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1. Introduction

Product redesigns happen across virtually all types of products from breakfast cereals to

tennis shoes to automobiles, and likely occur with much greater frequency than new variety

introductions. For example, we find in the data we use in this paper that redesigns of existing

automobile models (e.g., a Honda Civic) occur with twice the frequency of the introduction

of entirely new models. Surprisingly, there has been little economic analysis of the decision

by producers to redesign existing products and the effects these redesigns have on consumer

decisions and overall welfare.

There are a number of factors that may cause producers to redesign existing products.

One may be to incorporate new functional technology, upgrading the quality of an existing

variety while maintaining brand recognition with consumers. For example, a company may

develop a revised formula for their laundry detergent to better clean clothes and introduce

a “new and improved” version of their product. A second reason may be to simply update

the product’s appearance for consumers who value design changes. This would imply that

consumers not only value having many variety choices at a given point in time, but also

respond positively to dynamic changes in existing varieties, even if function and quality

are essentially unchanged. For example, the fashion industry introduces frequent seasonal

changes in colors and styling of clothes by brand name designers that have little to do with

quality or functionality changes.

Importantly, these redesign decisions have both internal and external strategic implica-

tions in the marketplace. Externally, redesign timing of products is a dimension in which

a firm may compete with other firms in the marketplace. This is particularly true if con-

sumers strongly value the “new” features that come with redesign, such that newly redesigned

products steal market share at the expense of other competitors.

Independent of these external considerations, a main internal consideration for a firm

is that a redesigned model will be replacing the firm’s own existing variety. This is most

important in the case of durable goods, as secondhand sales may significantly erode demand

for current production of a product. This creates an incentive for the firm to introduce a
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redesigned model of the product to limit the competition of the secondhand markets with

its current product. This phenomenon has been termed “planned obsolescence.”

In this paper, we use a model of strategic redesign decisions by U.S. automobile manufac-

turers in a dynamic oligopolistic setting to estimate the impact of these external and internal

strategic considerations on the redesign decisions and its resulting impacts on the market-

place. We employ a model of dynamic oligopoly that follows Bajari et al. (2007), in order

to model redesign and exit decisions. The estimation procedure allows us to estimate both

the structural parameters determining current period demand and profits for each product,

but also the dynamic parameters (costs) determining exit and redesign decisions. Because

the specification is tied to a structural model, we can also simulate counterfactual scenarios

and tie our results back to implications for welfare.

We find that redesigns are a costly activity in the automobile market, averaging about $1

billion in costs. Yet, redesigns are fairly frequent because consumers value redesigns strongly.

Model designs become obsolete quickly as demand falls with a model’s age, leading to fairly

frequent redesigns by automobile firms and almost a 20% gain in a model’s market share

the year of a new redesign. The incentives to develop new designs to recapture declining

market share is what we call the “obsolescence effect,” and comes through strongly in our

estimates. We also find evidence that model redesign decisions are influenced by redesigns of

competing models, which we term the “competitive redesign effect”. Based on our structural

model estimates, we then simulate an entire set of counterfactuals that consider different

combinations of reduced or increased strength of these two forces on redesign activity. We

show that welfare would be improved if redesign competition were reduced, allowing redesign

activity to be more responsive to the planned obsolescence channel. The net effect of these

changes would reduce total redesigns by roughly 10%, increasing total welfare by roughly

3%. While our model and welfare simulations are focused on the new automobile market,

we provide some evidence that the gains from redesigns in the new automobile market are

an order of magnitude larger than the losses in the secondhand automobile market.

The high valuation that consumers put on newly-designed models drives fairly frequent
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redesigns and gives automobile manufacturers fairly substantial market power, with a 4-to-1

ratio of firm profits to consumer surplus. We also note that we find quite heterogeneous

effects across classes of automobiles (e.g., trucks versus cars). While our model and welfare

simulations are focused on the new automobile market, we provide some evidence that the

gains from redesigns in the new automobile market are an order of magnitude larger than

the losses in the secondhand automobile market.

Our analysis relates in important ways to some prior literature. First, there has been

a significant number of theoretical analyses of planned obsolescence. Much of the earlier

literature concerns the monopolist’s choice on durability and pricing of products, assuming

that new and used goods are perfect substitutes.1 This led to some surprising results, such

as prices being driven to marginal cost. Recent papers have relaxed many assumptions

(such as perfect substitutability between old and used goods), but can then derive a wide

variety of predictions. For example, depending on assumptions, a durable goods producer

may redesign a product more frequently than is socially optimal (Waldman (1993, 1996)) or

less than is socially optimal (Fishman and Rob (2000)). Likewise, studies come to different

conclusions on whether these forces tend to decrease or increase firm profits, or decrease or

increase consumer welfare. Surprisingly, these ambiguous conclusions obtain even though

these studies invariably consider the case of a monopolist producer.2 Thus, our estimates

provide some of the very first empirical evidence for many of these theoretically ambiguous

effects, including the frequency of redesigns, firm profitability and overall welfare.

There has been a smaller set of empirical studies that have examined the issue of planned

obsolescence or related issues connected with secondhand markets for durable goods. Unlike

our analysis, however, these studies have been primarily focused on modeling and estimating

consumer behavior across the new and secondhand markets, taking introductions of new

and redesigned varieties as given. For example, Purohit (1992) estimates how much new

automobile model introductions affects prices of secondhand models, while Porter and Sat-

1Most point to Swan (1970) and Coase (1972) as the initial papers in this literature. Waldman (2003) and
Grout and Park (2005) provide surveys of the literature from fields of economics and marketing, respectively.

2An exception is Grout and Park (2005).
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tler (1999) show that the greater the substitutability between the used and new automobile

model, the more transactions one sees in the secondhand market, consistent with a view that

the secondhand market facilitates vertical product differentiation for consumers. Esteban

and Shum (2007) and Chen et al. (2008) build a structural model of a secondhand market

of consumers and analyze how much this affects firm profitability by new automobile manu-

facturers. Finally, Chevalier and Goolsbee (2009) show that consumers are forward-looking

and become much more price-elastic in their purchases of a textbook when a new edition in

the coming period is likely. We view these studies as more complementary than similar, as

our focus is on modeling strategic redesign decision by firms. This allows us to focus directly

on the internal and external factors that affect this redesign decision and its ultimate effect

on profits and welfare.

The papers closest in spirit to our paper is perhaps Iizuka (2007) and Kim (2013). Iizuka

(2007) estimates the factors that affect when a new edition of a textbook is introduced. The

hazard-model analysis finds significant evidence for a planned obsolescence effect, as greater

used textbook sales and age of the textbook make a new edition more likely. However,

there is no evidence for competitive effects from rival textbooks on the timing of a new

textbook. The reduced-form approach by Iizuka (2007) does not allow one to examine

how new model introductions affect the dynamic nature of redesign competition or the

implications for firm profits and consumer welfare, as does our approach. Kim (2013) also

combines a discrete choice model with a two-step approach similar to Bajari et al. (2007)

to analyze the interaction of innovation, production and the used market in the jumbo jet

market. She uses the parameter estimates to analyze the welfare effects of governmental

subsidies; her focus is on new products. Our paper differs from these by examining more

concretely the relative effects of redesign competition versus planned obsolescence on the

timing of redesigned models.

On a final note, our analysis also relates to prior research demonstrating that consumers

realize considerable welfare gains from the development of new products (Petrin (2002))

and the introduction of new varieties within product class (Feenstra (1994) and Broda and
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Weinstein (2006)). While these studies demonstrate the effect of new varieties on welfare,

we show that redesigns of existing varieties can likewise be an important source of changes

in overall welfare.

Our paper proceeds in the following fashion. In the next section we provide some basic

descriptive information on the patterns of redesign of automobile models we find in our

data. In sections 3 and 4, we construct a dynamic model of redesign and competition

in the automobile market, and estimate the model’s parameters. Sections 5 and 6 present

simulation results from our dynamic model, focusing on the effects of redesign on firm profits

and consumer welfare. We also show how various motives for redesign (obsolescence versus

redesign competition) affect redesign activity and welfare. Section 7 concludes.

2. Redesigns in the Automobile Industry: A First Look

Before developing a more formal empirical model to examine the motivations and effects

of redesigns, we next provide basic information on how automobile manufacturers redesign

vehicles, as well as key features of the empirical patterns we see in the data we have on

redesign activity.

Redesigns in the automobile industry allow manufacturers to not only incorporate new

technology into the engineering of their vehicle, but also the opportunity to re-style its

interior and exterior.3 For example, a recent Automotive News article says General Motor’s

two main concerns with an upcoming redesign of the Camaro is how to reduce its weight to

meet fuel efficiency standards and how to come up with new styling that will be as popular

as the current model’s styling.4 We focus on redesigns of models rather than minor updates

that can occur annually, typically termed “refreshings” or “facelifts.”5 Redesigns receive

3Drivetrain changes, such as engines and transmissions, often occur during redesigns. Therefore one
obvious motivation for redesigns is to incorporate technological advances in drivetrain components. Knittel
(2011) estimates that holding weight and horsepower constant, fuel economy increases roughly 2 percent per
year because of technological improvements.

4See http://www.autonews.com/article/20120313/BLOG06/120319962
5For example, the 2004 refreshing of the Honda Civic included introducing a new shape for the car’s

headlights. Other examples of more minor “refreshings” include adding bluetooth technology and introducing
new exterior color options.
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substantial attention by industry magazines, trade journals, and even popular media, while

refreshings receive relatively little attention, even in trade journals. As a result, our focus is

solely on redesigns.

Redesigns are an involved and costly process. Automobile manufacturers employ teams

of engineers and designers that work for years on new redesigns, and which also involve

substantial coordination of suppliers, retooling of assembly lines, etc. While redesign cost

numbers are closely guarded by automobile manufacturers, anecdotal information suggests

that it can sometimes be over $1 billion.6 Our estimates below are quite consistent with this,

averaging $750 million over the various classes of automobiles. Thus, redesigns are major

economic decisions facing automobile manufacturers.

While redesigns are costly, redesigns of existing automobile models happen with consid-

erable frequency. Table 1 provides a number of statistics by class of vehicle. The age of a

vehicle when it is redesigned (Design Age) averages about 6-8 years, with around 70% of all

vehicles taking 4-7 years between redesigns. The likelihood that a vehicle will be redesigned

in any given year (Design Prob) is around 10%. There is clearly some variation in redesign

times across class of vehicles. Our analysis will be able to provide evidence on the extent

to which various factors (redesign costs versus redesign competition features) explain this

heterogeneity.

Our paper is obviously interested in the timing of redesigns and the factors that determine

that timing. Figure 1 documents market shares and timing of redesign patterns for the top-

selling models by various class of vehicles. A number of interesting patterns emerge. First,

redesign timing varies considerably across class of vehicle (e.g., compact cars redesign on

average more frequently than vans), across models (e.g., the Audi A4 is redesigned much more

frequently than the other top-selling luxury vehicles) and even over time for the same model.

The latter fact importantly establishes that automobile manufacturers do not generally follow

a fixed-year schedule for their redesigns (also see Figure 2).

Second, there are interesting patterns in market shares with the timing of redesigns that

6See http://www.forbes.com/2006/03/31/spring-luxury-cars_cx_dl_0403feat.html
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may be suggestive of internal and external strategic considerations. For example, the market

share of the top-selling van, the Dodge Caravan, sees a big shift up in a number of years

after a redesign with a fall off in market share as the model ages, creating an oscillating

pattern. Also in the van market, the Dodge Caravan’s redesigns occur more rapidly towards

the end of our sample as it starts to lose significant market share to new entrants, suggesting

possible strategic responses to the success of these rivals.7

We now turn to developing a structural dynamic model of the automobile market, where

we focus on the manufacturers’ strategic decisions to redesign their models to maximize

current expected profits. This will allow us to then separately identify the importance of

various forces affecting the redesign decision and the resulting implications for profits and

welfare.

3. The Dynamic Model and Estimation of Static Parameters

The auto industry is made up of a handful of firms overseeing a number of brands that

each produce a set of models (varieties). We are foremost interested in modeling the role

of redesign in the dynamics of competition between each model and its competitors. We

therefore treat each model as an individual entity maximizing its own payoffs. As in Sweeting

(2007), we are assuming away firms internalizing a redesigning model’s cannibalization of

demand for its other models for tractability. Denote each firm’s model by j. These models

fall into a particular class of vehicle g.

Each firm makes decisions at times t = 1, ...,∞ of which actions to take, given current

states, in order to compete in the oligopolistic market. In our model, we specify three

different sets of states which firms face—the direct effects of their model’s age, the indirect

(obsolescence) effects of the model’s age, and the competitive redesign effects in response

to their direct competitors’ (re)designs. The full set of states in period t is denoted as

ψjt = ψjt(djt, ojt, cjt) ∈ S ⊂ RL. The direct effects, djt, include age of the current design,

7There is certainly anecdotal evidence for such strategic responses as well. For example, according to
Lassa (2010), the radical redesign of the 2006 Honda Civic caused a one-year delay by Toyota in its redesign
of its Corolla model, as it scrambled to revamp its redesign in response.
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which equals unity for a newly redesigned model and increases by one each period the

model is sold, and an indicator for redesign. Obsolescence states, ojt, are meant to capture

the potential internal incentive to obsolesce the secondary market for the model, which we

control for by constructing the total stock of units of the current model sold in previous

periods: Stockjt =
∑t

t=1 1(Designjt = Designjt−1) ∗ qjt−1. Competitive redesign effects, cjt,

represent the external pressure to redesign due to competing rival models’ redesign activities.

We proxy for these effects using the average age of competing models and total redesigns

of models by competitors within the model’s class. We note that we will be primarily

interested in "redesign competition” in our analysis (i.e., firms timing redesigns to compete

with redesigns of competing models), not the underlying market structure of competition.8

The actions ajt ∈ Aj available to firms in period t are: 1) do nothing, 2) redesign, or

3) exit. Suppose in period t firm j takes no action to change a model whose design is 3

periods old. In t + 1 the age of their model increases by one to 4, and stock increases by

the number of units that were sold in t. If this same firm decided to release a redesign of

this model next period, in t + 1 the age of the model is reset to unity and stock is reset to

zero. The competitive redesign states evolve according to the actions taken by firms in the

same product class. For example, if no models of compact cars are redesigned in t + 1 the

average age of competitors (AgeCompgt) increases by one, and total competitor redesigns

equals zero (TotRedesigngt = 0). Firms that exit receive a value to scrap their model, and

cannot reenter the market.9

Firm j’s profits in t as a function of current actions and states is defined by Πij(at,ψt).

Firms dynamically optimize the present value of current and future profits,

Vj(ψ;a; θ) = E

[
∞∑
t=1

βt−1Πij(at(ψt),ψt; θ)
∣∣∣ψt; θ] ,

8In other words, we will not be examining in this paper what would happen if the market goes from
many competitors to a single monopolist.

9In what follows we make the simplifying assumption that firms do not form expectations about the exit
of their competition. We assume that, in expectation, a firm presumes their competitors will redesign and
produce according to their optimal policies for as long as it remains in the market. This is an important
assumption since all states and actions are interlinked across all producers.

8



where β is a common discount factor shared by firms, and at denotes the set of actions taken

by the firm and its competitors in t, which depends on the accompanying set of states ψt.

Our goal is to estimate the vector θ that rationalizes observed firm behavior. This vector is

defined θ = [θX , θR], where the parameters θX and θR capture the value of exit and cost of

redesign, respectively.

To estimate the dynamic parameters, we follow the methodology developed by Bajari

et al. (2007), which proceeds in three steps. First, we estimate static behavior, which includes

profits and the optimal policies firms follow when taking actions. Second, we construct value

functions by forward simulating static markets using policy functions to transition between

states. Third, we perturb the policy rules and resimulate the markets in order to estimate

the parameters that rationalize our observed market outcomes. We now describe these three

steps in more detail.

3.1. The Static Effects of Redesigns

To estimate the static effects of redesign on market share and profits for individual automobile

models, we follow the standard discrete choice techniques described in Berry (1994) for

specifying the demand structure over automobiles. In particular, assume that consumer i

makes a discrete choice over automobiles j ∈ Jg nested by automobile class g = 0, 1, . . . , G

to maximize her utility,

uij = xjβ − αpj + ξj + ζig + (1− σ)εij

= δj + ζig + (1− σ)εij,

where εij is an i.i.d extreme value random variable. The common group (automobile class

denoted by g) demand parameter ζ follows a distribution depending on σ ∈ [0, 1] such that,

since ε is an extreme value random variable, ζ + (1 − σ)ε is also an extreme value ran-

dom variable. Characteristics, price and unobservables of product j ∈ Jg are xj, pj and ξj,

respectively.

9



Under the extreme value assumption of ε, market share for product j is,

sj(δ, σ) = sj/gsg = e
δj

1−σ

Dσg
∑
g
D

(1−σ)
g

(1)

where Dg ≡
∑
j∈Jg

e
δj

1−σ . Assume the outside good represents the option to not buy a new

automobile. Normalizing δ0 = 0 and D0 = 1 implies s0(δ, σ) = 1∑
g
D

(1−σ)
g

. Given this model of

demand, Berry (1994) shows the demand parameters can be estimated as,

ln(sjt)− ln(s0) = xjtβ − αpjt + σln(sj/gt) + ξjt. (2)

We address the endogeneity of price as Berry et al. (1995) suggest with instruments drawn

from the characteristics of a model’s competitors.

Static profits are calculated each period from the solution of the nested logit demand

discussed above, and Bertrand competition. Static profits each period are,

πjt(pt,xt,ψt, ξt;σ, α) = (pjt −mcjt)Msjt(pt,xt,ψt, ξt;σ, α),

where M is market size, defined as the total number of households in the US, and mcjt

are firm specific marginal costs. Given these assumptions, price must satisfy the first order

condition

sjt(pt,xt,ψt, ξt;σ, α) + (pjt −mcjt)
∂sjt(pt,xt,ψt, ξt;σ, α)

∂pjt
= 0.

Optimal pricing, combined with our nested logit specification, yields price as marginal costs

plus a markup:

pjt = mcjt +
1− σ

α[1− σs̄j/g t − (1− σ)sjt]
.

It is important to note how our obsolescence term, stock of prior production of the model,
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is specified in our empirical framework describing static demand and profits. The stock of

prior production of any model provides consumers the potential option of purchasing a used

automobile rather than a new one. Thus, used vehicles are part of the consumer’s “outside”

option in the model to buying a new automobile. As a result, prior stock does not appear

as a direct term in an individual’s utility derived from a model’s attributes, unlike redesign

and age-related variables. In other words, we assume that the stock of prior production is

not an attribute of a model that directly affects a consumer’s utility from consuming that

particular model. It will affect the consumer’s ultimate demand choice as they compare their

utility levels from consuming this model versus that of the outside good, which includes used

automobiles. Also note that it will appear as a state variable that directly affects a model’s

redesign decision, which we discuss more below.

Table 2 provides our estimates of the determinants of market share from our nested

logit discrete choice demand specification. Column 1 provides OLS estimates of our base

specification with the standard controls, which include the price of the model, the market

share of the model within its own group, and physical attributes of the model—fuel efficiency,

horsepower, torque, weight, width, seating, and interior size. This base specification has an

R2 of 0.806, with many of the variables statistically significant and expected signs. The price

term is negative and statistically significant, even without yet controlling for endogeneity.

Also, the estimates suggest that larger cars with lower horsepower increase the relative

market share of the model.

In Column 2 we add variables to account for the age and redesign attributes of the model.

Our estimates suggest that each additional year of a model’s current design lowers its relative

market share by nearly 3.4%. In column 5 we include a full set of age effects (minus the

effect for age 10 years and older). These OLS estimates do not suggest that market share is

differently affected by a redesign year.

In Columns 4 through 6 of Table 2 we provide 2SLS estimates of these same specifica-

tions. As expected, the coefficient on price becomes larger in magnitude after controlling for

endogeneity. In addition, most of the physical attribute characteristics are also statistically
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significant and accord with that found by previous studies. Most notably, the coefficient

on horsepower is now significantly positive. Controlling for endogeneity also has substantial

impacts on our estimated effects of redesign and age of a model on its relative market share.

Their coefficient estimates are much larger than with OLS, and both are now statistically

significant at the 1% level. Each additional year for a model decreases its relative market

share by 4.9%, but there is now a 19.7% relative gain in a model’s market share for the initial

redesign year. We also estimate a less restricted model that includes a full set of dummy vari-

ables, minus the indicator representing cars models that are 10 years or older. We are able

to identify the coefficient capturing a new model, from the redesign effect, because we also

observe completely new models.10 The age-effects model shows an interesting non-linearity

in the lifecycle of a vehicle. Following a redesign, the first-year age effect is roughly 1.44,

the demand effects falls by nearly .6 in the second year, but then stays relatively flat until

it begins to fall again after year five.

These 2SLS estimates are our preferred model for estimating the static effects of redesign

activity on relative market shares for a given history of redesigns in the market place. In

order to understand how the history of redesigns evolves dynamically, we next specify and

estimate the policy functions that explain redesign and exit decisions of models. Then our

third step is to use our estimated static market share model and optimal policy functions to

estimate the dynamic (cost) parameters governing these decisions in the following section.

10We have also estimated the even-more flexible model where we have separate year effects for entrants and
redesigns, but we cannot reject equality for ages two onward. Therefore, we report the more parsimonious
specification.
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3.2. Optimal Policy Functions

3.2.1. The Redesign Decision

We estimate the probability that a model will be redesigned next period with the following

logit specification,

Rjt+1(σ) = γddjt + γccjt + γoojt + βRln(s̄j/g) + εRjt.

In addition to a within-group market share control (s̄j/g), the probability of redesigning next

period (Rjt+1) depends on the direct, obsolescence, and competitive effects of redesign—the

state variables in our model.11 The direct effects are proxied by the age of the model, the

redesign competition effects are captured by the total redesigns by competitors in the current

period and the average age of competitors, and the obsolescence effects are captured by the

stock of previous production of the model. To provide as much flexibility as possible to fit

the redesign patterns we observe in the data, we also examine specifications with interactions

between state variables.

Table 3 displays the results of various specifications of our redesign policy model, where

we introduce additional terms sequentially. We start in Column 1 of Table 3 with simply a

constant term, the log of the model’s overall relative share within its automobile class and age

of the model. We hypothesize that automobile manufacturers will focus their redesign efforts

on automobile groups with larger shares of the automobile market and on older models. The

coefficient on each variable is positive and statistically significant at the 1% significance level.

In Columns 2 through 4, we sequentially introduce the direct, competitive redesign, and

obsolescence effects, respectively. The coefficients on these variables have the expected sign

and all these variables, except total redesigns by competitors in the current period, are

statistically significant. Older models and ones with a greater stock of previous production

(even after controlling for age of model) are more likely to introduce a redesign in the

11Our redesign policy function specification is also similar to Iizuka (2007) who estimates a hazard model
for redesigns in the textbook market.
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coming period. This is consistent with an obsolescence effect. The older the average age

of a model’s competitors, the less likely a model will redesign, providing evidence for a

competitive redesign effect.

Columns 5 and 6 add various interaction and higher-order terms of our state variables.

Many of these additional terms are statistically significant, suggesting non-linearities in how

the state variables affect the probability of a model’s redesign, and also nearly doubling

the pseudo-R2. The final column also adds group fixed effects, which also increases the

pseudo-R2, but has hardly any quantitative effect on our estimates. Importantly, there is

evidence that all three state variables (direct, competitive redesign, and obsolescence) and

their interactions are important for the redesign policy function. The independent effects

of model age and stock are statistically significant at the 1% level, as well as some of the

non-linear and interaction terms involving these variables. The competitive redesign effects

come through as statistically important in their interactions with other variables, namely

the interaction of competitors’ average age with the stock variables.

We use Column 7 estimates as our optimal redesign policy function for the dynamic

forward simulations we undertake below. To better interpret Column 7, Figure 4 fits a

lowess curve through the predicted policy of redesign and displays the effect of a model’s

age, stock of past production, and competitors’ average age on the probability of redesign by

type of vehicle (passenger cars, trucks (including SUVs and minivans), and luxury vehicles).

In general, we see that older models with higher stock are significantly more likely to redesign,

but that there is substantial variation across vehicle class. The competitive redesign effects,

seen in Panel (c), are highly nonlinear as they depend greatly on their interaction with the

other states.
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3.2.2. The Exit Decision

In a similar fashion we estimate the probability that the model will exit the market (i.e.,

discontinue the model) as,

Xjt+1(σ) = φddjt + φccjt + φoojt + βxln(s̄j/g) + εXjt .

We specify exit as a function of the same state variables as redesign and report our estimation

results in Table 4 as we did for the redesign function in Table 3. We see that the direct effects

work in the same direction on a firm’s exit decision as it does for the redesign decision—the

older the model, the more likely it will exit the market completely. There is evidence that

redesign competition affects the exit decision as well. As seen in Column 4, having older

competitors makes exit less likely and a greater number of redesigns in the current period

lowers the exit probability. Once we include interactions (Column 7) statistical significance

of the many individual interaction terms for these effects are a bit below standard confidence

levels. The obsolescence effects on exit decisions and their interactions with the other states

work in the opposite direction from that in the redesign policy function. Models with high

stocks of previous production are more likely to redesign, but less likely to exit. This is due

to the correlation of stock with the success of a model. Maintaining a high stock model’s

accrued brand recognition is likely worth the investment by firms in redesign rather than

scrapping the model altogether through exit. As with the redesign policy function, we use

Column 7 estimates for our optimal exit policy function for the dynamic forward simulations

we describe next. Similar to Figure 4 for the redesign policy function, Figure 5 displays the

effect of a model’s age, stock of vehicles, and competitor age effects on the probability of

exit for various types of vehicles.

4. Estimating the Dynamic Model

Estimating the dynamic model hinges on forward simulations of state variables. Using the

preceding optimal policy functions of firms, we forward simulate the market as firms take
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actions dictated by these policies given transitions of the state variable. The second stage

to be estimated relies on constructing firms’ expected present value of future profits. We

assume these firm value and profit functions are linearly separable, and take the form,

Vj(at(ψt),ψt; θ) =W1(at(ψt),ψt) + W2(at(ψt),ψt)) ∗ θX −W3(at(ψt),ψt)) ∗ θR

= E

[
∞∑
t=1

βt−1πij(at(ψt),ψt))
∣∣∣ψt]

+ E

[
∞∑
t=1

βt−1Xj,t+1(at(ψt),ψt)

]
∗ θX

− E

[
∞∑
t=1

βt−1Rj,t+1(at(ψt),ψt)

]
∗ θR .

The present discounted value of static profits given each simulated strategy is W1. The

present value of a firm’s simulated actions, scrapping production and the costs of redesign,

are W2 ∗ θX and W3 ∗ θR, respectively. θR includes such costs as research and development

expenditures for redesign, as well as costs from production line retooling and advertising to

inform consumers of the new model. One concern may be that redesigns require significant

planning and are on relatively inflexible schedules. However, discussion with members of a

development team from one of the domestic “Big Three” suggests that they employ teams of

engineers and designers doing overlapping work toward model redesigns, which allows signif-

icant flexibility in timing of re-designs. And the data also bear out that there is significant

variation in length of redesign, even over time within models. Therefore, we will allow a

re-design the possibility of occurring in any period, and let the actual timing be borne out

by policy functions.

Following Bajari et al. (2007), the dynamic model is estimated by choosing θ̂ to minimize

the objective function,

Q(θ) ≡
∫ (

min
[
0, Vj(at(ψt),ψt; θ)− Vj(a′t(ψt),ψt; θ)

])2
dH(x).

Working from the presumption that each model is choosing the strategy that optimizes its
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value function, it must be the case in equilibrium that,

Vj(at(ψt),ψt; θ) ≥ Vj(a
′
t(ψt),ψt; θ)

Plainly, observing actions ajt implies that choosing a′jt would have been suboptimal, and we

minimize the error rate in order to rationalize the firm outcomes we observe.

4.1. Forward Simulation

We first construct value functions for each model-year observation by forward simulating

expected profits from future actions given expected states. Following the estimated policy

functions and implied transition of the state variables allows us to construct firms’ expecta-

tions about future profits. Most of our state variables are constructed from market realiza-

tions (e.g., average age of competitors). Therefore, we assume that each model’s expected

states and actions are known for computational feasibility. As we forward simulate this al-

lows us to look across the behavior expected by each firm to construct market conditions.

We track each model’s actions and static market outcomes over 50 simulated periods in order

to construct value functions at each period for every firm.

Given current states, a firm will redesign next period when its predicted logit inclusive

value R̂jt+1 ≥ R̄ and exit when X̂jt+1 ≥ X̄. To best match moments of the data we choose

the threshold redesign and exit values R̄ = 0.275 and X̄ = 0.4. Table 5 displays the accuracy

of our policy functions (percent of correctly predicted outcomes) for various predicted value

thresholds, which informs our choice of 0.275 and 0.4. At a standard threshold of 0.5, non-

events are very precisely matched, but events (redesign or exit) are rarely matched correctly.

In other words, events are underpredicted for the sake of model fit. At lower levels (such as

0.10), events are more often matched correctly, but then we get over-prediction of the events

at the expense of correctly predicting the non-events.

Applying the second stage estimator involves constructing value functions for alternative

policies and the transitional dynamics that these alternatives imply. Bajari et al. (2007)
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demonstrates that by perturbing the estimated policy functions, the second stage estimator

is consistent. Srisuma (2010) points out linear perturbations can lead to inconsistencies

and proposes perturbations of the form, a′(·) = ε ∗ a(· ; θ0) to be more stable. We thus

draw ε ∼ Uniform[0, 2] independently for the exit and redesign policies for 500 perturbed

policies.12 Using these perturbed policy functions we forward simulate each model’s value

function in parallel to the optimal path.

Table 6 presents our estimates of the dynamic parameters using the Bajari et al. (2007)

technique. Our estimates suggest that redesign costs average nearly $1 billion across all types

of vehicles. There is some heterogeneity across types of vehicles with redesign costs smallest

for sport and compact cars cars at around $500 million to the largest for pick-ups at $1.3

billion. While automobile firms undoubtedly know (at least, ex post) their redesign costs,

these numbers are closely guarded and we cannot verify the credibility of these estimates with

publicly available information. However, we compare our estimates to a variety of sources in

the popular press. A recent AOL Autos article states that the price tag of a remodel starts

at $1 billion and, “It can be as much as $6 billion if it’s an all-new car on all-new platform

with an all-new engine and an all-new transmission and nothing carrying over from the old

model.” A recent Forbes article suggests the developments costs are at least $1 billion. In

addition, a Business Insider article quotes Nissan as saying that they normally spend $300-

500M on a remodel. Finally, a private conversation with a former manager in one of the

major U.S. automobile manufacturers suggest that our estimates are very reasonable.

Unlike redesign costs, scrap values are likely something that is even less observable, as

they represent an opportunity cost to the continuation of production of the model. Our

estimated scrap values are estimated to be significantly smaller in general than redesign

costs. While this seems quite plausible to us, it is difficult to compare these estimates to

anecdotal evidence on these values, and we note that there are relatively few exits of models

in our sample from which to identify these estimates in our data, in contrast to the high

frequency of redesigns, the focus of our study.

12We have investigated various forms of perturbations, and the resulting estimates are similar across either
method.
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5. Baseline Welfare Estimates

Given our estimates of redesign and scrap values, we now have a fully dynamic model from

which we can construct and track estimated welfare effects over time. Figure 6 provides

baseline estimates of welfare in the model over time. Panel (a) of Figure 6 graphs discounted

present value of firm value, consumer utility, and total welfare for the automobile market

over a 50-year horizon at every year of our sample. In particular, our measure of welfare

within vehicle class each period is the present discounted value of the nested logit inclusive

value (see Nevo (2003)),

Ugt = E

 ∞∑
t=1

βt−1 ∗ 1

α
ln

∑
g

(∑
j∈Jg

e
δjt
1−σ

)1−σ
 ∗Msgt


such that the total utility from new auto purchases in period t is

∑
g Ugt. We then apply the

within class estimates of redesign cost and scrap value to each of our 50 forward simulations

and discount by the factor β = 0.95 to calculate present discounted values (or “Firm Value”)

for each model in our sample and then sum.

Figure 6 displays a number of important features of our the market. First, as shown in

Panel (a), firm value is around $2.5 trillion for many years in our sample, which means an

average of about $50 billion in annual firm value flow.13 Panels (b), (c), and (d) of Figure 6

break out the automobile market into three major segments. These are “cars,” which include

standard compact, midsize, and full-size vehicles; “trucks,” which includes minivans, pickups,

SUVs, and vans; and “luxury” vehicles. There are a number of interesting observations that

one can take from Figure 6 . First, firm value is high relative to consumer surplus (about a

ratio of 4 to 1), suggesting that firms are extracting a significant amount of the total surplus

in the automobile market.14 Second, the recessions of the early 1990s and late 2000s show

up quite clearly in our estimates, with firm values and total welfare falling considerably.

13These estimates seem plausible given stock market valuations of the auto industry. For instance, the
market capitalization of Auto Manufacturers is around $8.5 trillion as of January 2013.

14We note that our estimates are for the primary automobile market, as we do not model the secondary
car market. We will discuss this more below.
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Third, the truck and luxury segments of the market appear to have been more affected by

the recent recession than the standard cars market.

Figure 7 further decomposes just the firm value component of welfare by the three main

automobile segments and the three components of firm value - profits from sales, redesign

expenditures, and scrap value. As one can see in Panel (a), the truck segment (which includes

minivans and SUVs) increased substantially from the early 1990 until the recent recession

in terms of its contribution to firm profits. The segment even surpassed the standard car

segment in the late 1990s, but also suffered the largest decline when the recent recession hit.

Redesign expenditures by car segment show a consistent ranking over time, with the truck

segment accounting for about half of automobile manufacturers’ redesign expenditures, with

cars next, and the luxury segment (a relatively small market segment) accounting for the

least amount of redesign expenditures. The estimated scrap value component is very small

compared to the other two components and fairly volatile. Cars and trucks are estimated to

have a significantly higher average scrap value than luxury vehicles.

6. Counterfactual: Obsolescence, Redesign Competition and Wel-

fare

We can now also use our model to address our initial goals in the paper—an analysis of

how the dynamic forces of redesign competition and obsolescence not only affect redesign

expenditures, but ultimately firm profits and overall welfare.

We analyze how welfare changes when we intensify and reduce the impact of both of

these channels. Doing this is somewhat complicated by the flexibility of our policy function.

To see this, take the general form of our redesign policy function:

Rjt+1(σ) = γddjt + γccjt + γoojt + βRln(s̄j/g) + εRjt.

In the simple case where there is one state variable capturing redesign competition and one

capturing obsolescence, and both γc and γo are positive, to intensify or reduce the effects of
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each channel, we could introduce two new parameters, δc and δo, defining the policy function

as:

Rjt+1(σ) = γddjt + δcγccjt + δoγoojt + βRln(s̄j/g) + εRjt.

We could then analyze how welfare changes when we vary γc and γo. This exercise would

identify the pair of γs that maximize total welfare; a γ < 1 would reduce the channel, while

a γ > 1 would increase the channel.

Our redesign policy function is more flexible, and therefore more complicated, than this

simple example. Two complications arise: sign changes across the γs and interaction terms.

To see why sign changes across the parameters of the competitive redesign or obsolescence

effects matter, suppose we had two variables capturing the redesign competition effects, c1jt

and c2jt:

Rjt+1(σ) = γddjt + γ1cc1jt + γ2cc2jt + γoojt + βRln(s̄j/g) + εRjt.

Now suppose that γ1c > 0, while γ1c < 0. If we multiplied both variables by the same δ > 1,

this would tend to increase the probability of a redesign by making γ1cc1jt more positive,

but at the same time, it would tend to reduce the probability of a redesign by making γ2cc2jt

more negative. The net effect of this could be to increase or decrease the probability of a

redesign, and δ would no longer carry the interpretation we seek.

This issue is easy to overcome. In our counterfactuals, we multiply by δj whenever γj is

positive and divide by δj whenever γj is negative. Therefore, in the example above, a δ > 1

would make both δcγ1cc1jt and 1
δc
γ2cc2jt more positive.

The second issue—the existence of interaction terms—cannot be completely accounted

for and changes the interpretation of the δjs slightly. To see the complication here, suppose

our δ-augmented redesign policy function was:

Rjt+1(σ) = γddjt + δcγccjt + δoγoojt + δcδoγoccjtojt + βRln(s̄j/g) + εRjt.
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Ideally, δc and δo scale the derivatives of the probability of a redesign with respect to the

two channels. In this simple set up those derivatives are:

∂Rjt+1(σ)

∂cjt
= δccjt + δcδoγocojt,

∂Rjt+1(σ)

∂ojt
= δoojt + δcδoγocojt.

With interaction terms, δc is present in both the derivative with respect to the redesign

competition channel and the derivative of the obsolescence channel. If we interpret δc as

magnifying the size of the redesign competition state variables, then the interaction terms

do not present a problem. If, however, we want to interpret δc as magnifying the parameter

estimates associated only with the redesign competition channel, then our set up is not ideal.

To identify welfare under different δjs, we perform a grid search varying the size of the

δjs from 0 to 2 in 0.1 increments. We search for the pair of δjs that maximize total welfare

in each year of our sample, forward simulating out 50 years from that given year. Therefore,

we can have a different pair of δ∗j s in each year.

We begin by summarizing our results by showing a contour plot of the sum of total

welfare across each year in our sample. Figure 8 plots these for the market as a whole,

as well as for each of the car, truck, and luxury vehicle segments of the market. As one

can see, the baseline scenario, where both parameters are at 1, is in a region where welfare

is already fairly high relative to that when the parameters are perturbed. It is also clear

that perturbations to reduce the responsiveness of the redesign policy function to either

(or both) of the redesign competition or obsolescence effects results in major welfare losses,

whereas perturbations to increase responsiveness of the redesign policy function results in

much smaller welfare losses. In other words, too frequent redesigns in this market would

be much less costly than too infrequent redesign activity. While our baseline sees relatively

high welfare, our contour of counterfactuals suggests that welfare could be improved in this

marketplace by moving southeast from the baseline to a region that represents a reduced

redesign competition effect and a greater obsolescence effect. The black diamonds represent
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combinations of δjs that maximize welfare in at least one single year, which we term our

"optimal counterfactuals." These suggest that in the typical year, welfare is maximized

by reducing the redesign competition channel by roughly 50 percent, but increasing the

obsolescence channel by between 50 and 100 percent. The welfare difference between the

optimal counterfactual and our baseline is roughly 3 percent. Interestingly, these observations

are true not only for the entire market, but also for each market segment. All four plots

suggest that the welfare-maximizing policy functions correspond to a ridge in the welfare

mapping that runs from the northwest to the southeast in Figure 8.

We can also use our simulations to show how consumer utility, firm value, and total

welfare in these optimal counterfactuals compare to the baseline estimates in each year. It is

possible that either firms or consumers can be made worse off in the optimal counterfactual,

even if total welfare is a bit higher. And these comparisons may vary over time in the

market. Figure 9 plots the welfare difference of the optimal counterfactual to the baseline

for consumer utility, firm value, and total welfare over the years of our sample. We plot

these for the entire market in panel a, as well as for each of the car, truck, and luxury vehicle

segments of the market in Panels (b), (c), and (d). Under the optimal counterfactuals, firm

value is higher in each year. In contrast, consumer utility under the optimal counterfactual

can sometimes be lower than for our baseline scenario. Lower relative consumer utility in the

optimal counterfactual is especially pronounced from 1991 to 1993 and from 2008 and 2009.

The first of these periods was a macroeconomic downturn, while the second encompassed

both an increase in gasoline prices and the beginning of the Great Recession. Comparing

the results across market segments, we find that the luxury vehicle segment has the largest

(positive) welfare difference in the counterfactual relative to the baseline, while the car

market segment has the smallest.

Finally, in Figure 10 we show the relative differences between the optimal counterfactual

and the baseline for the components of firm value (profit from sales, redesign expenditures,

and scrap values). As with Figure 9, we show these for the market as a whole, as well as for

each of the car, truck, and luxury vehicle segments of the market, in four separate panels. As

23



shown above, the optimal counterfactual is consistently one where the competitive redesign

channels are weakened and the obsolescence channels are strengthened. These should have

opposite effects on how often firms redesign and, thus, total redesign expenditures. As

seen in Figure 10, the weaker competitive redesign channel in the optimal counterfactual

appears to dominate with respect to the effect on redesign expenditures, as they are lower

in the optimal counterfactual relative to the baseline by 10%, or $20B, on average. In

contrast, Panel (c) shows more exit in the optimal counterfactual. However the increase

in exit is large in percentage terms (30% on average to a maximum of 400%) but small

in relative value ($1B on average to a maximum of $5B). We interpret the change in firm

behavior from the optimal perturbation as enhancing social efficiency by reducing inefficient

redesigns coming from redesign competition, enhancing redesigns valued by consumers that

come from obsolescence, and discontinuing weak varieties. Panel (a) demonstrates that

the more efficient timing of redesigns results in very little change to profits from sales and

consumer welfare. Welfare gains are thus realized as firms acquire significant savings by

eliminating excess redesigns with minor distortions to the final goods market.

7. Secondhand Market Considerations

Our model and welfare analysis is clearly focused on the new automobile market. We do

account for the secondhand market for automobiles in two indirect, but important, ways

in our model. First, it is implicitly accounted for as part of the outside option consumers

have in the discrete-choice demand model we specify. Second, the appeal of secondhand

automobile models is presumably a factor in how quickly demand for new automobiles falls

as the current model ages.

One may be concerned that the channels which produce welfare gains in our characteriza-

tion of the optimal counterfactual may be at the expense of used car value. Our framework

admittedly does not explicitly model the secondhand market, as that goes beyond the scope

of this paper, and we cannot describe how redesigns of new automobiles directly affect trans-

actions and welfare of participants in the secondhand market. However, to get some sense
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of the possible welfare effects on the secondhand automobile market, we did the following.

First, using auction data of secondhand vehicles, we estimated the impact of redesigns of a

model on the current generation of used automobiles of the same model, controlling for other

observable factors, such as annual depreciation (which average around 20%) and manufac-

turer and automobile class effects. From this analysis, we estimate that a redesign leads to,

at most, a 4% fall in the value of the used car models of the most recent model generation.

Furthermore, this result is not robust. We also assume that the value of used automobiles

from models more than one generation ago see their value fall to zero. This is likely a very

strong assumption, but will give us an upper-bound estimate of how much impact redesigns

have on the secondhand market.15

Using these assumptions, we can estimate the impact of redesigns on the total value of

the stock of used automobiles in our simulation of the model. In our baseline simulations,

we find that if we eliminate redesign activity there is an increase of about $250 billion (or

roughly 7.5%) in the total value of used vehicles. Applying the same thought experiment

to our optimal counterfactual, eliminating redesign activity implies an increase of about

$200 billion (or roughly 7%) in the total value of used vehicles. To reiterate, we think of

these effects as upper bounds on the losses from redesign activity, and in both the baseline

and counterfactual simulations are small when compared to the welfare losses in the new

automobile market if we were to eliminate redesign.16

8. Conclusion

This paper builds the first empirical structural model of product redesign. We use it to

examine redesign decisions in the U.S. automobile market and their effects on firm profits,

consumer utility, and total welfare. Unlike the few prior empirical studies of product re-

designs, we find that both redesign competition among models and planned obsolescence to

15However, we note that since redesigns happen about every 5 years and annual depreciation is around
20% annually, the residual value of these used automobiles beyond the most recent generation will be quite
small anyway.

16Eliminating redesign in the baseline or counterfactual leads to anywhere from a 40%-50% loss in total
surplus, which is approximately $1.5 trillion in our simulations.
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recapture market share play an important role. Our counterfactual simulations find evidence

that there is wasteful redesign competition that then precludes more redesign activity tar-

geted to obsolete models at the optimal time. We find that welfare would be maximized by

reducing the redesign competition channel by roughly 50 percent, but increasing the obso-

lescence channel by between 50 and 100 percent. This would have a net effect of reducing

redesign expenditures by about 10% and increasing welfare by roughly 3%.

A handful of existing studies have estimated consumer gains from new automobile product

varieties. In particular Blonigen and Soderbery (2010) estimate consumer valuation of new

product variety to be on the order of 10% of utility. As noted in the introduction, the

redesign of existing autos occurs twice as often as the introduction of new varieties. Our

analysis points to the importance of redesigns, as the redesign activity in our counterfactual

has nearly six times the effect on consumer welfare as previous estimates of new variety

introduction.

26



References

Bajari, P., C. Benkard, and J. Levin (2007): “Estimating dynamic models of imperfect
competition,” Mimeo.

Berry, S. (1994): “Estimating Discrete-Choice Models of Product Differentiation,” Rand
Journal of Economics, 25, 242–262.

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilib-
rium,” Econometrica, 63, 841–890.

Blonigen, B. A. and A. Soderbery (2010): “Measuring the benefits of foreign product
variety with an accurate variety set,” Journal of International Economics, 82, 168–180.

Broda, C. and D. Weinstein (2006): “Globalization and the Gains from Variety,” Quar-
terly Journal of Economics, 121, 541–585.

Chen, J., S. Esteban, and M. Shum (2008): “How much competition is a secondary
market?” Mimeo.

Chevalier, J. and A. Goolsbee (2009): “Are durable goods consumers forward-looking?
Evidence from college textbooks,” The Quarterly Journal of . . . , 124, 1853–1884.

Coase, R. (1972): “Durability and monopoly,” JL & Econ., 15, 143.

Esteban, S. and M. Shum (2007): “Durable???goods oligopoly with secondary markets:
the case of automobiles,” The RAND Journal of Economics, 38, 332–354.

Feenstra, R. C. (1994): “New Product Varieties and the Measurement of International
Prices,” The American Economic Review, 84, 157–177.

Fishman, A. and R. Rob (2000): “Product Innovation by a Durable-Good Monopoly,”
The RAND Journal of Economics, 31, 237–252.

Grout, P. and I.-U. Park (2005): “Competitive Planned Obsolescence,” The RAND
Journal of Economics, 36, 596–612.

Iizuka, T. (2007): “An empirical analysis of planned obsolescence,” Journal of Economics
& Management Strategy, 16, 191–226.

Judd, K. (1998): Numerical Methods in Economics, MIT Press.

27



Kim, M. (2013): “Strategic responses to used-goods markets: Airbus and Boeing since 1997,”
Working paper, Boston University.

Knittel, C. R. (2011): “Automobiles on Steroids: Product Attribute Trade-Offs and Tech-
nological Progress in the Automobile Sector,” American Economic Review, 101, 3368–99.

Knittel, C. R. and K. Metaxoglou (Forthcoming): “Estimation of Random Coefficient
Demand Models: Two Empiricists’ Perspective,” The Review of Economics and Statistics.

Nevo, A. (2003): “New Products, Quality Changes, and Welfare Measures Computed from
Estimated Demand Systems,” The Review of Economics and Statistics, 85, 266–275.

Petrin, A. (2002): “Quantifying the benefits of new products: The case of the minivan,”
Journal of Political Economy.

Porter, R. and P. Sattler (1999): “Patterns of trade in the market for used durables:
Theory and evidence,” NBER Working Paper.

Purohit, D. (1992): “Exploring the Relationship between the Markets for New and Used
Durable Goods: The Case of Automobiles,” Marketing Science, 11, 154–167.

Srisuma, S. (2010): “Estimation of Structural Optimization Models: A Note on Identifica-
tion,” Mimeo.

Swan, P. (1970): “Durability of consumption goods,” The American Economic Review, 60,
884–894.

Sweeting, A. (2007): “Dynamic Product Repositioning in Differentiated Product Markets:
The Case of Format Switching in the Commercial Radio Industry,” Working Paper 13522,
National Bureau of Economic Research.

Waldman, M. (1993): “A new perspective on planned obsolescence,” The Quarterly Journal
of Economics, 108, 273–283.

——— (1996): “Durable goods pricing when quality matters,” Journal of Business, 489–510.

——— (2003): “Durable goods theory for real world markets,” The Journal of Economic
Perspectives, 17, 131–154.



A Appendix: Details of the Non-Linear Search

Our empirical model requires a non-linear search over the dynamic parameters representing
the cost of redesign and the scrap value of eliminating a model. We investigated the sensitiv-
ity of this non-linear search to both starting values and non-linear search algorithms drawing
on the lessons learned in Knittel and Metaxoglou (Forthcoming). Ultimately, we found that
unless one uses the Nelder-Mead (Simplex) algorithm, convergence is always met in the
same location (down to the fourth decimal point) of the parameter space. Furthermore,
if we restart the non-linear search at points where the Nelder-Mead algorithm “converged”
and use another non-linear search algorithm, we again end up where the non-Nelder-Mead
algorithms converge, which corresponds to a smaller GMM objective function value. That
is, the Nelder-Mead algorithm appears to converge at points that are not actually extrema.

We used the Optimize() command within Stata to estimate the GMM problem associated
with the dynamic parameters.17 While Stata is more limited than alternative programs,
such as Matlab, in terms of the options for undertaking the non-linear search, it includes a
Simplex algorithm, a Newton-Raphson algorithm, and three quasi-Newton algorithms. Stata
also allows the programmer to set starting values and tolerances.

Convergence is dictated by three tolerances: ptol, vtol, and nrtol. Convergence is reported
if one of three things happens. (1) If the largest relative change in parameters (i.e., (βh −
βh−1)/βh for iteration h) is smaller than ptol ; (2) If the change in the objective function value
between two iterations is smaller than vtol ; (3) If the scaled gradient vector (i.e., gH−1g′,
where H is the Hessian) is smaller than nrtol. We use Stata’s default tolerances for ptol
(1e-6), vtol (1e-7), nrtol (1e-5), but have found that tightening these tolerances does not
appreciably change our estimates.

For our initial investigation of whether starting values and/or the non-linear search al-
gorithm yield different results, we used three of Stata’s non-linear search algorithms and a
fourth which is a hybrid of two. Specifically, we use the Nelder-Mead (Simplex) algorithm,
the Newton-Raphson, and the Davidson-Fletcher-Powell (Quasi-Newton) algorithms. Our
hybrid approach uses the Nelder-Mead algorithm until convergence is met, and then shifts
to the Newton-Raphson algorithm. For each of these four algorithms, and each of the two
dynamic parameters, we used nine different starting values (representing millions of dollars):
-1100, -600, -100, 400, 900, 1400, 1900, 2400, and 2900. The intersection of these two sets
yields 81 starting-value combinations for each algorithm.

17See man Optimize within Stata for more information.



Figures 13 and 14 summarize our results from this exercise, when we pool the classes
of vehicles and estimate one redesign cost and one scrap value across all vehicles classes.
Separating things by classes yields similar results in terms of stability of the non-linear
search. We find that provided we do not use the Nelder-Mead algorithm alone, we converge
to the same place for both parameters, down to the third decimal point. Furthermore, when
we allow the Nelder-Mead routine to converge and then start the Newton-Raphson routine
at these parameter values, the Newton-Raphson routine leaves the space where the Simplex
routine converged and goes to the lone extrema found by the Newton-Raphson and quasi-
Newton algorithms. We take this as evidence that the Nelder-Mead routine terminates at
points that are not minima.

Among the non-Nelder-Mead-only exercises, we analyzed the first-order conditions as-
sociated with those searches where Stata reports convergence. The mean Hessian-weighted
gradient (in absolute value) is 1.66e-06, while the maximum is 1.3e-04. We therefore con-
clude that the first-order conditions are met. The Hessian is positive definite for all points,
implying the second-order conditions are also met. In addition, the condition number never
exceeds 13.5.18 Figure 11 shows the density of weighted-gradient, while Figure 12 shows the
objective function across all non-linear search algorithms.

Given this exercise and using the “Smoke and Fire” analogy discussed in Knittel and
Metaxoglou (Forthcoming), we see no smoke and therefore have no reason to suspect any
fire. Our results for the class-specific estimates are similar. For the final set of parameters
used in the analysis, we still iterate over 9 different sets of starting values (500, 1000, and,
1500 for both parameters) and use the hybrid algorithm. We choose the set of parameter
values corresponding to the lowest GMM objective value, but these do not differ at least for
the first 11 significant digits.

18Judd (1998) argues that a condition number is small if its base 10 logarithm is about 2 or 3 for a
computer that carries about 16 significant decimal digits. A condition number of 13.5 is well below this
criterion.



B Tables and Figures

Table 1: Summary Statistics of Key Variables

Body Class Redesign Rival Age Design Rivals Price Sales MPG Wheel HP Weight Exiting
Redesigns Age ($1000s) (1000s) Base (lbs) Models

Car
SMALL 0.106 5.16 3.73 6.02 39.54 10.664 82.180 33.0 99.4 118 2570 0.094
FULL 0.098 2.82 4.47 6.98 18.46 21.228 61.568 26.7 110.6 198 3567 0.077
MID 0.108 4.39 3.59 6.25 30.77 18.200 100.834 28.4 107.0 176 3267 0.054

Truck

CUV 0.077 7.88 3.10 5.89 72.63 25.447 51.415 23.7 107.7 221 3899 0.021
PU 0.098 2.56 4.63 8.40 15.66 15.521 165.257 20.8 127.1 190 4066 0.051
SUV 0.085 5.20 4.19 7.61 49.87 25.021 56.101 19.4 109.8 218 4402 0.057
VAN 0.073 2.79 5.73 9.18 24.23 17.768 56.671 21.4 121.1 180 4318 0.067

Luxury LUX 0.121 7.18 3.65 6.21 55.61 30.138 27.806 26.1 106.8 223 3432 0.068
SPORT 0.091 6.62 4.11 7.21 51.53 40.934 12.550 24.3 101.5 265 3462 0.066

Note: Values are averages across all years of the sample within vehicle classes.



Table 2: Market Share Regressions

Characteristics ln(sjt)− ln(s0)

OLS IV

Price ($1000in′85) −0.021∗∗∗ −0.021∗∗∗ −0.021∗∗∗ −0.095∗∗∗ −0.094∗∗∗ −0.099∗∗∗

(0.004) (0.004) (0.004) (0.035) (0.035) (0.034)
log(sj/g) 0.827∗∗∗ 0.821∗∗∗ 0.820∗∗∗ 0.045 0.050 0.046

(0.022) (0.022) (0.022) (0.105) (0.103) (0.105)
Miles/$ 0.008∗∗ 0.006 0.006 0.050∗∗∗ 0.046∗∗∗ 0.047∗∗∗

(0.004) (0.004) (0.004) (0.015) (0.015) (0.015)
log(hp) −0.544∗∗∗ −0.591∗∗∗ −0.582∗∗∗ 1.961 1.856 2.048

(0.163) (0.161) (0.160) (1.356) (1.340) (1.337)
log(wheelbase) 2.400∗∗∗ 2.537∗∗∗ 2.510∗∗∗ 2.371 2.546∗ 2.400

(0.481) (0.474) (0.470) (1.521) (1.509) (1.521)
log(interiorsize) 4.556∗∗∗ 4.205∗∗∗ 4.212∗∗∗ 1.765 1.233 0.882

(0.631) (0.640) (0.640) (2.280) (2.204) (2.217)
Redesign −0.003 0.067 0.197∗∗∗ 0.602∗∗∗

(0.024) (0.047) (0.059) (0.104)
Age −0.034∗∗∗ −0.049∗∗∗

(0.006) (0.013)
Age = 1 0.417∗∗∗ 0.443∗∗

(0.088) (0.186)
Age = 2 0.441∗∗∗ 0.797∗∗∗

(0.083) (0.192)
Age = 3 0.402∗∗∗ 0.760∗∗∗

(0.083) (0.190)
Age = 4 0.401∗∗∗ 0.766∗∗∗

(0.082) (0.189)
Age = 5 0.386∗∗∗ 0.770∗∗∗

(0.081) (0.191)
Age = 6 0.355∗∗∗ 0.723∗∗∗

(0.080) (0.183)
Age = 7 0.339∗∗∗ 0.642∗∗∗

(0.078) (0.181)
Age = 8 0.266∗∗∗ 0.555∗∗∗

(0.067) (0.160)
Age = 9 0.186∗∗ 0.236

(0.075) (0.162)

R2 0.806 0.811 0.811 0.277 0.297 0.284
N 4820 4820 4820 4820 4820 4820
Note: Standard errors clustered by model are in parentheses, * p<0.10, ** p<0.05,
*** p<0.01



Table 3: Redesign Policy

Controls Logit Estimates of Pr[Redesign=1]

Age 0.132∗∗∗ 0.164∗∗∗ 0.144∗∗∗ 0.193∗∗∗ 1.055∗∗∗

(0.034) (0.033) (0.033) (0.035) (0.123)
Age2 −0.055∗∗∗

(0.009)
Age = 2 −3.332∗∗∗ −3.357∗∗∗

(0.453) (0.462)
Age = 3 −1.683∗∗∗ −1.715∗∗∗

(0.343) (0.347)
Age = 4 −0.812∗∗∗ −0.843∗∗∗

(0.250) (0.252)
Age = 5 −0.006 −0.037

(0.242) (0.246)
Age = 6 0.359 0.338

(0.239) (0.241)
Age = 7 0.270 0.250

(0.265) (0.266)
Age = 8 −0.032 −0.059

(0.274) (0.275)
Age = 9 0.201 0.177

(0.302) (0.305)
TotRedesign 0.035∗∗ 0.034∗ 0.047∗∗∗ 0.044∗∗ 0.035∗ 0.036∗

(0.017) (0.017) (0.017) (0.020) (0.020) (0.020)
AgeComp −0.256∗∗∗ −0.213∗∗ −0.145∗ −0.014 −0.020 0.091

(0.085) (0.083) (0.075) (0.080) (0.097) (0.535)
AgeComp 2 −0.017

(0.073)
Stock 0.058∗∗∗ 0.023∗ 0.030∗ 0.217∗∗∗ 0.611∗∗∗

(0.019) (0.013) (0.016) (0.044) (0.124)
Stock ×Age −0.017∗∗∗ −0.070∗∗∗

(0.005) (0.019)
Stock ×Age2 0.004∗∗∗

(0.001)
Stock ×AgeComp −0.005 −0.179∗∗∗

(0.016) (0.060)
Stock ×AgeComp 2 0.026∗∗∗

(0.009)
log(sj/g) 0.153∗∗∗ 0.203∗∗∗ 0.105∗∗ 0.186∗∗∗ 0.184∗∗∗ 0.063 0.149∗∗∗

(0.045) (0.049) (0.047) (0.055) (0.055) (0.042) (0.056)
Constant −2.102∗∗∗ −1.404∗∗∗ −1.966∗∗∗ −0.464 −0.732 −3.006∗∗∗ −5.383∗∗∗

(0.229) (0.384) (0.367) (0.469) (0.515) (0.418) (1.054)

Group FEs No No No No Yes Yes Yes
R2 0.037 0.049 0.057 0.134 0.140 0.074 0.126
N 4514 4514 4514 4514 4514 4514 4514
Note: Standard errors clustered by model are in parentheses, * p<0.10, ** p<0.05, *** p<0.01



Table 4: Exit Policy

Controls Logit Estimates of Pr[Exit=1]

Age 0.152∗∗∗ 0.169∗∗∗ 0.147∗∗∗ 0.157∗∗∗ 0.427∗∗∗

(0.028) (0.024) (0.023) (0.026) (0.056)
Age2 −0.016∗∗∗

(0.004)
Age = 1 −3.560∗∗∗ −3.553∗∗∗

(0.486) (0.485)
Age = 2 −1.834∗∗∗ −1.798∗∗∗

(0.304) (0.296)
Age = 3 −1.001∗∗∗ −0.977∗∗∗

(0.252) (0.249)
Age = 4 −0.717∗∗∗ −0.691∗∗∗

(0.241) (0.239)
Age = 5 −0.394∗ −0.378

(0.238) (0.237)
Age = 6 −0.143 −0.137

(0.231) (0.233)
Age = 7 −0.272 −0.276

(0.261) (0.259)
Age = 8 −0.788∗∗ −0.816∗∗

(0.327) (0.337)
Age = 9 −0.254 −0.293

(0.311) (0.317)
TotRedesign −0.101∗∗∗ −0.101∗∗∗ −0.099∗∗∗ −0.060∗ −0.060∗∗ −0.035

(0.027) (0.027) (0.028) (0.032) (0.031) (0.031)
AgeComp −0.314∗∗∗ −0.279∗∗∗ −0.196∗∗ −0.122 −0.187 0.803

(0.091) (0.092) (0.084) (0.109) (0.121) (0.574)
AgeComp 2 −0.118

(0.078)
Stock 0.090∗∗∗ 0.084∗∗∗ 0.100∗∗∗ 0.130∗∗∗ 0.162

(0.022) (0.020) (0.023) (0.048) (0.165)
Stock ×Age −0.007∗ −0.048∗∗∗

(0.004) (0.011)
Stock ×Age2 0.002∗∗∗

(0.000)
Stock ×AgeComp 0.012 0.103

(0.011) (0.113)
Stock ×AgeComp 2 −0.016

(0.018)
log(sj/g) −0.751∗∗∗ −0.778∗∗∗ −0.858∗∗∗ −0.881∗∗∗ −0.930∗∗∗ −0.920∗∗∗ −0.934∗∗∗

(0.062) (0.062) (0.071) (0.078) (0.083) (0.075) (0.081)
Constant −0.751∗∗∗ −5.731∗∗∗ −6.267∗∗∗ −5.055∗∗∗ −5.311∗∗∗ −6.694∗∗∗ −9.492∗∗∗

(0.062) (0.431) (0.456) (0.561) (0.679) (0.589) (1.176)

Group FEs −6.844∗∗∗ No No No Yes Yes Yes
R2 (0.326) 0.203 0.213 0.246 0.262 0.231 0.249
N 5443 5443 5443 5443 5443 5443 5443
Note: Standard errors clustered by model are in parentheses, * p<0.10, ** p<0.05, *** p<0.01



Table 5: Performance of Policy Functions

Logit Policy Threshold (R̄ or X̄)

Sample 0.10 0.20 0.25 0.275 0.30 0.40 0.50

% Correct if
Redesign = 1 100% 82.2% 46.2% 30.0% 22.0% 15.8% 4.9% 1.7%
Redesign = 0 100% 66.4% 86.7% 92.3% 94.5% 96.0% 99.2% 99.8%
Exit = 1 100% 12.4% 11.9% 11.9% 11.9% 11.9% 10.3% 9.8%
Exit = 0 100% 99.2% 99.4% 99.4% 99.4% 99.4% 99.5% 99.5%

Fraction of Sample
Redesigned 9.8% 38.3% 16.5% 9.9% 7.1% 5.2% 1.2% 0.3%
Exited 6.9% 1.5% 1.3% 1.3% 1.3% 1.3% 1.1% 1.0%

Table 6: Estimates of Dynamic Parameters

Type Class Redesign Scrap
Cost ($M) Value ($M)

COMPACT 748.189 670.437
Car FULL 610.789 339.629

MID 865.390 913.242

PU 1320.444 1754.849
Truck SUV 700.290 607.463

VAN 795.492 266.583

Luxury LUX 614.002 117.170
SPORT 505.648 20.170
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Figure 2: Age Distribution
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Figure 3: Design Lifecycle
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Figure 4: Predicted Probability of Redesign
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(c) Competitor Age Effects

Figure 5: Predicted Probability of Exit
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(b) Stock Effects
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Figure 6: Welfare Baseline
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Figure 7: Decomposing Firm Value
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Figure 8: Mapping of the Welfare Differences Between Optimized Policy Functions Relative
to Baseline Policy Functions
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Note: � denotes the combination of perturbations that lead to the maximum total surpluses.



Figure 9: Welfare Components: Welfare Differences Between Optimized Policy Functions
Relative to Baseline Policy Functions
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Figure 10: Decomposing Firm Value Components: Welfare Differences Between Optimized
Policy Functions Relative to Baseline Policy Functions

−
4

−
2

0
2

4
%

 D
if

fe
re

n
c
e
 O

p
ti

m
a
l 

P
e
rt

u
rb

 v
s
. 

B
a
s
e

1990 1995 2000 2005 2010
Year

Market Cars

Trucks Luxury
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−
4

0
−

2
0

0
2

0
%

 D
if

fe
re

n
c
e
 O

p
ti

m
a
l 

P
e
rt

u
rb

 v
s
. 

B
a
s
e

1990 1995 2000 2005 2010
Year

Market Cars

Trucks Luxury

(b) Redesign Expenditure
(W2 ∗ θR)

0
10

0
20

0
30

0
40

0
%

 D
if

fe
re

nc
e 

O
pt

im
al

 P
er

tu
rb

 v
s.

 B
as

e

1990 1995 2000 2005 2010
Year

Market Cars
Trucks Luxury

(c) Scrap Value (W3 ∗ θX)



Figure 11: Gradient-weighted gradient of converged sets of parameters
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Figure 12: Objective function across all converged sets of parameters
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Figure 13: Estimated parameters across starting values and algorithms
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Figure 14: Estimated parameters across starting values and algorithms
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