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1 Introduction

Many important jobs are held by experts such as teachers, judges or doctors. Yet

despite the importance of their activities, the quality of an expert’s performance is

difficult to evaluate. We often end up looking at outcomes, and assuming that good

experts have good outcomes, despite the fact that such inferences are clouded by se-

lection and measurement issues. That is, performance is often summarized using an

expert specific “fixed effect.” Medicine is something of an exception in that metrics

have been developed to judge the actions taken by doctors as well as the realized out-

comes. However, these metrics often take the form of simple directives that do not

fully account for the complexity of patients’ conditions.

For example, in the case of child birth, it is widely believed that there are too many

Cesarean sections (C-sections). The large rise in C-section rates from 20.7% in 1996 to

a peak of 32.9% in 2009 (http://www.cdc.gov/nchs/data/databriefs/db124.htm) has

led to many proposals to lower them. For example, on January 1, 2014, the Joint

Commission that provides hospital accreditation and allows hospitals to participate in

the Medicaid and Medicare programs implemented a measure aimed at encouraging

hospitals to reduce C-section rates among first time mothers with single, head-down

fetuses. The Commission will publish a target rate based on a national sample of

hospitals every quarter, and will require hospitals to publish and track their own rates

in order to create pressure on them to lower rates (Commission (2014) - see measure

PC-02). Similarly, Consumer Reports (2015) created rankings for hospitals on the basis

of C-section rates for women without previous C-sections who were delivering full-term,

single fetuses. Yet clearly, something could go wrong in these deliveries, necessitating

a C-section. Creating incentives for hospitals to lower rates across the board could

have negative consequences if it makes women less likely to receive what can be a life-

saving procedure for mothers and babies. It would be preferable to reduce the use of

unnecessary procedures, while actually increasing procedure use among the highest risk

mothers. However, meeting this goal requires improvements in how doctors allocate

procedures across patients.

In this paper, we develop a model that highlights two dimensions of a doctor’s

performance: Whether the doctor makes the right decision regarding procedure choice,

and whether the doctor subsequently executes that decision well. We then demonstrate

that the model can be used to interpret data from C-section deliveries. Our work

makes several contributions. First, we show that standard administrative data that is

already collected by every state can be used to identify doctors whose decision making is
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significantly worse than the norm. Second, we show that poor decisions are associated

with bad health outcomes. These are surprising and important findings given that

doctors undoubtedly have much more information about each individual case than we

can observe in our data. Nevertheless, doctors have only their individual training and

experience to rely on whereas the “big data” available to state administrators can be

mined for much additional information that is potentially relevant to procedure choice.

The case of C-section is interesting for a number of reasons. First, there is widespread

recognition that C-section rates vary across hospitals in ways that cannot be explained

either by the condition of the patients or by their preferences (Kozhimannil et al.

(2013)). Second, as discussed above, there is pressure to reduce C-section rates. Third,

C-section is the most common surgical procedure in the U.S., so that there is potentially

a lot of information to be gleaned from examining the caseload as a whole. Fourth,

birth records contain detailed information about the mother and child’s condition that

can be used to develop a model of procedure choice.

Applying our model to data on all deliveries in New Jersey from 1997 to 2006, we

find that when decision making increases by one standard deviation, C-section rates

fall 15.5% for women in the bottom half of the risk distribution, but rise 5.5% among

women in the high risk half of the distribution. Given that there are many more C-

sections among the high risk to begin with, we estimate that improved decision making

would have resulted in 7,490 fewer C-sections in the bottom half of the distribution,

but 14,975 more C-sections in the top half of the distribution for a net increase of

7,485 C-sections. These extra C-sections among the high risk would have generated

$35 million (2006 dollars) in additional costs, and might have averted about a third

of the 2,997 deaths that occurred in this high risk group over this 10 year period, for

a cost per life saved of about $35,000. Among the low risk, the C-sections averted

would have saved about $35 million, and would have prevented about 2,346 cases of

maternal complications. Of course neonatal death is a rare outcome and our estimates

are subject to error, but taken at face value they imply that better decision making

could have improved outcomes for both infants and their mothers at a very modest

cost.

Thus, a surprising implication of our analysis is that not only are there too many

C-sections being performed on low-risk women, but there are too few C-sections being

performed on high-risk women. A one standard deviation improvement in decision

making leads to reductions in the probability of a negative health outcome: There is

a reduction of 15.3% among the low risk, and of 9.1% among the high risk. When we

further divide bad health outcomes into those that are bad for the mother and those
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that are bad for the infant, we find that reductions in bad outcomes among mothers

are concentrated in the low risk (who become less likely to suffer the consequences of

unnecessary surgeries), while for infants bad outcomes are reduced across the board.

The one exception is neonatal death, which declines with better diagnosis only among

the high risk (suggesting that C-sections are indeed life-saving among infants born to

the highest risk mothers).

Contrasting the effects of decision making and surgical skill, we find that a one

standard deviation improvement in surgical skill would increase the incidence of C-

section 16.5% among patients in the lower half of the risk distribution and by 8.7%

among patients in the upper half. The same change is estimated to reduce the incidence

of any bad health outcome by 55.3% among the low risk, and by 50.4% among the high

risk.

One might conclude that it is more important to improve surgical skill than to

improve decision making. But it may be considerably easier to improve decision making

than to make bad surgeons into good ones. Indeed, policies such as checklists, computer

aided diagnosis, or administrative structures that require physicians to seek approval

before scheduling C-sections in women without risk factors, could perhaps be used as

methods of improving decision making ((Baker et al., 2008); (Doi, 2007); (Gawande,

2009)). Our results suggest that with common procedures like C-section, it may well

be possible to use existing administrative health data bases to identify doctors who are

making poor decisions and to make changes that will improve patient health outcomes.

The rest of the paper is laid out as follows. Section II briefly reviews some of the

relevant literature. A model is developed in Section III, which assists us in interpret-

ing the two dimensions of performance. Briefly, we first use the observable data to

construct a measure of each patient’s appropriateness for C-section. We then estimate

doctor-specific regressions of the propensity to perform a C-section on this measure of

appropriateness. This procedure yields an intercept and a slope term for each doctor,

and the model explains the circumstances in which the estimated slope can be inter-

preted as a measure of the doctor’s decision making. We also propose a proxy for the

doctor’s surgical skill. Section IV explores the relationship between these measures and

outcomes, and this is followed by a discussion and conclusions in Section V.

2 Background

Health care is an important area in which we all rely on experts, to choose procedures,

and then to carry out the chosen procedures. Hence, it is not surprising that many
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studies of expertise have focused on physicians. Meehl (1954) reviewed a number of

studies, mainly of clinical psychologists, and compared their forecasts to those gener-

ated by simple statistical models, including optimal linear combinations of variables

that the experts also observed. He argued that predictions based on these simple mod-

els were generally more accurate than those of the experts. A more recent meta-analysis

of 136 studies in clinical psychology and medicine also found that algorithms tended

to either out-perform or to match the experts (Grove et al., 2000).

Kahneman and Klein (2009) argue that algorithms are most useful when we have

confidence in the list of variables to be used for prediction; when we have a reliable and

measurable outcome; when there is a large body of similar cases; when the cost/benefit

ratio warrants the investment in developing an algorithm; and when the situation is

sufficiently stable that the algorithm will not immediately become obsolete. The case

of C-section appears to satisfy all of these criteria as we will argue further in the data

section below. In the psychological studies discussed above, the experts and the statis-

ticians generally had access to the same data. The advantage of the algorithms arises

mainly because the algorithms are more consistent than the experts. An additional

advantage in our application is that in our administrative birth records we observe the

universe of cases over a given time period, whereas each doctor observes only their

own cases. A possible disadvantage is that the doctor may have private information,

that is not on the health record and which therefore we do not observe. We will argue

below that it is an empirical matter whether the advantage due to “big data” outweighs

the limitation of unobservable factors that influence the decision making of physicians

when using the observable data to assess the quality of physician decision making.

Another difference between our study and many of those in psychology is that we

are agnostic about the source of the “errors” in decision making. The psychology liter-

ature is concerned about whether the errors arise from factors such as over-confidence,

or other heuristic biases. We are concerned with doctors who, for a variety of possible

reasons, do not make the best use of the publicly observable information at their dis-

posal to make good decisions. The literature in health economics offers many possible

reasons for these “mistakes.”

One common explanation for faulty decision making is “defensive medicine,” the

idea that doctors perform unnecessary procedures in order to protect themselves from

lawsuits. However, Baicker et al. (2007) argue that there is little connection between

malpractice liability costs and physician treatment of Medicare patients, while Dubay

et al. (1999) and Currie and MacLeod (2008) cast doubt on the idea that physicians

perform unnecessary C-sections primarily due to fear of lawsuits.
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There is more evidence that physician decision making is swayed by financial in-

centives. The fee for performing C-sections exceeds the fee for performing vaginal

deliveries. Gruber and Owings (1996) and Gruber et al. (1999) show that the inci-

dence of C-section increases with the wedge between the two fees. Johnson and Rehavi

(2016) add to this literature by showing that financial incentives affect the treatment

of non-physicians, but have no impact on the treatment of physician-patients, who are

presumably better informed, and therefore less likely to meekly tolerate unnecessary

procedures. Thus, excessive use of C-section could be a case of “induced demand”

motivated by financial gain (Dranove, 1988).

A third possibility is that doctors are influenced by the decisions of those around

them. Chandra and Staiger (2007) study the choice of surgery vs. medical management

of cardiac patients. Knowledge spillovers are the main theoretical driver of small area

variation in procedure use in their model. Physicians in areas that specialize in surgery

are assumed to become better at surgery and worse at medical management, and vice-

verso. Their model raises the possibility of mismatch between patients and physicians.

All patients in high surgery areas will be more likely to have surgery, even if medical

management would be more appropriate for some of them.

Both Epstein and Nicholson (2009) and Dranove et al. (2011) investigate the preva-

lence of spillovers in the case of C-section and neither find much evidence for them:

There is no convergence in practice styles among physicians in the same hospitals over

time. Similarly, Chan (2015) looks at how doctor’s practice style develops early in their

careers and finds that the practice styles of attending physicians have little impact on

those junior to them. Since C-section is often considered a rather simple surgery, the

benefits from specialization may also be muted. Still, the model we discuss below is not

inconsistent with the potential existence of either specialization or spillovers as practice

presumably does help, and doctors could learn both to be better diagnosticians and

better surgeons from observing their colleagues.

The most important insight from the Chandra and Staiger (2007) model may be

that a reduction in the use of surgery in high use areas cannot be Pareto improving

because patients who are good candidates for surgery will be harmed by a decline in the

skill level of the physicians serving them. This is also a feature of the model developed

by Chandra and Staiger (2011) which more explicitly considers the overuse and under-

use of invasive procedures (in their case coronary procedures for AMI patients) across

hospitals. We will also argue that an across-the-board cut in C-section rates cannot be

optimal because such a reduction will reduce the probability that high-need mothers

will receive a procedure. What is desirable instead, is a reallocation of C-sections from
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low-need to high-need mothers.

Patient preferences are often cited as a fourth potential reason for medically un-

necessary procedure use. In an innovative study using vignettes from patient and

physician surveys, Cutler et al. (2013) assess the hypothesis that regional variations in

procedure use are driven by differences in patient demand across areas. They conclude

that patient demand is a relatively unimportant determinant of regional variations and

that the main driver is physician beliefs about appropriate treatment that are often

unsupported by clinical evidence. Similarly, previous studies have found little evidence

that patient demand is driving the large differences in C-section rates across providers

(McCourt et al. (2007)).

Finkelstein et al. (2014) address the same question using longitudinal Medicare

claims data that allow them to track the same patients as they move through different

health care markets. They suggest that about half of the observed variation in proce-

dure use is due to supply-side factors, while half is due to patient-level, or demand-side

factors. However, they conclude that much of the variation in patient demand is driven

by exogenous patient health, and so probably does not mainly reflect patient tastes for

procedures. These findings agree with those of Cutler et al. (2013) in suggesting that

patient preferences play a relatively small role in explaining variations in care.

Finally, there is a literature looking at more explicit ways to incentivize doctors to

“do the right thing.” Abaluck et al. (2014) consider the case of negative test results.

The idea is that if a doctor screens a lot of people for a condition and all the tests come

back negative, then this is a good indication that the doctor is over-screening. Screening

tests are an important but rather special case. With most medical interventions, we

observe that some procedures were chosen, and we observe a health outcomes, but it

is often impossible to tell if any specific intervention led directly to a specific outcome.

Many authors have considered incentives based on risk-adjusted patient outcomes

(see Newhouse (1994), Newhouse et al. (2013), Song et al. (2010),Dranove et al. (2003)and

Dranove and Jin (2010)) where the ultimate goal is to be able to align payments with

appropriate decision making (Frank and McGuire (2000)). A persistent problem high-

lighted by this literature is that doctors can be expected to have more information

than regulators, and if they are penalized for bad outcomes conditional on patient

characteristics that the regulators can observe, then they will have strong incentives to

avoid patients whom their private information suggests are bad risks. Our approach is

different in that we propose to evaluate physician decision making simply on the basis

of whether doctors tailor their decisions to the observable characteristics of patients in

the same way as a reference or standard physician. The standard we use in what follows
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is the average New Jersey obstetrician. However, in principal, one could use any set

of highly regarded physicians to set the standard. Rather than simply assuming that

physicians who have bad outcomes made bad decisions, we then show that doctors who

are less responsive than the standard physician to the observable information about

the patient, tend to have worse patient outcomes. In this way, we are able to focus on

characteristics of the decisions themselves, and to validate the idea that responsiveness

to observable patient characteristics is an important dimension of decision quality. Of

course unobservable patient characteristics are also likely to be important to decision

making, but as long as these are correlated in a systematic way with the observables in

the population, then their influence will be at least partially captured in the formation

of the standard.

3 Framework

This section lays out the empirical and theoretical framework of our model. Empirically,

we first use all of the available data for New Jersey to uncover how the standard

physician responds to all of the observable characteristics of the patient. We do this

by following a standard machine learning approach (Hastie et al. (2009)) in which the

function that describes the decision making is “trained” on data from actual decisions.

The goal is to provide an accurate representation of how doctors map observable patient

characteristics into decisions about behavior. Given this representation, we can then

identify doctors who seem to deviate systematically from the standard and ask whether

this deviation has consequences for patient outcomes? In principal, it is possible for

doctors who deviate to have systematically better outcomes. For instance, if there is

important unobserved information that is uncorrelated with the observables, and if

good doctors make better use of this information, then we might expect doctors who

put less weight than the standard on the observables to achieve better patient outcomes.

In fact, we will show that the opposite is true: Doctors who appear to disregard patient

observables in their decision making have worse patient outcomes.

We then interpret these results through the lens of a model of Bayesian decision

making in which decisions reflect information processing, prior beliefs about the correct

procedures, and surgical skill. Section 3.1 describes the model of patient condition,

section 3.2 introduces the model of Bayesian decision making, and section 3.3 connects

the empirical model to the theory.
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3.1 Modeling Patient Condition

We begin by estimating a qualitative choice model using all of the data for the state

of New Jersey between 1997 and 2006 following Smith et al. (2004) who show that a

logistic model provides a clinically useful summary of factors related to C-section risk:

Prob {Ci = 1} = F (βXi) . (1)

Given the large number of physicians in the sample, the predicted probability is insen-

sitive to the decisions of any one of them. We use the model to construct a measure of

the patient’s appropriateness for C-section:

hIi = βXi. (2)

This constructed measure captures the standard of practice in New Jersey. Note that

though it only contains observable X’s, the influence of unobservables will also be re-

flected in the estimated coefficients to the extent that unobservables are systematically

correlated with observables in the population. Ideally, one might choose to construct

hIi using only a set of “good doctors” to form the standard but as we will show below,

there seems to be a good deal of consensus on the ranking of different patients by

appropriateness for C-section in our data.

For each doctor j ∈ J we estimate a model of the form:

Prob {Cij = 1} = F
(
θjh

I
i + γj)

)
.

That is, each doctor has an intercept which captures their mean likelihood of performing

C-section, as well as a slope term θj . We then investigate the extent to which these

physician-specific parameters are related to outcomes.

We let hi represent the true underlying condition of the patient and suppose that

our estimate hIi (from equation 2) satisfies:

hIi = hi + εIi , (3)

where the error term has variance σ2I . The physician also has a signal of patient

condition hi, and the precision of this signal is what we use as a measure of decision

making. We will show that this measure of decision making is positively related to the

slope term θj , whereas surgical skill affects the intercept term, γj , but not θj .
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3.2 Modeling Physician Decision Making

We assume that physicians maximize their utility, but care about patient outcomes

(Gaynor et al. (2004), Arlen and MacLeod (2005),Currie and MacLeod (2008) and

Chandra et al. (2012)). The physician chooses between two procedures, T ∈ {N,C}
which generate the following physician payoffs:

uij (N) = hNi + sNj +mN
j

(
PN
)

+ εijN ,

uij (C) = hCi + sCj +mC
j

(
PC
)

+ αPj h
P
i + εijC .

The first term hTi is an index of the health status of the patient when procedure T is

chosen and the physician is of average procedural skill, sj is the procedural skill of the

physician performing procedure T , and P T is the cost of the procedure.1

The term hPi represents a patient preference for procedure C (if it is negative,

then she prefers procedure N).2 The extent to which the physician responds to the

preferences of the mother is denoted by αPj .3 In what follows, we do not observe hPi ,

and this term can thus also be thought of as incorporating any other variables that are

observed by the physician, but unrecorded in the data.

Given information Iij the physician chooses C if and only if:

E {uij (C)− uij (N) |Iij} ≥ 0. (5)

Normalizing E {εijC − εijN} = 0, we can restate the physician decision rule (5) as: The

1It is assumed that we have taken logs of level variables and hence utility is any real number (positive
or negative), and the units have been defined appropriately.

2We could put these preference terms into both equations, but ultimately we are concerned about
the relative preference of procedure C to N, and so we need only place this term into one equation.

3Note that this linear model can be generated from the a model that allows for complementarities:

Uij (T ) = (HT
i )(STj )MT

j

(
PT

)
, (4)

where STj is the skill of physician j at doing procedure T and Mj

(
PT

)
is the expected pecuniary

consequence of this choice as a function of the price paid, PT for procedure T . Taking logs yields:

uij (T ) = log(Uij (T ))

= log
(
HT
i

)
+ log

(
STj

)
+ log

(
MT
j

(
PT

))
= hti + sTj + mT

j

(
PT

)
.
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choose the intensive procedure (T = C) if and only if:

E {hi|Iij}+ sj +mjt + αPj h
P
i ≥ 0, (6)

where sj = sCj − sNj , mj = mj

(
PC
)
−mj

(
PN
)

, and hi = hCi − hNi . For simplicity,

normalize hCi = 0, so that hi = −hNi . The term for technical skill (sj) increases with

skill at C , and decreases with skill at N . The term mj represents the relative cost of

procedures C and N. Increases in the price of procedure C are expected to increase mj ,

while an increase in the price of procedure N would decrease this term.

Suppose that the physician has prior beliefs regarding the patient’s true condition

hi such that hi ∼ N
(
h0j , σ

2
j

)
. If h0j + sj + mj > 0 , then the physician believes that

most women in her practice should be getting a C-section. The variance of prior beliefs,

σ2j , represents uncertainty about the appropriate choice. Define:

Bj =
1

σ2j
.

When Bj is large (σ2j is small), then the physician has strong prior beliefs that make

her less sensitive to the new information in Xi.

Given these beliefs, the physician observes the patient’s condition and makes an

assessment of her health status:

hij = hi + εij , (7)

where εji is normally distributed with mean zero and variance σ2Dj . We define the

precision of the health assessment of as:

Dj =
1

σ2Dj .
.

When Dj is higher, the physician makes a more accurate estimate of the patient’s

condition hi and hence is more likely to choose the correct procedure. Given these

definitions we have:

Proposition 1. Given a doctor’s prior beliefs about the patient’s condition h0j , the

strength of the physician’s prior beliefs, Bj, the precision of the physician’s health as-

sessment Dj, and her information about the patient’s condition, hij, then her medical
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assessment of a patient’s condition is given by:

E {hi|Iij} = π0h0j + πhhij

where π0 =
Bj

Bj+Dj
and πh = 1− π0 =

Dj
Bj+Dj

.

The proof of this and subsequent propositions is in the appendix (and follows De-

Groot (1972)). Physicians with higher quality decision making are more responsive to

new information, and less dependent on prior beliefs.

The final piece of data used by the physician is the patient’s preference for a C-

section given by hPi . Suppose that patient preferences follow an arbitrary distribution

hPi ∼ N
(
h̄Pj , σ

2
Pj

)
, where h̄P and σ2PJ are practice specific parameters that can also

affect the observed decision.

This decision model illustrates that there are at least five physician characteristics

that affect decision making, which can be summarized by ωDj =
{
sj , h

0
j , Bj , Dj , α

P
j

}
-

physician surgical skill, prior beliefs about patient condition, the strength of these prior

beliefs, the precision of the health assessment, and the parameter from the doctor’s util-

ity function describing how sensitive the physician is to patient preferences. Unobserved

practice characteristics are given by ωPj =
{
h̄Pj , σ

2
Pj

}
. Let ωj = {ωDj , ωPj} denote

the full set of physician and practice level characteristics.

Substituting these expressions into equation 6 it can be shown that procedure T = C

is chosen by physician j for patient i if and only if:

T
(
hij , h

P
i |ωj

)
= π0h0j + πhhij + sj +mj + αPj h

P
i ≥ 0. (8)

We can now derive the probability that a patient will receive procedure C as a function

of her underlying condition hi. Procedure C is chosen iff:

hi +
π0h0j + sj +mj + αP h̄Pj

πh
≥ −

(
εij + αPj ε

P
j /π

h
)
, (9)

where εPj is defined as the variation from the mean of patient preferences -
(
hPj − h̄Pj

)
.

We can rewrite the second term of this equation as:

γj =
π0h0j + sj +mj + αPj h̄

P
j

πh
,

=
Bj
Dj

(
h0j + γ̄j

)
+ γ̄j , (10)
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where γ̄j = sj + mj + αPj h̄
P
j are physician specific characteristics that are not part of

physician expectations. Let us define:

ζij = −
(
εij + αPj ε

P
j /π

h
)
,

which is a normally distributed random variable with mean zero and variance:

σ2jζ =

σ2Dj +

(
αPj
πh

)2

σ2Pj

 .

Then the probability of a C-section conditional on a patient’s true medical condition

hi is given by:

Prob [Tij = C|hi, ωj ] = F
(
θ̂j (hi + γj)

)
, (11)

where θ̂j = 1
σjζ

. This equation suggests that physician behavior can be characterized

by an intercept and a slope. Notice that the slope term increases with the precision of

the health assessment made by the physician. In the special case where there are no

unobserved preferences for C-section (or other relevant unobserved medical informa-

tion) then σ2Pj = 0. In the special case where physicians disregard patient preferences

(or unobserved medical information) then αPj =0. In either special case, the slope is

completely determined by the precision term, 1/Dj . However, even in the special case

where αPj = 0, the intercept term γj , is affected by a mix of physician beliefs, surgical

skill, and prices as well as being negatively related to Dj . A possible interpretation

of the latter is that as the health assessment becomes more diffuse and less informa-

tive, the observable features of the patient’s condition have less impact on treatment

decisions. As discussed above Cutler et al. (2013) and Finkelstein et al. (2014) suggest

that procedure choice is not generally driven by patient preferences, and hence in what

follows we identify variations in the slope term as primarily reflecting the quality of

decision making.

3.3 Measuring Physician Behavior

We now have a model that connects observed patient conditions to physician decision

making. The final step is to link this behavior to observables. We cannot directly

observe patient condition hi but we can derive the probability of observing a C-section

conditional on the constructed measure, hIi .

Proposition 2. The probability that physician j chooses T=C when patient condition
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is observed to be hIi is given by:

pj
(
hIi
)

= F
(
θj(h

I
i + γj)

)
, (12)

where γj can be characterized as treatment style, , and the slope term,θj , reflects the

sensitivity of the doctor to the patient’s condition and is given by:

θj =
1√

σ2I + σ2jζ

(13)

=

(
σ2I +

1

Dj
+

(
Bj
Dj

+ 1

)2 (
αPj σPj

)2)− 1
2

, (14)

where σ2jζ is the variance of the doctor’s information conditional upon patient health,

and σ2I is variance of the measure of patient health given the observed birth record.

This proposition summarizes the effects of physician characteristics on procedure

choice as a function of the information that we can observe. We can directly estimate

both the slope parameter, θj , and the doctor specific intercept, γj , which together

characterize a doctor’s decision making.

Since we are measuring patient condition with error, the slope term we measure is

less steep than the slope with respect to true underlying condition (θj <
1
σjζ

= θ̂j).

Despite this issue, as long as our proxy for patient condition, hIi is correlated with true

patient condition (σ2I is finite), then variations in physician characteristics will lead to

variations in both the intercept, γj , and the slope, θj . We now detail these effects.

Determinants of the Intercept Term

Equation (12), shows that any increase in γj leads to an increase in the incidence of

procedure C. This intercept is affected by several attributes of physicians and their

practices, as summarized in a corollary to proposition 2:

Corollary 3. The incidence of procedure C is increasing in physician beliefs (dpj

(
hIj

)
/dh0j >

0), relative surgical skill for procedure C ((dpj

(
hIj

)
/dsj > 0) and the relative pecuniary

returns to procedure C ((dpj

(
hIj

)
/dmj > 0). It may also be affected by both patient

preferences and physician sensitivity to preferences, the αPj h̄
P
j term.
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Determinants of the Slope Term

The following proposition summarizes the effects of physician characteristics on the

slope term.

Corollary 4. The slope, θj, is increasing with the quality of physician decision making(
∂θj
∂Dj

> 0
)

, decreasing with physician sensitivity

(
∂θj
∂αpj

< 0

)
, the strength of physician

prior beliefs
(
∂θj
∂Bj

< 0
)

and with the variance of patient preferences

(
∂θj
∂σ2
pj
< 0

)
. It is

unaffected by physician surgical skill, physician expectations, and treatment costs.

This result follows immediately from an inspection of the formula for the slope in

proposition 2.

Consider now the relationship between decision making and the slope term, θj .

Define the elasticity of decision making with respect to θj as:

eDj (Dj) =
Dj

θj

∂θj
∂Dj

> 0.

Using this definition and proposition 2 we have:

Corollary 5. An increase in decision making quality increases treatment C if and only

if:

hIi ≥ ĥIj ≡
(
1− eDj (Dj)

) (
h0j + γ̄j

)
− γj .

For patients at high risk for procedure C (hIi ≥ ĥIj ), an increase in decision making

increases the incidence of procedure C, while the reverse occurs for low risk patients

(hIi < ĥIj ). This result is in sharp contrast to the effect of surgical skill. If a physician

is better at performing a C-section then this increases the incidence of C-sections for

all patients.

The contrasting effects of the quality of decision making and surgical skill are illus-

trated in Figures 1 and 2. In each figure, patients are arrayed along the X-axis from

those with the lowest values of hIi to those with the highest values. The lower line in

Figure 1 illustrates the initial relationship between the observed patient condition and

the probability that the intensive procedure is performed. The upper line in Figure

1 shows how this relationship would be expected to change with increases in surgical

skill. The main takeaway is that one would expect an increase in the use of intensive

procedures for both high and low risk patients.
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Figure 2 illustrates the effect of improving decision making. From corollary 3 we

have that patients with observed condition greater than ĥIj = −γj +
(

1− eDj (Dj)
)

have higher C-section rates when decision making increases, and lower rates when hIi
is less than the threshold ĥIj . This is illustrated in figure 2 by the move from the

green/dark line to the red/light line. Thus as decision making improves, the use of the

intensive procedure falls among those with low hIi and increases among those with high

hIi . Other things being equal, we expect that reallocating procedures from those who

do not need them to those who do need them will improve outcomes. The Appendix

shows more formally that this is the case, see Propositions 6 and 7.

4 Data and Methods

C-section is the most common surgical procedure in the U.S.. The technology has been

stable for a long time and there are detailed records on millions of births, meaning that

it should be possible to use the available data to rank pregnant women in terms of their

a priori risk of C-section with a fair degree of accuracy. Moreover, we can investigate

a variety of health outcomes, including both poor outcomes for the mother and poor

outcomes for the child, and thus directly relate decision making to outcomes.

The data for this project come from approximately a million New Jersey Electronic

Birth Certificates, (EBC) spanning 1997 to 2006. In addition to information about

the method of delivery, they include detailed information about the medical condition

of the mother including the mother’s age, whether it is a multiple birth, whether

the mother had a previous C-section, whether the baby is breech, whether there is

a medical emergency such as placenta previa or eclampsia which calls for C-section

delivery, and whether the mother had a variety of other risk factors for the pregnancy

such as hypertension or diabetes.

Birth records include detailed information about health outcomes for both the

mother and the child including complications that occur during the delivery (maternal

bleeding, fever, or seizures); maternal complications that occur after the delivery; fetal

distress (measured by the presence of meconium); birth injuries (fracture, dislocated

shoulder and other injuries); and neonatal death (death in the first 30 days of life). We

also combine all of these measures into an indicator equal to one if there was “any bad

outcome.”4

4We do not include low birth weight and short gestation in this index because they can be the direct
consequence of the decision to do a C-section in an otherwise normal pregnancy. This is why orga-
nizations such as the March of Dimes specifically targeted the elimination of non-medically indicated
(elective) deliveries before 39 weeks gestational age as a strategy to reduce prematurity.
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Finally, the data has information about the latitude and longitude of each woman’s

residence, as well as codes for doctors and hospitals.5 In our analysis, we focus on

doctors and exclude midwives since only doctors can perform C-sections. The data

includes demographic information about the mother such as race, education, marital

status, and whether the birth was covered by Medicaid, all of which have been shown

to be related both to the probability of C-section and to birth outcomes.

These data are used to construct analogs of the key model concepts. F (hIi ), the

mother’s risk of C-section, is estimated using a logit model of the probability of C-

section given all of the purely medical risks recorded in the birth data, as in equation

(1). Since we are trying to define medical risk, variables such as the type of insurance

and race are not included in the logit models. The model estimates are shown in column

1 of Table 1. Table 1 The model predicts well, with a pseudo R-squared of almost .32.

This model reflects actual practice, but not necessarily best practice. In principal,

one might wish to estimate the model of medical risk using only the best doctors, or

perhaps only the beginning of the time period when C-section rates were much lower.

We have experimented with several alternative models and found that the correlation

between the ranking of C-section risk produced by our model, and the ranking produced

by the alternatives is above .95. These alternatives included a model with fewer risk

factors, a model using births from 1997-1999 only, and a model using only doctors

who were below the 25th percentile in terms of the fraction of births with negative

outcomes in their practices. Estimates of these “good doctor” model are also shown in

Table 1. One can see that the estimated coefficients are similar to those for all doctors

suggesting that there is not a lot of controversy about the ranking of which women are

the best candidates for C-section, even if (as we shall see), different doctors have much

flatter need-C-section profiles than others.

Corollary 4 showed that the slope term in the model, θj , is affected by decision

making (Dj). The empirical analog can be obtained for each doctor by using the

estimated β’s from (1) to create the index of maternal condition hIi (this is simply

βXi) and then estimating a regression model for each doctor’s propensity to perform

C-sections as a function of hIi . The estimated coefficient on hIi , denoted by Decisionj ,

is an indicator of how sensitive the doctor is to this index of observable indicators of

patient risk and varies with decision making as we discussed above. The distribution

of slope coefficients has a mean of 1.033 and a standard deviation of .183. The first

5These codes do not identify the physician, but allow us to identify all births delivered by the same
physician.We found, as a practical matter, that very few doctors practiced in more than one hospital
in a single year; hence the choice of doctor also defines the choice of hospital.
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percentile is .576 while the 99th percentile is 1.491, suggesting that doctors range from

being quite insensitive to quite sensitive to maternal conditions. We normalize this

measure by calculating a Z-score, for ease of interpretation.

Figure 3 plots the distribution of estimated propensity scores for those who did not

get a C-section, and for those who did get a C-section. The figure shows that most of

the mass among those who did not get a C-section is concentrated among those with

propensity scores less than .35, while among those who did get a C-section there is a

lot of mass concentrated above .7, but also quite a bit of mass in the .1 to .4 range.

These distributions indicate that there are individuals with no apparent observable

risk factors who nevertheless have C-sections, and perhaps more disturbingly, there are

women with many risk factors for C-section who do not receive the procedure. For

a given level of medical risk, the probability of C-section increased over our sample

period at all but the highest risk levels as shown in Appendix Figure 1. In fact, at the

start of our sample period, New Jersey, with a rate of 24%, had a lower C-section rate

than several other states, including Arkansas, Louisiana, and Mississippi, while by the

end of our sample period, New Jersey had pulled ahead to have the highest C-section

rate of any state, at almost 40%. Appendix Figure 2 shows that this increase was not

due to a change in the underlying distribution of medical risks. The figure shows only

a slight increase in the number of high risk cases, which is attributable to an increase

in the number of older mothers, mothers with multiple births, and increasing numbers

of women with previous C-sections (itself driven by the increasing C-section rate).

Figure 3 also shows that those who had values of F (hIi ) less than .06 (a group whom

we designate the very low risk) were very unlikely to have C-sections, while those with

F (hIi ) greater than .8 (a group whom we designate as the very high risk) were highly

likely to have C-sections. Of the women deemed very high risk, 89% received a C-

section, while among the women deemed very low risk only 6% received a C-section.

We measure procedural skill by calculating the rate of any bad outcomes among very

low risk births, and the rate of bad outcomes among high risk births for each doctor,

and then taking the difference between them. Taking the difference in the incidence

of bad outcomes between these two groups is suggested by the model, in which it is

the difference in skill in procedure C and in procedure N that affects the physician’s

choice. The rate of bad outcomes in each group proxies for surgical skill because, as

noted above, the vast majority of high risk women get C-sections and most very low

risk women do not. At the same time, because the very high risk and very low risk

groups are defined only in terms of underlying medical risk factors, the measure is not

contaminated by the endogeneity of the actual choice of C-section within these risk
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categories. This measure also exhibits considerable variation between doctors with a

mean of -.0493 (since bad outcomes are more frequent in high risk cases than in low

risk cases) and a standard deviation of .0646. The first percentile of this variable is

-.25, while the 99th percentile is .079. Again, we normalize this measure by calculating

a Z-score for ease of interpretation.

Although relative prices for C-sections and normal deliveries have been shown to

be an important determinant of C-section rates, they are not the main focus of our

analysis and are not well measured in our data. We use data from the Health Care

Utilization Project (HCUP), which includes hospital list charges for every discharge.

For each market and year, we take the mean price of all C-section deliveries that did

not involve any other procedures, less the mean price of normal deliveries without other

procedures. The mean differential was $4,711 real 2006 dollars.6

Having constructed these measures, we estimate models of the following form:

Outcomeijt = f(Decisionj , s
C
j − sNj ,∆Pjt, Zit,month, year, zip), (15)

where Outcomeijt ∈ {0, 1}, where 0 is a vaginal delivery (or good birth outcome)

and 1 is a C-Section (or bad birth outcome), i indexes the patient, j indexes the doc-

tor, and t indexes the year. The vector Zit includes maternal age (missing, less than

20, 25-34, 35 and over), education (missing, less than 12, 12, 13-15), marital status,

race/ethnicity (African-American, Hispanic), and whether the birth was covered by

Medicaid, as well as the child’s gender and indicators for birth order. We include

month and year effects in order to control for seasonal differences in outcomes and for

longer term trends affecting all births in the state (e.g. due to other improvements in

medical care), zip code fixed effects (3 digit) in order to control for characteristics of

the location that may be associated with both medical care and outcomes, and also

include indicators for missing marital status, smoking, birth order, and whether the

birth occurred on a weekday. The standard errors are clustered at the level of the zip

code in order to allow for unobserved correlations across a physician’s cases.

Sample means are shown in Table 2. The estimation sample is slightly smaller than

in Table 1 because while we used all births to calculate the probability of C-section,

in the rest of the paper we exclude births that were not attended by a doctor, as well

as those for whom we cannot calculate our measure of decision making (because there

6It is important to note that physician charges are generally separate from hospital charges and
are not included in HCUP. Also, while Medicaid generally reimburses less than private insurance for
deliveries, we do not find a significant effect of Medicaid coverage on C-section delivery, as shown in
Appendix Table 1.
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are too few births per provider, defined as 25 or less).7 These exclusions leave us with

approximately 1,000 providers, who together deliver the vast majority of the babies

in New Jersey over the sample period. We show sample means for all women, and

for those with F (hIi ) ≤ 0.2 (low C-section risk) and those with F (hIi ) > 0.2 (high

C-section risk). This cutoff is chosen because Figure 3 suggests a gap in C-section

propensities at that value, and because it divides the sample approximately in half.

The first panel shows how the outcome variables vary with risk. As expected, higher

risk women have more C-sections and a higher risk of a bad outcome. Examining the

type of bad outcome more narrowly suggests that women at high risk of C-section are

more likely to experience complications of labor and delivery as well as late maternal

complications, and that their infants are at a higher risk of neonatal death.

The second panel explores the characteristics of doctors and provides some initial

evidence with regard to an important question: The extent to which higher risk patients

see doctors with particular characteristics. Table 2 suggests that the doctors who treat

low risk patients do vary systematically from those that treat higher risk patients.

As discussed above, our measures of decision making and procedural skill have been

transformed into Z-scores, so in the full sample, they have a mean of zero and a standard

deviation of 1. Table 2 shows that on average, high risk patients see doctors with

slightly better decision makings (.03 standard deviations), and slightly better surgical

skills (.014 standard deviations). Conversely, low risk patients see doctors with slightly

lower decision making (-.032 standard deviations) and procedural skill (-.016 standard

deviations). Thus, while there is some evidence of sorting, the extent of sorting appears

to be quite small. There is also some evidence that high risk patients see doctors with

slightly fewer deliveries and higher shares of high risk patients in their practices. Again,

however, these differences are quite small.

The third panel of the table provides an overview of selected maternal and child

characteristics including race and ethnicity, maternal education, marital status, and

whether the birth is covered by Medicaid. The table suggests that women at higher

risk of C-section tend to be older, married, and more likely to have private insurance

rather than Medicaid. They are also more likely to be delivering a first child, and are

less likely to be African-American or Hispanic.

One empirical difficulty involved in estimating (15) is the possibility that women

choose their doctors on the basis of their skill. If women with high risk pregnancies

choose better doctors, then the estimated effect of doctor skill on birth outcomes will

7We also exclude a very small number of doctors who did not have at least one high risk patient
and at least one low risk patient.
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be biased towards zero. Table 2 suggests that there is some evidence of this type of

selection, although it appears to be quite small. A second empirical problem is that

we are using estimated values of diagnostic and surgical skill, which are inevitably

measured with some error.

One way to address these issues is to estimate models using market-level measures of

skill as instruments for individual doctor’s skill levels. Following Kessler and McClellan

(1996) our definition of a hospital market is defined with reference to all of the providers

actually selected by women in a particular zip code in a particular year. Specifically,

we include all hospitals within ten miles of the woman’s residence, plus any hospital

used by more than three women from her zip code of residence in the birth year, and

we consider all of the providers who practiced in those hospitals in that year as part

of the relevant market. Figure 4 shows the distribution of hospitals and illustrates this

way of defining markets. The figure shows that most women choose nearby hospitals,

but that some women bypass nearby hospitals in favor of hospitals further away. In

some cases, these are regional perinatal centers which are better equipped to deal with

high risk cases. For example, women from Princeton New Jersey could give birth in

the hospital in town, but many travel as far away as Morristown (two counties to the

north) to deliver in other hospitals.8 Thus, there is a distinct market, or set of provider

choices, facing each woman at the time of each birth.

Given this definition of a market, we construct instruments by taking the weighted

mean of the decision making and surgical skill measures for all physicians in the market

in the birth year, where the weights are given by the number of deliveries by each

physician.9 We interpret this instrument as a summary measure of the choices available

to a woman in a particular market.10By definition, these choices are affected by where

8The figure also illustrates that the common practice of drawing a circle around a location in order
to define a market is likely to be seriously misleading: A circle wide enough to include all the hospitals
actually chosen would include hospitals that were never chosen, and a circle wide enough to include
most hospitals could miss specialty hospitals that were further away and yet within the choice set.

9In the crowded northern New Jersey hospital market, we included only hospitals within five miles
of the zip code centroid.

10Note that the rationale for this instrument has nothing to do with the presence or absence of
provider spillovers. Rather market-level measures reflect what is available to the patient and therefore
will affect the type of physician chosen. Consider two markets: In A, all of the physicians are very
responsive, and in B, physicians flip coins in order to determine whether to do C-sections. In this
scenario patients living in market A would be more likely to have responsive physicians, while for those
living in market B, the probability of C-section would be independent of patient condition. The main
threat to identification in this scenario would be that patients in markets A or B might just have
very different unobservables. This is why we include market-specific fixed effects. With the inclusion
of these effects, we are identified using year-to-year fluctuations in the types of physicians who are
available. Stable long-term differences in the populations of physicians will be controlled by the fixed
effects. Hence, our identification is only threatened if mothers systematically change residences with
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women live, but recall that we control for zip code fixed effects in all our models.

Therefore, variation in the set of providers facing each woman at a point in time comes

mainly from entry and exit of providers into the various markets rather than from any

fixed long-term differences in the availability of services. Hence, as long as women are

not moving in order to take advantage of year to year fluctuations in the skill set of

local physicians, our instruments will be valid. Instrumental variables is also a valid

approach to producing standard errors that account for the fact that the health index

is estimated in the first step of our procedures. Our standard errors are clustered at the

zip code level to allow for possible within-zip correlation in the errors. Table 3, which

shows the first stage regressions, shows that these instruments are highly predictive.11

Note that it is important to include the provider actually chosen in the possible choice

set. Otherwise, people living in an area with only one provider (for whom endogeniety

of provider choice is not an issue since they only have one choice) would have to be

excluded from the model. Our argument is similar to that of Angrist et al. (1996)

in that what we are assuming is that if the mean surgical skill of doctors in an area

increases, then a woman will be more likely to end up with a highly skilled doctor, for

example.

A third issue is that by construction, good decision makers should be less likely

to perform C-sections on low risk women and more likely to perform C-sections on

high risk women. Similarly, physicians with good procedural skills should have better

outcomes for the high risk relative to the low risk. However, it is important to note

that there is no mechanical reason for our measure of decision making to affect health

outcomes, and similarly no mechanical reason for our measure of procedural skill to

affect C-section rates. Thus, estimates of these two relationships form the true test of

our model.

the short-run fluctuations in available physician types.
11The IV estimate assumes that the instrument affects outcomes only through the quality of the

doctor. Yet it is conceivable that the quality of the hospital in terms of nursing staff, for example, also
matters. In this case, the IV estimate is going to pick up the “true” effect of the physician skill level,
plus the nearby-hospital-specific effects. If better doctors practice in higher-quality hospitals, then the
TSLS estimates could be biased upwards. In this case, the true estimate would be bounded by the
OLS and IV. However, in practice we found that there was as much variation in doctor quality within
hospitals as between hospitals leading us to believe that doctors are not strongly sorted into particular
hospitals.
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5 Results

Table 4 shows both Ordinary Least Squares (OLS) and Two-Stage Least Squares

(TSLS) estimates of equation (15), where the dependent variable is whether there was

a C-section. These models include all of the control variables discussed above. The full

OLS models for the probability of C-section are shown in Appendix Table 1. Condi-

tional on C-section risk, African-American and Hispanic women are more likely to have

C-sections, as are less educated women, single women, older mothers, and mothers of

first born children. These estimates suggest that the stereotype that it is primarily

older, better educated white women who are “too posh to push” may be incorrect.

The estimated effect of market prices is positive, but not precisely estimated.

As discussed above, the OLS coefficients on the measures of physician skill may be

biased by selection and by measurement error. For example, a woman who desires a

C-section regardless of her medical condition will be likely to seek a physician who does

not insist on using her medical condition to determine treatment. In our taxonomy,

this will be a physician with a low slope term, which we are identifying with poor

decision makings. In this case, OLS estimates of the coefficients on decision making

will be biased towards zero. It is less clear how the coefficient on surgical skill will

be affected. Other things being equal, a woman bent on surgery might prefer a better

surgeon. However, decision making and surgical skill tend to be positively correlated in

our data (the correlation in the raw measures is .259), so in choosing someone willing

to disregard her medical condition, she may also be choosing a relatively poor surgeon,

in which case the coefficient on surgical skill will also be biased downwards.

Table 4 suggests that the coefficients on both skill measures are biased towards zero

in the OLS, although we do not have the precision to reject the null hypothesis that

the OLS and TSLS estimates or the effects of decision making are the same. The TSLS

estimates indicate that a one standard deviation increase in decision making would

reduce the risk of C-section by 1.6 percentage points among women in the lower half

of the risk distribution (a 15.5% reduction in the probability of C-section for these

women), but would increase the probability of C-section by 1.9 percentage points (a

3.5% increase in the probability of C-section) in the upper half of the distribution.

Overall, our measure of decision making has little effect, but this overall result masks

the type of heterogeneity in the effects of decision making on low and high risk women

that is predicted by our model.

An increase in surgical skill is estimated to increase the risk of C-section for ev-

eryone. For women in the lower half of the risk distribution, the TSLS estimate is 1.7
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percentage points, indicating that a one standard deviation increase in surgical skill

would increase the risk of C-section by 16.5%. Among women in the top half of the

risk distribution, the increase is 3 percentage points, or 5.5%. In the case of surgical

skill, the TSLS estimates are considerably larger than the OLS estimates. Table 2 does

not suggest a huge amount of selection in terms of surgical skill. However, given that

each surgeon has a relatively small number of very high risk and very low risk cases,

and that bad outcomes are thankfully relatively rare, our measure of surgical skill is

likely to be quite noisy. Hence, measurement error may account for the increase in the

absolute value of the estimated coefficients when we move to TSLS.

The second panel of Table 4 shows the estimated effect of the two types of skill on

the probability of any bad outcome. Once again, the OLS coefficients are smaller than

the TSLS coefficients, and this is especially pronounced for the measures of surgical

skill. The TSLS estimates suggest that a one standard deviation increase in decision

making is associated with a 1.3 percentage point decrease in the probability of any bad

outcome among both low and high risk women. This translates into a 15.3% decline

among the low risk, and a 9.1% decline among the high risk. Similarly, a one standard

deviation increase in surgical skill reduces the probability of any bad outcome by 42.3%

among the low risk, and by 50.3% among the high risk.

Tables 5 and 6 delve more deeply into the types of bad outcomes experienced

by mothers and children, respectively. Table 5 shows the effects of skill on any bad

maternal outcome, and then divides these outcomes temporally into bleeding, fever,

and seizures that take place during the labor and delivery, and complications that take

place after the delivery (e.g. infection or bleeding following surgery). Once again, we

focus on the TSLS results which tend to be larger than the OLS estimates, especially for

the surgical skill measures. Better decision making is estimated to reduce the incidence

of bad maternal outcomes, especially for the low risk. Among the low risk, decision

making significantly reduces the incidence of bleeding, fever, or seizures during delivery,

perhaps by discouraging unnecessary surgery. Among the high risk, there is no overall

effect since better diagnosis reduces the incidence of bad outcomes during delivery, but

increases late maternal complications. A possible interpretation is that these women

are more likely to need C-section deliveries so that providing C-section reduces the

incidence of poor outcomes during delivery. However, major abdominal surgery is not

without risk, and increases the probability of complications after the delivery. Better

surgical skills also reduce the incidence of maternal bad outcomes, but have a greater

percentage point impact among the high risk than among the low risk, which is to be

expected given that the later are more likely to have surgery.
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Table 6 breaks down the infant health outcomes. The first panel suggests that

improvements in decision making reduce poor child health outcomes, though the TSLS

estimates are not very precise. The second panel indicates that there is a significant

negative effect of poor decision making on the probability of fetal distress. This is

slightly offset by a positive, though not statistically significant effect on the probability

of birth injury. A possible interpretation is that infants are more likely to sustain an

injury such as a dislocated shoulder if a vaginal delivery is attempted. The last panel

indicates that decision making has a significant negative effect on the probability of

neonatal death, but only among the high risk. This result suggests that C-section can

be life-saving for infants of mothers who really require a C-section, but that unnecessary

surgery does not pose a threat to the life of the infant among the low risk.

5.1 Robustness

Since the breakdown into high and low risk categories is arbitrary, one obvious way to

explore the robustness of our results is by dividing mothers differently. Moreover, since,

as we showed above, there is considerable consensus about the ranking of patients by

appropriateness for C-section, we can assume that there is consensus about the high

and the low risk, but perhaps controversy about the people in the middle. Table 7

shows estimates based on three risk categories, where now low risk is defined as the

lowest quartile of F (hIi ) , high risk is defined as the highest quartile, and medium risk is

defined as the two quartiles in the middle. The first row of Table 7 suggests that better

decision making significantly reduces C-sections among the lowest risk, but has a large

positive effect on the highest risk group. Better procedural skill increases C-section

rates across the board.

The next panel of Table 7 indicates that the impact on “any bad outcome” is great-

est for the medium and high risk groups, while procedural skill improves outcomes for

all groups. Comparing the third panel of Table 7 to Table 5 indicates that better deci-

sion making has the greatest impact on preventing poor maternal outcomes among the

lowest risk mothers. This is consistent with the idea that negative maternal outcomes

are most likely to be caused by unnecessary surgery, since better decision making re-

duces unnecessary surgery among the low risk. Comparing the last panel of Table 7 to

Table 6 shows that it is infants born to the highest risk mothers who benefit the most

from better diagnosis in terms of preventing bad infant health outcomes. Like Table 6,

this result suggests that the gravest risk to infant health occurs when women who really

need a C-section do not receive one. Thus, if we only consider infant health outcomes,
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the trend towards higher use of C-section is not necessarily cause for alarm. It is only

when we also consider maternal health that the high cost of excessive C-sections among

the low risk becomes apparent.

Table 8 considers only first born children. The reason for this restriction is that

the C-section rate is very high among mothers who have already had a C-section, and

doctors may have more uncertainty about likely pregnancy outcomes in first births

(since they do not have the birth history to rely on). In this sample, procedural skill

has much the same effect as in Table 7. Poor decision making also appears to have

negative effects among the low risk group, though there is less evidence of a significant

effect among high risk first births.

6 Discussion and Conclusions

The previous literature on treatment choice emphasizes that it is affected by physician

skill, but only allows physician skill to vary along a single dimension which can be

thought of as technical skill in executing procedures, or surgical skill. Taking a cue

from the literature on expert decision making we develop a model that includes an

additional dimension of skill: Diagnostic decision making. In our model, a good doctor

is one who is not only technically skilled, but who is also able to draw the correct

inferences from the available data in order to match patients correctly to the procedures

that are most likely to benefit them. Suppose for example, that a policy is set so that

C-section rate of 1/6 is desired. One way to obtain a perfect rate would be to simply

roll a die and give each woman with a six a C-section. And yet we do not think that

this would maximize health outcomes. Physicians in the data with flat “slopes” have

both too low a C-section rate for high risk cases, and too high a C-section rate for low

risk patients. Effective policies to address procedure use should consider the possibility

of variation in decision making and focus on assisting physicians in making the right

decisions on an individual basis. Moreover, the right decision depends on the mother-

physician pair, since physicians who are more skilled at performing surgery should have

higher C-section rates, other things being equal. In other words, the optimal policy is a

function of both the condition of the patient and the quality of the physician’s human

capital.

This simple framework yields rich predictions and allows us to distinguish between

the two factors which we identify with the quality of decision making and procedural

skill. The Bayesian learning model implies that better procedural skill leads to higher

use of intensive procedures across the board, for both high and low risk patients. In
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contrast, better decision making results in fewer procedures for the low risk, but more

procedures for the high risk. That is, better decision making improves the matching

between patients and procedures and thus leads to better health outcomes in both

groups.

We estimate the model parameters using data on C-sections, the most common

surgical procedure performed in the U.S.. We find that improving decision making

by one standard deviation would reduce C-section rates by 15.5% in the lower half

of the distribution of C-section risk, but would actually increase C-sections by 5.5%

in the top half of the distribution. This finding suggests that not only are there too

many C-sections among women without risk factors, but there are too few C-sections

in the group who really needs them. In fact, given the base rates shown in Table 2, we

estimate that improved decision making would have resulted in 7,490 fewer C-sections

in the bottom half of the distribution, but 14,975 more C-sections in the top half of the

distribution for a net increase of 7,485 C-sections. These extra C-sections among the

high risk would have generated $35 million (2006 dollars) in additional costs, and might

have averted about a third of the 2,997 deaths that occurred in this high risk group over

this 10 year period, for a cost per life saved of about $35,000. Among the low risk, the

C-sections averted would have prevented about 2,346 cases of maternal complications.

Of course neonatal death is a rare outcome and our estimates are subject to error, but

taken at face value they imply that with only modest increases in overall costs, better

decision making could have improved outcomes for both infants and their mothers.

Our work highlights the importance of diagnostic decision making in medicine and

suggests an empirical approach to measuring it: Given a prediction of a patient’s

medical appropriateness for a procedure, a doctor’s decision making can be evaluated

by looking at whether they are responsive to this information. Note that if doctors did

not respond to publicly observable information because they were basing their decisions

on superior private information, then we would see that doctors who did not respond

to public information had better outcomes. We show instead that doctors who are not

responsive to the publicly observed patient medical information typically achieve worse

health outcomes.

This finding suggests then, that the medical information contained in sources such

as electronic patient records could be used to improve medical decision making. We

are not suggesting that doctors be replaced by machines, but that a doctor’s individ-

ual expertise, which perforce depends on his or her individual experience, could be

enhanced by applying simple algorithms to the “big data” contained in millions of ad-

ministrative medical records. Another idea that follows from these results is that if
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we can distinguish between various forms of skill, then we might be able to improve

outcomes by having teams deliver care. In our example one doctor might make the

decision regarding C-section while another doctor executed it.

Finally, it is worth considering whether our example sheds light on how we might

evaluate other types of experts. As we highlighted in the introduction, protocols and

checklists have already been introduced in medicine. While we argue that these proto-

cols could be improved, they do highlight the actions of doctors as well as the outcomes

of patients. In contrast, there are many markets (such as teaching) where we seek to

evaluate the quality of experts but focus almost exclusively on outcomes (e.g. stu-

dent test scores) with little attention paid to either collecting or analyzing data about

the expert’s actions. This is despite a long history in labor economics of understand-

ing that sometimes it is better to base compensation on inputs rather than outputs

(Lazear (1986)). Viewed in this light, our results suggest that research on evaluating

(such Rockoff et al. (2010)) and characterizing the actions of successful experts (such

as Dobbie and Fryer (2013)) represent an important first step in the assessment of their

quality.
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7 Figures
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Figure 1: Effect of Intercept upon Procedure Use
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Figure 2: The Effect of decision making on Procedure Choice
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Figure 3: The Distribution of Estimated Propensity Scores for those With and Without
C-section
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Figure 4: Illustrating the Definition of a Market
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8 Tables

Table	  1:	  Logistic	  Regression	  Model	  of	  C-‐section	  Risk	  (rho)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  All	  Doctors	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  Good	  Doctors	  Only	  	  	  	  	  
Marginal Marginal

Coeff. S.E. Effect Coeff. S.E. Effect
Age<20 -‐0.337 0.013 -‐0.075 -‐0.428 0.029 -‐0.095
Age	  >=25&<30 0.262 0.008 0.058 0.311 0.018 0.069
Age	  >=30&<35 0.434 0.008 0.096 0.483 0.017 0.107
Age	  >=35 0.739 0.009 0.164 0.840 0.018 0.186
2nd	  Birth -‐1.347 0.007 -‐0.298 -‐1.448 0.015 -‐0.321
3rd	  Birth -‐1.645 0.009 -‐0.364 -‐1.787 0.019 -‐0.396
4th	  or	  Higher	  Birth -‐2.140 0.012 -‐0.474 -‐2.317 0.027 -‐0.513
Previous	  C-‐section 3.660 0.008 0.810 3.885 0.018 0.860
Previous	  Large	  Infant 0.139 0.029 0.031 0.293 0.065 0.065
Previous	  Preterm	   -‐0.293 0.025 -‐0.065 -‐0.311 0.061 -‐0.069
Multiple	  Birth 2.879 0.014 0.638 3.278 0.032 0.726
Breech 3.353 0.016 0.742 3.810 0.040 0.844
Placenta	  Previa 3.811 0.054 0.844 3.843 0.116 0.851
Abruptio	  Placenta 2.048 0.030 0.454 2.196 0.072 0.486
Cord	  Prolapse 1.761 0.047 0.390 1.668 0.100 0.369
Uterine	  Bleeding 0.026 0.035 0.006 0.259 0.099 0.057
Eclampsia 1.486 0.096 0.329 1.047 0.230 0.232
Chronic	  Hypertension 0.745 0.025 0.165 0.754 0.060 0.167
Pregnancy	  Hypertension 0.639 0.013 0.142 0.696 0.029 0.154
Chronic	  Lung	  Condition 0.064 0.014 0.014 0.110 0.032 0.024
Cardiac	  Condition -‐0.121 0.020 -‐0.027 -‐0.175 0.042 -‐0.039
Diabetes 0.558 0.011 0.124 0.547 0.025 0.121
Anemia 0.131 0.018 0.029 0.203 0.043 0.045
Hemoglobinopathy 0.116 0.047 0.026 0.067 0.092 0.015
Herpes 0.461 0.024 0.102 0.558 0.049 0.124
Other	  STD 0.052 0.017 0.012 0.064 0.039 0.014
Hydramnios 0.616 0.018 0.136 0.645 0.042 0.143
Incompetent	  Cervix 0.043 0.035 0.010 -‐0.119 0.093 -‐0.026
Renal	  Disease -‐0.024 0.031 -‐0.005 -‐0.057 0.067 -‐0.013
Rh	  Sensitivity -‐0.045 0.040 -‐0.010 -‐0.082 0.109 -‐0.018
Other	  Risk	  Factor 0.276 0.006 0.061 0.210 0.013 0.047
Constant -‐1.414 0.007 -‐0.313 -‐1.374 0.015 -‐0.304

#	  Observations 1169654 262174
Pseudo	  R2 0.32 0.322

Notes:	  The	  model	  also	  included	  indicators	  for	  missing	  age,	  parity,	  and	  risk	  factors.
The	  correlation	  between	  rho	  estimated	  using	  the	  two	  different	  models	  is	  .99.
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Table	  2:	  Means	  for	  Full	  Sample	  and	  by	  Probability	  of	  C-‐Section
Low	  Risk	  of High	  Risk	  of

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: Full	  Sample C-‐Section C-‐section
Outcomes
C-‐Section	  Rate 0.331 0.103 0.545
Any	  Bad	  Outcome 0.127 0.111 0.143
Bad	  Maternal	  Outcome 0.055 0.037 0.073
	  	  	  Bleeding,	  Fever,	  Seizures	  at	  Delivery 0.039 0.024 0.053
	  	  	  Late	  Maternal	  Complications 0.019 0.014 0.024
Bad	  Child	  Outcome 0.080 0.080 0.081
	  	  	  Fetal	  Distress 0.071 0.073 0.069
	  	  	  Birth	  Injury 0.003 0.003 0.003
	  	  	  Neonatal	  death 0.004 0.003 0.006
Doctor	  Characteristics
#	  Deliveries	  per	  doctor 1019.45 1030.34 1009.22

(650.15) (674.73) (626.00)
Decision	  Making 0.000 -‐0.032 0.030

(1.000) (1.013) (0.987)
Procedural	  Skill	  Differential 0.000 -‐0.016 0.014

(1.000) (1.034) (0.966)
Market	  Price	  Differential	  ($1000) 4.711 4.687 4.734

(1.606) (1.590) (1.621)
Share	  High	  Risk 0.122 0.116 0.127

Mother	  &	  Child	  Characteristics
African	  American 0.158 0.185 0.132
Hispanic 0.210 0.388 0.179
Married 0.713 0.645 0.776
High	  School	  Dropout 0.128 0.177 0.082
Teen	  mom 0.030 0.052 0.009
Mom	  Age	  35	  or	  More 0.238 0.221 0.254
Smoked 0.081 0.090 0.073
Child	  Male 0.513 0.514 0.513
Child	  First	  Born 0.398 0.200 0.584
Medicaid 0.206 0.260 0.155
#	  of	  Observations 968748 469170 499578

Notes:	  The	  analysis	  sample	  excludes	  birth	  attendants	  who	  were	  not	  physicians,	  and	  
birth	  attendants	  who	  had	  too	  few	  deliveries	  for	  a	  measure	  of	  diagnositic	  skill	  to	  be	  
computed.	  	  Standard	  deviations	  in	  parentheses.
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Table	  3:	  First	  Stage	  Regressions	  of	  Doctor	  Level	  Measures	  on	  Market	  Skill	  Measures

Doctor	  Decision	  Making Doctor	  Surgical	  Skill
All Low High All Low High

Market	  Decision	  Making 0.353 0.356 0.347 -‐0.026 -‐0.024 -‐0.028
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Market	  Surgical -‐0.014 -‐0.009 -‐0.019 0.284 0.290 0.276
(0.001) (0.002) (0.002) (0.002) (0.003) (0.003)

R-‐squared 0.165 0.179 0.152 0.098 0.105 0.090

Notes:	  Standard	  errors	  clustered	  at	  the	  3-‐digit	  zip	  code	  level.	  	  Regressions	  also	  include	  market	  price,
estimated	  C-‐section	  risk,	  indicators	  for	  African-‐American,	  Hispanics,	  race	  missing,	  education	  (less
than	  high	  school,	  high	  school,	  some	  college,	  missing),	  married,	  married	  missing,	  Medicaid,	  Medicaid
missing,	  teen	  mom,	  25-‐34,	  35	  plus,	  smoking,	  smoking	  missing,	  male	  child,	  parity	  2,	  parity	  3,	  parity	  4	  plus,
parity	  missing,	  month	  and	  year	  of	  birth	  indicators,	  indicators	  for	  3-‐digit	  zip	  code,	  and	  an	  
indicator	  for	  whether	  the	  birth	  was	  on	  a	  week	  day.
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Table	  4:	  Effect	  of	  Doctor	  Decision	  Making	  and	  Surgical	  Skill	  on	  P(C-‐section)	  and	  Health	  Outcomes

OLS OLS OLS TSLS TSLS TSLS
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: All Low High All Low High
Dep.	  Var:	  C-‐Section
Decision	  Making 0.004 -‐0.011 0.019 0.000 -‐0.016 0.019

(0.002) (0.002) (0.002) (0.006) (0.005) (0.008)
Procedural	  Skill	  Difference 0.003 0.003 0.003 0.020 0.017 0.030

(0.002) (0.001) (0.002) (0.010) (0.008) (0.011)
R-‐sq/Chi-‐sq. 0.410 0.044 0.319 230000 12674 88123

Dep.	  Var:	  Any	  Bad	  Outcome
Decision	  Making -‐0.008 -‐0.007 -‐0.009 -‐0.013 -‐0.013 -‐0.013

(0.002) (0.001) (0.002) (0.006) (0.007) (0.006)
Procedural	  Skill	  Difference -‐0.017 -‐0.008 -‐0.027 -‐0.058 -‐0.047 -‐0.072

(0.002) (0.002) (0.002) (0.006) (0.007) (0.006)
R-‐sq/Chi-‐sq. 0.020 0.016 0.023 6600 13213 1721
#	  Observations 968748 469170 499578 968748 469170 499578

Notes:	  Standard	  errors	  clustered	  at	  the	  3-‐digit	  zip	  code	  level.	  	  Regressions	  also	  include	  market	  price,
estimated	  C-‐section	  risk,	  indicators	  for	  African-‐American,	  Hispanics,	  race	  missing,	  education	  (less
than	  high	  school,	  high	  school,	  some	  college,	  missing),	  married,	  married	  missing,	  Medicaid,	  Medicaid
missing,	  teen	  mom,	  25-‐34,	  35	  plus,	  smoking,	  smoking	  missing,	  male	  child,	  parity	  2,	  parity	  3,	  parity	  4	  plus,
parity	  missing,	  month	  and	  year	  of	  birth	  indicators,	  indicators	  for	  3-‐digit	  zip	  code,	  and	  an	  
indicator	  for	  whether	  the	  birth	  was	  on	  a	  week	  day.	  	  R-‐squared	  shown	  for	  OLS	  and	  Chi-‐squared
shown	  for	  TSLS.
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Table	  5:	  Effect	  of	  Doctor	  Decision	  Making	  and	  Surgical	  Skill	  on	  Maternal	  Health	  Outcomes

OLS OLS OLS TSLS TSLS
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: All Low High All Low
Dep.	  Var:	  Any	  Bad	  Maternal	  Outcome
Decision	  Making -‐0.005 -‐0.004 -‐0.005 -‐0.004 -‐0.005

(0.001) (0.001) (0.001) (0.003) (0.002)
Procedural	  Skill	  Difference -‐0.013 -‐0.005 -‐0.022 -‐0.035 -‐0.023

(0.002) (0.001) (0.002) (0.007) (0.007)
R-‐sq/Chi-‐sq. 0.018 0.013 0.016 4267 10269

Dep.	  Var:	  Bleeding,	  Fever,	  Seizures	  During	  Delivery
Decision	  Making -‐0.006 -‐0.004 -‐0.008 -‐0.012 -‐0.008

(0.000) (0.000) (0.001) (0.002) (0.001)
Procedural	  Skill	  Difference -‐0.007 -‐0.001 -‐0.013 -‐0.009 -‐0.004

(0.001) (0.000) (0.001) (0.003) (0.002)
R-‐sq/Chi-‐sq. 0.013 0.009 0.011 7007 3465

Dep.	  Var:	  Maternal	  Complications	  After	  Delivery
Decision	  Making 0.001 -‐0.0001 0.002 0.008 0.003

(0.001) (0.001) (0.001) (0.002) (0.002)
Procedural	  Skill	  Difference -‐0.007 -‐0.004 -‐0.011 -‐0.028 -‐0.021

(0.002) (0.001) (0.002) (0.006) (0.006)
R-‐sq/Chi-‐sq. 0.017 0.013 0.020 25060 997
#	  Observations 968748 469170 499578 968748 469170

Notes:	  Standard	  errors	  clustered	  at	  the	  3-‐digit	  zip	  code	  level.	  	  Regressions	  also	  include	  market	  price,
estimated	  C-‐section	  risk,	  indicators	  for	  African-‐American,	  Hispanics,	  race	  missing,	  education	  (less
than	  high	  school,	  high	  school,	  some	  college,	  missing),	  married,	  married	  missing,	  Medicaid,	  Medicaid
missing,	  teen	  mom,	  25-‐34,	  35	  plus,	  smoking,	  smoking	  missing,	  male	  child,	  parity	  2,	  parity	  3,	  parity	  4	  plus,
parity	  missing,	  month	  and	  year	  of	  birth	  indicators,	  indicators	  for	  3-‐digit	  zip	  code,	  and	  an	  
indicator	  for	  whether	  the	  birth	  was	  on	  a	  week	  day.	  	  R-‐squared	  shown	  for	  OLS	  and	  Chi-‐squared
shown	  for	  TSLS.
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Table	  6:	  Effect	  of	  Decision	  Making	  and	  Surgical	  Skill	  on	  Child	  Health	  Outcomes

OLS OLS OLS TSLS TSLS TSLS
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: All Low High All Low High
Dep.	  Var:	  Any	  Bad	  Infant	  Outcome
Decision	  Making -‐0.005 -‐0.005 -‐0.006 -‐0.010 -‐0.009 -‐0.010

(0.001) (0.001) (0.001) (0.007) (0.007) (0.007)
Procedural	  Skill	  Difference -‐0.006 -‐0.004 -‐0.008 -‐0.031 -‐0.029 -‐0.032

(0.001) (0.001) (0.002) (0.009) (0.009) (0.009)
R-‐sq/Chi-‐sq. 0.013 0.010 0.017 16421 1108 2099

Dep.	  Var:	  Fetal	  Distress
Decision	  Making -‐0.003 -‐0.004 -‐0.003 -‐0.012 -‐0.012 -‐0.012

(0.001) (0.001) (0.001) (0.006) (0.006) (0.006)
Procedural	  Skill	  Difference -‐0.007 -‐0.001 -‐0.013 -‐0.024 -‐0.025 -‐0.023

(0.001) (0.000) (0.001) (0.003) (0.002) (0.004)
R-‐sq/Chi-‐sq. 0.013 0.009 0.011 7007 3465 2340

Dep.	  Var:	  Birth	  Injury
Decision	  Making 0.0001 0.0001 0.0001 0.004 0.003 0.005

(0.000) (0.000) (0.000) (0.003) (0.002) (0.004)
Procedural	  Skill	  Difference -‐0.001 -‐0.001 -‐0.002 -‐0.009 -‐0.006 -‐0.011

(0.001) (0.001) (0.001) (0.004) (0.003) (0.006)
R-‐sq/Chi-‐sq. 0.003 0.002 0.004 268 392 563

Dep.	  Var:	  Neonatal	  Death
Decision	  Making -‐0.002 -‐0.001 -‐0.002 -‐0.001 -‐0.0003 -‐0.002

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)
Procedural	  Skill	  Difference -‐0.001 -‐0.0003 -‐0.002 0.001 0.001 0.001

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)
R-‐sq/Chi-‐sq. 0.007 0.004 0.010 2427 1445 2026
#	  Observations 968748 469170 499578 968748 469170 499578

Notes:	  Standard	  errors	  clustered	  at	  the	  3-‐digit	  zip	  code	  level.	  	  Regressions	  also	  include	  market	  price,
estimated	  C-‐section	  risk,	  indicators	  for	  African-‐American,	  Hispanics,	  race	  missing,	  education	  (less
than	  high	  school,	  high	  school,	  some	  college,	  missing),	  married,	  married	  missing,	  Medicaid,	  Medicaid
missing,	  teen	  mom,	  25-‐34,	  35	  plus,	  smoking,	  smoking	  missing,	  male	  child,	  parity	  2,	  parity	  3,	  parity	  4	  plus,
parity	  missing,	  month	  and	  year	  of	  birth	  indicators,	  indicators	  for	  3-‐digit	  zip	  code,	  and	  an	  
indicator	  for	  whether	  the	  birth	  was	  on	  a	  week	  day.	  	  R-‐squared	  shown	  for	  OLS	  and	  Chi-‐squared
shown	  for	  TSLS.
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Table	  7:	  TSLS	  Estimates	  of	  Effect	  Decision	  Making	  and	  Surgical	  Skill,	  Three	  Risk	  Categories
Medium

Low p(csect)>=.084 High
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: p(csect)<.084 p(csect)<=.439 p(csect)>.439
Dep.	  Var:	  C-‐section	  
Decision	  Making -‐0.015 -‐0.013 0.044

(0.004) (0.009) (0.006)
Procedural	  Skill	  Difference 0.014 0.022 0.038

(0.007) (0.012) (0.012)
Chi-‐sq. 5208 29616 28375

Dep.	  Var:	  Any	  Bad	  Outcome
Decision	  Making -‐0.009 -‐0.018 -‐0.010

(0.007) (0.008) (0.003)
Procedural	  Skill	  Difference -‐0.043 -‐0.058 -‐0.078

(0.006) (0.008) (0.005)
Chi-‐sq. 5131 17881 4699

Dep.	  Var:	  Bad	  Maternal	  Outcome
Decision	  Making -‐0.044 -‐0.008 0.003

(0.002) (0.004) (0.004)
Procedural	  Skill	  Difference -‐0.017 -‐0.033 -‐0.060

(0.006) (0.009) (0.008)
Chi-‐sq. 609 2209 3330

Dep.	  Var:	  Bad	  Infant	  Outcome
Decision	  Making -‐0.006 -‐0.011 -‐0.013

(0.006) (0.010) (0.004)
Procedural	  Skill	  Difference -‐0.029 -‐0.034 -‐0.025

(0.007) (0.011) (0.007)
Chi-‐sq. 19209 3809 3997
#	  Observations 251965 473011 243869

Notes:	  Standard	  errors	  clustered	  at	  the	  3-‐digit	  zip	  code	  level.	  	  Regressions	  also	  include	  market	  price,
estimated	  C-‐section	  risk,	  indicators	  for	  African-‐American,	  Hispanics,	  race	  missing,	  education	  (less
than	  high	  school,	  high	  school,	  some	  college,	  missing),	  married,	  married	  missing,	  Medicaid,	  Medicaid
missing,	  teen	  mom,	  25-‐34,	  35	  plus,	  smoking,	  smoking	  missing,	  male	  child,	  parity	  2,	  parity	  3,	  parity	  4	  plus,
parity	  missing,	  month	  and	  year	  of	  birth	  indicators,	  indicators	  for	  3-‐digit	  zip	  code,	  and	  an	  
indicator	  for	  whether	  the	  birth	  was	  on	  a	  week	  day.	  	  R-‐squared	  shown	  for	  OLS	  and	  Chi-‐squared
shown	  for	  TSLS.
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Table	  8:	  TSLS	  Estimates	  of	  Effects	  if	  Decision	  Making	  and	  Surgical	  Skill,	  Three	  Risk	  Categories
First	  Births	  Only

Medium
Low p(csect)>=.217 High

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: p(csect)<.217 p(csect)<=.309 p(csect)>.309
Dep.	  Var:	  C-‐section	  
Decision	  Making -‐0.018 -‐0.015 0.003

(0.007) (0.010) (0.014)
Procedural	  Skill	  Difference 0.021 0.022 0.028

(0.013) (0.012) (0.017)
Chi-‐sq. 4056 4878 82795

Dep.	  Var:	  Any	  Bad	  Outcome
Decision	  Making -‐0.025 -‐0.020 0.000

(0.007) (0.011) (0.008)
Procedural	  Skill	  Difference -‐0.066 -‐0.067 -‐0.084

(0.011) (0.010) (0.009)
Chi-‐sq. 4569 18187 4372

Dep.	  Var:	  Bad	  Maternal	  Outcome
Decision	  Making -‐0.005 -‐0.011 0.001

(0.005) (0.004) (0.004)
Procedural	  Skill	  Difference -‐0.043 -‐0.039 -‐0.054

(0.015) (0.009) (0.010)
Chi-‐sq. 1152 6165 323

Dep.	  Var:	  Bad	  Infant	  Outcome
Decision	  Making -‐0.022 -‐0.009 0.0004

(0.006) (0.013) (0.009)
Procedural	  Skill	  Difference -‐0.032 -‐0.04 -‐0.045

(0.009) (0.013) (0.010)
Chi-‐sq. 1840 1359 690
#	  Observations 95123 184238 105752

Notes:	  Standard	  errors	  clustered	  at	  the	  3-‐digit	  zip	  code	  level.	  	  Regressions	  also	  include	  market	  price,
estimated	  C-‐section	  risk,	  indicators	  for	  African-‐American,	  Hispanics,	  race	  missing,	  education	  (less
than	  high	  school,	  high	  school,	  some	  college,	  missing),	  married,	  married	  missing,	  Medicaid,	  Medicaid
missing,	  teen	  mom,	  25-‐34,	  35	  plus,	  smoking,	  smoking	  missing,	  male	  child,	  parity	  2,	  parity	  3,	  parity	  4	  plus,
parity	  missing,	  month	  and	  year	  of	  birth	  indicators,	  indicators	  for	  3-‐digit	  zip	  code,	  and	  an	  
indicator	  for	  whether	  the	  birth	  was	  on	  a	  week	  day.	  	  R-‐squared	  shown	  for	  OLS	  and	  Chi-‐squared
shown	  for	  TSLS.
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A Appendix - Proofs

Proof of Proposition 1

Proof. If x ∼ N
(
m,σ2

)
has a normal prior distribution, and one has an observa-

tion y = x + ε, where ε ∼ N
(
0, σ2y

)
is normally distributed and independent of

x, then from Theorem 1, DeGroot (1972), section 9.5, the posterior distribution of

x ∼ N (πm+ (1− π) y, ρx + ρy), were ρx = 1
σ2 and ρy = 1

σ2
y

are the precisions of x and

y, while π = ρx
ρx+ρy

is the weight on prior mean.

The normal distribution is called a conjugate family because when the prior and

signals are normally distributed, then so is the posterior. This allows for very simple

linear learning rules. We can use other distributions, but it would greatly complicate

the analysis while providing few benefits in terms of new insights.

Proof of Proposition 2

Proof. From 9 we have T = C iff:

hIi +
1

πh
(
π0h0j + sj +mj + αPj h̄

P
j

)
≥ −

(
εIi + εhij

)
−
αPj ε

P
ij

πh
. (16)

The right hand side is a normal distribution with zero mean and variance:

σ2j =

(
σ2I +

1

Dj
+

(
αsjσP

πh

)2
)

(17)

Hence, we can write (16) as:

1

σj

(
hIi +

1

πh
(
π0h0j + sj +mj + αPj h̄

P
j

))
≥ ε,

where ε ∼ N (0, 1). Hence we have:

pj
(
hIi
)

= F

(
1

σj

(
hIi +

1

πh
(
π0h0j + sj +mj + αPj h̄

P
j

)))
,

from which we obtain the result.

A.1 The Effect of Diagnostic and Surgical Skill on Outcomes

Let IC (hi, ωj) = 1 if and only if physician j chooses procedure C for patient i with

condition hi, and equal zero otherwise. Given this indicator for procedure choice, the
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expected medical outcome of a patient with condition hi being treated by physician j

is given by:

W (hi, ωj) = E
{
sCj I

C (hi, ωj) +
(
hi + sNj

)
(1− IC (hi, ωj))

}
,

= sCj Prob [T = C|hi, ωj ] +
(
hi + sNj

)
Prob [T = N |hi, ωj ] . (18)

However, since physicians take into account both costs, mj , and patient preferences,

hPi , their decisions do not maximize observed medical benefit, which complicates the

computation of the effect of exogenous parameters on measured medical outcomes.

In this section we derive the effect of physician characteristics on observed medical

outcome by measured risk hIi . Formally we wish to compute:

W
(
hIi , ωj

)
= E

{
W (hi, ωj) |hIi , ωj

}
.

Since we have assumed that information about health is normally distributed, we can

use results about the expectation of normally distributed random variables conditional

on a truncated distribution to obtain a closed form solution for patient welfare.12

Proposition 6. The expected medical benefit from treatment satisfies:

W
(
hIi , ωj

)
= sCj pj

(
hIi
)

+
(
sNj − hIi

) (
1− pj

(
hIi
))

+ σ2I
∂pj

(
hIi
)

∂hIi
.

This is an exact formula that essentially replaces hi with hIi plus an adjustment

term σ2I
∂pj(hIi )
∂hIi

to control for the fact that we do not observe hi but only an indicator,

hIi . If we assume that the effect of physician characteristics on the final term in welfare,

σ2I
∂pj(hIi )
∂hIi

, is small, then we can derive an intuitive expression for the effects of physician

characteristics on outcomes.

Consider first the effect of surgical skill:

∂W

∂sCj
= pj

(
hIj
)

+
(
sj + hIi

) ∂pj
∂sCj

.

This formula shows that the effect of skill on patient welfare can be broken into two

parts. The first term is always positive, indicating that for a woman who is having the

intensive procedure, more skill is always better. However, the second term is ambiguous

in sign. We know that
∂pj
∂sCj
≥ 0, so that other things being equal, greater doctor skill

12See Birnbaum (1950).
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increases the probability that an intensive procedure will be performed. If sj +hIj ≥ 0,

then the second term is positive and greater doctor skill enhances patient welfare.

However, for a low enough value of hIj , it is possible that sj + hIj ≤ 0 (health status

is in log terms, and hence is negative for low values). If
∂pj
∂sCj

is large enough, then

increases in doctor skill could make patients who don’t need a C-section worse off by

increasing the probability that they will receive an unnecessary procedure.

Next consider the effect of physician sensitivity to patient condition, θj . The vari-

able is a combination of various aspects of physician characteristics, but we cannot

separately observe these aspects. We do observe θj and γj for each physician in our

data, and hence can ask how outcomes would vary if we were to hold γj fixed but allow

θj to vary. Since θj has a first order effect on our last term, we include it, and leave

out the f ′′ term. In that case we get:

sign
∂W

∂θj
= sign

{(
sj + hIj

) (
hIj + γj

)
+ σ2I

}
.

This result illustrates the fact that the preferences of the physician take into account

their prior beliefs, costs, and patient preferences. Hence in general γj 6= sj . Whenever

hIj ∈ [min {sj , γj} ,max {sj , γj}] then it is possible to have sign∂W∂θj < 0, but in all

other cases we have a positive effect.

Proof. We can write welfare as:

W (hi, ωj) = sCj Prob [Tij = C|hi, ωj ] + E
{
−hi + sNj |Tij = N,hi, ωj

}
Prob [Tij = N |hi, ωj ]

= sCj Prob [Tij = C|hi, ωj ] + sNj Prob [Tij = N |hi, ωj ]

− E {hi|Tij = N,hi, ωj}Prob [Tij = N |hi, ωj ] .

Next we condition on hIi and observe that E
{
E {X|hi, ωj} |hIi , ωj

}
= E

{
X|hIi , ωj

}
,

since this is strictly less information. First, we already have from equation 12:

Prob
[
Tij = C|hIi , ωj

]
= pj

(
hIi
)
.
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Next we have from 9:

E
{
hi|Tij = N,hIi , ωj

}
= E

{
hIi − εIi |hIi − εIi + γj ≤ ζij

}
= E

{
hIi − εIi |hIi + γj ≤ ζij + εIi

}
.

From Birnbaum (1950) we have that if X and Z are two normally distributed

random variables with variances σ2X and σ2Y then:

E {X|q ≤ Z} = E {X}+
cov (X,Z)

σQ
R

(
q − E {Z}

σQ

)
,

where R (x) = f(x)
1−F (x) is the Mills ratio for the Normal distribution. Applying this

formula with X = hIi − εIi , Z = ζij + εIi and q = hIi + γ̄j we get:

E
{
hi|Tij = N,hIi , ωj

}
= hIi −

σ2I
σj
R

(
hIi + γj
σj

)
,

where σj is defined in 17. Notice that θj = 1
σj

and pj
(
hIi
)

= F
(
θj
(
hIi + γj

))
.

Thus we get:

W
(
hIi , ωj

)
= E (W (hi, ωj))

= sCj pj
(
hIi
)

+ sNj
(
1− pj

(
hIi
))

−
(
hIi − σ2IθjR

(
θj
(
hIi + γj

))) (
1− pj

(
hIi
))

= sCj pj
(
hIi
)

+
(
sNj − hIj

) (
1− pj

(
hIi
))

+ σ2Iθjf
(
θj
(
hIi + γj

))
.

Now
∂F(θj(hIi+γj))

∂hIi
= θjf

(
θj
(
hIi + γj

))
and therefore we may write:

W
(
hIi , ωj

)
= sCj pj

(
hIi
)

+
(
sNj − hIj

) (
1− pj

(
hIi
))

+ σ2I
∂pj

(
hIi
)

∂hIi
.

Proposition 7. Suppose hIj /∈ [min {sj , γj} ,max {sj , γj}] then increasing decision

making improves medical outcomes.
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B Appendix - Table

Appendix	  Table	  1:	  Effect	  of	  Decision	  Making	  and	  Surgical	  Skill	  on	  Probability	  of	  C-‐Section	  
Ordinary	  Least	  Squares
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  C-‐section	  Risk: All Low High
Decision	  Making 0.004 -‐0.011 0.019

(0.002) (0.002) (0.002)
Procedural	  Skill	  Difference 0.003 0.003 0.003

(0.002) (0.001) (0.002)
Market	  Price	  (coeff	  x	  100) 0.276 0.291 0.285

(0.226) (0.249) (0.221)
C-‐section	  Risk 1.002 0.902 0.906

(0.007) (0.069) (0.009)
African-‐American 0.050 0.047 0.050

(0.004) (0.003) (0.005)
Hispanic 0.036 0.024 0.051

(0.003) (0.002) (0.005)
Less	  than	  High	  School 0.022 0.019 0.026

(0.003) (0.002) (0.005)
High	  School 0.026 0.022 0.032

(0.001) (0.002) (0.003)
Some	  College 0.012 0.011 0.013

(0.001) (0.002) (0.002)
Married -‐0.007 -‐0.009 0.006

(0.002) (0.003) (0.003)
Medicaid 0.005 0.007 0.001

(0.004) (0.004) (0.006)
Teen	  Mom -‐0.013 -‐0.023 0.012

(0.004) (0.005) (0.009)
Mother	  25-‐34 0.019 0.028 0.005

(0.003) (0.002) (0.004)
Mother	  35+ 0.025 0.041 0.013

(0.003) (0.003) (0.005)
Mother	  Smoked 0.007 0.010 0.004

(0.004) (0.003) (0.006)
Child	  Male 0.023 0.018 0.027

(0.001) (0.001) (0.002)
Child	  2nd	  Born -‐0.013 -‐0.040 0.051

(0.003) (0.008) (0.004)
Child	  3rd	  Born -‐0.018 -‐0.043 0.032

(0.003) (0.009) (0.006)
Child	  4th	  Born	  or	  Higher -‐0.022 -‐0.034 0.001

(0.006) (0.010) (0.010)
R-‐squared 0.410 0.044 0.319
#	  Observations 968845 469204 499641

Notes:	  Standard	  errors	  clustered	  by	  3	  digit	  zip	  code.	  	  Regressions	  also	  include	  indicators	  for	  
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C Appendix - Figures

Figure 1: Shift in Probability of C-section Given Medical Risk Over Time

50



Figure 2: Shift in Medical Risks over Time
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