρitλ/wi))
= T (cti). (32)

4This is guaranteed by continuity of F ′(S) if limS→0 F
′(S) > ρL, limS→∞ F

′(S) < ρL. The solution must
be unique by our assumption that F is concave.
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Evaluated at the steady state values of λ, S, cti, this becomes

J |S=S∞ =

(
−ρL 0

T (F (ρL)) ρL

)
(33)

The eigenvalues of the Jacobian are ±ρL, and hence the steady state is a saddle point.

Finally, by (26) the steady state discount rate is given by the formula (19). Substituting the

steady state consumption values into this formula, and making use of (3), yields (29).

The fact that the steady state is a saddle point, and the only non-trivial steady state of the

system (8–9), means that we know that the optimal trajectory of the system must be a saddle

path. In general, the saddle path will be monotonic, i.e. the state variable S will approach its

steady state value S∞ monotonically from its initial value S0 (see e.g. Kamien & Schwartz,

1991).

Our result parallels that obtained by Becker (1980) in the case of a decentralized competi-

tive equilibrium. The endogeneity of the group’s consumption path in our model has thus

allowed us to obtain an analogue of the results of Weitzman (1998) for the pure rate of time

preference: the group’s rate of time preference approaches the lowest rate in the population

asymptotically.

2.4 Term structure of ρ∗(t)

A natural further question to ask is whether we can find conditions that determine the quali-

tative properties of the term structure of the group’s discount rate, and its relationship to the

exogenous income discount rate ρGZ(t). In general, the derivative of ρ∗(t) is a very complex

function. We have however obtained the following proposition:

Proposition 2. Suppose that

1. T is increasing and convex.

2. T/T ′ is convex.

3. If there is a non-trivial steady state: S0 < S∞.

Then ρ∗(t) is monotonically declining in time. ρ∗(t) ≥ ρGZ(t) if there is a non-trivial steady

state, and ρ∗(t) ≤ ρGZ(t) if S is an exhaustible resource (i.e. F (S) = 0).

Proof. See Appendix B.

As we show in Appendix A, the conditions on T in this proposition must hold locally at c = 0,

we have simply converted them to global conditions. An example of a class of functions that

satisfies these conditions is T (c) = Kcα, where K > 0, α ≥ 1. The familiar case of iso-

elastic felicity functions corresponds to α = 1, and will be examined in detail in the following
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section. The condition on S0, i.e. that the initial value of S be below its steady state value, is

natural in most applications where the resource S is ‘renewable’, including neoclassical growth

models and renewable resource management problems. When the resource is exhaustible, i.e.

F (S) = 0, the only steady state is S = 0. We show in Appendix B that the conditions on T

in the proposition still guarantee a monotonically declining discount rate in this case.

3 Parametric examples

In this section we specialize to specific parametric cases for the felicity function U(c) and the

resource’s growth function F (S). This will allow us to investigate quantitative properties of

the group’s discount rate, thus moving beyond the qualitative results of the previous section.

3.1 Iso-elastic felicity and Gamma discounting

The evolution of the discount rate (23) is in general complex, as it depends on the evolution of

the dynamical system (8–9). In this section we focus on the special case of iso-elastic felicity

functions. This serves two purposes: iso-elastic felicity is a widely used functional form in

applications, and analytic solutions for ρ∗(t) are possible in this case.

It’s clear from the definition of X in (22), that X = 1 if T (c) is a linear function. This case

corresponds to the work-horse case of an iso-elastic felicity function. Specifically,

U(c) =
c1−η

1− η
⇒ T (c) =

c

η
. (34)

We can use this explicit functional form to calculate the inverse of marginal utility, and hence

(10) determines the values of the agents’ consumption:

cti =

(
wie
−ρit

λ(t)

) 1
η

(35)

Substituting (34–35) and X = 1 into (23) shows that in this special case:

ρ∗η(t) =

∑
i ρi(wie

−ρit)
1
η∑

i(wie
−ρit)

1
η

. (36)

This result holds for any stock dynamics F (S) – the shadow price has fallen out of the

expression for ρ∗(t). Thus, we have shown that the group’s discount rate reduces to the GZ

formula (19). This is the only felicity function for which their expression remains valid for

problems where the group’s income is endogenous.

The group’s discount rate in this case is a weighted sum of the individuals’ discount rates,

with time dependent weights yit := (wie
−ρit)

1
η . Defining the expectation operator Exi :=

11



∑
i xiyit/

∑
i yit, and differentiating (36) we find

d

dt
ρ∗η = −1

η

(
Eρ2i − (Eρi)

2
)
< 0. (37)

Recalling that i = L indexes the agent with the lowest discount rate, we have

lim
t→∞

ρ∗η(t) = lim
t→∞

ρL +
∑

i6=L ρi(wi/wL)
1
η e−(ρi−ρL)t/η

1 +
∑

i6=L(wi/wL)
1
η e−(ρi−ρL)t/η

= ρL. (38)

Thus for iso-elastic utility, the RA’s discount rate declines monotonically to the lowest rate.

This is in agreement with Propositions 1 and 2.

We can move beyond these qualitative features to find an analytic expression for ρ∗(t) in a

special case for the weights wi. Take the continuum limit of (36), and let wi → w(ρ) be

the probability density of discount rate ρ. Assume, following Weitzman (2001), that w(ρ) is

Gamma distributed with shape and scale parameters k, θ > 0. This implies:

w(ρ) ∝ ρk−1e−
ρ
θ . (39)

Thus the time dependent weights yit become

yit → yt(ρ) ∝ ρ(
k−1
η

+1)−1
e
− 1
η
( 1
θ
+t)ρ

. (40)

These are also Gamma distributed, with modified parameters (k′, θ′) = (k−1η + 1, η/(θ−1 +

t)), provided that k′ > 0. Using the fact that the mean of the Gamma distribution with

parameters (k′, θ′) is just k′θ′, we have

ρ∗η(t) =
k − 1 + η

t+ 1
θ

. (41)

For a Gamma distribution with mean µ and variance σ2, k = µ2

σ2 , and θ = σ2

µ , and so we can

rewrite this as

ρ∗η(t) =
µ+ σ2

µ (η − 1)

1 + σ2

µ t
. (42)

The constraint k′ > 0 ensures that the numerator is non-negative. To find the value of ρ∗η(t)

when k′ < 0, note that by continuity of ρ∗η in η, and the fact that ρ∗η ≥ 0, we must have ρ∗η = 0

12



when the numerator of the previous expression is negative5. Hence we have,6

ρ∗η(t) =

{
µ+(σ2/µ)(η−1)

1+σ2t/µ
η ≥ 1− µ2

σ2

0 η < 1− µ2

σ2

(43)

Note that ρ∗η is non-decreasing in η. We expect this since the larger is η, the less tolerant

agents are of consumption fluctuations – this makes the group’s consumption decisions more

myopic. ρ∗η is also non-decreasing in µ – the larger is the average pure rate of time preference,

the larger is the group’s rate of time preference. Interestingly,

sgn

(
∂ρ∗η
∂σ2

)
= sgn

(
η − 1

µ
− t
)

(44)

Thus the direction of the effect of an increase in the variance of time preferences varies with

time when η > 1. For t < (η−1)/µ, the group’s discount rate increases, and for t > (η−1)/µ

it decreases if we increase σ2. Also, limσ2→0 ρ
∗
η(t) = µ and limσ2→∞ ρ

∗
η(t) = (η − 1)/t (for

η > 1). The time preferences of high variance groups look more ‘hyperbolic’, while those of

low variance groups look more like the constant discount rate model. Figure 1 illustrates this

dependence.

The functional form for ρ∗η(t) in (43) corresponds to the familiar hyperbolic discounting model

introduced by Laibson (1997), and applied to neoclassical growth models by Barro (1999).

Our analysis suggests an alternative interpretation for their work. Both Laibson and Barro

interpret declining pure rates of time preference behaviorally. In our interpretation however,

these models can be seen as a description of the behavior of a heterogeneous group of time

consistent agents, whose consumption decisions are made by a social planner who distributes

consumption between individuals and over time in an efficient manner. This places a nor-

mative spin on models with declining discount rates. In addition, unlike the single agent

interpretation of declining discount rate models, our interpretation does not require the RA

to solve a dynamic game against ‘future selves’ (e.g. Phelps & Pollak, 1968; Laibson, 1997) in

order for her policy choices to be viewed as time consistent. Rather, solving the RA’s control

problem with time preferences ρ∗(t), and assuming full commitment to future policy choices,

yields the group’s optimal consumption policy. This policy looks time-inconsistent from the

5This also follows from the fact that for k′ < 0 the denominator of (36) tends to infinity, while the numerator
is finite.

6Comparing (43) to the results obtained in Weitzman (2001), we see that this formula reduces to his
expression when η = 1. Note however that Weitzman was interested in real discount rates r, and not pure
rates of time preference. Real discount rates depend in part on agents’ rates of impatience through the
Ramsey formula: r = ρ + ηg + h.o.t., where g is the mean growth rate of consumption, and h.o.t. denotes
higher order terms that depend on the higher moments of agent’s subjective probability distributions for
g. Thus, heterogeneity in r arises from two quite different sources – disagreements about ρ (and η), and
agents’ different predictions about the value of about g, i.e. heterogeneous beliefs. While Weitzman (2010)
has examined the consequences of empirical uncertainties in the consumption growth rate for real discount
rates for a time consistent RA, his original work (Weitzman, 2001) is more appropriately seen as a problem in
preference and belief aggregation than one of uncertainty. See also Freeman & Groom (2010).
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Figure 1: Dependence of the group’s discount rate on the standard deviation (σ) of the distri-
bution of individual rates in the population, for iso-elastic felicity functions. µ = 0.02, η = 2
in this example.

perspective of the RA, but is in fact time-consistent from the perspective of the group.

3.2 Endogenous income effects in a simple growth model

In order to understand the quantitative dynamics of the group’s discount rate ρ∗(t) for non

iso-elastic felicity functions, it is necessary to find the optimal saddle path trajectory of the

dynamical system (8–9). This requires numerical methods in general. In order to demonstrate

the additional insights that are possible from this exercise, we present the results of such an

analysis for a simple model.

We consider a neoclassical growth theory interpretation for our model, in which S is a stock

of capital, and F (S) is a Cobb-Douglas production function, minus depreciation. We assume

that labour supply is constant (normalized to 1), and no technical progress. Thus,

F (S) = Sγ − δS. (45)

We pick γ = 0.3 for the capital share of production, and δ = 0.1 for the annual depreciation

rate. As we have shown, T (c) must be nonlinear to pick up the additional effects of the

endogenous income term F ′(S) in (23). We pick T (c) = c2 – this choice obeys the conditions

in Proposition 2. Integrating this choice of T using the relationship (46) in Appendix A yields

the marginal utility function and its inverse, which enter the dynamical equation (9).

We assume that there are two groups of agents in the economy – an impatient group with

14
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Figure 2: The group’s discount rate for our simple growth model

ρ = 0.04, and a more patient group with ρ = 0.02, each with weight wi = 0.5. We pick an

initial condition of S0 = 2, use a shooting method to solve for the initial value of the shadow

price on the saddle path, and use (23) to compute the representative agent’s discount rate.

Figure 2 contains our results.

By Proposition 2, we know that we must have ρ∗ > ρGZ , and that dρ∗/dt < 0 for this model

specification. This is born out in Figure 2. What the simulation results show however is that

the GZ formula, which neglects the endogenous income effects, dramatically underestimates

the group’s discount rate at early times. The contribution of the endogenous income term

in (23) to the RA’s time preferences is large at early times, as F ′(S) is a declining function.

Figure 2 shows that at early times the group’s discount rate is larger than the discount rate

of either group of agents. We thus conclude that endogenous income effects can make groups

more impatient than any of their individual members. This result is not possible when income

is exogenous and perishable, as the exogenous income discount rate ρGZ is a weighted sum

of individual rates, and is thus bounded by the highest and lowest discount rates in the

population.

4 Conclusions

While there are many arguments for the use of declining real discount rates for the evaluation

of marginal projects (Groom et al., 2005), the assumption of a constant pure rate of time

preference has remained largely unchallenged in dynamic welfare economics. There are very
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good reasons for this – time consistency is a very appealing property of rational dynamic

choice, and the Koopmans axioms make a strong case of the standard exponential discounting

model. Despite this, models in which agents have declining rates of time preference have

been applied to welfare analysis of long run stock problems by some authors (e.g. Cropper

& Laibson, 1999; Karp, 2005). Whereas exponential discounting renders the distant future

all but irrelevant in these problems, declining discount rates place increased emphasis on the

long-run, making analysis of policy options more sensitive to persistent effects. Despite the

intuitive appeal of these methods, and the argument that exponential discounting neglects

the long-run, there is a temptation to see them as an inappropriate application of behavioral

models to normative questions.

Building on the work of others, our analysis has shown that there is another way to interpret

representative agent models with declining pure rates of time preference. Declining pure rates

of time preference arise naturally when aggregating the preferences of heterogeneous agents

with idiosyncratic, time consistent, preferences. We feel that this places the use of declining

discount rates on firm normative footing.

The exact choice of a discount rate schedule for empirical applications is a complex task – we

have shown that in general it depends on agents’ preferences, as well as the productivity of

the stock that generates their income. While analytic results are only possible for iso-elastic

felicity functions, we have argued that under plausible conditions the group’s discount rate is

declining, and approaches the lowest rate in the population asymptotically. These qualitative

properties are shared by the hyperbolic discounting models that have thus far largely been

the province of behavioral work. Our analysis suggests that these models may be just as

useful for normative welfare applications.

A Conditions on T(c)

The condition limc→0 U
′(c) = ∞ ensures that solutions to optimal consumption allocation

problems are interior. This condition places restrictions on the behavior of T (c), defined in

(2), at the origin. The results in this appendix make use of the following simple lemma:

Lemma 1. Suppose A(c) is a twice differentiable function. If limc→0+ A(c) = −∞, then

limc→0+ A
′(c) =∞.

The proof of this lemma is a simple application of the mean value theorem.

Treating (2) as a differential equation in U ′, we have

U ′(c) = M exp

(
−
∫ c

0
[T (x)]−1dx

)
(46)

for some constant M > 0. Define G(c) :=
∫ c
0 [T (x)]−1dx. limc→0 U

′(c) = ∞ implies that

we require limc→0G(c) = −∞. This in turn implies that we must have limc→0G
′(c) =
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limc→∞[T (c)]−1 =∞, and hence we conclude that

lim
c→0

T (c) = 0. (47)

The fact that T approaches zero at the origin means that for c small enough T (c) ∼ Kcα, for

some constants K,α > 0, where α is the exponent of the dominant term in T (c) as c → 0,

i.e. all other terms approach zero faster than cα. Thus for small c, G(c) ∼ 1
K(1−α)c

1−α. Since

we need limc→0G(c) = −∞, we must have α ≥ 1. Hence T (c) must be locally convex at the

origin, and approach zero as fast as, or faster than c. This in turn implies that T/T ′ ∼ c as

c→ 0, and thus T/T ′ is also locally convex at the origin.

B Term structure of ρ∗(t)

We consider the case in which a non-trivial steady state S∞ exists first, i.e. we assume that

F ′(S) = ρL has a solution. From (23), we have

ρ̇∗ = (1−X)F ′′(S)Ṡ − Ẋ(F ′(S)− ρGZ) +Xρ̇GZ . (48)

By the assumption that T is convex, and (3), we know that T must be a super additive

function, and hence 0 ≤ X ≤ 1. Thus sgn(1 − X)F ′′(S)Ṡ = − sgn(Ṡ) = − sgn(S∞ − S0),
where the last equality follows from the monotonicity of the saddle path. Similarly, from (21)

we have sgn(F ′(S) − ρGZ) = sgn(
∑

i ċti) = sgn(S∞ − S0). Again, the last equality follows

from the properties of the saddle path. If S0 < S∞, the group’s income F (S) is growing

along the saddle path. It thus cannot be optimal for aggregate consumption to be falling, and

we conclude that
∑

i ċti > 0. Thus the crux of the problem is to show that Ẋ > 0 and ρ̇GZ < 0.

Consider ρ̇GZ . From the definition (19), we have

ρ̇GZ =
(
∑
ρiT
′
i ċti)

∑
Ti − (

∑
ρiTi)

∑
T ′i ċti

(
∑
Ti)2

(49)

= (F ′(S) + ρGZ)

∑
ρiTiT

′
i∑

Ti
−
∑
ρ2iTiT

′
i∑

Ti
− F ′(S)ρGZ

∑
T ′iTi∑
Ti

(50)

where we’ve used (20–21) and simplified. If we set F ′(S) = ρGZ in this equation, we recover

the expression for ρ̇GZ that Gollier & Zeckhauser (2005) obtain in Proposition 5 of their

paper. They prove that at this value of F ′(S), ρ̇GZ < 0 if T ′ > 0. So if we can show that

ρ̇GZ |F ′(S)>ρGZ < ρ̇GZ |F ′(S)=ρGZ , we will be done. Partially differentiate the expression for

ρ̇GZ above with respect to F ′(S) to find:

∂ρ̇GZ
∂F ′(S)

=

∑
ρiTiT

′
i∑

Ti
−
∑
ρiTi∑
Ti

∑
TiT

′
i∑

Ti
(51)
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where we’ve used ρGZ = (
∑
ρiTi)/(

∑
Ti). Define the expectation operator, 〈xi〉 :=

∑
xiTi∑
Ti

.

Then the expression above is,

∂ρ̇GZ
∂F ′(S)

= 〈ρiT ′i 〉 − 〈ρi〉〈T ′i 〉 (52)

= Cov(ρi, T
′(cti)) (53)

where Cov(x, y) is the covariance of the two random variables x, y. Now from (10) it’s clear

that
∂cti
∂ρi

= −tT (cti) < 0. (54)

Hence ρi and cti are anti-correlated, and when T ′ is an increasing function, Cov(ρi, T
′(cti)) <

0⇒ ∂ρ̇GZ
∂F ′(S) < 0. Hence for F ′(S) > ρGZ this implies that ρ̇GZ < ρ̇GZ |F ′(S)=ρGZ < 0.

Now consider Ẋ. Differentiating X directly using the definition (22), we see that Ẋ > 0 iff(∑
i

T ′i ċti

)
T (
∑
i

cti) > (
∑

Ti)T
′(
∑
i

cti)
∑
i

ċti

⇐⇒

(∑
i

T ′iTi(F
′(S)− ρi)

)
T (
∑
i

cti) > T ′(
∑
i

cti)(
∑

Ti)
2(F ′(S)− ρGZ)

⇐⇒
(
∑

i T
′
iTi(F

′(S)− ρi))∑
Ti

− T ′(
∑
cti)

T (
∑
cti)

(
∑

Ti)(F
′(S)− ρGZ) > 0

where in the second line we’ve used the expressions for ċti and
∑

i ċti in (20–21). Consider

the first term:

(
∑

i T
′
iTi(F

′(S)− ρi))∑
Ti

= F ′(S)〈T ′i 〉 − 〈ρiT ′i 〉

= F ′(S)〈T ′i 〉 − [Cov(ρi, T
′
i ) + 〈T ′i 〉〈ρi〉]

= −Cov(ρi, T
′
i ) + (F ′(s)− ρGZ)〈T ′i 〉

Hence Ẋ > 0 iff

−Cov(ρi, T
′
i ) + (F ′(S)− ρGZ)

[∑
i T
′
iTi∑
Ti
− T ′(

∑
cti)

T (
∑
cti)

(
∑

Ti)

]
> 0 (55)

We have shown that when T is convex, −Cov(ρi, T
′
i ) > 0, and we also have F ′(S)− ρGZ > 0

on the saddle path, so the task is to find conditions under which the square bracket is positive.

Rewrite this condition as:
T (
∑
cti)

T ′(
∑
cti)

∑
i

T ′iTi > (
∑

Ti)
2 (56)

Now assume that T/T ′ is a convex function. This, in combination with the fact that
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limc→0 T (c) = 0, implies that limc→0 T/T
′ = 0, and hence T/T ′ is super additive. Thus,

T (
∑
cti)

T ′(
∑
cti)
≥
∑
j

Tj
T ′j

(57)

Under this condition, it is sufficient to show that(∑
i

T ′iTi

)∑
j

Tj
T ′j

 > (
∑

Ti)
2 =

∑
i

Ti
∑
j

Tj

⇐⇒
∑
i

∑
j

TiTj

(
T ′i
T ′j
− 1

)
> 0

Notice that when i = j in this double sum the factor in brackets is zero. Also, the factor TiTj

is symmetric under i ↔ j, so we can factorize pairs of terms with symmetric indices to find

that we require ∑
i

∑
j>i

TiTj

(
T ′i
T ′j

+
T ′j
T ′i
− 2

)
> 0.

The factors in the round brackets are all of the form x+ x−1 − 2, where x ≥ 0. It is easy to

show that this function has a global minimum at x = 1, at which its value is zero. Hence the

double sum is non-negative, and Ẋ > 0. Combining these pieces yields ρ̇∗ < 0.

Now consider the case of exhaustible resources, in which F (S) = 0. Clearly the equation

F ′(S) = ρL has no solution in this case, so there is no non-trivial steady state, and this

case is not covered by the derivation above. Since F ′(S) = 0 in this case, we have from our

expression (23) that

ρ∗(t) =

∑
i ρiT (cti)

T (
∑

i cti)
. (58)

Differentiate ρ∗(t) explicitly with respect to time to find that sgn ρ̇∗(t) is given by the sign of(∑
i

ρiT
′(cti)ċti

)
T (
∑
i

cti)−

(∑
i

ρiT (cti)

)
T ′(
∑
i

cti)
∑
i

ċti (59)

=
∑
i

[
ρiT
′(cti)T (

∑
i

cti)−

(∑
i

ρiT (cti)

)
T ′(
∑
i

cti)

]
ċti (60)

= −T ′(
∑
i

cit)

[(∑
i

ρ2iTiT
′
i

)
T (
∑

i cti)

T ′(
∑
cti)
− (
∑
i

ρiTi)
2

]
(61)

where we’ve used ċti = −ρiT (cti) in the third line. Now consider the factor in the square

bracket, and assume T/T ′ is convex, so that (57) holds. Then to show that this factor is

19



non-negative it is sufficient to show that(∑
i

ρ2iTiT
′
i

)∑
j

Tj
T ′j

− (
∑
i

ρiTi)
2 > 0

⇐⇒
∑
i

∑
j

(
ρ2iTiTj

T ′i
T ′j
− ρiρjTiTj

)
> 0

⇐⇒
∑
i

∑
j

ρiρjTiTj

(
ρi
ρj

T ′i
T ′j
− 1

)
> 0

⇐⇒
∑
i

∑
j>i

ρiρjTiTj

(
ρi
ρj

T ′i
T ′j

+
ρj
ρi

T ′j
T ′i
− 2

)
> 0

Again, the factors in brackets are of the form x+x−1−2, and are thus positive. Hence ρ̇∗ < 0

in the exhaustible resources case as well.

Finally, from (23) and (21), we have

ρ∗ − ρGZ = (1−X)(F ′(S)− ρGZ) (62)

= (1−X)

∑
i ċti∑

i T (cti)
(63)

Recall that 0 < X < 1 when T is convex. If there is a non-trivial steady state, sgn(
∑

i ċti) =

sgn(S∞ − S0), and we conclude that ρ∗ ≥ ρGZ . For exhaustible resources F ′(S) = 0 and we

find that ρGZ ≥ ρ∗.
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Vincent (eds.), Handbook of Environmental Economics, vol. 3, pp. 1105–1145. Elsevier.

M. O. Jackson & L. Yariv (2012). ‘Collective Dynamic Choice: The necessity of time incon-

sistency’. Working paper .

M. I. Kamien & N. L. Schwartz (1991). Dynamic Optimization: The Calculus of Variations

and Optimal Control in Economics and Management. Elsevier Science, 2 edn.

L. Karp (2005). ‘Global warming and hyperbolic discounting’. Journal of Public Economics

89(2–3):261–282.

T. C. Koopmans (1960). ‘Stationary Ordinal Utility and Impatience’. Econometrica

28(2):287–309.

D. Laibson (1997). ‘Golden Eggs and Hyperbolic Discounting’. The Quarterly Journal of

Economics 112(2):443–478.
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