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high risk. Since there are many more low risk than high risk women, improving diagnosis would reduce
overall C-section rates. Moreover, such an improvement in diagnostic skill would improve health outcomes
for both high risk and low risk women, while improvements in surgical skill have the greatest impact
on high risk women. These results are consistent with the hypothesis that efforts to improve diagnosis
through methods such as checklists, computer assisted diagnosis, and collaborative decision making
may improve patient outcomes.
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1 Introduction

High and rising health care costs are a major source of fiscal stress in the

United States where they already account for 18% of GDP.1 Unnecessary pro-

cedure use is one driver of increasing costs (Garber and Skinner (2008)). This

problem has even been recognized by physician groups: The Choose Wisely

Campaign unveiled in April 2012 includes nine specialty societies represent-

ing 374,000 physicians that have developed checklists and patient-friendly

guides aimed at eliminating unnecessary tests and procedures.2 Many pos-

sible reasons have been advanced for unnecessary procedure use including

patient demand; defensive medicine (that is, fear of lawsuits); the profit mo-

tive; spillover effects on physician practice style; and physician specialization

in high tech procedures which may be inappropriate for low risk patients

(Chandra et al. (2011)).

This paper focuses on poor diagnostic skill as a reason for inappropriate

procedure use. Most previous analyses of physician decision making have

focused on a single dimension of physician skill, viz. skill in performing

procedures. Instead, we develop a model in which physicians have two di-

mensions of skill: They may be more or less skilled at doing procedures, and

they may be more or less skilled at diagnosis. Diagnostic skill is the abil-

ity to reliably transform observed symptoms into an assessment of patient

condition. We model a diagnosis as a decision problem in which the physi-

cian uses the available information to update her prior beliefs regarding a

patient’s condition.

Although it has been neglected in the health economics literature, diag-

nostic skill has become an increasingly important issue because of the growing

complexity of medical care and the sheer number of different treatment op-

1See https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-
and-Reports/NationalHealthExpendData/downloads/proj2010.pdf, accessed Dec. 16,
2012.

2See http://www.abimfoundation.org/Initiatives/Choosing-Wisely.aspx, accessed Dec.
16, 2012.
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tions available. For example, in a world in which there was little that could be

done for cancer patients, it did not matter if physicians correctly diagnosed

the disease; now it may be a matter of life or death whether a breast cancer is

correctly diagnosed as estrogen-sensitive or not. The increased importance of

diagnosis is reflected both in growing attention to medical errors as a leading

cause of morbidity and mortality (Committee on Identifying and Preventing

Medication Errors (2007)), and in growing numbers of malpractice cases that

focus on misdiagnosis (Mello and Studdert (2007)3). Finally, an additional

reason to focus on diagnosis is that it may be possible to improve it through

mechanisms such as checklists, computer aided diagnosis, or administrative

structures that support collective decision making (Baker et al. (2008); Doi

(2007); Gawande (2009)).

We examine the role of diagnosis in the context of Cesarean section deliv-

ery. There is a consensus that there are too many C-sections in the U.S., with

rates of 35% vs. the 15% rate that is thought to be closer to optimal. Not

surprisingly, the marginal C-section is unnecessary (Baicker et al. (2006)).

For our purposes, C-section, which is the most common surgical procedure

in the U.S., is ideal because given the detailed records collected for each birth,

we can identify women with a high or low risk of C-section a priori, and we

can also identify a variety of negative health outcomes following delivery.

We show that improvements in diagnosis increase the incidence of C-

sections for high risk women, but reduce the incidence of C-sections for low

risk women. Since low risk women outnumber high risk ones, improving

diagnosis would be associated with an overall reduction in C-section rates.

Specifically, we estimate that moving a woman from a provider at the 25th

percentile of the distribution of diagnostic skill to a provider at the 75th

percentile would reduce the probability of C-section among low risk women

by 11.7%, and would increase the probability of C-section among high-risk

women by 4.6%. By way of comparison, increasing providers’ skill performing

3They find that 70% of malpractice cases are due to errors of judgment.
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C-sections by a comparable amount would increase C-section rates by about

4.4% among low risk women, but by only .8% among high risk women.

Moreover, since most low risk women better off without C-sections while

most high risk women are better off with C-sections, improved diagnosis

reduces the risk of bad outcomes for all women. Our estimates suggest that

improvements in diagnosis of the magnitude described above would reduce

the incidence of poor outcomes by 13.3% among low risk women, and by

7.3% among high risk women. In contrast, improving surgical skill per se is

beneficial for all women, but has much larger effects among high risk women.

Finally, improving surgical skill increases the return from performing a C-

section for both high and low risk patients, and hence does not directly

address the issue of inappropriate procedure use.

The rest of our paper is laid out as follows. Section II provides a brief

overview of the existing literature on the reasons for unnecessary procedure

use. Section III lays out our model. Section IV provides a description of our

data and empirical methods. Results are described in Section V and Section

VI concludes.

2 Background

One of the most common explanations for unnecessary procedure use is “de-

fensive medicine”, the idea that doctors do unnecessary procedures in order

to protect themselves against lawsuits. This view persists despite being de-

bunked by many studies. For example, Baicker et al. (2007) argue that there

is little connection between malpractice liability costs and physician treat-

ment of Medicare patients, and Dubay et al. (1999) cast doubt on such a

relationship for C-section deliveries.

Currie and MacLeod (2008) conduct a theoretical and empirical examina-

tion of the effect of tort reform on the use of C-section. They develop a model

in which patients can be ranked in terms of appropriateness for C-section,
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and show that the doctor’s optimal threshold for performing C-section varies

with the liability risk. They argue that if doctors are doing C-sections in or-

der to protect themselves from legal liability, then tort reforms that reduced

liability should reduce C-section. Instead, they show that reducing liability

increases the use of C-section. The intuition is simple: If the marginal C-

section is unnecessary, then it is likely to do more harm than good. Reducing

the liability from harming people by doing unnecessary surgeries therefore

increases the number of such unnecessary surgeries.

Currie and MacLeod’s result strongly suggests that doctors have other

motives besides fear of lawsuits for performing C-sections. The profit motive

is an obvious alternative explanation. The fee for performing C-sections

exceeds the fee for performing vaginal deliveries. Moreover, C-sections take

less time and can be scheduled at a time that is convenient for doctors.

Gruber and Owings (1996) and Gruber et al. (1999) show that the incidence

of C-section among Medicaid patients increases with the gap between the

fee for C-section and vaginal delivery. However, the profit motive does not

provide a complete model of doctor behavior. Since doctors always make

more money doing C-sections, a simple profit motive would presumably lead

to even higher C-section rates than we already observe.

Hence, researchers have also considered other determinants of doctor be-

havior including the idea of “practice style” which is often proxied by a

physician fixed effect in a model of procedure use. The origins of distinct

practice styles remains a mystery: Esptein and Nicholson (2009) use data

from Florida and find little evidence of convergence in practice styles over

time within hospitals. They further find little effect of the physician’s res-

idency program. Dranove et al. (2011) use the same data from Florida to

examine the evolution of physician practice styles and find strikingly little

evidence of changes over time. They conclude that physicians in the same

hospital tend to have similar practice styles because of matching, not because

they learn from each other.
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Chandra and Staiger (2007) develop a model in which providers spe-

cialize in either a high intensity or a low intensity procedure. The specific

example they consider is medical management (drugs) vs. surgery for heart

attack patients. A key element of their model is that specialization makes

doctors better at what they do, but also has an opportunity cost: High in-

tensity providers are better at surgery, but worse at medical management,

whereas low intensity providers are better at medical management but worse

at surgery. One of the main implications of the model is that patients who

are good candidates for surgery will benefit from going to high intensity

providers, while patients who are bad candidates for surgery will benefit

from going to low intensity providers.

In the Chandra-Staiger world, doctors tend to do what they are good at.

We show below that considering diagnostic skill as well as procedural skill

yields additional implications. For example, in a world with specialization in

high intensity and low intensity procedures, improving the diagnostic skills

of a high intensity provider can paradoxically lead to worse outcomes for low

risk patients because doctors will do less of the high intensity procedures that

they are good at, and more of the low intensity procedures that they are bad

at, on these patients. We will show empirically that high risk patients do

benefit from going to a provider with excellent procedural skills as Chandra-

Staiger predict. However, in contrast to their model, low risk patients do not

suffer from going to such a physician. Rather, the low risk patients suffer if

they go to a physician with poor diagnostic skills.

Few researchers in economics have considered diagnosis and procedural

skill as distinct aspects of medical practice, or attempted to model diagnosis.

In a rare exception, Afendulis and Kessler (2007) show that doctors who

provide both diagnosis and specialized services are more likely to recommend

their own services, which yields overuse, but also some productive efficiencies.

We explore the relationship between diagnosis, procedural skill and outcomes

more formally below.
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3 A Model of Diagnostic and Surgical Skill

3.1 Understanding Physician Decision Making

In this section we discuss how to use the standard Roy model of physician

decision making to understand physician diagnosis.4 In our data we observe

patient characteristics, the procedure chosen by the physician, and various

measures of medical outcomes. The goal is to understand how variations

in physician skill affect procedure use and medical outcomes. In particular

we explore how variations in a physician j’s ability to process information is

likely to impact procedure choice and performance.

3.2 Information

Diagnosis means the ability to reliably transform observed symptoms into an

assessment of patient condition. The treatment depends on the diagnosis,

but also on the costs of treatment, the doctor’s skill in performing procedures,

and on patient preferences. To the extent that diagnosis affects the course

of treatment it can lead to better or worse outcomes. In our data we cannot

observe all the information that is available to the physician, but we do have

a very rich set of observed conditions, Xi, for patient i. We also observe the

procedure that doctor j chooses for patient i, denoted by Tij ∈ {N,C}, where

N and C represent the non-intensive and intensive procedures, corresponding

to natural delivery and a C-section in our data. The model we discuss can

be applied to any situation where the physician faces a dichotomous choice.

In order to compare diagnosis across physicians, we begin by creating a

measure of patient appropriateness for procedure Tij = C. We estimate a

discrete choice model:

ρri = F (βrXi) , (1)

where F is either a logistic or normal distribution, and ρri ∈ [0, 1] is the

4This is the model used in Chandra and Staiger (2007) and Currie and MacLeod (2008).
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predicted probability of procedure C. Let sri = βrXi ∈ < be the corre-

sponding index that varies over the real line. We show that ρri indexes a

physician-independent measure of the appropriateness of the patient receiv-

ing treatment T = C that does a good job assessing an individual patient’s

need. This measure is an average over the whole market, hence any individual

physician’s contribution to ρri is very small.

Our goal is to understand both treatment choice, and the impact upon

patient welfare. We approach this problem by supposing that there is an

underlying state of the patient, si ∈ <, with the interpretation that this is

the net medical benefit of doing procedure C, and that C should be carried out

whenever the benefit is positive or si ≥ 0. Thus, we can interpret sri = βrXi

as the market’s best estimate of the patient’s condition, and we will assume

that it forms a proxy for the net benefit of procedure C.

3.3 Physician Behavior

We follow the literature, and suppose that the physician chooses the best

action possible given her information, costs, and patient preferences. When

deciding upon a procedure the physician evaluates the condition of the pa-

tient to produce two latent variable sNij and sCij which are the predicted out-

comes if procedure N or C are performed. The physician’s costs are assumed

to be affected by both their skill at performing the two procedures, and by

the fees they can charge. Hence, the payoff of the physician is:

Uij (T ) = sTij + skill
(
T, STj

)
+mT

j

(
P T
)
, (2)

where skill
(
T, ST

)
is the skill at doing procedure T and mj

(
P T
)

is the

expected pecuniary consequence of this choice as a function of the price

paid, P T for procedure T . It is assumed that an increase in physician skill
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increases the benefit of the procedure:

∂skill(T, STj )/∂STj > 0.

We have rough proxies for price, and suppose that the gain physicians

respond to is the difference in price for the two procedures:

mj (∆P ) = mC
j

(
PC
)
−mN

j

(
PN
)
,

where ∆P = PC − PN is the price difference between a procedure C and

natural delivery. The function mj (∆P ) is assumed to be strictly increasing

in ∆P .

The medical benefit of a procedure is given by

MBT
ij = sTij + skill

(
T, STj

)
.

And the net medical benefit is given by:

NMB
(
sij, S

C
j , S

N
j

)
= MBC

ij −MBN
ij (3)

= sij + ∆skill
(
SCj , S

N
j

)
(4)

where sij = sCij − sNij , ∆skill
(
SCj , S

N
j

)
= skill

(
C, STj

)
− skill

(
N,STj

)
.

Hence the physician carries out a C-section if and only if the net medical

benefit plus the pecuniary benefit is positive:

NMB
(
sij, S

C
j , S

N
j

)
+mj (∆P ) ≥ 0, (5)

The probability that patient i has a procedure C with physician j is given

by:

ρij = F
((
NMB

(
sij, S

C
j , S

N
j

)
+m (∆P )

))
. (6)

This expression, combined with our assumptions regarding skill and price

10



implies the following well known result for the Roy model of physician be-

havior:

Proposition 1. The rate of procedure C use increases with physician skill in

doing procedure C (SCj ) and with the difference in price between procedure C

and procedure N. Procedure C rates fall with an increase in skill in procedure

N (SNj ).

This result is true both on average for the whole population and condi-

tional upon the patient’s risk for having procedure C. Next we consider the

issue of diagnostic skill.

3.4 Understanding Diagnosis

As discussed above, we construct a measure of patient condition given by sri =

βrXi. This index is constructed using data for the whole state, and hence for

any given individual the index is independent of physician characteristics.

We already know that different physicians often make different decisions

with the same data regarding a women’s condition (Esptein and Nicholson

(2009)). This may be in part because they differ in the way that they process

information.

We formally capture this effect by supposing that sri , given by equation

(1), is an unbiased signal of the net benefit with variance σ2
r . The physician

is assumed to observe:

sij = sri + εij,

where the variance of εij is σ2
ij, and Dj = 1

σij
is the precision of this signal,

and hence a measure of diagnostic skill.5 In terms of equation (1), we are

assuming that everyone observes the same Xibut that doctors use their per-

sonal experiences to form βr. Since we use data for the entire state over 10

years, we are assuming that we have a superior estimate of βr. The case in

5Normally the precision is the reciprocal of the variance σ2
ij , but the reciprocal of the

standard deviation σ2
ij provides a more convenient measure of diagnostic skill.
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which doctors observe additional data that we do not observe is considered

in section 3.5.2 below.

This structure follows from a rational choice framework in which doctor

experiences lead them to have prior beliefs regarding the benefit of procedure

C for the average patient. Let s0j be the mean and σ02
ij be the variance of these

beliefs. LetD0
j = 1

σ0
ij

be a measure of how strongly a physician holds his or

her pre-existing beliefs.

From DeGroot (1972) we have the familiar learning rule:

E
{
si|sij, s0j

}
= πsji + (1− π) s0j

= πsri + (1− π) s0j + πεij, (7)

where π =
D2

j

D2
j+(D0

j )
2 .

The point here is that the sensitivity of the updated beliefs to the observed

signal is a function of how much information is extracted from Xi.

This expression allows us to put a bit more structure on the decision

function 6. If the physician can observe sri directly, then Dj is zero and

diagnosis is not an issue. Procedure C is choosen if and only if:

sri ≥ −∆skill
(
SCj , S

N
j

)
−m (∆P ) .

This rule is illustrated in Figure 1a where ρ̄j = F
(
−∆skill

(
SCj , S

N
j

)
−m (∆P )

)
.

That is, the doctor determines a threshold patient condition. Only pa-

tients with risk above the threshold level receive a C-section. The threshold

shifts down (indicating that more C-sections will be performed) whenever C-

sections become more lucrative or the doctor’s skill in performing C-section

increases relative to his or her skill performing natural deliveries. Thus in-

creases in prices for C-section and surgical skill have their greatest impact

on the marginal patients.
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3.5 Effect of Diagnosis on Decisions and Outcomes

Let us now consider the situation when the doctor doesn’t perfectly observe

patient appropriateness. Let Iij denote all the information that a physician

has when she decides what procedure to perform on patient i. Now, instead

of observing the patient’s condition, the physician has an expectation about

that patient’s condition given the information set. A physician will choose

to perform C if and only if:

E {si|Iij}+ ∆skillj +mj (∆P ) ≥ 0. (8)

Here we are assuming the physician understands her skill and the pecu-

niary gains from performing procedure C. Thus her information is only used

to make an assessment of patient condition, which is given by E {si|Iij}. This

expected value is solved using Bayes’ rule (7) to get:

πsri + (1− π) s0j + ∆skillj +mj (∆P ) ≥ πεij.

If we divide by the weight π we get the expression:

sri − aj ≥ εij (9)

Where

aj = −
(1− π) s0j + ∆skillj +mj (∆P )

π
(10)

is a physician specific constant. Let the probability that a patient i with

observed condition sri who is treated by physician j receives procedure C

be denoted by ρij. Since the the error term εij is normally distributed with
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mean zero, and variance 1/D2
j from (9) we have:

ρij = Prob[sri − aj ≥ εij],

= F (Dj (sri − aj)) . (11)

For notational simplicity we write ρij rather than showing explicitly that it

depends upon patient and physician characteristics. In subsequent expres-

sions it is understood that ρij can vary with any patient i or physician j

characteristic. In the standard Roy model, as used for example by Chan-

dra and Staiger (2007) and Esptein and Nicholson (2009), they assume that

only the constant term aj varies across regions, but that the slope (diagnos-

tic skill), Dj, is constant. One contribution of our work is to explore the

implications of allowing Dj to vary between doctors.

Previous work has shown that an increase in surgical skill leads to higher

procedure rates, which is also the case in our model:

1

f (Dj (sri − aj))
∂ρij

∂∆skillj
=
Dj

π
> 0. (12)

However, in our model the size of this derivative varies with diagnostic skill

(and also with practice style which comes in via π which depends on D0
j).

Since
Dj

π
increases with diagnostic skill, utilization increases with skill at a

faster rate when there is greater diagnostic skill.

We can also derive the effect of diagnosis upon procedure use holding

skill, prices and practice style fixed. Taking the derivative of 11 with respect

to diagnostic skill we get:

1

f (Dj (sri − aj))
∂ρij
∂Dj

= sri − bj, (13)

where bj is the intercept term plus it’s elasticity with respect to diagnostic
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skill:

bj = aj +Dj
∂aj
∂Dj

. (14)

The elasticity of the constant term aj with respect to diagnosis is:

Dj
∂aj
∂Dj

=
{(

(1− π)2 + π
)
s0j + ∆skillj +mj (∆P )

} 2 (1− π)

π
. (15)

This derivative is ambiguous in sign. In general 1 > π > 0 which means that

the derivative is positive if and only if:

s0j ≥ −

(
∆skillj +mj (∆P )(

(1− π)2 + π
) )

. (16)

However, given that the value of bj does not vary with the condition of the

patient and sri can take any real valued expression 13 implies:

Proposition 2. The probability that the physician uses procedure C increases

with diagnostic skill if and only if sri > bj.

This expression implies that high risk patients will experience an increase

in the use of C-section when the physician has better diagnostic skills, and low

risk patients will experience decreases in the use of C-section with increases

in diagnostic skill.

Propositions 1 and 2 are illustrated in Figures 1b and 1c. In these figures,

the probability of C-section rises with patient appropriateness, but it rises

more smoothly than in Figure 1a reflecting uncertainty about the actual state

of the patient. In Figure 1b an increase in surgical skill or price increases

procedure use everywhere (Proposition 1). In contrast, Figure 1c shows that

a change in diagnostic skill causes the relationship between C-section and

appropriateness to twist and to approach the decision rule given in Figure

1a. These results illustrate that it is possible to disentagle diagnostic skill

from surgical skill. An increase in surgical skill should result in an increase
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in C-sections for all patient types; in contrast, an increase in diagnostic skill

increases C-sections for the high risk and reduces them for the low risk.

3.5.1 Outcomes

For high risk patients, the effect of physician characteristics upon the C-

section rate is small since most of these patients both need and receive a

C-section. Thus, we can use variations in medical outcomes among these

patients as a proxy for SCj . Similarly we can use outcomes for low risk cases

as a proxy for SNj (since most low risk patients have natural deliveries). The

use of these proxy measures allows us to examine the effect of procedural

skill on the physician’s propensity to perform C-sections.

Next, let us consider the effect of diagnostic skill, as given by Dj, the

precision of the measure of the patient’s condition. Our analysis is done

in terms of the net medical benefit of C-section relative to natural delivery,

which we assume is given by:

sri + ∆skillj.

The physician observes a signal sij and decides on the procedure following

rule 9. We can write the net medical benefit as function of observed medical

appropriateness for procedure C as:

NMBj (sri ) = ρij (sri + ∆skillj)

− (1− ρij) (sri + ∆skillj)

= (2ρij − 1) (sri + ∆skillj) (17)

Hence, the effect of diagnostic skill upon net medical benefit is given by:

∂NMPj
∂Dj

= 2
∂ρij
∂Dj

(sri + ∆skillj)
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Recall that sri takes values over the whole real line. When sri is sufficiently

large then
∂ρij(sri )
∂Dj

> 0, and the term (sri + ∆skillj) is positive; hence di-

agnositic skill has a positive effect upon outcomes. Similarly, when sri is

sufficiently small,
∂ρij(sri )
∂Dj

< 0, and the term (sri + ∆skillj) is negative, and

hence the total effect is still positive. These results suggest that when pa-

tients are either high risk or low risk, improvements in diagnosis will make

patients better off. For patients of medium risk, diagnosis interacts with

other factors to affect patient outcomes. For example, if a doctor is much

better at doing C-sections than natural deliveries, and too many C-sections

are being done, then improvements in diagnosis could conceivably make the

patient worse off.

The effect of surgical skill on outcomes is given by:

∂NMPj
∂∆skillj

= 2
∂ρij

∂∆skillj
(sri + ∆skillj) + (2ρij − 1) .

Better surgical skill (relative to natural delivery) always increases the num-

ber of C-sections. For high risk patients, sri > max {aj,−∆skillj}, so both

(sri + ∆skillj) and (2ρij − 1) and positive. Hence, the effect of skill is posi-

tive. We have a negative sign when sri < min {aj,−∆skillj}, and hence skill

has a negative effect on net benefits for low risk patients. Again, there is

some indeterminacy about the sign for those at medium risk for whom it is

not clear which term predominates.

These effects are illustrated in Figure 2. The figure shows that the

marginal benefit from increased diagnostic skill is U-shaped in patient ap-

propriateness for C-section, and that it is positive for patients at both low

risk and high risk of C-section. In the middle, the sign of the effect is inde-

terminant (and it is relatively small). That is, for cases that are marginal

medically, it will not do too much harm to make the “wrong” decision. In

contrast, the benefit from increased surgical skill (relative to skill at natural

deliveries) is increasing in patient appropriateness, and is highest for high
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risk cases.

Proposition 3. The effect of diagnostic skill, surgical skill and price on

medical outcomes is summarized in the following table:

Appropriateness for Procedure C

Low Middle High

Diagnostic Skill + ? +

Surgical Skill - ? +

In the standard Roy model increases in surgical skill can lead to some mis-

match between the patient and proceedure, an effect highlighted by Chandra

and Staiger. Here we show that this effect can be offset by an increase in

diagnostic skill which increases match quality for most patients. The effect

is ambiguous for the marginal cases, but these are also the cases for which

both procedures have similar benefits, and hence errors in diagnosis would

have a small effect. As a consequence we would expect that on average an

increase in diagnostic skill would improve outcomes.

An explicit policy instrument is procedure price. In this case the effect is

quite straightforword and given by:

∂NMPj
∂∆P j

= 2
∂ρij
∂∆P j

(sri + ∆skillj) .

An increase in price always increase the rate of procedure C, hence it

improves outcomes if and only if sri + ∆skillj > 0. In other words, for high

risk patients an increase in the price of procedure increases the use and hence

makes individuals better off. The converse is true for low risk patients.

3.5.2 Alternative Information Structures

We have assumed that not all doctors interpret patient conditions Xi in the

same way. That is, different doctors have different values of β. An alterna-

tive assumption is that all doctors interpret Xi in the same way but some
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doctors observe additional information and variations in decisions are due

to the additional information that is collected. In this alternative scenario,

a Bayesian decision maker would put less weight upon Xi as she acquired

additional information. This in turn would imply that sensitivity to si would

decrease with improvements in a physician’s diagnostic skills. Recall that in

our model a sensitivity to si is captured by the slope term, Dj. Hence, this

alternative scenario implies that decreases in Dj would improve outcomes.

As we show below, we find exactly the opposite result, suggesting that our

characterization of doctor decision making is more realistic and that doctors

do not all use the information contained in our measures of patient condition,

Xi, with equal efficiency. Another way to think about this issue is to reflect

on the fact that the β’s we estimate reflect the combined experience of all

physician’s in New Jersey over a ten year period, whereas any individual

doctor has much less experience and hence may be less able to infer the

correct β’s.

4 Data and Methods

The data for this project come from approximately 1.1 million Electronic

Birth Certificates, (EBC) spanning 1997 to 2006, from the state of New

Jersey. These records have several important features from our point of view.

First, they include detailed information about the medical condition of the

mother which enables us to predict, with a fair degree of accuracy, which

mothers are likely to need C-sections. In particular, we know the mother’s

age, whether it is a multiple birth, whether the mother had a previous C-

section, whether the baby is breech, whether there is a medical emergency

such as placenta previa or eclampsia which calls for C-section delivery, and

whether the mother had a variety of other risk factors for the pregnancy

such as hypertension or diabetes. Second, we know the method of delivery,

including whether a C-section was planned or not.
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Third, the birth records include unusually detailed information about

birth outcomes. Birth records usually record information about complica-

tions of labor and delivery. Infant deaths are of particular interest, but

are thankfully rare. When we look at deaths, we focus on neonatal deaths

(deaths in the first 30 days) as these are more likely than later deaths to

be caused by events at the delivery. In addition to these measures, the New

Jersey data also includes information about late maternal complications such

as fever and hemorrhage that occur after the delivery. In most of our anal-

yses we will combine these measures and look at the probability that there

was “any bad outcome.” Our comprehensive measure of bad outcomes in-

cludes late maternal complications, neonatal death, selected complications

of labor and delivery (excessive bleeding, fever, seizures) and selected abnor-

mal conditions of the infant (brachoplexis, fracture, meconium, birth injury,

neurological damage in full term infant). We did not include neurological

damage in preterm infants as this might be a result of prematurity itself

rather than events at the time of the birth.

Fourth, the data has information about the latitude and longitude of each

woman’s residence, as well as codes for doctors and hospitals. We found, as

a practical matter, that very few doctors practiced in more than one hospital

in a single year, hence the choice of doctor also defines the choice of hospital.

In total, our data include 71 hospitals and 5,273 birth attendants. Of the

birth attendants, 603 were midwives. In our analysis, we focus on doctors

since only doctors can perform C-sections.

Finally, the data includes demographic information such as race, educa-

tion, marital status, and whether the birth was covered by Medicaid which

have been shown to be related both to the probability of C-section and to

birth outcomes.

We use these data to construct analogs of the key concepts in our model.

We define ρri , the mother’s risk of C-section, by estimating a logit model of

the probability of C-section given all of the purely medical risks recorded in
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the birth data, as in equation (1). The model we estimated is shown in Table

1. Table 1 shows that the model predicts well, with a pseudo R-squared of

almost .32.

Figure 3 provides another way of gauging the accuracy of the model’s

predictions. It shows that those who did not have a C-section generally had

values of ρri less than .5, while those with C-sections generally had values

of ρri greater than .5. More particularly, the figure shows that those who

had values of ρri less than .2 were very unlikely to have C-sections, while

those with ρri greater than .8 were highly likely to have C-sections. In what

follows, we will designate these two groups as the “low risk” and the “high

risk” respectively, and consider those with values of ρri between .2 and .8 as

“medium risk”. Of the women deemed high risk, 89% received a C-section,

while among the women deemed low risk only 11% received a C-section.

For a given level of medical risk, the probability of C-section increased

over our sample period at all but the highest risk levels as shown in Appendix

Figure 1. In fact, at the start of our sample period, New Jersey, with a

rate of 24%, had a lower C-section rate than several other states, including

Arkansas, Louisiana, and Mississippi, while by the end of our sample period,

New Jersey had pulled ahead to have the highest C-section rate of any state,

at almost 40%. Figure 4 shows that this increase was not due to a change in

the underlying distribution of medical risks. The figure shows only a slight

increase in the number of high risk cases, which is attributable to an increase

in the number of older mothers, mothers with multiple births, and increasing

numbers of women with previous C-sections (itself driven by the increasing

C-section rate).

Since ρri is a device for ranking women according to their medical risk,

the level is less important than the ordering. We have experimented with

alternative models and found that the correlation between the ranking pro-

duced by our model, and the ranking produced by several alternative models

is above .95. These alternative models included a model that included fewer
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risk factors, a model that used births from 1997-1999 only, and a model that

used only doctors who were below the 25th percentile in terms of the fraction

of births with negative outcomes in their practices.

It remains to define measures of diagnostic skill, procedural skill, and

prices. In the model, diagnostic skill is captured by the variable Dj. An

empirical analog can be obtained for each doctor by using the estimated

β’s from (1) to create the index of maternal condition sri (this is simply

βrXi) and then estimating a regression model for each doctor’s propensity

to perform C-sections as a function of sri . The coefficient on si, denoted by

DiagSkillj, is an indicator of how sensitive the doctor is to this index of

observable indicators of patient risk and thus captures diagnostic skill.

We measure procedural skill by first calculating the rate of bad outcomes

among low risk births, and the rate of bad outcomes among high risk births

for each doctor, and then taking the difference between them. This measure

is a good proxy for skill because, as noted above, most high risk women get

C-sections and most low risk women do not. At the same time, because the

high risk and low risk groups are defined only in terms of underlying medical

risk factors, the measure is not contaminated by the endogeneity of the actual

choice of C-section. This measure is less than zero since bad outcomes are

less likely for the low risk than the high risk, but it becomes larger as the rate

of bad outcomes falls among the high risk (i.e. with greater surgical skill).

For prices, we use data from the Health Care Utilization Project (HCUP).

HCUP includes hospital charges for every discharge. For each doctor, we

take the mean price of all C-section deliveries that did not involve any other

procedures, less the mean price of normal deliveries without other procedures.

This differential varied from $2,250 to $8,490 real 2006 dollars, with a median

of $4,756.6

Having constructed these measures, we estimate models of the following

6It is important to note that physician charges are generally separate from hospital
charges. In using this measure, we are implicitly assuming that physicians who practice
in expensive hospitals charge more.
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form:

Outcomeijt = f(DiagSkillj,∆Skillj,∆Pjt, Xit,month, year), (18)

where Outcomeijt ∈ {0, 1}, where 0 is a Natural delivery and 1 is a C-

Section, i indexes the patient, j indexes the doctor, and t indexes the year. We

include month and year effects in order to control for seasonal differences in

outcomes and for longer term trends affecting all births in the state (e.g. due

to other improvements in medical care). The standard errors are clustered at

the level of the physician in order to allow for unobserved correlations across

a physician’s cases.

Sample means are shown in Table 2. The estimation sample is slightly

smaller than in Table 1 because we exclude births that were not attended

by a doctor, as well as those for whom we cannot calculate our measure

of diagnostic skill (because there are too few births per provider).7 The

first panel shows how the outcome variables vary across the low, medium,

and high risk groups. As expected, high risk women have more C-sections,

a higher risk of a bad outcome than low risk women, and higher neonatal

death rates.

The second panel explores the characteristics of doctors and provides

some initial evidence with regard to an important question: The extent to

which high risk patients see doctors with particular characteristics. The

average doctor in our sample performed about a 1,000 deliveries and this is

quite similar across risk groups. Similarly, there appears to be little difference

across groups in the measures of diagnostic skill, procedural skill differentials,

or price differentials. Nor, perhaps surprisingly, is there much of a difference

in the fraction of the doctor’s patients who have bad outcomes. That is,

although high risk women are more likely to have bad outcomes, there is

no evidence that they are likely to see doctors who have either high or low

7We also exclude a very small number of doctors who did not have at least one high
risk patient and at least one low risk patient.
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fractions of patients with bad outcomes in their practices. The one measure

that shows some variation across risk groups is the fraction of high risk

patients in the practice. It appears that high risk patients are more likely to

go to doctors who specialize in high risk patients. Hence, we will estimate

models controlling for this variable below.

Finally, the third panel of the table provides an overview of selected

maternal and child characteristics including race and ethnicity, maternal ed-

ucation, marital status, and whether the birth is covered by Medicaid. The

table suggests that low risk women are disproportionately young and mi-

nority women giving birth for the first time whereas women at high risk

for C-section tend to be older, married women with second or higher order

births.

The main empirical difficulty involved in estimating (18) is that women

choose their doctors. If women with high risk pregnancies choose better

doctors, then the estimated effect of doctor skill on birth outcomes will be

biased towards zero. If, on the other hand, high risk women go to less skilled

doctors, then estimates of (18) will overstate the beneficial effect of skill on

birth outcomes. We address this selection problem in several ways.

First, Table 2 suggested that high risk women were not more likely to

choose doctors who were highly skilled. Table 3 expands on this investiga-

tion by presenting correlations between the probability of C-section (ρri ) and

doctor characteristics. Correlations are presented for all women, and within

risk category. Table 3 confirms that high risk women do not seem to be

choosing doctors on the basis of our measures of diagnostic skill or procedu-

ral skill. There is however, again some evidence that high risk women choose

doctors who specialize in high risk cases. Table 3 also shows that there is a

positive correlation between diagnostic skill and surgical skill, though it is a

modest .215 to .235. And there is a negative correlation between the rate of

bad outcomes in a practice and our two skill measures, which is reassuring.

The other ways that we address the selection issue are as follows: (1) We
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estimate models with and without controls for the share of high risk patients

in the practice since this is the one attribute of doctors that appears to be

related to patient selection; (2) we estimate our models excluding planned

C-sections (C-sections where there was no trial of labor). The logic behind

this test is that women who know that they will have a C-section may have

a stronger incentive to select a good surgeon; and (3) we estimate models

defining provider characteristics at the market level rather than at the doctor

level, which will help if markets are less selected than individual doctors

within those markets.

Following Kessler and McClellan (1996) we define a hospital market using

the hospitals actually selected by women in a particular zip code in a particu-

lar year. Specifically, we include all hospitals within ten miles of the woman’s

actual residential location, plus any hospital used by more than three women

from her zip code of residence.8 Thus, there is a distinct market, or set of

hospital choices, facing each woman at the time of each birth.

Figure 5 shows the distribution of hospitals and illustrates this way of

defining markets. The figure shows that most women choose hospitals that

are close by, but that some women bypass nearby hospitals in favor of hospi-

tals further away. In some cases, these are regional perinatal centers which

are better equipped to deal with high risk cases. For example, women from

Princeton New Jersey could give birth in the hospital in town, but many

travel as far away as Morristown (two counties to the north) to deliver in

other hospitals.9

Finally, a fourth way to deal with selection which is of some independent

interest is to estimate a model of patient demand for doctors using the Alter-

8In the crowded northern New Jersey hospital market, we included only hospitals within
five miles of the zip code centroid.

9The figure also illustrates that the common practice of drawing a circle around a
location in order to define a market is likely to be seriously misleading: A circle wide
enough to include all the hospitals actually chosen would include hospitals that were never
chosen, and a circle wide enough to include most hospitals could miss specialty hospitals
that were further away and yet within the choice set.
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native Specific Conditional Logit model (McFadden, 1974). The question we

address is whether patients are selecting providers on the basis of the skill

measures we have constructed, or some other variable such as distance to

hospital.

5 Results

Table 4 shows estimates of equation (18), where the dependent variable is

whether there was a C-section. Table 4 indicates that diagnostic skill and

procedural skill have quite distinct effects. In markets where providers are

relatively good at C-section, all women are more likely to have C-sections.

However, better diagnosis significantly reduces the probability of C-section

for low risk women, increases the probability for medium risk, and has an es-

pecially large positive effect for high risk women. A larger price gap between

C-sections and natural deliveries increases C-sections for low risk women, but

has the largest effect for women at medium risk as the model predicts. The

intuition is that price is more likely to be determinative when the medical

case is close to the margin.

One useful way to think about the magnitudes of these effects is to con-

sider moving a woman from a doctor at the 25th percentile of the relevant

measure to a doctor at the 75th percentile and then compute percentage

changes using the mean C-section rates from Table 2. For the index of di-

agnostic skill, this movement (of .215 units) would reduce C-section rates by

11.7% among the low risk, but would increase them by 3.1% and 4.6% among

medium and high risk women respectively. For the index of procedural skill,

this movement (of .05 units) would increase the probability of C-section by

4.4%, 1.5%, and .8% for low, medium, and high risk women, respectively.

Since there are many more low risk women (475,270) than high risk women

(121,631), these figures imply a large overall decrease in C-section rates with

better diagnosis. Specifically, they imply a net decrease of 50,012 women
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receiving C-sections, which is about 5% of the births over our sample pe-

riod. Finally, the estimates imply that a one standard deviation increase

(about $2,600) in the gap between prices for C-section and normal delivery

would increase C-section rates by 8.1% among the low risk and 3.3% among

the medium risk but would have no impact on the high risk, where medical

necessity is a much more important factor than price.

Table 4 also shows the coefficients on the measures of personal charac-

teristics that are included in our models. Most of these characteristics have

statistically significant effects on the probability of C-section. As a group,

they tend to belie the idea that C-sections are demanded by white, college-

educated women. Instead, it appears that African-American and Hispanic

women are more likely to have C-sections, as are less educated women. We

also see that married women are less to have C-sections while those on Med-

icaid are more likely.

Table 5 examines birth outcomes. Recall that while the model implies

that C-sections decrease for the low risk and increase for the high risk, better

diagnosis is predicted to improve outcomes for everyone. Table 5 shows

that this is in fact the case. An improvement in diagnosis that moved the

doctor from the 25th to the 75th percentile of the distribution would reduce

the incidence of any bad outcome by 13.3%, 12.1%, and 7.3% among the

low, medium, and high risk, respectively. The incidence of neonatal death

also declines by 31.4%, 49.2%, and 45.1% in the same groups (though since

neonatal deaths are a rare outcome, these percentage changes should be taken

with a grain of salt). Improvements in surgical skill relative to skill doing

normal deliveries is also estimated to improve outcomes: Changing from a

provider at the 25th percentile of the procedural skill distribution to one at

the 75th percentile would be associated with reductions of 7.4%, 18.5%, and

65.4% in the probability of a bad outcome, suggesting especially large effects

of surgical skill for the difficult cases. The corresponding estimates for the

effects of improvements in surgical skill on neonatal death are 7.3%, 21.9%,
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and 58.7%. Finally, an increase in the price gap of $2,600 is estimated to

increase the risk of neonatal death among the low and medium risk (by 12.3%

and 11.9% respectively) but to have no effect on the risk of death among the

high risk. This later result is consistent with the evidence that the choice of

procedure is not affected by price in the high risk cases.

5.1 Accounting for Selection

To this point, we have ignored the possible impact of doctor selection on our

estimates. As discussed above, if women with difficult cases are more likely

to choose skilled doctors, then we will tend to under-estimate the effects of

skill on outcomes. High risk women being matched with the least skilled

doctors, the opposite type of selection, is a more serious potential problem

as it has the potential to generate spurious effects of skill. While there is no

perfect answer to this selection problem, in this section we explore several

alternative estimation strategies.

Table 3 suggested that the main observable difference between doctors

treating low risk and high risk patients is that the later are more likely to

specialize in high risk patients. Accordingly, in Table 6, we add this observ-

able characteristic of doctors to the model. Controlling for the share of high

risk patients in the practice has very little effect on the estimated coefficients

on the other doctor characteristics. Specialization itself is associated with

a higher probability of C-section, especially among the medium risk group,

and with a higher probability of bad outcomes. This later result could reflect

the selection we are trying to account for: If high risk women are both more

likely to have bad outcomes and more likely to see doctors who specialize in

high risk patients, then we would expect this effect. Appendix Table 1 shows

that the results are quite similar if we break the share high risk in the practice

into quartiles and include those rather than the continuous measures.

Table 7 shows the results of a second experiment in which we exclude

planned C-sections from the sample on the grounds that women planning
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to have a C-section may be more selective in their choice of physician than

those who are not. Comparing the first three columns of Table 7 to Table 3

indicates that the effect of diagnosis on the probability of C-section is affected

by the exclusion of planned C-sections. Among the low and medium risk, the

planned C-sections may be the cases where some diagnostic criterion that we

do not observe dictates a C-section. In these two groups we find that the

effect of diagnostic skill is reduced by the exclusion of planned C-sections,

though the effect remains significantly negative in the low risk group. In the

high risk group, the estimated effect of diagnostic skill is much higher when

planned C-sections are excluded.

In contrast, the estimated effects of procedural skill on the incidence of

C-section are not much affected, and the estimated effect of the price gap

is reduced, suggesting that planned C-sections are more sensitive to price

than unplanned C-sections. Comparing the remaining columns of Table 7

to Table 5 indicates that excluding planned C-sections has little impact on

the estimated effects of diagnostic skill, procedural skill, or price on bad

outcomes.

Table 8 shows the results of estimating models where the measures of

diagnostic skill, procedural skill, and price are calculated at the market level.

As discussed above, a market includes nearby hospitals as well as all of the

hospitals in which at least three women from the index woman’s zip code

delivered in a given year. Since the type of medical services could be cor-

related with other characteristics of residential location, we include controls

for the zip code of residence in these models. Hence, the implicit assumption

in these models is that women do not choose their residence on the basis of

year-to-year changes in the type of medical services offered in the area. We

also cluster the standard errors at the zip code level.

In these market-level models, diagnostic skill is measured using the sec-

ond proxy discussed in the model section: The difference between the risk

adjusted C-section rate for high risk patients and the risk adjusted C-section
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rate for low risk patients.10 In order to compute this measure, we take the

mean residuals from (1) for high risk patients in the market, and the mean

residuals for low risk patients in the market and subtract. This measure has

a mean of -0.011 in the whole sample and increases when either the C-section

rate for high risk patients increases or when the C-section rate for low risk

patients falls.

The measure of the procedural skill differential is defined as it was above

(the incidence of poor outcomes for low risk patients in the market minus

the incidence of poor outcomes for high risk patients in the market). Price is

defined by taking the price for uncomplicated C-section minus the price for

uncomplicated natural delivery and averaging over all of the births in each

market.

Although the market-level measures throw away a good deal of the varia-

tion across providers and the coefficients of interest are generally less precisely

estimated, the results are remarkably similar to those discussed above. Bet-

ter diagnosis (moving from a market at the 25th percentile of the distribution

to the 75th) would be associated with an 11.7% decline in C-sections among

the low risk and a 3.8% increase in C-sections among the high risk. At the

same time, better diagnosis is estimated to decrease the probability of bad

outcomes among all risk groups, and to reduce the incidence of neonatal

death among the high risk.

A similar improvement in surgical skill relative to skill at natural deliv-

ery has little impact on the low risk, but would increase C-sections among

the medium and high risk (by 3.2% and 2.2% respectively) and reduce the

incidence of bad outcomes in the same two groups. Finally, and as in the

physician-level models, an increase in the price gap has the greatest effect

on those in the medium risk group, increasing the incidence of C-section by

2.4% and the incidence of bad outcomes by 10.9%.

10Appendix Table 2 shows models similar to Tables 4 and 5 except that they use this
diagnosis measure for physicians. The results are quite similar to those discussed above.
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Overall, the results in this subsection suggest that our results are not

driven by the matching of high risk patients to low skilled doctors (which is

the only type of selection that could generate a spurious relationship between

doctor skill and good outcomes).

5.2 Patient demand

Table 9 shows the results of estimating a demand model. The Alternative

Specific Conditional Logit seeks to explain choice among a number of al-

ternatives where the choice set is different for each woman, each choice has

characteristics associated with it, and each woman has individual character-

istics (such as race and Medicaid coverage) that affect her choice.11 In order

to limit the number of alternatives to a manageable number, we focus on the

demand for hospitals, and construct measures of procedural skill, diagnostic

skill, and the price gap at the hospital level. Other hospital level charac-

teristics that we include are the distance from the mother’s residence to the

hospital, and in some specifications, the hospitals’ C-section rate, the overall

rate of bad outcomes at the hospital, and the fraction of births to Medicaid

patients. The individual level characteristics we include are those shown in

Table 4 and discussed above as well as the propensity score which determines

the woman’s a priori risk of C-section.

These results suggest, not surprisingly, that distance to the hospital is of

overwhelming importance. Indeed, over sixty percent of the women in our

sample deliver at the nearest hospital. However, the estimates all suggest

that women value surgical skill, and are more likely to choose a hospital that

has good outcomes for high risk patients. In contrast, women are less likely

to choose a hospital where providers have good diagnostic skills. Patients

11One problem that arises is that about 4% of women deliver in a hospital that is not
in their market choice set as we have defined it. Viewed more positively, we correctly
identified the market in 96% of the cases. In any case, we drop those women who chose
outside the choice set, treating them as if they made those choices for purely idiosyncratic
reasons.
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are quite insensitive to price, which makes sense given how difficult it is to

learn what prices are in most hospitals.

Columns 2 and 3 show that the estimates are not affecting by adding

other characteristics of hospitals to the model. For example, patients do not

appear to care about the overall C-section rate, or about the rate of bad

outcomes. They do however care about the share of Medicaid deliveries,

being less likely to choose hospitals with a lot of Medicaid patients, other

things being equal.

These results suggest that it is not surprising that bad diagnosis can

persist, if patients do not value good diagnosis, do not look at prices or C-

section rates, and instead judge hospitals in terms of their prowess dealing

with high risk cases surgically.

6 Discussion and Conclusions

We present a model that focuses on diagnostic skill as an element of provider

quality that is separate from procedural skill. The model shows that unlike

higher surgical skill, which leads to higher use of surgical procedures across

the board, better diagnostic skill results in fewer procedures for the low

risk, but more procedures for the high risk. That is, better diagnostic skill

improves the matching between patients and procedures and leads to better

health outcomes.

Taking the model to data on C-sections, the most common surgical pro-

cedure performed in the U.S., we show that improving diagnostic skills from

the 25th to the 75th percentile of the observed distribution would reduce C-

section rates by 11.7% among the low risk, and increase them by 3.8% among

the high risk. Since in our application there are many more low risk women

than high risk women, improving diagnosis would reduce overall C-section

rates without depriving high risk women of necessary care. Moreover, we

show that an increase in diagnostic skill would improve health outcomes for
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both high risk and low risk women, while improvements in surgical skill have

much larger effects on high risk women. These results are consistent with

the hypothesis that improving diagnosis through methods such as checklists,

computer assisted diagnosis, and collaborative decision making could reduce

unnecessary procedure use and improve health outcomes.
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Patient Appropriateness

Effect of an Increase in Diagnostic Skill
when Physician Imperfectly Observes Patient Appropriateness
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Figure 3: Predicting C-sections Using the Logit Model   



 

Figure 4: Illustrating the Definition of a Market 

 

  



 

Appendix Figure 1: Shift in Probability of C-section Given Medical Risk Over Time 

 

Appendix Figure 2: Shift in Medical Risks over Time 

 



Table 1: A Model of C‐section Risk (rho) 

(Logistic Regression)

Marginal

Coeff. S.E. Effect

Age<20 ‐0.337 0.013 ‐0.075

Age >=25&<30 0.262 0.008 0.058

Age >=30&<35 0.434 0.008 0.096

Age >=35 0.739 0.009 0.164

2nd Birth ‐1.347 0.007 ‐0.298

3rd Birth ‐1.645 0.009 ‐0.364

4th or Higher Birth ‐2.140 0.012 ‐0.474

Previous C‐section 3.660 0.008 0.810

Previous Large Infant 0.139 0.029 0.031

Previous Preterm  ‐0.293 0.025 ‐0.065

Multiple Birth 2.879 0.014 0.638

Breech 3.353 0.016 0.742

Placenta Previa 3.811 0.054 0.844

Abruptio Placenta 2.048 0.030 0.454

Cord Prolapse 1.761 0.047 0.390

Uterine Bleeding 0.026 0.035 0.006

Eclampsia 1.486 0.096 0.329

Chronic Hypertension 0.745 0.025 0.165

Chronic Lung Conditio 0.064 0.014 0.014

Cardiac Condition ‐0.121 0.020 ‐0.027

Diabetes 0.558 0.011 0.124

Anemia 0.131 0.018 0.029

Hemoglobinopathy 0.116 0.047 0.026

Herpes 0.461 0.024 0.102

Other STD 0.052 0.017 0.012

Hydramnios 0.616 0.018 0.136

Incompetent Cervix 0.043 0.035 0.010

Renal Disease ‐0.024 0.031 ‐0.005

Rh Sensitivity ‐0.045 0.040 ‐0.010

Other Risk Factor 0.276 0.006 0.061

Constant ‐1.414 0.007 ‐0.313

# Observations 1169654

Pseudo R2 0.32

Notes: The model also included indicators for missing age, parity, and risk factors.



Table 2: Means by Probability of C‐Section

All Low Medium High

Outcomes

C‐Section Rate 0.331 0.108 0.434 0.887

Any Bad Outcome 0.066 0.047 0.085 0.082

Neonatal death (per 1000) 4.087 2.742 4.803 7.153

Doctor Characteristics

# Deliveries in Sample 1019 1029 1008 1013

(650) (675) (626) (627)

Diagnostic Skill  1.033 1.026 1.040 1.039

(0.183) (0.185) (0.180) (0.181)

Procedural Skill Differential ‐0.035 ‐0.035 ‐0.034 ‐0.035

(0.055) (0.058) (0.053) (0.050)

Price Differential ($1000) 4.756 4.824 4.689 4.697

(2.678) (2.723) (2.630) (2.642)

Share High Risk 0.126 0.119 0.128 0.141

(0.044) (0.042) (0.043) (0.048)

Rate of Bad Outcomes 0.066 0.065 0.065 0.068

(0.042) (0.040) (0.041) (0.044)

Mother & Child Characteristics

African American 0.157 0.186 0.130 0.128

Hispanic 0.210 0.243 0.178 0.181

Married 0.713 0.645 0.769 0.804

High School Dropout 0.425 0.180 0.079 0.078

Teen mom 0.030 0.056 0.002 0.012

Mom Age 35 or More 0.238 0.226 0.194 0.419

Smoked 0.082 0.092 0.074 0.073

Child Male 0.513 0.514 0.512 0.514

Child First Born 0.397 0.479 0.697 0.273

# of Observations 969140 475270 372239 121631

Notes: The analysis sample excludes birth attendants who were not physicians, and 

birth attendants who had too few deliveries for a measure of diagnositic skill to be 

computed.  Standard deviations in parentheses.



Table 3: Correlations Between P(C‐section) and Doctor Characteristics, 

Overall and Within Risk Categories

Diagnostic  Procedural Price Share

Group= All P(C‐section) #Deliveries Skill Skill Difference High Risk

P(C‐section) 1

# Deliveries ‐0.008 1

Diagnostic Skill 0.019 0.043 1

Procedural Skill Diff. 0.000 0.063 0.230 1

Price Difference ‐0.007 0.048 ‐0.017 0.001 1

Share High Risk 0.160 ‐0.027 0.092 ‐0.020 ‐0.129 1

Rate of Bad Outcomes 0.030 ‐0.008 ‐0.284 ‐0.403 0.013 0.168

Group= Low Risk

P(C‐section) 1

# Deliveries 0.002 1

Diagnostic Skill 0.002 0.049 1

Procedural Skill Diff. 0.001 0.068 0.235 1

Price Difference 0.012 0.059 ‐0.014 0.010 1

Share High Risk 0.025 0.008 0.141 0.002 ‐0.137 1

Rate of Bad Outcomes 0.022 ‐0.099 ‐0.274 ‐0.383 0.011 0.135

Group= Medium Risk

P(C‐section) 1

# Deliveries 0.009 1

Diagnostic Skill ‐0.020 0.036 1

Procedural Skill Diff. ‐0.016 0.057 0.227 1

Price Difference 0.041 0.035 ‐0.021 ‐0.009 1

Share High Risk 0.038 ‐0.035 0.051 ‐0.032 ‐0.121 1

Rate of Bad Outcomes 0.036 ‐0.093 ‐0.295 ‐0.409 0.019 0.174

Group= High Risk

P(C‐section) 1

# Deliveries ‐0.021 1

Diagnostic Skill ‐0.014 0.046 1

Procedural Skill Diff. ‐0.054 0.059 0.215 1

Price Difference ‐0.041 0.033 ‐0.010 ‐0.006 1

Share High Risk 0.115 ‐0.129 0.010 ‐0.082 ‐0.111 1

Rate of Bad Outcomes 0.06 ‐0.09 ‐0.298 ‐0.476 0.007 0.252

Note:  All of the correlations are statistically significant at the 95% level of confidence.



Table 4: Effect of Doctor Variables on Probability of C‐Section 

C‐section

                    Medical Risk: Low Medium High

Diagnostic Skill ‐0.059 0.062 0.190

(0.009) (0.014) (0.009)

Procedural Skill Difference 0.094 0.131 0.135

(0.022) (0.043) (0.033)

Price Differential (x 100) 0.335 0.545 ‐0.021

(0.058) (0.096) (0.054)

C‐section Risk 0.860 0.704 0.804

(0.033) (0.022) (0.020)

African‐American 0.053 0.066 0.027

(0.003) (0.006) (0.004)

Hispanic 0.024 0.056 0.033

(0.003) (0.005) (0.004)

Less than High School 0.023 0.033 0.017

(0.002) (0.004) (0.005)

High School 0.028 0.042 0.024

(0.002) (0.003) (0.003)

Some College 0.014 0.019 0.007

(0.001) (0.002) (0.003)

Married ‐0.010 ‐0.009 0.004

(0.002) (0.003) (0.003)

Medicaid 0.007 0.0004 0.013

(0.002) (0.004) (0.003)

Teen Mom ‐0.024 ‐0.048 0.019

(0.003) (0.019) (0.010)

Mother 25‐34 0.030 0.030 0.008

(0.002) (0.004) (0.004)

Mother 35+ 0.045 0.070 0.011

(0.003) (0.005) (0.004)

Mother Smoked 0.012 0.006 0.001

(0.002) (0.003) (0.004)

Child Male 0.019 0.034 0.005

(0.001) (0.002) (0.002)

Child 2nd Born ‐0.045 0.185 ‐0.001

(0.004) (0.011) (0.003)

Child 3rd Born ‐0.049 0.136 ‐0.037

(0.005) (0.010) (0.004)

Child 4th Born or Higher ‐0.040 0.064 ‐0.043

(0.006) (0.010) (0.005)

R‐squared 0.041 0.213 0.063

# Observations 475270 372239 121631

Notes: Standard errors clustered by physician.  Regressions also included month and year of 

birth indicators, and indicators for missing educaton, marital status, Medicaid, smoking,

prices, and parity.



Table 5: Effect of Doctor Variables on Probability of Negative Outcomes

Any Bad Outcome Neonatal Death

                    Medical Risk: Low Medium High Low Medium High

Diagnostic Skill ‐0.029 ‐0.048 ‐0.028 ‐0.004 ‐0.011 ‐0.015

(0.005) (0.008) (0.008) (0.001) (0.001) (0.002)

Procedural Skill Difference ‐0.070 ‐0.314 ‐1.073 ‐0.004 ‐0.021 ‐0.084

(0.024) (0.039) (0.035) (0.002) (0.005) (0.010)

Price Differential (x 100) 0.066 0.022 0.054 0.013 0.022 ‐0.007

(0.042) (0.055) (0.050) (0.004) (0.007) (0.011)

C‐section Risk 0.345 ‐0.089 0.356 0.014 ‐0.036 0.0340

(0.020) (0.014) (0.019) (0.005) (0.004) (0.007)

R‐squared 0.011 0.009 0.058 0.004 0.009 0.016

# Observations 475270 372239 121631 475270 372239 121631

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.



Table 6: Effect of Doctor Variables Including Share High Risk

C‐Section Any Bad Outcome Neonatal Death

                    Medical Risk: Low Medium High Low Medium High Low Medium High

Diagnostic Skill ‐0.067 0.058 0.190 ‐0.032 ‐0.049 ‐0.029 ‐0.004 ‐0.011 ‐0.015

(0.008) (0.013) (0.009) (0.005) (0.007) (0.007) (0.001) (0.001) (0.002)

Procedural Skill Difference 0.103 0.152 0.156 ‐0.066 ‐0.306 ‐1.06 ‐0.003 ‐0.020 ‐0.083

(0.021) (0.042) (0.033) (0.023) (0.037) (0.034) (0.002) (0.005) (0.010)

Price Differential (x 100) 0.368 0.607 0.008 0.081 0.044 0.067 0.013 0.025 ‐0.007

(0.057) (0.094) (0.054) (0.041) (0.054) (0.049) (0.004) (0.007) (0.011)

C‐section Risk 0.822 0.692 0.782 0.327 ‐0.093 0.347 0.013 ‐0.036 0.034

(0.032) (0.021) (0.020) (0.020) (0.014) (0.019) (0.005) (0.004) (0.007)

Share High Risk in Practice 0.332 0.575 0.257 0.151 0.203 0.117 0.007 0.024 0.006

(0.040) (0.074) (0.036) (0.024) (0.033) (0.029) (0.003) (0.007) (0.008)

R‐squared 0.043 0.215 0.065 0.012 0.010 0.059 0.004 0.009 0.016

# Observations 475270 372239 121631 475270 372239 121631 475270 372239 121631

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.



Table 7: Effect of Doctor Variables Excluding Planned C‐Sections from Sample

C‐Section Any Bad Outcome Neonatal Death

                    Medical Risk: Low Medium High Low Medium High Low Medium High

Diagnostic Skill ‐0.033 0.006 0.333 ‐0.026 ‐0.045 ‐0.043 ‐0.003 ‐0.009 ‐0.022

(0.006) (0.013) (0.019) (0.005) (0.008) (0.012) (0.001) (0.001) (0.004)

Procedural Skill Difference 0.071 0.13 0.119 ‐0.066 ‐0.237 ‐1.22 ‐0.004 ‐0.015 ‐0.136

(0.016) (0.035) (0.060) (0.024) (0.037) (0.047) .002) (0.006) (0.021)

Price Differential (x 100) 0.189 0.37 ‐0.225 0.062 (0.018) (0.057) 0.011 0.030 0.002

(0.043) (0.095) (0.128) (0.042) (0.057) (0.094) (0.003) (0.008) (0.028)

C‐section Risk 0.418 0.357 2.481 0.320 ‐0.005 0.396 0.006 ‐0.035 0.072

(0.025) (0.019) (0.052) (0.021) (0.015) (0.037) (0.005) (0.005) (0.018)

R‐squared 0.044 0.033 0.208 0.011 0.005 0.057 0.004 0.014 0.026

# Observations 455834 282265 43119 455834 282265 43119 455834 282265 43119

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.



Table 8: Effect of Market Level Variables

C‐Section Any Bad Outcome Neonatal Death

                    Medical Risk: Low Medium High Low Medium High Low Medium High

Market Diagnostic Skill ‐0.203 0.022 0.550 ‐0.073 ‐0.055 ‐0.099 0.000 ‐0.003 ‐0.031

(0.034) (0.051) (0.059) (0.020) (0.027) (0.047) (0.004) (0.007) (0.014)

Market Procedural Skill Differe 0.071 0.279 0.390 0.011 ‐0.103 ‐0.614 0.005 ‐0.008 ‐0.046

(0.045) (0.074) (0.095) (0.034) (0.052) (0.092) (0.009) (0.012) (0.028)

Market Price Differential (x 100 0.142 0.395 ‐0.143 ‐0.010 0.355 0.202 ‐0.001 0.035 0.004

(0.114) (0.142) (0.150) (0.054) (0.075) (0.119) (0.001) (0.018) (0.004)

C‐section Risk 0.883 0.711 0.793 0.338 ‐0.094 0.392 0.014 ‐0.036 0.039

(0.033) (0.018) (0.019) (0.018) (0.012) (0.018) (0.005) (0.004) (0.007)

R‐squared 0.046 0.218 0.062 0.018 0.013 0.036 0.006 0.011 0.017

# Observations 475270 372239 121631 475270 372239 121631 475270 372239 121631

Notes: Standard errors are clustered on the zip code and shown in parentheses. 

Regressions also included all of the variables listed in Table 4 as well as zip code fixed effects.



Table 9: Models of Hospital Demand

Coeff. Coeff. Coeff.

Distance from Residence ‐0.256 ‐0.256 ‐0.256

(0.000) (0.000) (0.000)

Procedure Skill Differential 0.703 0.596 0.590

(0.048) (0.048) (0.050)

Diagnostic Skill ‐0.245 ‐0.260 ‐0.261

  (0.034) (0.034) (0.035)

Price Difference (CS‐N) 0.0017 0.0013 0.0013

(0.0009) (0.0009) (0.0009)

C‐section Rate .. 0.005 0.007

(0.053) (0.053)

Medicaid Rate .. ‐0.437 ‐0.435

(0.022) (0.023)

Rate of Bad Outcomes .. .. ‐0.032

(0.072)

Notes: Standard errors in parentheses.  Estimated using Alternative Specific

Conditional Logit.   Patient characteristics (maternal age, race, education,

Medicaid coverage) are allowed to have separate effects on each hospital choice.



Appendix Table 1: Effect of Doctor Variables Including Share High Risk

C‐Section Any Bad Outcome Neonatal Death

                    Medical Risk: Low Medium High Low Medium High Low Medium High

Diagnostic Skill ‐0.065 0.054 0.187 ‐0.031 ‐0.050 ‐0.030 ‐0.004 ‐0.011 ‐0.015

(0.009) (0.013) (0.009) (0.005) (0.008) (0.007) (0.001) (0.001) (0.002)

Procedural Skill Difference 0.099 0.149 0.144 ‐0.065 ‐0.306 ‐1.07 ‐0.003 ‐0.020 ‐0.083

(0.021) (0.041) (0.032) (0.024) (0.037) (0.034) (0.002) (0.005) (0.010)

Price Differential (x 100) 0.371 0.611 0.010 0.082 0.045 0.067 0.013 0.024 ‐0.008

(0.057) (0.094) (0.053) (0.041) (0.054) (0.049) (0.004) (0.007) (0.011)

C‐section Risk 0.830 0.689 0.791 0.329 ‐0.094 0.351 0.013 ‐0.036 0.0340

(0.032) (0.022) (0.020) (0.019) (0.014) (0.019) (0.005) (0.004) (0.007)

Share High Risk Lowest ‐0.031 ‐0.056 ‐0.032 ‐0.015 ‐0.019 ‐0.011 ‐0.001 ‐0.002 ‐0.001

  Quartile (0.005) (0.008) (0.005) (0.003) (0.004) (0.003) (0.0003) (0.0006) (0.001)

Share High Risk Second ‐0.018 ‐0.036 ‐0.013 ‐0.013 ‐0.016 ‐0.010 ‐0.001 ‐0.001 0.000

  Quartile (0.004) (0.007) (0.004) (0.003) (0.004) (0.003) (0.0003) (0.0005) (0.001)

Share High Risk Third ‐0.010 ‐0.015 ‐0.010 ‐0.008 ‐0.012 ‐0.006 ‐0.001 ‐0.002 ‐0.001

  Quartile (0.004) (0.006) (0.004) (0.004) (0.004) (0.003) (0.0003) (0.0005) (0.001)

R‐squared 0.043 0.215 0.064 0.0118 0.010 0.059 0.004 0.009 0.016

# Observations 475270 372239 121631 475270 372239 121631 475270 372239 121631

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.




